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Abstract. An almost tight lower bound for the Erdős distinct distance prob-
lem was found by Guth and Katz[GK15] using a conversion into a set of 3-
dimensional point-line incidence problems. A similar open problem is finding a
lower bound on the number of equivalence classes of hinges, pairs of distances
relative to a given point. We review the beginning of the Guth-Katz proof up to
an incidence counting theorem, and present similar conversions into weighted
incidence problems for the hinge problem, leaving specific bounds to be proven.
Unfortunately, several of the controlling quantities for these latter incidence
problems would, if known, imply the end-goal bound for the hinge problem.
We also estimate the number of distinct distances for a class of regular lattices.

1. Introduction

For a finite set E ⊂ R2 with N elements, we define an equivalence relation
v over pairs of points in E2 so that (x, y) v (x′, y′) when |x− y| = |x′ − y′|,
where |·| denotes the Euclidean norm. Each equivalence class, represented by (x, y),
corresponds to the distinct distance r = |x− y|, so that the set of equivalence classes
is equivalent to the distance set defined by

∆ (E) := {|x− y| : x, y ∈ E}
The current best general lower bound known for the size of the distance set is
from [GK15] and is given by ∆ (E) & N/ logN .1 On the other hand, the smallest
asymptotic distance set size observed for a class of sets is ∼ N/

√
logN , expected

for e.g square or hexagonal grids.2

The hinge problem, introduced in [IP18], is the problem of establishing a
lower bound on the number of equivalence classes of hinges, namely triplets in E3

for which (x, y, z) v (x′, y′, z′) iff |x− y| = |x′ − y′| and |x− z| = |x′ − z′|. A
trivial upper bound is given by a generic set of N points, in which case all hinges
are unique (up to degenerate cases like (x, x, x)), leaving ∼ N3 equivalence classes.
We call the set of distance pairs produced by hinge equivalence classes H (E).

There is a stronger conjecture which would immediately imply the hinge and
distinct distance lower bounds: the Erdős pinned-distance conjecture. In its most
relevant form, it claims, given pinned distance sets defined by

∆x (E) := {|x− y| : y ∈ E} ,
that maxx∈E |∆xE| & N/

√
logN . As the number of hinge equivalence classes

represented by hinges with fixed x is |∆x (E)|2, this implies a hinge lower bound

1When we say x . y, we mean that there is a universal constant C > 0 for which x ≤ Cy.
Furthermore, we define ∼ so that x ∼ y iff x . y and y . x.

2According to [CSS13], extremely elongated rectangular grids instead yield ∼ N distances.
1
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of |H (E)| ≥ |∆x (E)|2 & N2/ logN . Similarly, since ∆ (E) ⊇ ∆x (E) for all x, it
would imply that |∆ (E)| & N/

√
logN .

We introduce the symbol ||
∑

to concisely express and distinguish dyadic sums,

||
N∑

X=m

f (X) :=

dlog2(N/m)e∑
i=0

f
(
m2i

)
.

For later use, we define the point-line incidence function, applied to a set
of points S and set of lines L:

I(S,L) := |{(s, `) ∈ S × L : s ∈ `}| .

2. Distance set examples

Example 1. The square grid is the best known asymptotic example, within a con-
stant.3 We pick S ∈ N, let N = S2, and define E =

{
(x, y) ∈ Z2 : 0 ≤ x, y < S

}
.

Note that E has significant translational and reflective symmetry; there are many
isometries I for which |IE ∩ E| ∼ |E|. The number of distinct distances is ∼
N/
√

logN , as will be calculated later in Section 6. This asymptotic is significantly
different for other distance metrics: under `1 and `∞ distances, there are ∼

√
N dis-

tinct distances, and a metric produced from a generic convex set produces ∼ N dis-
tinct distances, since thanks to translational symmetry, ∆ (E) =

⋃
x∈corners ∆x (E)

where x is a corner point, e.g., a point (0, 0), (0, S − 1), (S − 1, 0), or (S − 1, S − 1).

Example 2. Another extremal example is optimized to the Euclidean distance
metric, rather than to translational symmetry. Here,

E = {(0, 0)} ∪
{(

cos
2πk

N − 1
, sin

2πk

N − 1

)
: k = 0 . . . N − 2

}
defines a regular N − 1 -sided polygon with a central point O = (0, 0). The pinned
distance set ∆O (E) = {0, 1}, while ||∆x (E)| −N/2| ≤ 2 for all other x ∈ E, x 6= O.

We can interpolate between this and the grid by creating E? =
⋃

0≤x,y≤k (E + (x, y)),
which has k2 points Oi for which ∼ N?/k2 ∼ N points are a distance of 1 away
from Oi.

A “generic” polygon is produced by taking a generic set F ⊂ R/Z for which
|F | = N − 1, and |F + F | = (N − 1) (N − 2) /2; then

E = {(0, 0)} ∪ {(cos 2πf, sin 2πf) : f ∈ F} .

Example 3. The Penrose tiling has high translational symmetry and does not im-
mediately appear to have grid structure; however, there is a pentagrid construction
method4 which implies that, if E is the subset of a Penrose tiling filling a disk, then
the projections of E along five specific directions have size ∼

√
|E|, so that E is

a constant-density subset of a lattice. By an argument similar to 7, one can show
that |∆ (E)| ∼ N .

3The best asymptotic class is probably the intersection of a hexagonal/triangular grid with a
disk.

4This generalizes to seven, nine, etc. sided patterns; see also https://www.mathpages.com/
home/kmath621/kmath621.htm, and [dBru81] which introduced the method.

https://www.mathpages.com/home/kmath621/kmath621.htm
https://www.mathpages.com/home/kmath621/kmath621.htm
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3. Incidence formulations for the distinct distance problem

In this section, we present an minor variation on the method used in [GK15] to
convert the lower bound on ∆ (E) into a set of incidence problem upper bounds.
Let nr be the size of the equivalence class of distance r:

nr :=
∣∣{(x, y) ∈ E2 : |x− y| = r

}∣∣
Then, counting all nonzero equivalence classes, we find

∑
r>0 nr = N2 − N , after

which by Cauchy-Schwarz we have

N4 ∼

(∑
r>0

nr

)2

≤

(∑
r>0

1

)(∑
r>0

n2
r

)
≤ (|∆ (E)| − 1) |Q (E)|

where we define Q (E) to be the set of all quadruples (x, y, x′, y′) ∈ E4 for which
|x− y| = |x′ − y′| > 0. Rearranging,

(3.1) |∆ (E)| & N4/ |Q (E)| .

To prove that |∆ (E)| & N/ logN , we must show that |Q (E)| . N3 logN . (This
upper bound is the tightest attainable, as shown in Section 7.) First, we split
Q (E) into two disjoint sets, Qr (E) and Qt (E), namely the rotated and translated
quadruples. The subset Qt (E) is defined as the set of quadruples (x, y, x′, y′) ∈ E4

for which the vector identity x − y = x′ − y′ holds. Since each such tuple can be
identified with (x, y, x′) ∈ E3, as y′ = x′ + y − x, it follows

(3.2) |Qt (E)| ≤ N3.

It remains to prove that |Qr (E)| . N3 logN . To do this, let G be the set of
positively oriented non-translational rigid motions of the plane, and establish a
bijection between Qr (E) and the set Q, defined as the set of all (x, y, g), where
g ∈ G, x, y ∈ g−1E ∩ E, and x 6= y. By Prop 2.3 of [GK15], for a given tuple
(x, y, x′, y′) ∈ E4 where |x− y| = |x′ − y′| > 0, there is a unique g for which
g (x) = x′ and g (y) = y′. Since g (x) ∈ E and g (y) ∈ E, it follows x ∈ g−1E and
y ∈ g−1E, so that the tuple (x, y, g) ∈ Q. On the other hand, given (x, y, g) ∈ Q,
we define x′ = g (x) and y′ = g (y); these exist since x, y ∈ g−1E, and since g is an
isometry, |x′ − y′| = |x− y|, which is > 0 since x 6= y. Thus (x, y, x′, y′) ∈ Qr (E).
Correspondingly, we have

|Qr (E)| = |Q| =
∑

x,y,g∈Q

1

=
∑
g∈G

∑
x6=y∈g−1E∩E

1

≤
∑
g∈G

(∣∣g−1E ∩ E
∣∣

2

)
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We partition G into disjoint sets G=k defined so that for all g ∈ G=k,
∣∣g−1E ∩ E

∣∣ =
k. We also define Gk =

⋃
j≥kG=k, so that by dyadic decomposition

|Qr (E)| ≤
N∑
k=2

|G=k|
(
k

2

)
≤

N∑
k=2

k2 |G=k|(3.3)

≤ ||
N∑
K=2

2K−1∑
k=K

k2 |G=k|

≤ 4||
N∑
K=2

K2 |GK \G2K |

The set GK \G2K consists of all g for which
∣∣g−1E ∩ E

∣∣ ∈ [K, 2K)∩N; GN+1 = ∅,
as
∣∣g−1E ∩ E

∣∣ ≤ |E| = N .
We now construct an incidence problem which will provide an upper bound on

GK\G2K . To a given rigid motion gx,y,θ ∈ G which fixes the point (x, y) and rotates
by plane by angle θ around that point, we associate the point

(
x, y, cot θ2

)
∈ R3.5

As g is non-translational, θ 6≡ 0, so that the point is well defined. Next, we define
the set of lines L = {Lxy : x, y ∈ E, x 6= y}, where each individual line Lpq ⊂ R3

contains all g ∈ G which map p to q. This line, as proven by Prop 2.7 of [GK15],
can be parameterized by t ∈ R as

(3.4)
p+ q

2
+ t

(
ẑ × p+ q

2
+ ẑ

)
where we consider p and q as points on the z = 0 plane in R3, and ẑ the unit
(0, 0, 1) vector, and × the (standard, right-handed) cross product.6 We claim that∣∣g−1E ∩ E

∣∣ equals the total number of lines in L which pass through g (interpreted
as a point of R3). Specifically, for each x ∈ g−1E ∩E, we let x′ = g (x) ∈ E, which
happens if and only if the line Lxx′ 3 g (by definition of Lxx′).

With Proposition 2.8 of [GK15], we can ensure that there are ≤ N lines of L
inside a given plane, and . N such lines contained by any regulus (doubly-ruled
surface7. Using the bound on the maximum number of lines per regulus, Guth
and Katz proved their Theorem 2.10, which implies that there are . N3 possible
intersection points between pairs of lines in L. Splitting off the case k = 2, we can
write Eq. 3.3 as

(3.5) |Qr (E)| . N3 + ||
N∑
K=3

K2I(GK \G2K ,L)

where the set GK \ G2K is interpreted as a subset of R3, and I is the point-line
incidence counting function. They also find, via a lengthy argument based on
polynomial partitioning,

5It may be clearest to say that we assign coordinates to the set G; then it is valid to treat g
as both a point in R3 and a non-translational positively oriented rigid motion of R2.

6Evaluating gives ẑ × (p+ q) /2 + ẑ = ((qy − py) /2, (px − qx) /2, 1).
7Specifically, any linear transformation of a hyperbolic paraboloid/parabolic

hyperboloid{xy = z}, or hyperboloid of one sheet
{
x2 + y2 − z2 = 1

}
; reguli can be defined using

three skew lines.
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Proposition. 4.22 of [GK15]: Let k ≥ 3, and L be a set of L lines in R3 with ≤ B
lines in any plane. The set of points in R3 which meet between k and 2k lines of L
is G[k,2k), whose size S can be bounded above by

S . L3/2k−2 + LBk−3 + Lk−1

Since each intersection in G[k,2k) has line-intersection-richness in [k, 2k), the total
number of incidences I (Gk \G2k,L) ≤ 2kS.

To apply Prop 4.22 of [GK15], we need an upper bound on the total number of
lines in a given plane. We introduce

Lemma 4. Let H be the horizontal (z = 0) plane. For each non-horizontal plane
P in R3, let the line ` = P ∩H, and let ˆ̀ be a direction vector chosen along `. Then
let 1/s be its slope relative to the horizontal plane (when seen as a graph w 7→ z

on the vertical plane which has coordinate vectors ŵ = ˆ̀× ẑ and ẑ), in which case
we can define an associated glide reflection R`,s which reflects points across ` and
shifts them by 2s in the direction of ˆ̀. (When s = 0 the plane is vertical.) Then
the line Lpq ∈ P iff R`,s (p) = q.

Proof. We can establish coordinates in the (x, y)-plane containing E so that ` is
the line {(x, y, z) : x = z = 0}, and ˆ̀ = ŷ. Then ŵ = x̂. The plane P is the
set {(x, y, z) : z = x/s}, and points p, q have coordinates (px, py, 0) and (qx, qy, 0).
Then

Lpq =

(
px + qx

2
+ t

qy − py
2

,
py + qy

2
+ t

px − qx
2

, t

)
which fulfills sz = x for all t iff(

px + py
2

+ t
qy − py

2

)
= st

iff px = −qx and qy = 2s+ py, which is the case iff q = R`,s (p). �

As a given plane can contain no more than N lines (since points in E have
unique image and pre-image under R`,s), we can set B = N . Since |L| = L ≤ N2,
combining Prop 4.22 of [GK15] with Eq. 3.5 produces

|Qr (E)| . N3 + ||
N∑
K=3

K2
[
N3/K2 +N3/K3 +N2/K

]
. N3 + ||

N∑
K=3

[
N3 +N3/K +N2K

]
. N3 +N3 logN +N3 +N3 . N3 logN(3.6)

Combining Eq. 3.6 with Eq. 3.2, it follows |Q (E)| . N3 logN , after which by
Eq. 3.1 we have |∆ (E)| & N/ logN .

4. Weighted incidence formulations of the hinge problem

It is useful to define the circular weight functions for the set E,

ωs (x) := |{y ∈ E : |x− y| = s > 0}|(4.1)

These functions have several convenient properties: most importantly, ωs (x) = 0
when s /∈ ∆x (E), so that we can be lazy with quantifiers. We have the identity
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s ωs (x) = N−1, which counts points in E\{x} grouped by distance from x. Then∑
x

∑
s ωs (x) = N2−N . There are several upper bounds: trivially, ωs (x) ≤ N−1,

which is sharp by Example 2. By substituting Eq. 4.1, we find that
∑
x ωs (x) gives

the size of the equivalence class corresponding to distance s; thus by the argument
from [GK15],

(4.2) |Q (E)| =
∑
s

(∑
x

ωs (x)

)2

. N3 logN.

This expression is the strongest nontrivial bound of its type which has been
proven so far.

Conjecture 5. Assuming maximum values are obtained for the grid example, it is
not unreasonable to conjecture∑

s

∑
x

ωs (x)
2 . N2 logN

For sufficiently large exponents, the assumption that the maximum is obtained
for spatially uniform ωs (x) might break down, depending on how common very
“concentrated” points, like the center of a polygon in Example 2, for which ω1 (O) =
N − 1, may be.

4.1. Flipping the hinge problem. As mentioned in the introduction, H (E) is
the set of equivalence classes of hinges. We provide notation to count the number
of elements in each equivalence class,

nr,s = |{(x, y, z) : |x− y| = r > 0 ; |x− z| = s > 0}|

and identify each class with a pair (r, s) ∈ R2. Then by Cauchy-Schwarz,

N6 ∼

 ∑
r,s∈H(E)

nr,s

2

≤

 ∑
r,s∈H(E)

1

 ∑
r,s∈H(E)

n2
r,s


≤ |H (E)| |U (E)|

|H (E)| & N6/ |U (E)|(4.3)

where U (E) is the set of tuples (x, y, z, x′, y′, z′) ∈ E6 so that |x− y| = |x′ − y′| > 0
and |x− z| = |x′ − z′| > 0. Using the circular weight functions, we count the
number of (r, s) hinges rooted at x, and sum:

nr,s =
∑
x∈E

ωr (x)ωs (x)

from which follows

(4.4) |U (E)| =
∑
r,s

(∑
x

ωr (x)ωs (x)

)2
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If we assume Conjecture 5, then we get by AM-GM

|U (E)| =
∑
r,s

(∑
x

ωr (x)ωs (x)

)2

=
∑
r,s

∑
x,x′

ωr (x)ωr (x′)ωs (x)ωs (x′)

≤ 1

4

∑
x,x′

∑
r,s

(
ωr (x)

2
+ ωr (x′)

2
)(

ωs (x)
2

+ ωs (x′)
2
)

≤ 1

2
N
∑
x

∑
r,s

ωr (x)
2
ωs (x)

2
+

1

2

∑
x

∑
x′

∑
r,s

ωr (x)
2
ωs (x′)

2

≤ 1

2
N
∑
x

(∑
t

ωt (x)

)2

+
1

2

(∑
t

∑
x

ωt (x)
2

)2

. N4 +
(
N2 logN

)2
= N4 (logN)

2

which implies that if we must assume Conjecture 5 then our argument is either
circular or recursive8.

4.2. Conversion to decision point before weighted incidence problems.
Next, we convert |U (E)| into a weighted computation over Q (E). After all,

|U (E)| =
∑

(x,y,z,x′,y′,z′)∈U(E)

1

=
∑

(x,y,x′,y′)∈Q(E)

∑
|x−z|=|x′−z′|

1

=
∑

(x,y,x′,y′)∈Q(E)

∑
r∈∆

ωr (x)ωr (x′)

=
∑
r∈∆

∑
(x,y,x′,y′)∈Q(E)

ωr (x)ωr (x′)

As with the distinct distance problem, we first partition Q (E) into disjoint subsets,
the translational part Qt (E) and the rotational part Qr (E), as defined in Section
3. We split U (E) into Ut (E) and Ur (E) in accordance with the split of Q (E).
The former is easy to bound, since the last component of (x, y, x′, y′) in Qt (E) is
defined by the first three components, after which by Eq. 4.2

|Ut (E)| =
∑
r∈∆

∑
x,y,x′,y′∈Qt(E)

ωr (x)ωr (x′)

≤
∑
r∈∆

∑
(x,y,x′)∈E3

ωr (x)ωr (x′)

≤N
∑
r∈∆

(∑
x

ωr (x)

)2

. N4 logN(4.5)

8For example, if f (N) ≤ g (N) + αf (N) then f (N) . g (N) if α < 1; but if α > 1, the
inequality is useless.
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The second component, Qr (E), is in bijection with Q, the set of (x, y, g) where
g ∈ G, the non-translational subset of the group of positively oriented rigid motions,
and x, y ∈ g−1E ∩ E. Then we have

|Ur (E)| =
∑
r∈∆

∑
x,y,g∈Q

ωr (x)ωr (g (x))

≤
∑
r∈∆

∑
g∈G

∑
x,y∈g−1E∩E

ωr (x)ωr (g (x))

At this point, it is convenient to define the weights

mr (g) :=
∑

x∈g−1E∩E

ωr (x)ωr (g (x)) ,

and m (g) =
∑
r∈∆mr (g). As before, dyadic decomposition of G by the richness

k =
∣∣g−1E ∩ E

∣∣ of a given transformation yields

|Ur (E)| ≤
∑
r∈∆

∑
g∈G

∣∣g−1E ∩ E
∣∣mr (g)

≤
∑
r∈∆

||
N∑
K=2

K
∑

g∈GK\G2K

mr (g)

= ||
N∑
K=2

K
∑

g∈GK\G2K

m (g)(4.6)

As in Section 3, we can identify each g ∈ G with a point in R3, and note that∣∣g−1E ∩ E
∣∣ is the number of lines in the set L = {Lpq : p, q ∈ E} which intersect

with g. Furthermore, since each line Lxx′ 3 g has the property that x′ = g (x), and
x′ ∈ g−1E ∩ E, it follows that if we associate a weight mr (Lxx′) = ωr (x)ωr (x′),
the sum of the weights over all the lines intersecting g gives mr (g). As the ex-
pression up to now is linear, we could alternatively associate weights m (Lxx′) =∑
r ωr (x)ωr (x′), so that the total over all lines intersecting g is m (g).

4.3. Expected results conditional on the best possible generic lemma.
Assume that there is a lemma similar to Prop 4.22 of [GK15], which is agnostic to
the structure of the line weights, except for their average value, and the maximum
over all planes in R3 of the average weight in a given line. In total, we have
L = |L| = N2 lines, and a maximum of B = N lines per plane; and average line
weight µr, and maximum average line weight υr in a plane. Based on Eq. 3.6, and
assuming that all line weights are uniform, we would expect linearity in the line
weights:9

|Ur (E)| .
∑
r∈∆

[
L3/2µr + L3/2µr logN + LBµ1/2

r ν1/2
r + LµrN

]
(4.7)

. L3/2µ+ L3/2µ logN + LB

(∑
r

µ1/2
r ν1/2

r

)
+ LµN

9The exact µ1/2r ν
1/2
r tradeoff may differ, but the term almost certainly depends on νr, in which

case the analysis of this section analysis is unchanged.
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To compute µ =
∑
r∈∆ µr, we apply Eq. 4.2

µ =
1

N2

∑
Lxx′

m (Lxx′) =
1

N2

∑
r∈∆

∑
x,x′

ωr (x)ωr (x) . N logN

More difficult is the computation of
∑
r µ

1/2
r ν

1/2
r . Thanks to Lemma 4, we know

that

νr =
1

N
max
`,s

∑
x∈R−1

`,sE∩E

ωr (x)ωr (R`,s (x))

for which N−1
∑
x∈E ωr (x)

2 is a trivial upper bound. For sets with perfect reflec-
tion symmetry across a given line `, this upper bound is tight:∑

x∈R−1
`,0E∩E

ωr (x)ωr (R`,0 (x)) =
∑
x∈E

ωr (x)ωr (R`,0 (x))

=
∑
x∈E

ωr (x)
2

since a reflection R`,0 is an isometry, and hence preserves the number of points
within a given distance of x. (Note that for s 6= 0, E cannot be invariant under
R`,s, since the shift operation increases the y coordinates of all points when we set
coordinates so that y is aligned with `. It may be that

∣∣∣R−1
`,sE ∩ E

∣∣∣ ∼ |E|, and also

ωr (x) ∼ ωr (R`,s (x)), in which case µr &
∑
x∈E ωr (x)

2.)
If we were to take νr = 1

N

∑
x∈E ωr (x)

2, then

∑
r

µ1/2
r ν1/2

r =
1

N3/2

∑
r

(∑
x

ωr (x)
2

)1/2(∑
x

ωr (x)

)
(4.8)

which is slightly more concentrated in r than Eq. 4.2, and slightly less concentrated
in r than Conjecture 5.10 We could alternatively move the

∑
r inside the weight

expressions on 4.7; but the end result is equivalent to applying Cauchy-Schwarz on∑
r (µrνr)

1/2.
It may be that such an ideal generic lemma requires constraints on the `p norms

of the weights; however, for p ≥ 2, a bound in terms of N would imply Conjecture 5
by Hölder’s inequality. Note also that Eq. 4.7 uses the lowest reasonable exponents
on the line weights – the bound is false if they are less than linear – and it may be
easier to prove a result for which L3/2µr is replaced by L3/2µ

3/2
r N−1/2; but then

it makes a difference to the final result whether or not the incidence problems are
computed with the line weights summed before, after, or interpolating between the
two. However, with the L3/2µ

3/2
r N−1/2 example, if one computes incidences be-

fore summation, then the first term bounding |Ur (E)| becomes N
∑
r (
∑
x ωr (x))

3

which is stronger than Conjecture 5.
Of course, including distribution information, such as the distribution of total

line weights within planes, might provide a more complicated but tractable upper
bound.

10Applying Muirhead, AM-GM, or Cauchy-Schwarz, we find Conjecture 5 implies Eq. 4.8
which implies Eq. 4.2.
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One of the obstacles to finding a “best possible generic lemma” is that the weights
m (g) of an intersection are not always strictly greater than than the intersection
multiplicity; it may often be that mr (`) = 0, or m (`) < N .

4.4. Double partitioning fails without further constraints. There is a second
way to compute the expressions at the end of 4.2: we can separately partition over
points, by the number of lines they meet, and over lines, by their weight. We
introduce notation for the second case: L[J,2J) is the set of all lines ` in L for which
m (`) ∈ [J, 2J).

Specifically, Eq. 4.6 becomes

|Ur (E)| . ||
N∑
K=2

K
∑

g∈GK\G2K

∑
Lxx′3g

m (Lxx′)

. ||
N∑
K=2

K||
N2∑
J=1

∑
g∈GK\G2K

∑
Lxx′ 3 g

Lxx′ ∈ L[J,2J)

m (Lxx′)

. ||
N∑
K=2

||
N2∑
J=1

KJ · I
(
G[K,2K),L[J,2J)

)
where I is the point-line incidence counting function. The following theorem is
particularly useful:

Theorem. 12.1 of [Gut16]. Let S be a set of S points and L a set of L lines in
R3. Suppose that there are at most B lines of L in any plane, and that B ≥ L1/2.
Then the number of incidences is bounded as follows:

I (S,L) . S1/2L3/4 +B1/3L1/3S2/3 + L+ S

By this theorem, with the total number of lines LJ =
∣∣L[J,2J)

∣∣, the total number
of points SK . N3/K2, and maximum number of lines in a plane, B ≤ N , we get

|Ur (E)| . ||
N∑
K=2

||
N2∑
J=1

KJ
[
S

1/2
K L

3/4
J +B1/3L

1/3
J S

2/3
K + LJ + SK

]

. ||
N∑
K=2

||
N2∑
J=1

KJ
[
N3/2K−1

∣∣L[J,2J)

∣∣3/4 +N7/3K−4/3
∣∣L[J,2J)

∣∣1/3]

+ ||
N∑
K=2

||
N2∑
J=1

KJ
[∣∣L[J,2J)

∣∣+N3/K2
]

. N3/2 logN

||N2∑
J=1

J
∣∣L[J,2J)

∣∣3/4+N7/3||
N2∑
J=1

J
∣∣L[J,2J)

∣∣1/3
+N ||

N2∑
J=1

J
∣∣L[J,2J)

∣∣+N5
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By Chebyshev’s inequality, we find J
∣∣L[J,2J)

∣∣ .∑`∈Lm (`), which implies
∣∣L[J,2J)

∣∣ .(
N3 logN

)
/J ; substituting this in yields:

|Ur (E)| . N15/4 (logN)
7/4

||N2∑
J=1

J1/4

+N10/3 (logN)
1/3 ||

N2∑
J=1

J2/3

+N4 (logN)
2

+N5

. N4
(
N1/4 (logN)

7/4
)

+N4
(
N2/3 (logN)

1/3
)

+N4 (logN)
2

+N5

While the first three terms might be reducible with Chebyshev bounds on e.g.
J4/3

∣∣L[J,2J)

∣∣ and J3
∣∣L[J,2J)

∣∣, the right hand side expressions
∑
`∈Lm (`)

4/3 and∑
`∈Lm (`)

3 are difficult to control. The trailing N5 term is an artifact of the
specific incidence expression used: the +S term of Theorem 12.1 of [Gut16] is
maximal when all SK points are placed on unique lines in LJ , which is unlikely
since there are, in total, more points than lines.

5. Line-based incidence formulations of the hinge problem

In this section, we present another approach to finding an upper bound for
|U (E)| (which was defined in Section 4.1). In order to obtain an incidence problem
for lines in R3, rather than lines in RP 3, we partition U (E) into three (not nec-
essarily disjoint) components, Uy, Uz, and U?. First, we note that for each tuple
(x, y, z, x′, y′, z′), there are unique positively oriented rigid motions gy and gz for
which gyx = gzx = x′, gyy = y′, and gzz = z′. First, if gy is a translation, then
the tuple is in Uy; if gz is a translation, we put it in Uz; and U? = U \ (Uy ∪ Uz).
For sets Uz, we fall back to the weighted incidence argument used to express Uz as
a sum over Qt, after which applying Eq. 4.5 gives |Uz| . N4 logN . As |Uz| = |Uy|
by y-z exchange symmetry, |Uy| . N4 logN as well.

To control |U?|, we establish an isomorphism between U? and the set U of triplets
of transformation-representing lines Lx,x′ , Ly,y′ , Lz,z′ in R3, defined as per Section
3, with the additional constraint Lx,x′ intersects both Ly,y′ and Lz,z′ . Note, just
as y and z, or y′ and z′, need not be distinct, neither do Ly,y′ and Lz,z′ . However,
x 6= y and x 6= z, so Lx,x′ 6= Ly,y′ and Lx,x′ 6= Lz,z′ . That U? maps injectively into
U is follows from the formula for a line, Eq. 3.4; for the reverse direction, note that
gy = Ly,y′ ∩Lx,x′ and gz = Lz,z′ ∩Lz,z′ are precisely the unique positively oriented
rigid motions between (x, y) and (x′, y′), and (x, z) and (x′, z′). Since Lz,z′ and
Ly,y′ are independent of each other, with L the set of all lines Lpq for p, q ∈ E,
p 6= q,

|U?| =
∑

Lxx′∈L
mL (Lxx′)

2(5.1)

where we define the weight mL (Lxx′) as the total number of lines L\{Lxx′} which
intersect Lxx′ . As the uniform bound is not particularly useful, we partition L
into disjoint sets L=r,L, so that Lxx′ ∈ L=r,L iff r = mL (Lxx′), and then define
Lr,L :=

⋃N2

s=r L=s,L. (A convenient upper bound for the weight mL (Lxx′) is N2,
since one can obtain mL (Lxx′) ∼ N2 for a generic polygon as described in Example
2, because there are ∼ N2 distinct rotation angles corresponding to the maps which
fix the polygon center.)
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Then straightforward dyadic decomposition gives

|U?| =
N2∑
k=1

∑
Lxx′∈L=k,L

mL (Lxx′)
2

≤ ||
N2∑
K=1

∑
Lxx′∈LK,L\L2K,L

mL (Lxx′)
2

≤ 4||
N2∑
K=1

K2 |LK,L \ L2K,L|

in which case an upper bound on the number of lines in L with line-richness between
K and 2K would be required. As Example 10 shows, for the square grid it is
possible that |LK,L \ L2K,L| ∼ N2 for K . N logN ; the difficulty is in establishing
the upper bound on |LK,L \ L2K,L| for lines with line-richness ≥ N . Of course,
thanks to Proposition 2.8 of [GK15], there are at . N lines per regulus, and hence
via their Theorem 2.10, . N3 total intersection points, so we can rule out the case
that all N2 lines each intersect all N2 other lines.

One might expect that a double partitioning argument, as in Section 4.4, would
be helpful; however, defining m (g) := |{Lxy ∈ L : g ∈ Lxy}| as the line-richness of
point g, we get

|U?| =
N2∑
k=1

∑
Lxx′∈L=k,L

 ∑
g∈Lxx′

m (g)

2

.

Applying Cauchy-Schwarz over the squared sum produces an expression amenable
to such partitioning; however, for the square grid, for a constant fraction of lines

there are ∼ N intersections per line, for which
(∑

g∈`m (g)
)2

∼ (N logN)
2 but

N
∑
g∈`m (g)

2 ∼ N3; the resulting upper bound produced by Cauchy-Schwarz is
then at least N5.

6. Counting distances for sufficiently simple lattices

As noted by [CSS13], the method of finding a lower bound for |∆ (E)| by com-
puting an upper bound for |Q (E)| produces a lower bound which is off by a factor
of
√

logN in the square grid case, in large part because the equivalence class sizes
nr are non-uniform.

An alternative approach to proving a tight lower bound on |∆ (E)| is to prove the
bound for a class of sets E , and then show, using symmetry or other constraints,
that if |∆ (E)| is below some threshold then E ⊂ E . For example, one might
hypothesize that if |∆ (E)| . N , then either E is almost a polygon (i.e., there is
a polygon F so that |(E \ F ) ∪ (F \ E)| � |E|), or E is a constant density subset
of a finite lattice Ξ. (“constant density subset”, just like “almost”, is a heuristic;
perhaps |Ξ| / |E| ≤ log |E|.)

Definition 6. A finite lattice Ξ is a set of points describable as π−1
1 A∩π−1

2 B where
π1 and π2 are distinct projections. Then |Ξ| = |A| |B| = N . It is convenient to let
θ ∈ (0, π) be the smaller angle between π1 and π2.
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As the points in Ξ can be identified with their projections, we can use the law
of cosines to compute distances, with c = 2 cos θ.

∆ (Ξ) =
{∣∣∣√a2 + b2 + cab : a ∈ A−A, b ∈ B −B

∣∣∣}
The notation A−A := {a− a′ : a, a′ ∈ A}; since A−A is symmetric around 0, ∆ (E)
is unchanged if we replace c with −c in the above expression. For lattices Ξ where A
and B have high translational symmetry, that is, |A| ∼ |A−A|, and |B| ∼ |B −B|,
it follows immediately that |∆ (Ξ)| ≤ |A−A| |B −B| ∼ |A| |B| = N .

We now address the specific cases where A and B are both arithmetic progres-
sions. We also define Uk := Z ∩ [−k, k].

Lemma 7. Let A = αUnA and B = βUnB ; let Ξ be the finite lattice determined
by the intersection of their inverse projections at cross angle θ. If (β/α)

2
/∈ Q or

(β/α) cos θ /∈ Q, then

2 max
p∈Ξ
|∆p (Ξ)| ≥ |∆ (Ξ)| ≥ N/4

Proof. Thanks to scale invariance, we can assume α = 1. Then A − A = U2nA

and B − B = βU2nB . For x ∈ A − A, and y = βz ∈ B − B, the distance corre-
sponding to (x, z) ∈ U2nA × U2nB is f (x, z) = x2 + β2y2 + cβxy, for c = 2 cos θ.
Furthermore, when points p, q ∈ Ξ have coordinates (px, pz) = (−nA,−nB) and
(qx, qz) = (nA,−nB), then ∆ (Ξ) = ∆p (Ξ) ∪∆q (Ξ). There are three cases:
Case 1. β2 ∈ R \Q, cβ ∈ Q.

Proof. Assume that there are x, z, x′, z′ for which f (x, z) = f (x′, z′). If
z 6= z′, then from x2 + β2z2 + cβxz = x′2 + β2z′2 + cβx′z′, we derive(
x2 − x′2 + cβxz − cβx′z′

)
/
(
z′2 − z2

)
= β2, so β2 ∈ Q all terms in the

left hand side are in Q. If z = z′, then x2 − x′2 = (x− x′) (x+ x′) =
cβz (x′ − x) which has two solutions classes (x = x′, x + x′ = cβz),
neither of which provides more than one solution per value of f (x, z).
Thus |∆| ≥ N/2. �

Case 2. β2 ∈ Q, cβ ∈ R \Q.
Proof. Assume there are x, z, x′, z′ where xz 6= x′z′ for which f (x, z) =
f (x′, z′). This would be a contradiction, since then

cβ =
x2 − x′2 + β2z2 − β2z′2

x′z′ − xz
which is in Q since Q is closed under field operations. On the other
hand, if there are x, z, x′, z′ where xz = x′z′ while f (x, z) = f (x′, z′),
then x2 + β2z2 = x′2 + β2z′2. For fixed xz and x2 + β2z2, there are at
most four solutions in R, hence at most four solutions in N. As, by the
earlier argument, there cannot be more than one value of xz per value
of f (x, z) (lest cβ ∈ Q), f (x, z) = f (x′, z′) has at most four solutions.
Thus |∆| ≥ N/4. �

Case 3. β2 ∈ R \Q and cβ ∈ R \Q.
Proof. If c = p

q ∈ Q, then we scale x 7→ x/β, z 7→ z/β, and exchange the
roles of x and z, falling back to case 1. Otherwise, the map (x, z) 7→ x2 +
β2z2 + cβxz is almost injective, since 1, β2, and cβ form an independent
basis over Z for the space of possible solutions; f (x, z) = f (x′, z′) would
then require x2 = x′2, z2 = z′2, and (since cβ /∈ Q =⇒ cβ 6= 0)
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xz = xz′; there are precisely two solutions, (x, z) = (x′, z′) and (x, z) =
(−x′,−z′). Thus |∆| ≥ N/2. �

Combining all three cases gives |∆| ≥ N/4. �

Lemma 8. Let A = αUnA and B = βUnB , and Ξ as before, with cross angle
θ. Assume furthermore that (β/α)

2 ∈ Q and (β/α) cos θ ∈ Q. Then |∆ (Ξ)| &
Cα,β,θ min (na, nb) /

√
logN for some constant Cα,β,θ depending on α, β, and θ.

Proof. We use a similar setup as for the proof of Lemma 7. Since (β/α)
2 ∈ Q, and

(β/α) cos θ ∈ Q, we can scale Ξ be an integral factor without affecting ∆, so that
we can write f (x, z) as a binary integral quadratic form, f (x, y) = px2 +qxy+ry2,
where gcd (p, q, r) = 1 (i.e, f is primitive). Then |∆| = |f (UnA , UnB )|. Since
f computes a squared distance, it is positive definite, and its discriminant D =
q2 − 4pr < 0. Now, consider U2nA × U2nB as a rectangular lattice, one which the
level sets of f are ellipses; with nA < nB , there is some maximal Kinner ∼ n2

a

for which for all k < Kinner, f−1 (k) is contained in Una × Unb ; and some mini-
mal Kouter ∼ n2

B

√
−D for so that f (U2nA × U2nB ) ≤ Kouter. According to Paul

Bernay’s thesis[Ber12], the total number of integers ≤ m which are representable
by f is Bf (m) = C (D) m√

logm
+O

(
m

(logm)1/2+ε

)
for some ε > 0. Thus

C (D)
n2
A√

log nA
∼ Bf (Kinner) ≤ |∆| ≤ Bf (Kouter) ∼ C (D)

√
−D n2

B√
log nB

controls the size of the distance set. By [MO06], the hex lattice has minimal
C (D) ·

√
−D with D = −3, i.e, the number of distances per covolume11, so if the

lattice is of similar aspect ratio as the level set ellipses, then Kinner ∼ n2
a

√
−D,

and there is a universal constant for which |∆| & min (na, nb) /
√

logN . �

Remark. It is easy to empirically investigate the distinct distance set sizes for lat-
tices whose coordinates are arithmetic progressions. For quadratic binary forms f ,
there is an Θ (nanb) time-and-memory algorithm, which, in addition to computing
|f (Una , Unb)|, incidentally produces f (Uk,Uj) for all k ≤ na, j ≤ nb. Consider
the partial combined (x and y)-sums of the distance set sizes, so that |∆na,nb | =∑na
x=0

∑nb
y=0 px,y. Then px,y = 1 − dx,y, where to compute dx,y we first compute

for all k ∈ Gf (the set of f -representable integers) the lists `k of values for which
f (x, y) = k, and remove all (x, y) pairs which dominate some other pair (x′, y′)
in the list (so that x′ < x and y′ < y). W initialize dx,y ← 0, and then for each
dominating element, increment the corresponding dx,y counter. The remaining ele-
ments (xk,i, yk,i)

sk
i=1 are sorted ascending by xk,i, after which, for each i = 2 . . . sk,

we increment dxk,i,yk,i−1
. This procedure ensures that for a rectangle containing

the entire list `k, the squared distance k is counted exactly once.

With suitable uniformity conditions, it is possible to show that as the lattices
Ξ become progressively elongated (and cover progressively smaller fractions of any
minimal ball containing them), ∆→ N . A specific case was proven by [CSS13], who
showed that for f = x2 + y2, if nA = N1/2−ε, and nB = N1/2+ε, then ∆ = Θ (N),
but their method does not easily generalize to general binary quadratic forms, and
is incapable of handling e.g. nA = N1/2 logN and nB = N1/2 logN .

11The computation of C (D) is covered in more detail by [BMO11].
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We define νΞ (k) to be the number of points (x, y) on Γ = U2nA × U2nB for
which f (x, y) = k. Following [BG06], we define rf (k) to be the total number of
(x, y) ∈ Z2 for which f (x, y) = k. Clearly νΞ (k) ≤ rf (k). By counting the pairs in
U2nA × U2nB and the mean number of values of k that they contribute, we obtain

|∆| =
∑
x,y∈Γ

1

νΞ (f (x, y))

Note that for k < Kinner, νΞ (f (x, y)) = rf (f (x, y)), and the sum over k ≤
Kinner evaluates to ∼ Kinner/

√
logN , while when we have |x| < 2na � |y| < 2nb,

νΞ (f (x, y)) = 1 for almost all x, y, and then
∑
x,y∈Γ:f(x,y)�Kinner 1 ∼ nanb = N .

The tricky part in proving a lower bound on ∆ is showing that for k close to Kinner,
the sets of points representing a value k are not very spatially clustered. Some work
has been done in this area; for instance, Theorem 5.11 of [Dia15] considers the
ideals of the ring of integers of Q

(
i
√
D
)
(whose representation counting function

is similar to that for binary quadratic forms) and finds a maximum discrepancy
bound between the total number of representations in a sector of given angle and
the number of representations that would be expected if all representations were
uniformly distributed over a circle.

7. Computations for the Grid

Example 9. For a constant fraction subset of points E′ (the central quarter), and
a constant fraction subset of radii ∆′ (those are less than a quarter the diameter
of E), it is the case that ωs (x) = ωs (x′) for all x, x′ ∈ E′, since the circle of
radius s around x intersects precisely the gridpoints which also lie in E (which, for
a point x more than s away from the boundary, is all of them.) Then ωs (x) equals
the representation counting function rf

(
s2
)
for the quadratic form f = x2 + y2.

Thanks to [BG06], the various asymptotic moments of rf (x) are straightforward to
compute, and so are lower bounds on the upper bounds for expressions based on
ωs (x). From their Corollary 1, for any binary quadratic form f (such as x2 + y2),
and β ∈ 1 , ∑

s2<N/4

rf
(
s2
)β ∼ N (logN)

2β−1−1

and hence for any x? ∈ E′, we have specifically∑
s

ωs (x?) ∼ N
∑
s

ωs (x?)
3 ∼ N (logN)

3

∑
s

ωs (x?)
2 ∼ N logN

∑
s

ωs (x?)
4 ∼ N (logN)

7

This makes it straightforward to compute that, for the square grid, via Eq. 4.2,

|Q (E)| =
∑
s

(∑
x

ωs (x)

)2

≥
∑
s∈∆′

(∑
x∈E′

ωs (x)

)2

& N2
∑
s

ωs (x?)
2 ∼ N3 logN



APPROACHES FOR THE HINGE AND DISTINCT DISTANCE PROBLEMS 16

where we use a single representative x? for all the x ∈ E′. Similarly, for the hinge
problem, we obtain for Eq. 4.4,

|U (E)| =
∑
r,s

(∑
x

ωr (x)ωs (x)

)2

≥
∑
r,s∈∆′

(∑
x∈E′

ωr (x)ωs (x)

)2

=
∑
x∈E′

∑
x′∈E′

∑
r∈∆′

∑
s∈∆′

ωr (x)ωs (x)ωr (x′)ωs (x′)

=
∑

x,x′∈E′

(∑
t∈∆′

ωt (x)ωt (x′)

)2

& N2

(∑
r

ωr (x?)
2

)2

∼ N4 (logN)
2

Example 10. The appendix of [GK15] shows that for the square grid, the number
of k-line-intersection-rich points in the 3d incidence problem is at least |Pk (L)| &
N3/k2. We re-purpose their proof to show that, for the square grid, a con-
stant fraction of lines have point-richness ∼ N and line-richness ∼ N logN ; i.e,
|L∼N (P )| ∼ N2, and |L∼N logN (L)| ∼ N2.

Let E =
(
Z ∩

(
−2N1/2, 2N1/2

))
×
(
Z ∩

(
−2N1/2, 2N1/2

))
be a grid of points

centered on the origin. Then |E| ∼ N . We let L = {Lpq : p, q ∈ E} be the set
of lines in R3 corresponding to non-translational positively oriented rigid motions
mapping e.g. p to q, with parameterization according to Eq. 3.4. By Lemma A.1
of [GK15], there is a subset L0 ⊂ L for which |L0| ∼ |L|, where the lines L0 are
those which pass through the points (a, b, 0) and (c, d, 1) in R3, where a, b, c, d ∈
Z ∩

(
−N1/2, N1/2

)
. For every integer 1 ≤ q ≤ N1/2/2, and integer 0 ≤ p ≤ q,

the plane at height p/q intersects all ∼ N2 of the lines in L0. Furthermore, since
the lines in L0 pass through integer lattices at heights z = 0 and z = 1, at height
p/q (with p/q in lowest terms), the lines in L0 pass through a uniform lattice with
spacing 1/q and ∼ Nq2 points in total.

We define L to be the set of lines in L for which |a− c| , |b− d| < N1/2; we
have|L| ∼ N2. Then by translation invariance12 for motions shorter than N1/2,
all lines in L0 pass through the same number of lines in L at height p/q, namely,
∼ N2/

(
Nq2

)
∼ N/q2 of them. As any pair of lines can intersect at most twice, the

total number of intersections 13 between a line ` in L0 and the lines of L, is

mL (`) =

q.N1/2∑
p/q

N

q2
= N

N1/2∑
q=1

φ (q)

q2
∼ N logN

12To be precise, this only ensures that the number of lines passing through (a+ a′/q, b+ b′/q)
at height p/q is the same as the number passing through (c+ c′/q, d+ d′/q). Because shifting
an endpoint of the line segment from (r, s, 0) to (u, v, 1) by one translates the intersection point
of the line by p/q (or 1 − p/q), and gcd (p, q) = 1 (so that we can attain any fractional x or y
coordinate), we can transform the bundle of all lines passing through e.g. (a+ a′/q, b+ b′/q) to
pass through (c+ c′/q, d+ d′/q).

13+N , as we overcounted intersections between ` as a member of L0 and as a member of L.
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where φ (q) is Euler’s totient function and the identity
∑N1/2

q=1
φ(q)
q2 ∼ logN is easily

derived from
∑n
q=1 φ (q) /q = 6

π2n. (See for instance [PS92], section 3.)
As mL (`) ∼ N logN for ∼ N2 different lines ` ∈ L0, it follows |L∼N logN (L)| ∼

N2. Furthermore, since each line ` ∈ L0 intersects at least one other line in L for∑q.N1/2

p/q 1 =
∑∼N1/2

q=1 φ (q) ∼ N different heights, |L∼N (P )| ∼ N2.
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