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1 Introduction

The goal of this paper is to provide a reasonably complete exposition of the Ax-Kochen theorem and its
(partial) resolution of Artin’s conjecture, in addition to a small selection of other applications of model
theory and mathematical logic to algebra. This is based largely on Chang and Keisler’s Model Theory and
Cherlin’s Model Theoretic Algebra: Selected Topics. Wherever possible, some intuition, motivation, or other
plausibility argument accompanies the more di�cult results.

2 The Completeness Theorem

This section aims to introduce the fundamental definitions of model theory and apply them to a brief proof
of the Completeness Theorem for first-order logic, largely following the presentation in [1].

2.1 Basic Definitions

Definition 2.1. A language is a collection L of symbols and associated natural numbers of the following
kinds:

1. a set C of constants

2. a set F of functions, and a natural number n
f

for each function f (its arity)

3. a set R of relations, and another natural number n
R

for each relation R (also its arity)

Additionally, we define ||L|| to be ! if L is finite, and |C [ F [R| otherwise.
On top of languages, we can build mathematical objections:

Definition 2.2. For a fixed language L, an L-structure M is given by a set M (the universe) with an
interpretation, which gives the “meaning” of symbols in the language L in M (e.g. constants are assigned to
members of M). Typically, we use cM, fM, and RM to denote the interpretation of constants, functions,
and relations on M (in the natural way).

Generally: M has M as its underlying set.

Isomorphisms between models are exactly what they sound like: sentence- and truth-preserving functions
between two models. A more logically relevant notion is that of elementary equivalence:

Definition 2.3. Two models, M and N , in a language L are said to be elementarily equivalent, M ⌘ N ,
when M ✏ � if and only if N ✏ � for any sentence � of L.

It is possible for nonisomorphic models to be elementarily equivalent, though certainly isomorphic models
are elementarily equivalent.

The distinction between theories (syntax) and models (semantics) is important. Two relations are im-
portant for this: syntactic consequence (`) and semantic consequence (✏). Given a set of L-sentences T and
sentence � (known as a theory) we say that T ` � if there is a (formal) proof of � from T . On the other
hand, for a model, we say that M ✏ � if � is true in M. One can also say for a theory T that T ✏ � if � is
true in every model of T .
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On the other hand, the connections between syntax and semantics are important too. The language
plays a crucial role in model theory because its expressiveness determines what can be said and proven
about models. For instance, our goal is to prove the Ax-Kochen theorem in a particular language, that of
valued fields, but an interesting alternative proof can be given by quantifier elimination, which is possible if
the language is expanded to include a predicate for “is an nth power”.

Ideally, we would like syntactic and semantic consequence to agree: everything which is provable should be
true, and everything which is true should be provable. The first, soundness, just requires that the derivation
rules be truth-preserving, which is easily seen to be true for first order logic. The second, completeness, is
somewhat deeper, but we will see that it is true in first-order logic.

2.2 Completeness

One of the first and most substantial theorems of mathematical logic is the completeness theorem, which
says that a set of sentences is consistent if and only if it has a model. It has a variety of useful corollaries.

We will prove it here using Henkin’s construction, following the proofs in [5] [1].
This proof proceeds in two steps: first, we show that any theory can be extended to a maximal theory,

and that any theory can be extended to one with the witness property (all consistent, of course). It is more
or less straightforward to show that such a theory has a model. With a small amount of extra work, it can
be shown that this model is a model of the original theory (in the second step, the language is expanded,
introducing a small subtlety).

Definition 2.4. A theory T is said to be maximal if, for any sentence �, either � or ¬� is in T .

Lemma 2.1. Suppose T is a consistent theory. Then there exists a maximal (consistent) theory T 0 extending
T .

Proof. Let ⌃ be the set of consistent theories containing T . Since T 2 ⌃, it is nonempty. Suppose that we
have a chain in ⌃ indexed by I:

T1 ✓ T2 ✓ ...

Let S = [
i2I

T
i

. Obviously, S contains T ; moreover, S is consistent: since proofs are finite, only finitely
many T

i

are needed to prove a contradiction, but then the largest of those T
i

would not be consistent, a
contradiction (as all members of ⌃ are consistent). By Zorn’s lemma, ⌃ has maximal elements.

Let T 0 be maximal in ⌃, and � some sentence. Suppose � 62 T 0. By maximality, it must be that T 0 [ {�}
is inconsistent. Certainly ¬� is a consequence of any inconsistent theory, and hence

T 0 ` �! ¬�

T 0 ` ¬� _ ¬�

T 0 ` ¬�

This means T 0 [ {¬�} is consistent, and hence ¬� 2 T 0 by maximality.

Definition 2.5. A theory T has the witness property if there exists a set of constants C ✓ C in L such
that: for every sentence � of L, there is a constant c 2 C such that

T ` (9x�) ! �(c)

The set C is called a set of witnesses for T .

Lemma 2.2. Given a (consistent) theory T in the language L, there exist a theory T 0 and language L0

extending T and L respectively, such that T 0 has the witness property.

Proof. Fix ↵ = ||L||. For each � < ↵, add a constant c
�

to L (distinct from any extant constants) to obtain
a language L0 - note that ||L|| = ||L0||. Order the sentences � of L0 (of which there are ↵) such that for each
sentence �

�

there is a corresponding constant d
�

. The constant d
�

can (and must) be chosen so that it does
not occur in �

�

for any � < �; because any sentence has at most finitely many constants in it, we may just
let d

�

be the smallest constant not yet used.
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We can then create a chain
T = T0 ✓ T1 ✓ ...

Such that:
T
�+1 = T

�

[ {(9x
�

�
�

) ! �
�

(d
�

)}
And for any nonzero limit ordinal ⇣, T

⇣

= [
�<⇣

T
�

.
Proceeding inductively, we first show that T

�+1 is consistent when T
�

is; if not:

T
�

` ¬ ((9x
�

�
�

) ! �
�

(d
�

))

T
�

` (9x
�

�
�

) ^ ¬�
�

(d
�

)

T
�

` (9x
�

�
�

) ^ ¬�
�

(x
�

)

T
�

` (9x
�

�
�

) ^ ¬(9x
�

�
�

),

contradicting the consistency of T . (to move from line 2 to 3, note that d
�

does not appear in T
�

)
It is true in general that [

�<⇣

T
�

is consistent if each member of the union is consistent. Otherwise, since
only finitely many statements are used to prove a contradiction, some T

�

would contain all the statements
necessary to prove that contradiction, but all the T

�

are consistent, so this is not possible.
Now simply let T 0 = [

�<↵

T
�

. Just like the other union, it remains consistent. By construction it has
the witness property, as each sentence �

�

is assigned a witness d
�

in the above construction.

Note that the witness property is preserved under extensions to a theory, since it is quantified over all
sentences of the language. This means we can start with T and L, obtain T 0,L0 which have the witness
property, and finally extend that to T̄ , L̄ in which T̄ is a maximal consistent theory with the witness property.
Since T ✓ T̄ , any model of T̄ is a model of T . We will see that for theories such as T̄ , the construction of a
model is fairly straightforward.

Lemma 2.3. If T is a maximal consistent set of sentences in L with a set of C from L, then T has a model.
In fact, every element of the model will be the interpretation of some constant of C.

Proof. Define the relation ⇠ on C:

a ⇠ b if and only if a = b 2 T

Since T is maximal, it is easy to verify that it is in fact an equivalence relation.
From this we can define our model M. Let the universe be M = C/⇠, using bars to denote equivalence

classes. The interpretation is fairly straightforward:

1. For each constant, let cM = c̄

2. Let f be an n-place function in L. For each n-tuple (aM1 , ..., aM
n

), note first that:

T ` 9t = f(a1, ..., an)

Hence by the witness property, there is a constant a such that f(a1, ..., an) = a. We will say that

fM(aM1 , ..., aM
n

) = aM

We must still prove f is well-defined; suppose that (aM1 , ..., aM
n

) = (bM1 , ..., bM
n

). This means that

T ` a1 = b1, a2 = b2, ..., an = b
n

From the identity axioms, a = f(a1, ..., an) = f(b1, ..., bn) and so f(aM1 , ..., aM
n

) = f(bM1 , ..., bM
n

).

3. For each n-ary relation R in L, we make a similar definition. Let (aM1 , ..., aM
n

) be an n-tuple. We will
say that

(aM1 , ..., aM
n

) 2 RM if and only if T ` R(a1, ..., an)

Exactly as we saw for functions, this is well-defined due to the identity axioms and our construction
of the equivalence classes.
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Finally, it remains to show that M is truly a model of T . Since T is complete, this amounts to showing
thatM ✏ � if and only if � 2 T .

1. First we will establish the claim for sentences of the form t1 = t2, where t1 and t2 are closed terms.

Suppose T ✏ t1 = t2; since T ✏ 9x(x = t1) and 9x(x = t2), the witness property gives us constants c1
and c2 such that t1 = c1 and t2 = c2, so (c1 = c2) 2 T also. By the remarks on functions above, this
is enough to conclude that M ✏ t1 = c1 = c2 = t2

Conversely, if T ✏ t1 6= t2 then we obtain a pair of constants c1 6= c2 such that c1 = t1 and c2 = t2.
Then M ✏ t1 = c1 6= c2 = t2, as desired.

2. The same reasoning extends to predicates in general: if T ` P (t1, ..., tn), the witness property allows
us to replace each term with a constant, and then appeal to the construction above, and likewise if
P (t1, ..., tn) 62 T by completeness.

3. Now we extend this to logical operations by induction on the length of formulas.

If 6 � 2 T , then � 62 T , which is true if and only if M 6✏ � by induction.

If � ^  2 T , then � and  are in T , hence M satisfies both � and  , and so it satisfies � ^  .

4. Finally, we must treat quantifiers.

Suppose � = 9x . If � 2 T , then by the witness property, there exists a c such that  (c) 2 T , and so
M ✏  (c) (using the fact that  is a shorter sentence), hence M ✏ 9x .
Conversely, if M ✏ �, then M ✏  (c) for some c. Here again,  is a shorter sentence, so  (c) 2 T , and
hence T ✏ 9x .

This establishes the results necessary to prove the completeness theorem:

Theorem 2.4. A set of sentences ⌃ in L is consistent if and only if ⌃ has a model.

Proof. If ⌃ were inconsistent, ⌃ ` 9x(x 6= x), and so any model of ⌃ satisfies that sentence, but there are
no models of 9x(x 6= x).

If ⌃ is consistent, extend to ⌃0 and L0 such that ⌃0 is complete and has witnesses. By the previous
lemma, there exists a model M of ⌃0 over L0. However, we can always restrict the language to L. Since
⌃ ✓ ⌃0, and the only symbols we lose in passing from L0 to L are constants not mentioned in ⌃, we see that
M is a model of ⌃.

2.3 Applications and Examples

This result, as well as the particular construction used above, has a number of surprising, interesting,
and useful consequences, summarized below. The completeness theorem is useful for constructing models
satisfying certain properties.

Theorem 2.5 (Compactness Theorem). If every finite subset of ⌃ is satisfiable, then ⌃ is satisfiable.

Proof. By completeness, it su�ces to show ⌃ is consistent. Any contradiction derivable from ⌃ would depend
only on some finite subset � of ⌃. But � is satisfiable, and hence cannot prove a contradiction, so ⌃ is
consistent.

Theorem 2.6 (Downward Löwenheim-Skolem-Tarski). Every consistent theorem T over a language L has
a model of cardinality at most ||L||.

Proof. In the construction above, we obtain a model whose elements are all equivalence classes of constants
of an extension of L to a language in which T has witnesses. Each constant was either in L or is associated
to a formula of L, of which there are ||L||, so taken together there are at most ||L|| possible equivalence
classes.
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Theorem 2.7 (Upward Löwenheim-Skolem-Tarski). Every consistent theory T over a language L with one
infinite model has a model of cardinality ↵ for any ↵ � ||L||.

Proof. Enrich L with ↵ distinct constants {c
�

| � < ↵} and expand T by the sentences {c
�

6= c
�

| � < � < ↵}.
The new theory is finitely satisfiable: any finite subset involves only finitely many of the c

�

s, and T has an
infinite model, so it is always possible to interpret them as distinct elements of that model.

As a result, the larger theory has a model of cardinality at most ||L [ {c
�

| � < ↵}||  ↵, but each of
the constants is distinct, so the model has at least cardinality ↵.

In some sense the last two theorems above, the Upward and Downward Löwenheim-Skolem-Tarski The-
orems, are a negative result about the strength of first order logic: they show that there is no first order
sentence which fixes the (infinite) cardinality of a model. Unfortunately, there is a similar result for finite-
ness; while any particular finite cardinality can be picked out with a first order sentence, there is no sentence
which has all and only the finite models.

Theorem 2.8. If a theory T has finite models of arbitrary order, then it has an infinite model.

Proof. Add constants c1, c2, ... to the language, and let T 0 = T [ {c
i

6= c
j

| i 6= j}. Any finite subset of
T 0 is realized by a su�ciently large model of T , which can interpret all the c

i

as distinct elements, so T 0 is
consistent and has a model. Any model of T 0 has at least ! elements, and is also a model of T , so T has an
infinite model.

Many other properties involving finiteness also cannot be enforced by a first order sentence, such as the
property of being a torsion group:

Theorem 2.9. Suppose T extends the theory of groups in the language of groups. If T has models with
elements of arbitrarily high order, then T has a model with an element of infinite order.

Proof. For any n, there exists a model G
n

of T which contains an element g
n

of order at least n. Expand L
to L [ {c}. Let �

n

be the sentence given by

x ⇤ x ⇤ x ⇤ ... ⇤ x| {z }
n times

= e

Let T 0 = T [ {¬�
n

(c) | n 2 N}. Then T 0 is finitely satisfiable: if � ✓ T 0, it involves at most finitely
many of the �

n

, so there is some N such that ¬�
n

(c) is not in � for n � N . Then G
N

is a model of � with
c interpreted as g

N

.
Thus, T 0 is consistent, and so it has a model, which will also be a model of T . The element corresponding

to ‘c0 in that model will have infinite order.

3 Algebraically Closed Fields

One of the nicest theories available for study is that of algebraically closed fields. This field can be axiomatized
in the language of rings with identity, L

r

= {0, 1,+,⇥}. The following results are presented in [5]
Clearly, being a field is first-order. Algebraic closure can be axiomatized by the following family of

first-order sentences:
�
n

: 8a08a1...8an9x(a0 + a1x+ a2x
2 + ...+ a

n

xn = 0

Characteristic is also a first-order property, as if we let

 
p

: 1 + 1 + ...+ 1| {z }
p times

= 0,

then a field with characteristic p satisfies  
p

, while a field of characteristic zero satisfies {¬ 
p

}.
Let ACF be the theory of fields plus the axioms for algebraic closure. For p 6= 0, let ACF

p

= ACF[{ 
p

},
and let ACF0 = ACF [ {¬ 

p

}.
One reason algebraically closed fields behave so well is the following algebraic result:
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Theorem 3.1. Any two algebraically closed fields of the same characteristic and transcendence degree ↵ are
isomorphic.

Sketch of proof: take L and K with prime field k, and let L0 and K0 be maximal purely transcendental
subextensions of L and K respectively. Since they have the same transcendence degree, L0

⇠= K0. Then
note that L and K are the algebraic closures of L0 and K0, respectively, hence are isomorphic.

Note that for an uncountable algebraically closed field, its transcendence degree equals its cardinality.

Corollary 3.1.1. For any sentence �, either ACF
p

` � or ACF
p

` ¬� (clearly not both)

Proof. If not, then both � and ¬� are consistent with ACF
p

, and hence we can find models L and L0 of
ACF

p

+ � and ACF
p

+ ¬�, respectively.
All algebraically closed fields are infinite: since ACF

p

+ � and ACF
p

+ ¬� each have an infinite model,
they have infinite models of all cardinalities. Let  > |L|, |L0|, and K,K 0 models of ACF

p

+� and ACF
p

+¬�
of order . Since K and K 0 are uncountable algebraically closed fields of the same cardinality, they must be
isomorphic. As a consequence, they satisfy the same set of first-order sentences - but that means they each
satisfy both � and ¬�, a contradiction.

This leads us to a natural correspondence between algebraically closed fields of characteristic p > 0 and
characteristic zero: as p tends to infinity, the two become more similar.

Theorem 3.2. Let � be a sentence in L
r

. Then TFAE:

1. � is true in C

2. ACF0 ` �

3. For all su�ciently large p, ACF
p

` �

4. For arbitrarily large primes p, ACF
p

` �

Proof. (1 , 2) By the preceeding corollary, anything true in one algebraically closed field of characteristic
zero is true in all of them. By the completeness theorem, ACF0 ` �. The converse is obvious.

(2 ) 3, 4) Any proof of � from the axioms of ACF0 can only use finitely of the statements ¬ 
p

, and
hence is a valid argument in any other characteristic.

(¬2 ) ¬3,¬4) By the previous corollary, if ACF0 6` �, then ACF0 ` ¬�. But by the same argument
given before, this proof will work for all but finitely many characteristics, and hence for all su�ciently large
primes.

A cute application of that fact is the following theorem:

Theorem 3.3 (Ax). If f : Cn ! Cn is an injective polynomial map, it is also surjective.

Proof. We will verify that the result holds in finite characteristic, check that it is first-order, and then apply
the previous theorem.

Suppose that f : (F a

p

)n ! (F a

p

)n is injective. Let {a1, ..., am} be all the coe�cients appearing in f . Let
(b1, ..., bn) 2 (F a

p

)n. Consider the fields k = F
p

(a1, ..., am, b1, ..., bn). Since that field is closed under ring
operations, we see that f takes kn to kn. As it is injective and kn is finite, it must also be surjective. Hence
(b1, ..., bn) is in the image of k under f , and hence in the image of (F a

p

)n under f .
Since the result is true in all finite fields, we can apply the previous theorem as long as the claims are

first-order. A sentence of the following form captures “injective implies surjective”

(8f : Kn ! Kn)

 
n^

i=1

f
i

(X) = f
i

(X)) ! X = Y

!
! ((8Y 2 Kn)(9X 2 Kn)f(X) = Y

Fixing n and the degree of f , It is possible to expand out quantification in f to quantification over its
coe�cients, and quantification over n-tuples to quantification over their components. This leads to a family
of first-order sentences which capture the statement of the theorem.
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4 Ultraproducts

In proving the completeness theorem above, we constructed a model out of constants, and saw that the
construction itself had interesting applications (though many of a negative nature). Another important kind
of construction in model theory is that of the ultraproduct. Essentially, the ultraproduct will allow us to
construct the “average” model from a family of models. This construction can give an alternative proof of
the compactness theorem, though the control it gives over the cardinality of the resulting model is not fine
enough to prove some of the theorems stated above.

Definition 4.1. Given a set X, a subset F of P(X) is called a filter on X if:

1. F is nonempty.

2. F is closed under finite intersections.

3. For every x 2 F and y 2 P(X), x ✓ y implies y 2 F

We call F an ultrafilter if it is maximal (i.e. the only properly larger filter is all of P(X)). A simple
application of Zorn’s Lemma shows that any proper filter can be extended to an ultrafilter.

Proposition 4.1. Equivalently, a filter F is an ultrafilter over X i↵ f 2 F if and only if X � f 62 F .

Proof. Suppose F is an ultrafilter. If f 2 F , then we cannot have X � f 2 F , as then ; = f \ (X � f) 2 F
(property 2), which would then require that F = P(X) (property 3) contradicting the fact that F is proper.
On the other hand, if g 62 F , consider the filter F 0 generated by F and X � g. If we can show that F 0 is
proper, then maximality will require F = F 0 and hence X � g 2 F . Suppose otherwise; then there would be
a set f 2 F such that

; = f \ (X � g).

This would mean f ✓ g, which by property 3 requires that g 2 F , contrary to assumption.
Conversely, suppose F is such that f 2 F i↵ X � f 62 F . Since F is nonempty, it contains X, and hence

does not contain X � X = ;, so it is a proper filter. Any properly bigger filter would contain both a and
X � a for some a, and so that larger filter would contain ;, making it improper.

This whole development is necessary to define the titular subject of this section, the ultraproduct. Ul-
trafilters behave like measures, and essentially the ultraproduct is a way of turning an indexed collection
of models into an “average” model with respect to some ultrafilter over the indexing set. In our proof of
the Ax-Kochen theorem, this construction will be used to show that the “average” Q

p

is the same as the
“average” F

p

((t)), which will imply that any statement true for all but finitely many Q
p

is true for all but
finitely many F

p

((t)) and vice-versa.

Definition 4.2. Let {M
i

}
i2I

be a collection of models indexed by I, and let D be an ultrafilter on I. The
ultraproduct with respect to D is defined as

Y

D

M
i

=
Y

i2I

M
i

/ ⇠
D

where the relation ⇠
D

is defined as

(a
i

) ⇠
D

(b
i

) , {i 2 I | a
i

= b
i

} 2 D

Clearly, the language L has a natural interpretation in the ultraproduct; each constant is interpreted as
the corresponding sequence of constants, while functions and relations are defined pointwise.

To make this more concrete, we will consider a particularly useful special case involving fields. Here,
ultrafilters will correspond to maximal ideals, and principal ultrafilters with the principal maximal ideals.
This example also helps to motivate our next theorem.

Consider the ring R =
Q

p prime Fp

, and let D be an ultrafilter on the set of primes. It turns out thatQ
D

F
p

will always be a field, and clearly there is a surjection from R to this field. The kernel will be a
maximal ideal. There are two sorts of maximal ideal in R, principal ideals of the form ((1, 1, ..., 1, 0, 1, ...))
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whose quotients are isomorphic to some F
p

, and nonprincipal ideals which contain the ideal �F
p

. Let M be
a maximal ideal of R containing �F

p

, and consider the quotient ring R/M . For any such maximal ideal, we
see that R/M is characteristic zero - its identity element is the equivalence class of (1, 1, ...). If it happens
that (p, p, ...) 2 M for some prime p, then we know that modulo any prime not equal to p, p is a unit, but
M will contain some sequence (0, ..., 0, 1, 0, ...) with a 1 in the component corresponding to F

p

, but the sum
of that and (p, p, ...) will be a unit, contradicting the fact that M is proper.

It turns out that there is a slightly deeper reason that R/M is characteristic zero. For any ultraproduct
D, a first-order sentence is true in it if and only if the set of indices of models for which it holds is in D
(this is Los’s theorem). In the case above, the maximal ideal M corresponds to a ultrafilter containing all
the cofinite subsets of sets of primes. Since the first-order statement “the characteristic is not p” is true in
all but finitely many cases (all but one) that sentence is true in the ultraproduct, and so the characteristic
is not p for any prime p.

Theorem 4.2 (Los). Let M be an ultraproduct
Q

D

M
i

with index set I. Then M ✏ � if and only if
{i 2 I | M

i

✏ �} 2 D.

The proof is a straightforward proof by induction on formulas (the construction of the ultraproduct
ensures than any possible disagreement is absorbed into ⇠

D

), and the only step in which the maximality
of the ultrafilter is used is for negation. Considering the previous example involving fields, we can see why
extra structure could be needed for this case: we have a surjective homomorphism from the infinite direct
product to the ultrafilter, and homomorphisms preserve all negation-free first-order sentences.

Los’s Theorem can be used to construct nonstandard models of arithmetic. Take the collection of models
{N

i

| i 2 N}, and let D be a nonprincipal ultrafilter. Then N =
Q

D

N
i

is elementarily equivalent to N by
Los’s theorem, but whenever D is a nonprincipal ultrafilter, the ultraproduct will always be uncountable, so
N 6⇠= N. While the completeness theorem can also produce nonstandard models of arithmetic, even countable
ones, the ultraproduct can feel somewhat more concrete. For instance, the equivalence class of (1, 2, 3, 4, ...)
is readily seen to be a nonstandard natural number, as Los’s theorem shows that it exceeds (n, n, ...) (which
corresponds to a standard natural number) for any n. We can even come up with nostandard primes in this
model - (2, 3, 5, 7, ...) is prime in all components, so it is also a prime in this model, but it clearly cannot
equal any standard prime. Nonstandard primes can be chosen with interesting number-theoretic properties,
such as (5, 13, 17, ...) which is congruent to 1 mod 4 in each component and hence satisfies the same in N .

In fact, Abraham Robinson proves the Ax-Kochen theorem in a special case (for Q
p

and F
p

((t)) by proving
that Q

p

⇠= F
p

((t)) for nonstandard primes p using the methods of nonstandard analysis [4, 6]. Recalling the
previous remarks that this result is proven by showing that

Q
D

Q
p

⇠=
Q

D

F
p

, his proof in a sense moves the
ultraproduct into the index.

5 Saturation

Saturation is the most model-theoretically challenging notion involved in the proof. Roughly, saturated
models are large models which contain any sort of “ideal” element which can be described in the language
and are compatible with the theory in question. This property makes it easier to show that saturated models
are isomorphic, as we only need to be able to describe the elements we need to extend the map in order to
know they exist. To make all of this precise will require some definitions.

Definition 5.1. Let M be a model and X a subset of M . The expansion of M , written (M,x)
x2X

is the
model M in the larger language L

X

= L [ {c
x

| x 2 X}, interpreting each c
x

as x.

This richer language allows the behavior of the model with respect to X to be pinned down more closely
by first-order sentences.

Definition 5.2. A 1-type ⌃(y) is a maximal consistent set of sentences in L
X

with free variable y.

Definition 5.3. Given a model M and a type ⌃(y), we say that M realizes ⌃ if there is some m 2 M such
that M ✏ �[m] for each � 2 ⌃. This may also be written M ✏ ⌃[m].

Definition 5.4. Given a model M , a subset X, and an element m in M , the complete type of m over X,
denoted tp

X

(m) is the set of all L
X

sentences in one free variable which m satisfies in (M,x)
x2X
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Types will be the way in which we describe elements we would like to have in our models. Expansions
of models will be useful for ensuring that these elements “behave well” with respect to given subsets of the
model. Saturated models will realize as many types as possible so that any element we might (consistently)
describe actually exists in the model.

Definition 5.5. A model M is ↵-saturated if or every subset X of M with |X| < ↵, (M,x)
x2X

realizes
every type ⌃(y) which is consistent with the set of L

X

sentences true in the expansion of M .

Definition 5.6. A model M is saturated if it is |M |-saturated.

Saturated models are one of the friendliest settings in which to find isomorphisms. We give a simple
application which also serves to demonstrate the back-and-forth method. The general technique is similar
to the proof of the Ax-Kochen theorem, though considerably less di�cult.

Theorem 5.1. Let M ⌘ N be saturated models of the same cardinality: then M ⇠= N .

Proof. By transfinite induction on ordinals ↵ < |M |, we will iteratively construct a sentence-preserving map
f from M to N .

At each successor ordinal, we will start with f
⇣

: A
⇣

! B
⇣

which preserves sentences in L
A⇣ . Then, we

can extend the domain to include some missing member of M . Interchanging the roles of M and N , we
expand the range to obtain f

⇣+1 : A
⇣+1 ! B

⇣+1. Taking the union will provide the desired isomorphism.
Base case, ⇣ = 0: f0 on A

i

= B
i

= ;.
Limit ordinals: set A

⇣

= [
↵<⇣

A
↵

, B
⇣

= [
↵<⇣

B
↵

, and f
⇣

= [
↵<⇣

f
↵

. If � is a sentence in L
A⇣ , it can

only use finitely many of the new constants adjoint to L, so there is some ↵ < ⇣ such that A
↵

contains all
of the corresponding elements. By induction, f

⇣

extends f
↵

, and f
↵

preserves �.
Successor ordinals, ⇣ = ↵ + 1: pick two elements, m

⇣

2 M � A
↵

and n
⇣

2 N � B
↵

- we wish to extend
f
↵

to f
⇣

which contains each of these in its domain and range, respectively.
Start with tp

A↵(m⇣

). This is a consistent type in the expansion of M by A
↵

. Take the corresponding
type ⌃ in N , applying f to each constant in the sentences of tp

A↵(m⇣

). We now have a type in (N, b)
b2B↵

- because f preserves sentences, it remains maximal and consistent. As N is saturated, let y 2 N realize ⌃
and define f 0

⇣

(m
⇣

) = y. Clearly, f 0
⇣

preserves sentences in A
↵

[{m
⇣

} since the types of m
⇣

and y correspond.

The same argument with the roles of N and M switched, using the function f 0�1
⇣

allows the range to be
expanded to include n

⇣

. As such, we obtain a new function f
⇣

whose domain A
⇣

and range B
⇣

include the
two stipulated elements. This function remains a bijection: the fact that y satisfies the type corresponding
to tp

A↵(m⇣

) ensures that y 62 B
↵

, and likewise for n
⇣

with respect to A
�

[ {m
⇣

} (except when y = n
⇣

, but
then there is nothing to prove).

By transfinite induction, we obtain a function f : M ! N which is a sentence-preserving bijection - an
isomorphism - as desired.

The general idea of this method is to find an isomorphism f : M ! N by expanding the domain, then
expanding the range, and so on (going “back-and-forth”) in a sentence-preserving fashion until all of M and
N are covered.

The main content of the Ax-Kochen theorem is in proving that two (saturated) elementarily equivalent
structures are isomorphic. Unfortunately, the result above cannot be used to do this - our goal is elementary
equivalence, which is the hypothesis of this theorem. The last model theoretic result we need is the existence
of saturated models.

Theorem 5.2. Let T be a theory in L, with an infinite model, and let ↵ = ||L|| (! if L is finite, and |L|
otherwise). Then T has saturated models of cardinality alpha+, where ↵+ is the successor cardinal of ↵.

An unfortunate feature of this theorem is that he saturated model’s cardinality is ↵+, which cannot be
more closely pinned down without stronger set theories than ZFC. In the proof of the Ax-Kochen theorem,
we will assume the GCH - the proof can be done without the GCH, avoiding saturated models, at the cost
of substantial complexity.
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6 Ax-Kochen

Our final goal is to prove the Ax-Kochen theorem, closely following the presentation in [1].

Definition 6.1. A valued field F , with cross-section, is a model of the two-sorted language

L = {F,+, ⇤, 0, 1, V, val,}

satisfying the following axioms:

1. F is a field (using +, ⇤, 0, 1),

2. V is a multiplicative group, with respect ⇤, 1,

3.  is a total ordering of V [ 0 where 0 � v for all v 2 V ,

4. the group’s operation respects the ordering: (8x, y, z 2 V )(x  y ! x ⇤ z  y ⇤ z),

5. val is a multiplicative function from F onto V [{0} such that val(x) = 0 i↵ x = 0, and for any x, y 2 F :

val(x+ y) � min(val(x), val(y)),

6. the valuation satisfies the cross-section axiom:

v 2 V ! val(v) = v

It is not immediately clear why the cross-section is important, but it will be used at several locations in
the proof. The Ax-Kochen theorem can be generalized to valued fields without cross-section (just as it can
be proven without the continuum hypothesis) at the cost of greater complexity.

As the reader may recall from algebra, there are two important structures associated with any valued
field beyond its value group: the valuation ring and residue field.

Definition 6.2. Given a valued field F , its valuation ring, R(F ) is the set of all element in F with valuation
at least 1. The valuation ring has a unique maximal ideal, M(F ) consisting of those elements with valuation
strictly greater than 1. The residue field, F ⇤ is defined as R(F )/M(F ).

In particular, the Ax-Kochen theorem applies to valued fields satisfying Hensel’s lemma (“Hensel’s
lemma”). This constraint is of less obvious model-theoretic importance, but it is important to the alge-
braic parts of the argument. It is a classical result that the fields we are interested in, Q

p

and F
p

((t)), satisfy
Hensel’s lemma.

Definition 6.3 ((Hensel’s lemma)). Let F be a valued field and take a monic polynomial f(x) 2 R(F )[x].
Let f⇤ be the polynomial in F ⇤[x] obtained by taking f ’s coe�cients mod M(F ). If f⇤(x) = g0(x)h0(x) in
F ⇤[x], then there exist polynomials g, h 2 R(F )[x] such that g⇤ = g0 and h⇤ = h0 and f(x) = g(x)h(x)

That Hensel’s lemma is a first-order statement is straightforward. Fix the degree of f . Polynomials
may be identified with their coe�cients, and it is clear that we can pick out R(F ) and M(F ) with first-
order statements about valuation. To say that f⇤(x) = g0(x)h0(x) in F ⇤[x] is the same as saying that the
corresponding coe�cients are congruent mod M(F ), which is to say that their di↵erence is in M(F ).

With all of this in place, the Ax-Kochen theorem is the following:

Theorem 6.1 (Ax-Kochen). Suppose F and G are valued fields with cross-section satisfying Hensel’s lemma,
F ⇤ ⌘ G⇤, both residue fields are characteristic zero, and val(F ) ⌘ val(G). Then F ⌘ G.

It is not entirely surprising that information about the residue field and value group determine the
properties of a valued field. In a sense, we can view a valued field as an extension of the residue field by the
value group. This connection is tighter when the residue field has characteristic zero, as then the residue
field can be naturally identified with a valued subfield of of R(F ). This also suggests why the cross-section
simplifies the proof somewhat: for a valued field with cross-section, the value group is truly contained in the
field, more tightly constraining these fields to match our intuition about such fields.
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Following Chang and Keisler’s approach, we isolate the algebraic parts into the following lemma (their
lemma 5.4.13). The most important components of the lemma provide conditions under it is possible to
extend an isomorphism of valued fields.

A last definition we need for this lemma:

Definition 6.4. If F is a valued field, its henselization is a valued field G extending F such that G is ahensel
field and for any other Hensel algebraic extension H of F , there is an embedding of G into H over F .

Lemma 6.2. 1. Let F be a valued field with x, y 2 F and val(x) < val(y), then

val(�x) = val(x)

val(x+ y) = val(x)

Moreover, for any v 2 val(F ) and natural number n, there is at most one w 2 val(F ) such that v = wn.

2. Let F be a Hensel field whose residue class field has characteristic 0. Then there is a valued subfield F0

of F contained in R(F ) such that the natural homomorphism from R(F ) to F ⇤ maps F0 isomorphically
onto F ⇤.

3. Let F1 and G1 be valued fields algebraic over Hensel subfields F0 and G0. Suppose f : F0 ! G0 is
an isomorphism (of valued fields) which can be extended to an isomorphism (of fields) g : F1 ! G1.
Then g is an isomorphism of valued fields, and if � is an automorphism of F1 over F0 and x 2 F1,
val(x) = val(�x).

4. Every valued field has a henselization. If F and G are valued fields and f is an isomorphism between
them, then f extends to an isomorphism of their henselizations.

5. If F0 is the henselization of F then F ⇤
0 = F⇤ and val(F0) = val(F ).

6. If F is a valued field with valued subfield F0, then val(F̄0) (the value group of the algebraic closure of F0

in F ) is the closure of val(F0) under roots as a subgroup of val(F ). If F is a Hensel field and F ⇤ = F ⇤
0 ,

F ⇤ has charcteristic zero, and val(F0) is closed under roots in val(F ), then F̄0 is the henselization of
F0.

7. Suppose F1 and G1 are Hensel fields with Hensel subfields F and G, x 2 F1, y 2 G1 transcendental
over F and G, f : F ! G an isomorphism,

val(F (x)) = val(F ), F (x)⇤ = F ⇤

and for all a 2 F, f(val(x� a)) = val(y � f(a)).

Then val(G(y)) = val(G), G(y)⇤ = G⇤, and f can be extended to an isomorphism between F (x) and
G(y).

8. Suppose F0 is a Hensel field with a hensel subfield F , x 2 F1 is transcendental over F , and F (x)⇤ = F ⇤.
If val(F ) is nontrivial, then |val(F (x))| = |val(F )|

The lemma largely consists of conditions under which an isomorphism of valued fields can be extended,
as well as facts concerning the behavior of subfields of Hensel fields when extended in various ways. Part
2 provides the base case for inductively constructing our desired isomorphism. Part 7 of the lemma will be
most crucial to building our isomorphism. When we come to deal with saturation, Part 8 will provide a
valuable cardinality constraint.

We are now ready to prove the main result:

Theorem 6.3 (Ax-Kochen). Suppose F and G are valued fields with cross-section satisfying Hensel’s lemma,
F ⇤ ⌘ G⇤, both residue fields are characteristic zero, and val(F ) ⌘ val(G). Then F ⌘ G.
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Proof. First, we may assume that F and G are saturated fields of cardinality !1 - the set of all first-order
sentences true of F is complete and consistent, so it has a saturated model of cardinality ||L||+ = |2!| = !1

(contingent on the GCH), and likewise for G. Clearly, if F and G are saturated then their value groups and
residue-fields are saturated. Moreover, outside the case where val(F ) = val(G) = {1}, the value groups and
residue fields all have cardinality !1 (in that trivial case, F ⇠= F ⇤ ⌘ G⇤ ⇠= G and there is nothing to prove).

We will write f1 : F1 $ G1 i↵ f1 is an isomorphism and

(val(F ), x)
x2val(F1) ⌘ (val(G), x)

x2val(G1)

Our goal is to show that F and G are isomorphic using a back-and-forth argument like that used to
show that any two elementarily equivalent models of the same cardinality are isomorphic. An outline of the
induction is as follows:

1. Since F ⇤ ⌘ G⇤ and |F ⇤| = |G⇤| = !1, they are isomorphic. It follows from Hensel’s lemma that they
are algebraically closed in F and G, respectively. This is our base case.

2. Suppose F1 and G1 are algebraically closed valued subfields of F and G, containing their respective
residue fields, and where val(F1) = val(G1) is countable. Let f1 : F1 $ G1 extending f0 : F ⇤ $ G⇤.
For every x 2 F �F1 there exist algebraically closed valued subfields F2 and G2 with x 2 F containing
F1 and G1, a function f2 : F2 $ G2 extending f1, and such that val(F2) is countable. There are three
subcases:

(a) When x 2 val(F1),

(b) When val(F1(x)) = val(F1),

(c) All other cases - but by countably many applications of the second subcase, this is reduced to the
first subcase.

3. The second step holds with F1 andG1 exchanged. By the same back-and-forth argument, we obtain
an isomorphism between F and G.

So it just remains to prove 2a and 2b. The countability hypothesis will be important when applying
saturation to find elements.

Case 2a: While apparently longer, this section is conceptually simple. First, we extend the isomorphism
to F1(x), then work carefully to find a Hensel field containing F1(x) to which the isomorphism extends. This
largely comes down to taking the closure of the value group under roots. The cross-section is used heavily
in this section.

Consider tp
val(F1)(x). Since we already have f1 : F1 $ G1, we can transport this to a type over val(G1)

- val(G1) is countable and saturated, so there is a y in val(G) satisfying that type, which is to say that:

(val(F ), x, a)
a2val(F1) ⌘ (val(G, y, b)

b2val(G1).

Let V be the subgroup of val(F ) generated by val(F1) and x, W the subgroup of val(G) generated by
val(G1) and y. Clearly both V and W are countable. We would like to show that they are the value groups
of F1(x) and G1(y), respectively. It su�ces to verify this that they contain the value groups of F1[x] resp.
G1[y]. Take some polynomial

p(t) = e0 + e1t+ ...+ e
n

tn 2 F1[t].

If r < s  n are such that e
r

, e
s

6= 0, then val(e
r

xr) 6= val(e
s

xs). Otherwise, we would have

val(e
r

)xr = val(e
r

xr) = val(e
s

xs) = val(e
s

)xs,

hence
xs�r = val(e

r

)/val(e
s

) 2 val(F1),

But we assumed that F1 is algebraically closed in F , so its value group is closed under roots in F . Since
val(e

r

), val(e
s

) are in val(F1), the above would imply that x 2 val(F1) ✓ F unless s = r. As a result, there
is a unique e

r

xr of smallest value. By Part 1 of the lemma, val(p(x)) = val(e
r

)xr. If q(t) is the image
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of p(t) under f1, then we know that val(q(y)) = val(f(e
r

))yr because f1 is an isomorphism. This proves
val(F1(x)) = V and val(G1(y)) = W .

Now define a (field) isomorphism g1 : F1(x) ! G1(y) extending f1 by sending x to y. It is also an
isomorphism of the value groups V and W since it preserves products. By Part 4 of the lemma, we can
extend g1 to an isomorphism g2 of the henselizations F 2 and G2 of F1(x) and G1(y), respectively. Since F
and G are hensel fields, we may take F 2 and G2 to be contained in F and G, respectively. By Part 5 of the
lemma, val(F 2) = val(F1(x)) = V and val(G2) = W .

Let V̄ , W̄ be the closures of V and W under roots in val(F ), val(G), respectively. By Part 1 of the
lemma, these can be expressed as countable unions of countable sets, and hence remain countable.

We know that

(val(F ), c)
c2V

⌘ (val(G), g1c)c2V

(there appears to be a typo in the corresponding line in Chang and Keisler)

and so g2|V extends to a unique isomorphism h : V̄ ! W̄ , again using saturation. As such, we will have
that

(val(F ), c)
c2V̄

⌘ (val(G), g1c)
c2V̄

Every element in V̄ (resp. W̄ ) is algebraic over F 2 (resp. G2), so consider the algebraic extensions
F 3 = F 2(V̄ ) and G3 = G2(W̄ ) of F 2 and G2, respectively. By Part 6 of the lemma, val(F 3) = V̄ and
val(G3) = W̄ , as those value groups are already closed under roots. Then g2 may be extended to a field
isomorphism of F 3 and G3, which by Part 3 of the lemma will in fact be an isomorphism of valued fields.

All together, we have
F ⇤ ✓ F1 ✓ F 3, G⇤ ✓ G1 ✓ G3

and so F ⇤ = F 3⇤ and G⇤ = F 3⇤. From this and Part 6 of the lemma, the algebraic closures of F 3 and G3

in F and G are their henselizations. So we obtain a final isomorphism g4 : F̄ 3 ! Ḡ3, where we also know
that

val(F̄ 3) = val(F 3) = V̄

val(Ḡ3) = W̄

This, and the statement above about the elementary equivalence of val(F ) and val(G) over V̄ and W̄
means that g4 satisfies the conditions necessary to conclude that g4 : F̄ 3 $ Ḡ3. Note that V̄ and W̄ are
countable. This concludes case 2a.

Case 2b: In this case, val(F1(x)) = val(F1), setting the stage to apply Part 7 of the lemma. As the
reader might guess, saturation will be employed to find an element y of G satisfying Part 7’s hypotheses.

It is immediate that F1(x)⇤ = F ⇤ = F ⇤
1 .

Since F1 is algebraically closed in F , val(F1) is closed under roots in val(F ) (roots are algebraic, of
course) it follows from Part 6 of the lemma that F̄1 = F1 is hensel. The same is true of G1.

The only unsatisfied hypothesis of Part 7 is the existence of a a y 2 G such that for all a 2 F1,

(⇤)f1(val(x� a)) = val(y � f1(a))

Let A be an arbitrary finite subset of F1. We will find a y in G such that there is a y in G satisfying (⇤)
for all a 2 A (recall that the consistency of a type reduces to finite satisfiability).

Let b 2 A be such that c = val(x� b) is maximized. Since in this case val(F1(x)) = val(F1), c 2 val(F1).
Note that for any positive integer n, val(n) = 1 - an element of R(F ) is a unit i↵ it has valuation 1, and
we are in the case where the characteristic is zero. As such, val(nc) = val(c) for all integers n. Then for all
a 2 A:

val(b� nc� a) � min(val(b� x), val(nc), val(x� a)) = val(x� a)

since val(b � x) = val(x � b) = val(nc) = val(c) is the largest val(x � a) for each a 2 A. Further, for
a fixed a 2 A, there is at most one n such that the equality above is strict. If not, let m < n be two such
values for some a 2 A such that

val(b�mc� a), val(b� nc� a) > val(x� a)
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Of course, this means that their minimum exceeds x� a, so:

c = val(c) = val((n�m)c) = val((b�mc�a)�(b�nc�a)) � min(val(b�mc�a), val(b�nc�a)) > val(x�a)

Then by Part 1 of the lemma,

val(b� nc� a) = val((b� x)� nc+ (x� a)) = val(x� a),

since val(b� x) = val(�nc) > val(x� a). This is a contradiction, so there cannot be such m and n.
As a result, there are only finitely many “exceptional” n, and so there exists some n > 0 such that

val(b� nc� a)) = val(x� a) for all a inA. Let y = f(b� nc) for this n. Then for all a 2 A,

f(val(x� a)) = f(val(b� nc� a)) = val(y � f(a))

because val(x� a) = val(b� nc� a), on which the isomorphism is already defined.
Since val(F1(x)) = val(F1) is countable, there is a countable set A1 ✓ F1 (namely, the value group) such

that for all b 2 F1 there exists an a 2 A1 with val(x� a) = val(x� b).
Since we proved the analogue of (⇤) for all finite subsets of F1 we at least know that the set of sentences

expressing (⇤) for a 2 A1 is finitely satisfiable, hence consistent. We may translate this into a type in G over
a countable set. Since G is !1-saturated, there exists a y 2 G such that (⇤) holds for all a 2 A1.

Now let b 2 F1. Since F1(x)⇤ = F ⇤
1 , there exists a b0 2 F1 such that for c = val(x� b):

val((x� b)c�1 � b0) > 1

multiply through by c = val(x� b) to obtain

val(x� (b+ cb0)) > val(x� b)

so there is an a 2 A1 such that val(x� a) = val(x� (b� cb0)), and hence val(x� b) < val(x� a).
Apply Part 1 of the lemma to see that

val(a� b) = val(x� b� (x� a)) = val(x� b) < val(x� a)

and so
val(fa� fb) = f(val(a� b)) < f(val(x� a)) = val(y � fa)

from which it follows that

val(y � fb) = val(y � fa+ fa� fb) = val(fa� fb) = f(val(a� b)) = f(val(x� b)).

This means we have found a y satisfying the conditions for Part 7 of the lemma, and so val(G1(y)) =
val(G1) and f extends to an isomorphism g1 : F1(x) ! G1(y).

As F1 and G1 are algebraically closed in F,G the value groups are closed under roots in val(F ), val(G).
As such, Part 6 of the lemma implies that their algebraic closures in F and G, respectively, are their
henselizations, and that there is an isomorphism between them extending g1. These fields satisfy the criteria
of the inductive hypothesis, and so this case is complete.

This also concludes the proof. As mentioned previously, this closely follows the proof in section 5.4 of
[1], with a few small changes.

Even with many details abstracted away, this is still a substantial theorem. Still, the general ideas are
simple enough. In the easy (but long) case, 2a, we exactly follow our intutition that valued fields look like
adjoining the value group to the residue field - most of the complicated work is done to wrangle the field
into a form demanded by the inductive step (Hensel and algebraically closed in F ) but that largely follows
from repeated applications of the isomorphism extension theorems in the lemma. Case 2b uses saturation to
specify a desirable element in G to extend an isomorphism. Then, as before, work is done to put the resulting
fields in the appropriate form - here, this can be done more easily because the value group is changing, even
though it is much harder to find the initial extension of the isomorphism.

Now we can state a powerful transfer principle between Q
p

and F
p

((t)) as a corollary:
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Corollary 6.3.1. Let � be a statement in the language of valued fields. Then for all but finitely many primes
p, Q

p

✏ � i↵ F
p

((t)) ✏ �.

Proof. It is well-known that both Q
p

and F
p

((t)) are valued fields satisfying Hensel’s lemma. They each
have residue fields isomorphic to F

p

and value groups isomorphic to Z under addition.
Let D be a non-principal ultrafilter on the set of primes. Let F =

Q
D

F
p

((t)) and G =
Q

D

Q
p

. Hensel’s
lemma is first-order, and hence preserved by the ultraproduct. Moreover,

F ⇤ ⇠=
Y

D

F
p

⇠= G⇤

As remarked in the example above, when D is non-principal, this will be af ield of characteristic 0.
Furthermore, the value groups are

val(F ) ⇠=
Y

D

Z ⇠= val(G)

Isomorphic models are certainly elementarily equivalent, so it follows by the previous theorem that for
any sentence �, the set S

�

= {p | Q
p

✏ �iffF
p

((t))} is in D. This holds for all non-principal ultrafilters, and
so all but finitely many primes are contained in that set (if S

�

were infinite, there would exist a nonprincipal
ultrafilter excluding it, a contradiction).

This transfer principle allows (first-order) theorems to be shared, for all but finitely many primes, between
these two kinds of fields. An important corollary is Artin’s conjecture:

Corollary 6.3.2. For every positive integer d, there is a set Y
d

of at most finitely many primes such for
all p 62 Y

d

, every homogeneous form f(t1, ..., fn) of degree d in at least n > d2 variables has a nontrivial
solution.

Proof. First, the stated property is first-order. As in earlier examples, quantification over polynomials is
replaced by quantification over their coe�cients, and nontriviality is asserted by a disjunction. One of the
results in Serge Lang’s thesis was a proof the analogous statement for all of the fields F

p

((t)). The transfer
principle above shows that it fails to hold in Q

p

for only finitely many primes.

This conjecture has an interesting history. In fact, Artin’s original statement was false: he had hoped it
would be true for all the p-adic fields. In 1965, Ax and Kochen proved the transfer principle above, but it
was only strong enough to show that Artin’s original conjecture would fail for at most finitely many primes
depending on the degree. Then, in 1996, Terjanian came upon a counterexample to the original conjecture in
Q2 of degree 4 several weeks after presenting on the Ax-Kochen theory [3]. Examples are now also known for
other p-adic fields (since Q2 sometimes exhibits unusual behavior, these other examples make the sharpness
of the result clearer). As mentioned, there are now e↵ective proofs of this result which can even determine
the exceptional set of primes [2] though the computational complexity is significant.
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