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Abstract

This paper was written to fulfill the upper-level writing requirement
for a Honors degree in Mathematics at the University of Rochester.

In this paper we develop the theory of fractal dimension, introducing
several definitions of and concepts related to the Minkowski and Hausdorff
dimensions of a set. After reporting some results from [1], we provide some
bounds on constants that in turn determine bounds on intersections of sets
of different dimensions.
Issues related to the shortcomings of this approach are discussed, in partic-
ular the fact that all the theorems hold up to a factor of ϵ in the exponent,
and how this introduces significant limitations to the scope of this paper.

1 Introduction

The study of fractal geometry is usually ascribed to Mandelbrot, who coined
the term fractal in 1975 [5], although, as it’s often the case in mathematics, the
idea of fractals and fractal dimension actually emerged from the work of previ-
ous mathematicians. Some of the most famous names are Weierstrass, Cantor,
Hausdorff, Fatou, Julia.

In pop culture, the idea of fractals is associated to beautiful self-similar
shapes such as the Mandelbrot set or the growth patterns of cauliflowers. There
are, however, notions of fractals that are not restricted to strictly self-similar
set. These notions usually rely on some sort of ”statistical similarity” or ”scale
invariance” of a set, and can be defined rigorously, as we shall see.

It is important to note that these generalized versions of self-similarity are
not pointless abstraction, but can be found everywhere in the world around us:
the shape of the delta of a river, or the ”jagged-ness” of the coast of an island
[4], even in the behavior of prices in the stock market [1] can all be analyzed
with these tools.
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The first notion of non-integer dimension was proposed by Hausdorff in 1918
[3]. This definition, known as Hausdorff dimension, extends the usual notions
of dimension to allow for non-integer values, and is still widely used. According
to [7], the Hausdorff dimension is considered more ”robust”, and is treated as a
”standard”.
As one would expect, the Hausdorff dimension of ”usual sets”, such as lines,
planes, or spheres, is exactly what one would expect. More generally, the Haus-
dorff dimension of an n-dimensional smooth manifold exists and is n.

There are other definitions of dimension that one can use to analyze sets. In
this paper we are going to present two of them: the Minkowski dimension, and
the discrete Hausdorff dimension.
The former is a very useful tool in concrete cases, as it lends itself well to com-
putations, but it loses some of the nice properties that the Hausdorff dimension
has.
As we shall see, this definition tries to capture the fact that if a d-dimensional
object is scaled by a factor of δ, its volume will scale roughly as:

V ∼ δd

In particular, we will see that the number of sets of diameter at most δ needed
to cover a d-dimensional set grows like ∼ C · δ−s as δ goes to zero, where C
is a positive constant. Much of the work in the last sections of this paper will
revolve around C.

The discrete Hausdorff dimension, instead, defines a notion of dimension for
sequences of finite point sets. This is very useful for practical applications, be-
cause we can approximate unknown sets by sampling a countable (in theory) or
finite (in practice) amount of points.

For example, suppose we were trying to associate a notion of dimension to
the graph of some real function. We could then take a time series of the graph
by sampling a point every ∆x. By reducing this parameter we can increase the
size of our sample set and approximate the graph. This way we can compute a
quantity associated to the time series known as r-dimensional energy integral,
where r is a non-negative real number. Given a set Pn of n points in Rd, we
define this quantity as:

Ir(Pn) := n−2
∑

p ̸=p′∈Pn

|p− p′|−r (1)

Studying how this quantity behaves as we increase the size of our sample set
allows one to define some notion of dimension of the sequence of samples, which
in turn provides information on the dimension of the underlying graph.

In the applied case when one is trying to analyze a practical situation, say
the price of a stock with respect to time, one does not have access to the full

2



graph, and it is impossible to take arbitrarily large samples. One then has to
take finite samples and try to infer their asymptotic behavior.

One more use for this tool, which will be fundamental for our purposes is
that it can be used to characterize the the validity of approximating a set by a
lower-dimensional one. For example, one can show that if a function’s graph has
dimension strictly greater than one, there is no good approximation by smooth
functions in a precise sense that will be defined later.

The aim of this paper is to study this topic by focusing on finding bounds on
intersections of sets of different dimension. In particular, this will be achieved
by building upon the work of [1]. There, one can find bounds on such intersec-
tion. These bounds, however, depend on some constants that in turn depend
on the sets under scrutiny. This paper will provide bounds for those constants
in terms of the dimensions of the sets involved.

2 The notion of dimension

There are several properties that characterize the dimension of a ”space”. The
most intuitive one, is that the dimension of a space is the minimum number of
real parameters needed to describe a point in the space. Clearly this definition
cannot be used to describe fractional dimensions (what does it mean for a space
to be parametrized by 1.5 parameters?). Furthermore, this kind of definition
could run into other issues: for example, there exists a bijection between R and
R2, so R2 could technically be parametrized by a single real number. This con-
tradicts our intuition that R2 should be two-dimensional (in fact, it is the main
example of a two dimensional space). More care is necessary when establishing
this kind of definition.

In this paper we will abandon the idea of ”number of parameters” altogether,
and utilize alternative definitions of dimension.
In particular, we will use another characteristic of dimension as our starting
point.
Denote by µd the d-dimensional Lebesgue measure. One can think of µd simply
as the ”volume function” that maps certain subsets of euclidean spaces (known
as measurable sets) to their volume.
A property that one can easily check is that the volume of a d-dimensional ball
of radius r scales as rd: in fact µd(Bd(r)) = ωd rd, where ωd is the volume of
the unit ball in d dimensions. It can be checked that this holds true for any
measurable subset E of Rd:

µ(λE) = λdµ(E) (2)

Where λ is a positive real number and λE = {λx, x ∈ E}.
The key idea here is that a d-dimensional set E ⊆ Rd scales as diam(E)d.
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The most straightforward way to elaborate on this is the Minkowski dimension,
which will be the topic of the next section.

3 Minkowski dimension

This section closely follows Ch. 2 of [2].
One way of formalizing the notion of scaling described above that of Minkowski
dimension.
There are various ways of defining this concept. Here we report two definitions,
show that they coincide and explain why both are useful.
We will start with the heuristics.

Let us introduce a handy definition, that will recur throughout the paper;

Definition 3.1 (δ-cover) Given E ⊆ Rd, we say that the (at most countable)
collection of sets {Ui}i ⊆ Rd form a δ-cover of E if diam(Ui) ≤ δ and E ⊆ ∪iUi

From this point and throughout this paper we will assume that E ⊆ [0, 1]d.
This assumption doesn’t really impact the main ideas presented here, but it
does simplify some proofs.

Suppose we wished to wished to find a δ-cover of E. Given any δ, define
Nδ(E) to be the minimal number of sets of diameter at most δ needed to cover
E.
According to 2 we see that, for an s dimensional set, we must have Nδ(E) ∼
C · δ−s.
We can obtain an expression for s by taking the logarithm of both sides:

ln(Nδ(E)) ∼ ln(C)− sln(δ)

Obtaining

s ∼ − ln(Nδ(E))

ln(δ)
+

ln(C)

ln(δ)
(3)

In the limit as δ → 0, the second term is suppressed and we get:

s ∼ − ln(Nδ(E))

ln(δ)
(4)

To define this notion rigorously, we need to acknowledge that the limit in (4)
may not exist. We do this by noting that the limit supremum and inferior
always exist.

Definition 3.2 (Minkowski dimension) Given E ⊆ Rd, we define its upper
and lower dimensions as:

dimB(E) = lim
δ→0

sup
ln(Nδ(E))

ln(δ−1)

dimB(E) = lim
δ→0

inf
ln(Nδ(E))

ln(δ−1)

(5)
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Where Nδ(E) is defined as above.
When the two limits above are equal, we can define the Minkowski dimension of
E:

dimB(E) = lim
δ→0

ln(Nδ(E))

ln(δ−1)
(6)

We can also take a different approach, known as box counting. Consider the
collection of cubes in Rd of the form

Qδ
(m1,...,md)

= [m1δ, (m1 + 1)δ]× ...× [mdδ, (md + 1)δ]

For mi ∈ Z and i ∈ {1, ..., d}. This is known as a δ-grid of Rd

Denote by N ′
δ(E) the number of cubes (of side length δ) as defined above that

contain at least a point of E. We then have the following proposition:

Proposition 1 The limits in 6 are unchanged if Nδ(E) is replaced by N ′
δ(E).

In particular, When the lim sup and lim inf coincide, the two definitions yield
the same dimension.

Proof: First of all, note that the diameter of a cube is given by the length of its
longest diagonals: diam(Qδ

(m1,...,md)
) =

√
δ2 + ...+ δ2 = δ

√
d.

Since the set of cubes of the form Qδ
(m1,...,md)

that contain at least a point of E

is a cover of E by sets of diameter at most δ
√
d, we have:

Nδ
√
d ≤ N ′

δ (7)

Similarly, can cover a set E of diameter at most δ with cubes from a δ−grid
in the following way: pick any point p ∈ E. A δ-grid covers E, p must be
contained in some Qδ

(m1,...,md)
. Since diam(E) ≤ δ, E must be covered by

Qδ
(m1,...,md)

and its adjacent cubes:

E ⊂ ∪(i1,...,id)∈{0,1,−1}dQ(m±i1
,...,m±id

)

Note that union runs over 3d cubes.
We just showed that every set of diameter at most δ can be covered by 3d δ-
cubes. This means that, if Nδ sets of diameter at most δ are necessary to cover
E, then E can always be covered by at most 3dNδ δ-cubes (one for each set).
In symbols:

N ′
δ ≤ 3dNδ (8)

Putting 7 and 8 together and taking the logarithm we get:

log(Nδ
√
d) ≤ log(N ′

δ) ≤ d · log(3) + log(Nδ)

Divide by − log(δ) to obtain:

−
log(Nδ

√
d)

log(δ)
≤ − log(N ′

δ)

log(δ)
≤ −d · log(3) + log(Nδ)

log(δ)
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If we now take the lim sup (lim inf) of these two inequalities as δ → 0 we see that
the left and right sides both approach the upper (lower) Minkowski dimension.

While these two definitions yield the same dimensions, they have different
applications. The first definition is well-suited for theoretical analysis, as it
provides a minimal value without the need to construct it explicitly.
The box counting definition, on the other hand, is more useful for numerical
computations: finding a minimal covers by sets of a given diameter is a highly
non-trivial problem, while counting how many boxes a given set intersects is
more straightforward.

3.1 Other useful definitions of Minkowski dimension

We give here two more definitions of Minkowski dimension that will be used in
this paper. We will not prove equivalence between the various definitions, but
we will prove some useful bounds between them that will be used later in the
paper, and that can be used to prove equivalence. This section follows Ch. 5 of
[6].

Definition 3.3 (Packing number) The packing number of E, Pδ(E), is de-
fined to be the largest number of disjoint open balls of radius δ with centers in
E. We call such a collection of balls a δ-packing of E.

We have the following inequality:

N2δ(E) ≤ Pδ(E) ≤ N δ
2
(E) (9)

Proof : The first inequality follows from noticing that if we take a δ-packing of
E and double the radius of the balls, we get a 2δ-cover of E. If that weren’t the
case -i.e. if a point x ∈ E wasn’t contained in a ball of radius 2δ, then Bδ(x)
would be a ball with center in E, that is disjoint from the other, contradicting
the definition of Pδ(E).

The proof for the RHS is similar, see [6].

Corollary 1 Pδ(E) and Nδ(E) give rise to the same upper and lower dimen-
sions.

We are now going to define one more quantity, the Minkowski content of a set,
that can not only be used to define another equivalent definition of Minkowski
dimension, but will also give us some useful bounds that will be explained in
section 6.
First we need a preliminary definition:

Definition 3.4 (δ-neighborhood of a set) We define the δ-neighborhood of
a set E to be

E(δ) = {x ∈ Rd : d(x,E) < δ}
Where d(x,E) = inf{d(x, y) : y ∈ E} is the distance between a point and a set.
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We can then define the s dimensional Minkowski content:

Definition 3.5 (Minkowski content) The upper and lower Minkowski con-
tents of E are defined as:

M
s
(E) = lim sup

δ→0
(2δ)s−dµd(E(δ))

Ms(E) = lim inf
δ→0

(2δ)s−dµd(E(δ))
(10)

One can then define the upper and lower Minkowski dimensions using this con-
cept:

dimB(E) = inf{s : Ms
(E) = 0} = sup{s : Ms

(E) > 0}

dimB(E) = inf{s : Ms(E) = 0} = sup{s : Ms(E) > 0}

a These definitions are equivalent to all the ones we’ve shown before, altough
we will not show that here. We will instead prove some useful bounds.

Proposition 2 We have the following inequality

Pδ(E)Ω(d)δd ≤ µd(E(δ)) ≤ Nδ(E)Ω(d)(2δ)d (11)

Proof : the fact that any δ-packing of E is contained in the δ-neighborhood of
E proves the first inequality: the LHS is exactly the d-dimensional Lebesgue
measure of the packing, so the result follows by the monotonicity of µd.

The second inequality can be proved by noting that if we replace the sets in
a δ-cover with balls of radius δ/2 that contain the original sets we still cover E.
If the radius is then increased to 2δ we are guaranteed that E(δ) is also covered.
The 2δ bound can be easily made sharper, but this will suffice for our purposes.
If we call these balls with radius 2δ Bi, 1 ≤ i ≤ n we get:

E(δ) ⊆ ∪n
i=1Bi

By monotonicity and subadditivity of µd we get:

µd(E(δ)) ≤
n∑

i=1

µd(Bi) ≤ Nδ(E)Ω(d)(2δ)d

Thus proving the inequality.

3.2 Lipshitz functions

Here we briefly discuss the role that Lipshitz functions play in dimension theory.
These functions are important as they preserve the Minkowski dimension of sets.

7



Definition 3.6 A function from Rn to Rm is said to be Lipshitz, or Lipshitz
continuous, if there exists a positive real number L such that, for all x, y ∈ Rn

we have:
|f(x)− f(y)| ≤ L|x− y|

L is known as the Lipshitz constant of f .

Proposition 3 (Lipshitz functions and Minkowski dimension) For any
set E ⊂ [0, 1]d we have

dimBf(E) ≤ dimBE

dimBf(E) ≤ dimBE
(12)

Proof : If {Ui}Nδ(E)
i=1 is a δ-cover of E, then {f(Ui)}Nδ(E)

i=1 is an L · δ-cover of
E.
Therefore NLδ(f(E)) ≤ Nδ(E). Taking the log of both sides and dividing by
log(δ−1):

NLδ(f(E))

log(δ−1)
≤ Nδ(E)

log(δ−1)

Recognizing that log(δ−1) = log((Lδ)−1) + log(L) we finally get:

NLδ(f(E))

log((Lδ)−1) + log(L)
≤ Nδ(E)

log(δ−1)

One can then take the upper and lower limits to obtain the desired result. The
log(L) term at the denominator of the LHS will disappear in the limit.

4 Hausdorff dimension

We define here the notion of Hausdorff dimension, which is one popular way of
assigning dimension of a subset of Rd, even when there is no sensible way of
assigning an integer dimension to it.
We start by defining the s-dimensional Hausdorff measure of a set E ⊆ Rd,
which has the nice property of naturally extending the (integer-dimensional)
Lebesgue measure.

First of all, we define the δ-Hausdorff content:

Definition 4.1 The δ-Hausdorff content of a set E is defined as:

Hs
δ (E) := inf{

∞∑
i=1

diam(Ui)
s : Ui is a δ-cover of E} (13)

Note that a δ′-cover of E is also a δ-cover of E, as long as δ′ < δ, so Hs
δ (E)

is non-increasing (and non-negative), and thus the limit as δ goes to 0 exists,
leading us to our next definition
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Definition 4.2 (s-dimensional Hausdorff measure) Let E be a subset of
Rd and let Hs

δ (E) be defined as above. Then we defined the s-dimensional Haus-
dorff measure of E as:

Hs(E) := lim
δ→0

Hs
δ (E) (14)

It can be shown that Hs is indeed a measure (in the measure-theoretic sense)
and that it coincides with the Lebesgue measure (up to a constant factor de-
pending on s) when s is an integer.

We will now see that, for every set E, there exists a unique value of s such
that Hs(E) is finite.
Let Ui be a δ-cover of E, and suppose t > r ≥ 0.
Then we have:∑

i

diam(Ui)
t =

∑
i

diam(Ui)
t−rdiam(Ui)

r ≤ δt−r
∑
i

diam(Ui)
s

It can be shown that the inequality still holds when taking the infimum over
δ-covers, to obtain:

Ht
δ(E) ≤ δt−rHr

δ (E) (15)

Note that (15) implies that if r ̸= t then Ht
δ(E) and Hr

δ (E) cannot be both
finite and non-zero. More concretely, suppose that Hr

δ (E) < ∞ and that r < t,
then (15) must hold for any δ. By taking the limit as δ → 0, we see that the
only way to satisfy (15) is if Hr

δ (E) = 0.
Similarly, if 0 < Ht

δ(E), the only way to satisfy (15) is if Hr
δ (E) = ∞.

We summarize the above paragraph in the following definition and theorem.

Theorem 1 (Uniqueness of Hausdorff dimension) For any given E ⊆ Rd,
there exists at most one real number s > 0, such that 0 < Hs(E) < 0.
In particular, if 0 < Hs(E) < 0, and t and r are real numbers satisfying
0 < r < s < t, we have Ht(E) = 0, Hr(E) = ∞,

Definition 4.3 (Hausdorff dimension) When such a value s exists such that
0 < Hs(E) < 0 we say that the set E has Hausdorff dimension s.

Theorem 1 shouldn’t come as a surprise. After all, the same is true with the
usual Lebesgue measure: for example, if µd is the d-dimensional Lebesgue mea-
sure and Q2 is the two dimensional unit cube (unit square), we have µ1(Q2) =
∞, µ2(Q2) = 1, and µ3(Q2) = 0.
This captures the idea that a unit square has ”unit area”, ”zero volume”, and
”infinite length”.

While Hausdorff dimension is a very powerful tool to analyze and character-
ize subsets of R/d, the following theorem tells us that we need a different tool
to deal with countable sequences of finite sets.
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Theorem 2 (Hausdorff dimension of countable sets) If S ⊂ Rd is count-
able, then it has Hausdorff dimension zero.

One idea that will allow us to analyze the dimension of countable sets is a
modification of the Hausdorff dimension known as Discrete Hausdorff dimension.
This will be the subject of the next section.

5 Discrete Hausdorff dimension

We now introduce a very important tool in the development of the idea of
discrete Hausdorff dimension: the energy integral.

Definition 5.1 (Energy integral) Given a finite set Pn ⊂ [0, 1]d with |Pn| =
n ∈ Z+, we define the discrete r-energy of Pn as:

Ir(Pn) := n−2
∑
p ̸=p′

|p− p′|−r (16)

This quantity is referred to as the ”energy” of a finite point set, as it mim-
ics the electric potential energy of a finite set of point particles with identical
charges, in the case when r = 2.

Definition 5.2 (Time series) A time series is a collection P of sets Pn ∈
[0, 1]d with |Pn| = n.
If all Pn are subsets of a set E ⊂ [0, 1]d we say that P is a time series of E.

Definition 5.3 (Discrete Hausdorff dimension) Given a time series P =
{Pn}, n ∈ Z+, we defined it’s discrete Hausdorff dimension dimHD

(P ) as:

dimHD
(P ) := sup{r ∈ [0, d] : sup

n
Ir(Pn) < ∞} (17)

Now that we have our basic ideas set up, we are almost ready to report some
results from [1], which we will then build upon.

Before we introduce the results, let us take a small digression to discuss an
issue in the definition of Nδ.

5.1 Freedom in choosing Nδ(E)

When proving the equality of various definitions of Minkowski dimension we
used the fact that we could multiply whatever definition of Nδ(E) we chose by
a constant, say k, as the latter would be suppressed by a log(δ−1) term:

lim sup
δ→0

log(k ·Nδ(E))

log(δ−1)
= lim sup

δ→0

log(k)

log(δ−1)
+

log(Nδ(E))

log(δ−1)
= lim sup

δ→0

log(Nδ(E))

log(δ−1)

As the first term goes to zero in the limit.
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There is no reason to require that k be a constant: it may as well be a
function of δ (call it k(δ)), as long as it grows slow enough:

lim sup
δ→0

log(k(δ))

log(δ−1)
= 0 (18)

Remark 1 k(δ) must go to zero or infinity slower than any polynomial.

Proof : ∀ϵ > 0 there must exist a ∆ > 0 such that 0 < δ < ∆ implies k(δ) <
Cϵδ

−ϵ, where Cϵ is a constant. If we considered the lower Minkowski dimension
we would get a similar inequality: k(δ) > cδϵ.

This requirement is to be expected: if k(δ) behaved like a polynomial, it
would affect the exponent in Nδ ∼ C · δ−s.
We see that the property that gives the Minkowski dimension its flexibility
also gives rise to some issues with its definition: it can’t resolve subpolynomial
behavior. This issue introduces a significant limitation to the results of this
paper:

Remark 2 All the theorems below are true up to a factor of (arbitrarily small)
ϵ in the exponent, and up to a multiplicative constant Cϵ. Note that this will
indeed prevent us from drawing definitive conclusions about the main goals of
this paper. This will be described clearly once we get to those results.

6 Results from fractals paper

Here we report the results from [1]. We start by stating and proving some lem-
mas from the paper that are necessary to obtain our results.

The first lemma is the most fundamental one, and it underlines all the the-
orems that follow.

Lemma 1 If a set E ⊆ Rd has upper Minkowski dimension s, there must exist
a constant CE depending only on E such that Nδ(E) ≤ CEδ

−s.

Note that, as mentioned in Remark 2, this lemma holds up to a factor of ϵ in
the exponent, and a multiplicative constant, which we may absorb into a single
constant CE,ϵ. In stating this theorem we have omitted it, but we will keep
track of it in later proofs.

The following lemma is a consequence of the first, and it quantifies the
amount of ”clustering” in a time series of a set. In particular, it serves as a
bridge between the Minkowski dimension of a set and the properties of its time
series.

Lemma 2 Let P = {Pn} be a time series of E, with dimB(E) = s. Then
|{(p, p′) : |p− p′| ≤ δ}| ≥ C−1

E δsn2
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The point of defining the discrete Hausdorff dimension is that it allows us to
compute the notion of dimension of a set by simply sampling points. Theorem
4 of [1] provides a connection between the Minkowski measure of a set and the
DHD of any of its discret subsets in the following sense:

Theorem 3 (Lower bound for Ir(Pn) - Thm 4 of FRACTALS ) Let P be
a family of point sets contained in a subset E ⊂ [0, 1]d of upper Minkowski di-
mension s .
Then, dimHD

P = r ≤ s. If, instead, we have r > s, we have the following
quantitative lower bound:

Ir(Pn) ≥
s

r − s

(
C−1

E

) r
s n

r
s−1 −

(
C−1

E

)
r

r − s
+

1

n
(19)

Where Pn ∈ P and CE is as in (2).

Proof : see appendix.

A direct application of Thm 3. is that it constrains our ability to approximate
a fractal set with smooth surfaces. This is explain concretely by Thm 8. from
[1].

Theorem 4 (Intersection of sets with different dimensions) Let P = {Pn}
be a time series with dimHD

(E) = s and let E be a subset of [0, 1]d with
dimB(E) = r > s. Then, for every ϵ > 0, there exists a constant Cϵ such
that:

|Pn ∩ E| ≤ Cϵn
2

1+r/s
+ϵ (20)

In Thm 4. P is the set we are trying to approximate with E. What it means
concretely is that if the dimension of P is greater than that of E, we will not
be able to approximate it well.
For a concrete example example, suppose we wished to approximate a set
P ⊂ R2 with DHD greater than one by a smooth line (which has UMD equal
to one). What Thm 4. tells us is that, no matter how well we approximate a
finite subset of P , if we try to add more points most of them will lie outside of
the approximating curve.

Note the presence of ϵ at the exponent, and of the multiplicative constant
Cϵ.
Proof : This proof follows that of [1], while accounting for constants that in that
paper are lumped in to Cϵ. In this case, Cϵ is comes from the constant CE in
Lemma 1, which then ripples through the proofs.

Let P ′
m = Pn ∩ E m = |P ′

m|.
Then we have:

Ir(P
′
m) = m−2

∑
p ̸=p′

p,p′∈E

|p− p′|−r ≤ m−2
∑
p ̸=p′

|p− p′|−r = m−2n2Ir(Pn)

≤ Crm
−2n2

(21)

12



Where Cs is the constant for which Is(Pn) ≤ Cs. This exists by hypothesis, as
r > s.
We now apply Thm 3:

Ir(P
′
m) ≥ Cm

s

r − s

(
C−1

E

) r
s m

r
s−1 (22)

Where Cm is a constant that guarantees that:

s

r − s

(
C−1

E

) r
s m

r
s−1 ≥ −

(
C−1

E

)
r

r − s
+

1

m

Note that Cm can be taken to be arbitrarily close to 1 as n goes to infinity.

Combining this with (21) we obtain:

Csm
−2n2 ≥ Cm

s

r − s

(
C−1

E

) r
s m

r
s−1

We can use this to find a bound for m:

m ≤

(
CSC

r
s

E

sCm
(r − s)

) 1
r
s
+1

n
2

r
s
+1

However, recall that CE depends on ϵ, which we have no control over, so we will
have to say

m ≲ϵ

(
CSC

r
s

E

sCm
(r − s)

) 1
r
s
+1

n
2

r
s
+1 (23)

7 Results

In this section we report the main results of the paper. These results are esti-
mates on the value of the constant CE on sets satisfying some given properties.
In particular, the bounds are given by the Hausdorff measure, and the upper
and lower Minkowski contents of the set E.

As explained before, bounding this constant allows one to make the state-
ment of theorem 4 more precise.
Notation: in what follows we will often omit the reference to the set E. For
example, we will write Nδ in lieu of Nδ(E)

We are now ready to state our results. We will start with a bound in the
case the Hausdorff measure of E can be computed.

Proposition 4 (Lower bound for CE) Suppose dimH(E) = dimB(E) = s.
Then, For any ϵ > 0 There exist ∆ > 0 such that ∀δ, 0 < δ < ∆ we have
Nδ > (V − ϵ)δ−s.
Where we defined V := Hs(E) ≥ Hs

δ (E).

13



Proof :
Hs(E) = lim

δ→0
Hs

δ (E) and Hs
δ (E) is non decreasing as δ decreases so, given ϵ,

there exists ∆ such that ∀δ, 0 < δ < ∆ we have V −Hs
δ (E) < ϵ ⇒.

Hs
δ (E) > V − ϵ (24)

By definition, we have

Hs
δ (E) ≤

∑
i

|Ui|s for any {U}i that is a δ-cover of E

In particular, we may choose {U}i to be a δ-cover with minimal Nδ (which we
know must be finite, as E is bounded). Then:

Hs
δ (E) ≤ Nδδ

s

Combining this with 24 we get:

Nδδ
s > V − ϵ ⇒ Nδ > (V − ϵ)δ−s (25)

This issue with this theorem is that computing the Hausdorff measure of a set
is usually difficult. Furthermore, if we are assuming dimH(E) = dimB(E) = s
we also have dimB(E) = s too, so we may as well try to get a bound out of that.
There are two propertes of the LMD that make it a more appealing starting
point for a lower bound for Nδ. The first reasonn is that the LDM is usually
easier to compute that the Hausdorff dimension. The second reason is that
the LDM is directly related to Nδ, while the Hausdorff measure takes into ac-
count countable δ-covers as well, so one cannot expect it to directly characterize
Ndelta.

It turns out that indeed we can use the LDM and its related formalism to
bound to Nδ, as explained in the next theorem:

Theorem 5 For ∆ sufficiently small we have:

Nδ ≳s,d δ−s · (Ms − ϵ)

Where the constant implicit in ≳s,d is equal to (2s · Ω(d))−1

Proof : Use the right part of (11):

µd(E (δ)) ≤ Nδ · Ω(d) · (2δ)n

Multiply both sides by (2δ)s−d and obtain:

µd(E (δ)) · (2δ)s−d ≤ Nδ · Ω(d) · (2δ)d · (2δ)s−d

µd(E (δ)) · (2δ)s−d ≤ Nδ · (2δ)s · Ω(d)

14



Once again, recognize the LHS to be as in the definition of A(δ). Apply the
least upper bound proposition: for ∆ sufficiently small:

(Ms − ϵ) ≤ Nδ · δs · 2s · Ω(d)

Rearranging:

Nδ ≥ δ−s · (Ms − ϵ) · 1

2sΩ(d)

Nδ ≳s,d δ−s · (Ms − ϵ)

(26)

We also provide a converse theorem:

Theorem 6 For ∆ small enough we have

Nδ ≲d δ−s · (Ms
(S) + ϵ)

Where M
s
(S) is the s-dimensional upper Minkowski content of S, and where

the constant implicit in ≲d is equal to 2d

Ω(d) .

Proof :
We restate equations (9) and (11) for reference:

N2δ(S) ≤ Pδ(S) (27)

Pδ(S) · Ω(d) · δd ≤ µd(S(δ)) (28)

Start from (11) with δ replaced by δ
2 :

P δ
2
(S) · Ω(d)

(
δ

2

)d

≤ µd

(
S

(
δ

2

))
Use (9) and obtain:

Nδ(S) · Ω(d)
(
δ

2

)d

≤ µd

(
S

(
δ

2

))
Multiply both sides by

(
δ
2

)s−d
= δs−d:

Nδ(S) · Ω(d)δd · δs−d · 2−d ≤ µd

(
S

(
δ

2

))
· δs−d

Simplifying, and recognizing that the RHS is just like in the definition of
Minkowski content :

2−d · Ω(d)Nδ(S) · δs ≤ M
s
(S) + ϵ

Finally, solving for Nδ(S):

Nδ(S) ≤ δ−s ·
(
M

s
(S) + ϵ

)
· 2d

Ω(d)

Nδ(S) ≲d δ−s ·
(
M

s
(S) + ϵ

) (29)
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8 Conclusions

In this paper we reviewed the theory of Minkowski and Hausdorff dimension,
providing several different definitions and showing their equality and different
use cases. After summarizing some results from [1], we showed how one can find
some bounds for the constants involved in the theorems using the Minkowski
content of the set under examination. The procedure used has a major short-
coming, in that the bounds only hold up to a factor of ϵ in the exponent. In order
to ensure control over this factor, one has to introduce another multiplicative
constant, depending on ϵ. This then leaves the overall constant undetermined,
and further study is required to determine whether one can find a bound on the
new constant.

9 Appendix A

Here we report the proofs of the theorems in [1] that we mentioned above. The
proofs are almost identical to the paper’s, with some details filled in.
Proof of Lemma 2.
Cover E with Nδ(E) balls of radius δ ⇒ Nδ(E) ≤ C−1

E δ−s.
We can then partition E as follows: let B1, ..., BNδ

be the balls mentioned above,
and define E′

i := E ∩Bi.
To ensure that the sets are disjoint, define

Ei :=

n⋂
j=i+1

Ei − Ej

Where ”−” indicates set difference. This guarantees that the set Ei form a
partition. The fact that this was a minimal cover guarantees that none of the
Ei is empty.

Note that if two points p and p′ are contained in Ei for some i, they must
also be in |{(p, p′) : |p− p′| ≤ δ}|. Hence:

|{(p, p′) : |p− p′| ≤ δ}| ≥
∑
i

|Ei ∩ Pn|2

Where the power of two in the RHS comes from the fact that we are considering
pairs of points. Apply the Cauchy-Schwartz inequality:∑

i

|Ei ∩ Pn|2 = 1 ·
∑
i

|Ei ∩ Pn|2 =
∑
i

(
Nδ(E)−1/2

)2
·
∑
i

|Ei ∩ Pn|2

≥

(∑
i

Nδ(E)−1/2 · |Ei ∩ Pn|

)2

= Nδ(E)−1

(∑
i

|Ei ∩ Pn|

)2
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Now one has to notice that
∑
i

|Ei ∩ Pn| = |Pn| = n to conclude:

|{(p, p′) : |p− p′| ≤ δ}| ≥ C−1
E δsn2

Proof of Thm. 3.
Recall the form of the energy integral:

Ir(Pn) = n−2
∑
p ̸=p′

|p− p′|−r (30)

We want to use what we know about the upper Minkowski dimension of E to
bound this expression. The only tools we have that relates the UMD of a set
to its time series is Lemma 2, so we are going to re-express (30) in a form that
will allow us to apply Lemma 2.

Start from noticing that:

|p− p′|−r = r

∫ ∞

0

1[0,∞)(δ − |p− p′|)δ−r−1 dδ

Hence:
Ir(Pn) = n−2

∑
p ̸=p′

|p− p′|−r

= rn−2
∑
p ̸=p′

∫ ∞

0

1[0,∞)(δ − |p− p′|)δ−r−1 dδ
(31)

The sum above is finite, so we can swap the sum and the integral:

Ir(Pn) = rn−2

∫ ∞

0

∑
p ̸=p′

1[0,∞)(δ − |p− p′|)

 δ−r−1 dδ (32)

Note that the sum in parenthesis just counts the number of point pairs that are
less than δ apart, excluding the n pairs with p = p′ :

Ir(Pn) = rn−2

∫ ∞

0

(|{(p, p′) : |p− p′| ≤ δ}| − n) δ−r−1 dδ (33)

Note that the expression above is exactly what we have in Lemma 2, which

we are now going to apply: if δ,
(
C−1

E n
)−1/s

we are only guaranteed the existence
of the n pairs p = p′. and thus:

|{(p, p′) : |p− p′| ≤ δ}| − n ≥ 0

If, instead, δ ≥
(
C−1

E n
)−1/s

Lemma 2 tells us more:

|{(p, p′) : |p− p′| ≤ δ}| − n ≥ C−1
E δsn2 − n (34)
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Applying (34) to (33) we get:

Ir(Pn) ≥ rn−2

∫ ∞

(C−1
E n)

−1/s

(
C−1

E δsn2 − n
)
δ−r−1 dδ

≥ rC−1
E

∫ ∞

(C−1
E n)

−1/s
δs−r−1dδ

− rn−1

∫ ∞

(C−1
E n)

−1/s
δ−r−1dδ

(35)

These integrals are finite, because we are assuming that r > s, and can be
evaluated to:

=
r

s− r

(
C−1

E

) r
s n

r
s−1 −

rC−1
E

r − s
+

1

n
(36)
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