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Abstract

The totally solvable but non trivial case of Yang-Mills theory applied on a cylinder in the vacuum is
studied in the Hamiltonian formalism. Using gauge invariance, this complex system can be made

finite, allowing us to find the discrete global excitations in the field.
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1 Introduction

We can imagine that this complicated array of moving things which constitutes the world
is something like a great chess game being played by the gods, and we are observers of
the game. We do not know what the rules of the game are; all we are allowed to do is to
watch the playing.

Richard Feynman (1918-1988)

Yang-Mills theory allows physicists to model particle dynamics and is at the core of the attempt
to unify the forces in nature. More mathematically, Yang-Mills theory is a gauge theory for the
groups SU(n). Noting that the electroweak force is described by U(1)⇥SU(2), and chromodynamics
by SU(3), it’s easy to see the power of a theory as general as Yang-Mills theory.

In this paper, we will study a toy model where Yang-Mills theory can be fully solved without any
perturbation theory. Looking at simple cases is a good way to understand the theory better and can
still be very useful practically. For example, solving Yang-Mills theory for a cylinder provides one
with powerful tools to approach confinement in chromodynamics [4]. Now, let’s get our hands dirty
and see how to solve this not-so-simple toy model.

The Yang-Mills equations in the vacuum are given by [2]
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Note the antisymmetric property F
µ⌫

= �F
µ⌫

.

Let’s look at the simplest case: one dimension of time and one of space. Then if µ or ⌫ 6= 0, 1,
we get F

µ⌫

= 0. Thus we have no magnetic field. So 1 reduces to

F01 = @0A1 � @1A0 + [A0, A1] (3)

but F01 = E
x

= E, thus 3 is equivalent to

E = @0A1 � @1A0 + [A0, A1] (4)

Doing the same thing with 2, we get the two equations
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1.1 Infinite Minkowki Plane and Maxwell’s Equations

A good check to make sure that what we’re doing makes sense is to consider the abelian case where
the commutators vanish. We should get the basic Maxwell’s equations, i.e.,
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but these simplify even more since we’re considering the vacuum and the 1 + 1 dimensional case.
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We seem a little bit o↵ but that’s not true. Recall that Aµ = (A0, A1) = (�, A1). We also have that
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Thus, we get A
µ

= (�,�A1) = (A0, A1) ! A1 = �A1 and A0 = �. So we do indeed recover
Maxwell’s equations for the abelian case. We will let A1 = A for the rest of the paper.

The easiest non abelian case is to consider the infinite 2 dimensional Minkowski space, like we
would work on the infinite Euclidian plane in electromagnetism. It turns out that this example is a
bit too trivial. We want to work with a finite energy, but the electric field itself has energy given by

U =
1

2

Z

V
E2d⌧ (7)

Therefore in our case we can take V ! 1. This means that in order to have a finite energy we must
have E ! 0 at infinity. But from our equations, this means that E = 0 everywhere, making this
case trivial.
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1.2 Finite Minkoswki Cylinder and Wilson Loop

The next easiest but non trivial case we can look at is by replacing the infinite plane by a cylinder.
Now our space is finite and so we don’t have the issue of being able to let V ! 1. What shape on a
cylinder is complicated enough to be interesting to study? A point is too trivial. An open line can
be homotopy to a point and so is also trivial. What about a closed curve? You can’t homotopy it
to a point so it seems like a good place to start.

A fundamental law in physics is that a theory must be gauge invariant. You can think of it like
changing your frame of reference shouldn’t a↵ect the underlying physics. In this case we consider
rotations for this loop. Another way of saying this is that two quantities that are related by a gauge
transformation are physically equivalent.

For Yang-Mills theory, the gauge transformations are given by [2]
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We want to define a gauge invariant quantity on this loop that depends on A. Consider the parallel
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Let’s see if S is indeed invariant under the gauge transformation described above. Consider two
points on a curve, x1 and x2, infinitesimally close to each other. Then using 8
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S(x2, x0) = S(x2, x1)S(x1, x0)

Thus, we can use our infinitesimal argument again and again to get by induction that

S 0(x
n

, x0) = g(x
n

)S(x
n

, x0)g
�1(x0) (11)

For example,

S(x2, x0) = S(x2, x1)S(x1, x0) ! (g(x2)S(x2, x1)g
�1(x1))(g(x1)S(x1, x0)g

�1(x0))

= g(x2)S(x2, x1)(g
�1(x1)g(x1))S(x1, x0)g

�1(x0)

= g(x2)(S(x2, x1)S(x1, x0))g
�1(x0)

= g(x2)S(x2, x0)g
�1(x0)

4



Recall that we want to find a gauge invariant quantity on a closed loop. In this case, 11 becomes

S ! g(x)Sg�1(x)

We want to take advantage of the fact that g(x)g�1(x) = I. It follows that the trace of S is our
desired gauge invariant quantity, called the Wilson loop.

We have

tr(S) ! tr
�
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�
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�
= tr(S)

Ta-da! We finally found a gauge invariant quantity on the loop. You can look at it this way:

• For a vector, the invariant quantity is length.

• For a group of vectors, it’s the dot product.

• For a gauge field A, the information independent of the choice of the gauge transformation is
the Wilson loop.

Note that S for any curve that is contractible to a point is equal to the identity, but not so for a
curve that is non contractible. One more reason why S is perfect for us.

If you have studied Yang-Mills theory in the plane, you should recall that when you build the
Yang-Mills theory Lagrangian you find that the invariant quantity that generates dynamics in the
field is given by
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where H is the Hamiltonian. All this work was to understand that tr(E2) is the gauge invariant
quantity we want to consider. Note that
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where we used 5 and the cyclic property of the trace. Thus, the trace of E2 is constant in time.

Using 6, it follows trivially that the trace of E2 is also constant in space. Therefore, the classical
theory is fully solved form the fact that tr(E2) is constant in both space and time. Now let’s try to
figure out if we can do the same for the quantum theory.
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2 Fixing the Gauge

There are two common strategies to solve the quantum theory:

• The first is to start by quantizing the field and then to fix the gauge. The di�culty with that
technique is that quantizing first still leaves you with a infinite amount of degrees of freedom
and is therefore unnecessary di�cult.

• The second is to start by fixing all the gauge and then to quantize the field. The problem with
that strategy is due to Gribov who found that it’s not possible to fix all the gauge, there is
always a finite amount left.

We’re going to find a compromise between these two ways by first fixing as much of the gauge as
possible and then quantize the finite system that we have left. We will then use character functions
and the Peter-Weyl theorem to fully solve the quantum theory and find the discrete global excita-
tions in the field while still having some gauge unfixed.

Most of the argument is that the gauge group is infinitely dimensional but most of it can be fixed.
Only a finite dimensional part can’t be fixed, and we can work around this part using character
functions.

2.1 Fixing All of the Time Gauge

In the time dimension, everything is topologically trivial. We can’t impose any periodicity since then
causality would be violated. It will not be that easy for the space dimension since it doesn’t have to
be true that S(2⇡) = S(0). This is because there can be more than one curve connecting any two
points and S depends not only on the endpoints but also on the curve itself. Therefore, for the time
dimension, we should be able to fix all the gauge, but not for the space part.

How can we quantize the gauge field A? We know that all the gauge can be fixed expect a finite
part. Therefore all the information should be contained in this little piece. We want to quantize the
field in term of the conjugate variable q and p. We should also expect a relation of the form

@q

@t
= p

From electromagnetism, we know that A and E are conjugate to each other in the same way q and
p are, where A plays the role of q and E the role of p. Thus, we want to work with A0 and E 0 such
that

@A0

@t
= E 0 (12)

We want to fix the time gauge such that this relation follows and the fields change exactly like 8 and
9 with g = T , i.e.,

A0 =TAT�1 + T
@T�1

@x
(13)

E 0 = TET�1 (14)

and that follow the canonical relationship given by equation 12. Obviously, this new fields should
carry the same information as the one given by the Yang-Mills equation 4, 5, and 6.
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It seems very likely that 12 should become 4. Note that we also know that all the time gauge
can be fixed and therefore we should expect, like for the trivial 2 dimensional Minkowski plane that
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@E

@t
=
@T�1

@t
E 0T + T�1E 0@T

@t

but

0 =
@I
@t

=
@(T�1T )

@t
=
@T�1

@t
T + T�1@T

@t

giving the very useful identity

@T�1

@t
= �T�1@T

@t
T�1 (15)

thus,

@E

@t
= �T�1@T

@t
T�1E 0T + T�1E 0@T

@t
= �T�1@T

@t
E + ET�1@T

@t
=


E, T�1@T

@t

�

We want this to equal to 5, therefore we get that completely fixing the time gauge is equivalent to
the following relation
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We can fix the boundary condition to be T (0) = 1. Then the Yang-Mills equations become equivalent
to
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which is indeed a lot nicer and does exhibit the canonical relation between E 0 and A0.

What we have done is this section is to fix all the time gauge. Note that our Hamiltonian becomes
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2.2 Fixing Most of the Space Gauge

To fix the space gauge, we want to work with the parallel transport S. It is well known that the S
given by 10 is the solution to the following di↵erential equation

@S

@x
= �A0S

with S(0) = 1. Looking back at the first boxed equation and remembering that

(A0)1 = �(A0)1 = �A0

the form of this equation shouldn’t surprise you too much since it’s pretty much the exact same one.

The solution to 18 is then given by

E 0(x) = S(x)E 0(0)S�1(x) (20)

Let’s check this. We have that
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We want this to be equivalent to 18. It is a pretty easy guess that 20 will work. Indeed then
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Note that even though A0 is periodic, S need not to be, so that S(2⇡) 6= S(0). Also, S(2⇡) is just
the parallel transport around the closed loop.

The only two elements that we have left and which determine everything are S(2⇡) and E 0(0).
Since S depends on A0, it seems logical to let

q = S(2⇡) (21)

p = E 0(0) (22)
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3 Quantizing the Finite Field

3.1 Hamiltonian Equations of Motion

Now, we want to express the Yang-Mills equation in term of the canonical variables q and p to then
be able to quantize the field. These equations can be found by using the variational principle on the
action N . Let’s see what the action should be. From classical we have that

N =

Z
Ldt

where L = pq̇ �H is the Lagrangian. Note that for a non abelian group, we must do the following
change

q̇ ! q�1q̇

This might seems weird but the explanation is the following. In the normal case, p transforms q like

q ! q + a

for some constant a, and q̇ = p where we are o↵ by a constant. For our system, we must have the
slightly di↵erent

q ! bq

for some constant b. To get the normal action from this new non abelian one, we just need to replace
q by ln(q) in order to transform multiplication into addition. Then,

p =
d

dt
ln(q) = q�1q̇ (23)

where we again are o↵ by a constant. Then we have

q0 = ln q ! ln(bq) = ln b+ ln q = a+ q0

by letting b = ea. Our action is now given by

N =

Z
pq�1q̇dt�

Z
Hdt

From 22 and 19, we can expect that the Hamiltonian depends on p. We can postulate an easy
invariant Hamiltonian and see if the equation of motion we find from the action principle do give us
the Yang-Mills equations 16, 17, and 18.

Our first guess is the easy H = ⇡tr(p2), where ⇡ is here for later convenience. There is a problem
with that Hamiltonian. Looking back at 23, recalling that q is unitary, and noting that

q†q = 1 ! q̇†q + q†q̇ = 0

, (q†q̇)† + q†q̇ = 0

, (q†q̇)† = �q†q̇

we get that p is anti-Hermitian

p† = �p

and therefore

tr
�
p2
�
= tr

��p†p
�
= � tr(I) < 0

But we cannot have negative energies! Thus, we need to change our Hamiltonian to
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H = �⇡ tr�p2�

Now we’re back in business. We postulated that

N =

Z
tr
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�
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Z
⇡ tr

�
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where we need to add a trace to the first term for the action to make any sense. Varying only p, we
get
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Doing the same thing but only varying q we get these two equations

q�1q̇ = �2⇡p (24)

dp

dt
= 0 (25)

We can show that 24 and 25 contain the same amount of information as the Yang-Mills equations
16, 17, and 18.

Consider
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which implies that

S�1(x)Ṡ(x) = �px+ c

but Ṡ(0) = 0 so c = 0. Therefore, letting x = 2⇡, we obtain the desired

S�1(2⇡)Ṡ(2⇡) = �2⇡p , q�1q̇ = �2⇡p
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Note that

dp

dt
= 0

follows trivially from 17. Now we have everything we need to quantize

3.2 Character Functions and Peter-Weyl Theorem

Consider the map

�(A0, E 0) = (q, p)

it follows that

�

✓
gA0g�1 + g
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@x
, gE 0g�1

◆
= (g(0)qg�1(0), g(0)pg�1(0))

To quantize the field, let’s shift to the Hilbert space H, which can be chosen to consist of the
square integrable functions over the configuration space G. However, thanks to �, we know that the
only relevant quantities are the non fixed ones above. These form the subspace Ĥ of gauge invariant
wave functions

 2 Ĥ ,  (ghg�1) =  (h)

with g 2 G.

These functions are called class functions. Within the space of matrix coe�cients for a fixed
irreducible representation ⇡ of G we define a new quantity �

⇡

called the character of ⇡

�
⇡

(g) = (⇡(g))

Note that � follows the class functions characteristic trivially. We can then use the Peter-Weyl
theorem which states that the characters of the irreducible representation of G form an orthonormal
basis for Ĥ. Thus,

 =
X

r

�
r

c
r

(26)

for some constants c
r

. Using 26 and the Schroedinger’s equation below

Ĥ 
j

= E
j

 
j

we find that the �
r

are the eigenstates. We are almost done, we just need to figure out what Ĥ is.
From what we’ve found in the classical case, we can guess that

Ĥ = tr
�
p̂2
�

but the quantum operator p̂ must be of the following form

p̂
u

=

✓
qu,

1

i

@

@q

◆

where we have that (A,B) = � tr(AB). You might wonder where the qu comes from. It’s because
p’s action was to multiply q on the right as we’ve found before from

q�1q̇ = p , q̇ = qp

Thus, our Hamiltonian becomes
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Ĥ =
X

i

p̂2
i

Note that p̂
i

is a first order derivative in space so p̂2
i

is a second order time derivative in space which
is summed over the orthogonal basis. It must therefore means that the Hamiltonian is nothing less
than our nice Casimir Operator we’ve already seen in our undergraduate quantum mechanics course
when looking at angular momentum and spin! Thus, this seemingly complex problem has been re-
duced to a case of the Schroedinger equation we already know and so we have fully solved the problem.

For G =SU(2), we get that the irreducible representations are labeled by the spin

j = 0,
1

2
, 1,

3

2
, etc.

and the eigenvalues are given by

E
j

= ⇡j(j + 1)

4 Conclusion

The mathematician plays a game in which he himself invents the rules while the physicist
plays a game in which the rules are provided by Nature, but as time goes on it becomes
increasingly evident that the rules which the mathematician finds interesting are the same
as those which Nature has chosen.

Paul Dirac (1902-1984)

In this paper, we have successfully fully solved the Yang-Mills equations on a cylinder by adopt-
ing a non conventional approach. We have showed that a system that might appear trivial, can still
hide a lot of complexity. The system has no particles, no magnetic field, and a pretty easy topology
but the field still has global excitations! This is unheard of in the normal Minkowski plane when
one studies quantum field theory. For the trivial case, an excitation of the field means that you get
particles. We found here that an excitation of the field is actually more general and doesn’t have to
produce particles for a non trivial topology.

A mind-blowing application of solving Yang-Mills theory on a cylinder has been discovered by
Witten [3]. The idea is that you can use the cylinder trick to solve Yang-Mills theory on any
Riemannian surface of arbitrary genus by splitting the surface into cylinders. Consider for example
a Riemannian surface of genus 1. You just have to glue the ends of the cylinder and you’re done.
For a Riemannian surface of genus 2, you take 3 cylinders, put one in the middle and glue the other
two to its ends. You can do this for an arbitrary genus!
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