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Mackey Functors, I

I A G -Mackey functor M (usually omit G ) is an assignment to
each obrit G/H, an abelian group M(G/H), with structure
maps:
Given H ′ < H < G , morphisms
ResHH′ : M(G/H)→ M(G/H ′)
TrHH′ : M(G/H ′)→ M(G/H)
Wyle group action NH(G )×M(G/H)→ M(G/H)
With some compatibility condition.
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Mackey Functors, II

I The category MackG can also be defined as a functor category.

I By Day convolution this gives a closed symmetric monoidal
structure on MackG , (MackG ,�,Hom,A)

I The tensor product � is called ”box product”, Hom stands for
the internal Hom functor and the tensor unit A is the
Burnside Mackey functor.

I MackG is an abelian category with enough projective and
injective objects.

I Therefore we can play with homological algebra!

I But it has infinite cohomological dimension...

I Z is the Mackey functor with Z(G/H) = Z and all restrictions
are isomorphism.
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stable homotopy theory.

I A G -spectrum X is (not) a spectrum X with G action.

I And it comes with RO(G )-graded homotopy Mackey functor
πF(X ), as the fundamental algebraic invariant.(Think about
π∗(X ) in the classical case)
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one-point compactificaiton of V , thus a sphere with G -action.

I πV (X )(G/H) := [SV ∧H G+,X ] can be made into a Mackey
functor.
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representation by rotating by 2π
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I Therefore we need a 3D projector to present the full result!
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Duality, II

I There are two dualities inside.

I The equivariant Anderson duality give rise to a universal
coefficient exact sequence, computing π−V−∗(IZ(HZ)) from
πV+∗(HZ). But what is the Anderson dual IZ(HZ)?

I Lemma (The Miracle)

If G = Cpn , IZ(HZ) ' HZ∗ ' S2−λ0 ∧ HZ
I Where Z∗(G/H) ∼= Z and all transfers are isomorphisms.

I This lemma plays an important role in equivariant duality of
many C2-spectra, like Tmf1(3) of Hill and Meier.

I Combining with Anderson duality, we can use short exact
sequences to compute πλ0−V−2−∗(HZ) from πV+∗(HZ).

I It is a duality with centre of symmetry (−1, λ02 ).
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I Theorem (Z.)

For G = Cpn , and M be a Mackey functor with M(G/H) ∼= Z for
all H < G , then
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Furthermore, it gives a one-to-one correspondence between all such
M(Forms of Z) and all V ∈ RO(G ) with SV ∧ HZ Eilenberg-Mac
Lane.
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sequence. The actual theorem is very general, but we only
pick the case we need.

I Theorem (Lewis, Mandell)

There is a spectral sequence of Mackey functors with E2-page

Ext i ,jZ (πV+∗(HZ),Z)
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Homological Algebra of Z-Modules

I Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of
Z-module is 3. That means,
Each Z-module has a projective resolution of length 3.

I Lemma (Z.)

If G = Cpn , and M be a Z-module that M(G/e) ∼= 0, then
Ext iZ(M,Z) is concentrated at i = 3, and

Ext3Z(M,Z) ∼= ME

I Where ME is the level-wise Ext1(−,Z) of abelian groups on
M.

I So in our case we can understand the universal coefficient
spectral sequence!(At least E2 page)

I This lemma also gives an algebraic interpretation of the ”gap”
in the upper-left part.
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miracle holds, especially for Cpn .

I However as a n-dimensional grid.
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Application in Slice Spectral Sequence

I Understanding the Mackey functor structure of πF(HZ)
allows us to understand the whole RO(G )-grading of many
slice spectral sequences.

I The multiplicative structure can help in deducing differentials
in these gradings from those known slice differentials.



Application in Slice Spectral Sequence

I Understanding the Mackey functor structure of πF(HZ)
allows us to understand the whole RO(G )-grading of many
slice spectral sequences.

I The multiplicative structure can help in deducing differentials
in these gradings from those known slice differentials.



Application in Slice Spectral Sequence

I Understanding the Mackey functor structure of πF(HZ)
allows us to understand the whole RO(G )-grading of many
slice spectral sequences.

I The multiplicative structure can help in deducing differentials
in these gradings from those known slice differentials.



Loosing Ends

I We see that Ext∗Z(M,Z) is concentrated in degree 3, and it is

ME . We really like to say Z is a Gorenstein Green functor of
shift 3. But in this way, the level-wise Ext must play a role.
So, what should be a good definition of Gorenstein in Green
functors?

I What do these dualities look like for other groups? Especially
for those the miracle fails.

I Tate diagram can also effectively compute HFp in all cyclic
p-groups. Then what does A∗ look like? Say, C4?
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