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Abstract. An elliptic curve over the complex field is isomorphic to the quotient of the complex

plane by a lattice Λ. The quotient of the upper half plane by an action of subgroups of SL2pZq

define moduli spaces of the isomorphism classes of elliptic curves and their N-torsion points. These

quotient spaces, known as modular curves, are compactified by gluing in a finite number of points,

known as cusps. In this paper we will explore the isomorphism classes of elliptic curves under

varying group actions, study interesting properties of cusps and their width, and examine how

cusps behave under maps between modular curves.

1. Introduction

Elliptic Curves have many important applications in mathematics, including consequences in

group theory, factorization, primality testing, and cryptography. As a result, we are motivated to

study these curves in general and their moduli spaces in particular.

Given that F is a field, the most elementary representation is the set of solutions in a field F of

the cubic equation

y2 “ x3 ` Ax ` B,

where A,B P F. Specifically considering elliptic curves where F “ C, there are two additional and

equivalent representations.

‚ An elliptic curve over C is a genus 1 Riemann surface together with a distinguished point.

‚ An elliptic curve over C is the quotient of the complex plane by a lattice.

In the latter case, one may imagine a lattice of points in the complex plane, which defines repeating

parallelograms formed where each pair of opposite sides will be identified with each other. In our

study of elliptic curves, we will focus primarily on the complex torus representation.

For two elliptic curves Eτ “ C{Λτ and Eτ 1 “ C{Λτ 1 viewed as complex tori, if they are isomorphic

curves with τ 1 “ aτ`b
cτ`d , then γ “

`

a b
c d

˘

P SL2pZq. Therefore we are able to define the group action

of SL2pZq on the complex upper half plane H (where Eτ ÞÑ τ P H). This action reduces the

upper half plane to a space known as the moduli space of elliptic curves where each orbit of curves

is represented. We will note the same process can be performed using congruence subgroups of

SL2pZq, for example

Γ1pNq “

#˜

a b

c d

¸

P SL2pZq :

˜

a b

c d

¸

”

˜

1 ˚

0 1

¸

mod N

+

.

Considering the space YΓ formed from the quotient of a congruence subgroup Γ on H, we will

come to define cusps of the subgroup Γ. We then define the compactified modular curve XΓ to be
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the space YΓ union the cusps. On top of defining cusps, we will come to study them in depth. We

will especially focus on the topological impact of cusps, computing the width of a cusp, and counting

the number of cusps in XΓ.

Eventually we will place an emphasis on the cusps of Γ1pNq and especially how the cusps map

from X1pNq Ñ X1pMq for M |N . We will develop theorems that count the number of cusps in

X1pNq that map to a specific cusp of width w in X1pMq.

2. Elliptic Curves

The most familiar definition of elliptic curves is the first representation provided in the introduc-

tion. In this representation, we would define an elliptic curve as the curve generated by solutions

to equations of the form y2 “ x3 ` Ax ` B together with a point at infinity, where A,B P F for

some field F. Our other two equivalent representations for elliptic curves over the complex field are a

genus 1 Riemann surface with a distinguished point and the quotient of C by a lattice. In developing

the theory for the latter representation, we now look to define a lattice in the complex plane.

Definition 2.1. A lattice in the complex plane is a set Λ “ Zω1 ‘Zω2 where tω1, ω2u is a basis for

C over R.

It is worth noting that by definition, 0 is a point on any lattice in C. From an arbitrary lattice Λ

with given tω1, ω2u, we can construct an isomorphic lattice Λτ “ Z‘Zτ , where τ “ ω2{ω1. Without

loss of generality, we may assume the imaginary part of τ is positive because ω1, ω2 can be switched.

Further, Impτq ‰ 0 as otherwise ω1, ω2 would not form a basis. Now, we present the definition of a

complex torus.

Definition 2.2. A complex torus is the quotient of the complex plane by a lattice Λ. We will denote

a complex torus as E “ C{Λ.

As was hinted at above, an important result shown in Diamond and Shurman is that an isomorphic

map can be constructed between complex tori with distinguished points at 0 and elliptic curves over

C [1]. We now will equivalently refer to E “ C{Λ as a complex elliptic curve.

From any complex curve E “ C{Λ, we can construct an isomorphic curve Eτ :“ C{Λτ . Recall

that Λ “ Zω1 ‘ Zω2 and Λτ “ Z ‘ Zpω1{ω2q. We understand that the elliptic curves E and Eτ

are isomorphic because the map from E Ñ Eτ that takes z ÞÑ z{ω1 is obviously holomorphic and

invertible, hence an isomorphism.

This result leads to the question: when are two complex elliptic curves Eτ and Eτ 1 isomorphic in

general?

Suppose that ϕ : Eτ Ñ Eτ 1 is an isomorphism. Then ϕ must map some lattice point aτ ` b with

a, b P Z from Eτ to the point τ 1 P Λτ 1 . Meanwhile, ϕ maps another lattice point cτ ` d with c, d P Z
to 1 P Λτ 1 . In order to learn more about this isomorphism, we will show the specific structure that

ϕ must take.

Theorem 2.3. If ϕ : Eτ Ñ Eτ 1 is a complex isomorphism between two elliptic curves, then ϕpzq “

mz, where m P C.
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Proof. We first define the lift of ϕ, denoted ϕ̃, as a map from C Ñ C that preserves the lattice points

by mapping points in Λτ to points in Λτ 1 .

C
ϕ̃ //

��

C

��
Eτ

ϕ // Eτ 1

We will now fix an arbitrary lattice point λ P Λτ . Next, we define the complex function

gλpzq “ ϕ̃pz ` λq ´ ϕ̃pzq.

From the continuity of ϕ̃, we know gλ is continuous. We also know that gλpzq P Λτ 1 because z ` λ

and z are in the same coset in Λτ and ϕ̃ takes a lattice point in Λτ to a lattice point in Λτ 1 . From

this fact joined with the continuity of gλ and the lattice being a discrete set, we get the fact that gλ

is a constant function. Now by differentiating gλ, we see that

g1
λpzq “ ϕ̃1pz ` λq ´ ϕ̃1pzq “ 0

because gλ is constant. Then we realize

ϕ̃1pz ` λq “ ϕ̃1pzq.

The important consequence of this statement is that when working with the function ϕ̃1, we can

consider only the points z P P , where P is the parallelogram spanned by the basis 1, τ for the lattice

Λτ . If we have a point z P C ´ P , we may translate the point into P by adding a lattice point.

P

τ

0 1

τ ` 1

Λτ

Figure 1. The parallelogram P (fundamental domain) that accounts for all cosets

of C{Λτ under ϕ̃1

Now we have a continuous function ϕ̃1 on a bounded space P , so we can conclude by the Extreme

Value Theorem that ϕ̃1 attains a maximum M . Hence for any z P C,

|ϕ̃1pzq| ď max
zPP

|ϕ̃1pzq| “ M.

Now by Liouville’s Theorem, our holomorphic and bounded function ϕ̃1 is constant, so

ϕ̃1pzq “ m.

Lastly, by integrating ϕ̃1, we get that

ϕ̃pzq “ mz ` C.

However because the origin is fixed in a map between elliptic curves, the additional constant C

disappears and we are left with our result ϕ̃pzq “ mz. □
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After proving that ϕpzq “ mz, we return to our notes about where ϕ takes lattice points to then

realize that mpaτ ` bq “ τ 1 and mpcτ ` dq “ 1 for some integers a, b, c, and d. This implies that

m “ pcτ `dq´1 and τ 1 “ aτ`b
cτ`d . We conclude that Eτ and Eτ 1 are isomorphic if and only if τ 1 “ aτ`b

cτ`d .

To simplify this construction we will study the matrix γ “
`

a b
c d

˘

.

Theorem 2.4. If Eτ and Eτ 1 are isomorphic elliptic curves with τ 1 “ aτ`b
cτ`d , then γ “

`

a b
c d

˘

P SL2pZq,

the special linear group of degree 2 over Z.

Proof. First, recall that Impτ), Impτ 1) ą 0. We now realize that γ is invertible, because if it were

not, τ 1 would be rational, implying Impτ 1q “ 0 and we arrive at a contradiction. Next we seek to

find the determinant of γ.

Accomplishing this requires us to study the map between Λτ Ñ Λτ 1 as a map between Z2 Ñ Z2.

Hence we note the correspondence between a lattice point kτ ` l P Λτ and the point pk, lq P Z2. As

we specified, aτ ` b “ τ 1 and cτ ` d “ 1, so pa, bq ÞÑ p1, 0q P Λτ 1 and pc, dq ÞÑ p0, 1q P Λτ 1 . Now note

that an arbitrary pk, lq P Λτ multiplied by γ will map to pk, lq P Λτ 1 . Here we invert this map so

pk, lq Ñ pk, lqγ´1. Next recognize that

γ´1 “

˜

a b

c d

¸´1

“
1

detpγq

˜

d ´b

´c a

¸

.

We reach the conclusion that detpγq “ ˘1 because otherwise the image of

pk, lq ÞÑ pk, lq
1

detpγq

˜

d ´b

´c a

¸

would no longer necessarily be in Z2. Further, the identity

τ 1 “
aτ ` b

cτ ` d
¨
cτ̄ ` d

cτ̄ ` d
“

acτ τ̄ ` adτ ` bcτ̄ ` bd

|cτ ` d|2

leads us to

Impτ 1q “
pad ´ bcqImpτq

|cτ ` d|2
.

We now discover that Impτ 1q ą 0 if and only if detpγq “ ad ´ bc ą 0. We have already asserted

Impτ 1q ą 0, so we conclude that detpγq ą 0. Combined with our previous result, detpγq “ 1 and

thus γ P SL2pZq. □

3. Moduli of Elliptic Curves

The goal of this section is to construct M1,1, the moduli space of elliptic curves. This space will

consist of points that have a one-to-one correspondence with isomorphism classes of elliptic curves.

We will start by proposing the complex upper half plane as a candidate.

Definition 3.1. The upper half plane is H “ tτ P C : Impτq ą 0u.
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0

H

Figure 2. The upper half plane H

It is then easy to see that an elliptic curve Eτ “ C{Λτ corresponds to the point τ in H. However,

an elliptic curve can correspond to more than one point τ P H, specifically any two curves

Eτ “ C{Λτ and Eγτ “ C{Λγτ , γ P SL2pZq.

We know this to be true because the action of matrices in SL2pZq induces an isomorphism of elliptic

curves.

While M1,1 ‰ H, we can define a group action of SL2pZq on H, where the action will send an

elliptic curve Eτ , τ P H to its isomorphism class of curves.

The obvious and correct candidate for M1,1 is the quotient group SL2pZqzH.

Definition 3.2. The moduli space of elliptic curves is M1,1 “ SL2pZqzH.

Our focus now shifts towards a graphical depiction of M1,1.

Note that the group SL2pZq2pZq, otherwise known as the modular group, is generated by the two

matrices [1, p. 2]

S “

˜

1 1

0 1

¸

and T “

˜

0 ´1

1 0

¸

.

If we consider the elliptic curve Eτ corresponding to τ P H, we can examine the action of the

matrices S and T on τ . First, S acts on τ by

Sτ “
1τ ` 1

0τ ` 1
“ τ ` 1.

When considering the moduli space M1,1, this result shows us that τ is in the same isomorphism

class as τ`1, and subsequently every τ`k for all k P Z. Thus, when reducing the upper half plane to

this moduli space we notice that the elliptic curves begin repeating themselves (up to isomorphism)

every vertical strip of width 1.

1
2´ 1

2

H

ττ ´ 1τ ´ 2τ ´ 3τ ´ 4 τ ` 1

Figure 3. The upper half plane reduced to a vertical strip of length 1

Looking at the other generator of SL2pZq2pZq, T acts on τ as follows

Tτ “
0τ ` p´1q

1τ ` 0
“

´1

τ
.
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Now we find that every τ is in an isomorphism class with ´1
τ , allowing us to place further

restrictions on the width 1 strip of the upper half plane that resulted from the action of S. Specifically,

we realize that each point below the unit circle (radius 1) are in the same orbit as a point above.

We will also note that the action of S identifies the left boundary with the right boundary, while the

action of T identifies the bottom left and bottom right components. We now have all the information

to visualize the moduli space M1,1.

1
2´ 1

2

H

M1,1

1
2

`
?
3
2
i´ 1

2
`

?
3
2
i

M1,1

Figure 4. A visualization of the moduli space of elliptic curves M1,1

4. Modular Curves

Recall from above that we created the moduli space of elliptic curves from the quotient of the

upper half plane by the modular group SL2pZq. In this section we will look at similarly designed

spaces derived from the quotient of H by subgroups of SL2pZq that will be called modular curves.

Considering a subgroup of SL2pZq indicates that there will be more restrictions placed on which el-

liptic curves are isomorphic to each other. Consequently there will be fewer curves in an isomorphism

class and then the quotient will be a larger space than M1,1.

Definition 4.1. A point P in an elliptic curve E “ C{Λ is an N-torsion point if NP P Λ (that is,

NP “ 0 in the elliptic curve).

We will now define the three subgroups of SL2pZq that we will be working with. Following these

definitions, we will make claims regarding how a matrix γ from each of these subgroups act on the

N -torsion points between the elliptic curves Eτ and Eγτ .

The first of these subgroups is ΓpNq.

Definition 4.2 ([1, p. 13]). Let N be a positive integer. Then the principal congruence subgroup

of level N is

ΓpNq “

#˜

a b

c d

¸

P SL2pZq :

˜

a b

c d

¸

”

˜

1 0

0 1

¸

mod N

+

.

Note that the matrix congruence is interpreted for each entry, so a ” 1 mod N and so on. We

also then observe that Γp1q “ SL2pZq.

Definition 4.3. [1, p. 13] A subgroup Γ of SL2pZq is considered a congruence subgroup if there

exists an N P Z such that ΓpNq Ă Γ. In this case, Γ is called a congruence subgroup of level N .

It can then be verified that the two following definitions for Γ0pNq and Γ1pNq are congruence

subgroups of SL2pZq. Note that the ˚ represents any integer value mod N .
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Γ0pNq :“

#˜

a b

c d

¸

P SL2pZq :

˜

a b

c d

¸

”

˜

˚ ˚

0 ˚

¸

mod N

+

.

Γ1pNq :“

#˜

a b

c d

¸

P SL2pZq :

˜

a b

c d

¸

”

˜

1 ˚

0 1

¸

mod N

+

.

We can easily convince ourselves that if N is a positive integer,

ΓpNq Ă Γ1pNq Ă Γ0pNq Ă SL2pZq

This is clear by the decreasing amount of restrictions placed on the matrices within the groups

as we progress from left to right.

As was mentioned at the beginning of this section we will look to take the quotient of the upper

half plane by these subgroups, returning what will be defined as a modular curve.

Definition 4.4. If Γ is a congruence subgroup, then YΓ “ SL2pZqzH is a modular curve.

The following three definitions will be the modular curves that correspond to the previously

defined subgroups of SL2pZq.

Y pNq “ ΓpNqzH, Y0pNq “ Γ0pNqzH, Y1pNq “ Γ1pNqzH.

From the previous statement that Γp1q “ SL2pZq, we can now see that Yp1q “ M1,1. This

notation will be interchangeable going forward.

Now, if we look at an orbit of elliptic curves in Y pNq, we see that these curves are isomorphic

by action from ΓpNq. This indicates that a curve Eτ is isomorphic to Eγτ when γ P ΓpNq. More

information on the geometric implications of this action will come soon.

For the moment, we realize that the orbit of curves isomorphic to Eτ , which corresponds to

τ P Y pNq has more restrictions placed on it than the orbit rτ s P Y1pNq. Then rτ s P Y1pNq has more

restrictions than rτ s P Y0pNq which has more restrictions than rτ s P Y p1q. In this discussion, the

additional restrictions on an orbit in a modular curve indicates that the orbit will be smaller. Hence

we can consider a function that is defined from

Y pNq Ñ Y1pNq Ñ Y0pNq Ñ Y p1q.

This function will take

ΓpNqτ ÞÑ Γ1pNqτ ÞÑ Γ0pNqτ ÞÑ SL2pZqτ,

where each subsequent map is adding more curves to the orbit of τ because the amount of restrictions

on the modular curve are decreasing.

Additionally, if we considered a specific modular curve, say Y1pNq, we may define the function

Y1pNq Ñ Y1pMq,

where M | N , taking Γ1pNqτ ÞÑ Γ1pMqτ . Here we see that τ P Y1pNq has the restriction of

congruence mod N. Any matrix satisfying these congruences (mod N) will be guaranteed to satisfy

them for (mod M) where M divides N . So the point τ in the modular curve Y1pMq has more
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elements in its orbit than its counterpart in Γ1pNq. We will study this function in depth at a later

point. Also note that this logic applies to ΓpNq and Γ0pNq as well, not just Γ1pNq.

Let’s now describe what the orbits of τ look like for a τ in each of our defined modular curves. We

already know that the action of all of SL2pZq on τ reduces the space to M1,1 as described before.

Lemma 4.5. The reductive map from SL2pZq Ñ SL2pZ{NZq is surjective.

Proof. See [3, Lemma 5.2.6]. □

Theorem 4.6.

‚ Y pNq is the moduli space of elliptic curves together with a specified ordered basis of the

N -torsion points.

‚ Y1pNq is the moduli space of elliptic curves together with a specified torsion point of order

N .

‚ Y0pNq is the moduli space of elliptic curves together with a choice of an order N cyclic

subgroup of N -torsion points.

A matrix γ P ΓpNq will take a curve τ to γτ where these two curves will of course be isomorphic

in the moduli space of elliptic curves because γ P SL2pZq. However, the additional congruence

restrictions will force the action of γ to preserve an ordered basis of N -torsion points.

For a γ P Γ1pNq we have that τ and γτ are isomorphic, but now add the condition that the

specified N -torsion point in Eτ is preserved by the action of γ.

If we consider γ P Γ0pNq, we again have that τ and γτ are in the same orbit, but with the least

amount of restrictions from Γ0pNq. We see that τ and γτ may map a single N -torsion point from τ

to a different N -torsion point in γτ . These N -torsion points are part of a cyclic subgroup of order

N , the group S “ t0, 1
N , . . . , N´1

N u is an example.

Proof. As we will focus more intently on Γ1pNq later, we will prove this claim for only Γ1pNq. We

will start with the descriptive definition: the moduli space of elliptic curves with a specified N -

torsion point of order N . This is equivalent to the set of isomorphism classes of curves with this

N -torsion point of order N . We will now show that each of these isomorphism classes contains an

elliptic curve with the specified N-torsion point at 1
N . Let the specified N-torsion point be P “ kτ`l

N .

Since the point has order N , we know that gcdpk, l,Nq “ 1. Now we construct a matrix γ P SL2pZq

that takes the point P on the curve Eτ to the point 1
N on the curve Eγτ . Note that γ “ p ˚ ˚

k l q will

take P to 1
N because

γ

ˆ

kτ ` l

N

˙

“ pkτ ` lq´1

ˆ

kτ ` l

N

˙

“
1

N
.

We need to fill the ˚ positions with terms that force γ to have determinant 1. From the fact that

gcdpk, l,Nq “ 1, Bezout’s lemma guarantees there exist r, s, t P Z such that sl ´ rk ´ tN “ 1. Then

det p
s r
k l q “ 1 ` tN ” 1 pmod Nq.

Now γ “ p
s r
k l q P SL2pZ{Nq. By lemma 4.5, we know that there is a matrix in SL2pZq that maps

to γ when reducing the entries (mod N). We can take any of the matrices in SL2pZq that satisfies

this condition, and that becomes the matrix that shows Eτ and Eγτ are isomorphic.
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Knowing that there is a curve with specified torsion point 1
N in each isomorphism class, we can

consider the isomorphism classes to just be of elliptic curves with the point 1
N . The next question

to answer is what needs to be true of a new matrix γ so that a curve Eτ with point 1
N maps to the

curve Eγτ with 1
N still specified. We start we the knowledge that for γ “

`

a b
c d

˘

,

cτ ` d

N
ÞÑ

1

N

and we want
1

N
ÞÑ

1

N
pmod Λγτ q.

This means that
cτ ` d

N
”

1

N
pmod Λτ q ùñ

cτ ` d

N
´

1

N
P Λτ .

Then
c

N
τ `

d ´ 1

N
P Λτ ùñ

c

N
,
d ´ 1

N
P Z.

Thus, we reach the conditions that

c ” 0 pmod Nq d ” 1 pmod Nq.

Since γ must have determinant 1, we realize a ” 1 pmod Nq as well. We illustrated exactly the

conditions that places γ P Γ1pNq. Thus the isomorphism classes of curves with specified point 1
N

corresponds to the orbits of Γ1pNqzH “ Y1pNq.

□

5. Cusps

In this section we will introduce the concept of a cusp of a modular curve. Let’s return to our

depiction of M1,1 from Figure 4. If we consider the image topologically, we can glue together the

two halves of the base of the ribbon, as well as the two sides. This process will give us a sleeve

structure that is completely closed outside of the opening at the “top”. Here we can consider the

point at infinity, denoted i8. If we add i8 to the moduli space of elliptic curves, we now have

compactified the space into a sphere. The point i8 is an example of a cusp and this topological

process is the motivation behind studying these points.

Definition 5.1. The extended upper half plane is H˚ :“ H Y Q Y ti8u.

Now we will look to extend the action of SL2pZq to H˚. If we take a matrix γ “
`

a b
c d

˘

P SL2pZq

then we have our standard map of γτ “ aτ`b
cτ`d . However we now have to define how γ acts on points

in the extended upper half plane that are not in the standard upper half plane. We define γpi8q “ a
c

and γp´d
c q “ i8.

As we defined before, Y p1q “ SL2pZqzH. Now we will define Xp1q “ SL2pZqzH˚. The X

notation in replacement of the Y will be common across all the modular curves we described when

considering an action on H˚ as opposed to H. We will formalize this shortly after defining the term

cusp.

Definition 5.2. [1, p. 58] Let Γ be a congruence subgroup of SL2pZq. Note that

XΓ “ ΓzH˚ “ YΓ Y ΓzpQ Y ti8uq.
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The cusps of XΓ are the orbits of ΓzpQ Y ti8uq.

We now revisit the space Xp1q and ask the question, how many cusps are in Xp1q, and what are

they? We are looking for the number of orbits that come from points in QY ti8u from action under

matrices in SL2pZq. Take s “ ´d
c P Q and then create γ “

`

a b
c d

˘

P SL2pZq, then γs “ i8. We

see that every rational number, as s is arbitrary, is in the same orbit as the point at infinity. Thus,

there is only one cusp in Xp1q which is the orbit of the point at infinity ri8s.

Now we will define compactified modular curves for the subgroups ΓpNq, Γ1pNq, and Γ0pNq of

SL2pZq.

(5.1) XpNq :“ ΓpNqzH˚ “ Y pNq Y ΓpNqzpQ Y ti8uq

(5.2) X1pNq :“ Γ1pNqzH˚ “ Y1pNq Y Γ1pNqzpQ Y ti8uq

(5.3) X0pNq :“ Γ0pNqzH˚ “ Y0pNq Y Γ0pNqzpQ Y ti8uq

The next step in this discussion of cusps is determining the number of cusps of an modular curve

XΓ. We will restrict our cusp counting efforts to X1pNq before providing a brief commentary on the

other two modular curves.

Theorem 5.3 ([1, Prop 3.8.3]). Let s “ a
c and s1 “ a1

c1 be elements of Q Y ti8u with gcdpa, cq “

gcdpa1, c1q “ 1. Then

Γ1pNqs “ Γ1pNqs1 ðñ

«

a1

c1

ff

” ˘

«

a ` cj

c

ff

pmod Nq

for some j P Z.

This theorem is stating that two elements of Q Y ti8u are representatives of the same cusp of

Γ1pNq exactly when there is some j P Z that the congruence condition defined in the theorem is

satisfied. From this equation we are able to systematically determine if two rational points are in

the same cusp, whether by hand or program. We also are able to find a rational representative for

each cusp, where a representative is simply one element of the orbit. Let’s now look at an example

of finding cusps.

Example 5.4. Find the number of cusps and representatives of each cusp in X1p9q.

Solution. We will start with one cusp representative being the point at infinity. A matrix γ “
`

a b
c d

˘

P Γ1p9q acts on i8 by sending it to a
c . Then we know since γ P Γ1p9q that a ” 1 pmod 9q and

c ” 0 pmod 9q. So the cusp r 1
0 s is in the same orbit as the point at infinity. From Theorem 5.3, we

add that the cusp r 1
0 s can be negated modulo 9 to the cusp r 8

0 s. Since c ” 0 pmod 9q, there is no

integer j that can be multiplied with c to change the numerator of the cusp modulo 9.
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Now we look at the cusp r 2
0 s and can negate it to get the cusp r 7

0 s. Again, we will be unable to

change the numerator and then we can choose a representative, say 2
9 .

Going in order, the next cusp would be r 3
0 s, but we can note that since we are working modulo

9, this vector is not fully reduced modulo 9 and thus we do not consider it.

So our third cusp will be r 4
0 s „ r 5

0 s and we choose the representative 4
9 . We have now exhausted

all possibilities of c ” 0 pmod 9q.

Let’s now consider the cusps where a ” 0 pmod 9q. First we have r 0
1 s where we can add any

integer j multiplied with c ” 1 pmod 9q and end up with any integer in the numerator. Thus

r 0
1 s „ r ˚

1 s „ r ˚
8 s and we choose representative 1. We can note that all the integers will belong to

this cusp.

Similarly we have the cusp r 0
2 s „ r ˚

2 s „ r ˚
7 s with representative 1

2 .

The last cusp with a ” 0 pmod 9q will be the cusp r 0
4 s „ r ˚

4 s „ r ˚
5 s, again skipping 3 because it

would not be fully reduced. We choose representative 1
4 .

Up to this point, we have found representatives for 6 distinct cusps. There were 3 cusps with

c ” 0 pmod 9q as well as 3 cusps with a ” 0 pmod 9q. We do not have enough evidence to believe

this pattern yet, but we will note that 3 “
ϕp9q

2 , where ϕ is Euler’s totient function.

Returning to the cusp counting, we have covered all of our bases for cusps with c ” 1, 2, 4, and

their negated counterparts modulo 9. We also already established that for c ” 3 pmod 9q, a ” 0, 3, 6

(mod 9) is not fully reduced. So let’s consider the cusp r 1
3 s. By adding integer multiples of 3 to the

numerator we see that r 1
3 s „ r 4

3 s „ r 7
3 s and that by negating r 1

3 s „ r 8
6 s „ r 5

6 s „ r 2
6 s. We choose a

representative to be 1
3 .

Lastly, notice the only remaining option for a cusp is r 2
3 s „ r 5

3 s „ r 8
3 s „ r 1

6 s „ r 7
6 s „ r 4

6 s. We

can take the representative 2
3 for this cusp.

Thus we have found the 8 cusps in X1p9q with representatives 1, 1
9 ,

2
9 ,

4
9 ,

1
2 ,

1
4 ,

1
3 , and 2

3 .

□

To illustrate a pattern in the counting of cusps for X1pNq, consider N “ 20. We do not have

the space to discuss finding all the cusps for X1p20q, so we will instead use code to evaluate all cusp

possibilities (all fully reduced rationals) and then reduce them into orbits based on the condition in

Theorem 5.3. Representatives of the cusps of X1p20q are as follows:

‚ r 0
1 s

‚ r 0
3 s

‚ r 0
7 s

‚ r 0
9 s

‚ r 1
0 s

‚ r 3
0 s

‚ r 7
0 s

‚ r 9
0 s

‚ r 1
2 s

‚ r 1
4 s

‚ r 1
5 s

‚ r 1
6 s

‚ r 1
8 s

‚ r 1
10 s

‚ r 1
12 s

‚ r 1
15 s

‚ r 1
16 s

‚ r 2
5 s

‚ r 2
15 s

‚ r 3
10 s

We notice that the first column has all 4 cusps where a ” 0 (mod 20) and the second column has

4 cusps with c ” 0 (mod 20). Again the pattern mentioned before stands where there are 4 cusps of

each of these types and 4 “
ϕp20q

2 .

In the following theorem that provides a cusp counting formula for X1pNq, we will exclude X1p2q

and X1p4q. The cases where N “ 2 or 4 behave strangely, so going forward we will not be considering

these cases in our results.
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Theorem 5.5. For a positive integer N ‰ 1, 2, 4,

# of cusps in X1pNq “ 1
2

ř

d|N

ϕpdqϕpN
d q.

In addition to this simple formula for counting cusps, we remark that the divisor d corresponds

to the cusps with a particular denominator. In particular, d “ gcdpc,Nq. This formula matches up

with the pattern we saw before. When d “ 1, we have c as a positive integer that is coprime with

N . In this case we know that the numerator can be any value leading to the cusp r ˚
c s „ r 0

c s. So the

formula for cusps with a ” 0 (mod N) is 1
2ϕp1qϕpNq “

ϕpNq

2 . Likewise when d “ N , we have c “ N

as well. These are the cusps where c ” 0 (mod N) and will get counted as 1
2ϕpNqϕp1q “

ϕpNq

2 .

Proof. Fix a divisor d of N . Let us count the cusps of Γ1pNq with denominator c such that

gcdpc,Nq “ d. The number of such denominators is ϕpN{dq. If a{c is such a cusp with 1 ď c ď N , it

follows from Theorem 5.3 that we may assume 0 ď a ă gcdpc,Nq “ d. Thus, the number of possible

a such that gcdpa, cq “ 1 is exactly ϕpdq. Taking into account negation, we conclude the number of

such cusps is 1
2ϕpdqϕpN{dq. Summing over all divisors d gives the result. □

Remark 5.6. There are similar formulas for counting the cusps of X0pNq and XpNq [1, §3.8].

# of cusps in X0pNq “
ř

d|N

ϕpgcdpd, N
d qq.

# of cusps in XpNq “ 1
2N

2
ś

p|N

p1 ´ 1
p2 q.

We can now easily compute, for example, that X1p52q has 60 cusps or that X1p75q has 112

cusps. Next, we seek to understand the behavior of each of these cusps. In the counting process,

we sectioned our counting into each d|N . It seems natural that there would be some relationship

between the method of counting the cusps and the behavior of the cusps when glued into their

modular curve. As we alluded to in the beginning of this section, the cusp of a modular curve is

essentially a point that is filling what was previously a hole or gap in the structure of the modular

curve. It becomes interesting to see how the type of cusp we are working with behaves when pasted

in that hole, or more specifically how a neighborhood of the cusp behaves in the pasting process.

6. Cusp Width

To create XΓ from YΓ, one glues in small disks in the neighborhood of each cusp. The exact

formula of this gluing is determined by the width of the cusp. For example the cusp of Y p1q, ri8s,

will have width 1 because the map of the cusp neighborhood will be 1:1. We will describe this gluing

in detail later in the section.

First, we will define width by considering which matrices in a congruence subgroup Γ fix the cusp,

or sends the cusp to itself. In defining width, we will first look at specifically the cusp at infinity.

Definition 6.1. The width of the cusp i8 with respect to a congruence subgroup Γ is the smallest

positive integer w such that p 1 w
0 1 q P Γ, thus fixing the cusp.

Example 6.2. Observe that ri8s has width N in ΓpNq because p 1 N
0 1 q P ΓpNq. Also noting that

the cusp ri8s has width 1 in Γ1pNq, it is apparent that the width of a cusp is dependent on the

choice of congruence subgroup.
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To expand the width definition to a general cusp, consider a point a
c P Q with gcdpa, cq “ 1.

Then we can define a matrix α “
`

a b
c d

˘

so that αpi8q “ a
c and α´1pa

c q “ i8. Thus to fix the cusp

[ac ] we need to use α to send a
c to i8, the matrix p 1 w

0 1 q to fix the cusp at infinity, then α´1 to bring

the cusp i8 back to a
c .

Definition 6.3. Let α “
`

a b
c d

˘

and a, c P Z with gcdpa, cq “ 1. Then the width of a cusp [ac ] of YΓ

is the smallest positive integer w such that α p 1 w
0 1 qα´1 P Γ.

We will now dive into an example on computing the width of cusps.

Example 6.4. Find the width of all cusps in X1p9q.

Solution. Recall the cusps in X1p9q have representatives

r 1
0 s , r 2

0 s , r 4
0 s , r 0

1 s , r 0
2 s , r 0

4 s , r 1
3 s , r 2

3 s .

When d “ 9 in the counting formula, we have the first three listed cusps that have representatives

of the form k
9 where gcdpk, 9q “ 1. Then we create α “

`

k b
9 d

˘

where b, d P Z. Consequently,

α´1 “
`

d ´b
´9 k

˘

. So we need to find w such that the product
˜

k b

9 d

¸ ˜

1 w

0 1

¸ ˜

d ´b

´9 k

¸

is in Γ1p9q. This matrix product evaluates to
˜

kd ´ 9kw ´ 9b ´bk ` k2w ` bk

´81w ´9b ` 9wk ` dk

¸

.

In order to be in Γ1p9q, the top right can be anything and the bottom right already is congruent to

0 (mod 9). So the top left and bottom right need to both be congruent to 1 (mod 9). Note that

since this matrix product must be in SL2pZq, the determinant kd ´ 9b “ 1 so the top right is the

same as 1 ´ 9kw and bottom left is 1 ` 9wk. We have

1 ´ 9kw ” 1 ` 9kw ” 1 pmod 9q ùñ 9kw ” 0 pmod 9q ùñ w “ 1.

Next, the three cusps with 0 in the numerator correspond to d “ 1 in the counting formula. These

three cusps require that α has a number in the bottom left that is coprime with 9. When evaluating

α p 1 w
0 1 qα´1 the bottom left will be a constant that is coprime with 9 multiplied by w. Thus, w “ 9

so that the entry is congruent to 0 modulo 9. Note that w “ 9 will also satisfy the congruences in

top right and bottom left, so the width is 9.

The last two cusps that correspond to d “ 3 in the counting formula will lead to an α “
`

k b
3 d

˘

where k “ 1, 2. Then

α

˜

1 w

0 1

¸

α´1 “

˜

1 ´ 3kw k2w

´9w 1 ` 3kw

¸

where the bottom left already satisfies its congruence condition. Now we need to find the smallest

w such that

1 ´ 3kw ” 1 ` 3kw ” 1 pmod 9q.

We conclude w “ 3. □
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Theorem 6.5. If r a
c s is a cusp of X1pNq with d “ gcdpN, cq, then the width of r a

c s is N
d .

Proof. We will follow a similar process as we did in the above example to prove this width formula

for a general cusp in a general X1pNq. Set α “
`

a b
c d

˘

and we then can reduce to the two congruence

conditions

awc ” 0 pmod Nq and c2w ” 0 pmod Nq.

From the first of these equations we can say that the smallest w is

w “
N

d ¨ gcdpa, N
d q

.

And from the second we find

w “
N

d ¨ gcdpc, N
d q

.

Then we know that

w “ lcm

˜

N

d ¨ gcdpa, N
d q

,
N

d ¨ gcdpc, N
d q

¸

.

Set ℓ “ N
d . Then we can simplify to

w “ lcm

ˆ

ℓ

gcdpa, ℓq
,

ℓ

gcdpc, ℓq

˙

.

By using the relationship between lcm and gcd and simplifying further, the next step is

w “
ℓ

gcdpgcdpa, ℓq, gcdpc, ℓqq
.

Since we know that the gcdpa, cq “ 1,

w “ ℓ “
N

d
.

□

Following this concise formula to compute the width of cusps, we return to the cusp counting

formula from Theorem 5.5,

# of cusps in X1pNq “ 1
2

ř

d|N

ϕpdqϕpN
d q.

Now we can notice that by dividing the summation into d|N , we are also effectively computing

the number of cusps of width N
d for each divisor d in the summation.

Following our development of the width of cusps, we will revisit the topological cusp pasting

process. Recall the fundamental domain of the moduli space M1,1. For reference, we also include

the horizontal line Impτq “ 1.

M1,1

Impτq “ 1

Let D denote the open disk of radius e2π. Then define a map

tτ P H | Impτq ą 1u ÝÑ D
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given by τ ÞÑ e2πiτ . This transforms points above the line Impτq “ 1 to an open disk. The line

Impτq “ 1 will map to the boundary of the disk and each horizontal line at an increasing Im(τ) will

map to a circle of smaller radius. Note that image of this map does not include the center of D.

This missing point corresponds to the cusp at i8.

τ ÞÑ e2πiτ

radius = e´2π

Figure 5. The moduli space of elliptic curves Y p1q mapped to a disk D with a

point missing in the center.

Consider the region R “ tτ P H | Impτq ą 1u. If we define

Γ8 “ tSn “ p 1 n
0 1 qu,

then Γ8zR Ă Y p1q where Γ8zR – D‹. Taking Y p1q Y D‹ “ D with the cusp pasted into the disk.

Working with a cusp of width w at infinity, we instead consider

Γ8 “ tSnw “ p 1 nw
0 1 qu.

Cusps other than the one at infinity will be pasted in a similar way to the computation of width.

We apply a matrix α´1 to take the cusp r a
c s to i8. Then we may glue in a disk using the process

we just described. One can then transform α will take i8 ÞÑ r a
c s.

7. Maps of Modular Curves

After developing our understanding of cusps and their widths, we will now revisit the quotient

maps between modular curves. Specifically, we will focus on modular curves of Γ1pNq and study

how cusps are mapped between modular curves of level. In particular, we consider the map

X1pNq Ñ X1pMq,

where M |N .

Example 7.1. Describe the map from X1p9q Ñ X1p3q.

Solution. The eight cusps in X1p9q have representatives

r 1
0 s , r 2

0 s , r 4
0 s , r 0

1 s , r 0
2 s , r 0

4 s , r 1
3 s , r 2

3 s .

Meanwhile, the two cusps in X1p3q have representatives

r 0
1 s , r 1

0 s .

If we consider the class of cusps with width 1 in X1p9q (that is, those of the form r ˚
0 s) and reduce

them modulo 3 by the map, their image is the cusp r 1
0 s in X1p3q (also of width 1). Now the class of

cusps of width 9 in X1p9q (that is, those of the form r 0
˚ s) reduces (mod 3) to r 0

1 s in X1p3q (width

3). The final two cusps of width 3 in X1p9q both reduce to r 1
0 s in X1p3q, having width 1. □
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These maps will generally be inconsistent for any arbitrary M,N . Using the gamma_map function

described in the appendix, we can see the cusps in X1pMq, their width in X1pMq, and the number

of and representative of the cusps that map to it from X1pNq. This function is useful for testing the

maps between varying M,N and discovering patterns based on information about M and N . We

are specifically searching for patterns that describe the number of cusps in X1pNq above a cusp of

width w in X1pMq.

The first pattern we will discuss is illustrated in the following theorem.

Theorem 7.2. Fix a prime p and integers k ą ℓ. Consider the map X1ppkq Ñ X1ppℓq. There are

pk´ℓ cusps in X1ppkq above cusps of maximal width in X1ppℓq.

Proof. Consider a cusp r a
c s in X1ppkq of non-maximal width, i.e. the width is less than pk. Since

width w ă pk and w “ pk{gcdpc, pkq by Theorem 6.4, we know that gcdpc, pkq ą 1. This implies

that the denominator of the cusp c contains a factor of p. Thus, the non-maximal cusp r a
c s cannot

map to a maximal width cusp in the curve X1ppℓq because gcdpc, pℓq ą 1 as well. Therefore, only

the maximal width cusps in X1ppkq, of which there are ϕppk
q

2 , can map to maximal width cusps in

X1ppℓq, of which there are ϕppℓ
q

2 . Finally, we divide these results to find the number of cusps in

X1ppkq that map to a maximal width cusp in X1ppℓq:

ϕppkq

2

Lϕppℓq

2
“

ϕppkq

ϕppℓq
“ pk´ℓ.

□

Before establishing the next pattern, let’s examine an example of the map X1ppkq Ñ X1ppℓq with

p “ 3, k “ 3, ℓ “ 2. In other terms, we will look at the map X1p27q Ñ X1p9q.

Figure 6. Python code output for map X1p27q Ñ X1p9q.

Theorem 7.2 holds true in this instance as the maximal width cusps r 0
1 s , r 0

2 s , r 0
4 s with width 9

each have pk´1 “ 33´2 “ 3 cusps above.

The next pattern we show is more general and applies to cusps of any width in X1pMq, as opposed

to just those with maximal width.
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Theorem 7.3. Let K,L ‰ 2, 4 be positive integers with gcdpK,Lq “ 1. Then consider the modulo

L map from X1pKLq Ñ X1pLq. All cusps of width w in X1pLq collectively have

2p# of cusps of X1pLq of width wqp# cusps of X1pKqq

cusps above.

Proof. We will start by looking at the formula for the number of cusps in X1pKLq.

# of cusps in X1pKLq “
1

2

ÿ

d|KL

ϕpdqϕpKL{dq

“
1

2

ÿ

d1|K
d2|L

ϕpd1d2qϕpKL{d1d2q

“
1

2

ÿ

d1|K
d2|L

ϕpd1qϕpd2qϕpK{d1qϕpL{d2q by ϕ being multiplicative

“ 2

¨

˝

1

2

ÿ

d1|K

ϕpd1qϕpK{d1q

˛

‚

¨

˝

1

2

ÿ

d2|L

ϕpd2qϕpL{d2q

˛

‚

“ 2p# of cusps in X1pKqqp# of cusps in X1pLqq.

Then for a single cusp of width w in X1pLq, there are

2p# of cusps in X1pKqq

above it in X1pKLq. Hence our formula counts the number of cusps of width w in X1pLq multiplied

by the number above each. □

We again will look at example, namely when K “ 3, L “ 8. This will be the map from X1p24q Ñ

X1p8q.

Figure 7. Python code output for map X1p24q Ñ X1p8q.

We see that the collective of cusps of width 8 in X1p8q have 8 cusps above which is in line with

the formula that says 2 multiplied by 2 cusps in X1p8q of width 8 multiplied by 2 cusps in X1p3q.

The same holds true for width 1 cusps. Then each of the width 2 and 4 cusps in X1p8q have 2
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multiplied by 1 cusp of width 2, 4 respectively in X1p8q multiplied by 2 cusps in X1p3q for 4 cusps

above. We also note that we already have the process to count the number of cusps of a specific

width in X1pKLq so it is easy to modify this formula for cusps above only a single cusp of width w

in X1pLq.

We make the concluding remark that the previous two theorems are sufficient for computing

the number of cusps above any maximal width cusp for any map X1pNq Ñ X1pMq with M |N by

considering the prime factorization of M and N . One issue to be careful of when computing all

maximal width cusps is the case when M , N , or N{M is 2 or 4 (due to the limitations of Theorem

7.3). However, applying these theorems repeatedly in the general case yields a powerful conclusion.

8. Appendix

The following code block contains the python functions used to compute the number of cusps in

Γ1pNq, given an argument N.

from sympy.ntheory.factor_ import totient

def factors(x):

factors = []

for i in range(1, x + 1):

if x % i == 0:

factors.append(i)

return factors

def num_cusps(N):

num_cusps = 0

for d in factors(N):

num_cusps += 1/2 * totient(d) * totient(int(N / d))

return int(num_cusps)

This next block contains the function used to return a list of cusp representatives for Γ1pNq, given

an argument N.

import pandas as pd

import math

def cusp_generator(N):

q_N = [[k % N, l % N] for k in range(1, N+1) for l in

range(1, N+1) if math.gcd(k, l) == 1]

q_N = pd.DataFrame(q_N).sort_values([0,1]).values.tolist()

for [a, c] in q_N:

for j in range(N):
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A = a + c * j

if ([A % N, c % N] in q_N and a != A % N):

q_N.remove([A % N, c % N])

if ([-A % N, -c % N] in q_N):

q_N.remove([-A % N, -c % N])

return q_N

In the code of the cusp_generator(N) function we perform a for loop that checks to see if a cusp

is equal to a cusp already in our list q_N. That is the inspiration for the following equals function

which takes two cusps (as lists of length 2) and a positive integer N to check if those two cusps are

in the same orbit in X1pNq.

def equals(cusp1, cusp2, N):

[a1, c1] = cusp1

[a2, c2] = cusp2

a1 = a1 % N

a2 = a2 % N

c1 = c1 % N

c2 = c2 % N

for j in range(N):

A = a1 + c1 * j

if ([A % N, c1 % N] == [a2, c2]):

return True

if ([-A % N, -c1 % N] == [a2, c2]):

return True

return False

We also include a function that computes the width of a cusp in X1pNq.

def cusp_width(cusp, N):

[a, c] = cusp

d = math.gcd(N, c)

return N / d

The last function we include is one that returns details regarding the map from X1pNq Ñ X1pMq

where M |N . The function takes the values of N and M as arguments and returns a data set with

each cusp in X1pMq, it’s width, a list of the cusps above in X1pNq that are in the same orbit in

X1pMq, and the number of cusps above (the length of the list).

def gamma_map(N, M):

assert N >= M
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N_cusps = cusp_generator(N)

M_cusps = cusp_generator(M)

df = pd.DataFrame(pd.Series(M_cusps), columns=["cusp"])

df["cusp width"] = [int(cusp_width(cusp, M)) for cusp in df["cusp"]]

all_cusps_above = []

for M_cusp in M_cusps:

cusps_above = []

for N_cusp in N_cusps:

if equals(M_cusp, N_cusp, M):

cusps_above.append(N_cusp)

all_cusps_above.append(cusps_above)

df["cusps above"] = pd.Series(all_cusps_above)

df["num cusps above"] = df["cusps above"].map(len)

assert len(df) == num_cusps(M)

assert sum(df["num cusps above"]) == num_cusps(N)

return df
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