
A More Direct Approach to Lebesgue Integration

Matthew Kaminskas

April 2023

1 Introduction

The study of Lebesgue measurability is typically done in a very specific order,
and with specific motivations in mind. The general motivation for our study
is the desire to extend the class of functions that can be integrated. To do so,
we start by defining the notion of a measure and measurable sets. We then
define measurable functions using this already established idea of measurable
sets, and finally define the integration of these functions with respect to a given
measure accordingly. As an afterthought, we can then consider the space of
such measurable functions as a vector space, using Lebesgue integration as a
norm on that space.

A drawback of this typical course of study is that the path from our starting
point to our ultimate goal is not particularly straightforward or obvious.

One incredibly useful idea that arises in the study of measurability is that of the
normed space of Lebesgue measurable functions on a set, called L1. This space
is actually the completion in the L1-norm of the set of continuous functions, and
as such is incredibly useful in the study of functional analysis. But while L1 is
very important in this field, we see the use of this space to functional analysis
often plays no role in the motivation of that space.

Professor Peter Lax is a mathematician with significant contributions to the field
of functional analysis. As such, the main focus for him is that of the L1 space
itself, rather than the concept of measurability. His present paper defines and
motivates L1 without first utilising the concept of measure. L1 is constructed as
the set of continuous functions in the L1-norm. From this construction, many
of the known properties of L1 are derived.

2 Setup

We begin with a compact hypercube K ⊂ Rn for some n ∈ Z+. This means K
can be written as the direct product of n closed and bounded intervals [ai, bi] ⊂
R. By defining K in this way, we generalize the notion of a line segment,
rectangle, or rectangular prism in 1, 2, or 3 dimensions respectively.
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Then for any continuous function c : K → R, we can define I(c) to be the
integral of c over K. By defining I in this way only for continuous functions c,
we can use the standard Riemann integral in the evaluation of I. Furthermore,
our usage of a compact hypercube K as the domain allows us to evaluate I(c) by
computing the 1-dimensional Riemann integral in each component, and ensures
this integral is well defined and finite for any such c.

More explicitly, we can write any point x ∈ K as x = (x1, x2, ..., xn), where
ai ≤ xi ≤ bi for each i. Then for any continuous c : K → R, we can take

I(c) =

∫ bn

an

· · ·
∫ b2

a2

∫ b1

a1

c(x1, x2, ..., xn) dx1dx2 · · · dxn.

Because K is compact and c is continuous, we know c must attain a minimum,
m, and a maximum, M , on K. Then m ≤ c(x) ≤ M for all x ∈ K, so we must
have

m

n∏
i=1

(bi − ai) ≤ I(c) ≤ M

n∏
i=1

(bi − ai),

and so I(c) is bounded for all such c.

We go on to define the volume of an open subset G ⊂ K. For any subset S of
K, let χS be the characteristic function of S, meaning

χS(x) =

{
1 for x ∈ S
0 for x ̸∈ S.

To align with our expectations for the volume of an open set, we would like to
have V (G) = I(χG), but I has so far only been defined for continuous functions.
This directly motivates the definition used in the paper, which proceeds as
follows.

Def: For any G ⊆ K, we say c ∈ C(K) is admissible for G iff c(x) ≤ χG(x) for
all x ∈ K.

From this, we can define V (G) to be the least upper bound of I(c) for all
c ∈ C(K) that are admissible for G:

V (G) = sup{I(c) : c ∈ C(K), c(x) ≤ χG(x) for all x ∈ K}.

From this definition, it can be shown that V is countably subadditive, and
additive on pairwise disjoint sets.1

1For those already familiar with measure theory, we will later show that the measure of
any open set G is equal to V (G). However, it is important to note that V can only be
defined in this way for open sets. To demonstrate, let I = [0, 1] ⊆ R, and let S1 = I ∩ Q,
S2 = I \ S1. If we define volume in the same way as above for all subsets of I, we would have
V (S1) = V (S2) = 0, while V (S1 ∪ S2) = V (I) = 1, contradicting subadditivity.
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Using this definition of volume, we then say a subset B ⊆ K is negligible iff it
can be covered by an open set of arbitrarily small volume. We say a property P
is true almost everywhere iff there exists a negligible set B such that P is true
for all x ∈ K \B.

3 Cauchy Sequences and Complete Spaces

Before we continue, we introduce the notions of Cauchy Sequences and Com-
pleteness. Given a normed vector space (V, || · ||), a sequence {vn}∞n=1 ⊂ V is
Cauchy iff for any ϵ > 0 there exists some N ∈ Z+ such that m,n ≥ N implies
||vm − vn|| < ϵ.

In a general normed vector space, every convergent sequence is Cauchy, but the
converse is not necessarily true. As an example, consider the sequence {qn}n=1

in the rational numbers Q defined by

q1 = 3.1, q2 = 3.14, q3 = 3.141, q4 = 3.1415, ...

so each qn takes the first n digits of π after the decimal. We know this sequence
is Cauchy, as it converges to π in R, but because its limit π is irrational the
sequence can not be convergent in Q.

A normed vector space in which every Cauchy sequence converges is called
complete or Banach. We see from the previous example that Q is not complete,
but as one might expect it can be shown that R is complete.

Given a normed vector space (V, ||·||) that is not complete, it is possible to define
a new space V ′ with the same norm which is complete, and which contains V
as a dense subspace. V ′ is then called the completion of V with respect to that
norm.

To do this, we start by letting V be the set of all Cauchy sequences in V . Then
given two Cauchy sequences X = {xn}, Y = {yn} ∈ V, we define

d(X,Y ) := lim
n→∞

||xn − yn||,

and we say X ∼ Y iff d(X,Y ) = 0. Finally, we define the completion of V to be

V ′ := V/∼ .

This new space does not actually contain V in the most strict sense, as elements
of V ′ are equivalence classes of Cauchy sequences in V , and so are different
mathematical objects than the elements of V . However, given any v ∈ V , we
know the sequence {v}∞n=1 where every element is v, is Cauchy, and so there is
exactly one element of V ′ with this sequence in its equivalence class.

By identifying each v ∈ V with [{v}]∼ ∈ V ′, we see V ′ can be thought of as
containing a copy of V .
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Returning to our previous example, this notion of completion actually gives us
a way of constructing R from the set Q. For any a ∈ R, we again let {an}∞n=1

be such that an takes the first n digits of a after the decimal. We know this
sequence is Cauchy in Q with respect to the absolute value norm, and so for
any a ∈ R there will be exactly one equivalence class [{an}] in the completion
of Q corresponding to a.

Using the method described above, we can thus define R to be the completion
of Q in the absolute value norm.

4 Defining L1

We now have the tools we need to define the L1 space, which is denoted simply
L throughout the rest of this and the original paper. We let C = C(K) be the
set of all continuous functions on K. Noting that C is a linear space, we define
the L-norm on C by |c|L = I(|c|).

This is a very natural choice of norm for this space, as it is essentially an
extension of the taxicab norm on finite-dimensional vector spaces. This is also
the same norm used in the standard definition of the L1 space.

One important distinction of its usage here, though, is that I(|c|) is truly a norm
on C, while it is not a norm on the set of all Lebesgue measurable functions.
This is because there exist measurable functions f not identically 0 such that
I(|f |) = 0, for example the characteristic function of the rationals in K.

We typically deal with this problem by letting L1 be the quotient space of all
Lebesgue measurable functions mod the relation ∼, where f ∼ g iff f(x) = g(x)
almost everywhere.

By restricting our set of interest to C, we see the L-norm is a true norm on C, as
a continuous function is equal to 0 almost everywhere only if it is identically 0.
Then as (C, | · |L) is a normed vector space, we can define L to be the completion
of C in the L-norm.

This means the elements of our newly defined space L are not actually the same
mathematical objects as the elements of the L1 space as it is typically defined.
Elements of L in this paper are equivalence classes of Cauchy sequences of
continuous functions, whereas elements of the standard L1 space are equivalence
classes of Lebesgue measurable functions.

Similarly to R and the completion of Q, however, we will show throughout the
rest of this paper that elements of each of these sets can be clearly identified
with one another in a very natural way.

This identification is based on the following idea:
A function f(x) defined almost everywhere on K is said to be a realization of
f in L iff there is a Cauchy sequence {cn} in the equivalence class f which
converges almost everywhere to f(x).
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Using this notion of realizations, we can then show that our L is essentially
equivalent to the typical L1 space by demonstrating that:

(i) Every element of f ∈ L has a realization;

(ii) A function f(x) is measurable iff it is a realization of some f ∈ L; and

(iii) For any f, g ∈ L with realizations f(x) and g(x) respectively, we have
f(x) = g(x) almost everywhere iff f = g.

These properties would imply there is a one-to-one correspondence between the
elements of our L space, and the equivalence classes of measurable functions
that are identical almost everywhere, which is the standard definition of L1.

5 Important Tools

There are a few important tools and theorems we must introduce before moving
on, as they will be vital in proofs and derivations through the rest of this paper.

First, we introduce a version of Chebyshev’s Inequality relating volume and
integration.

Chebyshev’s Inequality: Let a ∈ R+, and d :K → R≥0 be a nonnegative
continuous function. Denote by Ga ⊆ K the set of points x ∈ K such that
d(x) > a. Then

V (Ga) ≤
I(d)

a
.

Proof: Let ca be admissible for Ga and x ∈ K. We consider two exhaustive
cases, x ∈ Ga and x ̸∈ Ga.

If x ∈ Ga, then we know d(x) > a, and so d(x)
a > 1. Then by definition of

admissible we have
ca(x) ≤ χGa(x) = 1,

and so we see ca(x) <
d(x)
a .

If x ̸∈ Ga, we have ca(x) ≤ χGa
(x) = 0. As we assumed d is nonnegative and

a > 0, this implies

ca(x) ≤ 0 ≤ d(x)

a
.

Thus in either case we see ca(x) ≤ d(x)
a for any x ∈ K, and so integrating both

sides over K gives I(ca) ≤ I(d)
a . Taking the supremum of both sides over all

admissible ca, we arrive at

V (Ga) ≤
I(d)

a
.
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This inequality allows us to find upper bounds on the volumes of some sets. We
will then make use of these upper bounds in proving that certain subsets of K
are in fact negligible, such as by showing a set has volume ≤ ϵ for any ϵ > 0.

Next we introduce the concept of rapid convergence. A Cauchy sequence cn is
called rapidly convergent iff there exists a constant k for which |cn−cn+1|L < k

n4

for all n ∈ Z+.

The concept of rapid convergence imposes a restriction on how fast a Cauchy
sequence must converge in L. To demonstrate the value of this, we introduce in
the following multi-part theorem some useful properties of rapidly convergent
sequences of continuous functions, which will be used throughout.

Theorem 1:

(i) Every Cauchy sequence has a rapidly converging subsequence.

Proof: For any Cauchy sequence {cn} and any j ∈ Z+, we can let ϵ = 1
j4 , and

so we know there exists Nj ∈ Z+ such that m,n ≥ Nj implies |cm − cn| < 1
j4 .

Then letting Cj = cNj
for every j ∈ Z+, it is clear that {Cj} is a rapidly

converging subsequence of {cn}.

(ii) A rapidly convergent sequence of continuous functions {cn(x)} converges
almost everywhere.

Proof: Let dn(x) := |cn(x)− cn+1(x)| for each n ∈ Z+, and define

Dn := {x ∈ K : |cn(x)− cn+1(x)| >
1

n2
}.

We know each dn is a nonnegative continuous function, and so by Chebyshev’s
Inequality we know

V (Dn) ≤
I(dn)

1/n2
=

|cn − cn+1|L
1/n2

.

By definition of rapid convergence, we know there exists some k such that
|cn − cn+1|L < k

n4 , which means

V (Dn) ≤
|cn − cn+1|L

1/n2
<

k/n4

1/n2
=

k

n2

for each n ∈ Z+.

Now let B ⊆ K be the set of all x ∈ K such that {cn(x)} does not converge. For
any x ∈ B, we see there must be some N ∈ Z+ such that x ∈ DN ∪DN+1 ∪ · · ·,
as otherwise we would have |cm(x)−cm+1(x)| ≤ 1

m2 for all m > N , which would
imply convergence of {cn(x)}.
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Then we can define GN :=
⋃∞

i=N+1 Di, and we see this implies B ⊆ GN for any
N ∈ Z+. As volume is countably subadditive, we thus get

V (B) ≤ V (GN ) ≤
∞∑

N+1

V (Dn) <

∞∑
N+1

k

n2
<

k

N
.

We see k
N → 0 as N → ∞, and so we must have V (B) = 0. Thus the set of

x ∈ K for which {cn(x)} does not converge must be negligible, meaning {cn(x)}
converges almost everywhere.

(iii) For any ϵ > 0, a rapidly convergent sequence converges uniformly except
for a set of x contained in an open set of volume less than ϵ.

Proof: Using the definitions from the previous proof, we see {cn} does not
necessarily converge uniformly in the compliment of B, but does converges uni-
formly in the complement of GN =

⋃∞
i=N+1 Di for every N ∈ Z+.

For any ϵ > 0, we can thus choose N > k
ϵ , and we see V (GN ) < k

N < ϵ. Thus
for any ϵ > 0, {cn} converges uniformly except for a set of x contained in an
open set of volume less than ϵ.

The above property (i) leads us to a useful corollary: Every equivalence class
f ∈ L contains a Rapidly converging sequence. Every f ∈ L must have some
Cauchy sequence in its equivalence class, and that sequence must have a rapidly
converging subsequence, which means that rapidly converging subsequence is
also in f .

6 Realizations

Using these tools, we now demonstrate some fundamental properties of realiza-
tions of functions in L1

Theorem 2.1: Every f in L has a realization.

Proof: Let {cn} be a rapidly converging sequence of continuous functions in
the equivalence class f . Then by property (i) above we know {cn} converges
to some function f(x) almost everywhere, and we see this f(x) satisfies the
definition of a realization of f .

Theorem 2.2: Two realizations of f are equal almost everywhere.

Proof: Let f1(x) and f2(x) be two realizations of f , and let k ∈ Z+ be given.
By definition of realization, there must exist Cauchy sequences of continuous
functions {cn} and {dn} in the equivalence class f converging pointwise to f1(x)
and f2(x) respectively. As these sequences are Cauchy in L, we know they both
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converge to f in the L-norm, and so there exists some Nk ∈ Z+ such that
m ≥ Nk implies

|cm − f |L <
1

j4
and |dm − f |L <

1

j4
.

Setting bk = cNk
for odd k and bk = dNk

for even k, we see {bk} is rapidly
convergent and contains infinitely many elements of both {cn} and {dn}.

This implies by Theorem 1(ii) that {bk(x)} must converge to both f1(x) and
f2(x) almost everywhere, which means {x ∈ K : f1(x) ̸= f2(x)} must be neg-
ligible. Thus two arbitrarily chosen realizations of some f ∈ L must be equal
almost everywhere.

Theorem 3.1: Given a ∈ R and f, g ∈ L with realizations f(x) and g(x)
respectively, af(x) + g(x) is a realization of af + g ∈ L.

Proof: By definition of realization, we know there exist rapidly convergent
sequences of continuous functions {cn} ∈ f and {dn} ∈ g such that

cn(x) → f(x) and dn(x) → g(x)

almost everywhere.

Then as {cn}, {dn} are rapidly convergent, we also know {acn + dn} is also
rapidly convergent, so by Theorem 1(ii) we know {acn(x) + dn(x)} converges
almost everywhere. Thus it must converge to af(x) + g(x) almost everywhere.

Because {cn} ∈ f and {dn} ∈ g, we know {acn + dn} ∈ af + g, and so we see
af(x) + g(x) is a realization of af + g,

Theorem 3.2: Given a sequence {fn} ⊆ L that converges in norm to f ∈ L, and
if lim fn(x) exists almost everywhere, then lim fn(x) = f(x) almost everywhere.

Proof: As {fn} converges to f , we know it is Cauchy in L, and so has a rapidly
convergent subsequence, call this {gn}.

Now let n ∈ Z+ be chosen arbitrarily, and let h = gn ∈ L.

Then by Theorem 2.1, we know h has a realization h(x), meaning there exists
a rapidly convergent sequence of continuous functions {cm} in the equivalence
class of h such that cm(x) converges to h(x) almost everywhere. As {cm} is
rapidly convergent, we know by Theorem 1(iii) that cm(x) converges to h(x)
uniformly except for a on set of volume less than 1

n2 (letting ϵ = 1
n2 in the

original theorem).

Then by definition of uniform convergence, we know there exists M ∈ Z+ such
that m ≥ M implies |cm(x)− h(x)| < 1

n .
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Now consider the sequence {cj}∞j=M . As this converges in the L-norm to h = gn,

we know there exists some Jn ≥ M such that |cJn
− h|L < 1

n4 .

As n was chosen arbitrarily, do this for each n ∈ Z+, and define a new sequence
{Cn}∞n=1 by Cn := cJn .

We have thus shown that for each gn there exists a continuous function Cn such
that

|gn − Cn|L <
1

n4
and |gn(x)− Cn(x)| <

1

n

except for a set of volume < 1
n2 .

The first inequality together with the rapid convergence of {gn} implies {Cn}
is a rapidly convergent sequence of continuous functions converging to f in
L. Thus by Theorem 1(ii), we know {Cn(x)} converges to some function f(x)
almost everywhere, and as {Cn} is in the equivalence class f we know f(x) is a
realization of f .

7 Introducing Lipschitz Continuous Functions

Our next goal is to define a sort of functional calculus on L, which will allow us
to manipulate elements of L without first determining their realizations. To do
this, we introduce the concept of Lipschitz continuous functions.

Given any normed vector space (V, ||·||), A function φ :V → R is called Lipschitz
continuous iff there exists some constant k ∈ R+ such that

|φ(x)− φ(y)| ≤ k||x− y||

for all x, y ∈ V .

We see all Lipschitz continuous functions are uniformly continuous, as for any
ϵ > 0 we can take δ = ϵ

k , and we see ||x− y|| < δ implies

|φ(x)− φ(y)| ≤ k||x− y|| < kδ = ϵ

for any x, y ∈ V .

Let φ : R → R be Lipschitz continuous, so for all s, t ∈ R we have

|φ(s)− φ(t)| ≤ k|s− t|.

We now show there is a natural way to assign to each f ∈ L a unique φ(f) ∈ L,
and then demonstrate some nice properties of this mapping.

First, note that for any pair of continuous functions c, d and any x ∈ K we have

|φ(c(x))− φ(d(x))| ≤ k|c(x)− d(x)|.
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Because compositions of continuous functions are continuous, we can integrate
both sides over all of K to get

|φ(c)− φ(d)|L ≤ k|c− d|L. (∗)

Then given any Cauchy sequence of continuous functions {cn}, the previous
equation implies {φ(cn)} is also Cauchy in L.

Now for any f ∈ L, we can take some Cauchy sequence {cn} in the equivalence
class f . As L is complete we know {φ(cn)} will have a limit, so we can define
φ(f) to be the limit of {φ(cn)} in L.

We know this limit is independent of the choice of {cn}, as for any two Cauchy
sequences {cn}, {dn} in the equivalence class of f , we know

| limφ(cn)− limφ(dn)| = lim |φ(cn)−φ(dn)|L ≤ k lim |cn−dn|L = k|f −f | = 0,

and so we must have limφ(cn) = limφ(dn).

Now considering φ as a functional from L to L as defined previously, we demon-
strate that it satisfies the following properties.

Theorem 4:

(i) |φ(f)− φ(g)|L ≤ k|f − g|L for all f, g ∈ L

(ii) For any f ∈ L, φ(f)(x) = φ(f(x)) almost everywhere.

Proof (i): Let f, g ∈ L have Cauchy sequences {cn} and {dn} in their respective
equivalence classes. Then we see by equation (∗) that

|φ(f)− φ(g)|L = lim |φ(cn)− φ(dn)|L ≤ k lim |cn − gn|L = k|f − g|L.

Proof (ii): Let f ∈ L with realization f(x) be given and let {cn} be a rapidly
convergent Cauchy sequence of continuous functions in the equivalence class f
converging to f(x) almost everywhere. This means there exists some λ such
that

|cn − cn+1| <
λ

n4

for all n ∈ Z+.

Then by equation (∗), we see

|φ(cn)− φ(cn+1)|L ≤ k|cn − cn+1|L <
kλ

n4
,

and so {φ(cn)} is also a rapidly convergent sequence of continuous functions
and converges to φ(f). Then we know {φ(cn)(x)} converges almost everywhere
to φ(f(x)), and so we must have φ(f)(x) = φ(f(x)) almost everywhere.
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8 Using Lipschitz Continuous Functions

These functions will prove incredibly useful in defining new elements of L given
some other element, without dealing with realizations.

As a particularly nice example, consider φ+, φ− : R → R, defined by

φ+(s) =

{
s for 0 ≤ s
0 for s < 0

, φ−(s) =

{
0 for 0 ≤ s
s for s < 0

.

Then for any f ∈ L, we can define

f+ = φ+(f) and f− = φ−(f).

to be the positive and negative parts of f respectively.

This implies f = f− + f+ and |f |L = I(f+)− I(f−), which we would expect if
these definitions of positive and negative part coincide with the typical definition
of the positive and negative parts of a function.

Based on this, we say an element g ∈ L is positive iff g = g+ and negative iff
g = g−. We also say f ≤ g iff g − f is positive.

We now demonstrate more properties of elements of L using these concepts.

Theorem 5:

(i) The sum of two positive elements is positive

(ii) If f is positive, f(x) ≥ 0 almost everywhere.

(iii) If f is positive, |f |L = I(f).

Proof (i): Let f, g ∈ L be positive, and let {cn}, {dn} be Cauchy sequences
in the equivalence class f and g respectively. Then by definition of a positive
element of L, we know

f = φ+(f) = lim
n→∞

φ+(cn)

and
g = φ+(g) = lim

n→∞
φ+(dn).

This means {φ+(cn)} and {φ+(dn)} are also Cauchy sequences of continuous
functions in the equivalence classes f and g respectively, which implies {φ+(cn)+
φ+(dn)} is a Cauchy sequence of continuous functions in the equivalence class
f + g. Noting that φ+(cn(x)) + φ+(dn(x)) ≥ 0 for all x ∈ K by definition, this
implies

φ+(f + g) = lim
n→∞

φ+(φ+(cn) + φ+(dn)) = lim
n→∞

[φ+(cn) + φ+(dn)] = f + g,

and so f + g is positive.
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Proof (ii): Let f ∈ L be positive with realization f(x). Then we know there
exists a rapidly convergent sequence of continuous functions {cn} in the equiv-
alence class f such that

lim cn(x) = f(x) almost everywhere.

From this, the continuity of φ+ as well as Theorem 4(ii) imply

limφ+(cn(x)) = φ+(lim cn(x)) = φ+(f(x)) = φ+(f)(x) = f(x)

almost everywhere.

We know by definition of φ+ that φ+(cn(x)) ≥ 0 for all x ∈ K and all n ∈ Z+,
and so the previous equality implies f(x) ≥ 0 almost everywhere.

Proof (iii): Let f ∈ L be positive, so f+ = f . We know f = f− + f+ for any
f ∈ L, and so f = f+ implies f− = 0 ∈ L, and so I(f−) = 0. Thus we have

|f |L = I(f+)− I(f−) = I(f+) = I(f).

Using this new partial ordering on L given by ≥ defined above, we can show
the following version of the Monotone Convergence Theorem.

Theorem 6: Let {fn} be an increasing sequence of elements of L, that is
fn ≤ fn+1 for all n ∈ Z+. Suppose that I(fn) is bounded; then {fn} converges
in the L-norm to a limit f ∈ L, and

lim fn(x) = f(x) almost everywhere.

Proof: We see for any m ≤ n, we have

fn − fm = (fn − fn−1) + (fn−1 + fn−2) + ...+ (fm+2 − fm+1) + (fm+1 − fm).

By assumption each fi+1−fi is positive, and by Theorem 5(i) the sum of positive
elements is positive, so we know fn − fm is positive, and thus fm ≤ fn.

Then Theorem 5(iii) implies

|fn − fm|L = I(fn − fm) = I(fn)− I(fm).

This means n ≥ m implies I(fn) ≥ I(fm), and so {I(fn)} is an increasing
sequence of real numbers.

By our initial assumption that I(fn) is bounded, it thus must converge. Con-
vergent sequences are Cauchy, which means {fn} is also Cauchy in the L-norm,
and so by the completeness of L must converge to some f ∈ L.

Then as fn+1− fn is positive for all n ∈ Z+, we know by Theorem 5(ii) that for
almost all x ∈ K we have (fn+1 − fn)(x) ≥ 0, meaning {fn(x)} is an increasing
sequence of R for almost all x ∈ K.
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Accepting ∞ as a possible limit, this would imply lim fn(x) exists for all such
x. Thus by Theorem 3.2 we arrive at lim fn(x) = f(x) for almost all x ∈ K.

We can also define the property of boundedness for elements of L using Lipschitz
continuous functions. For any a ∈ R+, define

φa(s) =

 −a for s ≤ −a
s for −a < s < a
a for a ≤ s

Then for any f ∈ L, we define fa := φa(f) ∈ L. We say f is bounded iff f = fa
for some a ∈ R+.

For any bounded f ∈ L, we can show from this definition that there must be
some smallest a ∈ R. We then define the sup norm |f |sup to be this smallest a.

We know f is bounded if and only if there is a Cauchy sequence {cn} of uni-
formly bounded continuous functions in the equivalence class f , specifically with
|cn(x)| ≤ a for all x ∈ K,n ∈ Z+.

As K is compact, we also know that for any f ∈ L, we have

lim
a→∞

fa = f,

meaning fa → f in the L-norm as a → ∞.

This boundedness property can then be used to define a product for some ele-
ments of L with certain nice properties.

First let f, g ∈ L be bounded. Then there exist Cauchy sequences {cn}, {dn} of
uniformly bounded continuous functions converging to f and g respectively.

Then we know the sequence {cndn} is also Cauchy, as for any n,m ∈ Z+ we see

cndn − cmdm = (cn − cm)dn + cm(dn − dm).

We can thus define the product fg by

fg := lim
n→∞

cndn.

Now let f ∈ L be bounded and choose g ∈ L arbitrarily. Then we know ga → g
as a → ∞, we must have that fga also converges in L, and so we can define the
product fg by

fg := lim
a→∞

fga.

13



For any bounded f ∈ L, this product can be shown to have the following nice
properties:

(i) f(g + h) = fg + fh for all g, h ∈ L

(ii) For any g ∈ L, (fg)(x) = f(x)g(x) almost everywhere

(iii) For any g ∈ L we have |fg|L ≤ |f |sup|g|L

9 Final properties of L

For the remaining properties of L, we will need to develop a way to determine
properties of an element f ∈ L from the properties of its realization f(x).

Lemma 7: Suppose that f ∈ L satisfies f(x) ≤ 0 almost everywhere. Then
I(f) ≤ 0.

Proof: We know fa → f in the L norm and I(fa) → I(f) in R as a → ∞.
Thus it suffices to show that I(fa) ≤ 0 for all a > 0.

Let a > 0 be chosen arbitrarily. We know by Theorem 4(ii) that f(x) ≤ 0
almost everywhere implies fa(x) ≤ 0 almost everywhere.

Using Theorem 1(iii), one can then show that for any ϵ > 0 there exists a
continuous function cϵ also bounded by a such that

|fa − cϵ|L < ϵ,

and there exists an open set Gϵ with volume ≤ ϵ such that cϵ(x) ≤ ϵ for all
x ∈ K \Gϵ.

This second inequality implies

cϵ(x)− ϵ

a
≤ ϵ− ϵ

a
= 0

for all x ∈ K \Gϵ, and the fact that cϵ is bounded by a implies

cϵ(x)− ϵ

a
≤ |cϵ(x)|

a
≤ 1

for all x ∈ Gϵ.

We thus see (cϵ − ϵ)/a is a continuous function such that cϵ(x)−ϵ
a ≤ χGϵ(x) for

all x ∈ K, which means (cϵ − ϵ)/a is admissible for Gϵ.

By our definition of volume, we thus know

I

(
cϵ − ϵ

a

)
=

I(cϵ)− ϵI(1)

a
≤ V (Gϵ) < ϵ,

and rearranging thus implies

I(cϵ) < ϵ(a+ I(1)).

14



Recall that one of our defining properties of cϵ was that |fa − cϵ|L < ϵ. This
implies

lim
ϵ→0

I(cϵ) = I(f),

and so I(cϵ) < ϵ(a+ I(1)) for all ϵ > 0 implies

I(f) ≤ 0.

This result leads directly to the following theorem.

Theorem 8: Let f, g be elements of L with realizations f(x) and g(x) re-
spectively. If f(x) = g(x) for almost all x ∈ K, then f = g as elements of
L.

Proof: Let f ∈ L be chosen arbitrarily, with realization f(x). We first show
that f(x) = 0 for almost all x ∈ K implies f = 0 ∈ L.

Assume f(x) = 0 almost everywhere. Then we know

f+(x) = (φ+(f))(x) = φ+(f(x)) = 0 almost everywhere,

and so by the previous lemma we know I(f+) ≤ 0. Then by Theorem 5(iii) we
know |f+|L = I(f+) ≤ 0, meaning which as | · |L is a norm on L implies f+ = 0.

Similarly, f(x) = 0 almost everywhere implies

−f−(x) = −(φ−(f))(x) = −φ−(f(x)) = 0 almost everywhere,

and so by the previous lemma we know I(−f−) ≤ 0, meaning I(f−) ≥ 0. Then
by Theorem 5(iii) we know |f−|L = −I(f−) ≤ 0, which as | · |L is a norm on L
implies f− = 0. Thus we arrive at

f = f+ + f− = 0.

Now let f, g ∈ L be chosen arbitrarily with realizations f(x) and g(x) respec-
tively. If f(x) = g(x) for almost all x, we know f(x) − g(x) = 0, which by
Theorem 3.1 implies (f − g)(x) = 0 almost everywhere. Thus by our previous
result we know f − g = 0, and so f = g as elements of L.

This theorem is what ultimately allows us to determine properties of an element
of L based only on the properties of its realization. For instance, this theorem
gives us the following properties:

For any f ∈ L with realization f(x), we have (i): f(x) ≥ 0 almost everywhere
implies f is positive. (ii): f(x) ≤ 0 almost everywhere implies f is negative.
(iii): |f(x)| ≤ a almost everywhere implies f is bounded.

These results are intuitively true, but we are only now able to prove them with
Theorem 8.
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10 Principle of Dominated Convergence

We now move on to another important result in the study of Lebesgue inte-
gration, the principle of dominated convergence. This result is very useful in
defining functions as limits of a sequence of functions, as it does not require
such strict conditions on that sequence as we have needed in previous theorems.

To set up our proof, we introduce a new Lipschitz continuous function, but now
on two real variables rather than one. Define φmax : R2 → R by

φmax(a, b) := max(a, b).

Noting
|φmax(a, b)− φmax(s, t)| ≤ max(|a− s|, |b− t|),

we see φmax is Lipschitz continuous.

Through the same method as with one variable, we can also define φmax(f, g)
as an element of L for any pair of elements f, g ∈ L. Now using the notations
max(f, g) := φmax(f, g), we know by properties of Lipschitz continuous func-
tions that max(f, g)(x) = max(f(x), g(x)) almost everywhere. We can then
define max(f1, ..., fn) recursively as

max(f1, ..., fn) := max(fn,max(f1, ..., fn−1)).

Theorem 9: Let {gn}∞n=1 ⊆ L be such that there exists g ∈ L for which
|gn(x)| ≤ g(x) almost everywhere for each n ∈ Z+. Then h = max{gn} can be
defined as an element of L so that

sup{gn(x) : x ∈ K} = h(x) almost everywhere.

Proof: For each n ∈ Z+, define

hn := max(g1, ..., gn).

From this definition we see {hn} is an increasing sequence of functions, and as
each gn is bounded by g we know each hn is as well.

This means hn(x)− g(x) ≤ 0 almost everywhere, and so by Lemma 7 we know
I(hn − g) ≤ 0, which implies I(hn) ≤ I(g).

Thus by the Monotone Convergence Theorem, Theorem 6, we know {hn} con-
verges in L to a limit h ∈ L with

lim
n→∞

hn(x) = h(x) almost everywhere.

By definition of hn, we see

lim
n→∞

hn(x) = lim
n→∞

max{gm(x) : 1 ≤ m ≤ n} = sup{gn(x)},

16



and so we arrive at sup{gn(x)} = h(x) almost everywhere.

Theorem 10 (Principle of Dominated Convergence):
If a sequence of elements {fn} in L converge pointwise almost everywhere, and
if all fn are dominated by a single element g in L:

|fn(x)| ≤ g(x) almost everywhere,

then {fn} converges in norm to a limit f in L, and

f(x) = lim fn(x) almost everywhere.

Proof: By Theorem 9, we know for each n ∈ Z+ we can define

fmax
n := max{fj}∞j=n; fmin

n := −max{−fj}∞j=n

as elements of L.

Then we see {fmax
n } is decreasing and bounded below by −g, while {fmin

n } is
increasing and bounded above by g, so by the monotone convergence theorem we
know they each converge to a limit in L, call these fmax and fmin respectively,
with

lim
n→∞

fmax
n (x) = fmax(x) and lim

n→∞
fmin
n (x) = fmin(x)

almost everywhere.

As {fn(x)} converges almost everywhere, we thus must have

lim fn(x) = fmin(x) = fmax(x) almost everywhere,

and so by Theorem 8 we know fmax = fmin = f as elements of L.

Now as fmin
n ≤ fn ≤ fmax

n for each n, and lim fmax
n = lim fmin

n , we thus know
lim fn = f as well.

11 Measure

In this final section, we define the measure of a set S ⊆ K using our already
defined concepts, and confirm that it is equivalent with the typical definition of
measure.

Definition: A set S ⊆ K is measurable iff there exists fS ∈ L such that
fS(x) = χS(x) for almost all x.

By Theorem 7 we know there is at most one such fS , and so we define the
measure of S by

m(S) := I(fS).
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We now demonstrate that these definitions of measure and measurability are
equivalent to the definitions of these concepts in typical study. To do this, we
show that our new definitions satisfy all of the desired properties.

(i) Every open set G ⊂ K is measurable, and m(G) = V (G).

Proof: For open G ⊂ K, let pG(x) be the distance from x to K \ G. We see
pG(x) = 0 for all x ∈ K \G. Then because G is open, we know for any x ∈ G
there exists an open ball B centered at x that is fully contained in G. The
distance from x to K \G then must be at least the radius of B, and so we know
pG(x) > 0.

Now for each n ∈ Z+, define

φn(s) :=

 0 for s ≤ 0
ns for 0 < s ≤ 1

n
1 for 1

n < s

and define bn(x) := φn(pG(x)) for all x ∈ K.

We see then that {bn} is an increasing sequence of continuous functions bounded
above by 1, and so by the monotone convergence theorem we know {bn} con-
verges to some bG ∈ L with

lim bn(x) = bG(x) almost everywhere.

From the definition of bn we see lim bn(x) = χG(x) for all x ∈ K, and so we
must have (lim bn)(x) = bG(x) is the characteristic function of G.

We know each bn is admissible for G, and so lim bn = bG must be as well, which
means I(bG) ≤ V (G).

We also know by definition that every admissible function c for G satisfies
c(x) ≤ bG(x) almost everywhere, which by Lemma 7 implies I(c) ≤ I(bG) for
all such c. Taking the supremum over all c admissible for G thus gives

V (G) ≤ I(bG).

Thus we must have V (G) = I(bG) = m(G).

(ii) For every measurable set S, m(S) = inf{V (G) : G open , S ⊂ G ⊂ K}.

Proof: Let S ⊆ K be chosen arbitrarily.

First, note that if S ⊆ G, then fG(x) ≥ fS(x) almost everywhere. This implies
I(fG) ≥ I(fS), and so we know V (G) ≥ m(S).

Next, by Theorem 1(iii) one can show that for any ϵ > 0 there exists a nonneg-
ative continuous function c such that |c− fS |L < ϵ and there exists an open set
D with V (D) < ϵ such that

|c(x)− fS(x)| < ϵ for all x ̸∈ D.
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Then define H := {x ∈ K : c(x) > 1 − ϵ}. We see then that x ∈ S \D implies
x ∈ H, and so we know S ⊂ H ∪D.

By Chebyshev’s inequality we then know V (H) ≤ I(c)/(1 − ϵ), and by |c −
fS |L < ϵ we know I(c) < I(fS) + ϵ. Using both of these inequalities with the
subadditivity of volume, we thus know

V (H ∪D) ≤ V (H) + V (D) <
I(fS) + ϵ

1− ϵ
+ ϵ =

m(S) + ϵ

1− ϵ
+ ϵ.

Noting again that S ⊂ H ∪D, We thus know for any ϵ > 0 there exists an open

set G ⊃ S such that V (G) ≤ m(S)+ϵ
1−ϵ + ϵ.

This implies

inf{V (G) : G open, S ⊂ G} ≤ lim
ϵ→0

(
m(S) + ϵ

1− ϵ
+ ϵ) = m(S).

This inequality together with V (G) ≥ m(S) for all open G ⊃ S then implies
inf{V (G) : G open, S ⊂ G} = m(S)

(iii) For any f ∈ L, {x ∈ K : f(x) < a} is measurable for any a ∈ R.

Proof: It suffices to show that S = {x ∈ K : f(x) < 0} is measurable for any
f ∈ L, as any element of L minus a constant function is still an element of L.

Define

φn(s) :=

 1 for s ≤ −1/n
−ns for −1/n < s < 0

0 for 0 ≤ s

and define gn := φn(f) for each n ∈ Z+.

We see {gn} is an increasing sequence in L bounded above by 1. Thus by the
monotone convergence theorem we know {gn} converges to a limit g ∈ L, with

g(x) = lim gn(x) almost everywhere.

We see then that lim gn(x) = g(x) = χS(x) almost everywhere, and so S = {x ∈
K : f(x) < 0} is measurable.

(iv) The measurable sets form a σ-algebra.

Proof: Let S be the collection of all measurable sets. To show S is a σ-algebra,
we show it satisfies the necessary properties.

(a): We first show B ∈ S implies K \B ∈ S.

Given B ∈ S, we know there exists fB ∈ L such that fB(x) = χB(x) almost
everywhere.
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This means we must have 1− fB ∈ L with

(1− fB)(x) = 1− χB(x) = χK\B(x) almost everywhere,

which implies K \B ∈ S.

(b): Next we show that for any B1, B2 ∈ S, we have B1 ∩B2 ∈ S.

Given B1, B2 ∈ S, we know there exist f1, f2 ∈ L such that

f1(x) = χB1(x) and f2(x) = χB2(x) almost everywhere.

We know f1 and f2 are both bounded by the constant 1, so we can take their
product f = f1 · f2 ∈ L. We then know

f(x) = χB1(x)χB2(x) almost everywhere.

We see for x ∈ B1∩B2 we have χB1(x) = χB2(x) = 1, and so χB1(x)χB2(x) = 1.

Then for x ̸∈ B1 ∩ B2, we have either x ̸∈ B1 or x ̸∈ B2. This means at least
one of χB1(x) and χB2(x) is 0, and so χB1(x)χB2(x) = 0.

Thus we see
χB1(x)χB2(x) = χB1∩B2(x) for all x ∈ K,

and so f(x) = χB1∩B2
(x) almost everywhere, which implies B1 ∩B2 ∈ S.

(c): Finally, we show for any countable subcollection {Bn}∞n=1 ⊂ S, we also
have

⋃∞
n=1 Bn ∈ S.

First, note that for any two B1, B2 ∈ S, we know

((Bc
1) ∩ (Bc

2))
c = B1 ∪B2 ∈ S.

Thus by induction we know S is closed under finite unions. We now use this to
show S is also closed under countably infinite unions.

Let {Bn}∞n=1 ⊂ S. For each k ∈ Z+, define Tk :=
⋃k

n=1 Bn, noting that
Tk ⊂ Tk+1 for each k.

We know for each k there exists some fk ∈ L such that fk(x) = χTk
(x) almost

everywhere.

Then by Tk ⊂ Tk+1, we know fk(x) ≤ fk+1(x) almost everywhere, which implies
fk ≤ fk+1 as elements of L. We also know fk(x) ≤ 1 almost everywhere by
definition of the characteristic function.

Thus {fk} is an increasing sequence in L that is bounded above, and so by the
monotone convergence theorem we know {fk} converges to some f ∈ L with

lim fk(x) = f(x) almost everywhere.
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Now define T :=
⋃∞

k=1 Tk =
⋃∞

n=1 Bn. We see then that

limχTk
(x) = χT (x) for all x ∈ K,

which then implies f(x) = χT (x) almost everywhere, and so T =
⋃∞

n=1 Bn ∈ S.

■
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