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Mackey Functors, |

» A G-Mackey functor M (usually omit G) is an assignment to
each obrit G/H, an abelian group M(G/H), with structure
maps:

Given H' < H < G, morphisms

Rest!, : M(G/H) — M(G/H')

TrHh : M(G/H') — M(G/H)

Wyle group action Ny(G) x M(G/H) — M(G/H)
With some compatibility condition.
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Mackey Functors, Il

» The category Mack¢ can also be defined as a functor category.

» By Day convolution this gives a closed symmetric monoidal
structure on Mackg, (Mackg,, Hom, A)

» The tensor product [ is called "box product”, Hom stands for
the internal Hom functor and the tensor unit A is the
Burnside Mackey functor.

» Mackg is an abelian category with enough projective and
injective objects.

» Therefore we can play with homological algebral
» But it has infinite cohomological dimension...

» Z is the Mackey functor with Z(G/H) = Z and all restrictions
are isomorphism.



G-Spectra, |



G-Spectra, |

» Why do we care about Mackg?



G-Spectra, |

» Why do we care about Mackg?

» Because it plays the role of abelian groups in equivariant
stable homotopy theory.



G-Spectra, |

» Why do we care about Mackg?

» Because it plays the role of abelian groups in equivariant
stable homotopy theory.

» A G-spectrum X is (not) a spectrum X with G action.



G-Spectra, |

» Why do we care about Mackg?

» Because it plays the role of abelian groups in equivariant
stable homotopy theory.

» A G-spectrum X is (not) a spectrum X with G action.

» And it comes with RO(G)-graded homotopy Mackey functor
T4 (X), as the fundamental algebraic invariant.(Think about
m«(X) in the classical case)
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» Spheres — Representation Spheres.

» Given a virtual representation V € RO(G), let SV be the
one-point compactificaiton of V/, thus a sphere with G-action.

» 1y (X)(G/H) =[SV Ay Gy, X] can be made into a Mackey
functor.
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Eilenberg-Mac Lane Spectra

» Theorem (Lewis, May, McClure)

Given a Mackey functor M, there is a unique G-spectrum HM up
to homotopy, such that the integer graded w,(HM) is
concentrated in dimension 0 and it is M.

» But how about the RO(G)-grading?

> It is coming!
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RO(G)-graded homotopy of HZ

» Now, we focus on HZ.
» How about a little bit more about Z7?
» Zis a monoid, and w4 (HZ) is an RO(G)-graded Z-module.
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» Theorem (Z.)

G = Cpn, my(HZ) with its multiplicative structure can be
computed by Tate diagram.

» But what does it look like?
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G = Cy

» When G = C2, RO(G) = Z(1, A1, Xo). Where ); is the

representation by rotating by p%’f,- on R2.

» Therefore we need a 3D projector to present the full result!
» How about a 2D slice of it?
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We see oo-towers of multiplication and division by element ay,.
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Duality in 7y (HZ)

Look at the figure for G = C,, again:

=R 1 . .
4 = . : :
(=]} °
2 (=
(=
0 L]
* L]
) . S L_r]
ARG
4 l l l l
—-10 -8 —6 —4 —2 0 2 4 6

You see duality with a strange shift.
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Duality, Il

» There are two dualities inside.

» The equivariant Anderson duality give rise to a universal
coefficient exact sequence, computing 7_,_,(lz(HZ)) from
Ty, «(HZ). But what is the Anderson dual Iz(HZ)?

» Lemma (The Miracle)
If G = Cpn, Iz(HZ) =~ HZ* ~ S>~% A HZ
» Where Z*(G/H) = 7Z and all transfers are isomorphisms.

» This lemma plays an important role in equivariant duality of
many Cp-spectra, like Tmf1(3) of Hill and Meier.

» Combining with Anderson duality, we can use short exact
sequences to compute 7, _\_»_,(HZ) from 7\, ,(HZ).

> It is a duality with centre of symmetry (—1, 22).
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» Theorem (Z.)
For G = Cpn, and M be a Mackey functor with M(G/H) = 7Z for
all H < G, then
HM ~ SV A HZ
fora V € RO(G).
Furthermore, it gives a one-to-one correspondence between all such

M(Forms of Z) and all V € RO(G) with SV A\ HZ Eilenberg-Mac
Lane.
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Duality, IlI

> Another duality is the honest universal coefficient spectral
sequence. The actual theorem is very general, but we only
pick the case we need.

» Theorem (Lewis, Mandell)

There is a spectral sequence of Mackey functors with Ex-page
@%‘(EV—F*(HZ% Z)

converging to w_\,, ,(HZ).
» It is a duality with centre of symmetry (0, 0).
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Homological Algebra of Z-Modules

» Theorem (Bouc, Stancu and Webb, Arnold)
If G is finite and cyclic, the global projective dimension of
Z-module is 3. That means,
Each Z-module has a projective resolution of length 3.

» Lemma (Z.)

If G = Cpn, and M be a Z-module that M(G/e) =0, then
Exty(M,Z) is concentrated at i = 3, and

Ext}(M,Z) = MF

» Where ME is the level-wise Ext!(—,Z) of abelian groups on
M.

» So in our case we can understand the universal coefficient
spectral sequence!(At least E; page)

» This lemma also gives an algebraic interpretation of the " gap”
in the upper-left part.
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You start with Z in (0, 0).
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||:Universal coefficient spectral sequence. Anderson Duality ||
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» The way these dualities spinning holds for all G that the
miracle holds, especially for Cpn.

> However as a n-dimensional grid.
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Application in Slice Spectral Sequence

» Understanding the Mackey functor structure of m, (HZ)
allows us to understand the whole RO(G)-grading of many
slice spectral sequences.

» The multiplicative structure can help in deducing differentials
in these gradings from those known slice differentials.
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Loosing Ends

» We see that Ext;(M,Z) is concentrated in degree 3, and it is
ME . We really like to say Z is a Gorenstein Green functor of
shift 3. But in this way, the level-wise Ext must play a role.
So, what should be a good definition of Gorenstein in Green
functors?

» What do these dualities look like for other groups? Especially
for those the miracle fails.

» Tate diagram can also effectively compute HF, in all cyclic
p-groups. Then what does A, look like? Say, (47
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Thank you!



