On Jacobi Sums, Multinomial Coefficients, and p-adic Hypergeometric Functions

Paul Thomas Young

Department of Mathematics, University of Charleston, Charleston, South Carolina 29424

Communicated by Alan C. Woods

Received June 1, 1992; revised June 14, 1993

We extend the methods of our previous article to express certain special values of p-adic hypergeometric functions in terms of the p-adic gamma function and Jacobi sums over general finite fields. These results are obtained via p-adic congruences for Jacobi sums in terms of multinomial coefficients, and allow one to more fully exploit classical hypergeometric identites to obtain p-adic unit root formulae.

(1995 Academic Press, Inc.

1. Introduction

In [15] we gave some explicit formulae relating Jacobi sums over the prime field \mathbb{F}_p to values of p-adic hypergeometric functions. These formulae were obtained from combinatorial identities and the methods of Dwork ([4, 5]) and Koblitz [7], and may be viewed as p-adic analogues of classical results. The primary focus of this article is the generalization of these results to include Jacobi sums defined over finite extensions of \mathbb{F}_p .

We begin in Section 2 by giving congruence results for general Jacobi sums over finite fields of characteristic p > 2 in terms of multinomial coefficients. The main tools are the Gross-Koblitz formula and the properties of the p-adic gamma function. For Jacobi sums which are not p-adic units, the congruences we give are stronger than those typically predicted by the theory of formal group laws. We then apply these results to hypergeometric functions in Section 3 to give p-adic analogues of classical formulae. Equation (3.17) below is perhaps the best example (particularly in the case n = 2m), and the cohomological interpretation given in [15] remains valid relative to the Frobenius map $(x, y) \mapsto (x^q, y^q)$. The results (3.24), (3.27), (3.28), and (3.44) of [15] may also be extended by the methods found in this paper.

In Section 4 we consider the elliptic curve with affine equation $y^2 = x^3 - x$ which has supersingular reduction modulo p when $p \equiv -1 \pmod{4}$, and show that the roots of its zeta function over \mathbb{F}_{p^2} may be obtained from a limit of p-adic hypergeometric functions, although this is not the specialization of a uniform limit. As a further application, we also express the formal-group congruences associated to an Apéry sequence in terms of Jacobi sums.

2. Jacobi Sums and Multinomial Coefficients

Throughout this paper p will denote an odd prime, \mathbb{F}_q the finite field of q=p' elements, \mathbb{Z}_p the ring of p-adic integers, \mathbb{Q}_p the field of p-adic numbers, K the unramified extension of \mathbb{Q}_p of degree f, \mathbb{C}_p the completion of an algebraic closure of \mathbb{Q}_p , "ord" the valuation on \mathbb{C}_p normalized so that $\operatorname{ord}(p)=1$, and $\mathbb O$ the ring of integers of \mathbb{C}_p . We let $\pi\in \mathbb O$ be a fixed solution to $\pi^{p-1}=-p$ and let ζ be the unique pth root of unity in $\mathbb O$ such that $\zeta\equiv 1+\pi\pmod{\pi^2\mathfrak O}$.

We define a map $\alpha \mapsto \alpha'$ on $\mathbb{Q} \cap \mathbb{Z}_p$ by requiring that $p\alpha' - \alpha = \mu_\alpha \in \{0, 1, 2, ..., p-1\}$. We write $\alpha^{(0)} = \alpha$, and $\alpha^{(i)} = (\alpha^{(i-1)})'$ for i > 0; we also will write $\mu_{\alpha}^{(i)}$ for $\mu_{\alpha^{(i)}}$. It follows that the $\mu_{\alpha}^{(i)}$ are the digits in the *p*-adic expansion of $-\alpha$, that is, $-\alpha = \sum_{i=0}^{\infty} \mu_{\alpha}^{(i)} p^i$. It is easy to verify that this map is well-defined and continuous; that $\alpha^{(i)} = 0$ for some *i* if and only if α is zero or a negative integer; and that $\alpha^{(j)} = \alpha$ if and only if α is a rational number in [0, 1] with denominator dividing q = 1.

The p-adic gamma function Γ_p is defined for positive integers n by

$$\Gamma_{p}(n) = (-1)^{n} \prod_{\substack{0 < j < n \\ p \nmid j}} j,$$
(2.1)

and has an extension to a continuous function $\Gamma_p: \mathbb{Z}_p \to \mathbb{Z}_p^{\times}$, which is Lipschitz with constant 1, and satisfies the functional equations of translation and reflection

$$\Gamma_{p}(x+1) = \begin{cases}
-x\Gamma_{p}(x), & x \in \mathbb{Z}_{p}^{\times}, \\
-\Gamma_{p}(x), & x \in p\mathbb{Z}_{p};
\end{cases}$$
(2.2)

$$\Gamma_{p}(x) \Gamma_{p}(1-x) = -(-1)^{\mu_{x}}, \quad x \in \mathbb{Z}_{p}.$$
 (2.3)

Let $\psi \colon \mathbb{F}_p \to \mathbb{Q}_p(\zeta)$ be the additive character on \mathbb{F}_p defined by $\psi(\bar{t}) = \zeta'$, and let $\psi_f \colon \mathbb{F}_q \to \mathbb{Q}_p(\zeta)$ denote the additive character on \mathbb{F}_q defined by $\psi_f(t) = \psi(\operatorname{Tr}(t))$, where $\operatorname{Tr} \colon \mathbb{F}_q \to \mathbb{F}_p$ is the trace map. The Teichmüller character $\omega_f \colon \mathbb{F}_q \to K$ is the unique multiplicative character on \mathbb{F}_q such that,

for all $t \in \mathbb{F}_q$, the reduction of $\omega_f(t)$ mod p is t. (We extend all multiplicative characters χ using the convention $\chi(0) = 0$.)

For $\alpha = a/(q-1)$ with $a \in \mathbb{Z}$, the Gauss sum $g(\omega_f^{-a})$ over \mathbb{F}_q associated to the characters ψ_f and ω_f^{-a} is defined by

$$g(\omega_f^{-a}) = -\sum_{t \in \mathbb{F}_a} \psi_f(t) \, \omega_f^{-a}(t). \tag{2.4}$$

Write a = t(q-1) + c with $t, c \in \mathbb{Z}$ and $0 \le c \le q-1$, and put $\gamma = c/(q-1)$; then from the Gross-Koblitz formula [6] we have

$$g(\omega_f^{-a}) = g(\omega_f^{-c}) = \frac{\pi^{S(c)}}{G_1} \cdot \prod_{i=0}^{f-1} \Gamma_p(\gamma^{(i)}), \tag{2.5}$$

where

$$G_1 = \begin{cases} 1, & \text{if } c < q - 1, \\ q, & \text{if } c = q - 1, \end{cases}$$
 (2.6)

and where S(c) denotes the sum of the digits in the base p expansion of c. (Allowing both c = 0 and c = q - 1 will be useful later.)

If $s \ge 2$ and $\chi_1, ..., \chi_s$: $\mathbb{F}_q \to K$ are multiplicative characters, the Jacobi sum $J(\chi_1, ..., \chi_s)$ is defined by

$$J(\chi_1, ..., \chi_s) = -\sum_{t_1 + \cdots + t_s = 1} \chi_1(t_1) \cdots \chi_s(t_s).$$
 (2.7)

A modification of ([13, Lemma 6.2]), using the results of [14] or ([9, Theorem 1.1]) shows that

$$J(\chi_1, ..., \chi_s) = \frac{(-1)^s}{G_2} \cdot \frac{g(\chi_1) \cdots g(\chi_s)}{g(\chi_1 \cdots \chi_s)},$$
 (2.8)

where

$$G_2 = \begin{cases} 1, & \text{if } \chi_1 \cdots \chi_s \text{ is nontrivial,} \\ q, & \text{if } \chi_1 \cdots \chi_s \text{ is trivial but each } \chi_j \text{ is nontrivial.} \end{cases}$$
 (2.9)

The following lemma will be used to relate Jacobi sums to multinomial coefficients via (2.5) and (2.8).

LEMMA 2.1. Suppose $m_1, ..., m_s$ are nonnegative integers and write $m_i = k_j p + l_j$ with each $l_i \in \{0, 1, ..., p - 1\}$; set $m = m_1 + \cdots + m_s$,

 $k = k_1 + \cdots + k_s$, and $l = l_1 + \cdots + l_s$. Let ε be a nonnegative integer and set $\delta = [(l + \varepsilon)/p]$. Then

$$\frac{(m+\varepsilon)! \ k_1! \cdots k_s!}{(k+\delta)! \ m_1! \cdots m_s!} = (-p)^{\delta} \frac{\Gamma_p(-m_1) \cdots \Gamma_p(-m_s)}{\Gamma_p(-m-\varepsilon)}.$$

Proof. We note that $(-m_j)' = -k_j$ for each j and $(-m - \varepsilon)' = -k - \delta$. From the definition of Γ_p we have

$$-\Gamma_p(1+m_j) = (-1)^{m_j} p^{-k_j} \frac{m_j!}{k_j!}, \qquad (2.10)$$

and a similar expression for $-\Gamma_p(1+m+\varepsilon)$. Therefore we have

$$\frac{(m+\varepsilon)! \ k_1! \cdots k_s!}{(k+\delta)! \ m_1! \cdots m_s!} = (-1)^{s+1+\varepsilon} p^{\delta} \frac{\Gamma_p(1+m+\varepsilon)}{\Gamma_p(1+m_1) \cdots \Gamma_p(1+m_s)}. \tag{2.11}$$

The lemma then follows by applying the reflection formula (2.3), noting that each $\mu_{-m_i} = l_i$ and $\mu_{+m-\varepsilon} = l + \varepsilon - p\delta$.

We now give our principal congruence result for general Jacobi sums.

THEOREM 2.2. Let $\alpha_1, ..., \alpha_s \in \mathbb{Z}_p \cap \mathbb{Q} \cap [0, 1)$ satisfy $\alpha_j = a_j/(q-1)$ with each $a_j \in \mathbb{Z}$, and set $\alpha = \alpha_1 + \cdots + \alpha_s$. We assume that $\alpha > 0$, and if $\alpha \in \mathbb{Z}$ we also assume each $\alpha_j > 0$. For r > 0 define the nonnegative integers $n_{j,r} = (q^r - 1)\alpha_j$, $n_r = (q^r - 1)\alpha$. Let t be the greatest integer strictly less than α , and suppose t < p. Let e be the p-adic ordinal of the Jacobi sum $J(\omega_f^{-a_1}, ..., \omega_f^{-a_s})$. Then for each r > 0 we have the congruence

$$\frac{\binom{n_r+t}{n_{1,r},...,n_{s,r},t}}{\binom{n_{r-1}+t}{n_{1,r-1},...,n_{s,r-1},t}} \equiv (-1)^s J(\omega_f^{-a_1},...,\omega_f^{-a_s}) \pmod{p^{1+e}q^{r-1}\mathbb{Z}_p}.$$

Proof. For $j=1,\ldots,s$ we may write $n_{j,r}=\sum_{i=0}^{fr-1}\mu_{x_j}^{(i)}p^i$. For $0\leqslant i\leqslant f-1$ we will apply Lemma 2.1 with $-m_j=(-n_{j,r})^{(i)}$, so that $-k_j=(-n_{j,r})^{(i+1)}$ and $l_j=\mu_{x_j}^{(i)}$. For each i we choose the nonnegative integer $\varepsilon=\varepsilon_i$ so as to satisfy $(-n_r-t)^{(i)}=-n_{1,r}^{(i)}-\cdots-n_{s,r}^{(i)}-\varepsilon_i$; this implies that $\delta=\varepsilon_{i+1}$ in the notation of the lemma. Thus $\varepsilon_{i+1}=[(\mu_{x_1}^{(i)}+\cdots+\mu_{x_r}^{(i)}+\varepsilon_i)/p]]$; i.e., ε_{i+1} is the number of carries from the (i+1)st to the (i+2)nd digit in the base p addition of $a_1+\cdots+a_s+t$. Writing $\alpha=a/(q-1)$ with a=(q-1)t+c and $0< c\leqslant q-1$, and setting $\gamma=c/(q-1)$, it follows that $n_r+t=q^rt+(q^r-1)\gamma$ for each $r\geqslant 0$. From this we see that $(-n_r-t)^{(f)}=-n_{r-1}-t$ for each r>0, implying $\varepsilon_f=\varepsilon_0=t$.

We take the product on both sides of these equalities from Lemma 2.1, as i runs from 0 to f-1. On the left, the product telescopes, yielding

$$\frac{(n_r+t)! \, n_{1,\,r-1}! \cdots n_{s,\,r-1}!}{(n_{r-1}+t)! \, n_{1,\,r}! \cdots n_{s,\,r}!} \\
= (-p)^e \prod_{i=0}^{f-1} \frac{\Gamma_p((-n_{1,\,r})^{(i)}) \cdots \Gamma_p((-n_{s,\,r})^{(i)})}{\Gamma_p((-n_r-t)^{(i)})}, \tag{2.12}$$

where $e = \varepsilon_1 + \cdots + \varepsilon_f$ is the number of carries in the base p addition $a_1 + \cdots + a_s + t$, since we assume $\varepsilon_f = t < p$. Since Γ_p is unit-valued and Lipschitz with constant 1 we have the congruence

$$\prod_{i=0}^{f-1} \frac{\Gamma_{p}((-n_{1,r})^{(i)}) \cdots \Gamma_{p}((-n_{s,r})^{(i)})}{\Gamma_{p}((-n_{r}-t)^{(i)})}
\equiv \prod_{i=0}^{f-1} \frac{\Gamma_{p}(\alpha_{1}^{(i)}) \cdots \Gamma_{p}(\alpha_{s}^{(i)})}{\Gamma_{p}(\gamma^{(i)})} \pmod{pq^{r-1}\mathbb{Z}_{p}},$$
(2.13)

and therefore

$$\frac{(n_r+t)! \, n_{1,r-1}! \cdots n_{s,r-1}!}{(n_{r-1}+t)! \, n_{1,r}! \cdots n_{s,r}!}$$

$$\equiv (-p)^e \prod_{i=0}^{f-1} \frac{\Gamma_p(\alpha_1^{(i)}) \cdots \Gamma_p(\alpha_s^{(i)})}{\Gamma_p(\gamma^{(i)})} \pmod{p^{1+e}q^{r-1}\mathbb{Z}_p}. \tag{2.14}$$

We claim that the right member of the congruence (2.14) is precisely $(-1)^s J(\omega_f^{-a_1}, ..., \omega_f^{-a_s})$. From (2.5) and (2.8), we see that

$$(-1)^{s} J(\omega_{f}^{-a_{1}}, ..., \omega_{f}^{-a_{s}}) = \pi^{g} \cdot \prod_{i=0}^{f-1} \frac{\Gamma_{p}(\alpha_{1}^{(i)}) \cdots \Gamma_{p}(\alpha_{s}^{(i)})}{\Gamma_{p}(\gamma^{(i)})}, \qquad (2.15)$$

where $g = S(a_1) + \cdots + S(a_s) - S(c)$; note that, since $0 < c \le q-1$, we have c = q-1 if and only if w_f^{-a} is trivial, so that the factors G_1 and G_2 from (2.6) and (2.9) always cancel. Thus we need only show that e = g/(p-1). Since a+t=tq+c, we have S(a+t)=S(tq+c)=S(t)+S(c), and therefore $g=S(a_1)+\cdots+S(a_s)+S(t)-S(a+t)$. As it is well-known that $\operatorname{ord}(n!)=(n-S(n))/(p-1)$, we see that g/(p-1) is the ordinal of the multinomial coefficient $\binom{a+t}{a_1,\ldots,a_s,t}$, which is precisely the number e of carries in the base p addition $a_1+\cdots+a_s+t$. The proof is now complete.

When e > 0 these congruences become stronger than those generally obtained from formal group laws. Considering the simplest case, suppose that f = 1 (so p = q); then $e = \varepsilon_1 = t$. The result for s = 2, e = 0 has been

given previously ([15, Corollary 2.2]). The congruences of Theorem 2.2 hold modulo $p^{r+r}\mathbb{Z}_p$, and therefore one has the result

since the multinomial coefficient on the right side of (2.16) has p-adic ordinal (r-1)t. For $t \ge 1$ such results have been called supercongruences.

A second interesting case is obtained by taking an integer d > 2, an odd prime p such that $p \equiv -1 \pmod{d}$, s = 2, and $\alpha_1 = \alpha_2 = 1/d$. Taking f = 2, $q = p^2$, one then has e = 1, t = 0, and the congruences read

$$\frac{\binom{2(q^r-1)/d}{(q^r-1)/d}}{\binom{2(q^{r-1}-1)/d}{(q^{r-1}-1)/d}} + p \equiv 0 \pmod{q^r \mathbb{Z}},$$
(2.17)

as it is easily verified from (2.8), (2.5), and (2.3) that $J(\omega_2^{-a_1}, \omega_2^{-a_1}) = -p$. The r=1 case of these congruences has been given in ([8, Proposition 3.1]); in the cases d=3, 4 they arise from formal groups associated to certain supersingular elliptic curves and are related to elliptic cohomology. In Section 4 below we examine the supersingular elliptic curve with $j=12^3$ which corresponds to the d=4 case.

As the occurrence of the integer t in the multinomial coefficients of Theorem 2.2 is rather artificial, it is natural to remove it, which we now do.

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, for each r > 0 we have the congruence

$$\frac{\binom{n_r}{n_{1,r}, \dots, n_{s,r}}}{\binom{n_{r-1}}{n_{r-1}, \dots, n_{s,r-1}}} \equiv (-1)^s J(\omega_f^{-a_1}, \dots, \omega_f^{-a_s}) \pmod{p^{b+d+e}q^{r-1}\mathbb{Z}_p},$$

where d = 0 if $\mu_{\alpha} + t < p$ and $d = -1 - \operatorname{ord}(\alpha' - 1)$ if $\mu_{\alpha} + t \ge p$, and $b = 1 - \operatorname{sgn}(t)$. Furthermore, in all cases we have $b + d + e \ge 1$, so the congruence always holds modulo $pq^{r-1}\mathbb{Z}_p$.

Proof. As before we write $\alpha = a/(q-1)$ with a = t(q-1) + c and $0 < c \le q-1$. If t=0 the results are immediate, so assume $1 \le u \le t < p$; then for all t>0 we have

$$\frac{n_{r-1} + u}{n_r + u} = 1 + \frac{(q^{r-1} - q^r)(\alpha/(u - \alpha))}{1 + q^r(\alpha/(u - \alpha))}.$$
 (2.18)

If $\operatorname{ord}(\alpha - u) > 0$, then $\mu_x = p - u$, whence $\mu_\alpha + t \ge p$; in this case set $-d = \operatorname{ord}(\alpha - u)$, otherwise set d = 0. In the former case, we note that $\alpha - u = \alpha + \mu_\alpha - p = p(\alpha' - 1)$, showing that the two definitions of d coincide. By writing

$$\alpha - u \frac{-qu + (a+u)}{q-1} = \frac{(t-u)q + (c-t+u)}{q-1}$$
 (2.19)

we see that $-d \le f$, and that -d = f if and only if c + u = t, in which case a + u = tq with $t \ge 2$ and $\alpha - u = cq/(q - 1)$. It follows that the denominator of the right side of (2.18) is a *p*-adic unit for all t > 0, and therefore

$$\frac{(n_{r-1}+1)\cdots(n_{r-1}+t)}{(n+1)\cdots(n+t)} \equiv 1 \pmod{p^d q^{r-1} \mathbb{Z}_p},\tag{2.20}$$

from which it follows that

$$\frac{\binom{n_r}{n_{1,r}, \dots, n_{s,r}}}{\binom{n_{r-1}}{n_{r-1}, \dots, n_{s,r-1}}} \equiv \frac{\binom{n_r + t}{n_{1,r}, \dots, n_{s,r}, t}}{\binom{n_{r-1} + t}{n_{1,r-1}, \dots, n_{s,r-1}, t}} \pmod{p^{d+e}q^{r-1}\mathbb{Z}_p}, \tag{2.21}$$

since the right member of this congruence has p-adic ordinal e. Since $d \le 1$, comparison with Theorem 2.2 proves the first assertion of the corollary.

We now recall that $e = \varepsilon_1 + \cdots + \varepsilon_f$ is the number of carries in the base p addition $a_1 + \cdots + a_s + t$. From (2.19) we see that $\operatorname{ord}(\alpha - u) = \operatorname{ord}(a + u) = -d$. Since the first -d digits of a + u are zero and $a < a + u \le a + t$, we have $\varepsilon_i > 0$ for $0 \le i \le -d$. If -d < f then we have $e \ge -d + \varepsilon_f \ge -d + 1$ since we assume $t = \varepsilon_f \ge 1$. If -d = f then $t \ge 2$ by the remarks following (2.19); thus all $\varepsilon_i > 0$ and $\varepsilon_f \ge 2$, whence $e \ge f + 1$. Thus $d + e \ge 1$ in all cases, completing the proof.

3. Jacobi Sums and p-adic Hypergeometric Functions

We recall from our previous article [15] certain results and definitions concerning the *p*-adic theory of hypergeometric functions. If $\alpha_1, ..., \alpha_k$,

 $\gamma_1, ..., \gamma_{k-1} \in \mathbb{Q} \cap \mathbb{Z}_p$ and none of the γ_j are zero or negative integers, we denote for $i \ge 0$ the hypergeometric series

$$F^{(i)}(X) = {}_{k}F_{k-1} \left(\frac{\alpha_{1}^{(i)}, \dots, \alpha_{k}^{(i)}}{\gamma_{1}^{(i)}, \dots, \gamma_{k-1}^{(i)}}; X \right) = \sum_{n=0}^{\infty} A^{(i)}(n) X^{n}$$

$$= \sum_{n=0}^{\infty} \frac{(\alpha_{1}^{(i)})_{n} \cdots (\alpha_{k}^{(i)})_{n}}{(\gamma_{1}^{(i)})_{n} \cdots (\gamma_{k-1}^{(i)})_{n} n!} X^{n}, \tag{3.1}$$

and for $i, s \ge 0$ set $F_s^{(i)}(X) = \sum_{n=0}^{p^r-1} A^{(i)}(n) X^n$. Suppose that the parameters satisfy the conditions

(C1)
$$|\gamma_i^{(i)}| = 1$$
 for all $i \ge 0$, $j = 1, ..., k - 1$;

(C2) For each fixed $i \ge 0$, supposing the indices are rearranged so that $\mu_{\mathbf{x}_1}^{(i)} \le \cdots \le \mu_{\mathbf{x}_k}^{(i)}$ and $\mu_{\gamma_1}^{(i)} \le \cdots \le \mu_{\gamma_m}^{(i)}$, where $\gamma_j \ne 1$ for $1 \le j \le m$ and $\gamma_j = 1$ for $m < j \le k-1$, we have $\mu_{\gamma_j}^{(i)} > \mu_{\mathbf{x}_{j+1}}^{(i)}$ for j = 1, ..., m.

Then for all $i \ge 0$ we have $F^{(i)}(X) \in \mathbb{Z}_p[\![X]\!]$, and for $r \ge s \ge 0$ there are formal congruences

$$F_{r+1}^{(i)}(X) \ F_s^{(i+1)}(X^p) \equiv F_r^{(i+1)}(X^p) \ F_{s+1}^{(i)}(X) \qquad (\text{mod } p^{s+1} \mathbb{Z}_p[X]). \tag{3.2}$$

These congruences imply that the ratio $F^{(0)}(x)/F^{(1)}(x^p)$ is the restriction to the disk $\{x \in \mathbb{C}_p : |x| < 1\}$ of the analytic element (i.e., uniform limit of rational functions)

$${}_{k}\mathfrak{F}_{k-1}\left(\frac{\alpha_{1}, ..., \alpha_{k}}{\gamma_{1}, ..., \gamma_{k-1}}; x\right) = \lim_{r \to \infty} F_{r+1}^{(0)}(x) / F_{r}^{(1)}(x^{p}), \tag{3.3}$$

which is supported on the Hasse domain

$$\mathfrak{D} = \{ x \in \mathbb{C}_n : |F_\lambda^{(i)}(x)| = 1 \text{ for all } i \geqslant 0 \}.$$
 (3.4)

For series satisfying $F^{(f)} = F^{(0)}$ we will obtain products of Jacobi sums over \mathbb{F}_a as values of the analytic element of support \mathfrak{D} defined by

$$_{k}\mathfrak{F}_{k-1}^{(f)}\left(\frac{\alpha_{1},...,\alpha_{k}}{\gamma_{1},...,\gamma_{k-1}};x\right) = \lim_{r \to \infty} F_{r+f}^{(0)}(x)/F_{r}^{(f)}(x^{q})$$
 (3.5)

(cf. [4, p. 42]) whose existence as a uniform limit for $x \in \mathfrak{D}$ follows from the the formal congruences (3.2) and the observation that

$$F_{r+f}^{(0)}(x)/F_r^{(f)}(x^q) = \prod_{i=0}^{f-1} F_{r+f-i}^{(i)}(x^{p^i})/F_{r+f-i-1}^{(i+1)}(x^{p^{i+1}}). \tag{3.6}$$

We note that the limits in (3.3), (3.5) may exist in \mathbb{Q}_p for certain values of $x \in \mathbb{D}$ not lying in \mathbb{D} , or when the hypotheses (C1), (C2) are not satisfied;

but in this case they need not be specializations of uniform limits. Here we will evaluate the limits (3.3), (3.5) at $x = \pm 1 \in \mathfrak{D}$ for functions satisfying (C1), (C2). Our method will be to *p*-adically approximate the given series by terminating series which can be evaluated by combinatorial results. For fixed $x_0 \in \mathfrak{D}$ the truncated series $F_s^{(i)}(x_0)$ are rational functions of the parameters $\alpha_j^{(i)}$, $\gamma_j^{(i)}$, and therefore one may appeal to their continuity with respect to the parameters (cf. [7]), although this need not be the case for the nonterminating $F^{(i)}(x_0)$.

We generalize our previous result ([15, Theorem 3.1]) giving a p-adic analogue of Kummer's theorem, which gives the value of a well-poised ${}_{2}F_{1}(-1)$.

THEOREM 3.1. Let T denote the set of all $(\alpha, \beta) \in \mathbb{Z}_p^2$ such that $-1 \in \mathfrak{D}$ and both (C1), (C2) are satisfied for the series $F(X) = {}_2F_1(2\alpha, \beta; 1 + 2\alpha - \beta; X)$. Then $(\alpha, \beta) \in T$ if and only if

- (i) $2\mu_{\alpha}^{(i)} \leq \mu_{\beta}^{(i)}$ for all $i \geq 0$;
- (ii) If $\beta \neq 2\alpha$ then $\mu_{\beta}^{(i)} \mu_{\alpha}^{(i)} < (p-1)/2$ for all $i \ge 0$.

Furthermore, if $(\alpha, \beta) \in T$ then

$${}_{2}\mathfrak{F}_{1}\left(\frac{2\alpha, \beta}{1+2\alpha-\beta}; -1\right) = (-1)^{\mu_{x}} \frac{\Gamma_{p}(\alpha) \Gamma_{p}(\beta-\alpha)}{\Gamma_{p}(2\alpha) \Gamma_{p}(\beta-2\alpha)};$$

and if in addition $((q-1)\alpha, (q-1)\beta) = (a, b) \in \{0, 1, ..., q-1\}^2$ then

$${}_{2}\mathfrak{F}_{1}^{(f)}\left(\frac{2\alpha,\,\beta}{1+2\alpha-\beta};\,-1\right)=(\,-1\,)^{a}\,\frac{J(\omega_{f}^{-a},\,\omega_{f}^{a-h})}{J(\omega_{f}^{-2a},\,\omega_{f}^{2a-h})}.$$

Proof. Suppose $(\alpha, \beta) \in T$, and set $\gamma = 1 + 2\alpha - \beta$. If $\gamma = 1$ then $\beta = 2\alpha$, so $\mu_{\beta}^{(i)} = \mu_{2\alpha}^{(i)}$ for all *i*. Since $(\beta - 2\alpha) + \gamma = 1$ we have $\mu_{\beta - 2\alpha}^{(i)} + \mu_{\gamma}^{(i)} = p - 1$ for all *i*, so if $\gamma \neq 1$ then by (C2) we have $\mu_{\gamma}^{(i)} > \mu_{2\alpha}^{(i)}$, $\mu_{\beta}^{(i)}$, which implies that for all *i*,

$$\mu_{2\alpha}^{(i)} + \mu_{\beta-2\alpha}^{(i)} < p-1,$$
 (3.7)

$$\mu_{\beta}^{(i)} + \mu_{\beta-2\alpha}^{(i)} < p-1.$$
 (3.8)

From (3.7) we see that in fact

$$\mu_{2\alpha}^{(i)} + \mu_{\beta-2\alpha}^{(i)} = \mu_{\beta}^{(i)}$$

so in any event we have $0 \le \mu_{2\alpha}^{(i)} \le \mu_{\beta}^{(i)}$ for all i.

Since we assume that F(X) satisfies (C1), (C2), we note that

$$F_1^{(i)}(-1) \equiv {}_2F_1\left(\frac{-M, -n}{1+n-M}; -1\right) \pmod{p\mathbb{Z}_p},$$
 (3.10)

where $M = \mu_{2\alpha}^{(i)}$ and $n = \mu_{\beta}^{(i)}$. By equating coefficients of T^M in the expansions of $(1-T)^n (1+T)^n = (1-T^2)^n$ one obtains, for $0 \le M \le n$,

$$\sum_{k=0}^{M} (-1)^k \binom{n}{k} \binom{n}{M-k} = \begin{cases} (-1)^m \binom{n}{m}, & \text{if } M = 2m, \\ 0, & \text{if } M \text{ is odd.} \end{cases}$$
(3.11)

Applying the identity

$$\binom{n}{M-k} = \binom{n}{M} \binom{M}{k} \cdot \binom{n-M+k}{k}^{-1} \tag{3.12}$$

in (3.11) shows that

$$\sum_{k=0}^{M} (-1)^k \frac{\binom{M}{k} \binom{n}{k}}{\binom{n-M+k}{k}} = (-1)^m \frac{\binom{n}{m}}{\binom{n}{2m}}$$
(3.13)

if $M = 2m \le n$, whereas the sum in (3.13) is zero if M is odd. But since this sum is precisely ${}_{2}F_{1}(-M, -n; 1+n-M; -1)$, we see from (3.10) that $-1 \notin \mathfrak{D}$ for our F(X) unless $M = \mu_{2\alpha}^{(i)}$ is an even integer for all $i \ge 0$.

Since $\mu_{2\alpha}^{(i)}$ must be even for all i, we have $\mu_{2\alpha}^{(i)} = 2\mu_{\alpha}^{(i)}$ for all i. From (3.9)

we see that $2\mu_{\alpha}^{(i)} \leqslant \mu_{\beta}^{(i)}$ for all i, giving (i). Then substituting the equality in (3.9) into (3.8) yields $2\mu_{\beta}^{(i)} - 2\mu_{\alpha}^{(i)} , giving (ii). Now suppose (i) and (ii) hold. From (i) we see that <math>\mu_{2\alpha}^{(i)} = 2\mu_{\alpha}^{(i)}$, $\mu_{\alpha}^{(i)} + \mu_{\beta-\alpha}^{(i)} = \mu_{\beta}^{(i)}$, and $\mu_{2\alpha}^{(i)} + \mu_{\beta-2\alpha}^{(i)} = \mu_{\beta}^{(i)}$ for all i. If $\gamma \neq 1$, then from (ii) we

$$\mu_{\gamma}^{(i)} = (p-1) - \mu_{\beta-2\alpha}^{(i)}$$

$$= (p-1) + \mu_{2\alpha}^{(i)} - \mu_{\beta}^{(i)}$$

$$= (p-1) + 2(\mu_{\alpha}^{(i)} - \mu_{\beta}^{(i)}) + \mu_{\beta}^{(i)} > \mu_{\beta}^{(i)} \ge 2\mu_{\alpha}^{(i)} \ge 0, \tag{3.14}$$

and therefore the hypotheses (C1), (C2) are satisfied for F(X). By comparison with Theorem 2.2, we see that for $m = \mu_{\alpha}^{(i)}$, $n = \mu_{\beta}^{(i)}$, M = 2m, the binomial coefficients on the right side of (3.13) are p-adic units, showing via (3.10) that $-1 \in \mathfrak{D}$. Thus $(\alpha, \beta) \in T$, proving the first statment of the theorem.

The basic idea of Koblitz [7] shows that $(\alpha, \beta) \mapsto {}_{2}\mathfrak{F}_{1}(2\alpha, \beta; 1 + 2\alpha - \beta; -1)$ is continuous on the set T. For r>0 and $(\alpha, \beta) \in T$ set $m_r = \sum_{i=0}^{r-1} \mu_{\alpha}^{(i)} p^i$ and $n_r = \sum_{i=0}^{r-1} \mu_B^{(i)} p^i$. Since

$$(\mu_{-2m_r}^{(i)}, \mu_{-n_r}^{(i)}, \mu_{1+n_r-2m_r}^{(i)}) = \begin{cases} (\mu_{2\alpha}^{(i)}, \mu_{\beta}^{(i)}, \mu_{\gamma}^{(i)}), & \text{if } 0 \leq i \leq r, \\ (0, 0, 1), & \text{if } i \geq r, \end{cases}$$
(3.15)

we see that $(-2m_r, -n_r) \in T$ as well, because the pair (0, 0) clearly satisfies conditions (i), (ii) above. We note that $(1 + 2\alpha - \beta)' = 1 + 2\alpha' - \beta'$ and $(1 + n_r - 2m_r)' = 1 + n_r' - 2m_r'$ for all r. Therefore if s > 0, it follows from (3.2) that there exists $R \ge s + 1$ such that

$${}_{2}\mathfrak{F}_{1}\left(\frac{2\alpha,\beta}{\gamma};-1\right) \equiv \frac{F_{s+1}\left(\frac{2\alpha,\beta}{\gamma};-1\right)}{F_{s}\left(\frac{2\alpha',\beta'}{\gamma'};(-1)^{p}\right)}$$

$$\equiv \frac{F_{s+1}\left(\frac{-2m_{r},-n_{r}}{1+n_{r}-2m_{r}};-1\right)}{F_{s}\left(\frac{-2m'_{r},-n'_{r}}{1+n'_{r}-2m'_{r}};(-1)^{p}\right)}$$

$$\equiv \frac{F\left(\frac{-2m_{r},-n_{r}}{1+n_{r}-2m_{r}};-1\right)}{F\left(\frac{-2m'_{r},-n'_{r}}{1+n'_{r}-2m'_{r}};(-1)^{p}\right)} \qquad (\text{mod } p^{s+1}\mathbb{Z}_{p}) \qquad (3.16)$$

for all $r \ge R$, the second congruence holding because the $F_s^{(i)}(-1)$ are rational functions of their parameters. We then use (3.13) with $M = 2m_r$, $n = n_r$, and with $M = 2m_r'$, $n = n_r'$, and Lemma 2.1, to obtain

$$2\mathfrak{F}_{1}\left(\frac{2\alpha, \beta}{\gamma}; -1\right) = \lim_{r \to \infty} \frac{{}_{2}F_{1}\left(\frac{-2m_{r}, -n_{r}}{1 + n_{r} - 2m_{r}}; -1\right)}{{}_{2}F_{1}\left(\frac{-2m'_{r}, -n'_{r}}{1 + n'_{r} - 2m'_{r}}; (-1)^{p}\right)}$$

$$= \lim_{r \to \infty} (-1)^{m_{r} - m'_{r}} \frac{\binom{n_{r}}{m_{r}}\binom{n'_{r}}{2m'_{r}}}{\binom{n'_{r}}{m'_{r}}\binom{n_{r}}{2m_{r}}}$$

$$= \lim_{r \to \infty} (-1)^{m_{r} - m'_{r}} \frac{\Gamma_{p}(-m_{r}) \Gamma_{p}(m_{r} - n_{r})}{\Gamma_{p}(-2m_{r}) \Gamma_{p}(2m_{r} - n_{r})}$$

$$= (-1)^{\mu_{2}} \frac{\Gamma_{p}(\alpha) \Gamma_{p}(\beta - \alpha)}{\Gamma_{p}(2\alpha) \Gamma_{p}(\beta - 2\alpha)}, \tag{3.17}$$

as desired.

The Jacobi-sum values of associated ${}_2\mathfrak{F}_1^{(f)}$ for α , β lying also in $(1/(q-1)) \mathbb{Z} \cap [0,1]$ may be obtained from (3.17) with the aid of (3.6), (2.5), and (2.8), or directly as follows: Noting that $m_{rf} = (q^r - 1) \alpha$, $n_{rf} = (q^r - 1) \beta$, $(-2m_{rf})^{(f)} = -2m_{(r-1)f}$, $(-n_{rf})^{(f)} = -n_{(r-1)f}$, and $(1+n_{rf}-2m_{rf})^{(f)} = 1+n_{(r-1)f}-2m_{(r-1)f}$, we substitute (3.16) in (3.6), yielding

$${}_{2}\mathfrak{F}_{1}^{(f)}\left(\frac{2\alpha,\beta}{\gamma};-1\right) = \lim_{r \to \infty} \frac{{}_{2}\mathfrak{F}_{1}\left(\frac{-2m_{rf},-n_{rf}}{1+n_{rf}-2m_{rf}};-1\right)}{{}_{2}F_{1}\left(\frac{-2m_{(r-1)f},-n_{(r-1)f}}{1+n_{(r-1)f}-2m_{(r-1)f}};(-1)^{q}\right)}$$

$$= \lim_{r \to \infty} (-1)^{m_{rf}-m_{(r-1)f}} \frac{\binom{n_{rf}}{m_{rf}}\binom{n_{(r-1)f}}{2m_{(r-1)f}}}{\binom{n_{(r-1)f}}{m_{(r-1)f}}\binom{n_{rf}}{2m_{rf}}}$$

$$= (-1)^{a} \frac{J(\omega_{f}^{+a},\omega_{f}^{a+b})}{J(\omega_{f}^{-2\alpha},\omega_{f}^{2a-b})} \tag{3.18}$$

via (3.13) with $M = 2m_{rf}$, $n = n_{rf}$, and with $M = 2m_{(r-1)f}$, $n = n_{(r-1)f}$, and Corollary 2.3. This completes the proof.

We remark that, by (3.13) and Corollary 2.3, the limit of hypergeometric functions given in (3.18) is indeed correct for any α , $\beta \in (1/(q-1)) \mathbb{Z} \cap [0,1]$ such that $2\alpha \leq \beta$. However when $(\alpha,\beta) \notin T$ the syumbol ${}_2\mathfrak{F}_1^{(f)}$ is not justified for this limit, as it need not be the specialization to -1 of a uniform limit on that residue class.

We now give a generalization of Dixon's theorem, which gives the value of a well-poised $_3\mathfrak{F}_2(1)$. We give a proof along somewhat different lines than the one given in [15] for elements of $(1/((p-1)) \mathbb{Z})$.

THEOREM 3.2. Let T denote the set of all $(\alpha, \beta, \gamma) \in \mathbb{Z}_p^3$ such that $1 \in \mathfrak{D}$ and both (C1), (C2) are satisfied for the series $F(X) = {}_3F_2(2\alpha, \beta, \gamma; 1 + 2\alpha - \beta, 1 + 2\alpha - \gamma; X)$. Then $(\alpha, \beta, \gamma) \in T$ if and only if

- (i) $2\mu_{\alpha}^{(i)} \leq \mu_{\beta}^{(i)}$, $\mu_{\gamma}^{(i)}$ and $\mu_{\beta}^{(i)} + \mu_{\gamma}^{(i)} \mu_{\alpha}^{(i)} \leq p-1$ for all $i \geq 0$;
- (ii) If 2α , β , γ are not all equal then $\mu_{\beta}^{(i)} + \mu_{\gamma}^{(i)} 2\mu_{\alpha}^{(i)} < p-1$ for all $i \ge 0$.

Furthermore, if $(\alpha, \beta, \gamma) \in T$ then

$${}_{3}\mathfrak{F}_{2}\left(\frac{2\alpha,\beta,\gamma}{1+2\alpha-\beta,1+2\alpha-\gamma};1\right)$$

$$=(-1)^{\mu_{\alpha}}\frac{\Gamma_{\rho}(\alpha)\Gamma_{\rho}(\gamma-\alpha)\Gamma_{\rho}(\beta-\alpha)\Gamma_{\rho}(\beta+\gamma-2\alpha)}{\Gamma_{\rho}(2\alpha)\Gamma_{\rho}(\gamma-2\alpha)\Gamma_{\rho}(\beta-2\alpha)\Gamma_{\rho}(\beta+\gamma-\alpha)};$$

and if in addition $((q-1) \alpha, (q-1) \beta, (q-1) \gamma) = (a, b, c) \in \{0, 1, ..., q-1\}^3$ then

$${}_{3}\mathfrak{F}_{2}^{(f)}\left(\frac{2\alpha,\beta,\gamma}{1+2\alpha-\beta,1+2\alpha-\gamma};1\right) = (-1)^{a}\frac{J(\omega_{f}^{-a},\omega_{f}^{2a-b-c})J(\omega_{f}^{-a},\omega_{f}^{a-b})}{J(\omega_{f}^{-a},\omega_{f}^{2a-c})J(\omega_{f}^{-2a},\omega_{f}^{2a-b})}.$$

Proof. Suppose $(\alpha, \beta, \gamma) \in T$, set $\delta = 1 + 2\alpha - \beta$ and $\varepsilon = 1 + 2\alpha - \gamma$. If $\delta = \varepsilon = 1$ then $2\alpha = \beta = \gamma$, so $\mu_{2\alpha}^{(i)} = \mu_{\beta}^{(i)} = \mu_{\gamma}^{(i)}$ for all i. Note that $\mu_{\beta-2\alpha}^{(i)} + \mu_{\delta}^{(i)} = p - 1$ and $\mu_{\gamma-2\alpha}^{(i)} + \mu_{\varepsilon}^{(i)} = p - 1$ for all i. Therefore if δ , ε are not both equal to 1, (C2) implies that for all $i \ge 0$, either $\mu_{\delta}^{(i)} > \mu_{2\alpha}^{(i)}$ or $\mu_{\varepsilon}^{(i)} > \mu_{2\alpha}^{(i)}$, so that for all i,

$$\mu_{2\alpha}^{(i)} + \mu_{\beta=2\alpha}^{(i)} < p-1$$
 or $\mu_{2\alpha}^{(i)} + \mu_{r-2\alpha}^{(i)} < p-1$. (3.19)

Now if for some i, say the former half of (3.19) holds, then in fact

$$\mu_{2\pi}^{(i)} + \mu_{B-2\pi}^{(i)} \le \mu_{B}^{(i)} \le \mu_{2\pi}^{(i)} + \mu_{B-2\pi}^{(i)} + 1 \le p - 1, \tag{3.20}$$

so in particular $\mu_{2x}^{(i)} \leq \mu_{\beta}^{(i)}$ for such *i*. But then (C2) requires that both $\mu_{\delta}^{(i)}$, $\mu_{\epsilon}^{(i)} > \mu_{2x}^{(i)}$, so both inequalities in (3.19) must hold; thus in fact for any *i* we have

$$\mu_{2\alpha}^{(i)} + \mu_{\beta-2\alpha}^{(i)} = \mu_{\beta}^{(i)}, \qquad \mu_{2\alpha}^{(i)} + \mu_{\gamma-2\alpha}^{(i)} = \mu_{\gamma}^{(i)},$$
 (3.21)

so in any event we have $\mu_{2\alpha}^{(i)} \leq \mu_{\beta}^{(i)}$, $\mu_{\gamma}^{(i)}$ for all *i*. Since we assume that F(X) satisfies (C1), (C2), we note that

$$F_1^{(i)}(1) \equiv {}_{3}F_2\left(\frac{-S, -m, -n}{1 + m - S, 1 + n - S}; 1\right) \pmod{p\mathbb{Z}_p}, \tag{3.22}$$

where $S = \mu_{2\alpha}^{(i)}$, $m = \mu_{\beta}^{(i)}$ and $n = \mu_{\gamma}^{(i)}$. A terminating from of the classical Dixon's theorem ([10, eq. (III.9)]) states that for $n, m \in \mathbb{Z}^+$, we have

$$_{3}F_{2}\left(\frac{-2s, -m, -n}{1+m-2s, 1+n-2s}; 1\right) = \frac{(1-2s)_{n}(1+m-s)_{n}}{(1-s)_{n}(1+m-2s)_{n}}(1+m-2s)_{n}$$
 (3.23)

if 2s is not a positive integer. We invoke the identity $(1+x)_n = \Gamma(1+x+n)/\Gamma(1+x)$ to express each factor on the right side of (3.23) in terms of the classical gamma function. Using the classical functional

equations $\Gamma(1+z) = z\Gamma(z)$ and $\Gamma(z)\Gamma(1-z) = \pi \csc \pi z$ (here π has its more usual meaning) we obtain

$$\frac{\Gamma(1-s)}{\Gamma(1-2s)} = \frac{\Gamma(1+2s)}{\Gamma(1+s)} \cos \pi s,$$
(3.24)

which shows that the value of the ${}_{3}F_{2}(1)$ in (3.23) is equal to

$$\cos \pi s \frac{\Gamma(1+2s) \Gamma(1+n-2s) \Gamma(1+m+n-s) \Gamma(1+m-2s)}{\Gamma(1+s) \Gamma(1+n-s) \Gamma(1+m-s) \Gamma(1+m+n-2s)}.$$
 (3.25)

As functions of s, both the ${}_{3}F_{2}(1)$ in (3.23) and the expression (3.25) are continuous at s when 2s is a positive integer such that $2s \le m$, n, so their equality holds also in this case. Note that if 2s is a positive odd integer and $2s \le m$, n then $\cos \pi s = 0$ and the expression (3.25) is therefore zero. Since $\cos \pi N = (-1)^{N}$ and $\Gamma(1+N) = N!$ for $N \in \mathbb{Z}^{+}$, we obtain the identity

$$_{3}F_{2}\left(\frac{-2s, -m, n}{1+m-2s, 1+n-2s}; 1\right) = (-1)^{s} \frac{\binom{m+n-s}{s}\binom{m}{s}}{\binom{n-s}{s}\binom{m}{2s}},$$
 (3.26)

valid for integers positive integers s, n, m such that $2s \le m, n$, whereas this value is zero if 2s is a positive odd integer and $2s \le m, n$. Comparing this result with (3.22), we see that $1 \notin \mathfrak{D}$ for our F(X) unless $S = \mu_{2\alpha}^{(i)}$ is an even integer for all $i \ge 0$. Therefore $\mu_{2\alpha}^{(i)} = 2\mu_{\alpha}^{(i)}$ for all i, giving the first half of (i).

integer for all $i \ge 0$. Therefore $\mu_{2\alpha}^{(i)} = 2\mu_{\alpha}^{(i)}$ for all i, giving the first half of (i). Since $2\mu_{\alpha}^{(i)} \le \mu_{\beta}^{(i)}$, $\mu_{\gamma}^{(i)}$ for all i, we see that the binomial coefficients $\binom{m}{s}$, $\binom{m}{2s}$, and $\binom{n-s}{s}$ all lie in \mathbb{Z}_p^{κ} , where $s = \mu_{\alpha}^{(i)}$, $m = \mu_{\beta}^{(i)}$ and $n = \mu_{\gamma}^{(i)}$. Comparing (3.22) and (3.26) (with S = 2s) shows that the ensure $1 \in \mathbb{D}$ we need $\binom{m+n-s}{s} \in \mathbb{Z}_p^{\kappa}$ which requires $m+n-s \le p-1$, giving the second half of condition (i).

Finally, if 2α , β , γ are not all equal, then from (C2) we know that for all i, either $\mu_{\delta}^{(i)} > \mu_{\gamma}^{(i)}$ or $\mu_{\kappa}^{(i)} > \mu_{\beta}^{(i)}$. Thus for all i,

$$\mu_{\gamma}^{(i)} + \mu_{\beta - 2\alpha}^{(i)} or $\mu_{\beta}^{(i)} + \mu_{\gamma - 2\alpha}^{(i)} , (3.27)$$$

but in either case (3.21) yields $\mu_{\beta}^{(i)} + \mu_{\gamma}^{(i)} - 2\mu_{\alpha}^{(i)} , which is condition (ii).$

Now suppose (i) and (ii) hold. It follows easily that $\mu_{2\alpha}^{(i)} = 2\mu_{\alpha}^{(i)}$ and (3.21) holds for all *i*. Furthermore, if 2α , β , γ are not all equal, then $\mu_{1+2\alpha-\beta}^{(i)} > \mu_{2\alpha}^{(i)} > \mu_{2\alpha}^{(i)}$ and $\mu_{1+2\alpha-\gamma}^{(i)} > \mu_{\beta}^{(i)} > \mu_{2\alpha}^{(i)}$, so F(X) satisfies (C1) and (C2). From (i) we see that for $s = \mu_{\alpha}^{(i)}$, $m = \mu_{\beta}^{(i)}$ and $n = \mu_{\gamma}^{(i)}$, each binomial coefficient on the right side of (3.26) is a *p*-adic unit. Then (3.22) shows that $1 \in \mathfrak{D}$, proving the first statement of the theorem.

139

Now let $(\alpha, \beta, \gamma) \in T$, and for r > 0 set $s_r = \sum_{i=0}^{r-1} \mu_{\alpha}^{(i)} p^i$, $m_r = \sum_{i=0}^{r-1} \mu_{\beta}^{(i)} p^i$, and $n_r = \sum_{i=0}^{r-1} \mu_{\beta}^{(i)} p^i$. Since

$$(\mu_{-2s_r}^{(i)}, \mu_{-m_r}^{(i)}, \mu_{-n_r}^{(i)}, \mu_{1+m_r-2s_r}^{(i)}, \mu_{1+n_r-2s_r}^{(i)}) = \begin{cases} (\mu_{2\alpha}^{(i)}, \mu_{\beta}^{(i)}, \mu_{\gamma}^{(i)}, \mu_{1+2\alpha-\beta}^{(i)}, \mu_{1+2\alpha-\gamma}^{(i)}), & \text{if } 0 \leq i < rf, \\ (0, 0, 0, 1, 1), & \text{if } i \leq rf, \end{cases}$$
(3.28)

we see that $(-2s_r, -m_r, -n_r) \in T$ as well. Therefore, for all s > 0 there exists $R \ge s + 1$ such that

$${}_{3}\mathfrak{F}_{2}\left(\frac{2\alpha,\beta,\gamma}{1+2\alpha-\beta,1+2\alpha-\gamma};1\right) \equiv \frac{F_{s+1}\left(\frac{2\alpha,\beta,\gamma}{1+2\alpha-\beta,1+2\alpha-\gamma};1\right)}{F_{s}\left(\frac{2\alpha',\beta',\gamma'}{1+2\alpha'-\beta',1+2\alpha'-\gamma'};1^{p}\right)}$$

$$\equiv \frac{F_{s+1}\left(\frac{-2s_{r},-m_{r},-n_{r}}{1+m_{r}-2s_{r},1+n_{r}-2s_{r}};1\right)}{F_{s}\left(\frac{-2s'_{r},-m'_{r},-n'_{r}}{1+m'_{r}-2s'_{r},1+n'_{r}-2s'_{r}};1^{p}\right)}$$

$$\equiv \frac{F\left(\frac{-2s_{r},-m_{r},-n_{r}}{1+m_{r}-2s_{r},1+n_{r}-2s_{r}};1\right)}{F\left(\frac{-2s_{r},-m_{r},-n_{r}}{1+m'_{r}-2s'_{r},1+n'_{r}-2s'_{r}};1^{p}\right)}$$

$$(3.29)$$

for all $r \ge R$. Then from (3.26) and Lemma 2.1 we have

$${}_{3}\mathfrak{F}_{2}\left(\frac{2\alpha,\,\beta,\,\gamma}{\delta,\,\varepsilon};1\right) = \lim_{r \to \infty} \frac{{}_{3}F_{2}\left(\frac{-2s_{r},\,-m_{r},\,-n_{r}}{1+m_{r}-2s_{r},\,1+n_{r}-2s_{r}};1\right)}{{}_{3}F_{2}\left(\frac{-2s_{r},\,-m_{r},\,-n_{r}}{1+m_{r},\,-2s_{r}',\,1+n_{r}'-2s_{r}'};1^{p}\right)}$$

$$= \lim_{r \to \infty} (-1)^{s_{r}-s_{r}'} \frac{\binom{m_{r}+n_{r}-s_{r}}{s_{r}}\binom{m_{r}}{s_{r}}\binom{n_{r}'-s_{r}'}{s_{r}'}\binom{m_{r}'}{2s_{r}'}}{\binom{m_{r}'+n_{r}'-s_{r}'}{s_{r}'}\binom{m_{r}'}{s_{r}'}\binom{n_{r}-s_{r}}{s_{r}}\binom{m_{r}}{2s_{r}}}$$

$$= (-1)^{\mu_{x}} \frac{\Gamma_{p}(\alpha)\,\Gamma_{p}(\gamma-\alpha)\,\Gamma_{p}(\beta-\alpha)\,\Gamma_{p}(\beta+\gamma-2\alpha)}{\Gamma_{p}(2\alpha)\,\Gamma_{p}(\beta-2\alpha)\,\Gamma_{p}(\beta+\gamma-\alpha)},$$

$$(3.30)$$

giving the second statement of the theorem.

As in (3.18), the Jacobi-sum values for ${}_{3}\mathfrak{F}_{2}^{(f)}(\alpha, \beta, \gamma; \delta, \varepsilon; 1)$ for α, β, γ lying also in $(1/(q-1)) \mathbb{Z} \cap [0, 1]$ may be obtained by using (3.29), (3.26), (3.6), and Corollary 2.3 to evaluate

$$\lim_{r \to \infty} \frac{\frac{3F_{2} \left(\frac{-2s_{rf}, -m_{rf}, -n_{rf}}{1 + m_{rf} - 2s_{rf}, 1 + n_{rf} - 2s_{rf}}; 1 \right)}{-2s_{(r-1)f}, -m_{(r-1)f}, -m_{(n-1)f}}; 1^{q}}}{\frac{3F_{2} \left(\frac{1 + m_{(r-1)f} - 2s_{(r-1)f}, 1 + n_{(r-1)f} - 2s_{(r-1)f}}{1 + m_{(r-1)f} - 2s_{(r-1)f}}; 1^{q} \right)}}{\left(\frac{m_{rf} + n_{rf} - s_{rf}}{s_{rf}} \right) \left(\frac{m_{rf}}{s_{rf}} \right) \left(\frac{n_{(r-1)f} - s_{(r-1)f}}{s_{(r-1)f}} \right) \left(\frac{m_{(r-1)f}}{2s_{(r-1)f}} \right)}{\left(\frac{m_{(r-1)f} - s_{(r-1)f}}{s_{(r-1)f}} \right) \left(\frac{m_{(r-1)f}}{s_{(r-1)f}} \right) \left(\frac{m_{rf} - s_{rf}}{s_{rf}} \right) \left(\frac{m_{rf}}{2s_{rf}} \right)}}$$

$$= (-1)^{a} \frac{J(\omega_{f}^{-a}, \omega_{f}^{2a-b-c}) J(\omega_{f}^{-a}, \omega_{f}^{a-b})}{J(\omega_{f}^{-a}, \omega_{f}^{2a-b})}. \tag{3.31}$$

Again, the limit of hypergeometric functions given in (3.31) is correct for any α , β , $\gamma \in (1/(q-1)) \mathbb{Z} \cap [0, 1]$ such that $2\alpha \leq \beta$, γ , but the symbol ${}_{3}\mathfrak{F}_{2}^{(f)}$ is not justified for this limit unless $(\alpha, \beta, \gamma) \in T$.

4. APPLICATIONS

In ([4, eq. (6.29)]) Dwork showed that for the Legendre family of elliptic curves

$$E_{\lambda}$$
: $y^2 = x(x-1)(x-\lambda)$ $(\lambda \neq 0, 1),$ (4.1)

if $\lambda^q = \lambda$ and the reduction of E_λ to \mathbb{F}_q is non-supersingular then the reciprocal unit root $\alpha(\lambda)$ of the zeta-function of the reduced curve E_λ/\mathbb{F}_q is given by

$$\alpha(\lambda) = (-1)^{(q-1)/2} {}_{2} \mathfrak{F}_{1}^{(f)} \left(\frac{\frac{1}{2}, \frac{1}{2}}{1}; \lambda \right). \tag{4.2}$$

In [15] we noted that if $p \equiv 1 \pmod{4}$ and q = p then $-1 \in \mathfrak{D}$, and the value

$$\alpha(-1) = (-1)^{(p-1)/4} J(\omega_1^{(1-p)/4}, \omega_1^{(1-p)/4})$$
(4.3)

follows from (4.2) and our p-adic analogue of Kummer's theorem. However, if $p \equiv -1 \pmod 4$ then the curve E_{-1} has supersingular reduction mod p. Here we show that in this case the roots of the zeta function of E_{-1} over \mathbb{F}_{p^2} are also given by a limit of hypergeometric functions as in (3.18). The symbol ${}_2\mathfrak{F}_1^{(2)}(\frac{1}{2},\frac{1}{2};1;-1)$ is not justified for this limit, however, because it is not the specialization to -1 of a uniform limit on that residue class

This result is obtained from Corollary 2.3 and a theorem of Stienstra [12] as follows: Taking the double cover $U^2 = T_0 T_1^3 - T_0^3 T_1 = T_0 T_1 (T_0 - T_1)(T_0 + T_1)$ of \mathbb{P}^1 as a model of E_{-1} and applying ([12, Theorem 0.1), one obtains the congruences

$$\beta_{mq'} + a\beta_{mq'-1} + q\beta_{mq'-2} \equiv 0 \pmod{pq'-1} \mathbb{Z}, \tag{4.4}$$

where

$$\beta_n = \begin{cases} (-1)^m \binom{2m}{m} = \sum_{k=0}^{2m} \binom{2m}{k}^2 (-1)^k, & \text{if } n = 2m+1, \\ 0, & \text{otherwise,} \end{cases}$$
(4.5)

and where $P_1(T) = 1 + aT + qT^2$ is the numerator of the zeta function of E_{-1} over \mathbb{F}_q . When $p \equiv -1 \pmod{4}$ and $q = p^2$, using the first expression $\beta_{4m+1} = (-1)^m \binom{2m}{m}$ and Corollary 2.3 yields

$$\frac{\beta_{q'}}{\beta_{q'-1}} \equiv J(\omega_2^{(1-q)/4}, \omega_2^{(1-q)/4}) \pmod{q^r \mathbb{Z}_p},\tag{4.6}$$

since this Jacobi sum has p-adic ordinal e=1. Therefore the ratios $\beta_{q'}/\beta_{q'^{-1}}$ converge in \mathbb{Z}_p , and we also find by induction in (4.6) that ord $\beta_{q'}=r$. Setting m=1 and dividing the congruence (4.4) by $\beta_{q'}$ then yields

$$1 + a \frac{\beta_{q^{r-1}}}{\beta_{q^r}} + q \frac{\beta_{q^{r-2}}}{\beta_{q^{r-1}}} \frac{\beta_{q^{r-1}}}{\beta_{q^r}} \equiv 0 \pmod{p^{r-1} \mathbb{Z}_p}, \tag{4.7}$$

and then letting $r \to \infty$ in (4.7) shows that the ratios $\beta_{q^{r-1}}/\beta_{q^r}$ in fact converge to a root of $P_1(T)$. We note that in general congruences such as (4.4) do not imply convergence of these ratios in the supersingular case (ord a > 0); in particular when $p \equiv -1 \pmod{4}$ and q = p this is evident from (4.5). However, having some other means (such as (4.6)) of establishing convergence, it is then easy to see that the limit is a root of the associated polynomial.

One may also check directly via character sums that the Jacobi sum in (4.6) is in fact the reciprocal root of the zeta function of $y^2 = x^3 - x$ over \mathbb{F}_{p^2} ; that is, $P(T) = (1 - \alpha T)^2$ with $\alpha = J(\omega_2^{(1-q)/4}, \omega_1^{(1-q)/4})$. Indeed, one easily obtains $J(\omega_2^{(1-q)/4}, \omega_2^{(1-q)/4}) = -p$ as in (2.17); since the reciprocal

roots of the zeta function over \mathbb{F}_p are $\pm \sqrt{-p}$, the reciprocal roots over \mathbb{F}_q are both -p. Using the second expression $\beta_{4m+1} = \sum_{k=0}^{2m} {2m \choose k}^2 (-1)^k$ in (4.5) we see that the limit of hypergeometric functions in (3.18) exists when $\alpha = \frac{1}{4}$, $\beta = \frac{1}{2}$, $\gamma = 1$, and f = 2; and (4.6), (4.7) show that the limit is indeed a reciprocal root of the zeta function of E_{-1} , although the root is not a unit root.

One should not expect to obtain the supersingular roots over \mathbb{F}_p is this manner, because they have p-adic ordinal $\frac{1}{2}$ and thus do not lie in \mathbb{Z}_p . As noted in ([15, pp. 239, 245]), one may view the Jacobi-sum expression for the limit of hypergeometric functions as arising from the complex multiplication $(x, y) \mapsto (-x, \sqrt{-1}y)$ on E_{-1} by the fourth roots of unity; this map commutes with the Frobenius $(x, y) \mapsto (x^q, y^q)$ if and only if $q \equiv 1 \pmod{4}$, showing why f = 2 is necessary to make this argument when $p \equiv -1 \pmod{4}$; but in view of ([4, eq. (6.28)]) does not explain why the value is a root of the zeta function, because the limit is not the specialization of a uniform limit.

We conclude with an application to the study of the Apéry numbers. In ([15, Corollary 4.2(iii)]) we proved that

$$\beta_{2, p} = (-1)^{(p-1)/2} {}_{3}\mathfrak{F}_{2}\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1}; -1\right), \tag{4.8}$$

where $\beta_{2,p}$ is the reciprocal of the p-adic unit root of the polynomial $P_{2,p}(T)=1-(4a^2-2p)\ T+p^2T^2$, whenever $p=a^2+2b^2$ with $a,b\in\mathbb{Z}$; this polynomial is the pth Hecke polynomial associated to a certain cusp from the weight 3 and level 8. The proof was obtained from formal-group congruences associated to the Apéry sequence

$$d(n) = \sum_{k=0}^{n} {n \choose k}^{3} = {}_{3}F_{2}\left(-n, -n, -n \atop 1, 1; -1\right)$$
 (4.9)

which were discovered by Stienstra and Beukers [11], and which exhibit $\beta_{2, p}$ as the reciprocal of the *p*-adic unit root of the zeta function of a certain K3-surface. Here we express $\beta_{2, p}$ in terms of Jacobi sums over \mathbb{F}_p and over \mathbb{F}_{p^2} using a classical hypergeometric identity and Theorem 3.1.

The value of the hypergeometric function in (4.8) may be obtained by applying the well-known formula

$$_{3}F_{2}\left(\frac{2\alpha, \alpha+\beta, 2\beta}{\alpha+\beta+\frac{1}{2}, 2\alpha+2\beta}; x\right) = {}_{2}F_{1}\left(\frac{\alpha, \beta}{\alpha+\beta+\frac{1}{2}}; x\right)^{2}$$
 (4.10)

of Clausen ([1, p. 185]) with $\alpha = \beta = \frac{1}{4}$. When $p \equiv 1 \pmod{8}$ we have $\frac{1}{4}' = \frac{1}{4}$, and so f = 1 suffices, while if $p \equiv 3 \pmod{8}$ we have $\frac{1}{4}' = \frac{3}{4}$ and $\frac{3}{4}' = \frac{1}{4}$, so we take f = 2 in that case. Since $\frac{1}{2}' = \frac{1}{2}$ in either case, we have

143

$${}_{3}\mathfrak{F}_{2}\left(\frac{\frac{1}{2},\frac{1}{2},\frac{1}{2}}{1,1};-1\right)^{f} = {}_{3}\mathfrak{F}_{2}^{(f)}\left(\frac{\frac{1}{2},\frac{1}{2},\frac{1}{2}}{1,1};-1\right)$$

$$= {}_{2}\mathfrak{F}_{1}^{(f)}\left(\frac{\frac{1}{4},\frac{1}{4}}{1};-1\right)^{2}$$

$$= J(\omega_{f}^{(1-q)/8},\omega_{f}^{(1-q)/8})^{2}. \tag{4.11}$$

When $p \equiv 1 \pmod{8}$ this yields

$$\beta_{2,p} = J(\omega_1^{(1-p)/8}, \omega_1^{(1-p)/8})^2,$$
 (4.12)

while for $p \equiv 3 \pmod{8}$ we get

$$\beta_{2, p} = \varepsilon \cdot J(\omega_2^{(1-p^2)/8}, \omega_2^{(1-p^2)/8})$$
 (4.13)

where $\varepsilon = \pm 1$.

The value in (4.12) is readily seen to be consistent with the result of Berndt and Evans ([2, Corollary 3.13]). In like fashion, the value $\varepsilon = -1$ in (4.13) may be determined by comparison with ([3, Theorem 4.6]).

One may also determine a Jacobi sum formula for the *p*-adic integer $\beta_{3, p}$ appearing in ([15, Corollary 4.2(iv)]) indirectly via (4.10) and the theory of elliptic curves. However, this question appears to remain open for the *p*-adic integer α_p in ([15, Corollary 4.2(v)]).

REFERENCES

- H. BATEMAN, "Higher Transcendental Functions" (A. Erdélyi, Ed.), Vol. 1, McGraw-Hill, New York, 1953.
- B. BERNDT AND R. EVANS, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), 349-398.
- B. BERNDT AND R. EVANS, Sums of Gauss, Eisenstein, Jacobi, Jacobsthal and Brewer, Illinois J. Math. 23 (1979), 374–437.
- 4. B. DWORK, p-adic cycles, Publ. Math. IHES 37 (1969), 27-115.
- B. DWORK, On p-adic differential equations IV, Ann. Sci. École Normale Sup. 6 (1973), 295-315.
- B. GROSS AND N. KOBLITZ, Gauss sums and the p-adic Γ-function, Ann. Math. 109 (1979), 569-581.
- 7. N. Koblitz, The hypergeometric function with p-adic parameters, Proc. Queens Number Theory Conf. (1979), 319–328.
- 8. P. Landweber, Supersingular elliptic curves and congruences for Legendre polynomials, in "Elliptic Curves and Modular Forms in Algebraic Topology," pp. 69–93, Lecture Notes in Math., Vol. 1326, Springer-Verlag, New York, 1988.
- 9. P. Monsky, "p-adic Analysis and Zeta Functions," Kyoto University Lectures in Mathematics, Kinokuniya, Tokyo, 1970.
- L. J. SLATER, "Generalized Hypergeometric Functions," Cambridge Univ. Press, Cambridge, UK 1966.

- 11. J. STIENSTRA AND F. BEUKERS, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann. 271 (1985), 269-304.
- 12. J. STEINSTRA, Formal groups and congruences for L-functions, Amer. J. Math. 109 (1987), 1111-1127.
- 13. L. WASHINGTON, "Introduction to Cyclotomic Fields," Springer-Verlag, New York, 1982.
- 14. A. Weil, Numbers of solutions of equations in finite fields, *Bull. Amer. Math. Soc.* 55 (1949), 497–508.
- P. T. YOUNG, Apéry numbers, Jacobi sums, and special values of generalized p-adic hypergeometric functions, J. Number Theory 41 (1992), 231-255.