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1. Introduction 

 Random matrix theory is often concerned with describing the limiting eigenvalue 

distribution of random matrix ensembles. For example, Wigner’s semicircle law shows that 

the empirical distribution of eigenvalues for real symmetric matrices with independent, 

mean zero, and variance one random entries scaled by √𝑁 converges weakly in probability 

to the semicircle law [1]. It has been shown that the eigenvalue distributions of Toeplitz and 

Hankel matrices with independent, mean zero, and variance one entries each converge 

almost surely to a unique distribution [3].  

 A natural next question is to study what happens to the limiting eigenvalue 

distribution when making slight changes to some of the entries of a matrix ensemble. The 

limiting distributions of matrix ensembles have been studied when the (𝑖, 𝑗) and (𝑗, 𝑖) 

entries are randomly multiplied by 𝜖 , = 𝜖 , ∈ {−1, 1} where ℙ 𝜖 , = 1 = 𝑝. For 𝑝 = 1 2⁄ , 

the limiting eigenvalue distribution is the semicircle law when each random variable occurs 

𝑂(𝑁) times in each row; this result holds for Toeplitz and circulant matrix ensembles [1]. 

The k-checkerboard matrix has been defined and studied, where each entry on the kth 

diagonal is equal to some constant 𝑤, and all other entries are independent, mean zero, 

variance one random variables. It has been shown that the eigenvalue distribution of this 

random matrix ensemble converges weakly in probability to the semicircle law. This can be 

thought of as changing the kth diagonals of a Wigner matrix to 𝑤.  
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In this thesis we study what happens when some entries of a random matrix 

ensemble are changed to zero. We consider adding these zero distortions randomly, and we 

consider when the distortions are added in a specific non-random way. In general, we show 

that under certain conditions the limiting distributions of the eigenvalues are not changed, 

either in a random or structured way, if “not too many” of the entries in the matrix are 

changed to zero.  

1.1. Background 

 Here we introduce some definitions and notations that will be useful for our results.  

Definition 1.1: Given a real symmetric 𝑁𝑥𝑁 random matrix 𝐴 , we can list its real 

eigenvalues as 𝜆  with 𝜆 ≤ 𝜆 ≤ ⋯ ≤ 𝜆 . The empirical distribution of the eigenvalues of 

𝐴  is then defined as the random probability measure on ℝ given by 

𝐿 ≔
1

𝑁
𝛿 . 

Definition 1.2: 𝐿  converges weakly in probability to some distribution 𝜶 if for all functions 

𝑓 ∈ 𝐶 (ℝ), the set of all bounded continuous functions on ℝ, and for all 𝜖 > 0  

lim
→

ℙ(|〈𝑓, 𝐿 〉 − 〈𝑓, 𝜶〉| > 𝜖) = 0. 

Definition 1.3: Given two real 𝑁𝑥𝑁 matrices 𝐴  and 𝐵 , the Hadamard product matrix   

𝐻 = 𝐴 ∘ 𝐵  is the 𝑁𝑥𝑁 matrix whose (𝑖, 𝑗)  entry 𝐻 (𝑖, 𝑗) = 𝐴 (𝑖, 𝑗) ∘ 𝐵 (𝑖, 𝑗).  

Definition 1.4: Given a real symmetric 𝑁𝑥𝑁 random matrix 𝐴  and a symmetric 𝑁𝑥𝑁 matrix 

1  whose entries are either 1 or 0, we can list the real eigenvalues of 1 ∘ 𝐴  as 𝜉  with 

𝜉 ≤ 𝜉 ≤ ⋯ ≤ 𝜉 . The empirical distribution of these eigenvalues is then defined as the 

random probability measure on ℝ give by 

𝐷 ≔
1

𝑁
𝛿    . 

Definition 1.5: Consider two sequences of i.i.d. random variables 𝑍 ,  and {Y }  with 

mean zero and variance one that satisfy max 𝐸𝑍 , , 𝐸𝑌 < ∞ for all 𝑘 ∈ ℕ. Then a Wigner 

matrix is a real symmetric random matrix with entries 
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𝑋 (𝑖, 𝑗) = 𝑋 (𝑗, 𝑖) =

⎩
⎪
⎨

⎪
⎧𝑍 ,

√𝑁
 𝑖𝑓 𝑖 ≠ 𝑗

𝑌

√𝑁
𝑖𝑓 𝑖 = 𝑗

   . 

Definition 1.6: The semicircle law scaled by 𝑝 is the distribution with density  

𝝈𝒑(𝑥) ≔
1

2𝑝𝜋
4𝑝 − 𝑥 ∙ 1| | √    . 

Wigner’s Semicircle Law: The empirical distribution of the eigenvalues of the Wigner matrix 

ensemble {𝑋 } converges weakly in probability to 𝝈𝟏.  

Definition 1.6: For an NxN non-random symmetric matrix 1  whose entries are zero or one, 

we define  

𝜃(𝑁) ≔ 1 (𝑖, 𝑗)

,

 ,          and                𝜃 (𝑁) ≔ 1 (𝑖, 𝑗) = 1 (𝑗, 𝑖). 

1.2 Results 

 The first result involves an ensemble of random matrices {𝐴 } whose entries all 

have non-negative moments. That is, 𝐸𝐴 (𝑖, 𝑗) ≥ 0 for all 𝑖, 𝑗, 𝑘, 𝑁 ∈ ℕ. The distorting 

matrix 1  will have its entries be Bernoulli random variables.  

Theorem 1.1:  Suppose {𝐴 } is any ensemble of symmetric random matrices whose entries 

have non-negative moments. Suppose {1 } is an ensemble of symmetric random matrices 

composed of Bernoulli random variables with parameter 𝑝(𝑁) ∈ (0,1] and lim
→

𝑝(𝑁) = 1. If 

the empirical distribution of the eigenvalues of 𝐴  converges weakly in probability to some 

distribution 𝜶 which has bounded support, then the empirical distribution of the 

eigenvalues of 1 °𝐴  converges to 𝜶 as well.  

 If lim
→

𝑝(𝑁) = 𝑝 ∈ (0,1], then we can say something about the limiting distribution 

of the eigenvalues if we know the structure of the ensemble 𝐴 . For example, suppose {𝐴 } 

is an ensemble of Wigner matrices defined earlier, then 1 ∘ 𝐴  has independent entries 

with mean zero and variance 𝑝. Then the matrix ensemble 𝐵  with each entry multiplied by 

the constant 
√
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𝐵 =
1

𝑝
∙ 1 ∘ 𝐴  

will have mean zero, variance one, independent entries. Because 𝐵  satisfies the conditions 

for Wigner’s semicircle law, then the empirical distribution of the eigenvalues of 𝐵  

converges to 𝝈𝟏. This tells us that the eigenvalues of 1 ∘ 𝐴  are just the eigenvalues of 𝐵  

multiplied by 𝑝, and thus, the limiting distribution of the eigenvalues of 1 ∘ 𝐴  is 𝝈 𝒑. 

Also, Wigner matrices can have negative moments beyond the second moment, so this 

result did not follow from Theorem 1.1 for 𝑝 = 1. 

 We now consider distortions added in a non-random way, specifically for the 

Wigner random matrix ensemble.    

Theorem 1.2: Suppose {𝑋 } is an ensemble of Wigner random matrices, and {1 }  are non-

random matrices with entries equal to zero or one, and for all 𝑗, 𝜃 (1 ) = 𝑝𝑁 with 𝑝 ∈ (0,1]. 

Then the empirical distribution of the eigenvalues of 1 °𝑋  converges to 𝝈 𝒑. 

Theorem 1.3: Suppose {𝑋 } is an ensemble of Wigner random matrices, and {1 }  are non-

random symmetric matrices with entries equal to zero or one, and 

lim
→

𝜃(1 )

𝑁
= 0. 

Then the empirical distribution of the eigenvalues of 1 °𝑋  converges to 𝝈𝟏 . 

 Theorems 1.2 and 1.3 only cover a limited number of possible 1  matrices. We have 

yet to find a general formula for the limiting eigenvalue distribution of 1 ∘ 𝑋 , but we do 

have equations for the first eight moments, and a process for finding all higher moments. 

We will discuss these topics in section 3.  

2. Method of Moments 

All our proofs will be done by the Method of Moments as described in [1], which is 

described in Theorem 2.1. The proof requires two conditions, we will proof in each of the 

previously discussed cases. 



5 
 

Theorem 2.1:  Let {𝐴 } be an ensemble of 𝑁𝑥𝑁 random matrices with empirical distribution 

of the eigenvalues 𝐿 , and let 𝜶 be some distribution with bounded support [−𝑀, 𝑀]. 

Suppose that  

(i) For all 𝑘 ∈ ℕ,         

lim
→

𝐸〈𝑥 , 𝐿 〉 = 𝐸〈𝑥 , 𝜶〉. 

(ii) For all 𝑘 ∈ ℕ and 𝜖 > 0,      

lim
→

ℙ 〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝐿 〉 > 𝜖 = 0. 

Then the empirical measure of the eigenvalues 𝐿  converges weakly in probability, to the 

distribution 𝜶. 

Assume that 𝐿  and 𝜶 satisfy conditions (i) and (ii). We need to show that for all 

continuous bounded functions 𝑓 and for all 𝛿 > 0: 

lim
→

ℙ(|〈𝑓, 𝐿 〉 − 〈𝑓, 𝜶〉|> 𝛿) = 0. 

For such an 𝑓 by the Weirstrass Approximation Theorem, we can find a polynomial 

𝑄 (𝑥) ≔ ∑ 𝑏 𝑥  that satisfies:  

sup
:| |

|𝑄 (𝑥) − 𝑓(𝑥)| ≤
𝛿

8
 

where 𝑅 = (2𝑀) . Note,  

ℙ(|⟨𝑓, 𝐿 ⟩ − ⟨𝑓, 𝜶⟩| > 𝛿) ≤ 

ℙ |〈𝑓, 𝐿 〉 − 〈𝑓, 𝜶〉| ∙ 1| | > 𝛿 + ℙ |〈𝑓, 𝐿 〉 − 〈𝑓, 𝜶〉| ∙ 1| | > 𝛿 ≤ 

 ℙ |〈𝑓, 𝐿 〉 − 𝐸〈𝑓, 𝐿 〉| ∙ 1| | >
𝛿

2
+ ℙ |𝐸〈𝑓, 𝐿 〉 − 〈𝑓, 𝜶〉| ∙ 1| | >

𝛿

2

+ ℙ |〈𝑓, 𝐿 〉| ∙ 1| | >
𝛿

2
+ ℙ |〈𝑓, 𝜶〉| ∙ 1| | >

𝛿

2
=: 𝑃 + 𝑃 + 𝑃 + 𝑃 . 

First, 𝑃 = 0 because 𝜶 is only supported on [−𝑀, 𝑀], but 𝐵 = 2𝑀. 

By definition of 𝑄 ,  

𝑃 = ℙ |〈𝑓, 𝐿 〉 − 𝐸〈𝑓, 𝐿 〉| ∙ 1| | >
𝛿

2
≤ ℙ |〈𝑄 , 𝐿 〉 − 𝐸〈𝑄 , 𝐿 〉| >

𝛿

4
→ 0 
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by Lemma 2.2. Similarly,  

𝑃 = ℙ |𝐸〈𝑄 , 𝐿 〉 − 〈𝑓, 𝛼〉| ∙ 1| | >
𝛿

2
≤ ℙ |𝐸〈𝑄 , 𝐿 〉 − 〈𝑄 , 𝛼〉| >

𝛿

4
→ 0 

by Lemma 2.1. 

Finally, by Chebyshev’s inequality for all 𝜖 > 0: 

ℙ 〈|𝑥| 1| | , 𝐿 〉 > 𝜖 ≤
1

𝜖
𝐸〈|𝑥| 1| | , 𝐿 〉 ≤

𝐸〈|𝑥| , 𝐿 〉

𝜖𝐵
   . 

Then by Lemma 2.1,  

limsup
→

ℙ 〈|𝑥| 1| | , 𝐿 〉 > 𝜖 ≤
𝑚

𝜖𝐵
≤

𝑀

𝜖(2𝑀)
   . 

The left-hand side of the above expression is increasing in 𝑘, but the right-hand side is 

decreasing in 𝑘, so  

limsup
→

ℙ 〈|𝑥| 1| | , 𝐿 〉 > 𝜖 = 0. 

This implies that 𝑃 → 0 as 𝑁 → ∞ which completes the proof of Theorem 2.3. 

[There is an upward pointing arrow here in your previous comments, but I don’t know what 

that meant.] 

2.1. Proof of Theorem 1.1 

Here we consider an ensemble of real symmetric random matrices 𝐴  whose 

empirical distribution of eigenvalues 𝐿  converges weakly in probability to some 

distribution 𝜶 with compact support. The matrices 𝐴  also have entries with nonnegative 

moments, that is 𝐸𝐴 (𝑖, 𝑗) ≥ 0 ∀𝑖, 𝑗, 𝑘, 𝑁 ∈ ℕ. These matrices are then distorted by 

multiplying 1 ∘ 𝐴 , where 1  is a symmetric random matrix composed of Bernoulli 

random variables with parameter 𝑝(𝑁) → 1 as 𝑁 → ∞. The empirical distribution of the 

eigenvalues of 1 ∘ 𝐴  is 𝐷  defined earlier.  

Proof of Condition (i): By the independence of entries in 1  and 𝐴 : 
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𝐸〈𝑥 , 𝐷 〉 =
1

𝑁
𝑡𝑟(1 ∘ 𝐴 ) =

1

𝑁
𝐸1 (𝑖 , 𝑖 )𝐴 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )𝐴 (𝑖 , 𝑖 )

, ,…,

=
1

𝑁
𝐸[1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )] ∙ 𝐸[𝐴 (𝑖 , 𝑖 ) … 𝐴 (𝑖 , 𝑖 )]

, ,…,

   . 

Remember that every moment of the Bernoulli random variable is equal to its 

parameter 𝑝(𝑁) ≤ 1. The 𝐸[1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )] term is the expectation of at most 𝑘 

independent Bernoulli random variables, which happens when none of the indices generate 

entries that are the same, and at least one Bernoulli random variable, which happens when 

the indices all generate the same entry. Therefore,  

𝑝(𝑁) ≤ 𝐸[1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )] ≤ 𝑝(𝑁). 

Since the moments of the entries in 𝐴  are non-negative, we can create bounds on 𝐸〈𝑥 , 𝐷 〉 

as follows: 

𝑝(𝑁)
1

𝑁
𝐸𝐴 (𝑖 , 𝑖 ) … 𝐴 (𝑖 , 𝑖 )

, ,…,

 

≤ 𝐸〈𝑥 , 𝐷 〉 ≤ 

𝑝(𝑁)
1

𝑁
𝐸𝐴 (𝑖 , 𝑖 ) … 𝐴 (𝑖 , 𝑖 )

, ,…,

. 

The summations in the upper and lower bounds are the kth moments of the eigenvalue 

distribution of 𝐴 , so 

 𝑝(𝑁) ∙ 𝐸〈𝑥 , 𝐿 〉 ≤ 𝐸〈𝑥 , 𝐷 〉 ≤ 𝑝(𝑁) ∙ 𝐸〈𝑥 , 𝐿 〉. 

By assumption, 𝑝(𝑁) → 1 and 𝐸〈𝑥 , 𝐿 〉 → 𝐸〈𝑥 , 𝛼〉. Then the above inequalities show that 

lim
→

𝐸〈𝑥 , 𝐷 〉 = 𝐸〈𝑥 , 𝜶〉. 

Proof of Condition (ii): By Markov’s inequality,  

ℙ 〈𝑥 , 𝐷 〉 − 𝐸〈𝑥 , 𝐷 〉 > 𝜖 ≤
1

𝜖
𝐸 〈𝑥 , 𝐷 〉 − 𝐸〈𝑥 , 𝐷 〉  
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≤
1

𝜖
𝐸 〈𝑥 , 𝐷 〉 − 〈𝑥 , 𝐿 〉 + 𝐸 〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝜶〉 + 𝐸 𝐸〈𝑥 , 𝜶〉 − 𝐸〈𝑥 , 𝐷 〉  

=:
1

𝜖
(𝑇 + 𝑇 + 𝑇 ). 

First, 𝑇  goes to zero because 𝐿  converges weakly in probability to 𝜶. Also, 𝑇  goes to zero 

because 𝐸[〈𝑥 , 𝐷 〉] converges to 𝐸[〈𝑥 , 𝜶〉]. Finally,  

𝑇 =
1

𝑁
𝑡𝑟𝐴 − 𝑡𝑟(1 ∘ 𝐴 )

=
1

𝑁
1 − 𝐸1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 ) 𝐸𝐴 (𝑖 , 𝑖 ) … 𝐴 (𝑖 , 𝑖 )

,…

. 

The 1 − 𝐸1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 ) term contains at most 𝑘 independent Bernoulli random 

variables, and at least one, so  

1 − 𝑝(𝑁) ≤ 1 − 𝐸1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 ) ≤ 1 − 𝑝(𝑁) . 

Therefore, 1 − 𝑝(𝑁) 𝐸[〈𝑥 , 𝐿 〉] ≤ 𝑇 ≤ 1 − 𝑝(𝑁) 𝐸[〈𝑥 , 𝐿 〉]. Taking the limit as 𝑁 → ∞ 

in the above expression shows 𝑇 → 0. Therefore, lim
→

ℙ 〈𝑥 , 𝐷 〉 − 𝐸〈𝑥 , 𝐷 〉 > 𝜖 = 0. 

Now that we have shown conditions (i) and (ii) to be true under the conditions of 

Theorem 1.1, we know that the theorem holds. 

2.2. Proof of Theorem 1.2 

Now we consider the ensemble of Wigner random matrices 𝑋  described in 

Definition 1.5. The eigenvalue distribution of 𝑋  converges weakly in probability to the 

semicircle law 𝝈𝟏 described before. A full proof of this can be found in [1], which shows 

Wigner’s original argument. We consider Wigner matrices 𝑋  distorted by multiplying 1 ∘

𝑋 , where 1  is symmetric and composed of entries equal to zero or one. Also, 𝜃 (1 ) =

𝑝𝑁 for all 𝑗 with 𝑝 ∈ (0,1). With a slight change to the argument found in [1], we show the 

eigenvalue distribution of 1 ∘ 𝑋  converges to the semicircle law scaled by 𝑝, denoted by 

 𝝈 𝒑.  

 First, we find the moments of 𝝈 𝒑. Let 𝐶  denote the nth Catalan number for 𝑛 ∈ ℕ, 

which is:  
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𝐶 =
1

𝑛 + 1
2𝑛
𝑛

. 

If 𝑘 is odd, then because 𝝈𝒑 is an even function and 𝑥  is an odd function 

𝐸 〈𝑥 , 𝝈 𝒑〉 =
1

2 𝑝𝜋
𝑥 𝝈 𝒑(𝒙)1

| |
𝑑𝑥 = 0. 

For even moments,  

𝐸 〈𝑥 , 𝝈 𝒑〉 =
1

2 𝑝𝜋
𝑥 𝝈𝒑(𝒙)1

| |
𝑑𝑥 =

2 𝑝

𝜋
sin 𝜃 cos 𝜃 𝑑𝜃

=
2 𝑝

𝜋
sin 𝜃 𝑑𝜃 − (2𝑘 + 1)𝐸 〈𝑥 , 𝝈 𝒑〉. 

Therefore,  

𝐸 〈𝑥 , 𝝈 𝒑〉 =
2 𝑝

𝜋(2𝑘 + 2)
sin 𝜃 𝑑𝜃 = 𝑝

4(2𝑘 − 1)

2𝑘 + 2
𝑚 , 

Using induction and starting with 𝐸 〈𝑥 , 𝝈 𝒑〉 = 1, we can see that 𝐸 〈𝑥 , 𝝈 𝒑〉 = 𝑝 𝐶 . 

 

Proof of Condition (i): Let X (𝑖, 𝑗) = 1 (𝑖, 𝑗) ∙ 𝑋 (𝑖, 𝑗) and similarly for 𝑌  and 𝑍 , . Then  

E〈𝑥 , 𝐷 〉 =
1

𝑁
𝑡𝑟(1 ∘ 𝑋 ) =

1

N
𝐸𝑋 (𝑖 , 𝑖 ) … 𝑋(𝑖 , 𝑖 )

,..,

=
1

N
𝑇𝒊

𝒊

 

where 𝒊 = (𝑖 , 𝑖 , … 𝑖 ). 

An N-word of length 𝑚 ≥ 1 is 𝑤 = 𝑎 𝑎 . . 𝑎  where 𝑎 ∈ {1, … , 𝑁}. The support of  

𝑤 denoted supp(𝑤) is the unique elements appearing in 𝑤, and the weight of 𝑤 denoted 

wt(𝑤) = |supp(𝑤)|. Each word 𝑤 generates an undirected graph 𝐺  with 𝑚 − 1 edges and 

wt(𝑤) vertices. Denote the undirected edges of 𝐺  by 𝐸 = {𝑖 , 𝑖 } ∶ 𝑠 = 1,2, . . . , 𝑚 − 1  , 

and the vertices of 𝐺  by 𝑉 = supp𝑤. The self-edges of 𝑤 are 𝐸 = {𝑒 ∈ 𝐸 : 𝑒 = {𝑏, 𝑏}, 𝑏 ∈

supp(𝑤)}, and the connecting edges of 𝑤 are 𝐸 = 𝐸 − 𝐸 . The number of times the graph 

𝐺  crosses edge 𝑒 is denoted by 𝑁 . A word 𝑤 is closed if 𝑎 = 𝑎 . 

 With these definitions, we see that each 𝒊 is a closed connected N-word of length 𝑘 +

1 where 𝑤𝒊 = 𝑖 𝑖 … 𝑖 𝑖 . Therefore,  

𝑇𝒊 =
1

𝑁 /
𝐸𝑍 ,

𝒊

∈
𝒊

𝐸𝑌 ,
𝒊

∈
𝒊

.  

If there is 𝑒 ∈ 𝐸
𝒊
 with 𝑁

𝒊
= 1, then 𝑇𝒊 = 0 because 𝐸𝑍 , = 𝐸𝑌 , = 0. Thus, we only need 

to consider 𝒊 where 𝑁
𝒊

≥ 2 for all 𝑒 ∈ 𝐸
𝒊
. Because 𝑤𝒊 has 𝑘 edges and each vertex after the 

first accounts for two edges, wt(𝑤𝒊) ≤ 𝑘 2⁄ + 1. 
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 If there is a bijection from 𝑤𝒊 to 𝑤𝒋, these words are called equivalent and generate 

the same graph up to graph isomorphism, meaning that 𝑇𝒊 = 𝑇𝒋. For an N-word 𝑤𝒊 with 

wt(𝑤𝒊) = 𝑢, the number of words equivalent to 𝑤𝒊 is given by 𝜓 ,  where  

                                       𝑁(𝑝𝑁 − 1) … (𝑝𝑁 − 𝑢 + 1)  ≤  𝜓 , ≤ (𝑝𝑁)                                        (2.2.1) 

Let 𝕎 ,  be the set of representatives for the equivalence classes of closed N-words 𝑤𝒊 of 

length 𝑘 + 1 and weight 𝑢. Then  

𝐸〈𝑥 , 𝐷 〉 =
𝜓 ,

𝑁 ⁄

⌊ ⁄ ⌋

𝐸𝑍1,2

∈

𝐸𝑌 ,

∈

.

∈𝕎 ,

 

The moments of 𝑍 ,  and 𝑌 ,  are all finite by assumption. 𝕎 , ≤ 𝑢 ≤ 𝑘  because there 

are 𝑢 vertices for each of the 𝑘 edges to end at in the N-word of weight 𝑢 and length 𝑘 + 1. 

Also, 𝜓 , ≤ 𝑁 . From these inequalities if 𝑘 is odd, then ⌊𝑘 2⁄ ⌋ + 1 = 𝑘 2⁄ − 1 2⁄ , so 

lim
→

𝐸〈𝑥 , 𝐷 〉 = 0. 

For 𝑘 even, ⌊𝑘 2⁄ ⌋ + 1 = 𝑘 2⁄ + 1, so 

lim
→

𝐸〈𝑥 , 𝐷 〉 = 𝑝 𝐸𝑍1,2

∈

𝐸𝑌 ,

∈∈𝕎 , ⁄

. 

Any 𝑤 ∈ 𝕎 , ⁄  is connected and |𝑉 | = 𝑘 2⁄ +1. This tells us that |𝐸 | ≥ 𝑘 2⁄ . Because 

𝑁 ≥ 2 for all 𝑒 ∈ 𝐸 , |𝐸 | ≤ 𝑘 2⁄ , which tells us that |𝐸 | = 𝑘 2⁄ . This tells us that |𝑁 | =

2 for all 𝑒 ∈ |𝑉 |. 

A tree is a connected graph with no cycles. Any graph 𝐺 with |𝐸 | = |𝑉 | − 1 is a 

tree, so each 𝑤 ∈ 𝕎 , ⁄  is a tree. Because these 𝑤 have no cycles, 𝐸 = ∅. This tells us 

that for even 𝑘  

lim
→

𝐸〈𝑥 , 𝐷 〉 = 𝑝 𝕎 , ⁄ . 

A Bernoulli walk of length ℓ is an integer valued sequence {𝐵 }ℓ   with |𝐵 − 𝐵 | = 1. A 

Dyck path of length ℓ is a non-negative Bernoulli walk of length ℓ with 𝐵 = 𝐵ℓ = 0. To 

complete the proof and as shown in [1] on page 15, for 𝑘 even we construct a bijection 

between 𝕎 , ⁄  and the Dyck paths of length 𝑘. Also, shown in [1] on page 8, there are 𝐶  

Dyck paths of length k for k even. This completes the proof of condition (i) 

Proof of Condition (ii): By Chebyshev’s inequality,  

ℙ 〈𝑥 , 𝐷 〉 − 𝐸〈𝑥 , 𝐷 〉 > 𝜖 ≤
1

𝜖
𝐸[〈𝑥 , 𝐷 〉 ] − 𝐸[〈𝑥 , 𝐷 〉] ). 
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We will show that  

lim
→

𝐸(〈𝑥 , 𝐷 〉 ) − 𝐸 〈𝑥 , 𝐷 〉 = 0.  

Using the same definitions for 𝒊 and 𝑇𝒊  as in the proof of Lemma 2.1,  

𝐸(〈𝑥 , 𝐷 〉 ) − 𝐸 〈𝑥 , 𝐷 〉 =
1

𝑁
𝐸𝑇𝒊 𝑇𝒊 − 𝐸𝑇𝒊 𝐸𝑇𝒊

𝒊,𝒊

. 

An N-sentence is a finite sequence of N-words 𝑟 = 𝑎 , 𝑎 … , 𝑎 . The support of the 

sentence supp𝑟 =∪ supp(𝑎 ), and the weight wt(𝑟) = |supp(𝑟)|. Let each word 𝑎 =

𝑏 𝑏 … 𝑏ℓ( ). Then the undirected graph generated by sentence 𝑠 𝐺  has vertices 𝑉 =

supp(𝑟) and edges 𝐸 = 𝑏 , 𝑏 ∶ 𝑘 = 1,2, … , ℓ(𝑎 ); 𝑖 = 1,2, … , 𝑛 . The self edges of the 

graph generated by 𝑟 𝐸 = {𝑒 ∈ 𝐸 ∶ 𝑒 = {𝑢, 𝑢}, 𝑢 ∈ 𝑉 }, and the connecting edges 𝐸 = 𝐸 −

𝐸 . Note that the graph need not be connected. Let 𝑁  be the number of times the graph 𝐺  

crosses edge 𝑒. 

With these definitions and notation, we denote by 𝑟𝒊,𝒊  the two-word N-sentence 

𝑤𝒊, 𝑤𝒊 . Then 

𝐸𝑇𝒊 𝑇𝒊 − 𝐸𝑇𝒊 𝑇𝒊

=
1

𝑁
𝐸𝑍 ,

𝒊,𝒊

∈
𝒊,𝒊

𝐸𝑌 ,
𝒊,𝒊

∈
𝒊,𝒊

− 𝐸𝑍 ,
𝒊

∈
𝒊

𝐸𝑌 ,
𝒊

∈
𝒊

𝐸𝑍 ,
𝒊

∈
𝒊

𝐸𝑌 ,
𝒊

∈
𝒊

. 

If 𝑁
𝒊,𝒊

= 1 for any 𝑒 ∈ 𝐸
𝒊,𝒊

, then 𝐸𝑇𝒊 𝑇𝒊 − 𝐸𝑇𝒊 𝑇𝒊 = 0. If 𝐸
𝒊

∩ 𝐸
𝒊

= ∅, then 𝐸𝑇𝒊 𝑇𝒊 −

𝐸𝑇𝒊 𝑇𝒊 = 0. Then we only need to consider 𝑟𝒊,𝒊  where 𝑁
𝒊,𝒊

≥ 2 for all 𝑒 ∈ 𝐸
𝒊,𝒊

 and        

𝐸
𝒊

∩ 𝐸
𝒊

≠ ∅.  

Two sentences 𝑟𝒊,𝒊  and 𝑟𝒋,𝒋  are equivalent if there is a bijection from one to the 

other. Therefore, they generate the same graph, and  

𝐸𝑇𝒋 𝑇𝒋 − 𝐸𝑇𝒋 𝑇𝒋 = 𝐸𝑇𝒋 𝑇𝒋 − 𝐸𝑇𝒋 𝑇𝒋 . 

There are exactly 𝜓 ,  N-sentences equivalent to any given N-sentences of weight 𝑢. Let 

𝕎 ,  be the set of representatives for the equivalence classes of N-sentences 𝑟 of weight 
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𝑢 consisting of two closed N-words 𝑤 , 𝑤  of length 𝑘 + 1 with 𝑁 ≥ 2 for all 𝑒 ∈ 𝐸  and 

𝐸 ∩ 𝐸 ≠ ∅. Then  

𝐸(〈𝑥 , 𝐷 〉 ) − 𝐸 〈𝑥 , 𝐷 〉

=
𝜓 ,

𝑁
𝐸𝑍 ,

∈
𝒊,𝒊

𝐸𝑌 ,

∈
𝒊,𝒊

( , )∈𝕎 ,

− 𝐸𝑍 ,
𝒊

∈
𝒊

𝐸𝑌 ,
𝒊

∈
𝒊

𝐸𝑍 ,
𝒊

∈
𝒊

𝐸𝑌 ,
𝒊

∈
𝒊

. 

, ≤ 𝑁 . In the limit we only need to consider 𝑢 ≥ 𝑘 + 2. For each 𝑟 ∈ 𝕎 ,          

𝐸 ∩ 𝐸 ≠ ∅, so the graph 𝐺  is a connected graph with 𝑢 vertices. The graph has at most 

𝑘 edges since 𝑁 ≥ 2. It is clearly impossible to have a connect graph with 𝑢 ≥ 𝑘 + 2 

vertices and at most 𝑘 edges, so 𝕎 , = ∅. Thus,  

lim
→

𝐸(〈𝑥 , 𝐷 〉 ) − 𝐸 〈𝑥 , 𝐷 〉 = 0. 

 

2.3. Proof of Theorem 1.3 

The proof of condition (ii) in for Theorem 1.2 in Section 2.2 still applies in this 

situation. For the proof of Lemma 1.2, we know that if 𝑘 is odd, then  

lim
→

𝐸〈𝑥 , 𝐷 〉 = 0. 

 

For 𝑘 even, we see that,   

lim
→

𝐸〈𝑥 , 𝐷 〉 − 𝐸〈𝑥 , 𝝈𝟏〉 ≤ lim
→

𝐸〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝐷 〉 + lim
→

𝐸〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝝈𝟏〉 . 

The second term on the right-hand side goes to zero by Wigner’s Semicircle Law. Then we 

only need to consider the first term.  

𝐸〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝐷 〉 =
1

𝑁 ⁄
[1 − 1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )]𝐸𝑋 (𝑖 , 𝑖 ) … 𝑋 (𝑖 , 𝑖 )

,..,

. 
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By the proof presented in Section 2.3, when ignoring the [1 − 1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )] part of 

each term, we know that there are an order 𝐶 𝑁 ⁄  terms 𝐸𝑋 (𝑖 , 𝑖 ) … 𝑋 (𝑖 , 𝑖 ) in the 

summation that survive when 𝑁 goes to ∞, and they are all equal to 1.  For each term we 

refer to the 𝑋 𝑖 , 𝑖  as slot 𝑗, with 𝑋(𝑖 , 𝑖 ) being slot k. Then entry 𝑋 (𝑠, 𝑡) appears each 

slot 𝑗 an order of 𝐶 𝑁 ⁄  times. Then each entry appears in at most 𝑘 ∙ 𝐶 ∙ 𝑁 ⁄ . 

We see that [1 − 1 (𝑖 , 𝑖 ) … 1 (𝑖 , 𝑖 )] = 1 whenever at least one of the 1 𝑖 𝑖  

is equal to zero. These are the distortions, and there are 𝜃 (1 ) of them. Because the 𝜃 (1 ) 

distortions appear in at most 𝑘 ∙ 𝐶 ∙ 𝑁 ⁄  terms,  

𝐸〈𝑥 , 𝐿 〉 − 𝐸〈𝑥 , 𝐷 〉 ≤ 𝜃(1 ) ∙ 𝑘 ∙ 𝐶 ∙
𝑁 ⁄

𝑁 ⁄
=

𝜃 (1 )

𝑁
→ 0. 

This completes the proof of conditions (i), so Theorem 1.3 holds.  

3. The General Case of Theorem 1.2  

Theorem 1.2 assumes that 𝜃 (1 ) = 𝑝𝑁 for all 𝑗 ∈ ℕ. We have also studied when this 

is not the case, and 𝜃 (1 ) can be anything for each 𝑗. We are unable to prove any strong 

theorems in this case but are able to find some moments for the distribution of the 

eigenvalues. By the proof of Theorem 1.2, we still know that the odd moments are zero 

when taking the limit as 𝑁 goes to infinity. For the even moments we know that  

 

lim
→

𝐸〈𝑥 , 𝐷 〉 = lim
→

1 (𝑖 , 𝑖 )

,

. 

lim
→

𝐸〈𝑥 , 𝐷 〉 = lim
→

2 1 (𝑖 , 𝑖 )1 (𝑖 , 𝑖 )

, ,

= 𝜃 .  
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lim
→

𝐸〈𝑥 , 𝐷 〉 = lim
→

2 1 (𝑖 , 𝑖 )1 (𝑖 , 𝑖 )1 (𝑖 , 𝑖 )

, ,

+ 3 1 (𝑖 , 𝑖 )1 (𝑖 , 𝑖 )1 (𝑖 , 𝑖 )

, , ,

  

= lim
→

2 𝜃 + 3 𝜃 1 (𝑖, 𝑗)𝜃

, ,

.  

 

We can find similar expressions for higher moments. We find these expressions by 

writing out all the possible graphs of closed words length + 1 where each edge in the 

graph are crossed twice, and then counting how many times each graph can be generated by 

a word. From the proof of Theorem 1.2, these are the only terms that are contribute to the 

sum in the limit. The graphs and counts for the for the moment equations shown above are 

listed on the next page.  
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Closed words of length 3 and weight 2: 

 

 

 

 

 

Closed words of length 5 and weight 3:  

 

 

 

 

Closed words of length 7 and weight 4:  
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