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Abstract

Quandles are an algebraic structure whose axioms arise from the Reidemeis-
ter moves in knot theory. Given a knot K one can associate it with a quandle
QK called the fundamental quandle. It was shown by David Joyce (1982) that
if QK is isomorphic to QK′ then the knots K and K ′ are equivalent up to
orientation. Furthermore, Fenn and Rourke (1992) showed that the fun-
damental quandle is a complete invariant up to mirror image for non-split
links. The fundamental quandle is very powerful in that all other classi-
cal invariants of knots can be viewed through their fundamental quandles.
This survey provides a quick introduction to knot and quandle theory, gives
examples of how we can view weaker invariants in-terms of the fundamen-
tal quandle through quandle-colorings, and describes some strong invariants
derived from the fundamental quandle.
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Introduction

From tying down masts on a ship to lacing shoes, our base intuition of a knot
is a jumbled mess of string which defies untangling. The goal of knot theory
is to distinguish knots up to our ability to maneuver them in space.

A naive approach to defining a knot may be: a simple smooth curve in R3

which is unable to be simplified via continuous transformation without break-
ing through itself. This definition is flawed as we note that it is possible to
deform any simple smooth unclosed curve to the interval I(t) = {(t, 0, 0)|t ∈
[0, 1]} ⊂ R3 by taking an endpoint and feeding it along the curve to untangle
it. So any two smooth, simple, and unclosed curves are equivalent, making
our first definition of a knot quite useless. However, by fusing the ends of
the curve together we may actually begin to distinguish them.

Definition 1. A knot is a smooth embedding of the circle into three dimen-
sional Euclidean space.

Sometimes it is beneficial to view a knot as an embedding of the circle
into the one-point-compactification of R3, the 3-sphere.

S1 ↪→ S3 = R3 ∪ {∞}

This is possible by taking a standard knot in R3 and maneuvering it to
avoid the additional point at infinity.

Definition 2. A link is a disjoint union of knots.

By definition a knot is always link. Since knots and links are (locally)
the same, unless stated otherwise, will we use the terminology somewhat
interchangeably. We proceed to state how we are allowed to maneuver a
knot mathematically, in a way which aligns with our physical intuition.
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Definition 3. Given two embeddings f, g from a manifold X into another
manifold M, a continuous function H : X× [0, 1] −→ M× [0, 1] is called
an ambient isotopy if (x, 0) 7→ f(x) and (x, 1) 7→ g(x) where H(x, t) is an
embedding for all t ∈ [0, 1], and we say f and g are ambient isotopic.

We say that two links are equivalent if there exists an ambient isotopy
between them.

It would be difficult to study knots if we always had to work with these
embeddings. The main way we get around this is through knot diagrams :
Given a knot K, a knot diagram of K is a projection of it’s image in R3

to a suitable plane: the projection must be bounded and have a finite num-
ber of points where the projection is not one-to-one, these points are called
singularities.

Singularities correspond to a crossings in the knot diagram. The pre-
image of singularities when viewed in S1 are called singular points. There
are exactly two singular points for each singularity – one for the overstrand
and understrand respectively. If S = U ⊔O ⊂ S1 is the set of singular points
partitioned into under/overstrand sets, then an arc in a knot diagram is the
image of a connected component of S1 −U . At each crossing in the diagram
we note which arc crosses over the other two, for example:

Figure 1: Three knots

Viewing the above as a link, singularities of a link diagram remain the
same. However, arcs in a link diagram are the image of connected components
avoiding understrand singular points when restricted to a single S1.

Two of the three knots in Figure 1 are actually the same knot. The
simplest knot, on the far left, is called the unknot and is obtained by the
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inclusion map i : S1 → R3. While the rightmost knot is the trefoil knot.
How can we show that two knots are the same? We may try to exhibit

an ambient isotopy between either of the knots. But, beyond modeling the
knot physically, it is difficult to show two knots are actually the same. Luck-
ily, a theorem by Reidemeister [1] gives us an equivalent condition on knot
diagrams to the existence of an ambient isotopy taking one knot to the other.

Figure 2: The Reidemeister Moves

Theorem 1. For two links L and L′, there is an ambient isotopy between
them if and only if their diagrams are related by a finite sequence of moves
in Figure 2 along with planar isotopies.

The Reidemeister moves serve as a codification of the ways we maneuver
a knot in three dimensional space. The first move adds a twist, the second
move crosses one strand over/under another, and the third move passes a
strand over/under a pre-established crossing. Using Reidemeister’s theorem
we are able to show that the complicated knot diagram in Figure 1 is actually
the unknot, we do this in Figure 4.

An oriented knot is a knot along with a specified direction, this is typically
signified by arrows along the knot diagram. There is an analog of Theorem
1 for oriented knots which can be found in [2]. Given an oriented knot we
may reverse the orientation to obtain its mirror image. For some oriented
knots it is possible to distinguish between mirror images – in this case we
call the unoriented version of the knot chiral – the trefoil knot is the simplest
example. One byproduct of adding an orientation is that there are now two
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types of crossings which we denote by left/right handedness. We do this
because it is easy to determine what type of crossing you have by pointing
your index-finger along the direction of the overstrand (palm down) and
noting which hand has the thumb pointing along the outgoing understrand.

Figure 3: Left and Right Handedness

Figure 4: Unraveling a Complicated Unknot
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Elementary Invariants

We’ve seen that the Reidemeister moves give a method to show equivalence
of knots. But how do we know that the three knots in Figure 1 aren’t actually
all the same knot? This is a big problem since it’s impossible to show that
two knots are different using purely Reidemeister moves – it may be possible
to simplify a knot by introducing some complexity.

A knot (resp. link) invariant is a function on the space of all knots which
remains the same under ambient isotopy. For a function defined on a knot
diagram to be an invariant, by Theorem 1, it is equivalent that the function
be invariant under the Reidemeister moves.

Geometric Invariants

An obvious way to begin distinguishing knots is to take a geometric quantity
of a knot diagram and take the minimum over all possible diagrams of the
knot. Some examples are:

� Crossing Number - The minimal number of crossings of any diagram.

� Uncrossing Number - The minimal number of crossing changes (over-
strand becomes the understrand) needed to obtain the unknot or un-
link.

� Genus - The minimal number of holes in a surface whose boundary is
a knot K.

� Length - The minimum length of a knot or link if we give the strands
a uniform thickness.
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Fox n-coloring

Our next two invariants are classics. Here we present the interpretation by
Ralph Fox [3]. Given a knot diagram, we color each of the arcs one of three
colors such that at each crossing either all of the arcs are colored the same
or are unique. A trivial coloring is one which uses a single color. A knot is
tricolorable if there exists a non-trivial coloring of its knot diagram.

Theorem 2. Tricolorability is a knot invariant.

Proof. It suffices to show that tricolorability is conserved under the Reide-
meister moves:

Figure 5: Visual Proof of Theorem 2

Since we know that tricolorability is an invariant we may finally be able
to distinguish the knots in Figure 1. First we note that since the unknot can
only be colored trivially, a tricolorable knot cannot be the unknot. Coloring
each arc of the trefoil a different color shows that the trefoil ̸≃ unknot.

It is natural to consider a coloring invariant which uses more than three
colors. If, instead of colors, we label each arc with an element of Z3 = Z/3Z
we note that the crossing conditions for tricolorability are equivalent to

2y − x− z ≡ 0 (mod 3)
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where y is the label corresponding to the overstrand and x, z are the labels
for the two arcs of the understrand. By considering this condition over Zn

we generalize tricolorings to Fox n-colorings.

Definition 4. Given a knot diagram, a Fox n-coloring is a labeling of the
arcs by elements of Zn such that at each crossing the equation

2y − x− z ≡ 0 (mod n)

holds. Where y is the overstrand and x, z are the understrand.

Using the same proof as for tricolorability we see that Fox n-colorability is
an invariant. Furthermore, the number of Fox n-colorings for a given diagram
is also invariant [4].

The Knot/Link Complement

All of our previous invariants have been built by coloring the arcs in a link
diagram. Now we switch gears and consider the ambient space after we carve
out the link.
Given a link L ⊂ S3 the link complement (or knot complement resp.), is
given by S3 \L and is invariant up to ambient isotopy. If the link is actually
a knot then it’s complement is a perfect invariant – meaning it is distinct
for any two unique knots. This is not the case for links. Furthermore a link
complement is a K(π, 1) space, πn(S

3 \ L) is trivial for n > 1. The next
definition will require knowledge found in Appendix A.

Definition 5. We call the fundamental group of a knot complement, π1(S
3 \

K), the knot group and denote it by π1(K).

Theorem 3. For a knot K, π1(K) ∼= Z if and only if K is the unknot.

We will only prove (⇐). To calculate the knot group of the unknot we
first choose a basepoint. Every loop either links with the unknot or doesn’t.
If it doesn’t then we can shrink down the loop until it is trivial. If the loop
links with the unknot then (up to ambient isotopy) it must wrap around the
unknot a minimum of k ∈ Z times (sign corresponds to orientation). Any
loop with the same linking number is ambient isotopic. So the fundamental
group is the free group generated by a single element.
A proof of (⇒) can be found in [5].
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The knot group is generated by loops going around each arc. TheWirtinger
presentation is the most common way to describe the knot group utilizing
one of its diagrams. It has as its generators loops which go once around each
arc of the diagram, and relations corresponding to each crossing.
The type of relation you get depends on the handedness of the crossing

Figure 6: Wirtinger Presentation

axa
−1
y azay = 1

or⇐⇒ azayax = ay (L)

axayaza
−1
y = 1

or⇐⇒ axayaz = ay (R)

The Wirtinger presentation of the knot group is then the free group on the
generators modulo the smallest normal subgroup containing the set of relators
of the form axa

−1
y azay or axayaza

−1
y .

Let D2n denote the dihedral group (the group of isometries of a regular
n-gon). D2n has a presentation: D2n = {α, s : αn = 1 = s2, sαs = α−1}. The

10



rotations are the set {αk} and is a cyclic subgroup of D2n isomorphic to Zn.
Reflections can all be written as sk := sαk.

Theorem 4. The set of Fox n-colorings of a knot K are in bijection with
homomorphisms from the knot group’s Wirtinger presentation to D2n, which
send the generators to reflections.

Let A = {ai} be the arc set of a knot diagram of K. A Fox n-coloring is a
map C : A → Zn which satisfies the condition 2y−x−z ≡ 0 (mod n) at each
crossing. It is easy to verify that the mapping ak 7→ sC(ak) ∈ D2n, determines
a nontrivial homomorphism from the knot group to D2n. Conversely, any
nontrivial homomorphism arises in this way.

All the power of Fox n-colorings for knots follows from information in the
knot group. Differentiating knots through presentations of their knot groups
is a very difficult problem. As seen by Theorem 4 it is often easier to study
maps emanating from the knot group rather than the knot group itself. This
is a core idea for the invariants to come. However, to move forward we must
gain a tool better at differentiating knots than the fundamental group.
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Quandle Invariants

In order to improve the coloring invariants from last chapter we must realize
a generalized version of our coloring set. With Fox n-colorings we took our
colors to be elements of Zn and then chose labels under the condition in
Definition 4. After rearranging the equation we see that the label of an
understrand is determined by the other two arcs. We will now consider
what happens when we take a general set and impose an algebraic structure
motivated by the Reidemeister moves.

Kei and Quandles

A Kei is a right-distributive groupoid which has the Reidemeister moves
encoded in its structure. This is seen by first labeling each arc of a knot
diagram by an element of a set X. We then say that if x is an understrand
at a crossing, then overstrand y acts on x by right multiplication:

Figure 7: Kei Crossing Relation

Definition 6. A Kei is a set X paired with a binary operation ▷ such that:

(Idempotent) For all x ∈ X, x▷ x = x.
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(Involutory) For all x, y ∈ X, (x▷ y)▷ y = x.

(Self-Distributive) For all x, y, z ∈ X, (x▷ y)▷ z = (x▷ z)▷ (y ▷ z).

The Kei axioms follow by assuming the crossing relation holds and then
forcing the labeling to be invariant under the Reidemeister moves. The first
and second kei axioms correspond the first and second Reidemeister moves
respectively. The third axiom can be see from the following figure, by eval-
uating the label of the orange strand in two different ways:

Figure 8: Kei Axiom 3

Each y ∈ X defines a map βy : X → X where x 7→ x▷ y. The involutory
condition says that this action is its own inverse.

From now on we will be primarily be dealing with oriented knots. Similar
to Kei, a Quandle is an algebraic structure, which encodes the oriented ver-
sion of the Reidemeister moves. We’ve seen that by adding an orientation we
also introduce two different types of crossings called right/left handedness.
So in our quandle formulation we initially start with two operations ▷ and
▷−1 which will be used at left and right handed crossings respectively.

Definition 7. A quandle is a set Q equipped with two binary operations ▷
and ▷−1 which satisfies the following for all x, y, z ∈ Q:

1. (Idempotent): x◁ x = x.

2. (Right-Action Invertible): (x▷ y)▷−1 y = x = (x▷−1 y)▷ y

3. (Right Self-Distributive): For all x, y, z ∈ Q, (x▷y)▷z = (x▷z)▷(y▷z).
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See that every kei is a quandle (typically called involutory quandles) where
▷ = ▷−1. Additionally, the second axiom for quandles is equivalent to the
right-action map βy : Q → Q being invertible for all y ∈ Q. So we can
actually just forget ▷−1 and consider a quandle to be a pair (Q,▷) which
satisfies the above.
A function Φ : (Q1,▷1) → (Q2,▷2) is a quandle homomorphism if

Φ(x▷1 y) = Φ(a)▷2 Φ(b)

for all a, b ∈ Q1. The set of homomorphisms from Q1 to Q2 is denoted by
Hom(Q1, Q2) and is equipped with a group structure via the composition
operation.

The self-distributive property of quandles implies that βy is a quandle
homomorphism for every y ∈ Q, and so is a quandle automorphism. We call
each βy the point-symmetry about y and the subgroup of Aut(Q) generated
by the point symmetries of Q is called the inner automorphism group of Q
and is denoted by Inn(Q).

Example 1. Given any set X, the operation ▷ such that x ▷ y = x for all
x, y ∈ X is called the trivial quandle on X. We let Tn denote the trivial
quandle on n elements.

Example 2. Given any group you can construct a quandle by taking Q = G
and letting ▷ be the conjugation operation x▷ y = y−1xy.

Idempotent: x▷ x = x−1xx = x.

Right-Action-Invertible: x = (x▷ y)▷ y−1

Right Self-Distributive:

(x▷ y)▷ z = z−1(y−1xy)z

= z−1y−1(zz−1)x(zz−1)yz

= (z−1yz)−1(z−1xz)(z−1yz)

= (x▷ z)▷ (y ▷ z)

Example 3. For any vector space V and invertible linear transformation
M : V → V , we can define a quandle structure on V called the Alexander
quandle:

u⃗▷ v⃗ := M(u⃗− v⃗) + v⃗
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Example 4. Let Q = Zn and a▷ b = 2b− a. This is a quandle structure on
Zn and is called the Dihedral quandle, denoted by D2n. This is because it
is isomorphic to the quandle obtained from the dihedral group D2n through
the process in Example 2.

The Fundamental Quandle

The fundamental quandle is a similar construction to the knot group and
allows us to construct better invariants! To begin using quandle invariants
we must describe how to obtain a quandle from any set. This will later be
applied to the arc set of a knot diagram along with additional conditions
derived from crossings.

Given a set X the set of quandle words WQ(X) is defined recursively by

1. x ∈ X =⇒ x ∈ WQ(X)

2. x, y ∈ WQ(X) =⇒ x▷ y ∈ WQ(X)

A quandle word is then a finite string of elements and ▷’s paired with
parenthesis such that it makes sense as a quandle product.

Definition 8. The free quandle on X is WQ(X)/ ∼ where ∼ is defined
by:

(x▷ x) ∼ x

(x▷ y)▷ y ∼ x

(x▷ y)▷ z ∼ (x▷ z)▷ (y ▷ z)

Note: we follow the same conventions for quandle presentations as we do
for group presentations: if {gi}i∈I is a set of generators and {rj}j∈J a set of
relations, then

⟨{gi}|{rj}⟩

is the free quandle on {gi}i∈I , modulo the relations {rj}j∈J .

Now, given an oriented link L, if A is the arc-set of a given diagram of L
we may interpret each crossing as giving us one of the following relations

x▷ y = z
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x▷−1 y = z

where z is the outgoing understrand. Which relation we use depends on the
type of crossing, as seen below.

Figure 9: The Quandle Crossing Relation

Definition 9. Given a diagram of a link L, the fundamental quandle QL

is the free quandle on the arc-set A modulo the equivalence relations generated
by the crossing relation.

Theorem 5. The fundamental quandle is a link invariant.

Proof. We will show how the quandle axioms are motivated by the Reide-
meister moves in such a way that the fundamental quandle is locally invariant.

R1: Going from one strand, labeled x, to a twist we know that two of
the arcs must be labeled x. The other strand is x▷x, so in order for it to be
invariant we must have x▷x = x which follows from the first quandle axiom.

R2: Comparing the left and right sides of the R2 move, we require
y▷z = x. See that given any z, x ∈ QL there should be a unique y such that
y ▷ z = x. This means that the map βx(z) : QL → QL defined is injective.
Since the strand on the left could have been any label in QL, this map βx is
also surjective.

R3: The left and middle strand labels match already. All that’s left is
to require (x ▷ y) ▷ z = (x ▷ z) ▷ (y ▷ z), which is the right distributive
condition required in quandle axiom 3.
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Example 5. Here we will calculate the fundamental quandle of the oriented
trefoil knot T . We start with three generators a, b, c, each corresponding to
one of the arcs in Figure 1. The following choice is used only to exploit the
three-fold symmetry of T . First choose an orientation, then label the strands
as we traverse the knot so as to label them in reverse alphabetical order. We
obtain the following crossing relations:

a▷ b = c

b▷ c = a

c▷ a = b

Thus QT is partially given by the following operation table.

▷ a b c

a a c
b b a
c b c

We get that QT is infinite and given by:

QT = ⟨a, b, c|a▷ b = c, b▷ c = a, c▷ a = b⟩

We now give a geometric description of the fundamental quandle of a
knot (called knot quandle) adapted from [6]. Let K be an oriented knot in
R3, and let N(K) be a small tubular neighborhood about K, let E(K) =
(R3 \N(K)). We let ΓK be the set of homotopy classes of paths in the space
E(K) with a fixed initial point, p, and endpoint on ∂N(K). Let my ⊂ E(K)
be an oriented meridian of the tubular neighborhood hooking an arc, y, of
the knot. Define x▷y = [x◦y−1 ◦my ◦y], where x is a representative path of
x ∈ ΓK and we view each arc a as an element of ΓK where a is a path from p
to a point on the boundary of the torus ∂N(K) about the arc a and the path
must travel only ‘over’ the knot. The quandle axioms are easily checked, To
see how ΓK is equivalent to QK from Definition 9, see Theorem 3.1 in [6].

The knot group acts naturally on the knot quandle. Fix a point p outside
of the tubular neighborhood used as a basepoint for both the quandle and
group. For a loop γ ∈ π1(K) and element δ of the quandle, γ(δ) = δ◦γ ∈ ΓK .
Furthermore, under this interpretation there is a natural map from the knot
quandle to the knot group. For each element x of the knot quandle (a path
from p to ∂E(K)) we may associate the loop x−1 ◦ m ◦ x, where m is the
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meridian passing through the endpoint of x. This shows that the knot group
can be constructed from the knot quandle by taking meridians as generators
and replacing all relations of the form x▷ y = z with yxy−1 = z.

Fenn and Rourke [7], proved that the fundamental quandle is a complete
invariant up to mirror image for non-split links. For two non-equivalent knots
K, K ′ their fundamental quandles will not be isomorphic. Though, if K ′ is
simply the reverse orientation of K then their fundamental quandles may
or may not be isomorphic. The trefoil knot is chiral, meaning that you can
distinguish between the trefoil’s two orientations; to see the limitation of
fundamental quandle above simply reverse the orientation in Example 5.

Quandle Colorings

The way we obtain the fundamental quandle is typically through a presen-
tation determined by a given link diagram. Similar to the theory of groups,
distinguishing between two quandle representations extremely difficult – no
easier than differentiating the link diagrams themselves. Thus, quandle in-
variants will typically employ mappings from the fundamental quandle in
order to exploit linear algebra. This is analagous to Theorem 4 where Fox
n-colorings are viewed as maps from the knot group and, more broadly, to
representation theory where we can study of a group G by looking at the
homomorphisms into the general linear group of a vector space, GLn(V ).
The following three sections have been adapted from [8, 9, 10].

Definition 10. Let L be an oriented link with fundamental quandle QL and X
be a finite quandle which we will call the coloring quandle. The set of quandle
homomorphisms from the fundamental quandle to X, Hom(QL, X), is called
the coloring space. The quandle coloring invariant is the cardinality of
the coloring space, |Hom(QL, X)| := ΦX(L).

To see how each element of Hom(QL, X) can be interpreted as a color-
ing of the diagram of L, remember that arc labels of L are the generators
of the fundamental quandle QL. A valid coloring is then an assignment of
an element of X to each element of the arcset A of a given diagram of L
which respects the quandle operation for each crossing relation [9] when the
labels are viewed in X. See that this means a coloring for one diagram can
naturally be made into an admissible coloring for any other diagram.
For any coloring of L by the quandle X we may associate it with a coloring
map C : QL → X where if an arc labeled a in the fundamental quandle and
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is assigned the color x ∈ X, then a 7→ x. Furthermore, the map C : QL → X
is a homomorphism. Take a crossing as in [9] where C(a) = x, C(b) = z, and
C(a▷ b) = y, then since the crossing relation requires that x▷ z = y we get
that C(a)▷ C(b) = C(a▷ b) for any two generators x, y of QL.

Theorem 6. The Fox n-coloring invariant is related to ΦX(L) where X is
taken to be the dihedral quandle on n elements.

Where our definition of Fox n-colorability was conveniently chosen to
ignore trivial colorings obtained by using the same color throughout a dia-
gram, the quandle coloring invariant (as a consequence of the first quandle
axiom) does not differentiate. In other words, for any finite quandle X with
|X| = n, Hom(QL, X) will have at least n elements corresponding to the
constant maps. This is seen through the trefoil knot T , which has six Fox
3-colorings but ΦD2·3(T ) = 9. To see the latter simply note that homomor-
phisms are uniquely determined by where we send the generators of QT . By
Example 5 there are three generators of QT , but once we choose where to
send any two of them the one remaining is locked-in. There are three choices
for each generator for a total of 9 homomorphisms.

The Quandle Coloring Quiver

We now have a wide array of integer-valued link invariants we can employ.
Each invariant corresponds to a finite quandle X; the number of which is
strictly larger than the number of finite groups! However, we lose a lot of
information by going from Hom(QL, X) to |Hom(QL, X)|. The goal of this
section is to create an invariant which in some sense captures the structure
of Hom(QL, X). To do this we consider a directed graph (called a quiver)
obtained from the elements of Hom(QL, X).

Definition 11. Let X be a finite quandle and L an oriented link. The
associated quandle coloring quiver, denoted QX(L), is the directed graph
with a vertex for every element f ∈ Hom(QL, X) and an edge directed from
f to f ′ when f ′ = σf for an element σ ∈ Hom(X,X).

Theorem 7. QX is a link invariant.

Proof. Given a link L, QL is fixed by Theorem 5. Thus Hom(QL, X) is
completely determined by our choice of the finite quandle X.
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See that QX is an enhancement of the quandle coloring invariant since
we can recover ΦX(L) from the cardinality of the vertex set of QX . By
considering endomorphisms on X we are able to glean information about the
structure of the coloring space. This is because the structure of the quandle
quiver tells us if two elements of the fundamental quandle are related by
an endomorphism on X. For examples of the quandle coloring quiver in
action see Examples 5, 6, and 7 in [8]. One can also find certain polynomial
invariants derived from the quandle coloring quiver, for this see [9, 11].

Definition 12. A category, C, is a class of objects O along with a set of
maps between the objects called morphisms. Additionally a category must
satisfy the following:

1. For each object a ∈ C there is an identity morphism Ia such that
for any two morphisms f : a → b and g : c → a we have f ◦ Ia = f and
Ia ◦ g = g.

2. For any pair of morphisms f : a → b, g : b → c, there exists a
composition morphism g◦f : a → c, and the composition of morphisms
is associative.

The quandle coloring invariant is a fairly useful, but it is integer valued
and not functorial: the invariant does not associate anything to a map be-
tween spaces. The quandle coloring quiver is its categorification; for a fixed
finite quandle X it associates each link to a set of vertices, and to every
endomorphism of X a directed path on these vertices.

Theorem 8. The quandle coloring quiver is a categorization of the quan-
dle coloring invariant, with X-colorings of L as objects and elements of
Hom(X,X) as morphisms.

Proof. The identity map I ∈ Hom(X.X) satisfies the first axiom. Since
composition of endomorphisms is an endomorphism, and composition is as-
sociative we are done.

Quandle Cohomology

This section requires knowledge of homology and cohomology. For a primer
see Appendix B. A rack is a quandle without the first (idempotent) axiom.
For a finite quandle X, let CR

n (X) be the free abelian group generated by
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(x1, . . . , xn) for xi ∈ X. The superscript “R” stands for rack. We define the
boundary map:
∂n : CR

n (X) → CR
n−1(X) as the following:

∂(x1, . . . , xn) :=
n∑

i=2

(−1)i[(x1, . . . , xi−1, xi+1, . . . , xn)

− (x1 ▷ xi, x2 ▷ xi, . . . , xi−1 ▷ xi, xi+1, ..., xn)]

for n ≥ 2 and ∂n = 0 for n < 2, and extend linearly. The chain complex is
then:

· · · → CR
n (X)

∂n−→ CR
n−1(X)

∂n−1−−−→ . . .
∂1−→ CR

0 (X) → 0

In order to gain an intuition on the boundary map ∂n we look to the case
n = 2:

∂2(x, y) = [(y)− (y)]− [(x)− (x▷ y)] = y − y − x+ (x▷ y)︸ ︷︷ ︸
Suppose we are given a right-handed crossing in a link diagram with the
incoming understrand colored x and the overstrand colored y, the outgoing
understrand must then be colored x ▷ y. Thus ∂2(x, y) signifies the sum of
the colors at the crossing where the sign of each element of the sum cor-
responds to direction (’tail’ = −1 and ’head’ = +1). This idea holds for
higher dimensional knotted surfaces. However, since we are dealing with 2-
dimensional knots we don’t gain information by considering homology groups
of dimension greater than 2.

CR
n already satisfies quandle axioms 2 and 3. In order make this con-

struction satisfy axiom 1 we let CD
n (X) be the subgroup of CR

n (X) generated
by elements (x1, . . . , xn) where xi = xi+1 for some i. Elements of CD

n are
degenerate chains in the rack complex so a quandle complex can be obtained
by modding them out:

Definition 13. The quandle chain complex is then CQ
∗ (X) = {CQ

n (X), ∂Q
n }

Where CQ
n (X) = CR

n (X)/CD
n (X), and ∂Q

n is the induced homomorphism of
∂n on the quotient.

In order to obtain quandle cohomology we must use a contravariant func-
tor to dualize quandle chain complex. In this case we will use HomZ(−, A),
the set of homomorphisms from the place-holder abelian group to a given
abelian group A.
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For abelian groups A,B,C and homomorphism f : B → C, we will let
HomZ(f, A) : Hom(C,A) → Hom(B,A) be the homomorphism mapping
ϕ → ϕ ◦ f for all ϕ ∈ Hom(C,A).

Definition 14. Given an abelian group A, let Cn
Q(X;A) = Hom(CQ

n (X), A)

and δn : Cn
Q(X;A) → Cn+1

Q (X;A) is given by:

(∂nf)(x1, . . . , xn+1) := f ◦ ∂n+1(x1, . . . , xn+1)

The quandle cochain complex is C∗
Q(X;A) = {Cn

Q, δ
n}.

We can then define the k-th cohomology module asHk = ker (δn)/ Im(δn−1),
where elements of ker (δn) are called k-cocycles and elements of Im(δn−1) are
k-coboundaries. We are most interested in quandle 2-cocycles, which are
maps ϕ : A[X × X] → A, which can be written as linear combinations of
simpler functions:

χi,j(x1, x2) =

{
1 for i = x1, j = x2

0 otherwise.

This is equivalent to a map ϕ : X × X → A satisfying the following for
any x, y, z ∈ X

ϕ ◦ ∂(x, y, z) = [ϕ(x, z)− ϕ(x▷ y, z)]− [ϕ(x, y)− ϕ(x▷ z, y ▷ z)] = 0.

equivalently:

ϕ(x, y) + ϕ(x▷ y, z) = ϕ(x, z) + ϕ(x▷ z, y ▷ z)

We can then construct a quandle cocycle quiver much in the same
way as in Definition 11, where vertices again correspond to X-colorings of
a link L, but now we assign a weight to the vertices equal to the quandle
co-cycle evaluated at that crossing. The quandle cocycle quiver is a stronger
invariant than the quandle coloring quiver as seen in Example 3 of [10].
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Appendix A

The Fundamental Group

First formulated by Henri Poicare (April 29th, 1854 - July 17th, 1912), the
fundamental group is a group associated to each topological space (in this
paper we used a subset of R3). We first define homotopy as it allows use to
define equivalence classes of functions. In particular: paths.

Definition 15. Let X be a topological space and x, y ∈ X. A path from x to
y is a continuous map γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Two
paths α and β with endpoints α(0) = x = β(0) and α(1) = y = β(1) are called
path homotopic (α ≃ β) if there exists a continuous map H : [0, 1]× [0, 1] →
X which satisfies:

H(s, 0) = α(s)

H(s, 1) = β(s)

H(0, t) = x

H(1, t) = y

One may think of H as a function along the space of paths in X where
the endpoints are fixed. The time interval t is then a continuous deformation
of path α to the path β. Thus path homotopy gives an equivalence relation
on the set of paths in X from x to y. We denote [γ] as the homotopy class
containing the path γ. Thus [α] = [β] ⇐⇒ α ≃ β. We also get an
equivalence relation on elements of the set X. For x, y ∈ X we say that
they are path connected if there exists a path in X between x and y. For
nice spaces (locally path connected), the path connected congruence classes
correspond to the connected components of X.
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We may define a binary operation, called path composition, between paths
where the endpoint of one equals the intial point on the other.

Definition 16. Let x, y, z ∈ X and α be a path from x to y and β a path
from y to z. Since α(1) = β(0) we can define:

(αβ)(s) =

{
α(2s), 0 ≤ s ≤ 1

2

β(2s− 1), 1
2
≤ s ≤ 1

Furthermore, this product is associative and can be extended to the equiv-
alence classes of paths. If α1(1) = β1(0), α1 ≃ α2 and β1 ≃ β2 then

[α1][β1] = [α1β1] = [α2β2] = [α2][β2].

We are now able to define the fundamental group:

Definition 17. Let X be a topological space. Fix an element x ∈ X. A
loop based at x is a path with initial and endpoint equal to x. The set of
equivalence classes of loops, up to homotopy, in X equipped with the binary
operation determined by path composition determines a group structure de-
noted π1(X, x), called the fundamental group.

By construction, the fundamental group is invariant under homotopies of
the topological space X. If X is path connected then π1(X, x) is isomorphic
for any x ∈ X, and is denoted π1(X). It turns out that an ambient iso-
topy between knots K and K ′ induces an isomorphism between fundamental
groups of the knot complements π1(R3 \K(′)). Thus two knots with distinct
knot groups cannot be equivalent.

27



Appendix B

Homology and Cohomology

Cohomology is one of the greatest contributions to mathematics of the last
century. It is derived from homology, a powerful tool used as a Rosetta
Stone between questions in geometry/topology and algebra. Homology was
originally used as a method for defining and categorizing holes in a manifold.

A cell-decomposition of a subset X of Rn is a division of X into cells
(spaces homeomorphic to n-balls, Bn) of various dimensions. The boundary
of these ’nice’ objects are linear combinations of cells one dimension down.
We may then view X as a set of vector spaces generated by the cells re-
lated to one-another by linear transformations which encode the boundary
maps. Because the boundary maps are linear maps, the composition of two
boundary maps must be the zero map [11].

Figure B.1: Boundary Map Intuition

Homology begins with an object, in this paper we used quandles X, which
we will use to define a chain complex {Cn(X), ∂n}n≥0. A chain complex is a
sequence of abelian groups or modules, Cn(X), connected by homomorphisms
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∂n : Cn → Cn−1 called boundary maps :

. . .
∂n+1−−−→ Cn(X)

∂n−→ Cn(X)
∂n−1−−−→ . . .

∂2−→ C1(X)
∂1−→ C0(X)

∂0−→ 0

We require that composition of boundary maps is the constant map which
sends all elements in Cn+1(X) to the identity of Cn−1(X):

∂n ◦ ∂n+1 = 0n+1,n−1

Or equivalently, Im(∂n+1) ⊆ ker(∂n). Furthermore, Im(∂n+1) is a normal
subgroup of ker(∂n). Elements of Im(∂n+1) are called n-boundaries, and
elements of ker(∂n) are called n-cycles.

Following the cell-decomposition idea, a cycle roughly corresponds to a
closed submanifold. While, a boundary is a cycle which is also the boundary
of a submanifold. A cycle which is not the boundary of any submanifold is
said to represent a hole in the space X: a manifold whose boundary would
be the cycle but is instead ‘missing’. These holes correspond to elements of
the homology group:

Hn(X) := ker(∂n)/ Im(∂n+1)

elements of which are called homology classes.
We construct cohomology from the chain-complex used for homology. Fix

an abelian group A, and replace each Cn(X) by it’s dual group Cn(X,A) :=
Hom(Cn(X);A) the group of homomorphisms from Cn(X) to A. We obtain
dual boundary map homorphisms between the dual groups as pullbacks of
a contravariant functor (also called cofunctor) which we will call F. All
we need to know for now is that the cofunctor will take ∂n 7→ δn, where
δn : Cn(X,A) → Cn+1(X,A). This has the effect of reversing the arrows in
the (co)chain-complex below.

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(X,A) Cn(X,A) Cn−1(X,A) . . .

∂n+2 ∂n+1

Hom(−;A)

∂n

Hom(−;A)

∂n−1

Hom(−;A)

δn+1 δn δn−1 δn−2
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The nth-cohomology group, Hn
A(X), is then the n-cocylces ker(δn) modulo

the n-coboundaries Im(δn−1).
Cohomology is powerful. While homology is just a certain sequence of

abelian groups or modules, we are able to turn the set of cohomology groups
into a ring structure. This is done through the cup product, which serves as
the multiplication operation. Furthermore, we may vary the abelian group A
to get many different cochain-complexes which may or may not give us more
information. Because cohomology is representable it is more accessible to
study, particularly via computers. For a more in-depth look at cohomology
see [11, 12].

30


	List of Figures
	Introduction
	Knots & Links
	Reidemeister Moves
	Oriented Knots

	Elementary Invariants
	Geometric Invariants
	Fox n-coloring
	Knot Complement

	Quandle Invariants
	Kei and Quandles
	The Fundamental Quandle
	Geometric Description of the Knot Quandle
	Quandle Colorings
	Quandle Coloring Quiver
	Quandle Cohomology

	Acknowledgements
	Bibliography
	The Fundamental Group
	Homology and Cohomology

