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1. INTRODUCTION

1.1. Background. In this paper, we investigate the number of chains in a subset of Zd

p

,
the d-dimensional vector space over the finite field with p elements, for a prime p.

Definition 1.1. A chain in E ✓ Zd

p

of length n with common distance t is a sequence

x1, x2, ..., xn+1 where for i = 1, ..., n, ||x
i+1 � x

i

|| = t.

Here, and throughout the paper, ||x|| = x

2
1 + x

2
2 + · · ·+ x

2
d

. Note that chains in E are
equivalent to paths on the distance graph of E. Theorem 1.1 of [1] gives an estimate for
the number of paths of a certain length, which is a very similar result to Theorem 1.4 in
this paper; in fact, it is essentially the same but with a better constant on the error term.
We give a different proof, and also extend the idea to dot products as well as distances.
In other words, we consider sequences with the property ||x

i+1 · xi

|| = t.
After obtaining our result estimating the number of chains, we consider an applica-

tion of the case n = 2 to estimating the size of pinned distance sets.

Definition 1.2. The distance set of E pinned at x 2 E is

�

x

(E) = {||x� y|| : y 2 E} (1)

In fact, the idea we employ here could be generalized further to relate chains of length
2n to pinned chains of length n.
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2 BRIAN MCDONALD

1.2. Main Results.

Definition 1.3. Let ⇤

n

t

(E) be the number of chains in E of length n, with common

distance t, and let �

n

t

(E) be the number of dot-product chains in E of length n with

common dot-product t.

The main focus of this paper is to estimate these quantities. Also, the case ⇤2
t

(E) can
be used for obtaining a lower bound on the size of pinned distance sets in E.

Theorem 1.4. If |E| > p

d+1
2

, then

⇤

n

t

(E) =

|E|k+1

p

k

+R (2)

�

n

t

(E) =

|E|k+1

p

k

+Q (3)

Where

R  2p

d�1
2
|E|k

p

k�1

✓
4

k+1 � 4

3

◆
(4)

2. THE FRAMEWORK

We start by proving an estimate of a sum which is essential to our proof for the main
theorem. First, let

S

t

= {x 2 Zd

p

: ||x|| = t} (5)

For notational convenience, we will identify a set with its indicator function. Also, let
T

t

(x, y) be the indicator function for when x · y = t.

Theorem 2.1. For any subset E ✓ Zd

p

, and any nonnegative functions f, g : Zd

p

! R,

the following estimates hold:

X

x,y2Zd
p

f(x)g(y)S

t

(x� y) = p

�1||f ||1||g||1 + "1

X

x,y2Zd
p

f(x)g(y)T

t

(x, y) = p

�1||f ||1||g||1 + "2 (6)

Where the error terms are bounded by

"1  2p

d�1
2 ||f ||2||g||2

"2  p

d�1
2 ||f ||2||g||2 (7)

Before proving this theorem, we will introduce the following lemma, which we take
as a black box.

Lemma 2.2. If m 6= 0, then

| ˆS
t

(m)|  2p

� d+1
2 (8)

Now we prove the theorem.
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Proof. We start with the first estimate.
X

x,y

f(x)g(y)S

t

(x� y) =

X

x,y

X

m

�((x� y) ·m)

ˆ

S

t

(m)f(x)g(y)

= p

2d
X

m

ˆ

f(m)ĝ(m)

ˆ

S

t

(m)

= p

�d||f ||1||g||1|St

|+ p

2d
X

m 6=0

ˆ

f(m)ĝ(m)

ˆ

S

t

(m) (9)

The m = 0 term is already the desired main term, considering the fact that |S
t

| ⇠ p

d�1.
The error term we bound with Cauchy Schwarz, obtaining

"1 = p

2d
X

m 6=0

ˆ

f(m)ĝ(m)

ˆ

S

t

(m)  p

2d
⇣
2p

� d+1
2

⌘ X

m

| ˆf(m)|2
! 1

2
 
X

m

|ĝ(m)|2
! 1

2

= 2p

d�1
2 ||f ||2||g||2 (10)

Now we move on to the second estimate, in the case of dot products. We start out in
similar fashion:
X

x,y

f(x)g(y)T

t

(x, y) = p

�1||f ||1||g||1 + p

�1
X

m 6=0

X

x,y

f(x)g(y)�(m(x · y � t)) (11)

So that

"

2
2 =

 
X

m 6=0

X

x,y

f(x)g(y)�(m(x · y � t))

!2

 p

�2||f ||22
X

x

X

m,m

0 6=0
y,y

0

g(y)g(y

0
)�(x · (my �m

0
y

0
))�(�t(m�m

0
)) (12)

Now in the above sum, when my �m

0
y

0 6= 0 the sum over x vanishes. Thus, we have

"

2
2 = p

d�2||f ||22
X

my=m

0
y

0

g(y)g(y

0
)�(t(m

0 �m)) (13)

Now, when m = m

0, we have y = y

0 also, and so we have

p

d�2||f ||22
X

m=m

0 6=0
y

|g(y)|2  p

d�1||f ||22||g||22 (14)

On the other hand, if m 6= m

0, then we use a substitution a =

m

m

0 , b = m

0, to obtain

p

d�2||f ||22
X

y,y

0

a 6=0,1
b 6=0

g(y)g(y

0
)�(tb(1� a)) (15)

But notice that
X

b 6=0

�(tb(1� a)) = �1 (16)
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so the m 6= m

0 terms actually give a negative contribution, so we may just ignore them.
Therefore, we have the desired bound on the error term.

⇤

In fact, this theorem can be done in a more general setting; the dot product can be
replaced with any non-degenerate bilinear form [2]. The other cases require a more
detailed analysis, and this is all we need for our main result.

Here we recursively define two sequences of functions which will encode a lot of
information about ⇤n

t

(E), �n

t

(E).

Definition 2.3. Let  0 = '0 = 1, and let

 

k

(x) = (E'

k�1) ⇤ St

(x) =

X

y

E(y)'

k�1(y)St

(x� y)

'

k

(x) =

X

y

E(y)'

k�1(y)Tt

(x, y) (17)

Note that this definition really only makes sense for x 2 E, The reason these are
useful is the following lemma, in particular the case k = n.

Lemma 2.4. For k = 0, ..., n,

⇤

t

n

(E) =

X

x1,...,xn+1�k

 

k

(x

n+1�k

)

n+1�kY

i=1

E(x

i

)

n�kY

i=1

S

t

(x

i+1 � x

i

), (18)

�

t

n

(E) =

X

x1,...,xn+1�k

'

k

(x

n+1�k

)

n+1�kY

i=1

E(x

i

)

n�kY

i=1

S

t

(x

i+1 · xi

) (19)

Proof. This can be shown by induction, noting that the case k = 0 is trivial, and that

⇤

n

t

(E) =

X

x1,...,xn+2�k

 

k�1(xn+2�k

)

n+2�kY

i=1

E(x

i

)

n+1�kY

i=1

S

t

(x

i+1 � x

i

)

=

X

x1,...,xn+1�k

n+1�kY

i=1

E(x

i

)

n�kY

i=1

S

t

(x

i+1 � x

i

)

X

xn+2�k

E(x

n+2�k

) 

k�1(xn+2�k

)S

t

(x

n+2�k

� x

n+1�k

)

=

X

x1,...,xn+1�k

 

k

(x

n+1�k

)

n+1�kY

i=1

E(x

i

)

n�kY

i=1

S

t

(x

i+1 � x

i

) (20)

Since

 

k

(x

n+1�k

) =

X

xn+2�k

E(x

n+2�k

) 

k�1(xn+2�k

)S

t

(x

n+2�k

� x

n+1�k

) (21)

Therefore, the first identity holds. The proof of the second one is identical, replacing
S

t

(x

i+1 � x

i

) with T

t

(x

i+1, xi

) and  with ' throughout. ⇤
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Corollary 2.5.

⇤

n

t

(E) =

X

x

E(x) 

n

(x) = ||E 
n

||1, (22)

�

n

t

(E) =

X

x

E(x)'

n

(x) = ||E'
n

||1 (23)

Proof. This is the special case k = n. ⇤

We have now reduced the original problem to estimating ||E 
n

||1 and ||E'
n

||1,
which we will do using a few recursive inequalities. Until this stage, we have been
simultaneously handling the distance case and the dot product case in paralell, since
they have been structurally identical. Now the two proofs will diverge - not because
they are different in a particularly meaningful way, but because the small differences
between the two cases will start to add up, and so it would be less efficient to do them
together. Note that the only difference between the two cases lies in the error term from
Theorem 2.1, where there is an extra factor of 2 in the distance case, when compared
to the dot product case. This seems insignificant enough that it might make sense to
continue handling the two cases simultaneously, but since our plan of attack is to use a
recursive inequality based on Theorem 2.1, this difference will propagate.

3. PROOF OF MAIN THEOREM

3.1. Distances. In order to prove Theorem 1.4, we first prove a lemma which allows
us to recursively bound a

k

:= ||E 
k

||1. We will get an inequality involving L

1 and L

2

norms, and then we will get a similar recursive inequality for the sequence of L2 norms,
b

k

:= ||E 
k

||2. We will be able to combine these to achieve an estimate of a
k

.

Lemma 3.1.

a

k

 |E|
p

a

k�1 + 2p

d�1
2 |E| 12 b

k�1 (24)

Proof. This is a straightforward application of Theorem 2.1, with f(x) = E(x), g(y) =
E(y) 

k�1(y). We have

a

k

=

X

x

E(x) 

k

(x) =

X

x,y

E(x)E(y) 

k�1(y)St

(x� y)

 p

�1|E| · ||E 
k�1||1 + 2p

d�1
2 |E| 12 ||E 

k�1||2

=

|E|
p

a

k�1 + 2p

d�1
2 |E| 12 b

k�1 (25)

⇤

Lemma 3.2.

b

2
k

 p

�1
a

k

a

k�1 + 2p

d�1
2
b

k

b

k�1 (26)
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Proof. This is the same idea as the previous lemma, but with f(x) = E(x) 

k

(x),
g(y) = E(y) 

k�1. We have

b

2
k

=

X

x

E(x) 

k

(x)

2
=

X

x,y

E(x)E(y) 

k

(x) 

k�1(y)St

(x� y)

 p

�1||E 
k

||1||E k�1||1 + 2p

d�1
2 ||E 

k

||2||E k�1||2
= p

�1
a

k

a

k�1 + 2p

d�1
2
b

k

b

k�1 (27)

⇤

Now the idea is to combine these two inequalities to bound a

k

, b

k

above by induction.
Then we will use that upper bound to prove our main result.

Lemma 3.3. For some constant C

k

depending only on k, we have

a

k

 C

k

|E|k+1

p

k

, and b

k

 C

k

|E|k+ 1
2

p

k

(28)

Proof. It is clearly true in the case k = 0 with the choice of constant C0 = 1. Assume
it is true for indices less than k. We have by Lemma 3.1 that

�
p

�1
a

k

a

k�1

�
 p

�2|E|a2
k�1 + 2p

d�3
2 |E| 12a

k�1bk�1

 C

2
k�1

|E|2k+1

p

2k
+ 2C

2
k�1

|E|2k+1

p

2k

= 3C

2
k�1

|E|2k+1

p

2k
(29)

Also,

2p

d�1
2
b

k�1  2C

k�1
|E|k+ 1

2

p

k

(30)

The following simple algebra is helpful: for A,B > 0, if x 
p
A+Bx, then we can

solve the corresponding quadratic polynomial to find that

x  B +

p
B

2
+ 4A

2

 max(B,

p
B

2
+ 4A) 

p
B

2
+ 4A (31)

We use this inequality with

x = b

k

,

A = 3C

2
k�1

|E|2k+1

p

2k
,

B = 2C

k�1
|E|k+ 1

2

p

k

(32)
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And we obtain

b

k


✓
4C

k�1
|E|2k+1

p

2k
+ 12C

2
k�1

|E|2k+1

p

2k

◆ 1
2

 4C

k�1
|E|k+ 1

2

p

k

(33)

Therefore, C
k

= 4

k works as long as we can show that we obtain the desired inequality
for a

k

also.

a

k

 |E|
p

a

k�1 + 2p

d�1
2 |E| 12 b

k�1

 C

k�1
|E|k+1

p

k

+ 2

|E| 32
p

b

k�1

 3C

k�1
|E|k+1

p

k

< C

k

|E|k+1

p

k

(34)

⇤

We are now ready to prove the main theorem.

Proof of Theorem 1.4 (Distances Case). The key trick in passing from the previous
lemma to the desired theorem is the observation that although losing a constant fac-
tor on a

k

was necessary in order to bound b

k

in the first place, once we know our bound
for b

k

it is not hard to use the exact same recursion to get a more precise estimate for
a

k

. We know by Theorem 2.1 along with the previous lemma that

a

k

=

|E|
p

a

k�1 +R

k

,

R

k

 2p

d�1
2
C

k

|E|k

p

k�1
(35)

Since a0 = |E|, we can use this recursion to estimate a

k

. We have

a

k

=

|E|
p

a

k�1 +R

k

,

=

|E|2

p

2
a

k�2 +
|E|
p

R

k�1 +R

k

= · · ·

=

|E|k

p

k

a0 +

k�1X

i=0

|E|i

p

i

R

k�i

=

|E|k+1

p

k

+R (36)
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Where

R :=

k�1X

i=0

|E|i

p

i

R

k�i

 2p

d�1
2
|E|k

p

k�1

k�1X

i=0

4

k�i

= 2p

d�1
2
|E|k

p

k�1

✓
4

k+1 � 4

3

◆
(37)

In light of the fact that a
k

= ⇤

k

t

(E), we are done. ⇤

3.2. Dot Products. The proof in the dot product case goes in essentially the same
fashion. As mentioned earlier, the only difference in the results from Section 2 is that
the error term is missing a factor of 2 when compared to the error term from the distance
case. We will trace through the lemmas building up to the proof of Theorem 1.4, making
sure to keep track of that factor of 2 in the error term. To continue with notation similar
to before, let c

k

:= ||E'
k

||1, dk := ||E'
k

||2.

Lemma 3.4.

c

k

 |E|
p

c

k�1 + p

d�1
2 |E| 12d

k�1 (38)

Proof. In the proof of Lemma 3.1, replace  with ' and S

t

(x � y) with S

t

(x · y), and
we lose a factor of 2 in the error term because of the difference in Theorem 2.1. ⇤
Lemma 3.5. ??

d

2
k

 p

�1
c

k

c

k�1 + p

d�1
2
d

k

d

k�1 (39)

Proof. This is to Lemma 3.2 as the previous lemma is to 3.1. ⇤
Lemma 3.6. For some constant D

k

depending only on k, we have

c

k

 D

k

|E|k+1

p

k

, d

k

 D

k

|E|k+1

p

k

(40)

Proof. It is clearly true in the case k = 0 with the choice of constant D0 = 1. Assume
it is true for indices less than k. We have by Lemma 3.4 that

�
p

�1
c

k

c

k�1

�
 p

�2|E|c2
k�1 + p

d�3
2 |E| 12 c

k�1dk�1

 D

2
k�1

|E|2k+1

p

2k
+D

2
k�1

|E|2k+1

p

2k

= 2D

2
k�1

|E|2k+1

p

2k
(41)

Also,

p

d�1
2
d

k�1  C

k�1
|E|k+ 1

2

p

k

(42)
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Similarly to before, we will have d

k


p
B

2
+ 4A, where

A = 2D

2
k�1

|E|2k+1

p

2k
,

B = d

k�1
|E|k+ 1

2

p

k

(43)

And we obtain

d

k


✓
D

2
k�1

|E|2k+1

p

2k
+ 8D

2
k�1

|E|2k+1

p

2k

◆ 1
2

= 3D

k�1
|E|1+ 1

2

p

k

(44)

Therefore, D
k

= 3

k works as long as we can show that we obtain the desired inequality
for c

k

also.

c

k

 |E|
p

c

k�1 + p

d�1
2 |E| 12d

k�1

 D

k�1
|E|k+1

p

k

+

|E| 32
p

d

k�1

 2D

k�1
|E|k+1

p

k

< D

k

|E|k+1

p

k

(45)

⇤

We can now conclude the dot product case of Theorem 1.4.

Proof of Theorem 1.4 (Dot Product Case). Similarly to in the proof for the distance case,
we obtain

c

k

=

|E|k+1

p

k

+Q,

Q :=

k�1X

i=0

|E|i

p

i

Q

k�i

,

Q

i

 p

d�1
2
D

i

|E|i

p

i�1
(46)

Thus,

Q  p

d�1
2
|E|k

p

k�1

✓
3

k+1 � 3

2

◆
(47)

We have finished proving Theorem 1.4 in both cases.
⇤
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4. APPLICATION TO PINNED DISTANCE SETS

Definition 4.1 (Pinned Distance Sets). For x 2 E ✓ Zd

p

, let

�

x

(E) = {||x� y|| : y 2 E} (48)

We call this the distance set of E pinned at x.

Our goal is to find a lower bound for |�
x

(E)| via estimating certain sums over Zd

p

.
Consider the quantity

⌫

x

(t) := |{y 2 E : ||x� y|| = t}| =
X

y

E(y)S

t

(x� y) (49)

Note that for every y 2 E, there is precisely one t (namely t = ||x � y||) for which
y 2 {y 2 E : ||x � y|| = t}. This trivial observation, along with an application of
Cauchy-Schwarz, allows us to write

|E|2 =
 
X

t

⌫

x

(t)

!2

 |�
x

(E)|
X

t

⌫

x

(t)

2 (50)

Therefore, bounding �

x

(t) below can be done by bounding
P

t

⌫

x

(t)

2 above. Rather
than doing this for a fixed x, we will look at what happens when we sum over x.

X

x,t

⌫

x

(t)

2
=

X

t

X

x,y,z

E(x)E(y)E(z)S

t

(x� y)S

t

(x� z)


X

t

⇤

2
t

(E)  p

✓
|E|3

p

2
+ 40p

d�1
2
|E|2

p

◆

=

|E|3

p

+ 40p

d�1
2 |E|2 (51)

By Chebyshev’s inequality, the number of x 2 E such that
P

t

⌫

x

(t) � a is bounded
above by

1

a

✓
|E|3

p

+ 40p

d�1
2 |E|2

◆
(52)

If we take

a =

|E|2 log(p)
p

(53)

then the number of bad x 2 E is o(E). Therefore, as a result of the preceding discus-
sion, we obtain the following theorem.

Theorem 4.2. For almost all x 2 E,

|�
x

(E)| � p

log(p)

(54)

Note that in our choice of a, the factor of log(p) was rather arbitrary, and was chosen
mostly for convenience. It could be replaced by any function of p which goes to infinity.
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