$\underline{\pi}_{\bigstar}H\underline{\mathbb{Z}}$ for C_{p^n} and Homological Algebra

Mingcong Zeng

Tuesday 12th September, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Computation of $\underline{\pi}_{\bigstar} H \underline{\mathbb{Z}}$ for C_{p^n}

- Computation of $\underline{\pi}_{\bigstar} H \underline{\mathbb{Z}}$ for C_{p^n}
- Relation to homological algebra of $\underline{\mathbb{Z}}$ -modules.

・ロト・日本・モト・モート ヨー うへで

- Computation of $\underline{\pi}_{\bigstar} H \underline{\mathbb{Z}}$ for C_{p^n}
- Relation to homological algebra of $\underline{\mathbb{Z}}$ -modules.

・ロト・日本・モート モー うへぐ

Application in slice speetral sequences.

• $G = C_{p^n}$, cyclic group of order p^n .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- $G = C_{p^n}$, cyclic group of order p^n .
- ▶ ★ means indexing in RO(G), the orthogonal representation group of G.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $G = C_{p^n}$, cyclic group of order p^n .
- ▶ ★ means indexing in RO(G), the orthogonal representation group of G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• * means indexing in \mathbb{Z} .

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given H' < H < G, morphisms

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

Given H' < H < G, morphisms $Res_{H'}^{H} : \underline{M}(G/H) \rightarrow \underline{M}(G/H')$

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

Given H' < H < G, morphisms $Res_{H'}^{H} : \underline{M}(G/H) \rightarrow \underline{M}(G/H')$ $Tr_{H'}^{H} : \underline{M}(G/H') \rightarrow \underline{M}(G/H)$

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

Given H' < H < G, morphisms $\operatorname{Res}_{H'}^{H} : \underline{M}(G/H) \to \underline{M}(G/H')$ $\operatorname{Tr}_{H'}^{H} : \underline{M}(G/H') \to \underline{M}(G/H)$ Wyle group action $N_{H}(G) \times \underline{M}(G/H) \to \underline{M}(G/H)$

► A G-Mackey functor <u>M</u> (usually omit G) is an assignment to each obrit G/H, an abelian group <u>M</u>(G/H), with structure maps:

Given H' < H < G, morphisms $\operatorname{Res}_{H'}^{H} : \underline{M}(G/H) \to \underline{M}(G/H')$ $\operatorname{Tr}_{H'}^{H} : \underline{M}(G/H') \to \underline{M}(G/H)$ Wyle group action $N_{H}(G) \times \underline{M}(G/H) \to \underline{M}(G/H)$ With some compatibility condition.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

► The category *Mack_G* can also be defined as a functor category.

► The category *Mack_G* can also be defined as a functor category.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)

- ► The category *Mack_G* can also be defined as a functor category.
- ► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)
- ► The tensor product □ is called "box product", <u>Hom</u> stands for the internal Hom functor and the tensor unit <u>A</u> is the Burnside Mackey functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► The category *Mack_G* can also be defined as a functor category.
- ► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)
- ► The tensor product □ is called "box product", <u>Hom</u> stands for the internal Hom functor and the tensor unit <u>A</u> is the Burnside Mackey functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Mack_G is an abelian category with enough projective and injective objects.

- ► The category *Mack_G* can also be defined as a functor category.
- ► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)
- ► The tensor product □ is called "box product", <u>Hom</u> stands for the internal Hom functor and the tensor unit <u>A</u> is the Burnside Mackey functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Mack_G is an abelian category with enough projective and injective objects.
- Therefore we can play with homological algebra!

- ► The category *Mack_G* can also be defined as a functor category.
- ► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)
- ► The tensor product □ is called "box product", <u>Hom</u> stands for the internal Hom functor and the tensor unit <u>A</u> is the Burnside Mackey functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Mack_G is an abelian category with enough projective and injective objects.
- Therefore we can play with homological algebra!
- But it has infinite cohomological dimension...

- ▶ The category *Mack_G* can also be defined as a functor category.
- ► By Day convolution this gives a closed symmetric monoidal structure on Mack_G, (Mack_G, □, <u>Hom</u>, <u>A</u>)
- ► The tensor product □ is called "box product", <u>Hom</u> stands for the internal Hom functor and the tensor unit <u>A</u> is the Burnside Mackey functor.
- Mack_G is an abelian category with enough projective and injective objects.
- Therefore we can play with homological algebra!
- But it has infinite cohomological dimension...
- ► <u>Z</u> is the Mackey functor with <u>Z</u>(G/H) = Z and all restrictions are isomorphism.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

▶ Why do we care about *Mack_G*?

- Why do we care about Mack_G?
- Because it plays the role of abelian groups in equivariant stable homotopy theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Why do we care about Mack_G?
- Because it plays the role of abelian groups in equivariant stable homotopy theory.
- A G-spectrum X is (not) a spectrum X with G action.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ Why do we care about *Mack_G*?
- Because it plays the role of abelian groups in equivariant stable homotopy theory.
- A G-spectrum X is (not) a spectrum X with G action.
- And it comes with RO(G)-graded homotopy Mackey functor $\underline{\pi}_{\bigstar}(X)$, as the fundamental algebraic invariant.(Think about $\pi_*(X)$ in the classical case)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• Spheres \rightarrow Representation Spheres.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Spheres \rightarrow Representation Spheres.
- ► Given a virtual representation V ∈ RO(G), let S^V be the one-point compactificaiton of V, thus a sphere with G-action.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Spheres \rightarrow Representation Spheres.
- ► Given a virtual representation V ∈ RO(G), let S^V be the one-point compactification of V, thus a sphere with G-action.
- <u>π</u>_V(X)(G/H) := [S^V ∧_H G₊, X] can be made into a Mackey functor.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Eilenberg-Mac Lane Spectra

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへで

Eilenberg-Mac Lane Spectra

Theorem (Lewis, May, McClure)

Eilenberg-Mac Lane Spectra

Theorem (Lewis, May, McClure)

Given a Mackey functor \underline{M} , there is a unique G-spectrum H \underline{M} up to homotopy, such that the integer graded $\underline{\pi}_*(H\underline{M})$ is concentrated in dimension 0 and it is \underline{M} .
Eilenberg-Mac Lane Spectra

Theorem (Lewis, May, McClure)

Given a Mackey functor \underline{M} , there is a unique G-spectrum H \underline{M} up to homotopy, such that the integer graded $\underline{\pi}_*(H\underline{M})$ is concentrated in dimension 0 and it is \underline{M} .

But how about the RO(G)-grading?

Eilenberg-Mac Lane Spectra

Theorem (Lewis, May, McClure)

Given a Mackey functor \underline{M} , there is a unique G-spectrum H \underline{M} up to homotopy, such that the integer graded $\underline{\pi}_*(H\underline{M})$ is concentrated in dimension 0 and it is \underline{M} .

- But how about the RO(G)-grading?
- It is coming!

▶ Now, we focus on $H\underline{\mathbb{Z}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ Now, we focus on $H\underline{\mathbb{Z}}$.
- How about a little bit more about $\underline{\mathbb{Z}}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Now, we focus on $H\underline{\mathbb{Z}}$.
- How about a little bit more about $\underline{\mathbb{Z}}$?
- ▶ $\underline{\mathbb{Z}}$ is a monoid, and $\underline{\pi}_{\bigstar}(H\underline{\mathbb{Z}})$ is an RO(G)-graded $\underline{\mathbb{Z}}$ -module.

$G = C_p$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$G = C_p$

• $G = C_p$ and p > 2, $RO(G) = \mathbb{Z}\langle 1, \lambda \rangle$, where 1 is the trivial representation and λ is the \mathbb{R}^2 -representation given by rotation by $\frac{2\pi}{p}$.

(日) (日) (日) (日) (日) (日) (日) (日)

$G = C_p$

G = C_p and p > 2, RO(G) = Z⟨1, λ⟩, where 1 is the trivial representation and λ is the ℝ²-representation given by rotation by ^{2π}/_p.
σ (HZ) is

<u>π</u>_★(H<u>Z</u>) is...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Main Theorem

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■ - のへで

Main Theorem

► Theorem (Z.)

 $G = C_{p^n}$, $\underline{\pi}_{\bigstar}(H\underline{\mathbb{Z}})$ with its multiplicative structure can be computed by Tate diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Main Theorem

► Theorem (Z.)

 $G = C_{p^n}$, $\underline{\pi}_{\bigstar}(H\underline{\mathbb{Z}})$ with its multiplicative structure can be computed by Tate diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But what does it look like?

$G = C_{p^2}$

くちゃく 御や ふぼや ふぼや ふりゃく

$G = C_{p^2}$

▶ When $G = C_{p^2}$, $RO(G) = \mathbb{Z}\langle 1, \lambda_1, \lambda_0 \rangle$. Where λ_i is the representation by rotating by $\frac{2\pi}{p^{2-i}}$ on \mathbb{R}^2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$G = C_{p^2}$

- ▶ When $G = C_{p^2}$, $RO(G) = \mathbb{Z}\langle 1, \lambda_1, \lambda_0 \rangle$. Where λ_i is the representation by rotating by $\frac{2\pi}{p^{2-i}}$ on \mathbb{R}^2 .
- Therefore we need a 3D projector to present the full result!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ When $G = C_{p^2}$, $RO(G) = \mathbb{Z}\langle 1, \lambda_1, \lambda_0 \rangle$. Where λ_i is the representation by rotating by $\frac{2\pi}{p^{2-i}}$ on \mathbb{R}^2 .
- Therefore we need a 3D projector to present the full result!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How about a 2D slice of it?

 $\underline{\pi}_{m\lambda_0-3\lambda_1+i}(H\underline{\mathbb{Z}})$

 $\underline{\pi}_{m\lambda_0-3\lambda_1+i}(H\underline{\mathbb{Z}})$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

 $\underline{\pi}_{m\lambda_0-3\lambda_1+i}(H\underline{\mathbb{Z}})$

<ロ> <@> < E> < E> E のQの

Look at the figure for $G = C_p$ again:

・ロト・日本・モト・モート ヨー うへで

Look at the figure for $G = C_p$ again:

(ロ)、

Look at the figure for $G = C_p$ again:

• There are two dualities inside.

- There are two dualities inside.
- ► The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing <u>m</u>_{-V-*}(*I*_Z(*H*<u>Z</u>)) from <u>m</u>_{V+*}(*H*<u>Z</u>).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There are two dualities inside.

The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing <u>m</u>_{-V-*}(I_ℤ(H<u>ℤ</u>)) from <u>m</u>_{V+*}(H<u>ℤ</u>). But what is the Anderson dual I_ℤ(H<u>ℤ</u>)?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

There are two dualities inside.

The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing <u>π</u>_{-V-*}(*I*_ℤ(*H*<u>ℤ</u>)) from <u>π</u>_{V+*}(*H*<u>ℤ</u>). But what is the Anderson dual *I*_ℤ(*H*<u>ℤ</u>)?

► Lemma (The Miracle) If $G = C_{p^n}$, $I_{\mathbb{Z}}(H\underline{\mathbb{Z}}) \simeq H\underline{\mathbb{Z}}^* \simeq S^{2-\lambda_0} \wedge H\underline{\mathbb{Z}}$

There are two dualities inside.

- The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing <u>m</u>_{-V-*}(I_ℤ(H<u>ℤ</u>)) from <u>m</u>_{V+*}(H<u>ℤ</u>). But what is the Anderson dual I_ℤ(H<u>ℤ</u>)?
- Lemma (The Miracle)
 - If $G = C_{p^n}$, $I_{\mathbb{Z}}(H\underline{\mathbb{Z}}) \simeq H\underline{\mathbb{Z}}^* \simeq S^{2-\lambda_0} \wedge H\underline{\mathbb{Z}}$
 - Where $\underline{\mathbb{Z}}^*(G/H) \cong \mathbb{Z}$ and all transfers are isomorphisms.

There are two dualities inside.

- The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing <u>m</u>_{-V-*}(I_ℤ(H<u>ℤ</u>)) from <u>m</u>_{V+*}(H<u>ℤ</u>). But what is the Anderson dual I_ℤ(H<u>ℤ</u>)?
- Lemma (The Miracle)

If $G = C_{p^n}$, $I_{\mathbb{Z}}(H\underline{\mathbb{Z}}) \simeq H\underline{\mathbb{Z}}^* \simeq S^{2-\lambda_0} \wedge H\underline{\mathbb{Z}}$

- Where $\underline{\mathbb{Z}}^*(G/H) \cong \mathbb{Z}$ and all transfers are isomorphisms.
- This lemma plays an important role in equivariant duality of many C₂-spectra, like Tmf₁(3) of Hill and Meier.

There are two dualities inside.

- ▶ The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing $\underline{\pi}_{-V-*}(I_{\mathbb{Z}}(H\underline{\mathbb{Z}}))$ from $\underline{\pi}_{V+*}(H\underline{\mathbb{Z}})$. But what is the Anderson dual $I_{\mathbb{Z}}(H\underline{\mathbb{Z}})$?
- Lemma (The Miracle)

If $G = C_{p^n}$, $I_{\mathbb{Z}}(H\underline{\mathbb{Z}}) \simeq H\underline{\mathbb{Z}}^* \simeq S^{2-\lambda_0} \wedge H\underline{\mathbb{Z}}$

- Where $\underline{\mathbb{Z}}^*(G/H) \cong \mathbb{Z}$ and all transfers are isomorphisms.
- This lemma plays an important role in equivariant duality of many C₂-spectra, like Tmf₁(3) of Hill and Meier.

Combining with Anderson duality, we can use short exact sequences to compute <u>π_{λ0}−V−2−*</u>(H<u>Z</u>) from <u>π_{V+*}(HZ</u>).

There are two dualities inside.

- ▶ The equivariant Anderson duality give rise to a universal coefficient exact sequence, computing $\underline{\pi}_{-V-*}(I_{\mathbb{Z}}(H\underline{\mathbb{Z}}))$ from $\underline{\pi}_{V+*}(H\underline{\mathbb{Z}})$. But what is the Anderson dual $I_{\mathbb{Z}}(H\underline{\mathbb{Z}})$?
- Lemma (The Miracle)

If $G = C_{p^n}$, $I_{\mathbb{Z}}(H\underline{\mathbb{Z}}) \simeq H\underline{\mathbb{Z}}^* \simeq S^{2-\lambda_0} \wedge H\underline{\mathbb{Z}}$

- Where $\underline{\mathbb{Z}}^*(G/H) \cong \mathbb{Z}$ and all transfers are isomorphisms.
- This lemma plays an important role in equivariant duality of many C₂-spectra, like Tmf₁(3) of Hill and Meier.
- Combining with Anderson duality, we can use short exact sequences to compute <u>π_{λ0}−V−2−*</u>(H<u>Z</u>) from <u>π_{V+*}(HZ</u>).
- It is a duality with centre of symmetry $(-1, \frac{\lambda_0}{2})$.

Generalized Miracle

◆□ → < 個 → < 目 → < 目 → ○ < ○ </p>

Generalized Miracle

► Theorem (Z.)

For $G = C_{p^n}$, and \underline{M} be a Mackey functor with $\underline{M}(G/H) \cong \mathbb{Z}$ for all H < G, then

$$H\underline{M}\simeq S^V\wedge H\underline{\mathbb{Z}}$$

for a $V \in RO(G)$.

Furthermore, it gives a one-to-one correspondence between all such $\underline{M}(\text{Forms of } \underline{\mathbb{Z}})$ and all $V \in RO(G)$ with $S^V \wedge H\underline{\mathbb{Z}}$ Eilenberg-Mac Lane.
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 ∽��?

Another duality is the honest universal coefficient spectral sequence. The actual theorem is very general, but we only pick the case we need.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Another duality is the honest universal coefficient spectral sequence. The actual theorem is very general, but we only pick the case we need.
- Theorem (Lewis, Mandell)

There is a spectral sequence of Mackey functors with E₂-page

$$\underline{Ext}^{i,j}_{\mathbb{Z}}(\underline{\pi}_{V+*}(H\underline{\mathbb{Z}}),\underline{\mathbb{Z}})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

converging to $\underline{\pi}_{-V+*}(H\underline{\mathbb{Z}})$.

- Another duality is the honest universal coefficient spectral sequence. The actual theorem is very general, but we only pick the case we need.
- Theorem (Lewis, Mandell)

There is a spectral sequence of Mackey functors with E₂-page

$$\underline{\textit{Ext}}^{i,j}_{\mathbb{Z}}(\underline{\pi}_{V+*}(\textit{H}\underline{\mathbb{Z}}),\underline{\mathbb{Z}})$$

converging to $\underline{\pi}_{-V+*}(H\underline{\mathbb{Z}})$.

It is a duality with centre of symmetry (0,0).

► Theorem (Bouc, Stancu and Webb, Arnold) If G is finite and cyclic, the global projective dimension of <u>Z</u>-module is 3. That means,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of \mathbb{Z} -module is 3. That means,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Each $\underline{\mathbb{Z}}$ -module has a projective resolution of length 3.

Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of $\underline{\mathbb{Z}}$ -module is 3. That means, Each $\underline{\mathbb{Z}}$ -module has a projective resolution of length 3.

Lemma (Z.)

If $G = C_{p^n}$, and \underline{M} be a $\underline{\mathbb{Z}}$ -module that $\underline{M}(G/e) \cong 0$, then $\underline{Ext}^i_{\mathbb{Z}}(\underline{M},\underline{\mathbb{Z}})$ is concentrated at i = 3, and

 $\underline{Ext}^3_{\underline{\mathbb{Z}}}(\underline{M},\underline{\mathbb{Z}}) \cong \underline{M}^E$

Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of $\underline{\mathbb{Z}}$ -module is 3. That means, Each \mathbb{Z} -module has a projective resolution of length 3.

► Lemma (Z.)

If $G = C_{p^n}$, and \underline{M} be a $\underline{\mathbb{Z}}$ -module that $\underline{M}(G/e) \cong 0$, then $\underline{Ext}^i_{\mathbb{Z}}(\underline{M},\underline{\mathbb{Z}})$ is concentrated at i = 3, and

$$\underline{Ext}^3_{\underline{\mathbb{Z}}}(\underline{M},\underline{\mathbb{Z}}) \cong \underline{M}^E$$

Where <u>M</u>^E is the level-wise Ext¹(−, Z) of abelian groups on <u>M</u>.

Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of $\underline{\mathbb{Z}}$ -module is 3. That means, Each \mathbb{Z} -module has a projective resolution of length 3.

► Lemma (Z.)

If $G = C_{p^n}$, and \underline{M} be a $\underline{\mathbb{Z}}$ -module that $\underline{M}(G/e) \cong 0$, then $\underline{Ext}^i_{\mathbb{Z}}(\underline{M},\underline{\mathbb{Z}})$ is concentrated at i = 3, and

$$\underline{Ext}^3_{\underline{\mathbb{Z}}}(\underline{M},\underline{\mathbb{Z}}) \cong \underline{M}^E$$

- Where <u>M</u>^E is the level-wise Ext¹(−, Z) of abelian groups on <u>M</u>.
- So in our case we can understand the universal coefficient spectral sequence!(At least E₂ page)

Theorem (Bouc, Stancu and Webb, Arnold)

If G is finite and cyclic, the global projective dimension of $\underline{\mathbb{Z}}$ -module is 3. That means, Each \mathbb{Z} -module has a projective resolution of length 3.

► Lemma (Z.)

If $G = C_{p^n}$, and \underline{M} be a $\underline{\mathbb{Z}}$ -module that $\underline{M}(G/e) \cong 0$, then $\underline{Ext}^i_{\mathbb{Z}}(\underline{M},\underline{\mathbb{Z}})$ is concentrated at i = 3, and

$$\underline{Ext}^3_{\underline{\mathbb{Z}}}(\underline{M},\underline{\mathbb{Z}}) \cong \underline{M}^E$$

- Where <u>M</u>^E is the level-wise Ext¹(−, Z) of abelian groups on <u>M</u>.
- So in our case we can understand the universal coefficient spectral sequence!(At least E₂ page)
- This lemma also gives an algebraic interpretation of the "gap" in the upper-left part.

If you start with $\underline{\pi}_*(H\underline{\mathbb{Z}})$, the integer grading. By using these two dualites, you can actually recover the whole figure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Apply Anderson duality.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Compute the universal coefficient spectral sequence.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Apply Anderson duality again.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Universal coefficient spectral sequence. Anderson Duality :

Universal coefficient spectral sequence. Anderson Duality

Universal coefficient spectral sequence. Anderson Duality

The way these dualities spinning holds for all G that the miracle holds, especially for C_{pⁿ}.

Universal coefficient spectral sequence. Anderson Duality

The way these dualities spinning holds for all G that the miracle holds, especially for C_{pⁿ}.

• However as a *n*-dimensional grid.

Application in Slice Spectral Sequence

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Application in Slice Spectral Sequence

► Understanding the Mackey functor structure of <u>π</u>★(H<u>Z</u>) allows us to understand the whole RO(G)-grading of many slice spectral sequences.

Application in Slice Spectral Sequence

- ► Understanding the Mackey functor structure of <u>π</u>★(H<u>Z</u>) allows us to understand the whole RO(G)-grading of many slice spectral sequences.
- The multiplicative structure can help in deducing differentials in these gradings from those known slice differentials.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

▶ We see that $\underline{Ext}^*_{\underline{\mathbb{Z}}}(\underline{M},\underline{\mathbb{Z}})$ is concentrated in degree 3, and it is \underline{M}^E .

(ロ)、(型)、(E)、(E)、 E) の(の)

We see that <u>Ext^{*}_ℤ(M, ℤ)</u> is concentrated in degree 3, and it is <u>M</u>^E. We really like to say <u>ℤ</u> is a Gorenstein Green functor of shift 3.

We see that <u>Ext^{*}_Z(M, Z</u>) is concentrated in degree 3, and it is <u>M</u>^E. We really like to say <u>Z</u> is a Gorenstein Green functor of shift 3. But in this way, the level-wise Ext must play a role.

We see that <u>Ext^{*}_Z(M, Z</u>) is concentrated in degree 3, and it is <u>M</u>^E. We really like to say <u>Z</u> is a Gorenstein Green functor of shift 3. But in this way, the level-wise Ext must play a role. So, what should be a good definition of Gorenstein in Green functors?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- We see that <u>Ext^{*}_ℤ(M, ℤ)</u> is concentrated in degree 3, and it is <u>M</u>^E. We really like to say <u>ℤ</u> is a Gorenstein Green functor of shift 3. But in this way, the level-wise Ext must play a role. So, what should be a good definition of Gorenstein in Green functors?
- What do these dualities look like for other groups? Especially for those the miracle fails.

- We see that <u>Ext^{*}_ℤ(M, ℤ)</u> is concentrated in degree 3, and it is <u>M</u>^E. We really like to say <u>ℤ</u> is a Gorenstein Green functor of shift 3. But in this way, the level-wise Ext must play a role. So, what should be a good definition of Gorenstein in Green functors?
- What do these dualities look like for other groups? Especially for those the miracle fails.
- ► Tate diagram can also effectively compute H_E_p in all cyclic p-groups. Then what does A_{*} look like? Say, C₄?

The End

◆□▶ ◆圖▶ ◆喜▶ ◆喜▶ 言 - ∽��?

Thank you!