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We extend the methods of our previous article to express certain special values
of p-adic hypergeometric functions in terms of the p-adic gamma function and
Jacobi sums over general finite fields. These results are obtained via p-adic
congruences for Jacobi sums in terms of multinomial coefficients, and allow one to
more fully exploit classical hypergeometric identites to obtain p-adic unit root
formulae. ¢ 1995 Academic Press. Inc.

1. INTRODUCTION

In [15] we gave some explicit formulae relating Jacobi sums over the
prime field F, to values of p-adic hypergeometric functions. These formulae
were obtained from combinatorial identities and the methods of Dwork
([4.5]) and Koblitz [ 7]. and may be viewed as p-adic analogues of classi-
cal results. The primary focus of this article is the generalization of these
results to include Jacobi sums defined over finite extensions of .

We begin in Section 2 by giving congruence results for general Jacobi
sums over finite fields of characteristic p> 2 in terms of multinomial coef-
ficients. The main tools are the Gross—Koblitz formula and the properties
of the p-adic gamma function. For Jacobi sums which are not p-adic units,
the congruences we give are stronger than those typically predicted by the
theory of formal group laws. We then apply these results to hypergeometric
functions in Section 3 to give p-adic analogues of classical formulae.
Equation (3.17) below is perhaps the best example (particularly in the case
n#=2m), and the cohomological interpretation given in [ 15] remains valid
relative to the Frobenius map (x, y)+— (x% y9). The results (3.24), (3.27),
{3.28), and (344} of [ 15] may also be extended by the methods found in
this paper.
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126 PAUL THOMAS YOUNG

In Section 4 we consider the elliptic curve with affine equation
¥?=x"—x which has supersingular reduction modulo p when p= -1
(mod 4), and show that the roots of its zeta function over F,. may be
obtained from a limit of p-adic hypergeometric functions, although this is
not the specialization of a uniform limit. As a further application, we also
express the formal-group congruences associated to an Apéry sequence in
terms of Jacobi sums.

2. JacoBl SuMs AND MULTINOMIAL COEFFICIENTS

Throughout this paper p will denote an odd prime, F, the finite field of
g =p’ elements, Z, the ring of p-adic integers, @, the field of p-adic num-
bers, K the unramified extension of @, of degree f, C, the completion of
an algebraic closure of @,, “ord” the valuation on C, normalized so that
ord(p)=1, and O the ring of integers of C,. We let 7€ DO be a fixed solu-
tion to z¥ "' = 4 and let { be the unique pth root of unity in £ such that

=l+n (mod 7°0).

We define a map a—a on QnZ, by requiring that pa' —a=pu, e
{0, 1,2, ..., p—1}. We write «'”=«, and a'”= (27"}’ for i>0; we also
will write 2! for gn. It follows that the y!” are the digits in the p-adic
expansion of —ua, that is, —a=3 ", x!'p" It 1s easy to verify that this
map is well-defined and continuous; that o'’ =0 for some i if and only if
« is zero or a negative integer; and that «'/? = a if and only if « is a rational
number in [0, 1] with denominator dividing ¢ — 1.

The p-adic gamma function [, is defined for positive integers n by

I (n)=(~1) ]—[ 7 (2.1)

O<j<n
ptj

and has an extension to a continuous function /,:7Z,—Z;, which is

Lipschitz with constant 1, and satisfies the functional equatlons of trans-
lation and reflection

—xI(x), xeZ?x,
Fix+1)= ’ L 2.2
(x4 1) {—1;,(.\-), et (22)
I,(x) (1 —x)= —(—1)", xelZ,. (2.3)

Let :F,— Q,({) be the additive character on [, defined by y(5) ={',
and let ¢, F,— Q,({) denote the additive character on F, defined by
Y (1) =¢(Tr(1)), where Tr: F,~F, is the trace map. The Teichmiiller

character w,: [, — K is the unique multlpllcatlve character on F, such that,
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for all r€F,, the reduction of w () mod p is r. (We extend all multiplicative
characters y using the convention x(0)=0.)

For a=a/(q— 1) with a€ Z, the Gauss sum glw ) over [, associated to
the characters ¥, and @/ “ is defined by

glo; )= —3 Yt o7 1). (2.4)
tely

Write a=t{g—1)+cwith t, ceZ and 0<c<g—1, and put y=c/(g—1);
then from the Gross—Koblitz formula [6] we have

Stey f—-1
gl ) =glo, )= ~I1 L™, (2.5)
I i=0
where
1, if —1,
G,={ 1 €<4 (2.6)
q, if c=qg—1,

and where S{c) denotes the sum of the digits in the base p expansion of c.
{Allowing both ¢ =0 and ¢ =¢ — 1 will be useful later.)

Ifs>2and y,, .., x,: F,» K are multiplicative characters, the Jacobi sum
J(x1s . x,) 18 defined by

Tt )=~ % xalr) - x (). (2.7)

n+ - Fir=

A modification of ([13, Lemma 6.2]), using the results of [14] or ([9,
Theorem 1.1]) shows that

(=1) glro)---&x)

s X5) = , (2.8)
Ao BTG e )
where
G, = {1, %f 2 ?s nc.)n'trivial, . N (2.9)
q, it y,---x, is trivial but each y; is nontrivial

The following lemma will be used to relate Jacobi sums to multinomial
coefficients via (2.5) and (2.8).

LEMMA 2.1, Suppose m,,..,m, are nonnegative integers and write
m;=k,p+1, with each 1,€{0,1 .,p—1}; set m=m + - +m,,

641 52 1-9



128 PAUL THOMAS YOUNG

k=k,+ - +k,andI=1,+ - +1, . Let ¢ be a nonnegative integer and set
o= [[I+1)/p]] Then

(m+el k- k! — )9 I(—m)- - {—m,

(k+d6)!m) - -m) P I (—m—g)

Proof. We note that (—m,)' = —k, for each jand (—m—¢) = —k —0.
From the definition of 7}, we have

1!
~1",,(1+m,):(—1)"’f'p""/ Z—"— (2.10)

J

and a similar expression for — /(1 +m +¢). Therefore we have

(m+£)!kl!"'k.\'!_(_l)s+1+cpo 1;,(1+I11-+—8) . (211)

(k+om-—-m! Ll+m)--L(1+m,)

The lemma then follows by applying the reflection formula (2.3), noting
that each 4, =/{;and o, _,=[l+e—pd.

We now give our principal congruence result for general Jacobi sums.

THEOREM 2.2, Let xy, .., 2, € Z,n Q [0, 1) satisfy a,=a,/(q— 1) with
each a;e Z, and set x =2, + --- + o, We assume that o >0, and tfcer we
also assume each x;>0. For r=0 defne the nonnegative integers n;

(" —1)a,, n,=(q"— )a. Let t be the greatest integer strictly less t/zan P,
and suppose t<p. Let e be the p-adic ordinal of the Jacobi sum
Jw; ", o). Then for each r >0 we have the congruence

< n,+t >
nl,r» et n.\',rv 4 - —ds

=(—-1)YJwo ", ., w
< n,_,+1t ) 1 4
nl‘r' | IREREE] n.\‘,rfl’ !
{rfl

Proof. For j=1, .., s wemay writen, , =31 y“’p For 0 < z<f— 1
we will apply Lemma 2.1 with —m,=(—n,, )“’ so that ~k;=(—n; )"
and /= ";’ For each i/ we choose the nonnegative 1nteger £=g; so as to
satxsfy (—n,—0)"=—n" — ... —n'" —¢,; this implies that 6 =¢,, | in the
notation of the lemma. Thus g1 = [[ W+ ul +epli e, e s
the number of carries from the (i + 1)st to the (i +2)nd digit in the base
p addition of ¢, + - +a,+1t Writing a=a/(qg—1) with a=(g—1)t+¢
and 0 <c<qg—1, and setting y=c¢/(g — 1), it follows that n,+1=¢"t +
(¢" — 1)y for each r>=0. From this we see that (—n, —1)’= —n, ,—1 for
each r >0, implying ¢, =¢,=1.

) (modplq—vqr—lzp).
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We take the product on both sides of these equalities from Lemma 2.1,
as i runs from 0 to f— 1. On the left, the product telescopes, yielding

(m,+0)!n,, _!on, !

(n ,,‘+t) nlr"'n\r!
1——[ (_”1 r)(”) "1;7((._’1‘\_1‘)”))
_ L(—=n—n")

r

, (2.12)

where e=¢,+ --- 4+ &, is the number of carries in the base p addition
a,+ --- +a,+1, since we assume &,=1<p. Since I, is unit-valued and
Lipschitz with constant 1 we have the congruence

! 1;7(( -nl,r)“)) e 1;,(( _ns,r)(”)

II;IO F((_n _t>'“)
_ ui) ( (‘vi)) l
H ‘..) ‘ (mod pg"~'Z,), (2.13)
i=0 l
and therefore

(m,+0)tn, 4ln, !

(n,_+tn; 0-on !
o L") L (al™) e,
I} I (..; (mod p'*¢q"~'Z,). (214)

We claim that the right member of the congruence (2.14) is precisely
(-1 Jw .., w_,“““). From (2.5) and (2.8), we see that

f-1 F( 1:)) r(am)
_ Ky —a Yy — o8, 7
(—1) J(w, s e W )=n n I-Iv)(y(n) ’

i=0

(2.15)

where g = S(a,)+ --- + S(a,) — S(¢); note that, since 0 < ¢ < g — 1, we have

=g —1 if and only if w,“ is trivial, so that the factors G, and G, from
{2.6) and (2.9) always cancel. Thus we need only show that e=g/(p—1).
Since a +t=1tq+ ¢, we have S(a+1)=S(1q+ ¢)= S(t)+ S(c), and there-
fore g=Sla,)+ --- +Sla,)+S(1)—S(a+1t). As 1t is well-known that
ord(n!)=(n—S(n))/(p—1), we see that g/(p—1) is the ordinal of the
multinomial coefficient (, “* ), which is precisely the number e of carries

Al e, dgo

in the base p addition a, ¥ +a,+t. The proof is now complete.

When ¢>0 these congruences become stronger than those generally
obtained from formal group laws. Considering the simplest case, suppose
that =1 (so p=gq); then ¢=¢, =1t The result for s=2, ¢=0 has been
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given previously ([ 15, Corollary 2.2]). The congruences of Theorem 2.2
hold modulo p"*‘Z,, and therefore one has the result

n .+t .
< >z(—l)“ Jlwor ™, o)
n] F1 oy n“..,, !

)(< nr~1+t > (modp(l+/)rzp)’ (216)

nl',_l, ey n‘,..,,,l, !

since the multinomial coefficient on the right side of (2.16) has p-adic
ordinal (r—1)t. For 1>=1 such results have been called supercongruen-
ces.

A second interesting case is obtained by taking an integer d > 2, an odd
prime p such that p= —1 (mod d), s=2, and a; =a, =1/d. Taking f=2,
g=p>, one then has e=1, 1=0, and the congruences read

<2(q’ —1)/d )
(¢"—1)/d
<2(q" - 1)/d>
(¢~ ' =1)yd
as it is easily verified from (2.8), (2.5), and (2.3) that J{(w3 ", w;“')= —p.
The r=1 case of these congruences has been given in ([8, Proposi-
tion 3.1]); in the cases d =3, 4 they arise from formal groups associated to
certain supersingular elliptic curves and are related to elliptic cohomology.
In Section 4 below we examine the supersingular elliptic curve with j=12°
which corresponds to the d =4 case.
As the occurrence of the integer ¢ in the multinomial coefficients of

Theorem 2.2 is rather artificial, it is natural to remove it, which we now
do.

+p=0 (mod ¢'Z), (2.17)

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, for each r >0 we
have the congruence

< nr )

Ay sl ,

< nril >
T P (PR

where d=0 if u,+t<p and d= —1—ord(a'—1) if p,+t=2p, and
b=1—sgn(t). Furthermore, in all cases we have b+d+e=1, so the
congruence always holds modulo pq'~'Z,,.

=(—1) o, ;0% (modp’*i ¢ '7,),
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Proof. As before we write a=a/(g—1) with a=t{gq—1)+c¢ and
O<c<g—1. If =0 the results are immediate, so assume | <u<t<p;
then for all r >0 we have

metu_ (¢ " — ¢ Na/(u—x))

n,+u 1+ g (a/(u—a)) (2.18)

If ord(e —u)>0, then pu,=p—u, whence u,+:2p; in this case set
—d=ord(a—u), otherwise set d=0. In the former case, we note that
a—u=a+u,—p=plx’—1), showing that the two definitions of d
coincide. By writing

—qu+(a+u)_(t—u)q+(c—l+u)
g—-1 g—1

(2.19)

we see that —d < f, and that —d = f if and only if ¢ + u =1, in which case
a+u=tqg with t=2 and a —u=cq/(g—1). It follows that the denominator
of the right side of (2.18) is a p-adic unit for all r >0, and therefore

(,_y+ 1) (n,_ +1)
(nr+1)'(nr+t)

1 (mod piq"~'Z,), (2.20)

from which it follows that

< n, > ( n.+t )
By ey e My, Hy s s Hg s

= (mod p“*<q"'Z,), (2.21)

( n,_ ) < n_;+! >
Ry oy By oy Ny gy Ay g5t

since the right member of this congruence has p-adic ordinal e. Since d < 1,
comparison with Theorem 2.2 proves the first assertion of the corollary.

We now recall that e=¢; 4+ --- + ¢, is the number of carries in the base
p addition a,+ - +a,+1t From (2.19) we see that ord(a—u) =
ord(a + u) = —d. Since the first —d digits of @+ u are zero and a<a+u <
a+t we have ;>0 for 0<i< —d If —d< f then we have e> —d+¢,>
—d+1 since we assume t=¢,2> 1. If —d=f then 1>2 by the remarks
following (2.19); thus all ¢,>0 and &, > 2, whence e > f + 1. Thus d+e > 1
in all cases, completing the proof.

3. JACOBI SUMS AND p-ADIC HYPERGEOMETRIC FUNCTIONS

We recall from our previous article [ 15] certain results and definitions
concerning the p-adic theory of hypergeometric functions. If o, .., oy,
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Prs oo ¥x 1€Q N Z, and none of the y, are zero or negative integers, we

denote for i >0 the hypergeometric series
() (i) B
, o, ., oty ; .,
FUX) = F ( PRRE X)= Y AV X
Yiees Ve n="0
(i)

e (“(li))n“'(:xk .
B N Y ¢ (3.1)
ug() (,}’{1,))'1”.(}';\ )—l)nn!

I

and for i, s=0set FI"(X)=3X"_) A'""(n) X". Suppose that the parameters
satisfy the conditions

(Cly [yYP)=1foralliz0, j=1,.,k~1;

(C2) For each fixed i >0, supposing the indices are rearranged so
that ) < - <pl) and g < - <pl), where y,#1 for 1<j<m and

y,=1for m<j<k—1, we have p{)) >pl) for j=1,.., m.

Then for all i>0 we have F'’(X)eZ,[X], and for r>s5>0 there are
formal congruences

F(i)

r+1

(X) F(‘i+l)(Xp)EF(.i+ l)(Xp) F(i)

s+ 1

(X) (mod p**'Z,[X]). (32)

These congruences imply that the ratio F'*'(x)/F'"(x”) is the restriction to
the disk {xeC,:|x| <1} of the analytic element (ie., uniform limit of
rational functions)

kgkril < Apy eeey Xy : '\_>: llm F:()ll(x)/FLl)(xp)’ (33)
Pis e Vi r
which 1s supported on the Hasse domain

D={xeC,: [F{(x)[=1 for all i>0}. (3.4)

For series satisfying F'/'= F') we will obtain products of Jacobi sums
over [, as values of the analytic element of support © defined by

3 ‘kfll (1'0»1» sy OLp ;.\'>= lim F:(B/(\)/Fij i(xq) (35)
/

Is oo Po 1 r- oo

(cf. [4, p. 42]) whose existence as a uniform limit for xe D follows from
the the formal congruences (3.2) and the observation that

f=1
FO (x)F D x)y =[] FU () FUED o xr), (3.6)
i=0

r+f—i =i

We note that the limits in (3.3), (3.5) may exist in Q, for certain values of
xe D not lying in D, or when the hypotheses (C1), (C2) are not satisfied;
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but in this case they need not be specializations of uniform limits. Here we
will evaluate the limits (3.3), (3.5) at x= +1e D for functions satisfying
(Cl1), (C2). Our method will be to p-adically approximate the given series
by terminating series which can be evaluated by combinatorial results. For
fixed x,e® the truncated series F'’(x,) are rational functions of the
parameters «”, 3", and therefore one may appeal to their continuity with
respect to the parameters (cf. [7]), although this need not be the case for
the nonterminating F'(x,).

We generalize our previous result ([ 15, Theorem 3.17]) giving a p-adic
analogue of Kummer’s theorem, which gives the value of a well-poised
JF(-1)

THEOREM 3.1.  Let T denote the set of all (x, ) Z,Z, such that —1e®
and both (C)), (C2) are satisfied for the series F(X)=,F{2a, f; 1 + 20— f;
X). Then (o, fYe T if and only if

(1) 2uy <pl for all i20;
(i) If B #2a then piy' — ' < (p—1)/2 for all i=0.
Furthermore, if (x, Y€ T then

~ < 21*[)’ ._1):(_”#:“5%.%1;
AN P L(22) T, —22)'
and if in addition ((g—1)a, (g— 1)y =(a, b)e {0, 1, .., g— 1} then
—a u—b
1+2Cx.—[)) J(wj ll, wf‘l )

Proof. Suppose (x, fYe7, and set y=1+2x—f. If y=1 then f=2a,
so py’ = pY) for all i. Since (f —2x)+y =1 we have uff’ , +u!"=p—1 for
all i, so if y 1 then by (C2) we have u" > x4}, u!’, which implies that for
all i,

Mo+ s, <p—1, (3.7)
wy' +uy s, <p—1 (3.8)
From (3.7) we see that in fact
(83} [¥3) (i)

Hog Tl 2 =1y <p-—1, (3.9)

s0 in any event we have 0 <uY) <p for all i.
Since we assume that F(X) satisfies (Cl), (C2), we note that

Flli)(_l)zzf,l<’_M» -n_l> (mOde,,), (310)
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where M =) and n=p!). By equating coefficients of 7* in the expan-
sions of (1 —T)" (1 + T)*= (1 — T?)" one obtains, for 0 < M <n,

. (—1)'"(:), it M=2m,
5 (_1)k<">< n >: ! (3.11)
= k/\M—k) o, if M is odd.

Applying the identity

| PN o N it I AT
WG

M
Y (=1 = (=1 L (3.13)

ST G

if M =2m < n, whereas the sum in (3.13) is zero if M is odd. But since this
sum is precisely ,Fi(—M, —n; 1 +n—M; —1), we see from (3.10) that
—1¢ D for our F(X) unless M =y is an even integer for all /> 0.

Since u%) must be even for all i, we have uy) =2u!" for all i. From (3.9)
we see that 24! <ul’ for all i, giving (i). Then substituting the equality in
(3.9) into (3.8) yields 2u}’ —2u}” < p—1, giving (ii).

Now suppose (i} and (ii) hold. From (i) we see that u =2u
e uyt  =py), and @S} +puy o =py for all i If y # 1, then from (ii) we

have

(i)

x 7

ﬂf,‘”=(P"1)—/1‘/1”721

=(p—1)+pug) — '

=(p—D+2u —u )+ py’ > uy' 2 2u 20, (3.14)

and therefore the hypotheses (C1), (C2) are satisfied for F(X). By com-
parison with Theorem 2.2, we see that for m=u.’, n=yu,’, M =2m, the
binomial coefficients on the right side of (3.13) are p-adic units, showing
via (3.10) that —1e®. Thus (o, B)e 7T, proving the first statment of the
theorem.

The basic idea of Koblitz { 7] shows that («, B)— »F (2, §; 1 + 22— f; — 1)
is continuous on the set T. For r>0 and («, f)e T set m, =Y "4 u''p’'
and n,=37_g uly’ p’. Since

(3.15)

(/) () (i) M ;
(‘u“)z Ill”) (i) )={(,U2a,/1ﬁ ,/l)‘ ), if OSISV,
—2m,°

7’1”ﬂ]+ll,72"’r (O’ 0’ 1)’ lf i?"’
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we see that ( —2m,, —n,)e T as well, because the pair (0, 0) clearly satisfies
conditions (i), (ii) above. We note that (1 +2x—f) =1+2a'— 8 and
(14+n,—2m,) =1+4n,—2m, for all r. Therefore if s> 0, it follows from
(3.2} that there exists R> s+ 1 such that

Za,ﬁ_
<2a,/3_ 1>_ F‘”'( y '_1>
203 s == ] '
F.;(Z“.?,ﬁ :(—lv)

7

—2m,, —n,
F, S|
sl <1+n,.—2m, )
F —2m’, —nL.( 1)
N\l 4n—2m’

—2m,, —n,
F(l +n,—2m’ _1>
n._— imn
= r— M, (mod p**'Z,)  (3.16)

—2m,, —n.
F re r; __1 P
<l+nﬁ.—2m’, (=1 )

for all r= R, the second congruence holding because the F!’(—1) are
rational functions of their parameters. We then use (3.13) with M =2m,,
n=n,, and with M =2m’, n=n), and Lemma 2.1, to obtain

Il

—2m,, —n,
2, B Fl g —om !
o] n,—2m,
2}1< ' ;-1>=1im 3 -~ —
v rex —2m,, —n,
2F1< " ';(—1)">
14+, —2m,
e
. , J\2m,
= Jim (= 1y ST
ro ox n, n,
(ot o)
I(—m)I,(m —n)

l'm _1 2, — 0y Vi -
ri % ( ) [ —2m,) I',(2n1,~n,)

7

{3.17)

as desired.
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The Jacobi-sum values of associated ,&!’ for «, f lying also in
(1/(g—1))Zn[0,1] may be obtained from (3.17) with the aid of {3.6),
(2.5). and (2.8), or directly as follows: Noting that m,=(¢"—1)a,
n, =g —0p (=2my" = -2m, ,, (—n)" = —-n, ,, and
(1+n,—2mp)""=14+n,_,, ,—2m, , , we substitute (3.16) in (3.6),
yielding ' ’

~ 28, —n,,

2% ;—1
20, B ! ( —2m, >
28".’”( a,/;vl> , l+n,—2m,

= lim
}

ror =2m, {4 —H,_
2F1< r—1yy (r ”'/'(—l)q

b+ng oy ,—2m, _y,

)

lim (1) me e S/ N2y

re By o1\ My
(e o)

- a b
Jw, Ny )

__________ A 3.18
Jo, P wf ") o

!
f

via (3.13) with M =2m,,, n=n,, and with M =2m, , , n=n, , , and
Corollary 2.3. This completes the proof. V

We remark that, by (3.13) and Corollary 2.3, the limit of hypergeometric
functions given in (3.18) is indeed correct for any «, fe(l/(g— 1)) Zn
[0, 1] such that 2« < 8. However when (x, f8) ¢ T the syumbol &'\ is not
justified for this limit, as it need not be the specialization to —1 of a
uniform limit on that residue class.

We now give a generalization of Dixon’s theorem, which gives the value
of a well-poised ;§,(1). We give a proof along somewhat different lines
than the one given in [15] for elements of (1/((p—1)) Z.

THEOREM 3.2. Let T denote the set of all (x, f, 7)€ Zf, such that 1eD
and both (Cl), (C2) are satisfied for the series F(X)= F,(2a, f3, y;
14+2a—f, 1420 —y, X). Then (a, B, y)e T if and only if

() 2u<pl) @l and pi) + D =l <p—1 for all i20;
(i) If 2a, B,y are not all equal then py' + p'"" —2u' < p—1 for all
iz0.

Furthermore, if (a, fi,y)e T then

< 20(,[},;, ) l)
3ty2 1+2a—/f’1+2a—'}"
T )Ty —o0) TAB—a) T (f+y—2u)

_(_l)}lr( i F

B F200) Ty —20) T (f—20) T (f+7—2)

P
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and if in addition ((g—1)a, (g—1) B, (g~ 1) y)=(a,b,c)e{0,1,...,.qg—1}"
then

3‘/.< 2a, B, y . 1>:( I e VL)
e I +2x—f,1 +2(X~y’ J(wfu’ wvfuf <) J(w./i 2a w}lu— /7)

Proof. Suppose (x,f,7)€T, set 6=1+2a—f and e=1+2x—~p. If
d=¢=1 then 2a=f=y so uy =u=u? for all i Note that
w4 u'=p—1and x\,, +u'"=p—1 for all i. Therefore if 5, & are
not both equal to 1, {C2) implies that for all i>0, either u{’ > uY) or

@ > ), so that for all i,

w8y o <p—1 or pll4pl, <p—1 (3.19)
Now if for some /, say the former half of (3.19) holds, then in fact

(22 (¥ g ()

e+ < p <l g 1< p— 1, (3.20)

so in particular %' <u)’ for such i But then (C2) requires that both
w0 pt >t so both inequalities in (3.19) must hold; thus in fact for any

i we have

AR A YTy AL AR S TR S TN (321)

7

so in any event we have u!) < u’, 1!’ for all i

Since we assume that F(X) satisfies (C1), (C2), we note that

-8, —m, —n

te) —_ .
Fy (1)—3F2<1+m——S,l+n—S’

l) (mod rZ,), (3.22)

where §=uY), m=puy' and n= . A terminating from of the classical
Dixon’s theorem ([ 10, eq. (I1I1.9)]) states that for n,me Z*, we have

—2s, —m, —n (1 —2s}, (1 +m—y),

5 1= 1 +m—2s), (3.23
! “<l+m—2s,1+n‘2x ) (l—s),,(l+m—2.v),,( m=25), )
if 2s is not a positive integer. We invoke the identity (1 +x),=
Il + x+n)/I(1+Xx) to express each factor on the right side of (3.23) in
terms of the classical gamma function. Using the classical functional
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equations /{1 +z)=z1(z) and I(z) (1l —z)=mcscnz (here n has its
more usual meaning) we obtain
M(1-s) I(1+2s)

=2 T+ COSs 78, (3.24)

which shows that the value of the ;F,(1) in (3.23) is equal to

cos 1 Nl+2) (1l 4+n=2)I'l+m+n—s) (1 +m-—2s) (3.25)
s . .
T+ Il +n—s) (1 +m—s) I (1 +m+n-—2s)

As functions of s, both the F,(1) in (3.23) and the expression (3.25) are
continuous at s when 2s is a positive integer such that 2s <m, n, so their
equality holds also in this case. Note that if 25 is a positive odd integer and
2s < m, n then cos zy =0 and the expression (3.25) is therefore zero. Since
cosaN=(—1)Yand I'(1+ N)=N!for NeZ", we obtain the identity

(m +n —s><m>
3F3< —2s, —m, n .1>=(_1).\ s s ’
1 n—s\/m

N

+m—=2s, 14+n-2s"
valid for integers positive integers s, n, m such that 2s < m, n, whereas this
value is zero if 2s is a positive odd integer and 2s <m, n. Comparing this
result with (3.22), we see that 1 ¢ D for our F(X) unless S=pY is an even
integer for all 7> 0. Therefore x4 =2u"" for all i, giving the first half of (i).

x
(i

Since 2y’ <uj’, " for all i, we see that the binomial coefficients (%),
(%), and (") all lie in Z), where s=pu.", m=uy’ and n=yu". Com-
paring (3.22) and (3.26) (with $=2s) shows that the ensure 1 € © we need
("*r" ") eZ; which requires m+n—s<p—1, giving the second half of
condition (i).

Finally, if 2«, 8, y are not all equal, then from (C2) we know that for all

i, either u" > u'"” or x> ). Thus for all i,

(3.26)

wl+ult < p—1 or uy'+pll,, <p—1, {(3.27)

but in either case (3.21) yields uy’ +u!’ —2u," < p—1, which is condi-
tion (i1).

Now suppose (i) and (ii) hold. It follows easily that x%)=2u'" and
{3.21) holds for all i. Furthermore, if 2«, f, y are not all equal, then
By g > 2 ) and w5, > i 2 uh), so F(X) satisfies (C1) and
(C2). From (i) we see that for s =y, m= pu{’ and n= p”, each binomial

coefficient on the right side of {3.26) is a p-adic unit. Then (3.22) shows
that 1 € D, proving the first statement of the theorem.
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Now let (a, §, y)e T, and for r>0set s, =X g ul'p', m,=37"0 uli'p’.
and n,=%7_ u'" p'. Since

(i) (i) (i)
(lu 25,0 lu\m,'/’l n,’#l+mrw2v,’.ul+n,72s,)

{(/ti’l’ gl If O<i<yf,

3.
(0,0,0,1,1), if i<rf (3.28)

we see that (—2s,, —m,, —n,)e T as well. Therefore, for all s> 0 there
exists R > s+ 1 such that

]

(20 vy )
Ev+l ’1
& < 20, B,y ‘l> 14+20—f8,14+2a—y
L l+21—ﬁ, l+21"‘}" 21,’/;,* yl . lp>
AN+ 20 =B 1420 —
F —2s,, —m,, —n, . l>
M\ 4 m, =25, L4025,
- =28, —m., —n,
F. " ” ! b7
! (I +m, =250, 140l —2s )
—2s., —m,, —n
F re ys r ’1
<1+m—2 1+n,—2s, )

=25, —m,, —n,
F S, 1 e
1+ m,—2s,, l +n, —2s!

{mod p**177) (3.29)

for all ¥ = R. Then from (3.26) and Lemma 2.1 we have

F -2s,, —m,, —n, 'l>
- (2“’ﬁ’jyv;1)=lim T2\l +m, =25, 1+n,—25,"

d, & rex g =2¢, —m,, —n, Y
i
1 +m,, =25, 140 25"

"))
S )( )(”’.)

T (o) Iy —o) Tl ﬂ+}’—2“
T,(200) I'p(y —2a) p(ﬂ T(B+y—2)

(m +n,—s,

= lim (—1)"*

=(~1y"

(3.30)

giving the second statement of the theorem.
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As in (3.18), the Jacobi-sum values for §Y(«, B.7:d,¢6 1) for «, f,y
lying also in (1/(¢—1)) Z~ [0, 1] may be obtained by using (3.29), (3.26),
(3.6), and Corollary 2.3 to evaluate

—28,,, —M,, —N
3F2< rf v 7 ;1>
Vrm,—2s,, 1 +n,-2s,

lim
ros o F < —23'”7“/.7 —h, 1) f —ny, 1)/ i 14>
al'; ‘ ;

Vm =25, bng =250 04

= lim (— 1)

r— %

<mrf+ Ry = Sr_/'><n1rj><n1r7 nr— Ser- n,/‘)("'«rf 1)_/>
% Ser Ser Ste- by f 25, 1)y
(m(,k,,f—i— Mooty r— S ,,»,-><m(,. , 1,»,><n,>, —s,‘,-><m,f>
Sty Sty s Syr 25,

—a 2a—b—c¢ —d a—b
‘,J(‘“f , W ) J w4 wf ")

N Za— ¢ ) 2u—hy
J( wj Ll’ wfu [4 ) J( w, ll’ w,l )

=(-1)

(3.31)

Again, the limit of hypergeometric functions given in (3.31) is correct for
any a, f,ye(1/(g—1)) Z~ [0, 1] such that 2« < f, y, but the symbol "
is not justified for this limit unless («, £, y)e T.

4. APPLICATIONS

In ([4, eq.(6.29)]) Dwork showed that for the Legendre family of
elliptic curves

E;:yi=x(x—1)}x—2) (A#£0, 1), 4.1y

if 4=/ and the reduction of E; to F, is non-supersingular then the
reciprocal unit root a(2) of the zeta-function of the reduced curve E; /F, is
given by

11
A A)=(—=1)"" 2,50 (2’12;A>. (4.2)

In [15] we noted that if p=1 (mod4) and ¢g=p then —1e&D, and the
value

IX( —1 ) — ( —1 )(p— 1)/4 J(wtll —ph,f4’ w(]l - ph“4) (43)
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follows from (4.2) and our p-adic analogue of Kummer’s theorem.
However, if p= —1 (mod 4) then the curve £_, has supersingular reduc-
tion mod p. Here we show that in this case the roots of the zeta function
of E_, over [, are also given by a limit of hypergeometric functions as in
(3.18). The symbol ,F{*(3, 35 1; — 1) is not justified for this limit, however,
because it 1s not the specialization to —1 of a uniform limit on that residue
class.

This result is obtained from Corollary 2.3 and a theorem of Stienstra
[12] as follows: Taking the double cover U?=T,T,-T}T, =
ToT(Ty—T\)To+T,) of P' as a model of E_, and applying ([12,
Theorem 0.1), one obtains the congruences

ﬁ)riq’—*—aﬂmq” ! +qﬂmq"2£0 (mOd qu B IZ)’ (44)
where
2 2m 2 2
(—1)’”( ’"): y < ’") (=1, if n=2m+]1,
ﬂn: m k=0 k (45)
0, otherwise,

and where P(T)=1+aT+qT? is the numerator of the zeta function of
E _, over F,. When p= —1 (mod 4) and ¢ = p*, using the first expression
Bamo1=(—1)"(*") and Corollary 2.3 yields

m/f‘f = J(w! P4 e 0% (modq'Z,), (46)
qrfl

since this Jacobi sum has p-adic ordinal ¢ = 1. Therefore the ratios g, /8,
converge in Z,, and we also find by induction in (4.6) that ord f,=r.
Setting m =1 and dividing the congruence (4.4) by f then yields

By By—2By-r _ r—1

l+a 5. +qﬁqH ‘/)’q, 0 (mod p"~ 'Z,), (4.7)
and then letting r - oc in (4.7) shows that the ratios f,-:/8, in fact
converge to a root of P (7). We note that in general congruences such as
(44) do not imply convergence of these ratios in the supersingular case
(ord @ > 0}; in particular when p= —1 (mod 4) and ¢ = p this is evident
from (4.5). However, having some other means (such as (4.6)) of
establishing convergence, it 1s then easy to see that the limit is a root of the
associated polynomial.

One may also check directly via character sums that the Jacobt sum in
{4.6) is in fact the reciprocal root of the zeta function of y?= x* —x over
F,; that is, P(T)=(1—aT)* with a=J(w} " w{ ~9*). Indeed, one
easily obtains J(w!' " w4 9"*)= —p as in (2.17); since the reciprocal
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roots of the zeta function over [, are ./ — p, the reciprocal roots over F,
are both — p. Using the second expression f,, .1 =3:7, (3 (—1)* in
(4.5) we see that the limit of hypergeometric functions in (3.18) exists when
o= }1, p= % y=1, and f=2; and (4.6), (4.7) show that the limit is indeed
a reciprocal root of the zeta function of E_,, although the root is not a
unit root.

One should not expect to obtain the supersingular roots over F, is this
manner, because they have p-adic ordinal ; and thus do not lie in Z,. As
noted in ([ 15, pp. 239, 245]), one may view the Jacobi-sum expression for
the limit of hypergeometric functions as arising from the complex multi-
plication (x, y)+—( —x, \/—1 y) on E_,; by the fourth roots of unity; this
map commutes with the Frobenius (x, y)—(x9 »?) if and only if ¢g=1
{mod 4), showing why f=2 is necessary to make this argument when

= —1 (mod 4); but in view of ([ 4, eq. (6.28)]} does not explain why the
value is a root of the zeta function, because the limit is not the specializa-
tion of a uniform limit.

We conclude with an application to the study of the Apéry numbers. In
([ 15, Corollary 4.2(iii)]) we proved that

11 1
'Bln:(_l)(p_lm 332(2’12 2, “1>, (4.8)

where f3, , is the reciprocal of the p-adic unit root of the polynomial
P, (T)=1—(4a®—2p) T+ p*T?, whenever p=a’+2b> with 4, b € Z; this
polynomial is the pth Hecke polynomial associated to a certain cusp from
the weight 3 and level 8. The proof was obtained from formal-group
congruences associated to the Apéry sequence

H 3 _ _ —
dm=Y (:) =3F2( T —1) (49)

k=0

which were discovered by Stienstra and Beukers [11], and which exhibit
f, , as the reciprocal of the p-adic unit root of the zeta function of a
certain K3-surface. Here we express 8, , in terms of Jacobi sums over F
and over [ ,: using a classical hypergeometric identity and Theorem 3.1.

The value of the hypergeometric function in (4.8) may be obtained by
applying the well-known formula

2a. 0+ f, 28 ) ( «, f 2
F‘) X :7F 5 ) 4,
? “<a+ﬂ+%,2a+2ﬁ * T a4 p+14 x) (4.10)

g

of Clausen ([1, p.185]) with a=f=3;. When p=1 (mod 8) we have
I _ _1

i =1, and so f =1 suffices, while if p =3 (mod 8) we have ¥ =2and ¥ =1,
so we take /=2 in that case. Since ' =} in either case, we have
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=J(w)! %, wl! —98)2 (4.11)

When p=1 (mod 8) this yields
Ba.,=Jwi 0% @it 78y (4.12)

while for p =3 (mod 8) we get
[J’z‘l,ze'J(w‘z"”:”g, il -7 (4.13)

where e = + 1.

The value in (4.12} is readily seen to be consistent with the result of

Berndt and Evans ([ 2, Corollary 3.13]). In like fashion, the value e= —1

n

(4.13) may be determined by comparison with ([ 3, Theorem 4.6]).
One may also determine a Jacobi sum formula for the p-adic integer 5, ,

appearing in ([ 15, Corollary 4.2(iv)]) indirectly via (4.10) and the theory
of elliptic curves. However, this question appears to remain open for the

p-

)

adic integer a, in ([ 15, Corollary 4.2(v)]).
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