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Abstract. In this paper we compute the RO(G)-graded homotopy Mackey

functor for HZ, the Eilenberg-Mac Lane spectrum of constant Mackey functor

for G = Cp2 , and give some computation for larger G. As an application, we

use it to give some computation of homological algebra of Z-modules.

1. Introduction

In the Kervaire invariant one paper [HHR16], Hill, Hopkins and Ravenel devel-
oped a computational tool for equivariant stable homotopy theory, namely the slice
spectral sequence. It is later refined by Ullman in [Ull13] to obtain a better multi-
plicative property. The slice spectral sequence computes πFX, the RO(G)-graded
homotopy Mackey functors of a G-spectrum X, from RO(G)-graded homotopy
Mackey functors of ”slices” of X. In many cases, slices of an interesting spectrum
(e.g. MU and its norm in [HHR16], Tmf1(3) in [HM17] and Morava E-theories
in [HS]) are suspensions of HZ or its variants by virtual representations. Therefore,
if we want to compute the RO(G)-graded homotopy Mackey functor of these spec-
tra, we need to understand the RO(G)-graded homotopy Mackey functor of HZ.
This is the main topic of this paper.

In this paper, we will focus on the computation of RO(G)-graded homotopy
Mackey functor of HZ for G = Cp2 . The main result, including the RO(G)-graded
multiplicative structure, is Theorem 4.8. RO(G)-graded homotopy Mackey functor
ofHZ forG = Cp is known for decades, and its computation can be found in [Dug05]
and [Gre]. Computing everything in terms of Mackey functor is essential, since we
need to make use of homological algebra of Mackey functors. We will use four
different ways to compute and explain πFHZ, for G = Cpn :

(1) Cellular Method. Notice that πVHZ ∼= H0(S−V ;Z), where HF(−;Z) is
the Mackey functor valued ordinary homology with coefficient Z. Then we
can use G-cellular structure of S−V to compute its homology. When V is
an actual representation or the opposite of one, SV has at most one G-cell
in each dimension, therefore the chain complex can be easily computed. In
fact, this chain complex of Mackey functors is determined by its underlying
chain complex of abelian groups. If V = V1 − V2, where V1 and V2 are two
actual representations, we can use the product cell structure on SV . In this
case, we get a double complex. When we filter the double complex by cellu-
lar structure of SV1 and S−V2 , we get two spectral sequences. Comparison
between these two spectral sequences can deduce a lot of differentials, and
gives a complete answer when G = Cp2 .

Date: Saturday 7th October, 2017.

1



2 MINGCONG ZENG

(2) Cofibre of a Method. We can build G-spectra Ln with the following
properties:
• π∗(Ln) can be computed.
• For oriented representation V , ΣV Ln ' Σ|V |Ln, therefore its RO(G)-

graded homotopy Mackey functor is just shift of integer graded one.
• There are cofibre sequences SV ∧ HZ → SV+nλ0 ∧ HZ → SV ∧ Ln,

where λ0 is the representation given by multiplication by a primitive
pn-th root of unity on the complex plane.

Assume we know π∗(S
V ∧HZ) and π∗(S

V ∧Ln), we can try to compute the
connecting homomorphism and extensions, to figure out π∗(S

V+nλ ∧HZ).
(3) Tate Diagram Method. Consider the Tate diagram from [GM95], which

is a homotopy pullback of ring spectra:

X //

��

X̃

��
Xh // Xt

Notations in the diagram will be explained in Section 3.3. In our compu-
tation X = HZ, and we can compute πF(HZh) and πF(HZt) by group

cohomology. If we can compute πFX̃, then we can use homotopy pullback
to compute πFHZ, not only as RO(G)-graded Mackey functor, but as a
RO(G)-graded Green functor, which includes its graded ring structure.

(4) Duality Method. There are two dualities in the homotopy category of
HZ-modules, namely equivariant Anderson duality and Spanier-Whitehead
duality. Equivariant Anderson duality, denoted by IZ, is constructed in
[Ric16]. In our case it computes π∗(S

2−λ−V ∧HZ) from π∗(S
V ∧HZ) by

a short exact sequence. The HZ-module Spanier Whitehead duality will
send SV ∧ HZ to S−V ∧ HZ, and there is a universal coefficient spectral
sequence convergent to π∗(S

−V ∧HZ) with E2-page

Exti,jZ (π∗(S
V ∧HZ),Z)

Therefore some homological algebra of Z-modules is required. We will show
how to compute these Ext Mackey functors and use them to calculate the
spectral sequence. These two dualities gives an explanation of structure
of πFHZ, especially an algebraic explanation of the ”gap” phenomenon
in [HHR16, Section 8].

The universal coefficient spectral sequence can be used reversely: We can com-
pute πFHZ by other methods and use the spectral sequence to calculate homolog-
ical algebra. This approach is taken in Section 6. We can compute various Ext
Mackey functors and obtain pure algebra propositions by topological means.

In Section 2, we will review definitions and tools needed for our computation.
We will go over four different methods of computation in Section 3. Section 4 is
focused on the computation for G = Cp2 . In Section 5 we discuss some computation
about large cyclic p-groups. In Section 6 we use our computation to explore some
homological algebra of Z-modules.

Acknowledgements: I want to thank organizers, mentors and participants of
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2. Definitions and Tools

In this section, we review some definitions and constructions that will be used
in our computation.

2.1. Mackey Functors and Z-Modules.

The definition of Mackey functor and some properties are given by Thévenaz
and Webb in [TW95] and Lewis in [Lew80]. We will use BurnG for the Burnside
category, and (MackG,�, A) for the category of Mackey functors, its tensor prod-
uct(the box product) and its tensor unit(Burnside Mackey functor). All Mackey
functors in this paper will be presented with an underline.

We use Lewis diagram to represent Mackey functors. Let M be a Mackey functor,
We will put M(G/G) on the bottom and M(G/e) on the top. Thus restrictions are
maps going downwards and transfers are maps going upwards. Weyl group action
will be indicated by G-module structure on each M(X), since our group G is always
abelian. For example, a Lewis diagram of a Cp2-Mackey functor M is the following:

M(Cp2/Cp2)

Resp
2

p
��

M(Cp2/Cp)

Respe
��

Trp
2

p

UU

M(Cp2/e)

Trpe

UU

Now we give some examples of Mackey functors which will be used in our com-
putation.

Definition 2.1. Given a G-module M , the fixed point Mackey functor M is defined
as M(G/H) = MH , the H-fixed point of M , as an G/H-module. Restrictions are
inclusions of fixed point, and transfers are summations over cosets. 0 is the trivial
Mackey functor and Z is the constant Mackey functor of Z.

Definition 2.2. A Mackey functor M is called a form of Z if M(G/H) ∼= Z with
trivial G-action for all H ⊂ G.

Remark 2.3. Notice that by the double coset formula of Mackey functors, in a
form of Z composition of restriction and transfer between adjacent level in Lewis
diagram is multiplication by p, thus one of them is isomorphism and another is
multiplication by p. Therefore, for G = Cpn , there are 2n isomorphism classes of
forms of Z.

Definition 2.4. Let Zt1,t2,...,tn , where ti = 0 or 1 be the form of Z for Cpn such

that Resp
i

pi−1 = pti for 1 ≤ i ≤ n.

There is another class of Mackey functors that will appear in the computation:
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Definition 2.5. Let Bt0,t1,...,tn be the cokernel of Zt0,t1,...,tn → Z, where the map
is isomorphism on G/e-level.

Example 2.6. Z1,0 for Cp2 has the following Lewis diagram

Z
1
��
Z

p
��

p

WW

Z
1

WW

B1,0 for Cp2 has the following Lewis diagram

Z/p

1
��
Z/p

��

0

UU

0

UU

Example 2.7. Z0,1,1 for Cp3 has the following Lewis diagram

Z
p
��
Z

p
��

1

WW

Z
1
��

1

WW

Z

p

WW

B0,1,1 for Cp3 has the following Lewis diagram

Z/p2

1

��
Z/p

��

p

UU

0

��

UU

0

VV

Inside MackG, the category of G-Mackey functors, we will only be interested in
ModZ, the category of Z-modules. The following proposition identifies Z-modules
by a simple condition.
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Proposition 2.8 ( [TW95, Proposition 16.3]). A Mackey functor M is a Z-module
if and only if it is cohomological, i.e. TrHH′Res

H
H′(x) = [H : H ′]x for all H ′ ⊂ H ⊂

G and all x ∈M(G/H)

Notice that all Zt0,t1,...,tn and Bt0,t1,...,tn are Z-modules.
The following is a simple lemma, but it is useful in computatoin.

Lemma 2.9. Let M be a Z-module that M(G/e) is torsion, then M(G/H) is
torsion for any orbit G/H.

Proof. Let x ∈ M(G/H), then |H|x = TrHe (ResHe (x)) is torsion by Proposition
2.8, so x is torsion. �

Since Z is a commutative monoid under box product, we can define box product
in Z-modules, �Z by the coequalizer diagram

M�Z�N ⇒M�N →M�ZN

Tensor unit of �Z is Z. It has a right adjoint, the internal hom of Z-modules,
denoted by HomZ.

Proposition 2.10. The category ModZ has enough projective and injective objects,
and the set

{Z[X]| X a finite G-set}
forms enough projective objects.

Provided tensor product, internal Hom and enough projective and injective ob-
jects, it is a standard course to define derived functors used in homological algebra.

Definition 2.11. For N ∈ModZ, we define ExtiZ(−, N) to be the i-th right derived

functor of HomZ(−, N) and ToriZ(−, N) to be the i-th left derived functor of −�ZN .

A nice fact about homological algebra of ModZ is that we know its global coho-
mological dimension:

Theorem 2.12 ( [BSW17, Theorem 1.7] [Arn81]). If G is cyclic and finite, then
ModZ has global cohomological dimension 3. More precisely, any Z-module has a
projective resolution of length at most 3.

Remark 2.13. Even though this theorem is nice, we will make no use of it through
the paper, since the minimal resolution might not be the easiest to compute. How-
ever, as we will see, this theorem gives very nice control of universal coefficient and
Künneth spectral sequences.

There is another kind of Hom and Ext functors that will be very useful, which is
defined level-wisely using Hom and Ext of abelian groups. See [Ric16, Section 3].

Definition 2.14. Given an abelian group A and a Mackey functor M , The level-
wise Hom functor, HomL(M,A) is the Mackey functor defined by the composition

BurnG
M−→ Ab

Hom(−,A)−−−−−−−→ Ab

And the level-wise Ext functor, ExtL(M,A) is the Mackey functor defined by the
composition

BurnG
M−→ Ab

Ext(−,A)−−−−−−→ Ab
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Both subscript L stands for ”level-wise”, to distinguish this Hom and Ext from
the ”internal” one defined above. These two types ofHom and Ext functors behaves
very differently: HomZ(Z,Z) ∼= Z but HomL(Z,Z) ∼= Z∗. We will see in Theorem
3.13 how these functors are related.

Definition 2.15. Given a Mackey functor M , we will use M∗ for HomL(M,Z)

and ME for ExtL(M,Z).

For forms of Z, Z∗t0,t1,...,tn ∼= Z1−t0,1−t1,...,1−tn .

2.2. Indexing Groups.

We need to address our indexing group of homotopy Mackey functor carefully.
From a standard point of view, homotopy Mackey functors of a G-spectrum is in-
dexed by RO(G), the group of finite dimensional virtual R-representations of G. For
G = Cpn , RO(G) is generated by the trivial representation and R2-representations
given by multiplication by a primitive pi-th root of unity, for 1 ≤ i ≤ n (For p = 2,
the representation given by multiplying −1 on R2 is isomorphic to sum of two copies
of sign representation). We know from [Kaw80] that for different primitive pi-th
roots of unity γ and γ′, their corresponding representation spheres are not stably
equivalent. However, if we are interested in HZ, the following theorem of Hu and
Kriz tells us that different choice of primitive pi-th root of unity doesn’t matter.

Theorem 2.16 ( [HK, Lemma 1]). If γ, γ′ are primitive pi-th roots of unity, then

Sγ ∧HZ ' Sγ′ ∧HZ.

We give a proof in Section 3.1.
By this theorem, for G = Cpn , we will not distinguish among different primitive

pi-th roots of unity, therefore we can think of our indexing group as direct sum of
n + 1 copies of Z, generated by trivial representation and representation spheres
corresponding to a primitive pi-th root of unity for each 1 ≤ i ≤ n. We will denote
the representation by multiplying a primitive pi-th root of unity on complex plane
λn−i and set λ := λ0. If p = 2, λn−1 = 2σ, where σ is the sign representation on
C2n .

In this paper, we will use ∗ for integer grading, and F for RO(G) grading.

2.3. Equivariant Anderson Duality. The classical Anderson duality is defined
in [And], and a C2-equivariant version of it appears in [Ric16]. We need a version for
Cpn -equivariant spectra. However, all definition and properties in [Ric16, Section 3]
will work with identical proof, so we will only list the definition and properties we
need without giving proofs here.

Proposition 2.17. Let A be an injective abelian group, then X 7→ Hom(πG−∗(X), A)
defines a cohomology theory.

We will use IA for the G-spectrum representing Hom(πG−∗(−), A).

Definition 2.18. Let X be a G-spectrum, the Anderson dual of X, denoted by
IZ(X), is defined to be the homotopy fibre of Fun(X, IQ)→ Fun(X, IQ/Z).

Proposition 2.19. Let E and X be G-spectra, then there is a short exact sequence
of Mackey functors, natural in both X and E:

0→ ExtL(EF−1(X),Z)→ IZ(E)F(X)→ HomL(EF(X),Z)→ 0



RO(G)-GRADED HOMOTOPY OF HZ 7

Corollary 2.20. (1) If M is a form of Z, then IZ(HM) ' HM∗.
(2) If M is a Z-module with M(G/e) ∼= 0, then IZ(HM) ' Σ−1HME.

Proof. (1) is a direct consequence of the short exact sequence of Anderson duality
and uniqueness of Eilenberg-Mac Lane spectra.
For (2), by Lemma 2.9, all M(X) are torsion, so the result follows again from the
short exact sequence. �

Corollary 2.21. If R is a commutative ring spectrum and M is a R-module, then
IZ(M) is naturally an R-module. Furthermore, if M,N are R-modules, then

HomR(M, IZ(N)) ' IZ(M ∧R N)

2.4. Universal Coefficient and Künneth Spectral Sequences.

The equivariant version of universal coefficient and Künneth spectral sequences
are developed by Lewis and Mandell in [LM06]. Ext and Tor used in these spectral
sequences are defined in Definition 2.11.

Theorem 2.22 ( [LM06, Theorem 1.1]). Let R be a commutative G-ring spectrum,
X be a G-spcetrum and M be an R-module.

(1) There is a natural strongly convergent homology spectral sequence of R∗-
modules

E2
s,t = Tor

R∗
s,t (R∗X,M∗)⇒Ms+tX

with differentials
dr : Ers,t → Ers−r,t+r−1

(2) There is a natural conditionally convergent cohomology spectral sequence of
R∗-modules

Es,t2 = Exts,tR∗
(R∗X,M∗)⇒Ms+tX

with differentials
dr : Es,tr → Es+r,t−r+1

r

We will mostly use the case when R = HZ, and M = R for the universal
coefficient spectral sequence, and M = ΣVHZ in the Künnneth spectral sequence.

Corollary 2.23. (1) Given a G-spectrum X, there is a spectral sequence with
E2-page

Exti,jZ (H∗(X;Z),Z)

and is convergent to H∗(X;Z).

(2) Given G-spectra X,Y , there is a spectral sequence with E2-page

Tor
Z
i,j(H∗(X;Z), H∗(Y ;Z))

and is convergent to H∗(X ∧ Y ;Z).

By Theorem 2.12, these spectral sequences are strongly convergent and can only
have d2, d3 and potential extensions, making them very reasonable to compute.
Notice that the version we need is the Z-graded version rather than RO(G)-graded
version, because if we are using the RO(G)-graded version, then the spectral se-
quence collapse at E2 and its input equals to its output.
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2.5. Some Elements in HZF.

We define two families of elements in HZF, which plays a crucial role in our
computation. More detail including proofs of this section is in [HHR17b, Section 3].

Definition 2.24. (1) For an actual representation V with V G = 0, let aV ∈
π−V (S0) be the map S0 → SV which embeds S0 to 0 and ∞ in SV . We
will also use aV for its Hurewicz image in π−V (HZ).

(2) For an actual orientable representation W , let uW be the generator of
H |W |(S

W ;Z)(G/G) which restricts to the choice of orientation in

H |W |(S
W ;Z)(G/e) ∼= H|W |(S

|W |;Z)

In homotopy grading, uW ∈ π|W |−W (HZ)(G/G).

Proposition 2.25. Elements aV ∈ π−V (HZ)(G/G) and uW ∈ π|W |−W (HZ)(G/G)
satisfy the following:

(1) aV1+V2 = aV1aV2 and uW1+W2 = uW1uW2 .
(2) ResGH(aV ) = ai∗H(V ) and ResGH(uV ) = ui∗H(V )

(3) |G/GV |aV = 0, where GV is the isotropy subgroup of V .
(4) The gold relation. For V,W oriented representations of degree 2, with

GV ⊂ GW ,
aWuV = |GW /GV |aV uW

In terms of oriented irreducible representations of Cpn , the gold relation
reads

For 0 ≤ i < j < n, aλjuλi = pi−jaλiuλj
(5) The subring consists of πi−V (HZ)(G/G) where V is an actual representa-

tion is

Z[aλi , uλi ]/(p
n−iaλi = 0, gold relations) for 0 ≤ i, j < n

We will call this subring BBG, standing for ”basic block”. We will use
BBG for the graded Green functor in the corresponding RO(G)-degree of
BBG. We will omit G if there is no ambiguity.

3. General Strategy

We have four different approaches to HZF and this section serves as an intro-
duction of them.

3.1. Cellular Method.

Since HZV ∼= HZ0(S−V ;Z), and S−V is a G-CW-complex, we can compute

HZF via cellular homology of all SV . If we write V =
∑n−1
i=0 aiλi, then SV ∼=∧n−1

i=0 S
aiλi . Each Saiλi has a cellular structure given in [HHR17a, Section 1.2].

And we can produce different filtrations by filtering along these cellular structures.
In this way we will get n−1 different spectral sequences with different E2-page but
all converge to H∗(S

V ;Z). Then we can compare E2-pages and try to figure out
all differentials and extensions.

The following lemma is crucial in our computation, and it is easily seen from
cellular structure of representation spheres.
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Lemma 3.1. Let G = Cpn and H = Cp as the subgroup of G. Let VG = Σni=1aiλi
be a virtual G-representation with no copies of λ0. Since VG has no copies of λ0,
it factors through G/H. Let VG/H be the virtual G/H-representation that gives

VG by composition with the quotient map, then Hi(S
VG ;Z) can be computed by

Hi(S
VG/H ;Z) by the following:

Hi(S
VG ;Z)(G/H ′) ∼=

{
Hi(S

VG/H ;Z)((G/H)/(H ′/H)) for H ⊂ H ′
Hi(S

VG/H ;Z)((G/H)/e) for H = e

With ResHe : Hi(S
VG ;Z)(G/H) → Hi(S

VG ;Z)(G/e) the identity map and
TrHe : Hi(S

VG ;Z)(G/e)→ Hi(S
VG ;Z)(G/H) multiplication by p.

Furthermore, aVG/H (or uVG/H ) maps to aV (or uV ) under the above isomorphism.

In terms of irreducible representations, aλi(or uλi) in G/H maps to aλi+1(or uλi+1)
in G.

Proof. Since all irreducible summands in VG are from G/H, all G-cells of SVG are
of the form Sk ∧ G/H ′+ for some nontrivial H ′ ⊂ G. In the Z-coefficient cellular
chain complex, such a G-cell is corresponding to the Mackey functor Z[G/H ′]. For

VG/H , the corresponding G/H-cell is Sk∧((G/H)/(H ′/H))+, and in chain complex
it gives Z[(G/H)/(H ′/H)]. Now we see that the algebraic description in the lemma
is true in chain level with respect to all chain differentials. Therefore it is true in
homology. �

Remark 3.2. This lemma will be the heart of our induction. We can compute
π∗(S

V ∧ HZ) if V contains no copy of λ0 by computing in quotient group. Then
we can compute π∗(S

V+nλ0 ∧HZ) by different methods.

As promised, we will give a proof of Theorem 2.16 here.

Proof of Theorem 2.16. We only need to show that Sγ ∧ S−γ′ ∧HZ ' HZ, where
γ and γ′ are two different primitive pi-th roots of unity. Therefore, we only need to
compute π∗(S

γ ∧Sγ′ ∧HZ). By [HHR17a, Section 1.2], the cellular chain complex
of Sγ , C∗(S

γ) is

Z← Z[Cpn/Cpi ]← Z[Cpn/Cpi ]

Where all chain maps are determined by the fact that Sγ is S2 when forget the
group action. Similarly, C∗(S

−γ′) is

Z[Cpn/Cpi ]← Z[Cpn/Cpi ]← Z

Now one can compute the total homology of C∗(S
γ)�ZC∗(S

−γ) and see it is con-
centrated in degree 0 and H0

∼= Z. �

3.2. Cofibre of a Method.

Definition 3.3. Let Ln be the cofibre of the map anλ0
: S0 ∧HZ→ Snλ0 ∧HZ for

n > 0, and the fibre of the map anλ0
: S−λ0 ∧HZ → S0 ∧HZ. If p = 2, we define

L′n to be ΣσLn for all n.

Lemma 3.4. If V ∈ RO(G) is orientable, then ΣV Ln ' Σ|V |Ln.

Proof. We only need to prove this lemma for V = λi. The map uλi : S2 ∧ Snλ0 →
Sλi ∧Snλ0 induces isomorphism between π∗(Σ

2Ln) ∼= π∗(Σ
λiLn) by direct compu-

tation using cellular structure given in [HHR17a, Section 1.2]. �
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Following this lemma, we consider cofibre sequences obtained by smashing the
defining sequence of Ln with SV , for V with no copies of λ0:

SV ∧HZ→ SV+nλ0 ∧HZ→ SV ∧ Ln
π∗(S

V ∧HZ) can be computed by Lemma 3.1 through induction, and π∗(S
V ∧

Ln) ∼= π∗(S
|V |∧Ln) is also known. Therefore, we need to understand the connecting

homomorphisms and extensions to compute π∗(S
V+nλ0 ∧HZ).

The first nontrivial connecting homomorphism can be determined by the fact
that in π∗(S

V+nλ0 ∧ HZ) has only one form of Z but π∗Ln has two, so the form
of Z of π∗Ln in the wrong dimension must kill the form of Z in π∗(S

V ∧ HZ).
A large number of connecting homomorphism can be determined by the fact that
the connecting homomorphism is a map of HZ-modules, therefore commutes with
multiplication by aV and uV .

Some extensions can be computed by the following lemma.

Lemma 3.5. (Lemma 4.2 in [HHR17b]) Let G be a finite cyclic 2-group with sign
representation aσ and index 2 subgroup G′, and let X be a G-spectrum. Then in
πFX(G/G) the image of TrGG′ is the kernel of multiplication by aσ, and the kernel

of ResGG′ is the image of multiplication by aσ.

Remark 3.6. When p > 2, we can still make similar argument. The difference is
that the 1-skeleton of Sλn−1 in Cpn is not an element in the Picard group any more.
We need to manually compute all maps from the smash product of SV with this 1-
skeleton into HZ. If we ignore the full multiplicative structure, the computation is
similar to p = 2 in this section.

This lemma tells us that if an element x maps to nonzero y under the connect-
ing homomorphism but aσx maps to 0, then there will be a nontrivial extension,
as x must lies in the image of transfer. Similarly, if y is killed by connecting ho-
momorphism but aσy is not, then aσy will support a nontrivial restriction in the
extension.

As we will see in Section 4.3, the above argument determines all connecting
homomorphisms and extensions for G = Cp2 .

3.3. Tate Diagram Method.

Consider the Tate diagram constructed in [GM95]:

Diagram 3.7.

Xh
//

'
��

X //

��

X̃

��
Xh

// Xh // Xt

Where

X̃ = ẼG ∧X = a−1
λ0
X

Xh = EG+ ∧X
Xh = Fun(EG+, X)

Xt = ẼG ∧Xh = a−1
λ0
Xh
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And the right square is a homotopy pullback of ring spectra.
In our case X = HZ. Our computation goes as follows:

• Assume that we know π∗(S
V ∧HZ) for all V with no copies of λ0. Since

all such V factor through a quotient group, this can be done by induction
of order of G by Lemma 3.1.
• For any V we can compute π∗(S

V ∧HZh), π∗(S
V ∧HZh) and π∗(S

V ∧HZt)
and maps between by the corresponding spectral sequences, they all collapse
at E2-page in our case, and maps between then are simply the corresponding
maps in group homology and cohomology.
• For V with no copies of λ0, we can compute π∗(S

V ∧a−1
λ0
HZ) and the right

vertical map by knowing all other five terms in Tate diagram.
• For V + nλ0, notice that both a−1

λ0
HZ and HZt are aλ0-periodic, therefore

we can compute π∗(S
V+nλ0 ∧HZh) and π∗(S

V+nλ0 ∧ a−1
λ0
HZ).

• In the fibre sequence SV+nλ0 ∧HZh → SV+nλ0 ∧HZ→ SV+nλ0 ∧ a−1
λ0
HZ,

we know the first and third terms. Connecting homomorphism and exten-
sion can be computed by comparison with the bottom row of Tate diagram,
which we fully understand.

The main advantage of Tate diagram is that the homotopy pullback is a pullback
of ring spectra, so we can compute the ring structure of πF(HZ) by this method.

A very important technique in Tate diagram computation is tracking name of
elements. We will use the following notation system:

Definition 3.8. • For elements in π∗−VHZ, where V is an actual repre-
sentation, we will use (5) of Proposition 2.25 to name them, that is, as
monomials of aλi and uλi .

• For elements in πFHZh, we will use aV and uV for their image under the
middle vertical map of Tate diagram. In fact,

πF(HZh) = Z[u±λi , aλ0
]/(pnaλ0

= 0)

and

aλi =
piaλ0

uλi
uλ0

by homotopy fixed point spectral sequence and the gold relation.
• Since πFHZt = a−1

λ0
πF(HZh) = Z/pn[u±λi , a

±
λ0

], we use the same names as

in HZh.
• For elements in πF(HZh). If it is the generator of π|V |−V (HZh)(G/G)

for some V ∈ RO(G) and let V = V1 − V2, where V1 and V2 are actual

representations. Then it maps to
pnuV1
uV2

. Therefore we will use
pnuV1
uV2

to

name it. All other elements are from πF+1(HZt) via connecting homomor-
phism(which is an isomorphism in that degree), therefore we name then as
desuspension of their preimage. For example, the image of 1

aλ0
∈ πλ0

(HZt)
will be named as Σ−1 1

aλ0
in πλ0

(HZh).

• When G = Cp, for elements in πi+nλ(HZ) for n > 0, since they are all
coming from HZh, we will use the same name as their preimage in HZh.
• For elements in πi−V (a−1

λ0
HZ), first we assume V has no copies of λ0.

In this case, if x ∈ πi−V (a−1
λ0
HZ) is from πi−V (HZ), then we will use the
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name in πi−V (HZ). If x maps nontrivially to πi−1−V (HZh) under connect-

ing homomorphism, then we will use the name of its image in πi−V (HZt)
to name it(the connecting homomorphism of the top row of Tate diagram
factor through HZt). For a general V , we use aλ0

-periodicity and names
in those representations without λ0 to name them.
• For elements in πFHZ, if the element comes from HZh, we use the name

there. If it maps nontrivially to a−1
λ0
HZ, we use the name of its image.

Remark 3.9. The way of naming elements in πFHZ(G/G) and πFa
−1
λ0
HZ is

actually an induction using Lemma 3.1. We will see very detailed examples in
computation in Section 4.4 and 5. We need this naming system to give a description
of the multiplicative structure of πFHZ.

3.4. Duality Method.

Consider H∗(S
2−λ0 ;Z), by direct cellular computation, we see that it is concen-

trated in dimension 0, and H0(S2−λ0 ;Z) ∼= Z∗. Combining with Corollary 2.20, we
have the following lemma.

Lemma 3.10. For G = Cpn , IZ(HZ) ' Σ2−λ0HZ.

By this lemma, we can think of Anderson duality as a duality with centre of rota-
tion 2−λ0

2 , while universal coefficient spectral sequence computing HomHZ(−, HZ)
has centre of rotation 0. Therefore we can use these two dualities one followed by
another, to compute πF(HZ).

The computation goes as follows:

• Assume that we know π∗(S
V ∧ HZ) for all V with no copies of λ0, by

Lemma 3.1.
• Compute π∗(IZ(SV ∧HZ)) ∼= π∗(S

2−λ0−V ∧HZ), using proposition 2.19.
• From π∗(S

2−λ0−V )∧HZ), we can use universal coefficient spectral sequence
in 2.22 to compute π∗(S

V+λ0−2 ∧HZ).
• Repeat the procedure, and we can compute for all V ∈ RO(G).

The following theorem is standard, but combining with Anderson duality, it gives
a short cut in computation of universal coefficient spectral sequence.

Theorem 3.11. The category of unbounded chain complexes of Z-modules with pro-
jective model structure is Quillen equivalent to the model category of HZ-modules.

Proof. This follows directly from [SS03, Theorem 5.1.1]. The set of tiltors is
{X+ ∧ HZ|X ∈ SetG} and its endomorphism ringoid is ModZ, the category of
Z-modules. �

Corollary 3.12. ExtiZ(M,N) ∼= π−i(HomHZ(HM,HN)) and Tor
Z
i (HM,HN) ∼=

πi(HM ∧HZHN). Here HomHZ and ∧HZ are the derived internal Hom and smash
product of HZ-modules.

The following theorem and its corollary is essential to our computation.

Theorem 3.13. If M is a Z-module with M(G/e) ∼= 0, then ExtiZ(M,Z) is con-

centrated in i = 3, and Ext3Z(M,Z) ∼= ME.

ME is defined as the ”level-wise” Ext1 of M as in Definition 2.15.
We need a lemma for the proof.
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Lemma 3.14. Let M be a Z-module with M(G/e) = 0, then ΣλHM ' HM .

Proof. Consider C∗(S
λ), the cellular chain of Sλ, which is

Z ∇←− Z[G]
1+γ←−−− Z[G]

Now, π∗(Σ
λHM) = H∗(C∗(S

λ)�ZM). However,

Z[G]�ZM(X) ∼= M(X ×G) ∼= 0

Since X ×G is a free G-set and M evaluating on free G-set is 0 since M(G/e) ∼= 0.
Therefore π∗Σ

λHM is concentrated in degree 0, and π0 = Z�ZM = M . �

Proof of Theorem 3.13. By Lemma 2.9, M is level-wisely torsion. And by Corollary
3.12, ExtiZ(M,Z) ∼= π−iHomHZ(HM,HZ). Now by Lemma3.10,

HZ ∼= Σλ−2IZ(HZ), therefore

HomHZ(HM,HZ) ' Σλ−2HomHZ(HM, IZ(HZ))

' Σλ−2IZ(HM) by Corollary 2.21

' Σλ−3HME by Corollary 2.20

' Σ−3HME by Lemma 3.14

�

Corollary 3.15.

ExtiZ(Zt0,t1,...,tn ,Z) =





Z i = 0

BEt0,t1,...,tn i = 2
0 otherwise

Proof. Apply Theorem 3.13 to the Ext long exact sequence induced by the short
exact sequence

0→ Zt0,t1,...,tn → Z→ Bt0,t1,...,tn → 0

�

Remark 3.16. Ext0Z(Zt0,t1,...,tn ,Z) ∼= HomZ(Zt0,t1,...,tn ,Z) ∼= Z can be seen by

algebra: We can construct the generator starting by an isomorphism in G/e-level.
Notice that the target’s restrictions are isomorphisms. Therefore a map in Cpn/Cpi-
level can always be lifted: If ti = 0 then it lifts to the same map and if ti = 1 it
lifts to its p-multiple. By this procedure, the resulting map between Mackey functors
always has an underlying isomorphism, thus the generator in HomZ(G/G) restricts

to 1 in HomZ(G/e) ∼= Z. So we see that all restrictions are isomorphisms in the
internal Hom. This procedure can effectively compute all internal Hom between
forms of Z.

The following theorem is a first taste of the duality method.

Theorem 3.17. If M is a form of Z, then HM ' SV ∧HZ for some V ∈ RO(G).

Proof. Consider Res
Cp
e in M , it is either 1 or p. If the restriction map is 1, then by

Lemma 3.1, if the G/Cp-Mackey functor whose Lewis diagram is M with bottom

cut is SV
′ ∧HZ for some V ′ ∈ RO(G/Cp), then HM ' SV ∧HZ where V is the

composition of V ′ with the quotient map G → G/Cp. If the restriction map is p,

then the corresponding transfer map is 1. Therefore Res
Cp
e in M∗ is 1. And by the
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argument above, HM∗ ∼= SV ∧HZ for some V ∈ RO(G). Then by Corollary 2.20,
HM ∼= S2−λ−V ∧HZ. �

Remark 3.18. (1) This theorem tells us that in πF(HZ), every form of Z will
appear.

(2) Even though V is constructed implicitly in the proof, we can track down the
induction and construct V explicitly. See the example below.

Example 3.19. For G = Cp3 , consider the Mackey functor Z1,0,1, which has the
Lewis diagram

Z
p
��
Z

1
��

1

WW

Z
p
��

1

WW

Z
1

WW

Then HZ1,0,1 ' S−λ0+λ1−λ2+2 ∧HZ.

Similarly, one can use the Künneth spectral sequence to compute H∗(S
V1+V2 ;Z)

from TorZ∗,∗(H∗(S
V1 ;Z), H∗(S

V2 ;Z)). This spectral sequence can help in tracking
multiplicative structure, but has many nontrivial differentials and extensions. An
interesting application is to do things reversely: We can compute HZF by other
method first, and its comparison with both universal spectral sequence and Künneth
spectral sequence will tell us a lot about ExtZ and TorZ. This approach is taken
in Section 6.

4. Computation of πFHZ for G = Cp2

In this section, we will apply all methods to compute HZF for G = Cp2 . As
discussed in section 2.2, our indexing group RO(CP 2) is freely generated by 1, λ1, λ0

for p odd and by 1, σ, λ0 for p = 2. The computation will be identical for all odd
primes and orientable representations for p = 2. For non-orientable representations
in C4, we will use the cofibre sequence C4/C2+ → S0 → Sσ to derive our result.
We will use γ as generator of C4.

We will use cellular method and cofibre method to compute several examples.
A complete computation is done by Tate diagram, with a full description of mul-
tiplicative structure. Finally, we will use duality to explain the result and relate it
to homological algebra.

4.1. RO(G)-graded Homotopy Mackey Functors of HZ for Cp2 .

For G = Cp2 , πF(HZ) is described as follows, with names of Mackey functors in
Definition 2.4, 2.5, 2.15:

Theorem 4.1. Let V = mλ0 + nλ1. We describe πi−V (HZ) in several different
cases:



RO(G)-GRADED HOMOTOPY OF HZ 15

(1) There are 3 Eilenberg-Mac Lane spectra of forms of Z other than Z itself:

S−λ0+2 ∧HZ ' HZ1,1

S−λ1+2 ∧HZ ' HZ0,1

S−λ0+λ1 ∧HZ ' HZ1,0

(2) If m,n ≥ 0, then

πi−V (HZ) =





B0,1 0 ≤ i < 2n and i is even
B1,1 2n ≤ i < 2(n+m) and i is even
Z i = 2(n+m)

(3) If m,n ≤ 0 and it is not one of the Eilenberg-Mac Lane cases, then

πi−V (HZ) =





B0,1 2n− 1 ≤ i ≤ −3 and i is odd
B1,1 2(m+ n) < i < 2n− 1 and i is odd
Z1,1 i = 2(m+ n) and m < 0
Z0,1 i = 2(m+ n) and m = 0

(4) If m > 0 and n < 0, then πi−V (HZ) is the direct sum of two graded Mackey
functors Ci,m,n and Di,m,n, where

Ci,m,n =

{
B1,1 2n < i < 2(n+m) and i is even
Z i = 2(n+m)

Di,m,n =

{
BE1,0 i = n
B0,1 2n < i ≤ −3 and i is odd

(5) If m < 0, n > 0 and it is not one of the Eilenberg-Mac Lane cases, then
πi−V (HZ) is the direct sum of two graded Mackey functors Ci,m,n and
Di,m,n, where

Ci,m,n =





B0,1 i = 2n− 3
B1,1 2(m+ n) < i < n− 3 and i is odd
Z1,1 i = 2(m+ n) and m < −1
Z1,0 (i = 2(m+n)andm = -1)

Di,m,n = B0,1where 0 ≤ i < 2n− 3 and trivial otherwise.

This theorem gives a complete description for πF(HZ) for Cp2 and p > 2. For
p = 2, we still need to describe all the cases where V is non-orientable. In this case
we need some more Z-modules in C4:

Definition 4.2. (1) Z− is the C4-module Z with action by multiplying −1 and
Z− is its fixed point Mackey functor. Z− has Lewis diagram

0

��
Z−

1
��

WW

Z−

2

UU

and let Z∗− be HomL(Z−,Z) as in Definition 2.15.
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(2) Let B− be the Z-module with Lewis diagram

0

��
Z/2

WW

��
0

UU

(3) Let M = Z−orZ
∗
−, then Ṁ is the Mackey functor which is isomorphic to M

when the orbit is not C4/C4, and Ṁ(C4/C4) = Z/2 is hit by the transfer.

Ż− has Lewis diagram

Z/2

0
��
Z−

1
��

1

UU

Z−

2

UU

And Ż∗− has Lewis diagram

Z/2

0
��
Z−

2
��

1

UU

Z−

1

UU

Be careful that Ż∗− is not (Ż−)∗.

Theorem 4.3. Let V = mλ0 + nσ. since 2σ = λ1, we can assume n is odd.
πi−V (HZ) is the following:

(1) There are four Eilenberg-Mac Lane cases:

S1−σ ∧HZ ' HZ−
S3−3σ ∧HZ ' HŻ−

S1−λ+σ ∧HZ ' HZ∗−
S3−λ−σ ∧HZ ' HŻ∗−

(2) If m,n ≥ 0, then

πi−V (HZ) =





B0,1 0 ≤ i < n and i is even
B0,1 n ≤ i < 2m+ n and i is even
B− n ≤ i < 2m+ n and i is odd
Z− i = 2m+ n
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(3) If m,n ≤ 0, and is not one of the Eilenberg-Mac Lane cases, then

πi−V (HZ) =





B0,1 n ≤ i ≤ −3 and i is odd
B0,1 2m+ n < i < n− 1 and i is odd
B− 2m+ n < i < n− 1 and i is even

Ż∗− i = 2m+ n and m < 0

Ż− i = 2m+ n and m = 0

(4) If m > 0 and n < 0, then πi−V (HZ) is the direct sum of two graded Mackey
functors Ci,m,n and Di,m,n.

Ci,m,n =





B0,1 n < i < 2m+ n and i is even
B− n < i < 2m+m and i is odd
Z− i = 2m+ n

When n < −1,

Di,m,n =

{
BE1,0 i = n
B0,1 n < i ≤ −3 and i is odd

Di,m,−1 = B− when i = −1.
(5) If m < 0 and n > 0 and it is not one of the Eilienberg-Mac Lane cases,

then πi−V (HZ) is the direct sum of three graded Mackey functors Ci,m,n,
Di,m,n and Ei,m,n.

Ci,m,n =





B0,1 2m+ n < i < n− 3 and i is odd
B− 2m+ n < i < n− 3 and i is even

Ż∗− i = 2m+ n

Di,m,n = B0,1 for 0 ≤ i < n− 3, i even and for all m

Ei,m,n = B1,0 for i = n− 3 and for all m, and trvial in all other cases.

Remark 4.4. (1) All orientable Eilenberg-Mac Lane cases are direct conse-
quences of Theorem 3.17 and the non-orientable one can be computed di-
rectly through cellular method.

(2) The part Ci,m,n are coming from Smλ0 ∧HZ, Di,m,n are Mackey functors

coming from Snλ1 ∧ HZ and Ei,m,n are coming from a exotic restriction
between the former two. This can be seen clearly in cofibre of a computation
in section 4.3.

(3) The graded Green functor structure, with names of elements in each Mackey
functor above, is discussed in Section 4.4.

The rest of this section is dedicated to computing and explaining the above
result by four different methods in section 3. In cellular method and cofibre of a
method, we will only compute certain examples instead of the full RO(G)-grading,
to illustrate how these methods work. A full computation is given by the Tate
diagram in Section 4.4.

In spectral sequences and charts, it is not convenient to put forms of Z and B in
them. Therefore in the following tables we introduce a more compact way to present
Cp and Cp2-Mackey functors. These notations are first introduced in [HHR17b].
Generally speaking, a box means a form of Z, a circle shape means torsion, and
overline means Z−.
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The following is the table of symbols for Cp-Mackey functors.

Name Z Z1 = Z∗ Z− Ż− B1

Symbol � � �̇ •
Lewis Diagram Z

1
��
Z

p

WW Z
p
��
Z

1

WW 0

��
Z−

WW Z/2

0
��
Z−

1

UU
Z/p

��
0

UU

Notice that � and �̇ are only defined for p = 2.

The following table is symbols for Cp2-Mackey functors.

Name Z Z0,1 Z1,1 Z1,0 Z−
Symbol � �
Lewis Diagram Z

1
��
Z

1
��

p

WW

Z

p

WW

Z
p
��
Z

1
��

1

WW

Z

p

WW

Z
p
��
Z

p
��

1

WW

Z
1

WW

Z
1
��
Z

p
��

p

WW

Z
1

WW

0

��
Z−

1
��

WW

Z−

2

UU

Name Ż− Z∗− Ż∗− Z[Cp2/Cp]

Symbol �̇ ˙ �̂ •̂
Lewis Diagram Z/2

0
��
Z−

1
��

1

UU

Z

2

UU

0

��
Z−

2
��

WW

Z−

1

UU

Z/2

0
��
Z−

2
��

1

UU

Z−

1

UU

Z

∆
��

Z[Cp2/Cp]

1
��

∇

VV

Z[Cp2/Cp]

p

UU

Z/p

∆
��

Z/p[Cp2/Cp]

��

∇

UU

0

UU

Name B1,1 B0,1 B1,0 BE1,0 B−
Symbol ◦ • H N •
Lewis Diagram Z/p2

1
��
Z/p

��

p

UU

0

UU

Z/p

��
0

��

UU

0

WW

Z/p

1
��
Z/p

��

0

UU

0

UU

Z/p

0
��
Z/p

��

p

UU

0

UU

0

��
Z/p

��

WW

0

UU
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Name Z[Cp2 ]

Symbol
ˆ̂�

Lewis Diagram Z

∆
��

Z[Cp2/Cp]

∆
��

∇

VV

Z[Cp2 ]

∇

UU

All Mackey functors involving Z− are only defined for p = 2. Not all of Mackey
functors in the table are named systematically.

4.2. Cellular Method.

We will focus on the example of H∗(S
3λ0−2λ1 ;Z), and all other RO(G)-grading

can be computed in a similar way. We will use C∗(S
V ) for cellular chain complex

for SV .
The cellular chain complex for S3λ0 is C∗(S

3λ0):

Z Z[Cp2 ]oo Z[Cp2 ]oo Z[Cp2 ]oooooooo Z[Cp2 ]oooooooo Z[Cp2 ]oooooooo Z[Cp2 ]oooooooo

0 1 2 3 4 5 6

Where all the maps are determined by the fact that in G/e-level the homology

should be H̃∗(S
6;Z).

The cellular chain complex for S−2λ1 is C∗(S
−2λ1)

Z[Cp2/Cp] Z[Cp2/Cp]oo Z[Cp2/Cp]oo Z[Cp2/Cp]oo Zoo

−4 −3 −2 −1 0

NowH∗(S
3λ0−2λ1 ;Z) can be computed by the total homology of C∗(S

3λ0)�ZC∗(S
−2λ1).

If we filter the double complex by C∗(S
3λ0), we will get a spectral sequence with

following E1-page and d1:

−4 −2 0 2

−6

−4

−2

0

̂̂2
̂̂2

̂̂2
̂̂2

̂̂2
̂̂2

1All d1 is determined again by the fact that the underlying space is S2. Thus we
get the following E2-page.
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−4 −2 0 2

−6

−4

−2

0 H

◦

◦

2

1As we can see, there is a potential d3 which cannot be determined. Now we filter
the double complex by C∗(S

−2λ1). We get the following E1 with d1:

−4 −2 0 2 4 6

0

2

4 •̂ •̂ •̂ 2̂
•̂ •̂ •̂ 2̂
•̂ •̂ •̂ 2̂
•̂ •̂ •̂ 2̂
◦ ◦ ◦ 2

1By comparison with the spectral sequence filtered by C∗(S
3λ0) above, we will

eventually get to E4 with no rooms for differential, here green vertical line means
nontrivial restrictions:

−4 −2 0 2 4 6

0

2

4 H H H

• • • •
• • • •

1From here, we know that H−2(S3λ0−2λ1 ;Z) is nontrivial, so the first spectral
sequence has trivial d3. We can summarize the result as follows:

Hi(S
3λ0−2λ1) =





B1,0 if i = -4
B0,1 if i = −3
B1,1 if i = −2, 0
Z if i = 2
0 otherwise
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4.3. Cofibre of a Method.

The original idea of this method is due to Doug Ravenel, and it is used in
[HHR17b, Section 6].

We will assume p = 2 in this subsection, because we want to make direct use of
3.5.

Notice that when p = 2, λ1 = 2σ. And indicated by the following lemma, we
will use σ instead of λ1 as part of our index. First, we need to compute π∗Ln and
π∗L

′
n defined in 3.3. Their homotopy Mackey functors are the following:

πi(Ln) =





Z1,1 i = 1
B1,1 1 < i < 2n and i is even
Z i = 2n
0 otherwise

πi(L
′
n) =





Ż∗− i = 2
B− 2 < i < 2n+ 1 and i is odd
B0,1 2 < i < 2n+ 1 and i is even
Z− i = 2n+ 1
0 otherwise

By Lemma 3.4, this determines πFLn. Now we will fix n = 4, and consider the
fibre sequences

Smσ ∧HZ
a4λ0−−−→ S4λ0+mσ ∧HZ→ Smσ ∧ L4 for all m ∈ Z

The following figure shows the long exact sequence in homotopy Mackey functors of
this fibre sequence when m varies. The horizontal axis indicates πi while the verti-
cal axis indicates m in Smσ. Elements named in red are those from π∗(S

mσ ∧HZ)
and elements named in blue are those from π∗Ln and π∗L

′
n.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

• • • •
2̇ • • •

• • •
2̇ • •

• •
2̇ •

•
2̇

2
2
• 2
• 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

˙ • • • • • • 2

˙ • • • • • • 2

˙ • • • • • • 2

˙ • • • • • • 2

˙ • • • • • • 2

˙ • • • • • • 2

1
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Now the connecting homomorphism δ has degree (−1, 0), so goes from a blue
element to the red element on its left. First, observe that after the connecting
homomorphism, the result should be π∗(S

m+8 ∧HZ) if we forget its C4 structure,
which means the left most δ must be isomorphism on G/e level (Since the only
nontrivial homotopy group on G/e level in the result must be πm+8). So, δ fits into
one of four exact sequences below.

0→ δ−→ → H→ 0

0→ • → ˙ δ−→ 2̇→ H→ 0

0→ • → ˙ δ−→ 2→ • → 0

0→ δ−→ 2→ ◦ → 0

Also, there are potentially nontrivial connecting homomorphisms from • or ◦ to
•. But they are all trivial because δ commutes with aσ multiplication and after
multiple by aσ once or twice, they cannot fit with each other. After applying δ, we
obtain the following picture.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

H • • • •
H • • •

H • • •
H • •

H • •
H •

H •
H

H
•
◦
• •
• ◦

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

◦ ◦ ◦ 2

• • • • • • • 2

• • • • • • • 2

• • • • • • • 2

• • • • • • • 2

• • • • • • • 2

• • • • • • • 2

1By Lemma 3.5 and aσ-multiplicative structure, we see that all possible extensions
are trivial. So we know π−4λ0+mλ1+∗HZ. We can change the number of copies of λ0

and apply the same method to compute all HZF. This method computes πF(HZ)
as a module over BB, but cannot tell about the full ring structure.

For π∗(S
V ∧HZ) with negative coefficient on λ0, the computation is very similar

and we will not repeat.
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4.4. Tate Diagram Method.

In this subsection, we assume that all representations are orientable. This in-
cludes all representations for odd prime, and the index 2 subgroup RO(G) generated
by 2σ and λ0 for C4. We will use aλ1

for a2σ in this subsection, to unify notations for
all primes. When we are working between different groups, we will put the source

of representation as a superscript. For example, λ
Cp
0 means the representation λ0

on Cp as defined in Section 2.2.
We start with computation in Cp, to both illustrate the method and track name

of elements. Computation in Cp is well known, and is written in [Gre, Section 2C].
First, by homotopy fixed point spectral sequence, we know that

πF(HZh)(G/G) = Z[u±λ0
, aλ0 ]/(paλ0)

The Mackey functor structure is determined by Res(uλ0) = 1 and Res(aλ0) = 0,
i.e. each form of Z is the constant Z. Now, by inverting aλ0 , we see that

πF(HZt)(G/G) = Z/p[u±λ0
, a±λ0

]

and the underlying spectrum is contractible. The map πF(HZh) → πF(HZt) is
the aλ0

-localization.
Now, πF(HZh) is the direct sum of kernel and cokernel of aλ0-localization, since

there is no nontrivial extension by degree reason. Following Definition 3.8, we have
the following description as a module over BBCp

πF(HZh)(G/G) = Z〈puiλ0
〉 ⊕ Z/p〈Σ−1uiλ0

ujλ0

ajλ0

〉For i ∈ Z and j > 0

Where each puiλ0
generates Z∗(G/G) instead of the constant Z. Specially, in the

integer grading, we have

π∗(HZh)(G/G) = Z〈p〉 ⊕ Z/p〈Σ−1
uiλ0

aiλ0

〉For i > 0

Now, we can compute π∗(a
−1
λ0
HZ) as direct sum of kernel and cokernel of the

map π∗(HZh)→ π∗(HZ). We have

π∗(a
−1
λ0
HZ)(G/G) = Z/p[

uλ0

aλ0

]

Then by aλ0-periodicity,

πF(a−1
λ0
HZ)(G/G) = Z/p[uλ0

, a±λ0
]

Now we consider πi−mλ0
of the Tate diagram.

If m > 0, then

π∗−mλ0
(HZh) = Z〈pumλ0

〉 ⊕ Z/p〈Σ−1
umλ0

uiλ0

aλi0
〉For i > 0.

And

π∗−mλ0
(a−1
λ0
HZ) = Z/p〈a

m
λ0
uiλ0

aiλ0

〉For i ≥ 0.
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Therefore ,the connnecting homomorphism maps those elements in π∗−mλ0
(a−1
λ0

(HZ))
who has positive powers of aλ0 in the denominator into the corresponding desus-
pended elements in π∗−mλ0

(HZh), and in π2m−mλ0
, there is a nontrivial extension

0→ Z〈pumλ0
〉 → Z〈umλ0

〉 → Z/p〈umλ0
〉 → 0

The following picture shows the case m = 2, with the bottom row π∗−2λ0
(a−1
λ0
HZ)

and top row π∗−2λ0
(HZh). Arrows indicate connecting homomorphism, and green

vertical line means an extension involving an exotic restriction.

0 2 4 6 8 10

0

1So we know that for m > 0,

π∗−mλ0
(HZ)(G/G) = Z〈umλ0

〉 ⊕ Z/p〈aiλ0
um−iλ0

〉For 0 < i ≤ m.

In this case, all torsion classes in π∗−mλ0
(HZ) are coming from π∗−mλ0

(a−1
λ0
HZ).

For m < 0, the only difference is that πi−mλ0
(HZh) can be nontrivial for i < 0

while πi−mλ0
(a−1
λ0
HZ) can’t. By similar computation, we see that in this case,

π∗−mλ0
(HZ)(G/G) = Z〈 p

u
|m|
λ0

〉 ⊕ Z/p〈Σ−1
uiλ0

u
|m|
λ0
aiλ0

〉 for 0 < i < |m|.

The awkward notation of u
|m|
λ0

on the denominator is caused by the fact that uW
is only defined for actual representations.

For m = −2, the following picture shows the long exact sequence. It gives an
interpretation of the gap, as the torsion class in dimension −1 is killed, and only
classs in dimension≤ −3 can survive.

−4 −2 0 2 4 6

0

1Now we start to do Cp2 computation. By Lemma 3.1 and computation above,
we already know π∗−nλ1

(HZ) for all n, with names of elements. The first step of
computation is the homotopy orbit spectrum.

πF(HZh) = Z〈p2umλ0
unλ1
〉 ⊕ Z/p2〈Σ−1umλ0

unλ1

uiλ0

aiλ0

〉 for m,n ∈ Z and i > 0.

Where each p2umλ0
unλ1

generates a Z1,1(G/G), while each torsion summand is one
of B1,1(G/G).

We compute two easier cases first:
If m,n > 0, then for computing π∗−mλ0−nλ1

(HZ), we can start with π∗−nλ1
of

the Tate diagram. First,

π∗−nλ1
(HZh)(G/G) = Z〈p2unλ1

〉 ⊕ Z/p2〈Σ−1unλ1

uiλ0

aiλ0

〉 for i > 0
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While

π∗−nλ1
(HZ)(G/G) = Z〈unλ1

〉 ⊕ Z/p〈aiλ1
un−iλ1

〉 for 0 < i ≤ n

Where each Z generates Z and Z/p generates B0,1.
Therefore, we see that in dimension 2n− nλ1, the map HZh → HZ is Z1,1 → Z

which is an isomorphism in G/e-level. And in other dimension this map is trivial.
So

π∗−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈aiλ1

un−iλ1
〉 for 0 < i ≤ n

⊕ Z/p2〈Σ−1unλ1

ujλ0

ajλ0

〉 for 0 ≤ j.

Here all p-torsions are from HZ, and all p2-torsions are from HZh pulling back by
connecting homomorphism.

Now we can move to π∗−mλ0−nλ1
. Homotopy Mackey functors of homotopy orbit

can be read off directly:

π∗−mλ0−nλ1
(HZh)(G/G) = Z〈p2umλ0

unλ1
〉 ⊕ Z/p2〈Σ−1umλ0

unλ1

uiλ0

aiλ0

〉 for i > 0

And we can compute a−1
λ0
HZ by aλ0 -periodicity:

π∗−mλ0−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈amλ0

aiλ1
un−iλ1

〉 for 0 < i ≤ n

⊕ Z/p2〈Σ−1amλ0
unλ1

ujλ0

ajλ0

〉 for 0 ≤ j.

We see that classes of HZh in dimension i−mλ0 − nλ1 for i > 2(m+ n) are killed
by connecting homomorphism. In dimension 2(m + n) − mλ0 − nλ1, there is a
nontrivial extension

0→ Z1,1 → Z→ B1,1 → 0

And connecting homomorphism or extension is trivial in other degrees. The con-
clusion is:

π∗−mλ0−nλ1
(HZ)(G/G) = Z〈umλ0

unλ1
〉 ⊕ Z/p〈aiλ1

amλ0
un−iλ1

〉 for 0 < i ≤ n
⊕ Z/p2〈ajλ0

um−jλ0
unλ1
〉 for 0 < j ≤ m

Where Z generates Z, Z/p2 generates B1,1 and Z/p generates B0,1. This is precisely
BBCp2 The following picture describes this long exact sequence for m = 2 and

n = 2.

0 2 4 6 8 10 12 14

0

◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

1If m,n < 0, we also start with π∗−nλ1
of the Tate diagram. We know that

π∗−nλ1
(HZh)(G/G) = Z〈 p

2

u
|n|
λ1

〉 ⊕ Z/p2〈Σ−1
uiλ0

u
|n|
λ1
aiλ0

〉 for i > 0
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and

π∗−nλ1
(HZ)(G/G) = Z〈 p

u
|n|
λ1

〉 ⊕ Z/p〈Σ−1
uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

Here each Z/p is B0,1(G/G).

So we can compute π∗−nλ1
(a−1
λ0
HZ). In π2n−nλ1

, the map from HZh to HZ
is Z1,1 → Z0,1, and underlies an isomorphism. Therefore it is injective and has

cokernel BE1,0. On torsion classes, generators in HZh are Σ−1 uiλ0
u
|n|
λ1
aiλ0

, and those in

HZ are Σ−1 uiλ1
u
|n|
λ1
aiλ1

. However, gold relation in Proposition 2.25 tells us

uiλ0
aiλ1

= piaiλ0
uiλ1

Therefore Σ−1 uiλ0
u
|n|
λ1
aiλ0

sends to piΣ−1 uiλ1
u
|n|
λ1
aiλ1

= 0, since it is p-torsion and i > 0.

Thus, all connecting homomorphism on torsion classes are trivial. So we know that

π∗−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈 p

u
|n|
λ0

〉 ⊕ Z/p〈Σ−1
uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

⊕ Z/p2〈
ujλ0

u
|n|
λ1
ajλ0

〉 for j > 0

Moving to π∗−mλ0−nλ1
, we have

π∗−mλ0−nλ1
(HZh)(G/G) = Z〈 p2

u
|m|
λ0
u
|n|
λ1

〉 ⊕ Z/p2〈Σ−1
uiλ0

u
|m|
λ0
u
|n|
λ1
aiλ0

〉 for i > 0

by reading from RO(G)-graded homotopy and

π∗−mλ0−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈amλ0

p

u
|n|
λ0

〉 ⊕ Z/p〈Σ−1amλ0

uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

⊕ Z/p2〈amλ0

ujλ0

u
|n|
λ1
ajλ0

〉 for j > 0

from aλ0
-periodicity. By comparing names of elements, we see that under connect-

ing homomorphism, all Z/p2 in a−1
λ0
HZ maps isomorphically into corresponding

Z/p2 in HZh, and in π2n−mλ0−nλ1
, the map BE0,1 → B1,1 is nontrivial, with cok-

ernel B0,1. All other Z/p in a−1
λ0
HZ has no target to hit. Therefore we draw the

conclusion:

π∗−mλ0−nλ1
(HZ)(G/G) = Z〈 p2

u
|m|
λ0
u
|n|
λ1

〉 ⊕ Z/p2〈Σ−1
uiλ0

u
|m|
λ0
u
|n|
λ1
aiλ0

〉 for 0 < i < |m|

⊕ Z/p〈Σ−1amλ0

ujλ1

u
|n|
λ1
ajλ1

〉 for 0 ≤ j < |n|

For m = n = −2, the connecting homomorphism is described in the following
picture:
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−8 −6 −4 −2 0 2

0

◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦

1

Remark 4.5. The above computation can be done by cellular method easier than by
Tate diagram, since Smλ0+nλ1 with m,n the same sign, has a very simple cellular
structure. However, the Tate diagram method is better at tracking multiplicative
structure, and easier to generalize to more complicated cases.

Before we dive into the case where m,n has different signs, it is helpful to compile
πF(a−1

λ0
HZ) into a single chart. In the following chart we present πi+jλ1

(a−1
λ0
HZ),

with horizontal coordinate i and vertical coordinate j. We can omit λ0 because the
spectrum is aλ0 -periodic. Generators of Mackey functors are described above.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−5

−3

−1

1

3

5 H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

H ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦

1Now we are ready for the rest of πF(HZ). First we deal with the case m > 0
and n < 0. First, we read from the chart that

π∗−mλ0−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈amλ0

2

u
|n|
λ1

〉 ⊕ Z/p〈Σ−1amλ0

uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

⊕ Z/p2〈amλ0

ujλ0

u
|n|
λ1
ajλ0

〉 for j > 0

and

π∗−mλ0−nλ1
(HZh) = Z〈p

2umλ0

u
|n|
λ0

〉 ⊕ Z/p2〈Σ−1
umλ0

uiλ0

u
|n|
λ0
aiλ0

〉 for i > 0

By the same method, we see that in this case, all torsion class in HZh are
killed by connecting homomorphism, and in π2(m+n)−mλ0−nλ1

, there is a nontrivial
extension of forms of Z:

0→ Z1,1 → Z→ B1,1 → 0
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So we conclude that

π∗−mλ0−nλ1
(HZ) = Z〈 u

m
λ0

u
|n|
λ1

〉 ⊕ Z/p〈amλ0

2

u
|n|
λ1

〉 ⊕ Z/p〈Σ−1amλ0

uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

⊕ Z/p2〈amλ0

ujλ0

u
|n|
λ1
ajλ0

〉 for 0 < j < m

The connecting homomorphism for m = 2 and n = −2 is described in the chart:

−4 −2 0 2 4 6

0

◦ ◦ ◦
H ◦ ◦ ◦ ◦ ◦

1The last case is m < 0 and n > 0. We also start with HZh and a−1
λ0
HZ:

π∗−mλ0−nλ1
(HZh)(G/G) = Z〈p

2unλ1

u
|m|
λ0

〉 ⊕ Z/p2〈Σ−1
unλ1

uiλ0

u
|m|
λ0
aiλ0

〉 for i > 0

and

π∗−mλ0−nλ1
(a−1
λ0
HZ)(G/G) = Z/p〈amλ0

aiλ1
un−iλ1

〉 for 0 < i ≤ n

⊕ Z/p2〈Σ−1amλ0
unλ1

ujλ0

ajλ0

〉 for 0 ≤ j

We see that in this case, all Z/p2-torsion in a−1
λ0
HZ maps isomorphically into

HZh. For Z/p-torsions, gold relation will cause some subtlety. First we assume
that m < −1,then the Z/p torsion of the highest integer degree is amλ0

aλ1
un−1
λ1

, and

its target under connecting homomorphism is generated by Σ−1 a
m+1
λ0

unλ1
uλ0

(If m = −1

this element doesn’t exist). Gold relation tells us that

aλ1uλ0 = paλ0uλ1

Therefore the connecting homomorphism in this degree is Z/p p−→ Z/p2, and in terms
of Mackey functor, it is B0,1 → B1,1 with cokernel B1,0. For other Z/p-torsions,

similar arguments tells us that the map is Z/p 2i−→ Z/p2 for i > 1, therefore are
trivial. The last problem is that in π2(m+n)−mλ0−nλ1

, there is a potential extension
if m+ n ≥ 0:

0→ Z1,1 →?→ B0,1 → 0

Z1,1(G/G) is generated by
p2unλ1
u
|m|
λ0

, while the B0,1(G/G) is generated by amλ0
a−mλ1

un+m
λ1

.

Again, by gold relation, if m = −1, this extension is nontrivial, and the middle term
is Z1,0. If m < −1, the extension is trivial. So we conclude that, if m < −1,

π∗−mλ0−nλ1
(HZ) = Z〈p

2unλ1

u
|m|
λ0

〉 ⊕ Z/p〈Σ−1
am+1
λ0

unλ1

uλ0

〉

⊕ Z/p〈amλ0
aiλ1

un−iλ1
〉 for 1 < i ≤ n

⊕ Z/p2〈Σ−1
unλ1

uiλ0

u
|m|
λ0
aiλ0

〉 for 0 < i < |m| − 1
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Where Z is Z1,1(G/G), Z/p〈Σ−1 a
m+1
λ0

unλ1
uλ0

〉 is B1,0(G/G), all Z/p2 are B1,1(G/G)

and all other Z/p are B0,1(G/G).
If m = −1,

π∗+λ0−nλ1
(HZ) = Z〈pu

n
λ1

uλ0

〉 ⊕ Z/p〈a−1
λ0
aiλ1

un−iλ1
〉 for 1 < i ≤ n

Where Z is Z1,0(G/G) and all Z/p are B0,1(G/G).

Remark 4.6. When m = −1 and n = 1, we see that S−λ0+λ1 ∧HZ ' HZ1,0. It is
predicted by Anderson duality in Theorem 3.17. More generally, Anderson duality
can give an interpretation of the appearance of Z1,0 for m = −1, see Section 4.5.

We also provide pictures for connecting homomorphism in this case. The follow-
ing is for m = −3 and n = 4:

0 2 4 6 8 10

0

◦ ◦ ◦ ◦
◦ ◦

1The following is for m = −1 and n = 3

0 2 4 6 8

0

◦ ◦
◦ ◦

1An Exotic Multiplication. In the above computation, we see that
aλ1
aλ0

=
puλ1
uλ0

(A geometric argument is given in [HHR17a, Proposition 3.3]), that is, the generator
of πλ0−λ1

(HZ)(G/G) supports a nontrivial aλ0-multiplication:

aλ0

puλ1

uλ0

= aλ1

Then if we think about the square of this generator, which deserves the name
p2u2

λ0

u2
λ1

,

then we see that it supports a nontrivial a2
λ0

-multiplication:

a2
λ0

p2u2
λ1

u2
λ0

= a2
λ1

However, the element
p2u2

λ1

u2
λ0

, if we characterize as the image of transfer of a generator

in G/e-level, will be killed by aλ0 , by [HHR17b, Lemma 4.2]. Therefore (
puλ1
uλ0

)2

cannot be in the image of transfer. Notice that π2λ0−2λ1
HZ ∼= B0,1 ⊕ Z1,1, where

the torsion class is generated by
pa2λ1
a2λ0

, and it maps to an aλ0
-tower in a−1

λ0
HZ.

Therefore, the only way of avoiding contradiction, is that (
puλ1
uλ0

)2 =
pa2λ1
a2λ0

+
p2u2

λ1

u2
λ0

,

the summation of p-torsion element and the element in the image of transfer. Notice

that since
pa2λ1
a2λ0

is killed by uλ0
by gold relation, this exotic multiplication will

only occur in πn(λ0−λ1)(HZ) but not other gradings where the Mackey functor is
B0,1 ⊕ Z1,1. Summarizing above, we have the following.
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Proposition 4.7.

(
puλ1

uλ0

)n =
panλ1

anλ0

+
pnunλ1

unλ0

That means, the n-th power of the generator of πλ0−λ1
(HZ)(G/G) is the summation

of the p-torsion class and pn−2-multiple of Trp
2

1 (1) in the corresponding degree.

After all the work, what we have done is actually describe πF(HZ)(G/G) as a
ring, therefore describe πF(HZ) as a RO(G)-graded Green functor. The folllowing
theorem concludes this section.

Theorem 4.8. (1) As a module over BBCp2 , πF(HZ)(G/G) is

• If m,n ≥ 0,

π∗−mλ0−nλ1
(HZ)(G/G) = Z〈umλ0

unλ1
〉 ⊕ Z/p〈aiλ1

amλ0
un−iλ1

〉 for 0 < i ≤ n
⊕ Z/p2〈ajλ0

um−jλ0
unλ1
〉 for 0 < j ≤ m

• If m = 0 and n < 0,

π∗−nλ1
(HZ)(G/G) = Z〈 p

u
|m|
λ1

〉 ⊕ Z/p〈Σ−1
uiλ1

u
|m|
λ1
aiλ1

〉 for 0 < i < |n|.

• If m < 0 and n ≤ 0,

π∗−mλ0−nλ1
(HZ)(G/G) = Z〈 p2

u
|m|
λ0
u
|n|
λ1

〉 ⊕ Z/p2〈Σ−1
uiλ0

u
|m|
λ0
u
|n|
λ1
aiλ0

〉 for 0 < i < |m|

⊕ Z/p〈Σ−1amλ0

ujλ1

u
|n|
λ1
ajλ1

〉 for 0 ≤ j < |n|

• If m > 0 and n < 0,

π∗−mλ0−nλ1
(HZ) = Z〈 u

m
λ0

u
|n|
λ1

〉 ⊕ Z/p〈amλ0

p

u
|n|
λ1

〉 ⊕ Z/p〈Σ−1amλ0

uiλ1

u
|n|
λ1
aiλ1

〉 for 0 < i < |n|

⊕ Z/p2〈amλ0

ujλ0

u
|n|
λ1
ajλ0

〉 for 0 < j < m

• If m = −1 and n > 0,

π∗+λ0−nλ1
(HZ) = Z〈pu

n
λ1

uλ0

〉 ⊕ Z/p〈a−1
λ0
aiλ1

un−iλ1
〉 for 1 < i ≤ n

• If m < −1 and n > 0,

π∗−mλ0−nλ1
(HZ) = Z〈p

2unλ1

u
|m|
λ0

〉 ⊕ Z/p〈Σ−1
am+1
λ0

unλ1

uλ0

〉

⊕ Z/p〈amλ0
aiλ1

un−iλ1
〉 for 1 < i ≤ n

⊕ Z/p2〈Σ−1
unλ1

uiλ0

u
|m|
λ0
aiλ0

〉 for 0 < i < |m| − 1

(2) The ring structure of πF(HZ)(G/G) is determined by the following:
• Multiplication between elements without desuspension sign is deter-

mined by their names from Tate diagram, with one execption as Propo-
sition 4.7.
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• All elements with desuspension sign is a square zero extension of the
above ring.

Proof. We only need to prove the square zero extension part. Assume x, y ∈
πi−mλ0−nλ1

(HZ)(G/G) are elements with desuspension sign. First, if x, y are tor-
sions in m,n ≤ 0, then xy = 0 since all torsions there are in odd dimension. Now
if at least one of x, y is from the part m > 0 and n < 0, then by the module
structure, x = aiλ0

x′ and y = ajλ0
y′, where x′ and y′ are torsions in m,n ≤ 0,

therefore xy = ai+jλ0
x′y′ = 0. If x is from the part where m < −1 and n > 0,

then it is aλ0
-torsion. However, any torsion in even degree is in the subalgebra

of Z[u±λ0
, u±λ1

, a±λ0
]/(p2aλ0

), where no element is killed by aλ0
. Therefore x kills all

elements in odd degree. �

Remark 4.9. All p-torsions in π∗−V (HZ)(G/G) where V an actual representation

or the opposite of one, except the family aλ1
aiλ0

ujλ1
, are aλ0

∞-divisible, and not
aλ0-torsion. Therefore they support aλ0 tower of length ∞ going both ways. This
phenomenon is not seen in Cp. The following figure is πmλ0−3λ1+i(HZ), with
horizontal coordinate i, and vertical coordinate m. Black vertical lines indicates
multiplication by aλ0

. The only exotic multiplication of Proposition 4.7 in this
figure is in (0, 3).
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4.5. Duality Method.

In this section, we will use Anderson duality and universal coefficient spectral
sequence to compute πF(HZ), and to present its rich structure. This method is
not perfect: there is a certain d3 and extension problem the author does not know
how to solve inside this method, however by comparing to the Tate diagram, we
can resolve these problems easily. Therefore, we will use results from the previous
section freely and this section serves more as an exploration of relations between
πF(HZ) and homological algebra.

As a warm-up, we compute πF(HZ) for Cp by this method.

The starting point is π∗(S
0 ∧ HZ), which is Z concentrated in dimension 0.

Applying Anderson dual to it, we get IZ(HZ) ' HZ∗ ' S2−λ0 ∧ HZ by 3.10,
therefore π∗(S

−λ0 ∧ HZ) is concentrated in dimension −2, and is Z∗. Now we
apply universal coefficient spectral sequence of Theorem 2.22 to S−λ0 ∧HZ. The
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E2-page is exactly ExtiZ(Z∗,Z) without any differentials. Thus by Corollary 3.15,
we know that

πi(S
λ0 ∧HZ) =





B1 i = 0
Z i = 2
0 otherwise

Now we apply Anderson dual again to Sλ0∧HZ. Now IZ(Sλ0∧HZ) ' S2−2λ0∧HZ
by Lemma 3.10, and by Proposition 2.19, we know that

πi(S
−2λ0 ∧HZ) =





BE1 ∼= B1 i = −3
Z∗ i = −4
0 otherwise

Apply universal coefficient spectral sequence to S−2λ0 ∧HZ, we have the following
E2 page by Theorem 3.13 and Corollay 3.15 in Adams index, converging to πi(S

2λ0∧
HZ):

0 2 4

0

2

�

1

We see that there is no room for differential, and read

πi(S
2λ0 ∧HZ) =





B1 i = 0, 2
Z i = 4
0 otherwise

By repeat using Anderson dual and universal coefficient spectral sequence, we can
compute πF(HZ). The result is in the following chart, where horizontal coordinate
is copies of 1 and vertical coordinate is copies of λ0. It is essentially a sub-chart
of the chart in [Gre, pp. 6], only consisting of orientable representations, but with
Mackey functor value instead of abelian group value:
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We can see intuitively in this chart how Anderson duality and universal coef-
ficient spectral sequence are working. Anderson duality is a duality with centre
of symmetry (−1, λ0

2 ) and it rotates the whole chart by 180-degree and change
Mackey functors to their level-wise dual, with a 1 shift on torsion Mackey func-
tors. Universal coefficient spectral sequence is a duality with centre of symmerty
(0, 0), but there is a gap of length 3 in ExtZ of torsion classes, so after rotation
by 180-degree about the origin, we need to shift all torsion classes by 3. Also, in
the universal coefficient spectral sequence, if the form of Z is not Z itself, it will
produce a nontrivial Ext2Z term in duality.

Now we start to compute in Cp2 . We will compute π∗(S
nλ0±2λ1 ∧ HZ), to

compare to previous sections. The starting point is π∗(S
−2λ1 ∧HZ), which can be

read from the chart above by Lemma 3.1.

πi(S
−2λ1 ∧HZ) =





B0,1 i = −3
Z0,1 i = −4
0 otherwise

Now we apply Anderson duality in Cp2 to it. By the standard short exact sequence

argument, we compute π∗(S
−λ0+2λ1 ∧HZ):

πi(S
−λ0+2λ1 ∧HZ) =





B0,1 i = 0
Z1,0 i = 2
0 otherwise

The next step is applying universal coefficient spectral sequence to
π∗(S

−λ0+2λ1 ∧HZ). We get a spectral sequence convergent to π∗(S
λ0−2λ1 ∧HZ)

with E2-page
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As we can see, there is a potential d3 from Z in (−2, 0) to B0,1 in (−3, 3).

However, by computation from Tate diagram method, we know that
uλ0
unλ1

exist for

all n ≥ 0, so the generator of Z(G/G) is a permanent cycle, therefore d3 is trivial.
So our conclusion is the following:

π∗(S
λ0−2λ1 ∧HZ) =





BE1,0 i = −4
B0,1 i = −3
Z i = −2
0 otherwise

We can therefore apply Anderson duality and universal coefficient spectral sequence
repeatedly to compute π∗(S

nλ0±2λ1). Since
uλ0
unλ1

exist for all n ≥ 0, all potential d3

are trivial in this situation. The following two charts shows πnλ0+2λ1+m(HZ) and
πnλ0−2λ1+m(HZ), the horizontal coordinate is m and the vertical coordinate is n.

Notice that Anderson duality and universal coefficient spectral sequence are p-
resenting two kinds of duality between these two charts. We should think of these
two charts as two 2 dimensional slices in a 3 dimensional chart, since our indexing
group is free of rank 3.

πmλ0−2λ1+∗HZ. Horizontal coordinate is ∗ and vertical coordinate is m.
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πmλ0+2λ1+∗HZ. Horizontal coordinate is ∗ and the vertical coordinate is m.
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5. G = Cpn for n > 2

For n > 2, all methods above only works partially. Cellular method becomes
hard to compute, since we need to compare more spectral sequences, and compar-
ison cannot guarantee the result. In cofibre of a method, there will be potential
connecting homomorphisms which cannot be resolved by aσ-multiplication. In Tate
diagram method, the only problem is that when we compute π∗(S

V ∧ a−1
λ0
HZ) for

those V without λ0, there might be nontrivial extension of Z-modules which the
author cannot resolve. In duality method, the main problem is that we have no
direct argument for the possible d3 and extension between filtration 3 and 2.

However, some very interesting phenomenon can be seen in attempt to answer
the following question: ”Fix G = Cpn , Given two actual representation V1, V2,

what’s the smallest k such that
pkuV1
uV2

is defined in πF(HZ)?” In the case of Cp2 ,

we have the following from Section 4:

Proposition 5.1. For G = Cp2

(1)
uλ0
uiλ1

exist for all i ≥ 0. Therefore
ujλ0
uiλ1

exists for all i, j ≥ 0.

(2) p
uiλ1

exist for all i ≥ 1 and cannot be divided by p.

(3)
puλ1
uλ0

exists and cannot be divided by p.

(4)
p2uiλ1
ujλ0

exist for all i ≤ 0 and j ≥ 2 and cannot be divided by p.

When the order of group becomes larger, the answer is still computable, but
becomes more complicated. For example, in general, the following proposition
gives a first look at this complexity:

Proposition 5.2. For G = Cpn ,

(1)
uλk0
uλk1

exists if k0 < k1.

(2)
pn−k−2uλk
uiλk+1

exists for i ≥ 2 and are not divisible by p.

Proof. (1) By Theorem 3.17 we know Sλk1−λk0 ∧ HZ ' HM for M a form
of Z. Therefore, the universal coefficient spectral sequence convergent to
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π∗(S
λk0−λk1 ∧HZ) collapses at E2-page, and the corresponding form of Z

is Ext0Z(M,Z) ∼= Z. Therefore
uλk0
uλk1

exists.

(2) We can assume k = 0, since if k > 0 we can compute inside the quotient
group Cpn/Cpk and λk on Cpn is λ0 on Cpn/Cpk . We use Tate diagram of
3.7 in this proof.

Consider the map π∗(S
−iλ1 ∧ HZh) → π∗(S

−iλ1 ∧ HZ). When
∗ = −2i+ 1, the map is B1,1,...,1 → B0,1,1,...,1. On G/G-level, the source is

generated by Σ−1 uλ0
aλ0u

i
λ1

and the target is generated by Σ−1 1
aλ1u

i
λ1

. So by

gold relation, this map on G/G-level is multiplication by p:Z/pn p−→ Z/pn−1.

Therefore π−2i+2(S−iλ1∧a−1
λ0
HZ)(G/G) ∼= Z/(p2) is generated by

pn−2uλ0
aλ1u

i
λ1

.

Therefore, when we shift to Sλ0−iλ1 , in dimension −2i+ 2 and G/G-level,
the Tate diagram gives the following:

Z //

∼=
��

π−2i+2(Sλ0−iλ1 ∧HZ)(G/G) //

��

Z/(p2)

pn−2

��
Z

pn // Z // Z/(pn)

The bottom extension force the top extension to be nontrivial, with the

middle vertical map Z pn−2

−−−→ Z. Since we know in HZh, the corresponding
generator is

uλ0
uiλ1

, the generator of π−2i+2(Sλ0−iλ1 ∧HZ)(G/G) should be

pn−2uλ0
u
λi1

.

�

6. Homological Algebra of Z-modules

As we see, homological algebra of Z-modules appears to be very different from the
classical homological algebra. Computation in previous sections can be interpreted

as RO(G)-graded homological algebra ExtFZ (Z,Z). From a more classical point of

view, πFHZ tells us a lot about ExtZ which is more difficult to compute using
projective or injective resolutions.

Theorem 6.1. Let M , N be two forms of Z, such that HM ' SV1 ∧ HZ and
HN ' SV2 ∧HZ (See Theorem 3.17), then Ext∗Z(M,N) ∼= π−∗(S

V2−V1 ∧HZ)

Proof. By Corollary 3.12, we have

Ext∗Z(M,N) ∼= π−∗(HomHZ(HM,HN))

∼= π−∗(HomHZ(SV1 ∧HZ, SV2 ∧HZ))

∼= π−∗(S
V2−V1 ∧HZ)

�
Example 6.2. If G = Cp2 ,

ExtiZ(Z1,0,Z0,1) =





Z i = 0
B0,1 i = 1

BE1,0 i = 2
0 otherwise
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Proof. Since Z1,0 ' S−λ0+λ1 ∧HZ and Z0,1 ' S2−λ1 ∧HZ, by the above theorem,

ExtiZ(Z1,0,Z0,1) ∼= π∗(S
λ0−2λ1+2 ∧HZ). And π∗(S

λ0−2λ1+2 ∧HZ) is computed in
Section 4.5. �
Remark 6.3. This example shows something counter-intuitive: There is a non-
trivial extension of Z-modules

0→ Z0,1 →M → Z1,0 → 0

However, in Cp, by similar computation,

Ext1Z(Z0,Z1) ∼= Ext1Z(Z1,Z0) ∼= 0

So, if we only look at adjacent parts of M , it splits. Such an extension can be
constructed as follows:

Let M be the Z-module with Lewis diagram

Z⊕ Z

��
Z⊕ Z

��

VV

Z⊕ Z

VV

We call generators of Z⊕Z in Cp2/Cpi-level ai and bi for 0 ≤ i ≤ 2, then restrictions
and transfers are defined as follows:

Resp
2

p (a2) = pa1, Res
p2

p (b2) = a1 + b1 Trp
2

p (a1) = a2, T r
p2

p (b1) = −a2 + pb2

Resp1(a1) = a0, Res
p
1(b1) = a0 + pb0 Trp1(a0) = pa1, T r

p
1(b0) = −a1 + b1

Now, Z0,1 → M maps generator in each Z to the corresponding ai and M → Z1,0

maps ai to 0 and bi to generators in each level. Now, we try to construct a section
Z1,0 →M . We start with Cp2/e-level, by sending 1 to ta0 +b0 for some t ∈ Z. This
forces 1 in Cp2/Cp-level going to (tp − 1)a1 + b1, and therefore p in Cp2/Cp2-level
goes to (tp − 2)a2 + pb2. But this element is not divisible by p if p > 2. So the
section cannot exist.

The following theorem says that we can exchange two variables of ExtZ via
Anderson duality, when they both are torsion.

Theorem 6.4. Let M and N be Z-modules that M(G/e) and N(G/e) are torsion,

then Ext∗Z(M,NE) ∼= Ext∗Z(ME , N).

Proof. Since both M and N are torsion by Lemma2.9, we know that IZ(HM) ∼=
Σ−1HME and IZ(HN) ∼= Σ−1H(NE). Therefore,

HomHZ(HM,HNE) ∼= HomHZ(HM,Σ(IZ(HN)))

∼= ΣHomHZ(HM, IZ(HN))

∼= ΣIZ(HM�ZHN)

∼= ΣIZ(HN�ZHM)

∼= ΣHomHZ(HN, IZ(HM))

∼= HomHZ(HN,HME)

�
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