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On the Homology Theory of Modules.

By Nobuo YoNEDA.

§ 0. Introduction.

Let 4 be a ring with unit. In generalizing the notions of torsion products
and extension groups of abelian groups, Cartan and Eilenberg have defined a set
of abelian groups Tor,*(A, B), Exta\*(A4, B)(n=0,1,.--.) for any two 4-modules
A, B. These groups are in a deep connection with various homology and
cohomology theories of groups, of associative algebras, of Lie algebras, etc.®
The present paper attempts a general study of the groups Tor.*(4, B) and
Exta (A, B).

The definition of these groups can be sketched as follows. Take a A-free
module X, with an epimorphism®» X;—A4,, of which we denote the kernel with
A;. Take next a A-free module X; with an epimorphism Xi—A:, of which the
kernel is denoted by A,. Repeating this, we obtain a sequence Xy of A-free
modules and A-homomorphisms:

(X e Xy X1 - Xi— X0,
where X,—X,_; is defined as X,—A,—Xn-1. This sequence, called a free re-
solution of A, is acyclic with respect to the augmentation X,—A—0. Tor,*(A4,
B), the n-th torsion product of A and B, is then defined as the #n-th homology
group of the lower sequence X,®aB, and Ext,"(4, B), the n-th extension group
of B by A, as the n-th cohomology group of the upper sequence Homa(Xy, B).
Both are independent of the special choice of the free resolution X, of A.

These groups Tor,*(A, B), Ext,*(A, B)—unless any confusion is likely to
occur we shall omit the letter A4 in the following— may be considered as
giving homology and cohomology theories of module A with coeflicient module
B, because of the following properties.

1. Any homomorphism f: A—A’ induces homomorphisms
[+ Toru(A, B)»Tor,(A’, B) (n=0,1,---:)
and
*: Ext®(4’, B)-»Ext"(4, B) = (n=0,1,---+),
satisfying:

I-1) 7., £* are identities if 7 is the identity mapping.

I-2) (gof1e=9x"S x: (9o f)YF=Ff*og*

I. If (A) 0-A5A5A50 is exact, then homomorphisms

8x: Tora(4, By»Torna(A, B) (n=1,2, ----),
8*: Ext"(A, B)-Ext**}(4, B) (n=0,1, :+-)

1) H. Cartan-S. Eilenberg, Satellites des foncteurs de module; H. Cartan-S. Eilen-
berg, Homological algebra; to appear soon. This book will be referred to as [C-E] in
the sequel. H. Cartan, Seminaire de topologie algébrique, 1950-51.

2) By an epimorphism we mean a ¢ homomorphism onto’; ¢isomorphism into’ will
be called a monomorphism; and the word isomorphism will be used to mean an ‘isomor-

phism onto’.
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are defined so that
II-1) the sequences

e+« e>Tora(A, B)STorn(A, B)%Toru(4, By3Torus(4A, B)
—Torn-1(A, B)>---->Tor(A, B)-Tor, (A, B)—Tory(4, B)—0,
0—Ext’(4, B)—Ext%(A, B)—Ext"(A, B)—Ext'(4, B)—>---+
—Ext(A, ByDExt*(A, B)SExt (A, B)SExt" (4, B)—--+
are both exact. These exact sequences will be denoted by Tor*(A, B) and by
Exta(A, B) respectively.
II-2) Let two sequences

(A) 0—A—>A— A0, (A7) 0—A'—A'— A0
be exact, and let f: A—A’ be a homomorphism of the sequence A into
A’,i.e., a triple of homomorphisms f:A—A4’, f:A—A’, f:A—A’ such that the
diagram
0—A > A— A0
Loy
0—A— A'— A'—0
is commutative. Then fy={fx, fi S+ and Fr={f*, f* f*} give homomor-
phisms of the exact sequences
f«: Tor®A, B)»Tort(A’, B),
F*: Exta(A’, B)—Exta(A, B).
III. Tor.®A4, B)=Exty\*(4, B)=0 (n>0), if A is A-free.
IV. Tor™A, B)=AQ®aB, ExtA%A, B)=Homx(4, B), and for f:A—A’, we

have fx=sfQ®® on Tor,"(4, B) and f*=Hom(f, /) on Ext,(4’, B), where ¢
is the identity mapping of B.

These four properties are characteristic for Tor® and Exta. ]
If we consider the second entry, the coefficient module in Tor®(4, B) or in
Exta(A, B) as variable, then we have the following analogues of I~IV.
1. Any homomorphism f:B—B’ induces homomorphisms
«f: Tora(4, By»Toru(4, B’) (n=0,1, ----),
*fi Ext(A, By-Ext(4,B) (n=0,1, --+-).
These satisfy
I’-1) 42, * are identities if ¢ is the identity mapping.
U-2) WgeNy=ug°xf, *gof)=*g*f.
. If (B) 0-BLBAB-0 is exact, then homomorphisms
01 Toru(A, By»Torn1(4, B) (n=1,2, .--+),

*8: Ext™(4, B)-Ext"*(4, B) (#=0,1, ----)
are defined so as to satisfy:
II’-1) The sequences

-+« «oTorn(4, By$Tora(A, By Tora(A, BYSTors-1(4, B)

3) See S. Eilenberg-N. E. Steenrod, Foundations of algebraic topology, pp. 141,
147. This book will be referred to as [E-S] in the sequel.
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—Torn_1(4, B)—>- - -—»Tory(A, B)—Tory(A, B)—Tor,(A, B)—0,
0-Ext(A4, B)—»Ext%(A, B)—Ext(A, B)»Ext'(A, B)y—----
—Ext™(A, BYSExt(A, BYSExtv(A4, B)SExtr+1(A4, B)—- -
are both exact. These exact sequences will be denoted by Tor®(4, B) and by
Exta(A, B) respectively.
II'2) Let f: B—B be a homomorphism of exact sequences:
(B) 0—»B —B —»B —0
LFf A
(B  0-B'—B'—B'—0.
Then f induces homomorphism of the exact homology and cohomology sequences
+«f: Tor’(A, B)— Tor*A, B’),
*f: Exta(4, B)— Extp(A, B).

I, Tor.2A, B)=0(>0) if B is A-free, and Extx?(4, B)=0n>0) if B is
A-injective®,

IV'. Tor,NA4, By=ARB, Ext (4, B)=Homa(4, B), and for f:B—B’, we
have .f=¢®f on Tory™4, B), *f=Hom (, ) on Ext,’(4, B), where 7 is the
identity mapping of A.

These properties I’~IV’ are again characteristic for Tor® and Ext,. Also
we have
. IV. Homomorphisms f, f* in I commute with the homomorphisms +f, *f
in I,

Now, it happens in various cohomology theories that 1-cohomology groups
have a close relation with extension theories. In the present cohomology theory,
the elements of our 1-cohomology group Ext,!(4, B) are in a 1—1 correspond-
ence with the equivalence classes of module extensions of B by A. Thereby,
two extensions ‘

(E) 0-B—-E—>A-0, (E)y 0»B—-E -A—-0
are called equivalent if there is an isomorphism Z—E’ such that
0—-B-E A0
M1 1 (=: identity mapping)
0-»B-E'—A-0
is commutative ([C~E]). In this paper we shall define a certain equivalence
relation among the set of all exact sequences of the form
(E) 0B Ep1—>-+-->E—>5A—>0
(Ey, +-+-, Ea_1: arbitrary 4-modules)
(n: any fixed integer >1),
which we call n-fold extensions of B by A and prove that there is a certain 1-1
correspondence between the equivalence classes of n-fold extensions of B by A
and the elements of the group Ext ?(A4, B). This will be done in §3.
In §4 we shall introduce a bilinear multiplication
Exta?(A, BYXExt %(B, C)— Exta?*(4, O),
and give some results concerning this including the following theorem: The

4) See for definition §2 of this paper.
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coboundary homomorphism BN

a

0*: Exta"(A, B)—Exta"*Y(A4, B) =01, --+°) f
with respect to the exact sequence (A) 0—A—A—A—0 coincides with the left

multiplication by the element in Exts)(A, A) represented by the extension A,
while the coboundary homomorphism

*3: Exta®(A4, B)—Exta"*Y(A4, B)  (1=0,1, -+--) .
with respect to the exact sequence (B) 0—~B—>B—B—0 coincides with the right

multiplication by the element in Ext !B, B) represented by the extension B.

Also some relations between this cohomology theory and the cohomology
theory of groups will be given in that section.

Professor S. Eilenberg has kindly communicated to me some of the resu}ts
stated above on Tor® and Ext,, and engaged me in this investigation, for which
I wish to express my hearty thanks to him. I publish here however the com-
plete proof of all the results, as no details about this homology theory seem to
have been hitherto published. I wish to thank also Professor Chevalley, who
induced me to work on the subject of §4. .

In what follows, we shall use a certain way of denomination of ‘mappmgs
appearing in diagrams, different from the usual one, as we shall explain In §1'
We hope that this way of denomination, as well as the notions of the translation

and the translation category introduced also in §1 facilitates the handling with
the diagrams.

§ 1. Categories and functors of diagrams®.

1. Denomination of mappings in a diagram. Let A, B b(? two ver'ticeS mn
a diagram, and let a mapping of A4 into B be given as A—B m‘ the dlflgram.
Usually such a mapping is denoted by a letter like f; indicated in the diagram

as ALB; and f is considered as a left operator on A. To indicatg this map-
ping, we shall write now AfB or, if there is no fear of confusion, simply AB.
If namely there is only one arrow from A4 to B, we have not to name the map-
ping by a letter like f; it is sufficiently clear to write simply A—B, and name
the mapping AB. If, on the contrary, there are two or more arrows from Ato

1 .
B, then we shall write like A=3B, and denote the mappings with Al1B, A2B.

Mapping AfB, AB, or A12B will ke considered as a right operator on A,
so that (a)AfB=b will mean f(a)=>b in the usual notation. The composite of
several mappings A—B, B-C, and C—D is denoted by AB-.-BC-CD, or more
simply by ABCD. Thus the commutativity of the square diagram

A—B

]l

C—-»D
is written as ABD=ACD,

2. Categories of diagrams. Let & be a category in the sense of [E'S']”-
A diagram D={A, B, ----; AB, ----} consisting of vertices A4, B, ---- which
represent some objects in &, and arrows AB, --.. which represent some map-

6) For definitions of categories and funectors, see [E-S, Chap. IV].
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pings in & is called a diagram in %. In the widest sense any subcategoryuolf‘ s
&’is a diagram in ¢’ but we shall confine ourselves to diagrams which are con-' .
nected as 1-dimensional complexes of vertices and edges. Two diagrams D= "
{A,B,--+-;AB, ---.}, D’={A’, B, ---+; A’B’, -.-.} are said to be isomorphic
if there is a 1-1 correspondence between I and DI, vertex-to-vertex, arrow-to
arrow, such that, if A’B’e€ I}’ corresponds to ABe D, then A’ corresponds to A
and B’ to B.
Let D={A,B, ---+; AB -..-} and D'={A", B’, --++; A’B’, ----} be isomor- |
phic diagrams such that A corresponds to A, B to B’, etc. A set of mappings -
f={AA’, BB’, ----} in %’ of which the set of domains coincides with the set
of objects in D is called a #raenslation of D into I)' (notation f: D—D’) if each
square of the form
A—-B
1 ! (A,BeD, A, B'eD)
A'— B’

is commutative.

Let D be a diagram in &7 and D={D, D', D"/, ----} be a set of diagrams
in % isomorphic to . For D’, D' €D, there may be a translation from D’ to
D”. D together with all such possible transiations forms a category ED, which
will be called the #ranslation category over D.

Throughout this papper, 4 will denote a ring with unit, not necessarily com-
mutative, and unless otherwise stated, a 4-module will mean a unitary left A-
module. Following [E-S] we denote the category of A-modules and 4-homomor-
phisms by f//}\ (Z will always denote the ring of rational integers, and we write
“« for %Zz). Diagrams in “a are also called diagrams over A.

A translation f= {AA’, BB, ----} of D={A,B, ---+; AB, ----} into D'=
{A, B, ---+ s A’B’, ----} will be called epimorphic, monomorphic, or isomor-
Dhic if every one of AA’, BB’, --++ is an epimorphism, monomorphism, or an
isomorphism®. In what follows we shall often consider diagrams in the translation

category ® over ®, D being a set of diagrams in % isomorphic to a certain

diagram D, as
...—;D__)D'__)-...

I
oo Dy— DY —

In such diagrams each vertex represents a diagram in &Za isomorphic to D, and
each arrow a translation. We use 0 in such a diagram to mean a trivial dia-
gram consisting of 0’s and 0-homomorphisms isomorphic to D. A sequence

( X ) DLD"""’D”
of translations f={AA4’, BB, ----}, g={A’A”, B’'B", ----} is said to be exact

if the sequences A—A’—A", B»B’—B’’, ---- are exact. (*) is called a 0-sequ-
ence if A»A’—A”, B—B’—B”, ---- are O-sequences (i.e., AA’A"”"=0, BB’B"”

=0, -+-+).
Let G(A) be the set of all exact sequences over A of the form

. (A) 0—A—A—A-0.
The translation category G(4) over G(A) will play an important role in the
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following. .

We shall denote with 3(4) the set of all ‘one-arrow diagrams’, namely dia-
grams over .4 isomorphic to A—B; and with G() the set of ‘two-arrox.v 0-se-
quences’, namely diagrams over A isomorphic to A-—B—C, :4, B, C being A
modules and ABC being 0. The translation categories (), €(4) will also play
certain roles in the sequel

3. Functors on translation categories of diagrams. We note here. SOH:C
fundamental lemmas giving functors on translation categories of diagrams in Cne
In what follows we shall identify two diagrams D, D’ over A if there exists an
isomorphic translation D—D’.

Lemma 11, Zet

(1) No>A->Q—(

|

v

B
be a diagram over A such that the sequence N-A-Q-0 is cxact and NAB=0.
Then there is a unique mapping QB¢ 773
(1) &¢—-B
satisfying AQB=AB. Any translation in the translation category ovcf the sct
Du(4) of all diagram in 7y of the form (1) induces a translation in B(4), and

thus the assignment (1)==(V) defines a functor Du(A)==>B(d).

Proof. The unique existence of @B is obvious. We have only to prove
that if

o7y

is a commutative diagram representing a translation in (), and if @B, @B’
are so defined that AQB=AB, A'Q’B’=A’B’, then we have
QBB =QQ'B’.
Since AQ is an epimorphism, it is sufficient to show AQBB’'=AQ@ B’, which
is done as
AQBB’ =ABB' =AA'B'=AA'Q B =AQQ B’.
In a similar way we can prove also
Lemma 1.2, ZLetf

~ B
l
(2) 0>No>A—Q

be a diagram over A such that the sequence 0-N-A-Q is cxact and BAQ=0.
Then there is a unique mapping BN

(2) BN
satisfying BNA=BA. The assignment (y=(2) defines a functor of the trans-

lation category over the set of all diagrams in “in of the form (2).
Lemma 13. From a ‘one-arrow diagram’ -

(3) Al B
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over A we obtain in the obvious way, a commultative diagram

0

I
00— N—A4—->M—0

(Ker /) Sidm f)
@) \‘B

@ (Coker 1)

0

in which the sequences 0-N-A-M-0, 0-M-B-Q-0 are in G(A) (i.e., exact). Any
translation of (3)
atB
(3 U
aLp
can be extended uniquely to a translation of (3)
o

o-->1v_.>A->M-> 0

’?
@) 0—>N—->A'—->M’——»0

e
and in this way the assignment (3) == (3’) defines a functor from the translation
category B(A) into the translation category over the set of all diagrams in Ca
of the form (3).

Proof. We have only to show the unique existence of mappings NN,
MM, QQ such that NN'A’=NAA’, AMM =AA’M’', MM'B'=MBB’, and
BRE'=BB’Q. Now since NAA’-A’'B’=NABB’=0, and since the sequence
0-N-A’-B’ is exact, there exists uniquely a mapping NN'e (f/ﬁA such that
NN -N'A=NAA’, i.e., NN'A’=NAA’ (Lemma 1.2). NAA’B’=0 implies also
NAA'M’=0. Therefore by Lemma 1.1 there exists uniquely a mapping
MM € ZZa such that AMM =AA’M’. To prove MM’'B’=MBB’ for this MM,
it is suﬁicxent to show AMM’ B’=AMBB’, which is done as follows

AMMB =AA'M B =AA'B'=ABB’'=AMBEB’.
Finally we have MBB'('=MM B’¢/=0. Thus by Lemma 1.1 there is a unique
mapping Q@ satisfying BQQ' =BB’¢’. This completes the proof of the lemma.

In short, Lemma 1.3 states that Ker, Im, and Coker are functors from %(A)
into %Za. Therefore we may speak of kernels, images and cokernels of trans-
lations.

Let
(4) A-B->C
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be a 0-sequence over .. We call the factor module KerBC/Im AB hf)mology
Jactor of the sequence A-B-C and denote it by H(A-B-C). Since the assignment

(4) == H(A-B-C) can be composed by the functors Ker, Im, and Coker, we have
clearly

Lemma 14. The assignment (4) = H(A'B-C) defines a functor from G(4)
into Z7.

In the sequel we shall denote this functor by H.
Lemma 15. In the commutative diagram

Bo-*) Co"'* 0
!
A~ B> G- 0
(8) U

0—- A,—> B,— C,
l -

0— ;13"" By -

let By-By-B,, C-Ci-Cy, Ay-Ay-As, By-By-Bs belong to G(A), and let Bo-Co'0, Ar-Br
Ci-0, 0-As-B,-C;, 0-Ay-B; be exact. Then a mapping

(&) 4: H(Cy-Ci-Cy) — H(Ar-Ay-43)
in f;ﬁ is induced in such a way that the diagram

(B,C)
Ker BiC,C; — Ker GG, —H(Co-Ci-Cy)
(8 L aep 14
Ker B;C,\ Ker B,B;=<Ker A,A;—H(A,;-As-Aj)

is commutative. The assignment (8) == (8') defines a functor from the translation
category over the set of all diagrams in & of the form (8) into B,

Proof. The kernel of the eplmorphlsm

87 Ker B,C\C, — H(Cy-Cy-C,) — 0
is the inverse image of Im CyC;=Im B,C,C,=Im B,B,C; under the map BiC,, i-e.
Im B,B,UKer B\Ci=Im B,B,>Im A,B;,. But we have (Im B,B,UIm A;B)B:B:
=(Im A:B,)B,B,=Im A;B,B,=Im A,A,B,, which is in Ker B,C;(\Ker B,B; and
vanishes if carried over to H(A,-A,-A4;). Thus the kernel of (8’) vanishes if
mapped into H(A;-A;-A;). Therefore there exists a unique mapping 4 such that
(&) is commutative. Obviously the assignment (8) = (8"") defines a functor,
and so aiso does the assignment &) = &).

4. Lemma [ and Lemma . The following two lemmas are of funda~
mental importance in the diagram system.

Lemma B. Let ALB5Clea sequence of translations of 0-sequences in G(a):

A->B-C
Ay — By — G,y
! ! 1)
(g) .A]_'_)Bl")cl
i ol
Az">Bz""cz

If, in (9), B,C, is an epimorphism and A;-By-C, is exact, and if A.B; is a niono-
morphism, then the induced sequence

. H(f) H(g)
(9) H(AyAr-A,) > H(By-B;-B,) — H(C,-Cy-Cs)
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s exact. .
Proof. It is obvious that (9’) is a 0-sequence. Consider now an element &,

€Ker B;B, such that (b,)B,C,=c; is in Im G,C;. Since B,C, is an epimorphism,

there is an element b, € B, such that ()B,CoCi=¢;, and we have ‘
(b1—=(00)BoB1)B,Cy= (0:)B,C; —(bo) By B, Cy =¢1—(0o) BoCyCy =0.

Therefore, from the exactness of A4,-B;-C, follows the existence of an element

a1 € Ay such that (a)A,Bi=b,—(b,)B,B;, and we have
(al)AxAsz=(01)A131B2=(Z’1-(bo)Bon)BszZ(bo)BoBle=0-

Thus, by assumption on A.,B., a; is in Ker 4,4, and represents an element in
H(AyA;-4;) which is mapped onto the element in H(B,-B;-B.) represented by 5.
This proves the exactness of (9).

Lemma gff. TTie sequence of homology factors

H(g) 4 H({f)
(10)  H(By-By-B;) — H(CyC,-Cy) — H(A1-Az-As) — H(B,-By-By)

oblained from the diagram (8) in Lemma 1.5 is exact, where f, g denote the
translations

Al '_’Bl BO—_)CD
! d 1 l
- f: /‘12'“’]'32 g IBI—,ICI
AgH-VB3 VBz*bz

in (8).

Proof. Let 0;eKer BB, represent f€ H(By-Bi-B,). Then H{g) image r of
B is represented by (5;)B,C,. From the commutativity of (8/) follows then that
4r=0. Conversely, let ¢; € Ker C,C., represent 7e H(Cy,-C,-C,) such that dr=0.
Then there exist a;€ Ay, b€ B; such that (5)B,Ci=c: and (a,)A;4;B,=(b,)B,B,.
For the element b,—(a,)A,B,€ B,, we have now

(bh—(@)A1B1) BB, = (b1)B: B.—(a:) A, B, B,
=(b1)B1B:~—(a1)A:14:B,=0
and also

(b —(a,)A1B,)B,Ci= (0,)B,Ci—(a) A B,Cy=(b)B:Ci=c;. This shows that 7 is
the H(g) image of the element in H(B,-B,-B,) represented by (b;—(a)A,B;) in Ker
B,\B,, and the exactness of H{(g)-4 in (10) is proved.

Now, from the commutativity of (8"") follows that H(f)-4=0. Therefore it
remains only to prove that Im dDKer H(f). Let a,€ Ker A,A; represent an ele-
ment « in H(A;-A,-As) which is annihilated by H{(f). Then there is an element
b e B; such that (6,)BB,=(a,)A.B,. For this b we have

(b)) B1GLCy=(0)B1 B, C,=(a2)A.B;C:=0. Thus ()BiCi=c; represents an ele-
ment in H(Cy-C-C,) which is mapped by 4 onto @. This completes the proof.

Corollary. Let

(A) ""’_)A-l'_’Ao""Al'—’Az—’""
(B) ....._.)B_l—;Bo—-)Bl-—-)Bz-—-)....
(C) ""’—‘)C—I’—)CO—)CO—)Cz—_)""

be infinite 0-sequences over A, and suppose that an exact sequence of translations
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()—)A-—)B—-) C—‘)()

j i i
O—JIO—»BQ—»C.()-W
i ! d
0-——)A1 ’_*Bl — G —0
! l !

- v

is given. Then the infinite sequence

A H(A '_i.'Ao‘A1) - H(B_l‘Bo'Bl) hand H(C—I'CO'CI)
4
- H(Ao'ArAz) — H(By-B:i-B;) — -
is exact.

S0
Corollary. If cither tto of the above sequences A, B, C are exact, then
also is the rest.

Remark. Obviously both assignments (9) == (9), and (8) = (10) define
functors. . i [BS]

5. Tensor products and groups of homomorphisms. As is stated in i )
tensor product @adAor A®,) for a fixed Ae ¥7, is a covariant functor Ga—
@ a- Therefore we may consider @aA(or A®A) also as a functor of dxagrams
over A. Namely, if D is a diagram over 4, then D@ A(or AQAD) is a dlagrarg
over A which is isomorphic to 1. It should be noted that, for A€E(4), A®x} |
is not necessarily in G(4). As will be seen in §2, 4-modules P of a specia
class called A-projective modules have the property that the functor ®aPlor P a)

is exact, i.e. maps €(A4) info G(4). We shall here note the following
Lemma 1.6. Let

J 3
(11) 0->A—-B—-C—0
be an exact sequence over A, and let Ge . Then the induced sequence

, B

(11 ARG D BRAG S C®AG — 0
is also exact. If (11) is direct, i.e., if Im f is a direct summand of B, then the
sequence

arn 0— ARG — BRAG — CRAG — 0
is exact and direct. (1) is exact whenever G is A-free.

Proof of this lemma is given in [E-S, p. 142, Lemma 9.8] except for the last
statement. The last statement is obvious in case where G has a finite base.
It is easily seen that the proof for the general case can be reduced to this
special case. So we omit the proof of this lemma.

Given two A-modules A,B, denote by Homa(A, B) the additive group of all
homomorphisms

¢. A—-B
with addition ¢, ¢, defined by

(Pr+e2)a)=pi(a)+ ¢,(a).

If further 4 is commutative, then HomA(A B) has the structure of a A- module
with the product A¢ defined by

(2¢) @)= Xe(a)=¢(la).
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For a A-homomorphism A — A’ written as AA’ we denote by (4A")% the .
homomorphism
Homa(A’, B) —» Homa(A, B)
induced by AA’, while we denote by (BB’); the homomorphism
Hom(A4, B) —» Homu(A4, B’)
induced by BB’: B—B’. We shall consider (AA’)* as a left operator and (BB')

as a right operator.
Homa( , )is a functor ©Wax Ca—>7Z (T if A is commutative) contra-

variant in the first argument and covarlant in the second. Similarly to the case

of tensor products we have the following
Lemma 1.7. ZLet

(12) 0-A—->B—->C—0
be an exact sequence over A. Then the induced sequences
(4B) 4n),
(129 0 — Hom (G, A) — Hom(G, B) » Homx(G, C),
eyt canyf
(12%) 0 — Homa(C, G) — Homu(B, G) — Homu(A4; G)
are exact. If (12) is dircct, then the sequences
(12:3) 0 — Hom (G, A) » Homy(G, B) —» Homx(G, C) — 0
(12%) 0 — Homx(C, G) - Hom(B, G) — Homy(A4, G) -0

are exact and direct. (12:3) is exact whenever G is A-free.

This lemma follows from [E-S, p. 148, Lemma 10.8] (The commutativity of
A4 is not needed in the proof of this lemma).

Those A-modules G for which every sequence (12#) is exact form a special
class of A-modules called A-injective modules. Those A-modules G for which
every sequence (12s) is exact, form another special class of A-modules called
A-projective modules. These special classes of A-modules will be treated in the
next section.

§ 2. Projective modules and injective modules.

1. Definitions. A .i-module P is called A-projective if every diagram
P
l
B—->C—0
over A with exact B-C-0 is supplemented by a A-homomorphism PD to a com-

mutative diagram
P

/
g
B—-C—0.
A A-module @ is called A-injective if every diagram

0-A—-B

|
v

Q
over A4 with exact 0-A-B is supplemented by a A-homomorphism B@ to a com-
mutative diagram
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0—-A-B

l /
I
Q

Clearly a A-module G is A-projective (d-injective) if and only if (12:¢) ((12%%))
is always exact.

2. A-projective modules. It is obvious that every A-free module is A4-pro-
jective. Since any J4-module can be represented as a factor module of a A-free
module, we have ~ ~r

Theorem 2.1 An'y‘A-module can be represented as a factor module of a A-
projective module.”

We shall call an exact sequence over A4

(13) . gk 024,-X—A—0
a projective representation of A if X is A-projective. 1f in the exact sequence
over A4

(14) - 0-H->G—-X-0
X is A-projective, then by definition of 4-projectivity there exists XG € “Za such
that XGX is the identity of X. Therefore the exact sequence (14) is direct. In
particular if (14) is a representation of X as a factor module of a A-free module
G, then X is a direct factor of G. This proves that every A-projective module
is a direct factor of some A-free module. Conversely every direct factor of a
A-projective module is A-projective. In fact, let X’ be a direct factor of a A4-

projective module X, and let XX, X’ X be the projection and injection respective-
ly; X' XX’ =identity of X’. Given a diagram

Xl
(15) !
B—-C—0 : :
over 4 with exact B-C-0, supplement this by X, XX’, and X' X to
X
T4
(15" )l(’
v B—-»C—0
Since X is A-projective (15”) can be again supplemented by XB to
il
!
(15" X

4 !

B - C - 0

so that XBC=XX'C, If we define X’B by XB=X XB, then we have X' BC=
X' XBC=X'XX'C=X'C. This shows that (15) is supplemented by X’ B to a com-
mutative diagram, and thus proves our assertion.

Lemma 2L (i) If @ A-projective module is represented as a factor module
of some A-module, then it is a direct factor.

(ii) Any direct factor of a A-projective module is A-projective.

(iii) A A-module is A-projective if and only if it is a direct factor of a A-
free module.

(iv) The direct sum of A-projective modules is A-projective.
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(v) The tensor product of A-projective modules is A-projective.

(vi) The sequence (11") in Lemma 1.6 is exact whenever G is A-projective. .

Proof. We have already proved (i), (ii), and ‘only if’ part of (iii); also ‘if’
part of (iii) is clear from (ii). (iv) and (v) are obvious if ‘A-projective’ is re-
placed by ‘A-free’. So we have them as easy consequences of (iii), if we
represent each summand of the direct sum or each factor of the tensor product
as a direct summand of a A-free module.

To prove (vi) we represent G as a direct summand of a A-free module F to

obtain the translation
0 0 0

! | !

0> AQF — BRAF — CQAF — 0.
In (16) every sequence in a straight line is exact by Lemma 1.6, Therefore
A®AG—B® G must be a monomorphism.

Remark. It is an open question whether the converse of (vi) is true or not.

3. A-injective modules. As an example of an injective module we first note
the Z-module 7" of real numbers mod 1. As analogue of Theorem 2.1. we have

Theorem 2.2. Any A-module can be represenied as a sub-medule of a A-in-
Jective module.

The proof of the theorem requires some preliminaries. Let M be a left .1-
module. The additive group Homx(M, T) of homomorphisms of M into the group
T of real numbers mod 1 can be given the structure of a right 4-module if we
define the multiplication ¢-2 (¢ € Hom (M, T), i€ A) by

. (¢-D(m)=epAm) (meM).
In fact we have only to check ¢-(Au)=(¢-A)-2:
(@ -(A))(m) =@ Apm) = @ (A(un2)) = (¢ - A un) = ((¢ - 2)- 1£)(sn2).

Hom(M, T) taken with this structure will be denoted by M°. If Mis a
right 4-module, then Hom(M, T) has the structure of a left 4-module quite an-
alogously to the above case. This we denote also by M°.

The assignment M —=> M° defines in the obvious manner a contravariant
functor from the category of left .4-modules and their 4-homomorphisms to the
category of right A-modules and their 4-homomorphisms, or a functor in the
opposite direction. This functor is exact, i.e., if :

0-A—->B->C—-0
is exact, then so is the induced sequence
0—-C°—> B°— A° -0,
because T is Z-injective.

We now prove

Lemma 2.2. Any meM can be considered as € M°° in the following man-
ner

m(e)=ep(m) (v e M°).
In this way M is imbedded into M°° as a submodule.

Proof. Clearly M is imbedded into M°° as a subgroup. So it is sufficient
to show that this imbedding commutes with the operation of A4, we may assume
M is a left A-module. Then we have

(A-m)@)=m(e- )= (¢ )(m)= ¢(An)=(Am)¥),
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where 1 is considered as € M°° in the first expression and as €M in the last.
This proves the lemma.
Without any modification we may speak of -projective right modules and
A-injective right A-modules.
Lemma 23. If P is A-projective, then P° is A-injective.
Proof. Assuming P to be a .-projective right .f-module we shall prove
that, for any exact sequence
an _ 0-A—->B—->C—0
over A, the induced sequence
Q7 0 — Homx(C, P°) — Homa(B, P°) - Homa(A4, P°)—0
is exact.
In general, for any left 4-module M and any right A-module N we have
(18) e Hom (M, N°)=Hom (N, M°),
where the isomorphism is obtained by the correspondence
[ 7 (f eHoma(M, N°), f”eHom (N, M°))
defined by
(18" (F(m)Yn)=(f"(n))(m) (meM, ne N). )
Clearly by (18") is obtained the isomorphism of the groups of Z-homomorphisms
Homz(M, N°)=Homz(N, M°).
If feHom(M, N°) is a A-homomorphism, then the corresponding f” is also a
A-homomorphism and vice versa, for we have
F @) (m)=(f (m))(n)=(A-(f(n))),
((f" (@) - DY(m)= 1" (n)(Am)=(f (2m))(n).
This proves (18). )
The isomorphism (18) is natural in the sense that for a 4-homomorphism
n. My — M, inducing #°: M.° — M,°, the diagram
Homa(M,, N°)=Hom (N, M,°)
(19) 2 1 u%
Hom z(M:, N°)==Homa(V, M;°)
is commutative. In fact, let f, e Homa(M,, N°). Then we have
(LR 1) () () = (e £ )y Y(m) = f o(mt ) (n)= f 2 (n)(1ea71)
=pu°(f ) (m1y)=py° £/ (n)(w1).
This shows the commutativity of (19).
Now by (17) is induced the exact sequence
a7 0—-C°—-B°— A° -0,
and for this (17°) the sequence
a7y 0 — Hom (P, C°) — Hom (P, B°) — Hom (P, A°) —0
is exact since P is A-projective. The above consideration shows now that (17”)
is translation-isomorphic to (17°). So the exactness of (17°) is proved.
Now we come to the proof of Theorem 2.2. Let M be an arbitrary left A-

module, M° the derived right 4-module. Represent M° as a factor module of
a A-projective right A-module P as

(20) 0-R—->P—-M°—0,
From (20) we obtain an exact sequence
(20%) 0—M°° — P° - R° —0.

M, being a submodule of M°° by Lemma 2.2, is a submodule of P° which is
A-injective because of Lemma 2.3. This completes the proof of the theorem.
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We shall call an exact sefjuence over A

(21) 0A->X"->A'>0
an injective representation of A4 if X° is A-injective.

To obtain an analogue of Lemma 2.1 we make the following consideration.
If in the exact sequence over A

(22) 0 X—->G—->H-0
X is d-injective then the identity mapping of X can be extended to a f-homo-
morphism GX, Therefore the exact sequence (22) is direct. Also as in the case
of A-projective modules we can prove easily that any direct summand of a 4-
injective module is A-injective.

Now, if we consider 4 as a A-free right module, then A° is a A-injective
left module. And if F is a right A-free module, then the A-injective left module
F? is a direct product of A°’s:

Fe=114°.
A-modules of this type may be classified as the analogue of 4-free modules. We
shall call them A-modules of type 4°. Then it can be seen from the proof of
Theorem 2.2 that every A-module is a submodule of some 4-module of type A°.
Thus we have proved

Lemma 24. (1) If a A-injective module is represented as a submodule of
some A-module, then it is a direct summand.

(ii) Any direct factor of a A-injective module is A-injective.

(iii) A A-module is A-injective if and only if it is a direct summand of some

A-module of type A°.

(iv) The direct product of A-injective modules is A-injective.

Remark. No information has been obtained about the tensor product of A-
injective modules.

4. Lemmas on projective and injective representations.
Lemma 25. Let

(X) 0—A4,->X—>A-0
be a projective representation of A€ G and -
(B) 0->B—->B->B-0

an exact sequence over A. Then any A-homomorphism AB can be extended to a

translation
0. 9] 004, ->X—-A—-0

(23) ! Lol
: (B)y 0—B -»B-B-0.
If (23) is supplemented by AB with ABB=AB, then it can be further supple-
mented by XB with XBB=XB—XAB, and A, XB=A,B.

Proof. Given AB¢ % there is a 4-homomorphism X B such that XAB=
XAB, for, X is A-projective. Since AIXB§=A1XA§=0, existence of A,B is
clear. If we have ABB=AB, then XB—XAB is annihilated by BB. In fact

(XB—XAB)-BB=XBB—XABB=XBB—~XAB=0.
Thus, by Lemma 1.2, there is a A-homomorphism XB satisfying XBB=XB—
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XAB. For this XB we have

(AlXB AB) BB=A,XBB—ABB=A,XB—A,XAB~ ABB

=A,XB—-A,BB=0,
which implies that

ST A, XB=A,B,
and the lemma is proved.
Lemma 2.6. Let

(A) 05A—>A—-A—0
be an exact sequence over A, and
: (Y) 0-»B—->Y->B'—0

an injective representation of Be . Then any A-Tomomorphism AB can be
extended to a translation '

_ 4 0-5A-A-A -0
(24) VoL

() 0—->B->Y—-B'—0.

If (24) is supplemented by AB with AAB=AB, then it can be further supple-
mented by AY with AAY =AY —ABY, and AYB'=AB".

The proof of this lemma is quite similar to that of the precedmg lemma,
and so it is omitted.

Lemma 2.7. Let '

(Xo) 0-4,-X,—-A—-0
be a projective representation of A€ %Z,, and

YY) 0-B->Y'-B'-0
an injective representation of Be “a Then
(1) the two sub-groups

(A1 Xo) Homa(X,, BY), Homa(A,, YO)(Y°BY):

coincide and
(i) we have a natural isomorphism

(25) Homa(A, BY/Homa(A, Y Y'BY)s2<Homa(Ar, B)/(A1Xo) Homa(Xo, B)

Proof. Ad(i): Given X;B'e Homa(X,, BY), there exists XoY°€ “7a such that
XoY°B'=X,B!, for, X, is A-projective. Therefore we have

A X B= A, X, Y°B e Hom (44, Y‘))(YOBI):(
Conversely, let A;Y"e Homa(A4,, ¥°). Since Y? is A-injective, there is a A-homo-
morphism A4,Y?° such that A4;X°Y?=A4,Y°. So we obtain

A\ Y'Bl= A, X, Y°Bt e (A, X;)¥Hom(Xs, BY),
which proves (). ‘

Ad (ii): By Lemmas 2.5, 2.6, Both groups HomA(A B and Homa(4:, B),
and accordingly both of - the factor groups in (25), can be considered as factor
groups of the group Hom(X,, Y°) of all translations X,—Y° in which addition
is defined in the obvious manner. The kernel of the epimorphism

Hom (X, Y°) » Homa(A, BY/Hom (A, Y°)(Y°B)y
is obviously consisting of those translations Xy;—Y? which can be supplemented
by AY? with AY°B'=AB?, while the kernel of the epimorphism

Hom (X, ¥*) — Homa(A;, B)/(AX,)* Homp(Xo, B)
is consisting of those translations X, —» Y? which can be supplemented by X,B
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with 4, X,B=A;B. Lemmas 2.5, 2.6 now assure exactly that these kernels coin-
cide, and the lemma is proved.

§ 3. The groups Tor; (A, B), Extt (A, B). »

1. Resolutions. Let A be a 4-module. A lower sequence of .-projective

modules

(Xy) - 22X X1 Xi—0 .
with augmentation Xp—A is called a projective resolution of A if X is acyclic
with respect to the augmentation XA, i.e. if the augmented sequence

(Xy—A—0) e XX X— A0
is exact.
An upper sequence of .{-injective modules
(X#)  +eer 0o XOX1oX? oe-

with co-augmentation A—X?° is called an injective resolution of A if X* is acy-
clic with respect to the augmentation AX?, i.e., if the augmented sequence
0-4-X% 0H5A-XHX'H>X*— .-
is exact.
If we take a series of projective representations
0-A X5 > A -0,
004, ->X3 > 4 - 0,
(26) :

’

00— A, - Xn1—Ana—0,

and if we define X, Xu-1 by Xadn-AnXn-1, (#21), then the lower sequence

(267 {(Xy) -0 X Xi—Xp—0
with the augmentation X,A is clearly a projective resolution. Conversely any
projective resolution (26) of A is decomposed into a series of projective re-
presentations (26). Similarly any injective resolution of A can be composed by,
and decomposed into, a series of injective representations

04 - X% > A'—0,
27) 0> A'—- X' - A*—>0,

0 Y An—l_,Xn—l_)An — 0 ,

Let now
0->B—»E, - B — 0,

0—-B,—-FE - B - 0,

?

0 B.— Ey —1’_’Bn—1"""0 ’
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be a series of exact sequences over .4, and let a .4-homomorphism AB be g.iven.

Then by repeated applicatiqn of Lemma 2.5, we obtain a series of translations
fo = | } l

.' OHBI—)EQ - B - 0,

(29) 0 A Xy - A— 0

fi 1ol
0B, »E - B - 0,

0- A, X1 A0
fn-l l
0 -—> B, - E,_1—-B,1-0 ’

Let another series of translations g, o, -... of the same exact sequences as
in (29) be given with the sole condition that AfB=AgB. Then the difference
Xof Ey;—XwE, is annihilated by E,B, so that there is XoB with XoBiE,=
Xof Ey—Xo9E,. For this XyB; we prove
30y AXyBi=A,fBi—A19B: .
In fact we have
(AxfB]_—A1§B1—A1}(()B1)BxEo=AlfBlEo_AlgBlEo—AlXﬂBlEﬂ
=M1 X f Ey— A Xog By — 1 Xo f By + A1 X9 o =0
Since X; is A-projective there is also X,E; such that XoEiBiEy=X,fEs—XogEs.
The A-homomorphism
leEl —XwEx ‘—}(].AIA)(OEI
is then annihilated by E\B,, for we have
(leEl'—XlgEl"‘XlAlXoEl)ElBlEo=)QfExBlEo—‘X!9ElBlEU")(IAIXOElBlE"
=XlAlfBlEo—)(lA],gBlEo"‘XPIAIXDBIED
=)(lAl(Alfo—AlgBl—'Axbel)BlEo=0
Therefore there is XiE, with
X1E231E1=X1fE1-—XlgE1—-X1A1XoE1 ,
for which we have also
@31 ‘ AXGE,B;=A,fB,—A.9B,.
Thus we obtain inductively a series of A-homomorphisms
XoB, XiEs, ..., XuEns1, ...
such that
XEaBEy =X, f. Eo—X07E0 »
XnEn+an+1En‘—}{nAan -lEn =anEn—XngEn (n>0)
This proves the following ’
Theorem 3.1. Let
(X—A4-0) - XX X— A0
be an augmented projective resolution of A, and
(E) ever SE, 5 FE—FEy—-B—0
an exact sequence over A. Then any A-homomorphism AB can be extended to a
translation

"—)Xz——)‘Xl—-)XD-—)A—-)O
N
'”*Ez—’ﬁl—’Eo-—)B—»O
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Any two such translations extending AB are chain homotopic®.
Similarly we can prove the following
Theorem 3.2, Letf
(E) 05 A-E'—-SE'—E?*— ...
be an exact sequence over A, and
(0_,B__)Y*) 0__,B_>Y0__,Y1___)Y2__> sewn
an augmented injective resolution of Be f//A . Then any A-homomorphism AB
can be extended to a translation
0> A—->E'5ElS5E2s ...
U S i
0-B—-Y'-»Y'-Y?*>s ...
Any two such translationsf, g extending AB are cochain homotopic, i.e., there
exists a series of A-homomorphisms
E'Ys, E*YY, ..., E*iY0, L.
such that .
EOEIY(!:EOfYO__EDgYO ,
E"E"“Y"—E"Y"*Y"=E"fY”—E"gY" (n>0) .

2. Tor} (A, B), Ext® (4, B) and their characteristic properties. Let X*
be a projective resolution of Ae @7, . We denote by Hu(X,®aB) the n-th
homology factor of the 0-sequence X.®aB, and by H*Homa(X*, B)) the n-th
homology factor of the upper 0-sequence Homa(Xy, B) over Z (over 4, if 4 is
commutative). If X’ is also a projective resolution of A’ € 7 and if AA’e 2
is given, then by Th. 3.1. we have unique homomorphisms (or 4 homomorphisms
as the case may be) ’

(32) (A4 H(X.@aB)—»H (X, @B (§Elreteas),

(AAN*: H*Homa(Xy, B))—H*(Homa(Xy, B)) (foimm
satisfying the following conditions

(1) (A4): H(XQuB)—H.(X,QuB),

(A4): H»Homa(X,, B))—H*(Homa(Xy, B))
are the identities if AA is the identy.
(11) For (AA')*t Hn(X*®»\B)—)Hn(X*®AB) y
(AAY: HHoma(Xy', B)—»H"Hom.(X,, B)),
(A'A")y: Ho( X @aB)-»HW( X' ®aB),
(A’A”y: H®Homa(X,", B))~»H*Homa(Xy/, B)),
and
(AA'A)y: Hu( X @aB)-H.(X,"@aB),
(AA’A’"*:. H*(Homa(X,”, B))—»H*(Homa(Xy, B)),
we have
(AA) (A’A" ) =(AA’ A" )y,
(AA)Y* (A’ A =(AA’A”Y* .
Thus we may consider H.(X,®aB) and H*(Homa(X,, B)) as invariants of the
pair (A, B), and we write Tor}(4, B) for H.(X.®aB), Ext'(4, B) for
H*Homa(Xy, B)). We now verify the characteristic properties I, II, III, IV, I,
IV, II’, IV’ and V listed in the introduction of this paper. The homomorphisms
(AA%),, (AA’Y* can be regarded as giving homomorphisms

6) Cf. H. Cartan, Seminaire de topologie algébrique. 1950-51.
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(AAN),: Tori(4, B)-»Tor}(A’, B)
(AAN*: Exti(A’, B)-Exti (4, B),
satisfying: ’
I-1) (AA),, (AA)* are the identities of AA is the identity map.
1-2) (AA) (A A7) =(AA A" )y (AAY*o(A’ AV =(AA’A")* .
On the other'hand, a A-homomorphism BB’ induces translations
' X, Q1B- X, QB’
Homa(X,, B)—»Homa(X,, B)
and thus mduces homomorphisms
(33) «BB'): Hu(X@sB)—Hi( X @rB')
*BB"): H*Homa(X,B))—»H*Homa(Xx, B))
Clearly those homomorphisms in (33) commute with the homomorphisms in
(32) and therefore they can be regarded as giving homomorphisms
«(BB’): TorA, B)-Tori(A, B)
. XBB’): ExtA, B)-SExtMA, B’)

satisfying:
I'-1) (BB), «(BB) are the identities of BB is the identity map.
V-2) «BB')-«(B’'B”)=«(BB’'B"), ¥BB’)-*(B'B”).
V) (AA)x and (BB’) commute with each other, so do also (AA’)* and
*(BB').
Now let

(B) 0—»B—-B—B-0

be an exact sequence over 4. Since each X, in the projective resolution X of
A is A-projective, the sequences

0 Xu@ 1B~ Xu® 2B Xa®18-0
0—Homa(X,, B)»Homu(Xn, B)—Homa(Xu, B)—0
are both exact, i.e. the sequences of translations
0- X, @2B— X @2B—X,Q1B—0
0—Homa(Xy, B)->Homa(X,, B)—Homa(X,B)—0
are exact. Therefore, by Lemma | and py we obtain homomorphisms
+0:  Tor)(A, B)—Tor2 (A, B) n=1, 2, ....),
*3: Ext3(4, B)—-Ext®*i(A, B) (n=0,1, ....),
and exact sequences :
—»Tor,,(A B) *BB)roraa, By #BBhrorNa, By
Tor™(A4, By*d Tora (4, By»Tor2_(A, B)—-...—Tor}A, B)
—Tord(A, B)-»TorA, B)—0
0-Exts (A4, B)—)Ext %4, B)-Ext% (4, By— ...
Exta(A4, B)-Ext%(A, B)—Ext? "(4, B)-Ext?(A, B)—

Ext2*(A, B)-Ext2*Y(4, B} ---.
Naturality of the functors B = Tor®(A4, B)
B —) Ext\(A, B)
is obvious. Thus II’ is proved. III’ is obvious since ®AB is an exact functor
if B is A-projective, and since Homa(A, B) is an exact (contravariant) functor
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if B is A-injective. III is also clear, for if A is A4-projective we can take as a
projective resolution of A the sequence
<ot =0-0-A-0
for which augmentation is the identity mapping of A.
The proof of II requires some preliminary considerations.
(4) 0-A—>A—-A-0
be an exact sequence over A, and let
0—>A1—>Xo—>/i—>0
OH_Z;—»X,—»EHO
be projective representations of A and of A. Then since X, is' 4-projective there

exists X,A such that X,AA=X,4, Put now X;=X,@®X, (direct sum) and denote
by X,X,, XXy, XoX;, XoX, the injections and the projections for that direct
sum. If we define XA by
XA=XX,AA+XXA
then Xy4 is an epimorphism and the diagram
00— )fo—» Xp— }—(_‘;-—> 0
(34) Lo
0-A—>A—->A—-0 _
In fact, let @ be an element in A. Then there exists zo in Xp

Let

is commutative.
such that (X)X, A=(a)AZA. Since
(a—(F0) X A)AA=(a) AA—(70) X, AA=(a) AA— —(F) X A=0
and since XA is an epimorphism, X, contains an element &, such that
(F0) X AA=a—(Z) X0 A
and so we have
()Xo X+ @) X X)) Xo A= (8) Xo Xo A+( ) Ko XA
“(TO)X:)X—OXOAA'F(IO)XJ(OXOA+(Jo))(o}(o~X0AA+(J~o)X0XuX0A
=) XAA+E@E) XA=a .
This proves that X;4 is an epimorphism. Commutativity of the diagram (34)
can be shown as follows. o
%X A= XX X AA+ X, XX A=K AA
XoAA= X, X AAA+ X, X AA= X0 X0 A
Now, if we put trivial sequences 0—0—0—0—0 above and under (34), and
if we apply the corollary to Lemmas H, gli, to the so obtained diagram we see
that (34) can be supplemented to a commutative diagram

0 0 0
1 1 !
0— A— A— 4A—0
Pl
(347) 0- }.(0—> Xo— Xo— 0
\

0—>A—>A—>A—>0
| | |

v v v

0 0 0
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where each sequence on a straight line is exact. Repeated application of the

process to obtain (34’) from A will lead us to the following conclusion:
Lemma 3.1. Given any exact sequence

0—A—A—A—0
there exist projective resolutions X, of A, X, of A, X* of A, and a scquence
of translations

Lol
@4y~ 0>A—>A—>A-0
o 1 ! !

0 0 0

which is exact. Since ecach Xn is A-projective, cach sequence 0—Xpn— Xn— Xn—0
appearing in (34”") is direct.

Therefore for an arbitrary A-module B we obtain exact sequences of trans-
lations .::,. -

0 X, ®@1B—>X @ 2B— X, @+B—-0

- 0—-Homx(X,, B)»Hom (X, B)~»Homa(Xy, B)—-0 .
These exact sequences and Lemmas [, i clearly prove the property IL
Finally, if we apply @B and Hom( , B) to (26), then by Lemmas 1.6,
1.7, we obtain exact sequences
AQnB — Xy@uB — AQAB — 0,
A,RQuB - XiQ@aB - AQAB—0,

A.QrB — Xn-x@AB"’And@AB‘_’O ’

’

and
0 — Homa(A, B) — Homa(X;,, B) — Homa(A;, B),
0 — Homa(4;, B) — Homa(X;, B) — Homa(A4., B),

0— HomA(An-l, B)—>HomA(Xn_1, B)'—’HomA(An, B) .
Therefore we have
Image of (Xn+1®B—X,@B)=Image of (4,.:Q0B—X.QB)
=Kernel of (X,QB—A.QB),
Kermel of (Homa(X,, B)~Homan(Xn4+1, 0)
=Kernel of (Homa(X», B)~Homa(Ax, B))

‘=Image of (Homa(An+1, B)—Homa(Xa, B))
This proves

Tor(A, B)=A®B, Exty (A, By=Homa(4, B),
Tor2(A, B)=Kernel of (A,QrB—~X..1QAB) (n>0),
Ext?(A, B)y=Cokernel of (Homa(Xn-1, B)»Homa(4s, B))  n>0)

Obviously, these isomorphisms are natural and the properties III, Il are
proved.

3. Tor2(4, B), Ext}(4, B), and resolutions of B.
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Let
(Yy) 0->B—-Y—>B-0,
be a projective representation of B. Then, in the exact sequence Tor(4, Yo),
every third group TorX(A, Y,) vanishes except Tord(4, Y,)=A®xYo. Therefore
we have natural isomorphisms
Tor,2(A, B)=Kernel of (Tory*(4, B:)—Tore*(A, Yq))
=Kernel of (AQ,B;—A®AYy)
Tor}A, B)y=Tor} (4, By) (n>1).
Thus if
0-»>B—->Yy—B-0
0— B,—» Y;— Bi—0
is the series of projective representations giving a projective resolution Yy of
B, then we have
TorMA, B)y=Tor2_ (A, B)=---* =TorPMA, Bn-1)
=Kernel of (AQaBr>AQaYn-1), (1>0)
But, the last group being naturally isomorphic to Ha(A®aYy)=Hn(Y®rA4)
=TorMB, A), we obtain
Theorem 3.3. TorX(A, B)=Hu(X4@aB)=H/Y,@sA)=Tor(B, A).
Similarly we can also prove the analogue of this theorem, namely
Theorem 3.4. Ext%i(A, B) is naturally isomorphic to the n-th homology f actor
H*Homa(A, Y*) of the upper 0-sequence Homa(A, Y*), where Y* is an arbitrary

injective resolution of B. .
For later purpose we shall give to this theorem a proof of somewhat different

nature from the proof given above. This proof is based on lemma 2.5. sta?ed
in the last paragraph of §2. As we have seen earlier at the end of the foregoing
paragraph, we have natural isomorphisms

EXtK(A, B)=H0mn(An, B)/(Aan—x)’HomA(Xn-l, B) N .
but, the two conclusions in Lemma 27 give usin turn a series of natural iso-
morphisms

Homa(An, B)/AnXn_1)t Homa(Xn-1, B)=Homa(An-1, B)/Homa(An-1, Y)N¥Y° B

=Homa(Ar-1, BY)/(An-1Xn-2)t Homa(Xn-2, BY)

=Homa(Ar-1, BY)/Homa(An-y, YY) Y1BY)g =----

=.++-=Homa(An-¢, B)Y/Hom(An-1Ye-1)(¥Y-1BYs

=Homa(An—t, BY)/(An-1Xn-1-1)% Homa(Xn-t-1, BY)

=Homa(An-i-;, B*+)/Homa(An-is1, YO(X B )= -2+

=-...=Homa(A4, B*)/Homa(A4, Y)Y 1B")s
=H"(Homa(A, Y*)).
This proves the theorem.
Remark. From this proof it is readily seen that if
(Xn) 0o A XuoomXp—> A0

. [ Lo
(Y™ 0> B Y, — ¢c0-> yr-1-B?— 0

is a translation, then AB"e Homa(A, B") represents the same elerr'lsezt lian
Exti(A, B)=Homa(A, BY)/Homa(4, Y1) (¥Y*-1B")y as AnB does in Ext}(4, )
=Hom (A4, B)/(AnXy-1Hom (Xn-1, B) .
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It is not hard to see that TorNA, B), Ext}(A, B) can be also defined as the
n-th homology factor of the lower 0-sequence X,®1Y and that of the upper 0-
sequence Homa(X,, Y*), where X,, Y are projective resolutions of A and B
respectively, Y * an injective resolution of B, and where the complexes Xi®aYo
Homa(Y,, Y*) are defined in the usual way. However we shall not go further
in this direction.

4. Ext}(4, B) and the n-fold extensions of B by A.

Let A, B be arbitratry A-modules fixed once for all. We call any exact
sequence over A of the form

Y (B 0-BoEn_y—re - —Em— A0 (n21)
an n-fold extension of B by A, and denote the category consisting of all n-fold ex-
tensions of B by A and of all possible translations between such »-fold extensior.ls
that give identities both on A and on B by ¢ (A, B). The set of objects in
this category, i.e., the set of all n-fold extensions of B by A will be denoted b~Y
E.(A, B). For two n-fold extensions E., B € Ex(A, B) we shall write Ex~~E. if
there exists either a mapping Ev'Ex€ (4, B) or a mapping E.EJ' € &n(A, B),
E.~E,’ if there is a finite series of n-fold extensions E,=E.*, E:}, ...., E&=Enx
€ Eq(A, B) such that E,'o~E,'*! (=0, ...., k—1). Clearly ~is an equivalence
relation, by which the elements of E.(A, B) are classified into equivalence classes.

Let now X, be a projective resolution of A. Then, by Theorem 3.1, the
identity of A can be extended to a translation

(Xn) 0 A X g - > X—m A0

(3¢) l ) ! i

(En) 0B, 1~ «++s—FE—A—0,

If £, f, are such translations extending the identity mapping of A, then
Theorem 3.1 states further that fi, £, are chain homotopic, i.e., there exist A-
homomorphisms XoE:, XiE,, .... Xn—2En-1, Xu-1B, such that

X]ElE():)(OlEO_’onEO ’
XlEl+1E(+XiXt—1E1=X41E¢—X42E¢ (i=1, e any 71—2) ’
Xn—lBEn-1+Xn-1Xn—2En—1=Xn-11En—l‘—')(n—l in-1 .
Now, as we have
AnXn aBEn 1= A, Xn11E,_1— A X0 12En 12— AnXn -1 X2 En 1
=ApnlBEn 1—Aw2BE, 1,

the difference homomorphism A,1B—A,2B lies in the subgroup (A.X.-1)* Homa
(Xn-1, B) of Homa(A4a, B.) Therefore in this way we obtain a mapping

(35) En(A, B)~Hom(Aa, B)/(AnX, 1)t Homa(Xy -1, B{(=Ext}(4, B)

If X/ is another projective resolution, and if E.E,’ isa translation € (A4, B)

(En) 0->B—-E, 3> -+ 5E —>A—0
i i ! ! I
(En/) 0 - B ""E/n—l“‘) sees "’E(),“’A -0

of E, into another n-fold extension E.’ € &n(A, B), then the identity of A can be
extended to a translation

(X)) 0> A > X = ooos 5 X5 A>0
! i ! ! I
(X)) 0= A, > X1 ++o0 X — A0

Then each of the translations X.E, in (34), X. ' X.E., X.E.E, extends the
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identity of A. This shows firsty that the mapping (35) does not depend on the
special choice of the projective resolution X, of A, and secondly that equivalent
n-fold extension of B by A are mapped onto the same element of Ext%(A, B).

We now prove the following

Theorem 3.5. (Classification Theorem) The mapping (35) tnduces a one-to-
one correspondence between the cquivalence classes of the n-fold extensions En(A, B)
of B by A, and the elements of Exti(A, B)

As we have shown that equivalent »-fold extensions are mapped onto the same
element of Ext*(A, B), (35) defines a mapping x. of the set E,(A, B) of equivalence
classes of E,(A, B) into the group Ext%(A, B). In the following paragraphs we
shall prove that ¥, is onto and one-to-one.

5. Proof of the classification theorem, I—Construction.

In this paragraph we shall define a mapping

r»: Homa(A4., B) — E,(A, B)
such that X,or, is the canonical mapping Homa(A., B)— Ext%(A4, B).
Construciion r;. Let AifBe Homa(A4;, B), put W=X,@B (direct sum), and
define a A-homomorphism 4, W by
AAW=AX®(~AfB)=AZAX,W-A1fBW.
Cleary A\W is a monomorphism, and we have
AWXy= A X WX,— A f BWX)= A, X, WX = A4, X, .
Therefore we may identify A,=7ZmA, W to obtain the commutative diagram

0 0 0
A
00 —->A=A4 -0
)
(36) 0->B—-W-X,—0 ,
el
B E, A
N
0 0 0

where we have put E,=W/A4; .
Since (36) in commutative it is supplemented uniquely by BE, and L,A
such that '
BWE,=BE,, WXA=WEA.

Then, by the corollary to Lemmas Hi & i, the sequence over A

(E;) 0—-B—-E, A0
is exact, i.e., E, is a 1-fold extension of B by A; and we now define 7:
Hom (4, B)—E(A, B) by

ri(f )=E,.
Then, putting XoE,=X,WE,, we have
AifBE,=A,fBWE,;= A X, WE;— A\ WE ;= AXaWE ;= A X Ey

GE A= X, WE A= X,WXA=XA .

Thus we obtain a translation
0->A1—-Xy —»>A—0

ol I
0->B—-»E—>A—0
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proving that X,(7,(f)) is represented by f e Homa(A,, B).

Constructions 7.. Let now f € Homa(A., B). Applying the above construc-
tion we obtain the following commutative diagrams

0 0
i !
An= An
, ! \ '
37 0->B—-> W X,.,—0 (direct)
|
0—-»B—oE;— Ay —0
i !
0 0
(38) 0—- An") Xn-l_’ An -1 0
g 1l Il
e 0->B—E, > Ay—0,
satisfying
(39) AW=A,Xn 1 W—Anf BW

Xn_lEf=Xn—-1u/Ef
The translation (38) can be extended now to
00— Ap— Xy Xpg—eo— Xp — A-0
- (40) N I f il
(E}) 0B > E;, - Xpp—om X' A0,
The second sequence E, of (40) being an n-fold extension of B by A, we define
HomA(An, )“"En(A B) by
()= En

Since (40) is a translation, x.7.(f) is clearly represented by f € Hom x(Ax, B)
. Thus we have proved that y, is one-to-one (2=1, 2, ....)
- 6. Proof of the classification theorem, 1I. We must prove finally that the

mapping x» is one-to-one (#=1, 2, ....). This will be done if we prove the
following

Lemma 3.2, Let
(E) 0> B> Ep o Eqgoee-mE/— A0

be an n-fold extension of B by A, and let the identity mapping of A be extended
to a translation

0= A4, Xy > Xn_g—— X, ——)A -0
1) lg ! i f
0 -—)B ""E/‘n—x _)E/n—z'_)""—')EO,—")A A d 0 .
If AnfBe Homa(An, B) lies in the same coset of (AnXn-1)* Homa(Xn-1, B), .6
if there is a A-homomorphism Xn_; B such that

AnfB=AngB +Aan_1B ,
then there exists a translation

(E}l) 0—)B—*Ef——>X——) ""'—’Xo"’A—)O
“2) 1 oy ! Lo
(En/) 0 e d B _’E,ﬂ—I-’E’n—z—)""'—)E’ ._.)A.—)O
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extending the identity mapting of B and the A-homomorphisms Xoy_oF n_s, .. ..,
XoEy, AA tn (41), where E} is the nfold extension 1.(f)€ Ex(A, B) constructed in
the preceding paragrapis.

In short, this lemma states that if X.(E.’)€Ext%(A, B) is represented by a
mapping f'e€ Homa(A., B) then there is a translation E,"E.’e€ Z.(A, B) of
E*=7.(f) into E,’. Thus if for two n-fold extension E,, E.’ € Ex(A, B) we have
Xn(En)=2X(E,'), then, taking an arbitrary representation /'€ Homa(4x, B), we obtain
an z-fold extension E,"¢ E.(A, B) and two translations E,"E,, E;"E.’ € & (4, B),
proving that E,~E "~vE,’ .

This lemma gives us more than the proof of the classification theorem,
namely this proves also the following

Theorem 3.6. Two n-fold extensions En, Ex' € Ex(A, B) are equivalent if and
only if there exist an n-fold extension 'Ene E (A, B) and two translations 'E.E*,
‘E.Ex € &,(A, B).

We shall refer later to a dual of this theorem.

Proof of Lemma 3.2. The only thing that we have to do is to define £,E"»_;
so that the first and the second sequence in (42) become commutative. To do
this we first define WE',_; by

WE’n-l = WBE/n—-l + IVXn—xE,n-—l'f' WXu-1BE,n-1 .

Then we have
AnWE’n—l‘:AnWBE,n—l+AnWXn..1 +AnWXn—1BE/ﬂ—1
=Aan-1WBE’n—-1"AnfBWVBE/n-l+Aan-1E’n—1+AnWXn-1BE’n—1
=—AnfBE n_1+AngBE 41+ AnXnyBE . BE y,_;
=(~AnfB+AgB+A,Xy 1 B)BE’,,_1=0.
Therefore, by Lemma 1.1, there exists a 4-homomorphism E,E',_, such that
WE/E s, =WE',.,. We now prove the commutativity BEyE’'y_1=BE’'s., in
the first square of (42), as follows:
BE/E  ,=BWE,E ,_,=BWE',_,
=BWBE',_1+BWXp 1 Eny+BWXaBE ,_1=BFE,_; .
Commutativity E;E’w 1E n_y=FE;Xn_.E'n_, in the second square of (42) is
equivalent to WE E y1E n-y=WE;Xn_,E »_, , which is shown in the following
manner:
WEIE'n—lE/n-z: WE’n—lE,n—z
=WBE 3 1 E A WXy B gy B s+ WX\ BE 3 By
‘—'—‘-'WXn—an-zE,n—z
=WXu-1An-1Xn-oE _;
=WEjAn-1Xn_2E,n_z
= WEsz-zE/n—z .
This proves Lemma 3.2 and completes the proof of the classification theorem.
7. Redefinition of the one-to-one correspondence in the classification theorem
by means of injective resolutions of B. Let Y* be an injective resolution of
B. Then by Theorem 3.2, there exists a translation
(B)) 0B o By Bngmree o By — A0

@) L
(%‘"‘) 0—)%——)%‘] __)'%'1 s e Y""l—’B"—>O
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extending the identity mapping of B. The class AB"* mod Hoxm(AY"")(Y”“Bi‘):
depends neither on the special choice of the translation E,Y” nor on the special
choice of the injective resolution ¥*. So we obtain a mapping

X.'t  En(A, B)-Ext%(A4, B)=Homa(4, B*)/Homa(A, Y (Y?"1B") .

Now if we superpose (34’) on this translation, then we obtain a translation
X:E,Y*. Thus, from what we have remarked after the proof of Theorem 3.4,
follows that %, and x,’ coincide.

If one develops the dual argument of the preceding paragraphs he can reprove
the classification theorem, in which course he will obtain the following analogue
of Theorem 3.6: .

Theorem 3.7. Two n-fold extensions Ex, 'E,€ EJ(A, B) are equivalent if and
only if there exist an n-fold extension E.' € E.(A, B) and two translations EqEx/,
,EnEn/ € Ef;Z(Ar B)- ..

Remark. For n=1, every translation E\E’ in (/;(A, B) is an isomorp‘hlc
translation, and so it is invertible. Therefore E,~E,’ if and only if there exists
an isomorphic translation E,E’ which gives identity mappings on A and on B.

§ 4. Product in the extension groups.

1. Motivation. Let 4, B, C be A-modules. By the classification theorem

the elements of Ext?(A, B) (>0) can be considered as the equivalence classes
of exact sequences of the form

(E») 0>BoFEp oo E—Ao0,

while the elements of Ext¥(B, C) (¢>>0) as the equivalence classes of exact
sequences of the form

(Foq) 0>C - Fq g Fy B0,

Now if we put these exact sequences in a line in tying them together at B, then
we get an exact sequence

(E,OFy)  0—C—Fq -+ -—FgEp 1=+ -—Ey—A—0 , N
where we have put FyEp_;=F,BEy_;. In this way we obtain a pairing
(44) Ex(A, Byx Eq«(B, C)—Ep.q(A, C),

which we shall call the composition pairing. Obviously this composition pair-
ing satisfies the following conditions.

(1) If Ev~E'» and Fy~F ,, then sEQOF,~E . QF , .

(ii) O is associative, i.e., for G,.€e E(C, D) we have

(E,OF)OG,=E,OF,OG,) .
Therefore this defines an: associative pairing

(45) Ext?(4, B)x Exty(B, C)—Ext?*%A, C) .

This composition pairing turns out to be bilinear, and the above definition can t?e
naturally extended to admit the value $=0 or ¢g=0, To show this we shall begin
with another equivalent definition of this composition pairing.

2. Composition product. Let X, be a projective resolution of A, and U*
an injective resolution of C. We have seen earlier that the following identifi- -
cations are allowable.

Ext™(A, B)=Homa(A,, B)/(A,Xp 1) Homa(Xp-1, B) (P20, X1=0),
ExtY(B, C)=Homa(B, Ct/Homa(B, Wi-}Wi-1C); (g0, W-1=0),
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Eti+q(A, C)= Hom ,\(A’H-'h C)/(AumX,.w-l)* HOHI.’\(X)>+41_1, C)
=Hom(A,, CH)/Hom (A, W-1)(W4=1C");
=Homa(A,, CH(ApXp-1)% Homa(Xp,-1, CY
(P, 20, X_,=W~1=0)
Now if we define a composition product
Homa(A,, B)x Homa(B, CY)—Homs(A,, C
by the simple composition A,BOBC?=A,BC?. Then this product O is clearly
bilinear and we have also
(ApXp-1)* Homa(X,-;, B)O Hom (B, CYC(ApXp-1)* Homa(X,-1, CY ,
Homa(Ap, B)YO Hom y(B, We-1)(We-1C4)y C Homa(Ap, Wi~ (WI-1CY) .
so that O defines a bilinear product .
(45" Ext?(A, B)x Ext*(B, C)—Extr+e(4, C) (D, q=0) .
We now show the coincidence of (45) and (45°) for p, ¢>>0 in proving that
xn(Ep)Ole(Fq)= Lo+ ‘Z(EPOF‘I) ’
where x is the mapping appearing in the classification theorem. Let
004, Xp gy > X—>A—-0
(46) ! ! i f
0B — Epq—-->E, A0,
0>C—>Fyqg—---->Fy - B0
(47) | I ! U
05 C-H>W? —..oo W 107 0
be translations such that A,B represents X,(E,) in
Homa(4,, B)/(ApX,_,) Homa(X, ., B)
and BC, represents yo(Fq) in ’
Homa(B, Ct)/Hom (B, We-1)(We-1C?); .
Now, by Theorem 3.2, A,B can be extended to a translation
00— Apig— Xprg1— o> Xp— A4, >0
(46") i ! i !
0-C —» Fqq4 —-e-omF,—>B >0
s0 that Ap.,C represents Xp.oE,OF4). Therefore it is sufficient to prove coinci-
dence of the element in Homa(Ap+q, C)/(ApsaXpsra-1)} Homa(Xpsq-1, C)
represented by A,,.C and the element in Homa(A,, C?)/Homa(A,We-1Y(W1-1C?)
represented by A,BC?, or equivalently, to prove that A,.+.C and A,Ci=A,BC*
can be extended to a translation
0> Aprg—= Xprga—-—= X, —>Ap—0
(48) ! 1 ! !
0-C — W° e WitlsC1 — ()
Translation (48) is readily obtained in composing the translations (46°) and (47).
Thus the coincidence of (45) and (45") is proved, and so (45°) is independent of
the special choice of resolutions.
Let Y,, Y* be projective resp. injective resolutions of B. If we put Y,
Y* in a line in tying them together at B, then the resulting sequence
(—B—)
(Y%) cerems¥V o Y, — YO Yl
is exact. (Y¥ will be called a complete resolution of B.) By Theorems 3.1, 3.2,
A,B€ Homa(A,, B) can be extended to a translation
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0 —»A,?,,.,'—> Xpagoy—rtee— X,,( —A)) Xpg—reer o Xg—> A -0
aw | oot - !

. (—B—)
0-Bi—Yq, — oYy, — Y0 > eeeey Y21 — B0 .

Also BC1e Homa(B, C%) can be extended to a translation
05 B> YooY, — Yoo Yr-1 > B? = 0

(—B-)
6o | ] b oy b Lo
(—C—)
0—->C-—->W° .— Wae-t > Wis.oo . Warr-1500+20 |

Since the composite of the translations (49) and (50) gives a translation
Xepeoy—UO+®, the three A-homomorphisms A,..B.C, A,BCI, and ABPC*?
represent one and the same element in Ext?+¢(A4, C).

Take now an injective resolution V* of De © and let a?eExt?(A, B) be
represented by A,BeHoma(4,, B), 82eExt«B, C) by BC?eHoma(B, C?), and
rre Ext’(C, D) by CD e Homa(C, D). Then, we proceed as follows:

(i) Extend (49) leftward up t0 ApraerBasr,

(ii) Take a complete resolution U3 of C and extend (50) leftward up to

B(J+rcr ’

(iii) Replace BC? by CD~ and extend it to obtain a similar translation as
(50), and finally

(iv) Extend the translation obtained in (iii) rightward up to C"**D".
Thus we obtain a commutative diagram

0'-*Ap+q+r—*Xp Hl+r-1—>-0~—>Xp+q *"Xp-{-q-l—ﬁ . --»X;w————*X])-L-’"'ﬁXO —_——A—0

(=4p1o—) (—4p—)
R . L d A ,‘—1 BP 0
0—=Bgir ——=Yqir-1 =Y, —_ Ygog——se-ao 0 ————> Y0 s Y
(—»B«,-) (—B-)

: a ‘ l h ¥ tp-1 T+P— ()
0-Cr Ur-y veems U T Ue ..._.(ﬂ'l_;_.,.U’l__..‘._gU‘l Pl g I
(=C-) l (=€)

+ - h
0—'DV ‘;0 _____)I',r-lLvr_‘.___)V,r+q—1___’l;r»}-q_,.',_’I;"HH'P-‘_,D"*Q"'?—»O
+
(=D"=) (=Dt 9-s)

From what we have seen above, it follows then:
(i) Each of Au.eB.C, A,BC?, AB»C*+? represents a?Of7.
(ii) Each of Be..C.D, B,CD", BC*D+% represents B'O7r” .
Thus (@?OB"0O7r” is represented by each one of
AD+q+qu+rCr'ch, A,,+quC~CD", ABqu+pDr+q+p’
while a?O(B°0O7r") by each one of
ApiairBoirBei:C.D, A,B-BC'Dr+1, ABr.BrCi+ppr+a+o
This proves the associativity (a?OB)Orr=arO{B0r7) .
established the following
Theorem 4.1. The composition product O:
Ext?(A, B)x Ext{B, C)—Ext?+%A, C) (p, q=0)

defined in (45') is bilinear and associative. For p, >0, O 7s induced by the
pairing (44).

Summarizing, we have
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Corollary. Exta(A4, A) has the structure of a ring in which multiplication
is defined by the composition product O.
3. The effect of multiplication by the elements of Ext® and Ext!.
Theorem 4.2. Lef ac Ext(A, B) be represented by AB e Homa(A, B). Then
the left multiplication by a®,
a®Q: ExtYB, C)—Ext¥4, C)
is identical with the induced homomorphism (AB)Y*. If B°e Ext¥(B, C) is re-
presented by BCe Homa(B, C), then the right multiplication by 5°
OB Extr(A4, B)—Exte(4, C)
coincides with the induced lomomorphism *(BC).
Proof. (AB)* is induced by (A.B¢)*: Homa(By, C)—>Homa(Aq, C) obtained
in a translation
04,2 X4 3> > Xy > A0
(51) [ Loy
0—-B, »>Yy 4 —>-—Yy, >B—>0
extending AB, while a’O by (AB)*: Homa(B, C)—Homa(A4, C9).
If B,CeHoma(B,, C) is extended to a translation
0->By,>Yq oYy » B0
(52) ] ! i i
0-C > U’ —....»[1"15(C"-0,
then B,C, BC? represent the same element, say #39, in Ext4(B, C). Combining
(51) and (52) we have now a commutative diagram .
0> Ay — Xqog—e-ro X, — A—0

i i ! i
0B, »Y4.,—>--—Y, > B->0
l ! i l

0-C U —....-5 "' C'-> 0,
in which A¢B,C represents (AB)*[:"’ and ABC? represents a®Ofp?% Therefore we
have (AB)*3%=a?0Of7?.
The latter statement of the theorem can be proved quite similarly.
Theorem 4.3. Let ate Ext!(A, B) be represented by an exact sequence
(E) 0->B->E->A—-0. .
Then the left muliiplication by o,
a'Q:  ExtY(B, C)— Ext*(4, C)
is identical with the coboundary homomorphism 6* with respect fo the exact
sequence E. If f'e Ext{(B, C) is represented by an exact sequence
(F) 0-C—->F—->B-0,
then the right multiplication by B!,
Op': Ext?(A, B)— Extr*+i(A, C)
coincides with the coboundary homomorphism *& with respect fo the exact
sequence F.
Proof. If we extend the identity mapping of A to a translation
(Xu) 0——>Al—>Xo—>A——>0
l ! l H
(E) 0-B—->FE - A-0,
Then we have y(E)=al, so that A;Be Homa(A4;, B) represents a'. On the other
hand, if we denote the coboundary homomorphism Ext?(4;, C)— Ext?*!(4, C)
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with respect to X with 6%, Then we have dy%(A,B)*=(AA)*e6*=5*. So we
now prove «'O=4§,*o(A, By, If 3"e Ext(B3,C) is represented by BC?€ Homa(B, "),
then (A,B)*3" is represented by A,BC’e¢ Homi(A,, C%), and a'OB* also by
AiBC'e Hom(A,, C%. Thus, 8,* being nothing other than the identification
isomorphism
op*: Ext'(A,, C)=Ext?"*1(A4, C),
we have proved the first assertion a'O=48% of the theorem,
Next, extend the identity mapping of C to a translation
(F) 0-C—>F —-B —0
! I !
u» 0> C-HUCt— 0
to obtain BC! representing B8!. If a?e Ext?(A, B) is represented by A,Be
Homa(A,, B), then a?OB' is represented by APBC!. On the other hand we
have *dar=*g,(a?*(BC')), where *3, is the coboundary homomorphism with
respect to U, a?(BC') being represented by A,BC', and *d, being nothing
other than the reduction isomorphism
¥ Ext?(B, CYH=<Ext*+(B, C) ,
we have *6a?=a?OB'. This completes the proof.

4. ¢-product in the cohomology group Exti(4, B).

As we have remarked before, the composition product O gives the struc-
ture of a ring to Exta(A4, A). This is a special case of the following more general
notion of ¢-product in° Exta(A, B).

Let ¢ be an arbitrary 4-homomorphism from B into A. ¢ can be also con-
sidered as an element in Ext®(B, A). We now fix one ¢¢ Homa(B. A). Then,
¢-product in Exta(A, B) is defined as follows. Let a € Ext?(4, B), e Ext%(A, B).
Then aO¢ € Ext?(A, A) so that (aO9)OBeExt?+44, B). On the other hand we
have ¢OBe Ext(B, B), and aO(¥OB)e Ext?*%A, B). Since O is associative these
two elements (aO®)OB, aO(®OR) equal to each other. So we define the ¢-product
ayB of @ and B as

a'yB=a0O¢0OfR,
Then bilinearity of ¥/ is clear; associativity is checked as
(@ B)% 1 =(a¢0POBRO¢Or = aO¢O(ROYOr) =Y (BYT)
If fe Homa(4, A )=Ext(A4, A’), then ¢Of e Homa(B, A’), and putting
¥’=¢0Of we have, by Theorem 4.2,
IHaZB)=(*a Y (f*B). (a', f € Exta(A’, B))
On the other hand, if ge Homx(B’, B)=Ext'(B’, B), then putting ¢’ =¢gO%¥€
Homa(B’, A), we have
*ola/ U8 )= ("9 )5 (g f) .
This shows the naturality of the ¢-product.

5. Relation to the homology theory of associative systems.

Let II denote a group or more generally an associative system with unit,
Z(I1) the algebra of II over Z, and let G be a II-group, i.e., a Z(II)-module. As
stated by Cartan and Eilenberg, H.(IT, G), the n-th homology group, and H*(11, G),
the z-th cohomology group of IT with coefficients in G can be defined as the
n-th torsion product TorZ™(Z, G) and as the n-th extension group Ext3q,(Z, G)
respectively, where Z is considered as a IT-group on which each element of II
operates identically. As stated further by the same authors, the multiplicative
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structure of the cohomology group H*(IT, R)=Extzmy(Z, R) with coefficients in
a ring R with unit can be introduced in the following manner. Let X, be a
projective resolution of the Z(1T)-module Z. Then X,*=X,®:X, is a projective
resolution of the Z(IT x IT)-module Z®zZ=Z. By the diagonal injection II-IIx1I,
the augmented sequence X,*—Z—0 can be considered as an exact sequence over
Z(II). Therefore there exists a translation

Xy o Z-0

T 1) I

X2 Z-0
which is unique up to a chain homotopy.

On the other hand any pair of Z(IT)-homomorphisms X,Re Homzan(X5p, R),
X.ReHomza(Xq, B) determines in a natural way a homomorphism
X,RQX,R € Homzey(X»®2Xy, R), and thus we have a canonical homomorphism

(53) Homz(n)(X*, R)®z HomZ(n)(X*, R)—) HOmZ(H)(X*z, R) N
which is compatible with the coboundary operators. Combining (53) with the
homomorphism #: Homzmy(Xx? R) Homzmy Xy, R), and passing to the co-
homology groups, i.e., extension groups, we give now a homomorphism

(54) Extso(Z, RI®s Extdy(Z, R)— Ext34e(Z, R)
to introduce in Extzmmy(Z, R) the structure of a ring.

Finally we shall prove the following

Theorem 4.4. Let R(I1) denote the algebra of I over R. Then any R(II)-
module is automatically a Il-group, and in this sense we have

(i) Hn.(, G)=TorX™(R, G),

(ii) HYII, G)=Ext} (R, G),

(iliy H*(I, R)=Extra(R, R),
where Extzen(R, R) is provided with the ring structure defined by the composi-

tion product O.
Proof. Let X, be a free resolution of the Z(II)-module Z. The augmented

exact sequence Xy—Z—0 is then direct as an exact sequence over Z, Therefore
the lower sequence
(55) X.Q:z2R — ZQ:R(=R) — 0
is also exact. Now each X, in Xy being Z(II)-free, X.®zR can be considered
as an R(IT)-free module, and (55) as a free resolution of the R(II)-module ZQR=R.
Thus Tor?™(R, G) is defined as the n-th homology factor of the lower 0-sequence
(X4 ®2zR)QranyG ,
and Extran(R, G) as the s-th homology factor of the upper 0-sequence
Homprmy(X:®zR, G) -
We now show identities
(XD :2R)® renyG=X @ zmyC ,

Hom g X4® 2R, G)=Homzay(Xx, G) » .
which will prove (i) and (ii). Since X is Z(Il)-free, it is sufficient to obtain
natural isomorphisms

(ZMQ 2R reyG=Z(IN®zmG
}{OI’ﬂR(n)(Z(H)®zR, G)=H0m2(n)(Z(H), G) .
These identities are both obvious, for we have natural identifications
(Z(n)®zR)®5(n)G= R(H)@R(H)G= G—':Z(I])@Z(II)G ’
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Hom;.»(u)(Z(ll)®zR, G)=Homzan(R(11), G)=G= Homz(n)(Z(ﬂ), G).
To prove (iii) we first replace Z by R in (54) in the following way. Let X
be a projective resolution of the R(I1)-module R. Then, quite in the same way
as in the case of Z, we obtain the exact sequence over R(II)
XA(=X,®@rXy) > R0,
and a translation

Xy, R—0
S o
X2 > R—0,
through which a bilinear multiplication
(54") Ext (R, R)®zExtd (R, R) — Ext}/ (R, R)

is obtained. Obviously (54°) agrees with (54) under the identification
Eth(n)(Z, R)=EXtR(n)(R, R)
obtained in (ii). Therefore what we have to prove is the coincidence of (54’) and
the composition product in the corollary to Theorem 4.1.
Now, since the product (54) and the composition product are both independent
of the special choice of a projective resolution of the R(I1I)-module R, we may

take as X, the special resolution ‘non-homogeneous complex of II’, namely the
exact sequence

g €
veese) cq——> c']—l —)seee—) Cl -> CO —6—> R — 0

0
(—0)
over R(11), where C, is the R(11)-free module with base

[Sl, ....,Sq] (81, ceeuy SqelI):
and where we have put

Balst, - ooy Sal=sulss, v vy Sl ST —1)s1, ..., SiSta1y -e - es Si
+(=1)s1, 0 .-, S2-1)
g I=1
Then a translation r: Cy—Cy*(=C;®zCy) extending the identity mapping of R
is given as follows:
T"[sh RN S’I]:‘[ ]®[51, ey Sq]‘i‘z‘;’:ll[sl, eose S[]®S;.. ..Si[SH-l, ooy S')]

B P 9 1= L IR I I
Therefore (54°) is given by the multiplication

Homﬂm)(C,,, R)XHOmI;(n)(Cq, R)-’HOH\R(N)(Cxwm R)
defined as

(915 ey Sp, Spaty «vvey Spaal)
=f([81, ceouy Sp])'?(S]_. .. .Sp[szu.x, ceaay S)H-'I])
=f([S1, -vvv, SpD) 8100 .Sp9([Spaty -+ +s Speal)

(fe HomR(n)(Cp, R), g€ Homn(m_(Cq, R))
On the other hand, if we define R(IT)-homomorphisms fi: Xpsr—Xk (k=0,
1, ....) for given f e Hompm(C,, R) by
fk([sx, ceeey Spy Spely cvnne, Sp*k])=f([S1, caney Sp])’S],- .o -Sp[Sp-H, seeey SIH-’I] ’
then it is easy to verify
ak°fk=fk-1°ap+k (k=1, 2, cee .) ,
eofo=f,
so that f={f, fo. f1, -...} defines a transiation






