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1 Introduction

A number of problems in discrete geometry relate to the notion of distance sets. That is,
given a collection of n points in the plane, how many distinct distances do we expect to
get between these points? Erdős conjectured in 1946 that for any arrangement of N points,
there number of distinct distances is & N√

log N
, where here and going forward A & B means

A ≥ CB for some constant C [1]. This conjecture was proven by Guth and Katz in 2015 [2].
A related conjecture by Kenneth Falconer states [3]:

If d ≥ 2 and E ⊆ Rd is compact, then

dim(E) >
d

2
=⇒ |∆(E)| > 0

where dim(E) is the Hausdorff dimension of E and |∆(E)| is the Lebesgue measure of
the set of all distances between points in E.

This conjecture is as of yet still unproven, but M. Erdoğan proved the following partial
result in [5]:

Theorem 1.1. (Erdoğan, 2005) Let d ≥ 3, E ⊆ Rd compact, such that

dim(E) >
d

2
+

1

3
.

Then |∆(E)| > 0.

The Erdős and Falconer problems can also be treated in the context of other vector
spaces. In particular, significant research has been done into these problems in a discrete
geometry context, translating them to vector spaces over finite field. Let q be a prime power,
and Fq the finite field of q elements. Then given a positive integer d we define a norm on
the d-dimensional vector space Fdq by

||x|| = x21 + x22 + ...+ x2d, (1)
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where here the square root found on the analogous Euclidean norm is omitted here on
the grounds that taking square roots in Fq is often not possible. Let E be a subset of Fdq .
Define the distance set of E:

∆(E) = {||x− y|| : x, y ∈ Fdq}.

The Erdős-Falconer distance problem in this context asks how small are large ∆(E) can be
compared to the size of E. In the particular case of finite fields a natural question to ask
is how large must E be in order that ∆(E) = Fdq , or at least such that |∆(E)| ≥ q

2
. Some

progress has been made on these questions is recent years. In 2007, A. Iosevich and M.
Rudnev proved the following results via methods of discrete Fourier analysis [6]:

Theorem 1.2 (Iosevich, Rudnev 2007). Let E ⊆ Fdq such that |E| & Cq
d
2 for C sufficiently

large. Then

|∆(E)| & min

{
q,
|E|
q

d−1
2

}
(2)

They then go on to expand this to a stronger result:

Theorem 1.3 (Iosevich, Rudnev 2007). Let E ⊆ Fdq such that |E| ≥ Cq
d+1
2 for some C

sufficiently large. Then ∆(E) = Fq.

Shortly thereafter Hart, Iosevich, Koh, and Rudnev proved that when d is odd, the
above value of d+1

2
is sharp [7]. A paper by Chapman et al [4] further develops these results,

proving the following:

Theorem 1.4 (Chapman et al, 2009). Let E ⊆ F2
q. If q ≡ 3 mod 4 and E ≥ q4/3, then

|∆(E)| > q

q +
√

3
(3)

If q ≡ 1 mod 4, q sufficiently large and E ≥ q4/3, then there exists 0 < ε1 < 1 such that

|∆(E)| > εqq, (4)

where εq → 1
1+
√
3

as q →∞.

In the special case of q = p, d = 2, the authors in [8] use a novel approach to derive
the following bound:

Theorem 1.5. Let E ⊆ Fp such that p ≡ 3 mod 4. Suppose further that |E| . q
1558
1489 . Then

we have

|∆(E)| � |E|
424
779 = |E|

1
2
+ 69

1558

where X � Y means that for every ε > 0 there exists Cε such that X ≤ Cεq
εY .
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Another topic that has been studied previously is that of the distance graph on subsets
of Fdq . Given E ⊆ Fdq , define a distance graph on E by fixing an element t ∈ Fq, taking each
point in Fdq to be a vertex, and connecting two vertices x and y by an edge if ||x − y|| = t.
In [9], the authors prove the following results:

Theorem 1.6. Let E ⊆ Fdq for d ≥ 2, and |E| > 2k
ln2
q

d+1
2 . Suppose for 1 ≤ i ≤ k we have

0 6= ti ∈ Fq, and ~t = (t1...tk). Define

Ck(~t) = |{(x1...xk+1) ∈ E × ...× E : ||xi − xi+1|| = ti, 1 ≤ i ≤ k}|.
Then

Ck(~t) =
|E|k+1

qk
+Dk(~t)

where

|Dk(~t)| ≤
2k

ln2
q

d+1
2
|E|k

qk

The authors then go on to apply this result to one about chain in the distance graph
of E

Definition 1.1. If G is a simple graph a path of length k in G is a sequence of vertices
v1...vk+1 such that for each i ∈ {1...k}, vi is connected to vi+1 by an edge. A path of length
k in G is said to be non-overlapping if each vi is distinct.

Corollary 1.6.1. Suppose E ⊆ Fdq such that |E| ≥ 4k
ln 2

q
d+1
2 . Then the distance graph of E

contains a non-overlapping chain of length k.

In [9] the authors go on to prove one further result, this one concerning k-stars, a highly
related structure. Fixing an x in E, we can look at all the vectors which are some given
distance from x, a configuration which we call a k-star.

Theorem 1.7. Let E ⊆ Fdq, and suppose for each 1 ≤ i ≤ k we have ti 6= 0. Let ~t = (t1...tk),
and define

νk~t = |{(x, x1, ...xk) ∈ Ek+1 : ||x− xi|| = ti, x
i = xi ⇐⇒ i = j}|. (5)

Then if |E| > 12q
d+1
2 , then νk(~t) > 0 for any k < |E|

12q
d+1
2

.

If |E| > 12q
d+3
2 , then νk(~t) > 0 for any k < |E|

12q
.

2 Background Results

Before beginning our proofs, we present some definitions and established theorems that will
be used here and further on:

Given a function f : Fdq → C and χ a non-trivial additive character for Fq, then we
define the Fourier transform of f by
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f̂(m) = q−d
∑
x∈Fd

q

χ(−m · x)f(x).

We also have analogues for the Plancherel and inversion formulae familiar from the
non-discrete Fourier transform:∑

m∈Fd
q

|f̂(m)|2 = q−d
∑
x∈Fd

q

|f(x)|2

and

f(x) =
∑
m∈Fd

q

f̂(m)χ(m · x).

Lastly we define discrete convolution. If f, g : Fdq → C, then

(f ∗ g)(x) =
∑
y∈Fd

q

f(y)g(x− y).

From this we have a version of Young’s convolution inequality:

Theorem 2.1 (Young). If f, g : Fdq → R, and we have

1

s
+

1

t
=

1

r
+ 1

For 1 ≤ s, t ≤ r ≤ ∞, then

||f ∗ g||r ≤ ||f ||s||g||t

Here the requirement that f is an Ls function and g is an Lt function is unnecessary
here, as over a finite domain all functions belong to all Lp spaces.

3 Results

In many results of this type, an element that recurs frequently is the sum∑
||x−y||=t

f(x)g(y), (6)

where f and g are real-valued functions and t is a fixed element of Fq. In [9], the prove
the following bound on this sum, as an intermediate step towards the final results. Because
the method of proof is instructive as to the methods of analysis on finite fields, as well as to
the calculations that follow, we will include the proof here as well.

Theorem 3.1. 1 Let f, g : Fdq → R+. Let St = {x ∈ Fdq : ||x|| = t}, where ||x|| = x21+ ...+x2d,
and t 6= 0. Then
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∑
x,y∈Fd

q

f(x)g(y)St(x− y) =
1

q
||f ||1||g||1 +D(f, g) (7)

where
|D(f, g)| ≤ 2q

d−1
2 ||f ||2||g||2. (8)

Proof. To begin, we write the following equalities:∑
x,y∈Fd

q

f(x)g(y)St(x− y)

=
1

q

∑
x,y∈Fd

q

f(x)g(x+ y)
∑
s∈Fq

χ(s||y|| − t)

=
1

q
||f ||1||g||1 + qd−1

∑
m∈Fd

q

f̂(m)ĝ(−m)
∑
s 6=0

χ(−st)
∑
y∈Fd

q

χ(s||y|| − y ·m)

=
1

q
||f ||1||g||1 + qd−1

∑
m∈Fd

q

f̂(m)ĝ(−m)
∑
s 6=0

χ

(
−st− ||m||

4s

)∑
y∈Fd

q

χ
(
s
∣∣∣∣∣∣y − m

2s

∣∣∣∣∣∣) .
The sum on the far right is a Gauss sum, which gives us

1

q
||f ||1||g||1 + u1q

3d−2
2

∑
m∈Fd

q

f̂(m)ĝ(−m)
∑
s 6=0

(
s

q

)d
χ

(
−st− ||m||

4s

)
(9)

Where u1 is a complex number of modulus 1 and
( ·
·

)
is the Legendre symbol [10]. We

then use the following fact about Kloosterman/Salié sums [10]:

Lemma 3.2. If a 6= 0 or b 6= 0, then∣∣∣∣∣∑
s 6=0

(
s

q

)d
χ(as+ bs−1)

∣∣∣∣∣ ≤ 2
√
q (10)

Using this lemma here we get that equation (8) equals

1

q
||f ||1||g||2 + 3u2q

3d−1
2

∑
m∈Fd

q

|f̂(m)ĝ(−m)| (11)

where u2 ∈ C, |u2| ≤ 1. By Cauchy-Schwartz, the above equation is less than or equal
to

1

q
||f ||1||g||1 + 2u2q

3d−1
2

 ∑
m1,m2∈Fd

q

|f̂(m1)|2|ĝ(−m2)|2
1/2

(12)

and we are done by an application of Plancherel.
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The cited paper this proof originates in uses this result to prove a statement regarding
the existence of long paths of in the distance graph of E, where E is a subset of Fdq . The
distance graph of E is defined to be the graph whose vertices are the points of E and where
two vertices are connected by an edge if the distance between the two vertices is some fixed
distance t ∈ Fq. Our goal is to use this result to prove a more general result for an analogous
sum over three variables, then extending the method to cover the more general case of k+ 1
functions, in the hopes that this result can be extended to prove similar results regarding
more general graphs in addition to the existence of long paths. To illustrate this, suppose
the following figure represents a long path as described in [9]:

Then our hope is that the following generalizations of the above sum could allow for the
study of more general subsets of the distance graph, via appropriate choices of the functions
in the sum. Such a hypothetical example is illustrated below:

The statement of this result is as follows:

Theorem 3.3. Let f, g, h : Fdq → R+, and let St = {x ∈ Fdq : ||x|| = t}, where t is a fixed,
non-zero element of Fq. Then:
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∑
x,y,z∈Fd

q

f(x)g(y)h(z)St(x− y)St(y − z) =
1

q2
||f ||1||g||1||h||1 +D(f, g, h), (13)

where D(f, g, h) is an error term such that

|D(f, g, h)| ≤ 2q
d−3
2 ||f ||1||g||2||h||2 + 2q

d−1
2 ||f ||2||g||∞||h||2|St| (14)

Proof. Let f, g, h : Fdq → R+, St = {x ∈ Fdq : ||x|| = t}. We wish to find an estimate for∑
x,y,z∈Fd

q

f(x)g(y)h(z)St(x− y)St(y − z) (15)

Define g̃(y) = g(y)(h ∗ St)(y − z), so (15) equals∑
x,y∈F d

q

f(x)g̃(y) (16)

Using theorem 2.1, this is equal to

1

q
||f ||1||g̃||1 +D(f, g̃) (17)

where D(f, g̃) is an error term such that

|D(f, g̃)| ≤ 2q
d−1
2 ||f ||2||g̃||2

So in particular we need an estimate for ||g̃||1 and ||g̃||2.
Firstly we have

||g̃||1 =
∑
y∈Fd

q

g̃(y) =
∑
y∈Fd

q

g(y)(h ∗ St)(y) =
∑
x,y∈Fd

q

g(y)h(z)St(y − z)

=
1

q
||g||1||h||1 +D(g, h)

Where as before |D(g, h)| ≤ 2q
d−1
2 ||g||2||h||2.

Next, we have

||g̃||22 =
∑
y∈Fd

q

(g̃(y))2 =
∑
y∈Fd

q

g2(y)(h ∗ St)2(y)

≤ ||g||2∞||h ∗ St||22
≤ ||g||2∞||h||22|St|2

In the last step the inequality follows from Young. In the notation of the inequality in
the previous section, let 2 = r = s, and t = 1. Then we have
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1

s
+

1

t
= 1 +

1

2
=

1

r
+ 1 (18)

So Young gives

||h ∗ St||2 ≤ ||h||2||St||1 = ||h||2|St| (19)

Hence we have

g̃||2 ≤ ||g||∞||h||2|St|. (20)

——
In total this gives

∑
x,y,z∈Fd

q

f(x)g(y)h(z)St(x− y)St(y − z) =
1

q2
||f ||1||g||1||h||1 +D(f, g, h) (21)

where

|D(f, g, h)| ≤ 2q
d−3
2 ||f ||1||g||2||h||2 + 2q

d−1
2 ||f ||2||g||∞||h||2|St| (22)

We could also have done an equivalent calculation exchanging the roles of f and h.
This would give

|D(f, g, h)| ≤ 2q
d−3
2 ||f ||2||g||2||h||1 + 2q

d−1
2 ||f ||2||g||∞||h||2|St|. (23)

Next we wish to extend this method to prove a more general bound for the analogous
sum for k + 1 functions.

Theorem 3.4. Let f1...fk+1 : Fdq → R+, St = {y ∈ Fdq |||y|| = t}. Then

∑
x1...xk+1∈Fd

q

f1(x1)...fk+1(xx+1)St(x1 − x2)...St(xk − xk+1) =
1

qk
||f1||1...||fk+1||1 +D(f1...fk+1)

(24)
where D(f1...fk+1) is an error term such that

|D(f1...fk+1)| ≤
k−1∑
i=0

2q
d−(2i+1)

2

( ∏
1≤j≤i

||fj||1

)( ∏
i+2≤j≤k

||fj||∞

)
||fi+1||2||fk+1||2|St|k−1−i

(25)

Proof. We proceed by induction. The base case, k = 1, is the result proven in []. For the
inductive step the method is similar to the previous theorem.

Suppose the result holds for all n ≤ k. Define f̃k = fk(xk)(fk+1 ∗ St)(xk). Then we
have
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∑
x1...xk+1∈Fd

q

f1(x1)...fk+1(xx+1)St(x1 − x2)...St(xk − xk+1)

=
∑

x1...xk∈Fd
q

f1(x1)...fk−1(xk−1)f̃k(xk)St(x1 − x2)...St(xk−1 − xk)

= q−k+1||f1||1...||fk−1||1||f̃k||1 +D(f1...f̃k)

By work done in the previous proof, we know that

||f̃k||1 =
1

q
||fk||1||fk+1||1 +D(fk, fk+1) (26)

where

|D(fk, fk+1)| ≤ 2q
d−1
2 ||fk||2||fk+1||2. (27)

We also know by inductive hypothesis that

|D(f1...f̃k)| ≤
k−2∑
i=0

2q
d−(2i+1)

2

( ∏
1≤j≤i

||fj||1

)( ∏
i+2≤j≤k−1

||fj||∞

)
||fi+1||2||f̃k||2|St|k−2−i.

Here we have ||f̃k||2 ≤ ||fk||∞||fk+1||2|St|. Combining this with the above we get a
main term of

1

qk
||f1||1...||fk+1||1

plus an error term

|D(f1...fk+1)| ≤ 2q
d−2k+1

2 ||f1||1...||fk−1||1||fk||2||fk+1||2

+
k−2∑
i=0

2q
d−(2i+1)

2

( ∏
1≤j≤i

||fj||1

)( ∏
i+2≤j≤k−1

||fj||∞

)
||fi+1||2||fk||∞||fk+1||2|St|k−1−i

=
k−1∑
i=0

2q
d−(2i+1)

2

( ∏
1≤j≤i

||fj||1

)( ∏
i+2≤j≤k

||fj||∞

)
||fi+1||2||fk+1||2|St|k−1−i

In both of the above theorems we do not expect this bound to be optimal, and it can
most likely be improved. In particular, the step of calculating a bound for ||g̃||2 in theorem
2.3 involves the rather awkward step of pulling out a ||g||2∞ from the sum∑

y∈Fd
q

g2(y)(h ∗ St)2(y).

If a better method for estimating ||g̃||2 can be found, it should improve the result.
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[4] J. Chapman, M. Erdoğan, D. Hart, A. Iosevich, D. Koh, Pinned distance sets, k-simplices,
Wolff’s exponent in finite fields and sum-product estimates (2009)
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