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Abstract

In this thesis, we construct a new version of orthogonal calculus for functors F from C2-

representations to C2-spaces, where C2 is the cyclic group of order 2. For example, the

functor BO(−) : V 7→ BO(V ), where BO(V ) is the classifying space of the orthogonal

group O(V ), which has a C2-action induced by the action on the C2-representation V . We

obtain a bigraded sequence of approximations to F , called the strongly (p, q)-polynomial

approximations Tp,qF . The bigrading arises from the bigrading on C2-representations. The

homotopy fibre Dp,qF of the map Tp+1,qTp,q+1F → Tp,qF is such that the approximation

Tp+1,qTp,q+1Dp,qF is equivalent to the functorDp,qF itself and the approximation Tp,qDp,qF

is trivial. A functor with these properties is called (p, q)-homogeneous. Via a zig-zag of

Quillen equivalences, we prove that (p, q)-homogeneous functors are fully determined by

orthogonal spectra with a genuine action of C2 and a naive action of the orthogonal group

O(p, q) := O(Rp+qδ). The notation δ is used to represent the sign C2-representation, and

C2 acts on O(p, q) by conjugation. Hence, the fibres Dp,qF are (O(p, q)⋊C2)-spectra over

a non-trivial incomplete universe.
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Chapter 1

Introduction

1.1 Context

Taylor’s Theorem for real functions is well known. Given a real function f : R → R,

Taylor’s theorem describes how f can be approximated by a sequence of polynomial

functions, which are built using the derivatives of f . As a result, in order to study

complex functions, it suffices to study polynomial functions, which are well understood.

This concept of ‘breaking’ a function into more manageable pieces is one that can be

seen throughout other areas of mathematics. A well known example of this in algebraic

topology is the Postnikov tower of a CW space. Given a CW-complex X, one can construct

a tower (inverse system) of spaces {PnX}n≥0,

...

P2X F2X

P1X F1X

X ∗

1
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where each map Pn+1X → PnX is a fibration and each fibre FnX is an Eilenberg-Maclane

space K(πn(X), n). Since Eilenberg-MacLane spaces are well understood, one can study

the space X by studying the layers of it’s Postnikov tower.

Many objects studied in algebraic topology can be realised as functors. Functor calculus

is a method by which one can approximate a given functor by a sequence of functors with

‘nice’ properties, which we call polynomial functors. The resulting sequence of functors

is a similar concept to that of a Postnikov tower. Polynomial functors have properties

that mimic those of the polynomial functions used in differential calculus. For example,

an n-polynomial functor is also (n + 1)-polynomial and the (n + 1)-st derivative of an

n-polynomial functor is trivial.

There are many different branches of functor calculus designed to study different categories

of functors. Goodwillie calculus, originally constructed by Goodwillie [Goo90, Goo91,

Goo03], is used to study endofunctors on the category of topological spaces. The fibres of

the tower produced by Goodwillie calculus are classified by spectra with an action of the

symmetric group Σn. The main focus of this thesis is the orthogonal homotopy calculus

first constructed by Weiss in [Wei95]. It is the branch of functor calculus involving the

study of functors from the category of finite dimensional real vector spaces to the category

of pointed topological spaces. The tower for a functor F produced by orthogonal calculus

looks as follows,

...

T2F (V ) Ω∞
[(
S2V ∧Θ2

F

)
hO(2)

]

T1F (V ) Ω∞
[(
S1V ∧Θ1

F

)
hO(1)

]

F (V ) F (R∞)
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where each functor TnF is n-polynomial and the nth fibre of the tower is fully determined

by an orthogonal spectrum Θn
F with an action of the orthogonal group O(n).

Classic examples of functors studied using orthogonal calculus include:

• BO(−) : V 7→ BO(V )

• B Top(−) : V 7→ B Top(V )

• BDiffb(−) : V 7→ BDiffb(M × V )

where BO(V ) is the classifying space of the space of linear isometries on V, B Top(V ) is

the classifying space of the space of homeomorphisms on V and, for a smooth compact

manifold M , BDiffb(M × V ) is the classifying space of the space of bounded diffeomor-

phisms on M × V .

There exist functors, similar to those above, that have group actions. For example, the

functor BO(−) : V → BO(V ) that sends a G-representation to its classifying space. As

such, there is a natural motivation to construct functor calculi that study functors with

a group action. An equivariant orthogonal calculus of this type could have applications

in many different areas, such as the study of equivariant diffeomorphisms of G-manifolds.

Extensive research focused on equivariance in the Goodwillie calculus setting has been

carried out by Dotto [Dot16a,Dot16b,Dot17] and Dotto and Moi [DM16].

It is very difficult to produce variations of orthogonal calculus due to the nature of its

construction, see Section 1.3.2. Two successful variations are the unitary calculus and

calculus with reality constructed by Taggart in [Tag22b, Tag22c]. In these calculi, real

vector spaces are replaced by complex vector spaces, and in the calculus with reality

one takes into consideration the C2-action on complex vector spaces given by complex

conjugation. The fibres of the towers produced are classified by spectra with an action of

the unitary group U(n) for unitary calculus and spectra with an action of C2 ⋉ U(n) for

calculus with reality. Taggart’s calculus with reality provides a great insight of what can
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be expected from a genuine C2-equivariant orthogonal calculus, and a number of proofs

in this thesis were inspired by the extensions of Taggart.

1.2 C2-equivariant orthogonal calculus

The C2-equivariant orthogonal calculus gives a method for studying functors from C2-

representations to the category of C2-spaces. For example, the functor

BO(−) : V 7→ BO(V ),

where BO(V ) is the classifying space of the orthogonal group O(V ), which has a C2-action

induced by the action on the C2-representation V . Details of this functor, along with it’s

derivatives, are discussed in Section 6.4.

The main result of the thesis, Theorem A, is the classification of (p, q)-homogeneous func-

tors (defined in Section 5.1), which are the C2-equivariant analogue of functors that are

n-homogeneous in orthogonal calculus (functors with polynomial approximations concen-

trated in degree n). We show that (p, q)-homogeneous functors are fully determined by

genuine orthogonal C2-spectra with an action of the orthogonal group O(p, q) := O(Rp+qδ),

which has a specified C2-action given in Definition 3.2.8. That is, orthogonal spectra with

a genuine action of C2 and a naive action of O(p, q), denoted C2Sp
O[O(p, q)]. In this way,

we get a richer equivariant structure compared to that of calculus with reality [Tag22c],

in which the classification is in terms of spectra with a naive action of C2 ⋉ U(n).

Theorem A (Theorem 6.3.8). Let p, q ≥ 1. If F is a (p, q)-homogeneous functor, then

F is objectwise weakly equivalent to

V 7→ Ω∞[(S(p,q)V ∧Θp,q
F )hO(p,q)],

where Θp,q
F ∈ C2Sp

O[O(p, q)] and (−)hO(p,q) denotes homotopy orbits.
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Conversely, every functor of the form

V 7→ Ω∞[(S(p,q)V ∧Θ)hO(p,q)],

where Θ ∈ C2Sp
O[O(p, q)], is (p, q)-homogeneous.

The classification can alternatively be stated in terms of the following zig-zag of Quillen

equivalences between the calculus input category C2E0,0 (of functors from the category of

finite dimensional C2-representations with inner product and linear isometries to C2Top∗)

and the category of genuine orthogonal C2-spectra with an action of O(p, q).

Theorem B (Theorem 6.3.6 and Theorem 6.1.7). For all p, q ≥ 1, there exist Quillen

equivalences

(p, q) -homog-C2E0,0 O(p, q)C2Esp,q C2Sp
O[O(p, q)]

indp,q0,0 ε
∗

resp,q0,0 /O(p,q) (αp,q)!

α∗
p,q

Here (p, q) -homog-C2E0,0 denotes the (p, q)-homogeneous model structure on the input

category. This model structure captures the structure of (p, q)-homogeneous functors, in

that the cofibrant-fibrant objects are exactly the projectively cofibrant (p, q)-homogeneous

functors. This model structure is detailed in Section 5.2. The zig-zag of equivalences is

made up of two Quillen equivalences. Differentiation (also called induction) forms a

Quillen functor from the (p, q)-homogeneous model structure to an intermediate category

of functors O(p, q)C2Esp,q, which is in turn Quillen equivalent to the category of genuine

orthogonal C2-spectra with an action of O(p, q).

In comparison to the underlying calculus which is indexed over N, C2-equivariant or-

thogonal calculus is bi-indexed over N × N. As a result, we can define differentiation

in two directions (the p-direction and the q-direction). These different derivatives act

like partial derivatives in differential calculus; in particular, they commute. In Conjec-

ture 6.4.2, we predict that the two first derivatives of BO(−) are the orthogonal sphere

spectrum S : V 7→ SV (in the p-direction) and the shifted orthogonal sphere spectrum
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S⊗δ : V 7→ SV⊗Rδ
(in the q-direction), where Rδ is the sign representation of C2 (See

Example 2.1.11).

A key difference between the underlying and C2-equivariant orthogonal calculi is an in-

dexing shift, caused by this bi-indexing. In particular, τn in the underlying calculus is

defined using the poset of non-zero subspaces {0 ̸= U ⊆ Rn+1} and τp,q in the C2-calculus

is defined using the poset of non-zero subspaces {0 ̸= U ⊆ Rp,q}. To keep notation

consistent, the author introduced the new term strongly (p, q)-polynomial, see Definition

4.1.7. A functor in the input category for C2-equivariant orthogonal calculus is then

called (p, q)-polynomial if and only if it is both strongly (p+1, q)-polynomial and strongly

(p, q + 1)-polynomial. In particular, we define the strongly (p, q)-polynomial approxi-

mation functor Tp,q, and the (p, q)-polynomial approximation functor is the composition

Tp+1,qTp,q+1. A functor X is (p, q)-homogeneous if it is (p, q)-polynomial and the strongly

(p, q)-polynomial approximation Tp,qX is trivial.

Theorem C (Theorem 5.1.6). The homotopy fibres of the maps

Tp+1,qTp,q+1F → Tp,qF

are (p, q)-homogeneous, and can therefore be described in terms of genuine orthogonal

C2-spectra with an action of O(p, q), by the classification given in Theorem A.

A key result of the calculus, which makes the classification work, is the existence of the

following C2-homotopy cofibre sequences. These cofibre sequences tell us that derivatives

in C2-equivariant orthogonal calculus are well behaved. The notation C2Jp,q := C2JRp,q

denotes the (p, q)-th jet category whose objects are C2-representations and morphisms are

given by C2Jp,q(U, V ), which is a C2-space (see Definition 3.2.5).

Proposition D (Proposition 3.2.6). For all U, V,W in C2J0,0, the homotopy cofibre of

the map

C2JW (U ⊕X, V ) ∧ SW⊗X → C2JW (U, V )
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is C2-homeomorphic to C2JW⊕X(U, V ), where X = R or X = Rδ (see Example 2.1.11),

and SW⊗X denotes the one point compactification of W ⊗X.

To replace X with something of higher dimension would mean taking some kind of itera-

tion of cofibre sequences. This indicates that a potentially more involved approach may be

needed if one wants to construct this kind of result in a G-equivariant orthogonal calculus,

for an arbitrary group G which may have irreducible representations of dimension greater

than one. As a result, it is not obvious how derivatives should behave for the arbitrary G

setting, see Section 1.3.2.

1.3 Future work

In this chapter we provide a brief overview of some future work that naturally follows from

the content of this thesis. This acknowledges the importance of having a good working

model of C2-equivariant orthogonal calculus as a key step towards understanding a more

general equivariant orthogonal calculus.

1.3.1 Comparison to orthogonal calculus

As mentioned throughout this thesis, the C2-equivariant orthogonal calculus has been con-

structed in such a way that orthogonal calculus might be recovered via a forgetful functor.

Comparisons made between existing functor calculi have depended on the inclusion of sub-

automorphism groups. For example, comparisons made by Taggart [Tag21,Tag22a,Tag23]

between orthogonal calculus, unitary calculus and calculus with reality, relied on the sub-

group inclusions

O(n) ↪→ U(n) ↪→ U(n)⋊ C2.
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Similarly, one could expect that the comparison between C2-equivariant orthogonal cal-

culus and orthogonal calculus may depend on the inclusion

O(p, q) ↪→ O(p, q)⋊ C2.

Orthogonal calculus is indexed on the universe
∞⊕
i=1

R, meaning that functors in orthogonal

calculus take finite dimensional real inner product spaces as their input. The regular

representation, R[C2], of C2 is C2-isomorphic to the direct sum of the trivial and sign rep-

resentations of C2. That is, R[C2] ∼= R⊕Rδ. We index C2-equivariant orthogonal calculus

on the universe
∞⊕
i=1

R[C2], which means that functors in the C2-equivariant calculus take

finite dimensional real subrepresentations of
∞⊕
i=1

R[C2] with an inner product as their input.

These subrepresentations have the form Rp⊕Rqδ (see Section 3.1). We define C2E0,0 to be

the category of C2Top∗-enriched functors from the category of such representations with

linear isometries to C2Top∗, and C2-equivariant natural transformations (see Definition

3.1.5). We call C2E0,0 the input category for C2-equivariant orthogonal calculus.

Much like the calculus with reality case [Tag23], given a functor in the equivariant input

category C2E0,0, forgetting the C2-action on the target space and changing the universe

from
∞⊕
i=1

R[C2] to
∞⊕
i=1

R gives a functor in the input category for orthogonal calculus E0
(of functors from the category of finite dimensional real inner product spaces with linear

isometries to pointed topological spaces). That is, there is a functor from the equivariant

input category C2E0,0 to the underlying input category E0. It is not clear how this functor

behaves, since we choose the fine model structure on C2Top∗, rather than the coarse

model structure used in [Tag22c] (see Proposition 2.1.7 and Proposition 2.1.6).

In future work, these functors should be explored in more detail. In particular, the

most interesting comparisons will be made between the functors τp,q and Tp,q and their

non-equivariant equivalents τn and Tn. We expect, from comparing the indexing, that

the equivariant functors τp,q and Tp,q should correspond to the non-equivariant functors
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τp+q−1 and Tp+q−1. This is interesting, since this would mean that all functors Tp,q with

p+ q = n correspond non-equivariantly to the same functor Tn−1.

1.3.2 G-equivariant orthogonal calculus

The main difficulty in generalising the C2-equivariant orthogonal calculus to G-equivariant

orthogonal calculus, for an arbitrary group G, is the cofibre sequence of Proposition D.

The cofibre sequence holds for X = R and X = Rδ, since R and Rδ are one-dimensional

irreducible C2-representations. Replacing X with a representation of dimension greater

than one would require an iterated cofibre sequence. In particular, this indicates that

replicating this type of cofibre sequence for a general group G could be difficult, since G

might have irreducible representations with dimension greater than one.

This difficulty can be avoided if one restricts to abelian groups and the complex setting,

since every irreducible representation of a finite abelian group over C is one-dimensional.

Therefore, it should be possible to construct aG-equivariant unitary calculus, forG a finite

abelian group. It might be possible to then recover G-equivariant orthogonal calculus via

a complexification functor, similar to that used by Taggart [Tag21], however one should

be careful to check that this preserves the G-equivariance.

Naturally, one might then want to consider a change of group. Given a group homo-

morphism G → G′, one could attempt to construct comparison functors between G-

equivariant unitary calculus and G′-equivariant unitary calculus, and then also in the

orthogonal setting.

1.3.3 Global equivariant orthogonal calculus

It is well known that equivariant stable homotopy theory can be recovered from global

stable homotopy theory, see [Sch18]. This raises the following idea: If one could construct a
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‘global orthogonal calculus’, then it might be possible to recover G-equivariant orthogonal

calculus, for an arbitrary group G.

To construct global stable homotopy theory in [Sch18, Chapter 4], one starts by defining

what global equivalences and global fibrations of orthogonal spectra are. In particular,

this allows one to define a global model structure on the category of orthogonal spectra, in

which the weak equivalences are the global equivalences and the fibrations are the global

fibrations.

One could imagine replicating these definitions in the category of orthogonal functors

J0 → Top∗. That is, we could define a global model structure on the input category

for orthogonal calculus, which could be used in place of the projective model structure.

Repeating the same constructions of orthogonal calculus with this new model structure

should in theory produce a ‘global orthogonal calculus’. In future work, these definitions

should be made precise, and all of the constructions that follow should be checked carefully.

1.3.4 Comparing the equivariant orthogonal and Goodwillie cal-

culi

Comparisons between the non-equivariant orthogonal and Goodwillie calculi have been

made by Barnes and Eldred [BE16]. Extensive research focused on equivariance in the

Goodwillie calculus setting has been carried out by Dotto [Dot16a, Dot16b, Dot17] and

Dotto and Moi [DM16]. Differences in the implementation of equivariance make the

equivariant calculi difficult to compare. In particular, there is no obvious way to compare

the notions of (p, q)-polynomial in the C2-equivariant orthogonal calculus sense and J-

excisive in the equivariant Goodwillie sense, for a C2-set J . Never the less, we make the

following conjecture, which is analogous to [BE16, Theorem 3.5].

Let F : GTop∗ → GTop∗ and R[G] be the regular representation of G. Define the

restriction of F by

resF : V 7→ F (SV )



Chapter 1 Introduction 11

for V a finite dimensional sub-representation of ⊕∞R[G] with an inner product.

Conjecture 1.3.1. The G-equivariant Goodwillie calculus on a functor F is equivalent

to G-equivariant orthogonal calculus on the functor resF .



Chapter 2

Preliminaries

In this chapter we gather any necessary preliminary material that will aid in reading

the main text. We only provide a very concise summary of the material, and provide

references of where greater detail can be found in literature.

2.1 Group actions

The primary goal of the main text is to construct a C2-equivariant orthogonal calculus.

The functors of interest will take C2-representations as their input and output C2-spaces.

As such, we will rely heavily on standard notation and results from equivariant homotopy

theory. In this section, we recall various equivariant constructions and results that will

be used throughout the main text. The main resources for this section are Mandell and

May [MM02] and May [May96].

2.1.1 Topological G-spaces

In this section, we cover basic definitions and results of G-spaces for a compact topological

group G. This material has been detailed by Mandell and May in [MM02, Section 3.1].

12
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We will use Top to denote the category of compactly generated weak Hausdorff spaces,

and Top∗ to denote the category of pointed compact generated weak Hausdorff spaces

with the Quillen model structure below.

Proposition 2.1.1. Top∗ is a cofibrantly generated model category with weak equivalences

and fibrations given by weak homotopy equivalences and Serre fibrations. The generating

cofibrations ITop∗ and acyclic cofibrations JTop∗ are below, where the map Sn−1 → Dn is

inclusion as the boundary.

ITop∗ = {S
n−1
+ → Dn

+ : n ∈ N}

JTop∗ = {D
n
+ → (Dn × I)+ : n ∈ N}

Definition 2.1.2. A G-space is a topological space Y with a continuous left group action

of G

G× Y → Y, (g, y) 7→ gy

such that ey = y and g1(g2y) = (g1g2)y.

A pointed G-space is a pointed topological space X with a continuous left group action

of G, such that the basepoint x0 of X is fixed (i.e. gx0 = x0 for all g ∈ G).

An equivariant map of (pointed) G-spaces is a continuous (pointed) map f : X → Y such

that g ◦ f = f ◦ g for all g ∈ G.

Denote the category of pointed G-spaces and G-equivariant maps by GTop∗.

Examples 2.1.3. The following are examples of pointed G-spaces.

1. The trivial G-action on a (pointed) space X is given by gx = x for all g ∈ G, x ∈ X.

2. Let X, Y be pointed G-spaces. There is a G-action on the space of pointed contin-

uous maps Top∗(X, Y ) called conjugation, which is given by

(g ∗ f)(x) = (g ◦ f ◦ g−1)(x)
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for all x ∈ X, f ∈ Top∗(X, Y ) and g ∈ G.

One can construct a topological space from a G-space by taking fixed points. Taking fixed

points is the most important construction on G-spaces, and can be described as a functor.

Definition 2.1.4. Let H be a closed subgroup of G. Define the H-fixed point functor

(−)H : GTop∗ → Top∗ by X 7→ XH , where

XH = {x ∈ X : hx = x,∀h ∈ H}.

The fixed point functor (−)G has a left adjoint, which is equipping a topological space

with the trivial G-action, see [MM02, Result 3.1.4]. The quotient map

ε : G→ G/N,

for a normal subgroup N ⊴G, induces the inflation functor

ε∗ : G/N Top∗ → GTop∗,

which sends a G/N -space X to the underlying space X with G-action given by

gx = (ε(g))x.

The left adjoint to (−)G is exactly the inflation functor for N = G. Therefore, for a

G-space X and a space K

GTop∗(ε
∗K,X) ∼= Top∗(K,X

G).

With the conjugation group action on Top∗(X, Y ), GTop∗(X, Y ) is exactly the sub-

space (Top∗(X, Y ))G of Top∗(X, Y ). Hence, we topologise the set of G-equivariant maps

GTop∗(X, Y ) as a subspace of the space of continuous maps Top∗(X, Y ) with the compact-

open topology, via fixed points.
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The category GTop∗ is a closed symmetric monoidal category. The monoidal product is

given by the smash product X ∧ Y , equipped with the diagonal G-action defined by

g(x ∧ y) := gx ∧ gy.

The internal hom is given by the space of continuous maps Top∗(X, Y ) with the conjuga-

tion action, and there exists a G-equivariant homeomorphism

Top∗(X,Top∗(Y, Z))
∼=→ Top∗(X ∧ Y, Z).

Let G+ be the group G with a disjoint basepoint, and let Y be an H-space. One can

define an equivalence relation ∼ on the space G+ ∧ Y such that gh ∧ y ∼ g ∧ hy for all

g ∈ G, h ∈ H and y ∈ Y . We denote the quotient space G+ ∧ Y/ ∼ by G+ ∧H Y , which

has a G-action given by g′(g∧ y) = g′g∧ y for all g, g′ ∈ G and y ∈ Y . Moreover, if Y is a

G-space, then G+ ∧H Y ∼= (G/H)+ ∧ Y . The subgroup inclusion map i : H → G induces

the restriction functor i∗ : GTop∗ → H Top∗, which sends a G-space X to the underlying

space X with H-action given by hx = (i(h))x.

Proposition 2.1.5 ([MM02, Results 3.1.2 and 3.1.3]). Let H be a closed subgroup of G.

For a G-space X and an H-space Y

GTop∗(G+ ∧H Y,X) ∼= H Top∗(Y, i
∗X).

In particular, together with the fixed point adjunction discussed previously, this gives

[MM02, III.1.5]. That is, for G-spaces X and Y

GTop∗((G/H)+ ∧ Y,X) ∼= Top∗(Y,X
H).

We now give two model structures on the category GTop∗. They are called the coarse

and fine model structures respectively, and are related by a Quillen adjunction, where the
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underlying functor is the identity.

Proposition 2.1.6. (Coarse model structure) GTop∗ is a compactly generated, proper

model category with weak equivalences and fibrations defined as follows. A map f : X → Y

is a coarse weak equivalence or coarse fibration of pointed G-spaces if after forgetting the

G-action the underlying map f : X → Y is a weak homotopy equivalence or Serre fibration

of pointed spaces. Denote this model structure by Top∗[G]. The generating cofibrations

and acyclic cofibrations are respectively

{G+ ∧ i : i ∈ ITop∗}

{G+ ∧ j : j ∈ JTop∗}.

Proposition 2.1.7 ([MM02, Theorem 3.1.8]). (Fine model structure) GTop∗ is a com-

pactly generated, proper model category with weak equivalences and fibrations defined as

follows. A map f : X → Y is a fine weak equivalence or fine fibration of pointed G-spaces

if fH : XH → Y H is a weak homotopy equivalence or Serre fibration of pointed spaces

for each closed subgroup H ≤ G. Denote this model structure by GTop∗. The generating

cofibrations and acyclic cofibrations are respectively

IG = {G/H+ ∧ i : i ∈ ITop∗ , H ≤ G a closed subgroup}

JG = {G/H+ ∧ j : j ∈ JTop∗ , H ≤ G a closed subgroup}.

Moreover, the coarse model structure is monoidal, and so is the fine model structure

provided that G is a compact Lie group.

Remark 2.1.8. For the remainder of this document we will use the coarse model structure

on O(n)-spaces and O(p, q)-spaces, which we will denote by Top∗[O(n)] and Top∗[O(p, q)]

respectively. We will use the fine model structure on C2-spaces, which we denote by

C2Top∗. The word fine will often be dropped from notation, and a fine weak equiva-

lence/fibration of pointed C2-spaces will simply be called a weak equivalence/fibration of

C2-spaces. We let [−,−]C2 denote maps in the homotopy category of C2Top∗.
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2.1.2 G-representations

Orthogonal calculus is indexed on the universe R∞. That is, the functors considered

in orthogonal calculus take finite dimensional inner product spaces as their input. A

natural replacement for these inner product spaces in the C2-equivariant setting will be

elements from a universe of C2-inner product spaces. As such, in this section we recall

basic definitions from representation theory for groups, see for example the work of Howe

[How22]. Throughout the main text we will always be working over R, so that all vector

spaces are real.

Definition 2.1.9. A representation of a group G on an inner product space V is a map

Φ : G× V → V such that for all g, g1, g2 ∈ G, u, v ∈ V and e the identity element of G

• Φ(g) : V → V , v 7→ Φ(g, v) is linear

• Φ(e, v) = v

• Φ(g1,Φ(g2, v)) = Φ(g1g2, v)

and the inner product on V is G-invariant (⟨Φ(g, u),Φ(g, v⟩ = ⟨u, v⟩). The inner product

space V is called a G-representation. This can also be defined in terms of a map from G

to GL(V ).

Remark 2.1.10. In general, a G-representation need not be an inner product space, how-

ever we will assume that all representations have an inner product throughout this thesis.

Example 2.1.11. Let G = C2 = {e, σ}. The trivial representation R and the sign

representation Rδ of C2 have the C2-actions defined below.

σ(x) = x (x ∈ R)

σ(y) = −y (y ∈ Rδ)

These are the indecomposable C2-representations, in that they cannot be decomposed as

direct sums of subrepresentations, see Definition 2.1.16.
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Example 2.1.12. The regular representation of C2 = {e, σ} is defined as the following

vector space

R[C2] = {λ1e+ λ2σ : λ1, λ2 ∈ R}

with basis elements e, σ. One can decompose

R[C2] = R⟨e+ σ⟩ ⊕ R⟨e− σ⟩.

There is a C2-equivariant isomorphism R → R⟨e + σ⟩ defined by x 7→ x(e + σ), and a

C2-equivariant isomorphism Rδ → R⟨e− σ⟩ defined by y 7→ y(e− σ). Therefore, R[C2] is

C2-isomorphic to R ⊕ Rδ, which is given the diagonal C2-action, since it is a direct sum

of C2-representations (see below).

Example 2.1.13. The direct sum of two G-representations is a G-representation with

the diagonal G-action. Similarly, the tensor product of two G-representations is a G-

representation, whose underlying vector space is the usual tensor product of vector spaces

and G-action is the diagonal G-action, e.g. R⊗ Rδ = Rδ and Rδ ⊗ Rδ = R.

Much like with G-spaces, we can also take fixed points of G-representations (see Definition

2.1.4).

Definition 2.1.14. Let H be a closed subgroup of G, and V be a G-representation.

Define the H-fixed points of V by

V H = {v ∈ V : hv = v,∀h ∈ H}.

Remark 2.1.15. We will use the notation (V H)⊥ to denote the orthogonal complement of

V H in V . For example, if V is the regular representation of C2 (see Example 2.1.12), then

V C2 = R and (V C2)⊥ = Rδ.

One can talk about subspaces of a vector space. This notion extends when the vector

space is given a group action.
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Definition 2.1.16. Let (V,Φ) be a G-representation. A subrepresentation of (V,Φ) is

a linear subspace W ⊆ V that is preserved by the G-action. That is, Φ|G×W defines a

G-action on W.

Lastly, we recall the notion of a G-universe. Choosing a G-universe allows one to specify

which G-representations are to be considered.

Definition 2.1.17. A G-universe U is a countable direct sum of G-representations such

that U contains:

• the trivial G-representation,

• countably many copies of each of its subrepresentations.

A G-universe is called complete if is contains every irreducible representation of G.

Example 2.1.18. For G = C2. The countable direct sum of the regular representation
∞⊕
i=1

R[C2] forms a complete C2-universe.

2.1.3 G-vector bundles

Vector bundles are used to define the n-th jet categories Jn in orthogonal calculus, see

Definition 2.2.1. The analogous (p, q)-th jet categories C2Jp,q in the C2-calculus are defined

using C2-vector bundles, see Definition 3.2.1.

We now briefly introduce for later convenience the definition of a G-vector bundle. This is

an equivariant vector bundle with respect to an action of a compact Lie group G. These

bundles are discussed in more detail by May in [May96, Section 14.1]. Again, we will be

working over R.

Definition 2.1.19. Let G be a compact Lie group and X be a G-space. A G-vector

bundle over X is a vector bundle map ρ : E → X and a G-action on the total space E

such that:
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• ρ is a G-equivariant map,

• if g ∈ G, then ρ−1(x)→ ρ−1(gx) is a linear map for all x ∈ X.

That is, G acts linearly on the fibres.

Example 2.1.20. [May96, Section 14.2] A G-vector bundle over a point is precisely the

information of a G-representation.

An important example of a G-vector bundle is the bundle E(V, V ′) used by Mandell and

May in [MM02] to describe G-spectra. These are defined analogously to the bundles

γ1(U, V ) used in orthogonal calculus, see Definition 2.2.1.

Example 2.1.21. [MM02, Definition 2.4.1] Let V, V ′ be elements of some G-universe of

G-representations. Let J (V, V ′) be the G-space of linear isometries from V to V ′ with

G-action given by conjugation. Let E(V, V ′) be the subbundle of the product G-bundle

J (V, V ′)× V ′ over J (V, V ′) defined by

E(V, V ′) = {(f, x) : f ∈ J (V, V ′), x ∈ f(V )⊥}

where f(V )⊥ denotes the orthogonal complement of the image of f . The group G acts on

E(V, V ′) via the diagonal action.

We now recall the definition for the Thom space of a vector bundle.

Definition 2.1.22. [May99, Section 23.5] Let f : E → B be a real vector bundle. Let

D(E) and S(E) denote the unit disk and sphere fibre bundles of f respectively, with

respect to any choice of metric. The Thom space of the vector bundle f is the pointed

topological quotient space T (E) = D(E)/S(E). The basepoint of T (E) is the image of

S(E) under the quotient.

If the base space B is compact, T (E) is homeomorphic to the one point compactification

of E. The point at infinity is exactly the basepoint given by S(E) under the quotient.
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Remark 2.1.23. In particular, if f : E → B is a G-vector bundle, then T (E) inherits a

G-action from the G-action on E, as G acts through isometries, and G acts as the identity

on the point at infinity.

2.1.4 The equivariant Freudenthal suspension theorem

Many of the key results of orthogonal calculus are proven using connectivity arguments.

As such, the Freudenthal suspension theorem is heavily relied upon. Analogously, the

C2-calculus depends on the equivariant Freudenthal suspension theorem. Since the equiv-

ariant Freudenthal suspension theorem does not follow from the non-equivariant theorem

in an obvious way, we state the theorem here. The content of this section can be found

in [May96, Chapters 9 and 11].

Given a G-representation V , one can define disks and spheres (since V has an inner

product, see Remark 2.1.10). Let S(V ) denote the unit sphere of V and D(V ) denote the

unit disk of V . Let SV be the one point compactification of V , with basepoint given by

the point at infinity. The space SV inherits a G-action from the action on V , and the

point at infinity has trivial G-action. Alternatively, SV is homeomorphic to the quotient

D(V )/S(V ), where the image of S(V ) under the quotient corresponds to the point at

infinity. In particular, when V is the trivial n-dimensional G-representation this gives the

usual n-sphere Sn.

We now define two functors which give a notion of equivariant suspension and loops.

They are analogous to the standard ΣnX = Sn ∧X and ΩnX = Top∗(S
n, X) functors for

pointed spaces.

Definition 2.1.24. Let X be a G-space and V be a G-representation, then the V -th

suspension functor and V -th loop space functor are defined by

ΣVX = SV ∧X,

ΩVX = Top∗(S
V , X).
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As expected from Section 2.1.1, G acts on ΣVX diagonally and on ΩVX by conjugation.

As with the standard suspension and loops functors, these functors form an adjunction

on G-spaces

ΣV : GTop∗ ⇄ GTop∗ : Ω
V .

Now we turn to discussing the connectivity of a G-space.

Given a G-space X, one can take homotopy groups of the space XH for each closed

subgroup H of G. Therefore, the connectivity of X can be described as a dimension

function, see [May96, Definition 11.2.1].

Definition 2.1.25. A dimension function v is a function from the set of conjugacy classes

of closed subgroups of G to the integers. A G-space X is v-connected, if each XH is a

v(H)-connected space.

Examples 2.1.26. [May96, Definition 11.2.1] The following are examples of dimension

functions, where G is a group and H is a closed subgroup of G:

1. For n ∈ Z, n∗ : H 7→ n.

2. For V a G-representation, |V ∗| : H 7→ dim(V H).

3. For X a G-space, c∗(X) : H 7→ c(XH), where c(−) is the connectivity of the space.

If XH is not path connected and non-empty, then set cH(X) equal to −1.

One can also use dimension functions to describe the connectivity of a map between

G-spaces.

Definition 2.1.27. Let X and Y be G-spaces. A map f : X → Y is v-connected, if each

fH : XH → Y H is v(H)-connected.

That is, for each closed subgroup H, fH is injective on homotopy groups of degree less

than v(H) and surjective on homotopy groups of degree less than or equal to v(H).
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We can now state the equivariant Freudenthal suspension theorem, a proof of which by

May can be found in [May96, Section 11.5].

Theorem 2.1.28 ([May96, Theorem 9.1.4]). (Equivariant Freudenthal suspension the-

orem) Let Y be a pointed G-space, and V be a G-representation. Then the unit map

η : Y 7→ ΩVΣV Y , of the adjunction ΣV : GTop∗ ⇄ GTop∗ : Ω
V , is v-connected for any v

satisfying

1. v(H) ≤ 2cH(Y ) + 1, ∀ subgroups H such that V H ̸= 0.

2. v(H) ≤ cK(Y ), ∀ subgroup pairs K < H such that V K ̸= V H .

Therefore, the suspension map

ΣV : [X, Y ]G → [ΣVX,ΣV Y ]G

is surjective if dim(XH) ≤ v(H), and bijective if dim(XH) ≤ v(H) − 1 for all closed

subgroups H of G, where [−,−]G denotes the set of homotopy classes of based G-maps.

Note that when G = e, this is exactly the standard non-equivariant Freudenthal suspen-

sion theorem, since condition 2 is empty.

For G = C2, the theorem becomes much easier to interpret, since there are only a maxi-

mum of three conditions on the dimension function v.

Theorem 2.1.29. (C2-equivariant Freudenthal suspension theorem) Let Y be a pointed

C2-space and V be a C2-representation. The map η : Y 7→ ΩVΣV Y is v-connected for any

v satisfying

1. v(e) ≤ 2ce(Y ) + 1, if V ̸= 0.

2. v(C2) ≤ 2cC2(Y ) + 1, if V C2 ̸= 0.

3. v(C2) ≤ ce(Y ), if V ̸= V C2.
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Given the non-equivariant Freudenthal suspension theorem, see [BR20, Theorem 1.1.10],

one would expect the C2-equivariant suspension theorem to look like:

The map η : Y 7→ ΩVΣV Y is v-connected for any v satisfying

1. v(e) ≤ 2ce(Y ) + 1.

2. v(C2) ≤ 2cC2(Y ) + 1.

However, there are counter examples that demonstrate why this is false. These are dis-

cussed by May in [May96, Section 11.2], and we just state one of them here.

If V is the sign representation Rδ of C2 and n ≥ 3, then the above ‘expected theorem’

says that the map

ΣV : [Sn, Sn]G → [ΣV Sn,ΣV Sn]G

is an isomorphism. However, [Sn, Sn]G = Z and [ΣV Sn,ΣV Sn]G = Z2. Hence, the map

ΣV is not surjective.

In this way, the third condition of the C2-equivariant Freudenthal suspension theorem can

be thought of as the extra condition needed to make the ‘expected theorem’ work.

2.2 Orthogonal calculus

The aim of the main text is to extend the theory of orthogonal calculus to the C2-

equivariant context. To do this, we will work through the same constructions of the

underlying calculus, while adjusting the categories and results to account for the newly

introduced group actions. As such, in this section we provide an overview of these con-

structions for comparison. The main details of these constructions were originally by

Weiss [Wei95], however towards the classification theorems we choose to follow the model

categorical approach of Barnes and Oman [BO13]. Since the proofs of many results in
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the C2-equivariant setting mimic those in the underlying calculus, we chose to omit them

here.

Many objects studied in algebraic topology can be realised as functors. Using functor cal-

culus, one can approximate a given functor by a sequence of functors with ‘nice’ properties.

In doing so, we make analysis of the original functor much more simple, by ’breaking’ it

into smaller, more manageable parts. The resulting sequence of functors is a similar con-

cept to that of a Postnikov tower, in which we approximate a CW-complex X by a tower

of fibrations, with fibres Eilenberg-MacLane spaces. Language from differential calculus is

adopted, since this is comparable to the Taylor series for a function, in which the function

is approximated by polynomial functions. Hence, we can justify labelling this a form of

calculus.

Orthogonal homotopy calculus is the branch of functor calculus involving the study of

functors from the category of finite dimensional real vector spaces to the category of

pointed topological spaces. Given an input functor F , the end result is a Taylor tower

of approximations, built from polynomial functors TnF and spectra Θn
F with an action of

O(n), for n ≥ 1.

...

T2F (V ) Ω∞
[(
S2V ∧Θ2

F

)
hO(2)

]

T1F (V ) Ω∞
[(
S1V ∧Θ1

F

)
hO(1)

]

F (V ) F (R∞)

The fibres of the tower are homogeneous functors. The main result of the calculus is

known as the classification theorem. It allows us to characterise n-homogeneous functors

as functors that are completely determined by orthogonal spectra with an action of O(n).

Therefore, giving a means to obtain unstable information from stable data. It can be
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stated as a zig-zag of equivalences between the stable model structure on orthogonal

spectra with an action of O(n) and the n-homogeneous model structure.

n -homog- E0 O(n)En SpO[O(n)]
indn0 ε∗

resn0 /O(n) (αn)!

α∗
n

2.2.1 The functor categories

Let J denote the category of finite dimensional real subspaces of R∞ with an inner product

and linear isometries. We now define a sequence of Top∗-enriched categories Jn for n ⩾ 0,

which we will use to define intermediate categories O(n)En of enriched functors. We begin

by defining the following vector bundle γn(U, V ), that will be used to build Jn.

Definition 2.2.1. For U, V ∈ J , define the n-th complement bundle γn(U, V ) to be the

vector bundle on J (U, V ), whose total space is given by

γn(U, V ) = {(f, x) : f ∈ J (U, V ), x ∈ Rn ⊗ f(U)⊥}

where f(U)⊥ denotes the orthogonal complement of the image of f .

This is a sub-bundle of the product bundle whose total space is J (U, V )× (Rn ⊗ V ).

Denote the Thom space of the bundle γn(U, V ) by Jn(U, V ). This Thom space is the one

point compactification of γn(U, V ), since J (U, V ) is compact. Each Jn(U, V ) is a pointed

space.

Remark 2.2.2. In particular, J0(U, V ) = T (γ0(U, V )) is equal to J (U, V )+.

There is a composition rule induced by the vector bundle map

γn(V,W )× γn(U, V )→ γn(U,W )

((f, x), (g, y)) 7→ (fg, x+ (id⊗f)(y)).



Chapter 2 Preliminaries 27

Passing to Thom spaces then yields the composition law

Jn(V,W ) ∧ Jn(U, V )→ Jn(U,W ).

One can check that this composition is a continuous map. Moreover, the composition

maps are unital and associative.

We can now define the categories Jn.

Definition 2.2.3. For each n ⩾ 0, let the n-th jet category Jn be the Top∗[O(n)]-enriched

category whose objects are finite dimensional real inner product spaces, and whose mor-

phism spaces are given by Jn(U, V ) = T (γn(U, V )). Composition in Jn is defined as

above.

The action of O(n) on the space of morphisms Jn(U, V ) is induced by the O(n)-action on

Rn.

The following theorem by Weiss demonstrates that it is possible to construct Jn+1 from

Jn. Note that there is a functor Jn → Jn+1 induced by the standard inclusion Rn → Rn+1

as the first n coordinates (see Section 2.2.3).

Proposition 2.2.4 ([Wei95, Theorem 1.2]). For all U, V in J0 and for all n ⩾ 0,

Jn(R⊕ U, V ) ∧ Sn → Jn(U, V )→ Jn+1(U, V ).

is a homotopy cofibre sequence.

We are now ready to define the intermediate functor categories O(n)En.

Definition 2.2.5. Define En to be the category of Top∗-enriched functors Jn → Top∗

and natural transformations. Define the n-th intermediate category O(n)En to be the

category of Top∗[O(n)]-enriched functors Jn → Top∗[O(n)] and O(n)-equivariant natural

transformations.
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Remark 2.2.6. Note that Top∗[O(n)] is equipped with the coarse model structure, see

Proposition 2.1.6. The category E1 is equivalent to the category of orthogonal spectra

SpO by definition.

The input functors for orthogonal calculus are those objects from the category E0. Some

examples of such functors are listed below.

Examples 2.2.7.

• Jn(U,−) : V 7→ Jn(U, V )+

• O(−) : V 7→ O(V )+

• Top(−) : V 7→ Top(V )+

where O(V ) is the space of linear isometries on V , and Top(V ) is the space of homeomor-

phisms on V . Other examples can be produced by replacing O(V ) and Top(V ) by their

classifying spaces BO(V )+ and B Top(V )+.

Remark 2.2.8. We denote the set of natural transformations between E,F ∈ En by

Natn(E,F ). There is a natural topology that one can define on Natn(E,F ), by expressing

Natn(E,F ) as the enriched end below, see [Kel05, Section 2.2].

Natn(E,F ) =

∫
V ∈Jn

Top∗(E(V ), F (V )) ⊆
∏

V ∈Jn

Top∗(E(V ), F (V ))

Hence, we can equip Natn(E,F ) with the appropriate subspace topology of the product

space.

In a similar way, we can describe a functor E ∈ En in terms of an enriched coend, by the

enriched Yoneda lemma (see for example [Kel05, Section 3.10]).

∫ W∈Jn

E(W ) ∧ Jn(W,−) ∼= E.
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There exists a projective model structure on E0, by [MMSS01, Theorem 6.5], in which

weak equivalences and fibrations are defined objectwise.

Proposition 2.2.9 ([BO13, Lemma 6.1]). There exists a proper, cellular model structure

on E0, where f : E → F is a weak equivalence (resp. fibration), if f(V ) : E(V ) → F (V )

is a weak homotopy equivalence (resp. Serre fibration) for all V ∈ J0. We call this

model structure the projective model structure on E0 and denote it by E0. It is cofibrantly

generated by the following sets of generating cofibrations and generating acyclic cofibrations

respectively

{J0(V,−) ∧ i : i ∈ ITop∗}

{J0(V,−) ∧ j : j ∈ JTop∗},

where V ∈ J0, and ITop∗, JTop∗ are the generating cofibrations and acyclic cofibrations of

the standard Quillen model structure on Top∗ respectively (see Proposition 2.1.1).

2.2.2 The intermediate categories as spectra

The intermediate category O(n)En is Quillen equivalent to the category of orthogonal

spectra with an action of O(n), when it is equipped with the n-stable model structure.

This Quillen equivalence forms half of the zig-zag of equivalences that gives the classifica-

tion of n-homogeneous functors, see [BO13, Theorem 10.1]. In this section, we summarise

the construction this Quillen equivalence.

First we give the n-stable model structure on the intermediate category O(n)En. It

is a modification of the stable model structure on orthogonal spectra, see Barnes and

Roitzheim [BR20, Section 2.3]. We begin by first defining homotopy groups on objects

of O(n)En. These homotopy groups detect the weak equivalences of the n-stable model

structure.
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Definition 2.2.10. Define the n-homotopy groups of X ∈ O(n)En by

nπk(X) = coliml πnl+kX(Rl),

where k ∈ Z and the colimit runs over the diagram

. . . πnl+kX(Rl) πnl+k+n(X(Rl) ∧ Sn) πnl+k+nX(Rl+1) . . .
σX (−)∧Sl σX (−)∧Sl

in which σX is the structure map of X (see Definition 2.2.11).

Define a map f : X → Y in O(n)En to be an nπ∗-equivalence if the induced map on

n-homotopy groups nπkf : nπkX → nπkY is an isomorphism for all k.

Now we identify the fibrant objects of the n-stable model structure. These are the nΩ-

spectra, see [BO13, Definition 7.9].

Definition 2.2.11. An object X of O(n)En has structure maps

σX : SnV ∧X(W )→ X(W ⊕ V ).

The object X is called an nΩ-spectrum if its adjoint structure maps

σ̃X : X(W )→ ΩnVX(W ⊕ V )

are weak homotopy equivalences, for all V,W ∈ J0.

Recall from Remark 2.2.6 that Top∗[O(n)] is equipped with the coarse model structure.

Proposition 2.2.12 ([BO13, Proposition 7.14]). There is a cofibrantly generated, proper,

cellular model structure on O(n)En called the n-stable model structure. The weak equiva-

lences are the nπ∗-equivalences. The fibrations are the maps f : X → Y such that f(V )
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is a Serre fibration for each V ∈ J0 and such that the diagram

X(V ) ΩnWX(V ⊕W )

Y (V ) ΩnWY (V ⊕W )

is a homotopy pullback for all V,W ∈ J0. The fibrant objects are the nΩ-spectra. Denote

this model category by O(n)Esn.

This model structure is constructed as a left Bousfield localisation of the levelwise model

structure O(n)E ln ([MMSS01, Theorem 6.5]), where fibrations and weak equivalences are

defined levelwise.

To relate the intermediate categories to orthogonal spectra with an action of O(n),

SpO[O(n)], we define explicitly a functor α∗
n. The construction of this functor is detailed

by Barnes and Oman in [BO13, Section 8], and it forms a Quillen equivalence between

these categories. Recall that the category of orthogonal spectra SpO is equivalent to the

category E1 by definition (see Remark 2.2.6). Therefore, the categories SpO[O(n)] and

E1[O(n)] are also equivalent. The category SpO[O(n)] has a stable model structure, where

weak equivalences and fibrations are defined by the underlying stable model structure on

SpO.

Definition 2.2.13. Define a Top∗-enriched functor αn : Jn → J1 by

U 7→ Rn ⊗ U := nU

on objects, and

Jn(U, V )→ J1(nU, nV )

(f, x) 7→ (Rn ⊗ f, x)

on morphism spaces.
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This induces a well defined functor

SpO[O(n)] O(n)En

FunTop∗(J1,Top∗[O(n)]) FunTop∗[O(n)](Jn,Top∗[O(n)])

α∗
n

which is precomposition with αn on objects, where FunC(−,−) denotes the category of

C-enriched functors.

Given Θ ∈ SpO[O(n)], there are two O(n)-actions on the image α∗
nΘ(V ) = Θ(nV ). The

first action is the internal action on Θ(nV ) induced by the action on nV , which is denoted

by Θ(g ⊗ V ) for g ∈ O(n). The second is the external action from Θ(nV ) being an

O(n)-space, which is denoted by gΘ(nV ) for g ∈ O(n). These two actions commute by

construction. Since we want the functor α∗Θ to be Top∗[O(n)]-enriched, we define the

action of O(n) on Θ(nV ) as the composition

Θ(g ⊗ V ) ◦ gΘ(nV ).

The left Kan extension along αn forms a left adjoint to α∗
n. Using the notation (αn)! to

denote taking the left Kan extension along αn, this can be described by the Top∗[O(n)]-

enriched coend

((αn)!(Θ))(V ) =

U∈Jn∫
J1(nU, V ) ∧Θ(U).

Theorem 2.2.14 ([BO13, Proposition 8.3]). The adjoint pair

(αn)! : O(n)Esn ⇄ SpO[O(n)] : α∗
n

is a Quillen equivalence, where SpO[O(n)] is equipped with the stable model structure.
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2.2.3 Derivatives

As suggested by the name orthogonal calculus, one can expect to define a notion of differ-

entiation for functors. The derivatives of input functors play a key role in the structure of

the tower of approximations produced by orthogonal calculus. We construct these deriva-

tives by defining an adjunction between the intermediate categories. In particular, by the

previous section, this says that the derivatives of an input functor are given by spectra

with an action of O(n).

Let n ≥ m. Consider the map

(inm)V,W : γm(V,W )→ γn(V,W )

(f, x) 7→ (f, (inm ⊗ id)(x))

where inm : Rm → Rn is the standard inclusion as the first m entries. Passing to Thom

spaces yields a sequence of enriched functors

J0

i10−→ J1

i21−→ J2

i32−→ J3 → . . .

Definition 2.2.15. Let m ⩽ n. Define the restriction functor resnm : En → Em as

precomposition with inm : Jm → Jn.

Define the induction functor indn
m : Em → En by

(indn
m F ) (U) = Natm(Jn(U,−), F ).

Remark 2.2.16. Note that the restriction functor resnm is often omitted from notation. For

a functor X ∈ Em, we call indn
mX the (n −m)-derivative of X, denoted by X(n−m). In

particular, X(n) = indn
0 X is the n-th derivative of an input functor X ∈ E0.
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With the addition of inflation-orbit change-of-group functors for spaces, see [BO13, Section

4], this defines an adjunction

resn0 /O(n) : O(n)En ⇄ E0 : indn
0 ε

∗

which is upgraded to a Quillen equivalence when the categories are equipped with the

stable and homogeneous model structures, see [BO13, Theorem 10.1].

The following proposition defines induction iteratively as a homotopy fibre, and acts as a

tool for calculating the derivatives.

Proposition 2.2.17 ([Wei95, Theorem 2.2]). For all U ∈ J0 and for all F ∈ En, there

exists a homotopy fibre sequence

indn+1
n F (U)→ F (U)→ ΩnF (U ⊕ R)

where ΩnY is the space of pointed maps Sn → Y , for a pointed topological space Y .

Proof. From Proposition 2.2.4 there exists a homotopy cofibre sequence

Jn(R⊕ U,−) ∧ Sn → Jn(U,−)→ Jn+1(U,−).

Pick F ∈ En and apply the contravariant functor Natn(−, F ) to the cofibre sequence

above. This yields a homotopy fibre sequence

Natn (Jn(R⊕ U,−) ∧ Sn, F )← Natn (Jn(U,−), F )← Natn (Jn+1(U,−), F ) .

Application of the Yoneda Lemma and the definition of indn+1
n gives the desired fibre

sequence.

Example 2.2.18. [Wei95, Example 2.7] The first derivative of BO(−) is the orthogonal

sphere spectrum S : V 7→ SV . The second derivative of BO(−) is a shifted sphere

spectrum, and the third derivative of BO(−) is a shifted Z/3-Moore spectrum.
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2.2.4 Polynomial functors

In differential calculus, a real function is approximated by polynomial functions, which

are the partial sums of the associated Taylor series. Analogously, polynomial functors are

a crucial ingredient in orthogonal calculus. In particular, the n-polynomial approximation

functors form the layers of the tower of approximations. As suggested by the name, these

functors have similar properties to polynomial functions. They are discussed in detail by

Weiss [Wei95, Section 5] and Barnes and Oman [BO13, Sections 5 and 6].

Definition 2.2.19. Let X ∈ E0. Define the functor τnX ∈ E0 by

τnX(V ) = Nat0(Sγn+1(V,−)+, X).

The functor τn can be defined in a different way using [Wei95, Proposition 4.2].

τnX(V ) = holim
0̸=U⊆Rn+1

X(U ⊕ V ).

This homotopy limit is taken over the poset of non-zero subspaces of Rn+1 and is con-

structed to take into account that this poset is internal to Top∗. This is discussed in more

detail by Weiss in [Wei98].

Now we define what it means for a functor to be n-polynomial. This is exactly Weiss’

definition of polynomial of degree less than or equal to n [Wei95, Definition 5.1].

Definition 2.2.20. A functor X ∈ E0 is defined to be n-polynomial if and only if the

map

(ρn)X : X(V )→ τnX(V )

is a weak homotopy equivalence, for all V ∈ J0.

In differential calculus, an n-polynomial function is also (n + 1)-polynomial. The same

property holds for polynomial functors. This is [Wei95, Proposition 5.4], which is also

found in [BO13, Proposition 6.7].
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Proposition 2.2.21 ([Wei95, Proposition 5.4]). Let X ∈ E0. If X is n-polynomial, then

it is also (n+ 1)-polynomial.

The fibre of the mapX → τnX determines how far a functorX is from being n-polynomial,

and this fibre is exactly the (n + 1)-derivative of X. The following Proposition [Wei95,

Proposition 5.3] describes how this fibre can be calculated.

Proposition 2.2.22 ([Wei95, Proposition 5.3]). For all X ∈ E0 and for all V ∈ J0, there

exists a natural fibration sequence

X(n+1)(V )→ X(V )
(ρn)X−−−→ τnX(V ).

In particular, Proposition 2.2.22 describes the relation between differentiation and poly-

nomial functors. From this fibration sequence, one can see that if a functor X is n-

polynomial, then X(n+1) is contractible. This is analogous to an n-polynomial function

having zero (n+ 1)-st derivative.

Definition 2.2.23. Let X ∈ E0. Define the n-polynomial approximation functor of X by

TnX = hocolim

(
X

ρX−→ τnX
τnρX−−−→ τ 2nX

τ2nρX−−−→ . . .

)
.

There is a natural transformation ηn : X → TnX, which is the map of homotopy colimits

hocolim(X → X → X → . . . )

hocolim
(
X → τp,qX → τ 2p,qX → . . .

)η

There are also maps TnX → Tn−1X, induced by the inclusions Rn−1 → Rn.

As the name would suggest, TnX ∈ E0 is an n-polynomial functor. This can be proven

using relations between homotopy limits and sequential homotopy colimits, see [Wei95,

Theorem 6.3] and [Wei98]. It is also true that if the functor X is already n-polynomial,
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then X ≃ TnX, see [Wei95, Theorem 6.3]. In particular, this implies that TmTnX ≃ TnX

for any m ≥ n.

Example 2.2.24. If X is 0-polynomial, then X(V ) ≃ X(V ⊕ R). That is, X is homo-

topically constant. In particular, the 0-polynomial approximation of a functor X is the

constant functor which takes value

T0X(V ) = X(R∞) := hocolimnX(Rn)

for each V ∈ J0.

To better understand polynomial functors, we construct a model structure on the input

category E0, whose fibrant objects are the n-polynomial functors. We call this the n-

polynomial model structure.

Proposition 2.2.25 ([BO13, Proposition 6.5]). There is a proper model structure on

E0 such that a morphism f is a weak equivalence if and only if Tnf is a levelwise weak

equivalence. The fibrant objects are the n-polynomial functors. A morphism f is a fibration

if and only if it is an objectwise fibration and the diagram

X Y

TnX TnY

f

ηη

Tnf

is a homotopy pullback square in E0. We call this the n-polynomial model structure, and

denote it by n -poly- E0.

Proof. The model structure can be constructed as the Bousfield-Friedlander localisation

of the projective model structure at the functor Tn, see Proposition 2.2.9. This proves

the existence of the model structure, and guarantees that it is proper. Alternatively, one

can construct the n-polynomial model structure as the left Bousfield localisation of the
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projective model structure with respect to the set of maps

Sn = {Sγn+1(V,−)+ → J0(V,−) : V ∈ J0}.

This construction guarantees that the model structure is also cellular. Since Bousfield-

Friedlander and left Bousfield localisations do not change cofibrations, and the fibrant

objects of both model structures are the same, these two constructions do indeed agree.

2.2.5 Homogeneous functors

The fibre of the map TnX → Tn−1X is n-polynomial and has trivial (n − 1)-polynomial

approximation. Functors of this type are called n-homogeneous. The main result of the

calculus is that n-homogeneous functors are completely determined by orthogonal spectra

with an action of O(n). Therefore, these fibres are much more computable.

Definition 2.2.26. Let X ∈ E0. X is defined to be n-homogeneous if it is n-polynomial

and Tn−1X(V ) is contractible for all V ∈ J0.

The following example is [Wei95, Example 5.7]. It forms one half of the classification

theorem.

Example 2.2.27. Let Θ ∈ SpO[O(n)]. The functor in E0 defined by

V 7→ Ω∞[(SnV ∧Θ)hO(n)]

is n-homogeneous.

Proposition 2.2.28. The homotopy fibre DnX = hofibre[TnX → Tn−1X] is an n-

homogeneous functor.

Proof. One can prove, using an application of the Five Lemma, that the homotopy fibre

of a map between two n-polynomial functors is also n-polynomial. We know already that
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TnX is n-polynomial. Tn−1X is also n-polynomial, given that it is (n−1)-polynomial and

using [Wei95, Proposition 5.4]. Hence, DnX is n-polynomial.

Using that Tn and Tn−1 commute with homotopy fibres, and in particular that

Tn−1TnX ≃ TnTn−1X ≃ Tn−1X,

we get

Tn−1DnX = Tn−1 hofibre[TnX → Tn−1X]

≃ hofibre[Tn−1TnX → T 2
n−1X]

≃ hofibre[TnTn−1X → Tn−1X]

≃ hofibre[Tn−1X → Tn−1X]

≃ ∗

Thus, DnX is n-homogeneous.

As with n-polynomial functors, there is a model structure on the input category E0 that

captures the structure of the n-homogeneous functors.

Proposition 2.2.29 ([BO13, Proposition 6.9]). There exists a model structure on E0
whose cofibrant-fibrant objects are the n-homogeneous functors that are cofibrant in the

projective model structure on E0. Fibrations are the same as for the n-polynomial model

structure and weak equivalences are morphisms f such that resn0 ind
n
0 Tnf is an objectwise

weak equivalence. We call this the n-homogeneous model structure on E0 and denote it by

n -homog- E0.

There is a Quillen adjunction

Id : n -homog- E0 ⇄ n -poly- E0 : Id .
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Proof. Right Bousfield localisation of the n-polynomial model structure with respect to

the set

Kn = {Jn(V,−) : V ∈ J0}

yields the desired model structure and adjunction.

2.2.6 The classification of n-homogeneous functors

To recap, so far we have constructed a tower of n-polynomial approximation functors

TnX, and the fibres of the maps between them DnX are n-homogeneous functors.

X(V )

. . . TnX(V ) Tn−1X(V ) . . . T1X(V ) X(R∞)

DnX(V ) Dn−1X(V ) D1X(V )

We now wish to characterise the fibres DnX as a functors built from spectra. This process

is outlined by Barnes and Oman in [BO13, Sections 9 and 10]. The model categories and

their relations discussed in the previous sections are summarised by the following diagram.

O(n)E ln E0 n -poly- E0

O(n)Esn n -homog- E0

SpO[O(n)]

resn0 /O(n)

indn0 ε∗ Id

Id

IdId
resn0 /O(n)

indn0 ε∗

Id Id

(αn)! α∗
n
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In [BO13, Theorem 10.1], the bottom horizontal Quillen adjunction is proven to be a

Quillen equivalence.

Theorem 2.2.30 ([BO13, Theorem 10.1]). There exists a Quillen equivalence

resn0 /O(n) : O(n)Esn ⇄ n -homog- E0 : indn
0 ε

∗.

Combined with the bottom left vertical Quillen equivalence, see Section 2.2.2, this results

in a zig-zag of equivalences between the stable model structure on spectra with an action

of O(n) and the n-homogeneous model structure on E0.

Under this zig-zag of equivalences, we denote the spectrum which is the image of an input

functor X by Θn
X . That is, Θn

X = L(αn)!R indn
0 ε

∗X, where L and R denote taking the

left and right derived functors respectively. This is weakly equivalent to the spectrum

ΘX(n) constructed in [Wei95, Section 2]. The classification theorem states that an n-

homogeneous functorX is levelwise weakly equivalent to a functor built from the spectrum

Θn
X .

Theorem 2.2.31 ([Wei95, Theorem 7.3]). Let X be an n-homogeneous functor in E0, for

n > 0. Then X is levelwise weakly equivalent to the functor defined by

V 7→ Ω∞[(SnV ∧Θn
X)hO(n)].

Conversely, any functor of the form

V 7→ Ω∞[(SnV ∧Θ)hO(n)]

for Θ ∈ SpO[O(n)], is n-homogeneous.

Note that the converse statement is exactly Example 2.2.27.

In particular, applied to the fibres of the maps TnX → Tn−1X, this gives a description of

the fibres of the orthogonal tower in terms of spectra with an action of O(n).
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Theorem 2.2.32 ([Wei95, Theorem 9.1]). For each X ∈ E0, n > 0, V ∈ J0, there exists

a homotopy fibre sequence

Ω∞[(SnV ∧Θn
X)hO(n)]→ TnX(V )→ Tn−1X(V ).
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Equivariant functor categories

The primary objects of study in calculus of real functions are derivatives. In orthogonal

calculus, one constructs derivatives of input functors via combinations of restriction func-

tors and the inflation-orbit change-of-group functors for spaces (see Definition 2.2.15).

These derivatives play a key role in the classification of n-homogeneous functors, as they

form part of the zig-zag of Quillen Equivalences used to derive the classification Theorem

(Theorem 2.2.31).

We will extend this notion to the C2-equivariant setting by defining new functor cate-

gories and adjunctions analogous to those used in the underlying calculus. We begin by

choosing a new indexing category that will induce the C2-actions used throughout the cal-

culus. With the C2-setting fixed, we can construct the jet categories C2Jp,q as well as the

intermediate categories O(p, q)C2Ep,q. The relationships between these categories (which

include derivatives), and in particular their various model structures, are heavily relied

upon later in the homotopical part of the calculus; the classification of (p, q)-homogeneous

functors as a category of orthogonal C2-spectra with an action of O(p, q). In particular,

objects in this category of orthogonal spectra have a genuine action of C2 and a naive

action of O(p, q).

43
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3.1 The input functors

The input functors to C2-equivariant orthogonal calculus are continuous functors from a

category of finite dimensional C2-representations (with inner product, see Remark 2.1.10)

to the category of pointed C2-spaces. For example, the functor

BO(−) : V 7→ BO(V )+,

see Examples 3.1.6. We call the category of such functors C2E0,0. In this section we give

a more detailed description of this category, by defining a new indexing category C2L.

First, recall that C2 is the cyclic group of order two, which we write as C2 = {e, σ}. The

category of C2-spaces is assumed to be equipped with its fine model structure throughout

this main text, see Proposition 2.1.7. In particular, a map f : X → Y in C2Top∗ is a

weak equivalence if and only if fC2 : XC2 → Y C2 and f e : Xe → Y e are weak homotopy

equivalences.

Orthogonal calculus is indexed on the universe R∞, which makes the input category of

functors enriched over topological spaces. To guarantee that the category of input functors

for C2-equivariant orthogonal calculus is enriched over pointed C2-spaces, we must specify

a new universe which is closed under C2-action.

Recall from Example 2.1.12 that the regular representation of C2 = {e, σ} is defined as

the following vector space

R[C2] = {λ1e+ λ2σ : λ1, λ2 ∈ R}

with basis elements e, σ. To better understand the C2-action on the vector space R[C2],

we can decompose

R[C2] = R⟨e+ σ⟩ ⊕ R⟨e− σ⟩.
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This direct sum is C2-isomorphic to R ⊕ Rδ, where R and Rδ are the trivial and sign

C2-representations respectively with C2-actions defined below

σ(x) = x (x ∈ R),

σ(y) = −y (y ∈ Rδ).

Choosing the universe
∞⊕
i=1

R[C2], we define a new indexing category as follows.

Definition 3.1.1. The equivariant indexing category C2L is a C2Top∗-enriched category

whose objects are the finite dimensional subrepresentations of
∞⊕
i=1

R[C2] with inner product.

Let L(U, V ) denote the space of (not necessarily C2-equivariant) linear isometries with the

C2-action that is conjugation. That is, for f ∈ L(U, V ), e∗f = f and σ∗f = σfσ : U → V .

The hom-object of morphisms U → V is the pointed C2-space L(U, V )+.

From the discussion above on the decomposition of R[C2], we can see that an object in the

category C2L is isomorphic to an object of the form Rp+qδ = Rp⊕Rqδ, for some p, q ∈ N.

That is, p copies of the trivial representation and q copies of the sign representation.

Remark 3.1.2. We will use the notation Rp,q to mean Rp+qδ. We will also use the notation

(p, q)V to mean Rp,q ⊗ V equipped with the diagonal action of C2, where V ∈ C2L.

Example 3.1.3. By definition, L(Rkδ,Rn)+ is the space of linear isometries from Rkδ to

Rn, which is known to be isomorphic to O(n)/O(n−k)+ (via the map O(n)→ L(Rkδ,Rn)

that sends a matrix A to the matrix given by the first k columns of A).

Let f ∈ L(Rkδ,Rn)+, then σfσ is as follows, where the last equality is known from

linearity, rather than an assumption in equivariance.

x
σ7→ −x f7→ f(−x) σ7→ f(−x) = −f(x)

That is, C2 acts on L(Rkδ,Rn)+ as multiplication by -1.

Remark 3.1.4. Note that C2Top∗ is also enriched over itself, by equipping the space of

continuous maps Top∗(X, Y ) with the conjugation action (see Section 2.1.1).
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We can now define the input category for C2-orthogonal calculus, which we denote by

C2E0,0.

Definition 3.1.5. Define C2J0,0 to be the C2Top∗-enriched category with the same ob-

jects as C2L and morphisms defined by C2J0,0(U, V ) = L(U, V )+. Define the input cate-

gory C2E0,0 to be the category of C2Top∗-enriched functors from C2J0,0 to C2Top∗ and

C2-equivariant natural transformations (see Remark 3.2.12 for details).

Examples 3.1.6.

• BO(−) : V 7→ BO(V )+

• S(−) : V 7→ SV

• C2Jp,q(U,−) : V 7→ C2Jp,q(U, V )

where BO(V ) is the classifying space of the space of linear isometries on V and SV is

the one point compactification of V . The C2-action on O(V ) is conjugation, that is

σ ∗h = σhσ−1 for h ∈ O(V ). The C2-action on BO(V ) is induced by the action on O(V ),

see Section 6.4. The C2-action on SV is induced by the C2-action on V , and the C2-action

on C2Jp,q(U, V ) is induced by the C2-action on C2γp,q(U, V ) (see Definition 3.2.1).

We now define a model structure on the input category C2E0,0. This model structure is

the projective model structure, similar to that of [MMSS01, Theorem 6.5], and will be

used to build the polynomial and homogeneous model structures. The projective model

structure on C2E0,0 is a special case of the projective model structure on O(p, q)C2Ep,q for

p = q = 0, as such we defer the proof to Lemma 3.4.7.

Proposition 3.1.7. There is a proper, cellular, C2-topological model structure on C2E0,0
where the fibrations and weak equivalences are defined objectwise from the fine model struc-

ture on C2Top∗. We call them objectwise fibrations and objectwise weak equivalences. We

call this the projective model structure on C2E0,0 and denote it by C2E0,0. It is cofibrantly
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generated by the following sets of generating cofibrations and generating acyclic cofibra-

tions respectively

Iproj = {C2J0,0(V,−) ∧ i : i ∈ IC2}

Jproj = {C2J0,0(V,−) ∧ j : j ∈ JC2},

where V ∈ C2J0,0 and IC2 , JC2 are the generating cofibrations and acyclic cofibrations of

the fine model structure on C2Top∗ (see Proposition 2.1.7).

3.2 The intermediate categories

In orthogonal calculus, one constructs intermediate categories O(n)En which are interme-

diate between the input category and the category of orthogonal spectra with an action of

O(n). We replicate this process in the C2-equivariant setting to construct new intermedi-

ate categories O(p, q)C2Ep,q. These categories will give greater insight into the structure of

the input category C2E0,0 defined in Section 3.1. The construction follows the orthogonal

calculus version of Weiss [Wei95, Sections 1 and 2] and Barnes and Oman [BO13, Sections

3 and 8].

We begin by defining the following C2-equivariant vector bundle.

Definition 3.2.1. Let U, V ∈ C2L. Define the (p, q)-th complement bundle C2γp,q(U, V )

to be the C2-equivariant vector bundle on L(U, V ), whose total space is given by

C2γp,q(U, V ) = {(f, x) : f ∈ L(U, V ), x ∈ Rp,q ⊗ f(U)⊥},

where f(U)⊥ denotes the orthogonal complement of the image of f .

Let (f, x) ∈ C2γp,q(U, V ). Where σ ∗ f = σfσ, define a C2-action on C2γp,q(U, V ) by

σ(f, x) = (σ ∗ f, σx).
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Note that C2γp,q(U, V ) is a subbundle of the product bundle over L(U, V ) whose total

space is L(U, V )× (Rp,q ⊗ V ).

One can verify that the C2-action on C2γp,q(U, V ) is well defined by considering an element

x =
∑
i

wi ⊗ vi ∈ Rp,q ⊗ f(U)⊥.

Under the C2-action this is mapped to σx =
∑
i

σwi ⊗ σvi. Clearly σwi ∈ Rp,q for all i,

since Rp,q is closed under the C2-action. Now take an arbitrary element of (σ ∗ f)(U),

which is of the form (σ ∗ f)(y) = (σfσ)(Y ), for y ∈ U . Then, as there is an inner product

on V ,

⟨(σfσ)(y), σvi⟩ = ⟨f(σy), vi⟩ = 0,

since vi ∈ f(U)⊥, σy ∈ U and the inner product on V is G-invariant. Therefore, σvi is an

element of σfσ(U)⊥, and the action is well defined.

Example 3.2.2. The total space

C2γ0,m(Rkδ,Rn) = {(f, x) : f ∈ L(Rkδ,Rn), x ∈ Rmδ ⊗ f(Rkδ)⊥}

has C2-action

σ(f, x) = (−f,−x).

The following result outlines the effect of the fixed point functor (−)C2 : C2Top∗ → Top∗

on the C2-spaces L(Ra,b,Rc,d) and C2γp,q(Ra,b,Rc,d).

Theorem 3.2.3 (The Equivariant Splitting Theorems). There are homeomorphisms

L(Ra,b,Rc,d)C2 ∼= L(Ra,Rc)× L(Rbδ,Rdδ)

C2γp,q(Ra,b,Rc,d)C2 ∼= C2γp,0(Ra,Rc)× C2γ0,q(Rbδ,Rdδ).
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Proof. A map f : Ra,b → Rc,d is C2-fixed if and only if it is C2-equivariant. As there

are no non-zero C2-equivariant maps Ra → Rdδ or Rbδ → Rc the first splitting theorem

follows.

Let (f, x) ∈ C2γp,q(Ra,b,Rc,d). Then (f, x) is C2-fixed if and only if

(σ ∗ f, σx) = (f, x).

By the first splitting theorem σ ∗ f = f if and only if f ∈ L(Ra,Rc)× L(Rbδ,Rdδ). That

is, f is of the form f1 × f2, where f1 ∈ L(Ra,Rc) and f2 ∈ L(Rbδ,Rdδ).

Now, since x ∈ Rp,q ⊗ Im(f)⊥ ⊂ Rp,q ⊗ Rc,d, x is in

(Rp ⊗ Rc)⊕ (Rp ⊗ Rdδ)⊕ (Rqδ ⊗ Rc)⊕ (Rqδ ⊗ Rdδ)

where C2 acts as id⊕− 1⊕−1⊕ id. Therefore σ(x) = x if and only if

x ∈ (Rp ⊗ Rc)⊕ (Rqδ ⊗ Rdδ).

That is, x is of the form x1 ⊕ x2, where x1 ∈ Rp ⊗ Im(f1)
⊥ and x2 ∈ Rqδ ⊗ Im(f2)

⊥. The

second splitting theorem follows from the well defined homeomorphism

(f1 × f2, x1 ⊕ x2) 7→ ((f1, x1), (f2, x2)).

Now we define what will become the morphism spaces for the categories C2Jp,q. These

categories are analogous to the n-th jet categories of orthogonal calculus, and will be used

to build the intermediate categories.

Definition 3.2.4. Let U, V ∈ C2L. Define C2Jp,q(U, V ) to be the Thom space of

C2γp,q(U, V ).
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This Thom space is the one point compactification of C2γp,q(U, V ), since L(U, V ) is com-

pact. Hence, each C2Jp,q(U, V ) is a pointed C2-space, with C2-action inherited from

C2γp,q(U, V ).

We can now define the categories C2Jp,q.

Definition 3.2.5. Let the (p, q)-th jet category C2Jp,q be the C2Top-enriched category

whose objects are the same as C2L, and whose morphism are given by C2Jp,q(U, V ).

Composition in C2Jp,q is defined as follows. There are maps of C2-spaces defined by

C2γp,q(V,X)× C2γp,q(U, V )→ C2γp,q(U,X)

((f, x), (g, y)) 7→ (f ◦ g, x+ (id⊗f)(y)).

Passing to Thom spaces then yields the desired composition maps

C2Jp,q(V,X) ∧ C2Jp,q(U, V )→ C2Jp,q(U,X).

One can check that this composition is a continuous map. Moreover, the composition

maps are unital and associative. The following argument verifies that it is C2-equivariant.

σ(f ◦ g, x+ (id⊗f)(y)) = (σ ∗ (f ◦ g), σ(x+ (id⊗f)(y))

= ((σ ∗ f) ◦ (σ ∗ g), σx+ (id⊗σfσ)(σy)),

which is equal to the image of ((σ ∗ f, σx), (σ ∗ g, σy)) under the composition map.

One can see that the category C2J0,0 has morphisms C2J0,0(U, V ) = L(U, V )+, and there-

fore is exactly the category defined in Definition 3.1.5.

The following is the a C2-equivariant generalisation of [Wei95, Theorem 1.2]. It demon-

strates that it is possible to build the morphism spaces C2Jp,q(U, V ) inductively. That is,

we can construct C2Jp+1,q and C2Jp,q+1 from C2Jp,q.
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Proposition 3.2.6. For all U, V,W in C2J0,0, the homotopy cofibre (specific construction

given in proof) of the restricted composition map

C2JW (U ⊕X, V ) ∧ SW⊗X → C2JW (U, V )

is C2-homeomorphic to C2JW⊕X(U, V ), where X = R or X = Rδ.

Proof. We give the proof for the X = Rδ case, and leave the similar X = R case to the

reader.

We can C2-equivariantly identify the one point compactification of W ⊗ Rδ, denoted

SW⊗Rδ
, with a subspace of C2JW (U,U ⊕ Rδ). Consider the map

W ⊗ Rδ → C2γW (U,U ⊕ Rδ)

w ⊗ y 7→ (iU , w ⊗ (0, y)),

where iU : U → U⊕Rδ is the map u 7→ (u, 0). Taking Thom spaces then gives the desired

identification.

Composing this identification map with the composition map

C2JW (U ⊕ Rδ, V ) ∧ C2JW (U,U ⊕ Rδ)→ C2JW (U, V )

yields a continuous map

C2JW (Rδ ⊕ U, V ) ∧ SW⊗Rδ → C2JW (U, V )

which is C2-equivariant, since both the identification and composition are C2-equivariant

maps. This map is defined as

(f, x) ∧ (w ⊗ y) 7→ (f |U , x+ (idW ⊗f |Rδ)(w ⊗ y)).
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Since the map is surjective, the homotopy cofibre is a quotient of

[0,∞]× C2JW (Rδ ⊕ U, V )× (W ⊗ Rδ).

Using the element form of this map, we can construct a homeomorphism ϕ from this

cofibre to C2JW⊕Rδ(U, V ) defined by

(t, f, x, w ⊗ y) 7→ (f |U , x+ (idW ⊗f |Rδ)(w ⊗ y) + tα(f |Rδ(1))),

where

t ∈ [0,∞]

f : Rδ ⊕ U → V

x ∈ W ⊗ f(Rδ ⊕ U)⊥

w ⊗ y ∈ W ⊗ Rδ

and α : V → (W ⊕ Rδ) ⊗ V is the map that sends V to the orthogonal complement of

W ⊗V in (W ⊕Rδ)⊗V . That is, α(v) = (0, 1⊗v) in (W ⊗V )⊕(Rδ⊗V ) ∼= (W ⊕Rδ)⊗V .

Note that α need not be C2-equivariant, and in this case it is not.

All that remains is to check that the map ϕ is C2-equivariant.

ϕ(t, σ ∗ f, σx, σw ⊗−y)

=((σ ∗ f)|U , σx+ (W ⊗ (σ ∗ f)|Rδ)(σw ⊗−y) + tα((σ ∗ f)|Rδ(1)))

=((σ ∗ f)|U , σx+ σ(w ⊗ f(y)) + t((σ ∗ f)|Rδ(1))),

where we have used that α(σ(v)) = (0, 1 ⊗ σ(v)) and σ(α(v)) = (0,−1 ⊗ σ(v)). This is

equal to the image of (f |U , x+ (W ⊗ f |Rδ)(w⊗ y) + tα(f |Rδ(1)) under the C2-action.
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Remark 3.2.7. These cofibre sequences are analogous to the following cofibre sequences

constructed in the underlying calculus (see Proposition 2.2.4).

Jn(U ⊕ R, V ) ∧ SRn → Jn(U, V )→ Jn+1(U, V )

If one wanted to replace R with something higher dimensional this would involve ‘gluing’

these cofibre sequences together in an iterative manner. We want the C2-equivariant cal-

culus constructed in this thesis to reduce down to the underlying calculus after forgetting

the C2-actions. This forces that the cofibre sequences in Proposition 3.2.6 only hold for

X = R and X = Rδ, since these cases both correspond R in the non-equivariant state-

ment. To replace X with something of higher dimension, for example R1+1δ, would again

mean taking some kind of iteration of cofibre sequences. This indicates that a potentially

more involved approach may be needed if one wants to construct this kind of result in a

G-equivariant orthogonal calculus, for an arbitrary group G. As a result, it is also not ob-

vious how derivatives should behave for the arbitrary G setting, since the fibre sequences

that describe derivatives (see Proposition 3.3.7) are a direct consequence of these cofibre

sequences.

We now wish to define the functor categories C2Ep,q. At the same time, we will also

define functor categories O(p, q)C2Ep,q, which will later be used to classify the layers of

the orthogonal tower. Before we can do this, we introduce the group O(p, q) and discuss

its actions.

Definition 3.2.8. Define O(p, q) to be the group of linear isometries from Rp,q to Rp,q

with the C2-action defined as follows. Let C2 act on O(p, q) by conjugation by the matrix

A =

Idp 0

0 − Idq

 ,

where Idm denotes the m-dimensional identity matrix. That is, σg = AgA−1 for g in

O(p, q). In particular, O(p, q)C2 = O(p)×O(q).
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The group action of C2 on O(p, q) can be described by the group homomorphism

φ : C2 → Aut(O(p, q)), α 7→ φα

where φα(g) = αgα−1 for g ∈ O(p, q). If α = e, then φα is the identity on O(p, q). We

can construct a new group called the semidirect product of O(p, q) and C2 with respect

to the map φ. The underlying set is O(p, q)× C2 and the group operation is given by

(g1, α1) • (g2, α2) = (g1φα1(g2), α1α2).

The actions of C2 and O(p, q) do not commute, but they do commute up to the operation

φ, that is gα = αφα(g). We denote this semidirect product by O(p, q)⋊ C2.

The group homomorphisms

inc : O(p, q)→ O(p, q)⋊ C2

g 7→ (g, e)

and

proj : O(p, q)⋊ C2 → C2

(g, α) 7→ α

form a short exact sequence

1→ O(p, q)
inc→ O(p, q)⋊ C2

proj→ C2 → 1,

where 1 is the trivial group. The group homomorphism β : C2 → O(p, q)⋊C2, defined by

α 7→ (Idp+q, α) is such that proj β = IdC2 .

Remark 3.2.9. Throughout this thesis, we equip the category of C2-spaces with the fine

model structure and the category of O(p, q)-spaces with the coarse model structure (see
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Propositions 2.1.6 and 2.1.7). We then equip the category of (O(p, q)⋊C2)-spaces with a

model structure which is fine with respect to C2 and coarse with respect to O(p, q). This

is discussed more in Remark 3.4.8.

There is an action of O(p, q) ⋊ C2 on Rp,q given by (T, σ)(x) := T (σ(x)). This can be

extended to an action on Rp,q ⊗ f(U)⊥ by (T, σ)x := ((T, σ)⊗ σ)(x), where f ∈ L(U, V ).

This induces an O(p, q)⋊ C2-action on C2γp,q(U, V ) by

(T, σ)(f, x) := (σ ∗ f, ((T, σ)⊗ σ)(x)).

Hence, there is also an O(p, q)⋊C2-action on its Thom space C2Jp,q(U, V ), making C2Jp,q

an (O(p, q)⋊ C2) Top∗-enriched category.

Proposition 3.2.10. For all p > 0 and q ≥ 0, there exists a C2-equivariant homeomor-

phism

O(p, q)/O(p− 1, q) ∼= S(Rp+qδ).

Proof. Since O(p, q) acts on Rp+qδ transitively by linear isometries, there is a restricted

transitive action of O(p, q) on S(Rp+qδ). Fix the vector e1 = (1, 0, ..., 0) in S(Rp+qδ).

There is a continuous C2-equivariant map ϕ : O(p, q)→ S(Rp+qδ) given by g 7→ ge1. The

stabiliser of e1 is the subgroup of O(p, q) given by

{1 0

0 A

 : A ∈ O(p− 1, q)

}
,

which is C2-homeomorphic to O(p − 1, q). The quotient O(p, q)/O(p − 1, q) inherits a

C2-action defined by σ([g]) := [σ(g)]. It follows by the orbit-stabiliser theorem that there

is a continuous homeomorphism O(p, q)/O(p − 1, q) ∼= S(Rp+qδ). This is shown in the

following commutative diagram, where i is the inclusion as the subgroup above and proj

is the projection onto the quotient.
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O(p− 1, q) O(p, q) S(Rp+qδ)

O(p, q)/O(p− 1, q)

i ϕ

proj
∃

By the commutativity of the diagram, the homeomorphism is given by [g] 7→ ge1, which

is a C2-equivariant map, since the C2-action on S(Rp+qδ) fixes e1.

We can now define the intermediate categories.

Definition 3.2.11. Define C2Ep,q to be the category of C2Top∗ enriched functors from

the (p, q)-th jet category C2Jp,q to C2Top∗ and C2-equivariant natural transformations,

denoted by C2Natp,q(−,−).

Define the (p, q)-th intermediate category O(p, q)C2Ep,q to be the category of (O(p, q) ⋊

C2) Top∗-enriched functors from the (p, q)-th jet category C2Jp,q to (O(p, q) ⋊ C2) Top∗,

and (O(p, q)⋊ C2)-equivariant natural transformations.

For p, q = 0 this definition is exactly the category C2E0,0 in Definition 3.1.5.

Remark 3.2.12. The set of natural transformations between E,F ∈ C2Ep,q is denoted by

Natp,q(E,F ). There is a natural topology on Natp,q(E,F ), which is the subspace topology

of a product space as follows.

Natp,q(E,F ) :=

∫
V ∈C2Jp,q

Top∗(E(V ), F (V ))

⊆
∏

V ∈C2Jp,q

Top∗(E(V ), F (V ))

There is a C2-action on the space of natural transformations Natp,q(E,F ) induced by the

conjugation action on Top∗(E(V ), F (V )). This defines an enrichment of C2Ep,q in C2Top∗.

With respect to this conjugation action, we topologise the set of C2-equivariant natural

transformations between E,F ∈ C2Ep,q, denoted by C2Natp,q(E,F ) := Natp,q(E,F )
C2 as
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follows.

C2Natp,q(E,F ) :=

∫
V ∈C2Jp,q

C2Top∗(E(V ), F (V ))

⊆
∏

V ∈C2Jp,q

C2Top∗(E(V ), F (V ))

Similar descriptions exist for the morphisms in O(p, q)C2Ep,q.

We can describe a functor E ∈ C2Ep,q in terms of an enriched coend (and similarly for

O(p, q)C2Ep,q), by the Yoneda lemma (see for example [Kel05, Section 3.10]).

∫ W∈C2Jp,q

E(W ) ∧ C2Jp,q(W,−) ∼= E.

Alternatively, we can describe a functor E ∈ C2Ep,q in terms of natural transformations,

by the enriched Yoneda lemma.

E(W ) ∼= Natp,q(C2Jp,q(W,−), E) =
∫

V ∈C2Jp,q

Top∗(C2Jp,q(W,V ), E(V )).

Another useful result, that we use throughout the thesis, is that Natp,q(−, F ) sends ho-

motopy cofibre sequences to homotopy fibre sequences. This follows from the fact that

the functor Top∗(−, A) : C2Top∗ → C2Top∗ sends homotopy cofibre sequences to homo-

topy fibre sequences (it is contravariant, sends colimits to limits, and C2Top∗ is closed

symmetric monoidal) and using the definition of Natp,q(−, F ) as the end above.

3.3 Derivatives

Derivatives play a key role in calculus of real functions. They describe the difference

between successive polynomial approximations in the Taylor series. As the name calculus

suggests, one can define a notion of derivatives of functors in orthogonal calculus, as
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done by Weiss in [Wei95, Section 2] and Barnes and Oman in [BO13, Section 4]. In

this section, we will extend this theory to the C2-equivariant setting. The derivatives

of these functors play a key role in the classification of (p, q)-homogeneous functors, as

the derivative adjunctions form one half of the zig-zag of equivalences between the (p, q)-

homogeneous model structure and the category of orthogonal C2-spectra with an action

of O(p, q), see Theorem 6.3.7.

Let il,mp,q : Rp,q → Rl,m be the C2-equivariant inclusion map (x, y) 7→ (x, 0, y, 0), where

p ≤ l and q ≤ m. Such a map induces a group homomorphism O(p, q)→ O(l,m), which

is O(p, q)-equivariant by letting O(p, q) act on the first p and q coordinates of O(l,m).

That is, both Rp,q and Rl,m are (O(p, q)⋊ C2)-spaces.

This map induces a map of (O(p, q)⋊ C2)-equivariant spaces

(il,mp,q )U,V : C2γp,q(U, V )→ C2γl,m(U, V )

(f, x) 7→ (f, (il,mp,q ⊗ id)(x))

which in turn induces a map on the associated Thom spaces, and hence also on the

(O(p, q)⋊ C2) Top∗-enriched categories C2Jp,q → C2Jl,m. These maps form commutative

diagrams of categories as follows.

C2Jp,q C2Jp+1,q

C2Jp,q+1 C2Jp+1,q+1

ip+1,q
p,q

ip+1,q+1
p+1,qip,q+1

p,q

ip+1,q+1
p,q+1

ip+1,q+1
p,q

We can use these maps to define functors between the categories C2Ep,q, and with the

addition of an orbit functor we can do the same for the categories O(p, q)C2Ep,q.

Definition 3.3.1. Let p ≤ l and q ≤ m.

Define the restriction functor resl,mp,q : C2El,m → C2Ep,q as precomposition with il,mp,q .
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Define the restriction-orbit functor by

resl,mp,q /O(l − p,m− q) : O(l,m)C2El,m → O(p, q)C2Ep,q

F 7→ (F ◦ il,mp,q )/O(l − p,m− q).

Remark 3.3.2. For an O(l,m)-space X, the O(p, q) action on X/O(l − p,m− q) is given

by g[x] := [gx], where g ∈ O(p, q) and x ∈ X. This is a well defined action, since for

h ∈ O(l − p,m− q)

g[x] = [gx] ∼ [hgx] = [ghx] = g[hx].

Note that the restriction functor is often omitted from notation.

The restriction functors also form commutative diagrams, induced by the diagram above.

C2Ep+1,q+1 C2Ep+1,q

C2Ep,q+1 C2Ep,q

resp+1,q+1
p+1,q

resp+1,q
p,qresp+1,q+1

p,q+1

resp,q+1
p,q

resp+1,q+1
p,q

The restriction and restriction-orbit functors have right adjoints. Before we can define

them, we must define an adjoint to the orbit functor, see [BO13, Lemma 4.2].

Lemma 3.3.3. Let p ≤ l and q ≤ m. There is an adjoint pair

(−)/O(l − p,m− q) : (O(l,m)⋊ C2) Top∗ ⇄ (O(p, q)⋊ C2) Top∗ : CI
l,m
p,q .

The right adjoint CIl,mp,q is defined as follows. An (O(p, q)⋊C2)-space A can be considered

as an ((O(p, q)×O(l−p,m−q))⋊C2)-space, by letting O(l−p,m−q) act trivially. Call this

space ε∗A. Define CIl,mp,q A to be the space of (O(p, q)×O(l− p,m− q))-equivariant maps

from O(l,m)⋊C2 to ε∗A, which has the (O(l,m)⋊C2)-action induced by the conjugation

C2-action and the action of O(l,m) on itself.
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Definition 3.3.4. Let p ≤ l and q ≤ m.

Define the induction functor indl,m
p,q : C2Ep,q → C2El,m by

indl,m
p,q F : U 7→ Natp,q(C2Jl,m(U,−), F ),

where the space of natural transformations of objects of C2Ep,q is equipped with the

conjugation C2-action (see Remark 3.2.12).

Define the inflation-induction functor indl,m
p,q CI : O(p, q)C2Ep,q → O(l,m)C2El,m by

indl,m
p,q CIF : U 7→ NatO(p,q)C2Ep,q(C2Jl,m(U,−),CIl,mp,q ◦F ).

When p, q = 0, CIl,mp,q simply gives F the trivial O(l,m)-action, hence we write indl,m
0,0 CIF

as indl,m
0,0 ε

∗F . This is what we call the (l,m)-th derivative of F , denoted by

F (l,m) := indl,m
0,0 ε

∗F.

Lemma 3.3.5. The induction functor indl,m
p,q is right adjoint to the restriction functor

resl,mp,q . The inflation-induction functor indl,m
p,q CI is right adjoint to the restriction-orbit

functor resl,mp,q /O(l − p,m− q).

Proof. We will prove the adjunction between the restriction and induction functors, leav-

ing the restriction-orbit inflation-induction adjunction to the reader.

C2Natp,q
(
resl,mp,q E,F

)
=

∫
V ∈C2Jp,q

C2Top∗
(
resl,mp,q E(V ), F (V )

)
=

∫
V ∈C2Jp,q

C2Top∗
(
[(il,mp,q )

∗E](V ), F (V )
)



Chapter 3 Equivariant functor categories 61

∼=
∫

V ∈C2Jp,q

C2Top∗

(il,mp,q )
∗

 W∈C2Jl,m∫
E(W ) ∧ C2Jl,m(W,−)

 (V ), F (V )


∼=

∫
V ∈C2Jp,q

C2Top∗

 W∈C2Jl,m∫
E(W ) ∧

[
(il,mp,q )

∗C2Jl,m(W,−)
]
(V ), F (V )


∼=

∫
V ∈C2Jp,q

∫
W∈C2Jl,m

C2Top∗
(
E(W ) ∧

[
(il,mp,q )

∗C2Jl,m(W,−)
]
(V ), F (V )

)
∼=

∫
W∈C2Jl,m

∫
V ∈C2Jp,q

C2Top∗
(
E(W ),Top∗

([
(il,mp,q )

∗C2Jl,m(W,−)
]
(V ), F (V )

))

∼=
∫

W∈C2Jl,m

C2Top∗

E(W ),

∫
V ∈C2Jp,q

Top∗
([
(il,mp,q )

∗C2Jl,m(W,−)
]
(V ), F (V )

)
∼=

∫
W∈C2Jl,m

C2Top∗
(
E(W ),Natp,q

(
(il,mp,q )

∗C2Jl,m(W,−), F
))

∼=
∫

W∈C2Jl,m

C2Top∗
(
E(W ), indl,m

p,q F (W )
)

= C2Natl,m
(
E, indl,m

p,q F
)

where (il,mp,q )
∗ represents precomposition with il,mp,q . Here we have made use of standard

results of enriched ends and coends, including the Yoneda Lemma [BR20, Lemma 6.3.5].

As a result of the adjuction above and the commutative diagrams involving the restriction

functors, there are commutative diagrams of categories

C2Ep,q C2Ep+1,q

C2Ep,q+1 C2Ep+1,q+1

indp+1,q
p,q

indp+1,q+1
p+1,qindp,q+1

p,q

indp+1,q+1
p,q+1

indp+1,q+1
p,q
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Remark 3.3.6. As in [Wei95], the induction functors give us a notion of differentiation

of functors in our input category C2E0,0 (see Definition 3.1.5). In particular, for the C2-

equivariant case, there are two directions in one can take a derivative; in the p direction

and in the q direction. These two different directions of differentiating can be thought of

as partial derivatives, and then the commuting diagram above tells us that taking both

possible orders of mixed partial derivatives is the same as taking the total derivative.

We have already seen one relation between induction and the (p, q)-jet categories C2Jp,q

in Proposition 3.2.6. We now recreate another key result [Wei95, Theorem 2.2] in the C2-

equivariant setting. The following proposition defines induction iteratively as a homotopy

fibre, and acts as a tool for calculating the derivatives.

Proposition 3.3.7. For all U ∈ C2J0,0 and for all F ∈ C2Ep,q, there are homotopy fibre

sequences of C2-spaces

resp+1,q
p,q indp+1,q

p,q F (U)→ F (U)→ Ω(p,q)RF (U ⊕ R)

and

resp,q+1
p,q indp,q+1

p,q F (U)→ F (U)→ Ω(p,q)Rδ

F (U ⊕ Rδ),

where Ω(p,q)V Y represents the space of maps S(p,q)V → Y , for a C2-space Y , and is given

the conjugation C2-action.

Proof. We prove the existence of the first fibre sequence and leave the similar second case

to the reader. From Proposition 3.2.6 there exists a homotopy cofibre sequence

C2Jp,q(U ⊕ R,−) ∧ S(p,q)R → C2Jp,q(U,−)→ C2Jp+1,q(U,−).

Pick F ∈ C2Ep,q and apply the contravariant functor Natp,q(−, F ) to the cofibre sequence

above. This yields a homotopy fibre sequence (see Remark 3.2.12)
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Natp,q
(
C2Jp,q(U ⊕ R,−) ∧ S(p,q)R, F

)
← Natp,q (C2Jp,q(U,−), F )

← Natp,q (C2Jp+1,q(U,−), F ) .

Application of the enriched Yoneda Lemma and the definition of indp+1,q
p,q gives the desired

fibre sequence, since the functor Natp,q(−, F ) preserves C2-equivariant maps.

3.4 The (p, q)-stable model structure

We want to compare the (p, q)-th intermediate category O(p, q)C2Ep,q with the category

of orthogonal C2-spectra with an action of O(p, q). The (p, q)-stable model structure

constructed will be a modification of the stable model structure on orthogonal C2-spectra,

see [MM02, Section 3.4]. This modification will account for the fact that the structure

maps of objects in O(p, q)C2Ep,q are of the form

σX : S(p,q)V ∧X(W )→ X(W ⊕ V ).

The structure maps σX of an object X ∈ O(p, q)C2Ep,q are induced by the identification

of S(p,q)V as a subspace of C2Jp,q(W,W ⊕ V ) (see the proof of Proposition 3.2.6) and the

structure maps of X being an enriched functor.

Remark 3.4.1. In the underlying calculus, there exists a description of the intermediate

category O(n)En as a category of diagram spectra (see [MMSS01, Part 1]). An analogous

description is also true in the C2-equivariant setting for the (p, q)-th intermediate category

O(p, q)C2Ep,q. Since this description will not be used in the remainder of the thesis, we

omit the details. The statement is analogous to the underlying calculus version of Barnes

and Oman [BO13, Lemma 7.3 and Proposition 7.4] and checking that the maps used are

equivariant uses the same method as Taggart in [Tag22c, Lemma 5.12 and Proposition

5.13].
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We begin by defining four functors. These functors will form adjoint pairs that when

composed give an adjunction between the categories C2Top∗ and O(p, q)C2Ep,q. Recall

from Definition 3.2.8 that β : C2 → O(p, q)⋊ C2 is defined by α 7→ (Idp+q, α).

Definition 3.4.2. Let β∗ be the restriction functor (O(p, q)⋊C2) Top∗ → C2Top∗, which

sends X to the underlying space X with C2-action given by σx = (β(σ))x.

Let β! be the functor C2Top∗ → (O(p, q)⋊ C2) Top∗ defined by

X 7→ (O(p, q)⋊ C2)+ ∧C2 X.

Let C2Jp,q(U,−)∧ (−) be the free functor (O(p, q)⋊C2) Top∗ → O(p, q)C2Ep,q defined by

X 7→ C2Jp,q(U,−) ∧X.

Let EvU be the evaluation at U ∈ C2J0,0 functor O(p, q)C2Ep,q → (O(p, q) ⋊ C2) Top∗

defined by

F 7→ F (U).

Proposition 3.4.3. The restriction functor β∗ is right adjoint to the functor β!. The

evaluation at U functor EvU is right adjoint to the free functor C2Jp,q(U,−) ∧ (−). The

right adjoints commute with colimits and hence pushouts.

Proof. The adjunction between the restriction functor β∗ and the functor β! is well known

(see Proposition 2.1.5). The following argument proves the second adjoint pair,

O(p, q)C2Ep,q(C2Jp,q(U,−) ∧X,F )

=

∫
W∈C2Jp,q

(O(p, q)⋊ C2) Top∗(C2Jp,q(U,W ) ∧X,F (W ))

∼=
∫

W∈C2Jp,q

(O(p, q)⋊ C2) Top∗(X,Top∗(C2Jp,q(U,W ), F (W )))
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= (O(p, q)⋊ C2) Top∗

X, ∫
W∈C2Jp,q

Top∗(C2Jp,q(U,W ), F (W ))


∼= (O(p, q)⋊ C2) Top∗(X,F (U))

where X ∈ (O(p, q) ⋊ C2) Top∗ and F ∈ O(p, q)C2Ep,q. Here we have used a standard

smash product adjunction along with the Yoneda Lemma, and (O(p, q) ⋊ C2) acts on

Top∗(C2Jp,q(U,W ), F (W )) by conjugation.

The right adjoints β∗ and EvU commute with colimits, since colimits in C2-spaces are

constructed in spaces and then given a C2-action, and colimits in O(p, q)C2Ep,q are con-

structed objectwise.

There is a projective model structure on the intermediate categories O(p, q)C2Ep,q, similar

to the levelwise model structure constructed by Barnes and Oman [BO13, Lemma 7.6], in

which fibrations and weak equivalences are defined objectwise. A left Bousfield localisation

of this model structure will give the (p, q)-stable model structure. This projective model

structure is exactly the level model structure of [MMSS01, Section 6].

Definition 3.4.4. Let f : X → Y be a map in O(p, q)C2Ep,q. Call f an objectwise fibration

or an objectwise weak equivalence if β∗(f(U)) : β∗(X(U)) → β∗(Y (U)) is a fibration or

weak equivalence of pointed C2-spaces, for each U ∈ C2J0,0. Call f a cofibration if it

has the left lifting property with respect to the objectwise acyclic fibrations. Denote the

collection of objectwise weak equivalences by Wlevel.

Now we define two sets of maps in the (p, q)-th intermediate category O(p, q)C2Ep,q.

Definition 3.4.5. Define sets Ilevel and Jlevel in O(p, q)C2Ep,q by

Ilevel = {C2Jp,q(U,−) ∧ β!(i) : U ∈ C2J0,0, i ∈ IC2}

Jlevel = {C2Jp,q(U,−) ∧ β!(j) : U ∈ C2J0,0, j ∈ JC2}
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where IC2 , JC2 are the generating cofibrations and acyclic cofibrations of the fine model

structure on C2Top∗ (see Proposition 2.1.7).

For a class of maps K in a category C, let K-inj denote the class of maps that have the

right lifting property with respect to every map in K (see [Hov99, Definition 2.1.7]).

Proposition 3.4.6. Ilevel-inj is the class of objectwise acyclic fibrations and Jlevel-inj is

the class of objectwise fibrations.

Proof. Let U ∈ C2J0,0, i ∈ IC2 and consider a diagram

C2Jp,q(U,−) ∧ β!(C2/H+ ∧ Sn−1
+ ) X

C2Jp,q(U,−) ∧ β!(C2/H+ ∧Dn
+) Y

C2Jp,q(U,−)∧β!(i)

Using the adjunctions of Proposition 3.4.3, the square above has a lift if and only if the

following square lifts in (O(p, q)⋊ C2) Top∗.

β!(C2/H+ ∧ Sn−1
+ ) X(U)

β!(C2/H+ ∧Dn
+) Y (U)

β!(i)

Again, by adjunctions, the square above has a lift if and only if the following square lifts

in C2Top∗.

C2/H+ ∧ Sn−1
+ β∗(X(U))

C2/H+ ∧Dn
+ β∗(Y (U))

i
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By the fine model structure on C2Top∗ (Proposition 2.1.7), the above square lifts if and

only if the map β∗(X(U))→ β∗(Y (U)) is an acyclic fibration of C2-spaces. Thus, the first

diagram lifts if and only if the map X → Y is an objectwise acyclic fibration.

A similar proof gives the Jlevel case.

Lemma 3.4.7. There is a cellular, proper, C2-topological model structure on the (p, q)-th

intermediate category O(p, q)C2Ep,q formed by the objectwise weak equivalences and object-

wise fibrations. Denote this model category by O(p, q)C2E lp,q and call it the projective model

structure on O(p, q)C2Ep,q. The generating cofibrations and generating acyclic cofibrations

are given by Ilevel and Jlevel respectively.

Proof. We will use the recognition theorem of Hovey [Hov99, Theorem 2.1.19] to prove

the existence of the model structure.

1. (2 out of 3) Objectwise weak equivalences clearly have the 2 out of 3 property, since

they are defined objectwise.

2. (Smallness) Let B be small in C2Top∗ and Xi in Ilevel-cell (respectively Jlevel-cell),

where Ilevel-cell (respectively Jlevel-cell) denotes the collection of transfinite compositions

of pushouts of elements of Ilevel (respectively Jlevel). Let ϕ be a map

ϕ : colimiO(p, q)C2Ep,q(C2Jp,q(U,−) ∧O(p, q)+ ∧B,Xi)

→ O(p, q)C2Ep,q(C2Jp,q(U,−) ∧O(p, q)+ ∧B, colimiXi).

We let S and R denote the domain and codomain of ϕ respectively to save space. Using

the adjunctions of Proposition 3.4.3 gives a commutative diagram

S R

colimiC2Top∗(B, β
∗(Xi(U))) C2Top∗(B, β

∗(colimiXi(U)))

C2Top∗(B, colimi(β
∗(Xi(U))))

ϕ

∼= ∼=

∼=
∼=
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where the diagonal map is an isomorphism because B is small in C2Top∗, and the bottom

right vertical map is an isomorphism because the right adjoints commute with colimits

by Proposition 3.4.3. Hence, the map ϕ is an isomorphism as required.

3. (Ilevel-inj = Jlevel-inj ∩ Wlevel) This is clear by Proposition 3.4.6.

4. (Jlevel-cell ⊆ Ilevel-cof ∩ Wlevel) Since JC2 ⊆ IC2-cof, Jlevel ⊆ Ilevel-cof. Therefore

Jlevel-cell ⊆ Ilevel-cof.

It remains to show that Jlevel-cell ⊆ Wlevel. Since Jlevel ⊆ Jlevel-cof, each map f ∈ Jlevel is

such that β∗f(U) is an acyclic cofibration, for each U ∈ C2J0,0. Now consider a pushout

square

A B

C D

f k

where f ∈ Jlevel. Since the right adjoints β∗ and EvU commute with pushouts (see

Proposition 3.4.3), β∗(k(U)) is the pushout of β∗(f(U)), for each U ∈ C2J0,0. Since

β∗(f(U)) is an acyclic cofibration and C2Top∗ is a model category, the pushout β∗(k(U))

is also an acyclic cofibration (see [Hov99, Corollary 1.1.11]). In particular, this means

that the map k is an objectwise weak equivalence.

Now consider a diagram

X0 X1 X2 . . .
k0 k1 k2

where each ki is a pushout of a map in Jlevel. Since the right adjoints β
∗ and EvU commute

with colimits (see Proposition 3.4.3) and the maps β∗(ki(U)) are acyclic cofibrations by

above, the map β∗(α(U)) is a weak equivalence in C2Top∗, where α : X0 → colimiXi.

Therefore, α is an objectwise weak equivalence.
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(Properness) The functors β∗ and EvU preserve weak equivalences, fibrations and cofibra-

tions. Then, since β∗ and EvU commute with pushouts and pullbacks, properness follows

from taking adjoints of the appropriate diagrams.

Remark 3.4.8. A similar method using only the adjunction

C2Top∗ (O(p, q)⋊ C2) Top∗

β!

β∗

shows that there exists a cellular, proper, C2-topological model structure on the category

(O(p, q)⋊ C2) Top∗, where weak equivalences and fibrations are defined by restricting to

C2Top∗ along β∗. The generating (acyclic) cofibrations are of the form β!(i) where i is a

generation (acyclic) cofibration of C2Top∗. This is exactly the model structure which is

coarse with respect to O(p, q) and fine with respect to C2 (see Remark 3.2.9). In our chosen

notation for these model structures, this could be denoted by C2Top∗[O(p, q)], however

we chose to denote it by (O(p, q)⋊C2) Top∗ to remind ourselves of the underlying group.

As such, the projective model structure could alternatively be constructed by evaluating

at U and using this model structure on (O(p, q)⋊ C2)-spaces.

We will use this projective model structure to construct the (p, q)-stable model structure

using a left Bousfield localisation. In the same was as for C2-spectra [MM02, Chapter 3],

we begin by first defining homotopy groups on objects of O(p, q)C2Ep,q. These homotopy

groups detect the weak equivalences of the (p, q)-stable model structure.

Definition 3.4.9. Define the (p, q)-homotopy groups of X ∈ O(p, q)C2Ep,q by

(p, q)πH
k X =

 colimV πk
(
Ω(p,q)VX(V )

)H
, if k ≥ 0

colimV⊃R|k| π0

(
Ωp,q(V−R|k|)X(V )

)H

, if k < 0

where V runs over the indexing C2-representations in C2L, H ≤ C2 is a closed subgroup,

and V −R|k| denotes the orthogonal complement of R|k| in V . Define a map f : X → Y in

O(p, q)C2Ep,q to be a (p, q)π∗-equivalence if the map (p, q)πH
k f : (p, q)πH

k X → (p, q)πH
k Y

is an isomorphism for all k and all closed subgroups H ≤ C2.



Chapter 3 Equivariant functor categories 70

One can easily verify that if C2 was replaced by the trivial group, the (p, q)-homotopy

groups for p+ q = n are exactly the n-homotopy groups defined in [BO13, Definition 7.7].

The (p, q)π∗-equivalences will be the weak equivalences in our stable model structure.

Lemma 3.4.10. An objectwise weak equivalence in O(p, q)C2Ep,q is a (p, q)π∗-equivalence.

Proof. One can show that if β∗(f(V )) : β∗(X(V )) → β∗(Y (V )) is a weak equivalence of

C2-spaces, then the induced map Top∗(S
V , β∗(X(V ))) → Top∗(S

V , β∗(Y (V ))) is a weak

equivalence of C2-spaces (see [MM02, Lemma 3.3]). The lemma then follows.

Now we want to identify the fibrant objects of the (p, q)-stable model structure. These are

a generalisation of Ω-spectra, which are the fibrant objects of the stable model structure

on orthogonal spectra (see Barnes and Roitzheim [BR20, Corollary 5.2.17]). They are

defined analogously to the nΩ-spectra of orthogonal calculus [BO13, Definition 7.9].

Definition 3.4.11. An object X of O(p, q)C2Ep,q has structure maps

σX : S(p,q)V ∧X(W )→ X(W ⊕ V )

induced by the identification of S(p,q)V as a subspace of C2Jp,q(W,W ⊕ V ) (see the proof

of Proposition 3.2.6) and the structure maps of X being an enriched functor. The object

X is called a (p, q)Ω-spectrum if its adjoint structure maps

σ̃X : X(W )→ Ω(p,q)VX(W ⊕ V )

are weak equivalences of C2-spaces, for all V,W ∈ C2J0,0.

Lemma 3.4.12. X is a (p, q)Ω-spectrum if and only if for all W ∈ C2J0,0 the maps

X(W )→ Ω(p,q)RX(W ⊕ R)

X(W )→ Ω(p,q)Rδ

X(W ⊕ Rδ)

are weak equivalences of C2-spaces.
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Proof. If X is a (p, q)Ω-spectrum, then clearly both maps are weak equivalences by setting

V = R and V = Rδ in Definition 3.4.11.

If X is such that the two maps are weak equivalences, then X being a (p, q)Ω-spectrum

follows by repeated application of the weak equivalences, as demonstrated in the diagram

below.

X(W ) Ω(p,q)RX(W ⊕ R) . . . Ω(p,q)Rm
X(W ⊕ Rm)

Ω(p,q)Rδ
X(W ⊕ Rδ) Ω(p,q)R1,1

X(W ⊕ R1,1)

...
. . .

Ω(p,q)Rnδ
X(W ⊕ Rnδ) Ω(p,q)Rm,n

X(W ⊕ Rm,n)

≃

≃

≃

≃

≃

≃

≃

≃≃

≃

The following Lemma is a partial converse to Lemma 3.4.10.

Lemma 3.4.13. A (p, q)π∗-equivalence between (p, q)Ω-spectra is an objectwise weak equiv-

alence.

Proof. The proof is identical to that of Mandell and May [MM02, Section 3.9], where in

the inductive steps we only need to consider the cases where H ∈ {e, C2}, since the only

closed subgroups of C2 are e and C2 itself.

We now want to identify the class of maps that will be used in the left Bousfield localisa-

tion. Let

λp,qV,W : C2Jp,q(W ⊕ V,−) ∧ S(p,q)W → C2Jp,q(V,−)

be the restricted composition map, where S(p,q)W has been C2-equivariantly identified

with the closure of the subspace of pairs (i, x) ∈ C2Jp,q(V,W ⊕ V ) with i the standard

inclusion (see the proof of Proposition 3.2.6).
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The maps λp,qV,W are (p, q)π∗-equivalences, by a similar argument as in the non-equivariant

case [BO13, Lemma 7.12].

Lemma 3.4.14. The maps λp,qV,W are (p, q)π∗-equivalences.

Proof. As in the non-equivariant case, by fixing a linear isometry W ⊕ V → U , the map

λp,qV,W can be written

λp,qV,W (U) : O(U)+ ∧O(U−V−W ) S
(p,q)(U−V ) → O(U)+ ∧O(U−V ) S

(p,q)(U−V ).

This map is a (p, q)π∗-equivalence if and only if its suspension by (p, q)V is (see for example

[MM02, Theorem III.3.7]). Therefore, we only need to consider the map

Σ(p,q)V λp,qV,W (U) : O(U)/O(U − V −W )+ ∧ S(p,q)U → O(U)/O(U − V )+ ∧ S(p,q)U .

This map is v-connected, for the dimension function v defined by

v(e) = (p+ q + 1) dimU − dimV − dimW

v(C2) = (p+ 1) dimUC2 + (q + 1) dim(UC2)⊥ − dim(W ⊕ V )C2 − dim((W ⊕ V )C2)⊥,

where (UC2)⊥ denotes the orthogonal complement of UC2 . That is, (Σ(p,q)V λp,qV,W (U))e is

v(e)-connected, and (Σ(p,q)V λp,qV,W (U))C2 is v(C2)-connected.

When we take (p, q)πH
k -homotopy groups, the dimension of U (and in turn the dimensions

of UC2 and (UC2)⊥) increases in the colimit, and we get an isomorphism of homotopy

groups.

Now we will follow the same procedure as Mandell and May [MM02, Section 3.4] to turn

these maps into cofibrations, in order to make generating sets for the (p, q)-stable model

structure.
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Let Mλp,qV,W be the mapping cylinder of λp,qV,W . Then the map λp,qV,W can be factored as a

cofibration kp,qV,W and a deformation retract rp,qV,W as follows.

C2Jp,q(W ⊕ V,−) ∧ Sp,qW
kp,qV,W−−−→Mλp,qV,W

rp,qV,W−−−→ C2Jp,q(V,−)

Definition 3.4.15. Define Jstable = Jlevel ∪ {i□kp,qV,W : i ∈ IC2 and V,W ∈ C2J0,0}, where

f□g denotes the pushout product of two maps f : A → B and g : X → Y , which is

defined by

f□g : A ∧ Y
∐
A∧X

B ∧X → B ∧ Y.

The next lemma classifies the fibrations of the (p, q)-stable model structure. The proof is

identical to that of Mandell and May [MM02, Proposition 4.8], so we can omit it here.

Lemma 3.4.16. A map f : E → B in O(p, q)C2Ep,q has the right lifting property with

respect to Jstable if and only if f is an objectwise fibration and the diagram

E(V ) Ω(p,q)WE(V ⊕W )

B(V ) Ω(p,q)WB(V ⊕W )

σ̃E

f(V )

σ̃B

Ω(p,q)W f(V⊕W )

is a homotopy pullback for all V,W .

Proposition 3.4.17. There is a cofibrantly generated, proper, cellular C2-topological

model structure on the (p, q)-th intermediate category O(p, q)C2Ep,q called the (p, q)-stable

model structure. The cofibrations are the same as for the projective model structure, the

weak equivalences are the (p, q)π∗-equivalences, and the fibrant objects are the (p, q)Ω-

spectra. The generating cofibrations and generating acyclic cofibrations are the sets Ilevel

and Jstable respectively. Denote this model category by O(p, q)C2Esp,q.

Proof. Letting λ be the class of maps λp,qV,W . By a theorem of Hirschhorn [Hir03, Theorem

4.1.1], the fibrant objects of the left Bousfield localisation LλO(p, q)C2E lp,q are the λ-local
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objects. It can easily be seen that a λ-local object is the same as a (p, q)Ω-spectrum. It

follows that the (p, q)-stable model structure on O(p, q)C2Ep,q is exactly the left Bousfield

localisation of the projective model structure with respect to the class of maps λ, since

the fibrant objects and cofibrations are the same.

We get the following corollary as an application of [Hir03, Proposition 3.3.4].

Corollary 3.4.18. There is a Quillen adjunction

Id : O(p, q)C2E lp,q ⇄ O(p, q)C2Esp,q : Id .
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Equivariant polynomial functors

In differential calculus, polynomial functions and derivatives are used to approximate real

functions via the Taylor series. In orthogonal calculus, Weiss defines a class of input

functors with properties analogous to those of polynomial functions, called polynomial

functors, see [Wei95, Section 5]. These polynomial functors can be constructed into a tower

that approximates a given functor, much like the Taylor series does for functions. It is the

fibres of the maps between these polynomial approximation functors that are classified

as spectra by the classification theorem, see [Wei95, Theorem 9.1] and [BO13, Theorem

10.3].

One can define a class of functors with polynomial properties in the C2-equivariant input

category C2E0,0. The addition of the C2-action makes it necessary to introduce an indexing

shift from the underlying calculus. In particular, τn in the underlying calculus is defined

using the poset {0 ̸= U ⊆ Rn+1} and τp,q in the C2-calculus is defined using the poset

{0 ̸= U ⊆ Rp,q}. The author introduces a new class of ‘strongly’ polynomial functors to

account for this indexing shift, see Definition 4.1.7.

75



Chapter 4 Equivariant polynomial functors 76

4.1 Polynomial functors

In this section, we will adapt the definition of polynomial functors from the underlying

calculus to fit the new C2-equivariant categories defined in Chapter 3. These functors

should be input functors (see Definition 3.1.5), which have properties that mimic those of

polynomial functions.

We begin by defining a functor τp,q on the input category. The functor τp,q is analogous

to the functor τn from the underlying calculus, but requires a slightly different indexing

due to the group action. The (p, q)-th complement bundle C2γp,q(U, V ) has an associated

sphere bundle SC2γp,q(U, V ). Considering SC2γp,q(−,−) : C2J op
0,0 × C2J0,0 → C2Top∗ as

a C2Top∗-enriched functor, we can define the functor τp,q : C2E0,0 → C2E0,0 as follows.

Definition 4.1.1. Let E ∈ C2E0,0. Define the functor τp,qE ∈ C2E0,0 by

τp,qE(V ) = Nat0,0(SC2γp,q(V,−)+, E).

The composition of the sphere bundle inclusion map SC2γp,q(V,W )+ → C2γp,q(V,W )+

with the projection map C2γp,q(V,W )+ → C2J0,0(V,W )+, defined by (f, x) 7→ f , results

in a map SC2γp,q(V,W )+ → C2J0,0(V,W )+. This map induces a natural transformation

SC2γp,q(V,−)+ → C2J0,0(V,−)+. Applying the contravariant functor Nat0,0(−, E), for

some E ∈ C2E0,0, gives a map

Nat0,0(C2J0,0(V,−)+, E)→ Nat0,0(SC2γp,q(V,−)+, E).

Identifying the left side with E(V ) using the Yoneda Lemma, and the right side with

τp,qE(V ) by definition, yields a map ρp,qE(V ) : E(V ) → τp,qE(V ). That is, there is a

C2-equivariant natural transformation

ρp,q : Id→ τp,q.
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There is an alternative description of τp,q as a homotopy limit, that can be derived as a

consequence of the following Proposition. This a generalisation of another key result of

orthogonal calculus by Weiss [Wei95, Proposition 4.2]. The proposition states that the

sphere bundle of the vector bundle C2γp,q(U, V ) can be written as a homotopy colimit,

and in particular we can do this in a C2-equivariant way.

Recall that C2J0,0 is the category of finite dimensional subrepresentations of⊕∞
0 R[C2] with

inner product and with morphism spaces C2J0,0(U, V ) = L(U, V )+ (Definition 3.1.5).

Definition 4.1.2. Let C2J0,0 denote the Top∗-enriched category of finite dimensional

subspaces of ⊕∞
0 R[C2] with inner product and with morphism spaces

C2J0,0(U, V ) = L(U, V )+.

There is a Top∗-enriched inclusion functor

C2J0,0 ↪→ C2J0,0,

since C2J0,0 forms a subcategory of C2J0,0.

Let V,W,X ∈ C2J0,0. Let C be the category of non-zero subspaces of X ordered by

reverse inclusion. Consider the functor Z from C to Top∗ defined by

Z : U 7→ C2J0,0(U ⊕ V,W ).

By [Wei95, Section 4], the homotopy colimit of Z is the geometric realisation of the

simplicial space

[k] 7→
∐

G:[k]→C

L(G(0)⊕ V,W ),

where G runs over the order-preserving injections from the poset [k] = {0, 1, ..., k} to C.
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The geometric realisation is, by definition, a quotient of

∐
k≥0

∐
G:[k]→C

L(G(0)⊕ V,W )×△k.

Therefore, there is a C2-action on the homotopy colimit of Z given by

σ(G, l, s) = (σG, σl, s),

where G : [k]→ C, l ∈ L(G(0)⊕V,W ) and s ∈ △k. Details of this action are given in the

following proof. Details of this homotopy colimit construction are discussed for the dual

homotopy limit in Lemma 4.2.4

Proposition 4.1.3. For all V,W,X ∈ C2J0,0, there is a C2-homeomorphism

SC2γX(V,W )+ ∼= hocolim
0̸=U⊆X

C2J0,0(U ⊕ V,W ),

where U is a non-zero subspace of X.

Remark 4.1.4. Since U is not necessarily closed under the induced C2-action from X, the

notation C2J0,0(U⊕V,W ) would not make sense, however this morphism spaces is exactly

the space C2J0,0(U ⊕ V,W ) by definition.

Proof. To prove this result, we will construct a homeomorphism

ϕ : C2JX(V,W )\C2J0,0(V,W )→ (0,∞)× hocolim
U

C2J0,0(U ⊕ V,W )

and then the C2-equivariant identification (see [Wei95, Proposition 4.2])

C2JX(V,W )\C2J0,0(V,W )→ (0,∞)× SC2γX(V,W )+

(f, x) 7→ (∥x∥, (f, x/∥x∥))

yields the desired homeomorphism.
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Let (f, x) ∈ C2JX(V,W )\C2J0,0(V,W ). That is, f ∈ L(V,W ) and x ∈ X ⊗ f(V )⊥ such

that x ̸= 0. Since X and f(V )⊥ are finite dimensional inner product spaces, the duality

isomorphism tells us that

X ⊗ f(V )⊥ ∼= X∗ ⊗ f(V )⊥

= Hom(X,R)⊗ f(V )⊥

∼= Hom(X, f(V )⊥).

Hence, we can think of x as a linear map from X to f(V )⊥. In this way, x has an adjoint

x∗ : f(V )⊥ → X, and their composition x∗x : X → X is self adjoint, since

(x∗x)∗ = x∗(x∗)∗ = x∗x.

As a result of [FIS89, Theorem 6.25], we can write X as a direct sum of the eigenspaces

of x∗x. Thus

X = ker(x∗x)⊕ E(λ0)⊕ · · · ⊕ E(λk),

where 0 < λ0 < · · · < λk are the non-zero eigenvalues of x∗x and E(λi) is the eigenspace

corresponding to the eigenvalue λi. Note that all of the λi are real.

Given the data of (f, x) ∈ C2JX(V,W )\C2J0,0(V,W ) we can then define the following.

1. A functor G : [k]→ C defined by

r 7→ E(λ0)⊕ · · · ⊕ E(λk−r),

where C is the category of non-zero subspaces of X with reverse inclusion ordering, and

[k] is the category with objects {0, 1, . . . , k} with the standard ordering.
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2. A linear isometry l ∈ L(G(0)⊕ V,W ) defined by

l =

f on V

λ
− 1

2
i x on E(λi)

3. s ∈ △k defined in barycentric coordinates by

λ−1
k (λ0, λ1 − λ0, . . . , λk − λk−1).

4. t = λk > 0.

Now, by Bousfield and Kan [BK72, Section VIII.2.6], we know that the homotopy colimit

hocolim
U

C2J0,0(U ⊕ V,W ) is a quotient of

∐
k≥0

∐
G:[k]→C

L(G(0)⊕ V,W )×△k.

We can define the desired homeomorphism as follows.

ϕ : C2JX(V,W )\C2J0,0(V,W )→ (0,∞)× hocolim
U

C2J0,0(U ⊕ V,W )

(f, x) 7→ (t, G, l, s)

Note that this is a well defined homeomorphism, since it was in the non-equivariant case,

as demonstrated by Weiss in [Wei95, Theorem 4.2]. What remains is to show that this

homeomorphism is C2-equivariant.

Let (f, x) ∈ C2JX(V,W )\C2J0,0(V,W ). We know that σ(f, x) = (σ ∗ f, σx). Via the

duality isomorphism, we see that the vector σx is the map σ · x := σxσ. In the same way

as for the map x, σ · x has an adjoint, which is given by (σ · x)∗ = σx∗σ. Hence, in the

same way as for x∗x, the composition (σ · x)∗(σ · x) is self-adjoint, and it is defined by
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σx∗xσ. Now, consider the following calculations.

x∗x(v) = λv

⇔ σ(x∗x(v)) = σ(λv)

⇔ σx∗xσ(σv) = σ(λv)

⇔ (σ · x)∗(σ · x)(σv) = λσv

(σ · x)∗(σ · x)(v) = λv

⇔ σx∗xσ(v) = λv

⇔ σσx∗xσ(v) = σ(λv)

⇔ x∗x(σv) = λσv

These arguments show that the eigenvalues of x∗x and (σ ·x)∗(σ ·x) are the same, and the

eigenvectors of (σ · x)∗(σ · x) associated to the eigenvalue λ are of the form σv, where v is

an eigenvector of x∗x corresponding to the eigenvalue λ. Denote by σE(λi) the eigenspace

of eigenvectors of (σ · x)∗(σ · x) associated to the eigenvalue λi.

The image of (σfσ, σx) under the homeomorphism ϕ is (t, σG, σq, p), where

1. σG : [k]→ C is the functor

r 7→ σE(λ0)⊕ · · · ⊕ σE(λk−r).

2. σl ∈ L(G(0)⊕ V,W ) is the linear isometry below.

σl =

σ ∗ f on V

λ
− 1

2
i (σ · x) on σE(λi)
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3. s ∈ △k defined in barycentric coordinates by

λ−1
k (λ0, λ1 − λ0, . . . , λk − λk−1).

4. t = λk > 0.

The C2-action on (0,∞)× hocolim
U

C2J0,0(U ⊕ V,W ) is given by

(t, G, l, s) 7→ (t, σG, σl, s),

hence we conclude that σϕ(f, x) = ϕ(σ ∗ f, σx). That is, the homeomorphism ϕ is C2-

equivariant.

Remark 4.1.5. Notice that the splitting of X into eigenspaces is not a C2-equivariant

splitting. That is, the eigenspaces E(λi) are not necessarily closed under the C2-action

inherited from X. This forces the homotopy colimit to be taken over the poset of non-zero

subspaces of Rp,q, rather than non-zero subrepresentations. Since the proof doesn’t rely

on any specific properties of C2, it should also hold if C2 were replaced by an arbitrary

finite group G (with suitable replacements for the categories involved). In particular, this

implies that for a general G-equivariant calculus there should be a natural description of

polynomial functors analogous to the C2-equivariant polynomial functors discussed in the

remainder of this section.

Using Proposition 4.1.3, we get the following alternative description of τp,q. Recall from

Definition 4.1.2 that C2J0,0 is the Top∗-enriched category whose objects are finite dimen-

sional subspaces of ⊕∞
0 R[C2] with inner product. Note that the categories C2J0,0 and

C2Top∗ are also Top∗-enriched, and that C2Top∗ is powered over Top∗. We use the nota-

tion E to represent the right Kan extension of an input functor E ∈ C2E0,0 along the in-

clusion C2J0,0 ↪→ C2J0,0. In particular, E is the Top∗-enriched functor C2J0,0 → C2Top∗

defined by

E(X) =

∫
W∈C2J0,0

Top∗
(
C2J0,0(X,W ), E(W )

)
.
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with the C2-action induced by the following C2-action on Top∗
(
C2J0,0(X,W ), E(W )

)
σ ∗ f(x) := σ(f(x))

for all f ∈ Top∗
(
C2J0,0(X,W ), E(W )

)
and x ∈ C2J0,0(X,W ). For details of this con-

struction see [Kel05, Chapter 4].

The homotopy limit holim
0̸=U⊆Rp,q

E(U ⊕ V ) is the homotopy limit of the functor

Z : {0 ̸= U ⊆ Rp,q} → Top∗

U 7→ E(U ⊕ V ).

This homotopy limit has a C2-action, since it can be expressed as the totalization of a

cosimplicial space, which has a C2-action. This is discussed in more detail in Lemma

4.2.4.

Proposition 4.1.6. Let E ∈ C2E0,0. There is a C2-equivariant homeomorphism

τp,qE(V ) ∼= holim
0̸=U⊆Rp,q

E(U ⊕ V ).

Proof. Using Proposition 4.1.3, we get that

τp,qE(V ) = Nat0,0(SC2γp,q(V,−)+, E)

∼= Nat0,0

(
hocolim
0̸=U⊆Rp,q

C2J0,0(U ⊕ V,−), E
)

=

∫
W∈C2J0,0

Top∗

(
hocolim
0 ̸=U⊆Rp,q

C2J0,0(U ⊕ V,W ), E(W )

)
∼= holim

0 ̸=U⊆Rp,q

∫
W∈C2J0,0

Top∗
(
C2J0,0(U ⊕ V,W ), E(W )

)
= holim

0̸=U⊆Rp,q
E(U ⊕ V )
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The homeomorphism in line 4 above is the comparison, made by Weiss, between the

homotopy colimit and homotopy limit constructions (see [Wei95, Proposition 5.2]). The

comparison used in the underlying calculus is naturally C2-equivariant.

Now we can define what it means for a functor to be (strongly) polynomial. This definition

is a C2-equivariant version of [Wei95, Definition 5.1].

Definition 4.1.7. A functor E ∈ C2E0,0 is called strongly (p, q)-polynomial if and only if

the map

ρp,qE : E → τp,qE

is an objectwise weak equivalence.

A functor E ∈ C2E0,0 is called (p, q)-polynomial if and only if E is both strongly (p+1, q)-

polynomial and strongly (p, q + 1)-polynomial.

Remark 4.1.8. The term ‘strongly’ is needed in order to keep notation as consistent as

possible. In particular, we do this so that (p, q)-homogeneous functors are indeed (p, q)-

polynomial (Section 5.1).

Functors that are strongly (p, q)-polynomial satisfy properties that one might expect based

on the properties of polynomial functions. For example, a strongly (p, q)-polynomial

functor is also strongly (p+1, q) and strongly (p, q+1)-polynomial, see Proposition 4.3.6.

In particular, this means that a strongly (p, q)-polynomial functor is (p, q)-polynomial. A

number of other properties of polynomial functors are discussed in this section.

The fibre of the map ρp,qE determines how far a functor E is from being strongly (p, q)-

polynomial. Lemma 4.1.11 is a C2-equivariant generalisation of [Wei95, Proposition 5.3],

and it describes how this fibre can be calculated. In particular, this fibre is a derivative of

the functor in question. To prove this, we first need the following C2-equivariant cofibre

sequence.

Proposition 4.1.9. For all V,W ∈ C2J0,0 there is a homotopy cofibre sequence in C2Top∗

SC2γp,q(V,W )+ → C2J0,0(V,W )→ C2Jp,q(V,W ).
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Proof. The proof follows that of the non-equivariant setting, see [BO13, Proposition 5.4].

In particular, we construct the relevant cofibre using a pushout diagram and define a

specific homeomorphism from this pushout to C2Jp,q(V,W ).

The relevant cofibre is the pushout P of the diagram

SC2γp,q(V,W )+ C2J0,0(V,W )

SC2γp,q(V,W )+ ∧ [0,∞] P

where [0,∞] is the one point compactification of [0,∞) with base point ∞, the top

horizontal map is the projection (f, x) 7→ f , and the left vertical map is y 7→ (y, 0).

Elements of the pushout are points (f, x, t), where (f, x) ∈ SC2γp,q(V,W ) and t ∈ [0,∞],

with the following identifications.

(f, x,∞) = (f ′, x′,∞)

(f, x, 0) = (f ′, x′, 0)

The homeomorphism ψ from P to C2Jp,q(V,W ) is then defined by

(f, x,∞) 7→ basepoint

(f, x, t) 7→ (f, xt).

From the non-equivariant case, it is clear that this map is a well defined homeomorphism

(see [BO13, Proposition 5.4]). It remains to show that it is a C2-equivariant map.

ψ ◦ σ(f, x, t) = ψ(σ ∗ f, σx, t) = (σ ∗ f, (σx)t)

σ ◦ ψ(f, x, t) = σ(f, xt) = (σ ∗ f, (σx)t)
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Using this proposition, we can prove that the functors SC2γp,q(V,−)+ and C2Jp,q(V,−)

are cofibrant in the projective model structure.

Lemma 4.1.10. The functors SC2γp,q(V,−)+ and C2Jp,q(V,−) are cofibrant objects in

C2E0,0.

Proof. The representable functor C2J0,0(V,−) is cofibrant by construction.

The homotopy limit used to construct τp,q (see Lemma 4.2.4) preserves objectwise acyclic

fibrations, since (indexed) products, totalization and the functor Top∗(A,−), for a C2-CW

complex A, all preserve acyclic fibrations in C2Top∗. It follows that SC2γp,q(V,−)+ is

cofibrant, by applying τp,q to the diagram

∗ E

SC2γp,q(V,−)+ F

where E → F is an objectwise acyclic fibration.

Since, by Proposition 4.1.9, C2Jp,q(V,−) is the cofibre of a map of cofibrant objects, it is

also cofibrant.

The following result describes the relation between derivatives and polynomial functors.

From this fibration sequence, one can see that if a functor E is strongly (p, q)-polynomial,

then indp,q
0,0E(V ) is contractible. This is analogous to an n-polynomial function having

zero (n+ 1)st derivative.

Lemma 4.1.11. For all E ∈ C2E0,0, and for all V ∈ C2J0,0 there is a homotopy fibre

sequence in C2Top∗

indp,q
0,0E(V )→ E(V )→ τp,qE(V ).

Proof. By the previous proposition, there is a C2-equivariant homotopy cofibre sequence

in C2E0,0
SC2γp,q(V,−)+ → C2J0,0(V,−)→ C2Jp,q(V,−).
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Pick E ∈ C2E0,0 and apply the contravariant functor Natp,q(−, E) to the cofibre sequence

above. This yields a homotopy fibre sequence (see Remark 3.2.12)

Nat0,0 (SC2γp,q(V,−)+, E)← Nat0,0 (C2J0,0(V,−), E)← Nat0,0 (C2Jp,q(V,−), E) .

Application of the Yoneda Lemma and the definitions of indp,q
0,0 and τp,qE gives the desired

fibre sequence.

Corollary 4.1.12. If E ∈ C2E0,0 is strongly (p, q)-polynomial, then indp,q
0,0E and indp,q

0,0 ε
∗E

are objectwise contractible.

4.2 Polynomial approximation

The partial sums of the Taylor series for a real function are known as the Taylor polyno-

mials. These polynomial functions approximate the given function, and in general become

better approximations as the degree of polynomial increases. In orthogonal calculus, Weiss

defines a polynomial approximation functor Tn, see [Wei95, Theorem 6.3]. For an input

functor E ∈ C2E0,0, each TnE is indeed an n-polynomial functor. In the C2-equivariant

setting, we define an analogous functor Tp,q, and the (p, q)-polynomial approximation

functor is given by the composition Tp+1,qTp,q+1.

Definition 4.2.1. Let E ∈ C2E0,0, define the functor Tp,q by

Tp,qE = hocolim
(
E → τp,qE → τ 2p,qE → . . .

)
,

where the homotopy colimit is taken over the maps

ρp,q(τ
k
p,qE) : τ

k
p,qE → τ k+1

p,q E.
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There is a natural transformation η : E → Tp,qE, which is inclusion as the first term in

the colimit. Alternatively, this map can be thought of as a map of homotopy colimits

hocolim(E → E → E → . . . )

hocolim
(
E → τp,qE → τ 2p,qE → . . .

)η

where each E → τ kp,qE is made from the maps ρp,q(τ
k
p,qE).

Example 4.2.2. Let E ∈ C2E0,0. Then T1,0E is E(− ⊕ R∞) and T0,1E is E(− ⊕ R∞δ).

This can be seen by the following calculations.

T1,0E(V ) = hocolimj τ
j
1,0E(V ) = hocolimj E(V ⊕ Rj) := E(V ⊕ R∞)

T0,1E(V ) = hocolimj τ
j
0,1E(V ) = hocolimj E(V ⊕ Rjδ) := E(V ⊕ R∞δ),

where R∞ := hocolimj Rj and R∞δ := hocolimj Rjδ. Recall that, as a consequence of

Proposition 4.1.3, τp,qE(V ) ∼= holim
0̸=U⊆Rp,q

E(U ⊕V ), where E is the right Kan extension of E

along C2J0,0 ↪→ C2J0,0. However, since V ⊕ Rj and V ⊕ Rjδ are elements of C2J0,0, the

right Kan extension E is exactly the functor E on these values.

The strongly (0, 0)-polynomial approximation is the constant functor T0,0E(V ) = ∗, since

τ0,0E is the homotopy limit over the empty set.

Remark 4.2.3. In orthogonal calculus, the 0-polynomial approximation T0F of an input

functor F ∈ E0 is the constant functor taking value F (R∞). In particular, T0F is a

constant functor, but T1,0E and T0,1E are not in general. See Example 4.2.11 for the

correct C2-analogue of T0F .

The functor Tp,qE is strongly (p, q)-polynomial for all E ∈ C2E0,0. To prove this, we need

to generalise the erratum to orthogonal calculus [Wei98] to the C2-equivariant setting.

This is done over the following collection of lemmas. A formula similar to that used for

the connectivity of (τp,qs(W ))C2 in Part 2 of the following lemma is used by Dotto in
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[Dot16b, Corollary A.2]. Recall that for a functor G ∈ C2E0,0, the functor τp,qG ∈ C2E0,0
is given by

τp,qG(W ) ∼= holim
0̸=U⊆Rp,q

G(U ⊕W ).

By abuse of notation, for a functor G ∈ FunTop∗(C2J0,0, C2Top∗), we define the functor

τp,qG ∈ C2E0,0 by

τp,qG(W ) := holim
0̸=U⊆Rp,q

G(U ⊕W ).

Lemma 4.2.4. Let s : G → F be a morphism in FunTop∗(C2J0,0, C2Top∗) and p, q ≥ 0.

If there exists integers b, c such that s(W ) is v-connected for all W ∈ C2J0,0, where

v(e) = (p+ q) dimW − b

v(C2) = min{(p+ q) dimW − b, p dimWC2 + q dim(WC2)⊥ − c},

then τp,qs(W ) is (v + 1)-connected.

Proof. Let D be the topological poset of non-zero linear subspaces of Rp+qδ. Similar to

[Wei98, Lemma e.3], the homotopy limit in τp,qs(W ) is the totalization of a cosimplicial

object as follows. For Z : D → Top∗, the homotopy limit of Z is the totalization of the

cosimplicial space

[k] 7→
∏

L:[k]→D

Z(L(K))

taken over all monotone injections [k] → D. In particular, we are interested in the cases

Z(U) := G(U ⊕W ) and Z(U) := F (U ⊕W )

Note that D is a category internal to C2-spaces. The space of objects is given by a disjoint

union of C2-Grassmann manifolds

∐
0≤i≤p+q

L(Ri,Rp+qδ)/O(i)
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and the space of morphisms is the space of flags of subspaces of Rp+qδ of length two

∐
0≤i≤j≤p+q

L(Rj,Rp+qδ)/O(j − i)×O(i),

where C2 acts by conjugation.

To capture this structure, we can replace the cosimplicial space above by another. Let ξ

be the fibre bundle over D,

∐
0≤i≤p+q

Z(Ri)×O(i) L(Ri,Rp,q)
proj→

∐
0≤i≤p+q

L(Ri,Rp+qδ)/O(i) = ob(D),

such that the fibre of U ∈ D is Z(U). Let ek : C → D be defined by L 7→ L(k), where

C is the C2-space of monotone injections [k] → D. Then we can replace the previous

cosimplicial space by

[k] 7→ Γ(e∗kξ),

where e∗kξ is the pullback bundle over C and Γ denotes taking the section space.

The space C is a disjoint union of C2-manifolds C(λ), taken over monotone injections

λ : [k]→ [p+ q] that avoid 0 ∈ [p+ q]. These manifolds are defined by

C(λ) = {L : [k]→ D : dim(L(i)) = λ(i),∀i}.

That is, C(λ) is the space of all flags of length k and weight λ. Writing this as a quotient

of orthogonal groups (where λi = λ(i))

C(λ) =
∐

0≤λ0≤...≤λk≤p+q

L(Rλk ,Rp+qδ)/O(λk − λk−1)×O(λk−1 − λk−2)× ...×O(λ0),

one can calculate the dimension of C(λ).
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dim(C(λ)) = ((p+ q)− λ(k))λ(k) +
k−1∑
i=0

(λ(i+ 1)− λ(i))λ(i)

= (p+ q)λ(k) +
k−1∑
i=0

λ(i)λ(i+ 1)−
k∑

i=0

λ(i)2

< (p+ q)λ(k)− k

The final inequality results from expanding the two sums and noting that −λ(0)2 ≤ −1

and λ(i− 1)λ(i)− λ(i)2 ≤ −1.

Using the discussion of the homotopy limit as the totalization above, we see that the

connectivity of (τp,qs(W ))e is greater than or equal to the minimum of

conn(s(L(k)⊕W ))− dim((C(λ))− k

taken over triples (L, λ, k) with L ∈ C(λ) and λ : [k]→ [p+ q]. That is, the connectivity

of the map s at the level k minus the dimension of the space we are mapping from when

considering the totalization as an enriched end. Substituting in the hypothesis on the

connectivity of s(L(k) ⊕ W ) and the bound on the dimension of C(λ) yields that the

connectivity of (τp,qs(W ))e is at least v(e) + 1.

Note that for G-spaces A,B

conn(Top∗(A,B)G) > min
H≤G
{connBH − dimAH}

taken over closed subgroups H of G. Using this, along with the fact that fixed points

commute with totalization, we see that the connectivity of (τp,qs(W ))C2 is greater than

or equal to the minimum of

min
H≤C2

{conn(s(L(k)⊕W )H)− dim((C(λ)H)− k}
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taken over triples (L, λ, k) with L ∈ C(λ) and λ : [k]→ [p+ q]. A similar formula is used

by Dotto in [Dot16b, Corollary A.2].

One can determine C(λ)C2 by applying the splitting theorem, Theorem 3.2.3, to the

definition of C(λ). Then a calculation similar to that above for dim(C(λ)) shows that

dim(C(λ)C2) < pλ(k)C2 + q(λ(k)C2)⊥ − k,

where λ(k)C2 = dim(L(k)C2) and (λ(k)C2)⊥ = dim((L(k)C2)⊥). The result then follows

by substituting in the hypothesis on the connectivity of s(L(k)⊕W )C2 as we did for the

first result above.

The following corollary can be proved using the same method as Lemma 4.2.4.

Corollary 4.2.5. Let s : G→ F be a morphism in FunTop∗(C2J0,0, C2Top∗) and p, q ≥ 1.

1. If there exists integers b, c such that s(W ) is v-connected for all W ∈ C2J0,0, where

v(e) = 2(p+ q) dimW − b

v(C2) = min{2(p+ q) dimW − b, 2p dimWC2 + 2q dim(WC2)⊥ − c},

then τp+1,qτp,q+1s(W ) is at least (v + 1)-connected.

2. If there exists integers b, c such that s(W ) is v-connected for all W ∈ C2J0,0, where

v(e) = 2(p+ q) dimW − b

v(C2) = min{2(p+ q) dimW − b, (p+ q) dimW − c},

then τp+1,qτp,q+1s(W ) is at least (v + 1)-connected.

Remark 4.2.6. Let F,G ∈ C2E0,0. Recall that G,F are the right Kan extensions of F,G

respectively along the inclusion C2J0,0 → C2J0,0. If the map s(W ) : F (W ) → G(W ) is

v-connected for all W ∈ C2J0,0, then the map s(V ) : F (V ) → G(V ) is v-connected for
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all V ∈ C2J0,0. In particular, this means that given the connectivity of the map s(W ),

Lemma 4.2.4 can be applied to the map s(V ) to make conclusions about the connectivity

of the map τp,qs(W ) = τp,qs(W ).

We aim to show that Tp,qE is strongly (p, q)-polynomial for any E ∈ C2E0,0. That is, we

wish to show that ρ : Tp,qE → τp,qTp,qE is an objectwise weak equivalence. To do this we

will need the following two Lemmas, the first of which is a C2-version of [Wei98, Lemma

e.7].

Lemma 4.2.7. Let G := SC2γp,q(V,−), F := C2J0,0(V,−), and let s : G → F be the

projection sphere bundle map. Tp,qs is an objectwise weak equivalence.

Proof. We know from the underlying calculus that s(W )e is [(p+ q)(dimW −dimV )−1]-

connected. Using the splitting theorem (see Theorem 3.2.3), we see that

C2Jp,q(V,W )C2 = [T (C2γp,q(V,W ))]C2

∼= T [C2γp,q(V,W )C2 ]

∼= T [C2γp,0(V
C2 ,WC2)× C2γ0,q((V

C2)⊥, (WC2)⊥)]

= C2Jp,0(V
C2 ,WC2) ∧ C2J0,q((V

C2)⊥, (WC2)⊥)

which is [p(dimWC2−dimV C2)+ q(dim(WC2)⊥−dim(V C2)⊥)− 1]-connected. Therefore,

so is the map s(W )C2 , since C2Jp,q(V,W )C2 is the homotopy cofibre of s(W )C2 .

Thus, s(W ) satisfies the hypothesis of Lemma 4.2.4 with

b = (p+ q) dimV + 1

c = p dimV C2 + q dim(V C2)⊥ + 1.

Repeated application of Lemma 4.2.4 shows that the connectivity of both (τ lp,qs(W ))e and

(τ lp,qs(W ))C2 tend to infinity as l tends to infinity. Thus, (Tp,qs(W ))e and (Tp,qs(W ))C2 are

weak homotopy equivalences, which is exactly that Tp,qs is an objectwise weak equivalence.
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The following Lemma is a C2-equivariant version of the discussion above [Wei98, Theorem

6.3.1]. Note that when H = e these diagrams are similar to [Wei98, e.8 and e.9].

Lemma 4.2.8. Let p, q ≥ 0 and E ∈ C2E0,0. The commutative diagram

E(V )H (Tp,qE(V ))H

(τp,qE(V ))H (τp,qTp,qE(V ))H

ηH

ρH

ηH

ρH

can be enlarged to a commutative diagram

E(V )H X (Tp,qE(V ))H

(τp,qE(V ))H Y (τp,qTp,qE(V ))H

ρHρH g

where g is a weak homotopy equivalence.

Proof. By the Yoneda Lemma and definition of τp,q, we have a commutative diagram

similar to [Wei98, e.6], where G := SC2γp,q(V,−), F := C2J0,0(V,−) and s : G → F is

the projection sphere bundle map..

E(V )H (τp,qE(V ))H

Nat0,0(F,E(−))H Nat0,0(G,E(−))H

ρH

=

s∗

∼=
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Using this, the first diagram above can be written as

Nat0,0(F,E(−))H Nat0,0(F, Tp,qE(−))H

Nat0,0(G,E(−))H Nat0,0(G, Tp,qE(−))H

s∗s∗

which in the same way as [Wei98, e.10] can be enlarged as below.

Nat0,0(F,E(−))H Nat0,0(Tp,qF, Tp,qE(−))H Nat0,0(F, Tp,qE(−))H

Nat0,0(G,E(−))H Nat0,0(Tp,qG, Tp,qE(−))H Nat0,0(G, Tp,qE(−))H

s∗s∗

Tp,q

Tp,q

res

res

(Tp,qs)∗

In the projective model structure defined in Proposition 3.1.7, we can factorize the maps

ηF : F → Tp,qF and ηG : G→ Tp,qG as a cofibration followed by an acyclic fibration. This

looks as follows.

F ↪→M↠̃Tp,qF

G ↪→ N↠̃Tp,qG

We know that G and F are cofibrant in the projective model structure, by Lemma 4.1.10,

thereforeM and N are also cofibrant. Hence, they act as cofibrant replacements for Tp,qF

and Tp,qG respectively.

Applying these cofibrant replacements in the above diagram we get another commutative

diagram

Nat0,0(F,E(−))H Nat0,0(M,Tp,qE(−))H Nat0,0(F, Tp,qE(−))H

Nat0,0(G,E(−))H Nat0,0(N, Tp,qE(−))H Nat0,0(G, Tp,qE(−))H

s∗s∗

res

res

j
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Since Tp,qs is an objectwise weak equivalence, by Lemma 4.2.7, we get that M and N

are objectwise weakly equivalent. Finally, since the projective model structure is C2-

topological, Nat0,0(−, A) preserves weak equivalences of cofibrant objects, and we can

conclude that j is a weak homotopy equivalence as required.

Theorem 4.2.9. Tp,qE is strongly (p, q)-polynomial for all E ∈ C2E0,0 and all p, q ≥ 0.

Proof. We must show that the map Tp,qE → τp,qTp,qE is an objectwise weak equivalence.

The proof follows in the same way as [Wei98, Theorem 6.3.1].

E(V )H (τp,qE(V ))H (τ 2p,qE(V ))H . . .

(τp,qE(V ))H (τ 2p,qE(V ))H (τ 3p,qE(V ))H . . .

ρH

ρH ρH ρH

ρH ρH

τp,qρH τp,qρH τp,qρH

It suffices to show that the the vertical maps in the diagram above induce a weak homotopy

equivalence, r : (Tp,qE(V ))H → (τp,qTp,qE(V ))H for all closed subgroups H ≤ C2, between

the homotopy colimits of the rows. By Lemma 4.2.8, each diagram

(τ kp,qE(V ))H (Tp,qE(V ))H

(τ k+1
p,q E(V ))H (τp,qTp,qE(V ))H

⊆

⊆

ρH r

can be enlarged to a commutative diagram

(τ kp,qE(V ))H X (Tp,qE(V ))H

(τ k+1
p,q E(V ))H Y (τp,qTp,qE(V ))H

ρH rg

where g is a weak homotopy equivalence.
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Any element in the homotopy group π∗(Tp,qE(V ))H may be realised as an element of

the corresponding homotopy group π∗(τ
k
p,qE(V ))H , for some k. Proving injectivity and

surjectivity of π∗r follows from the existence of g. Then Tp,qE is strongly (p, q)-polynomial.

In particular, this allows us to define the (p, q)-polynomial approximation functor.

Definition 4.2.10. Define the (p, q)-polynomial approximation to E ∈ C2E0,0 to be the

functor Tp+1,qTp,q+1E. By the above lemma, this is indeed a (p, q)-polynomial functor.

Example 4.2.11. The (0, 0)-polynomial approximation of a functor E is the constant

functor

T1,0T0,1E(V ) ∼= hocolim
k

E(Rk,k) ∼= hocolim
a,b

E(Ra,b) =: E(R∞,∞).

This is analogous to the 0-polynomial approximation of a functor E being the constant

functor T0E(V ) = E(R∞) in the underlying calculus.

The following is the C2-equivariant generalisation of [Wei95, Theorem 6.3.2]. The lemma

demonstrates another property that one might expect strongly (p, q)-polynomial functors

to satisfy based on the properties of polynomial functions. That is, the strongly (p, q)-

polynomial approximation of a strongly (p, q)-polynomial functor is the functor itself.

Lemma 4.2.12. If E is strongly (p, q)-polynomial, then η : E → Tp,qE is an objectwise

weak equivalence.

Proof. If E is strongly (p, q)-polynomial, then by definition ρH : E(V )H → (τp,qE(V ))H

is a weak homotopy equivalence, for all V ∈ C2J0,0 and all H closed subgroups of C2.

Therefore, E(V )H → (hocolimk τ
k
p,qE(V ))H is a weak homotopy equivalence, since fixed

points commute with sequential homotopy colimits, which is exactly the map η.

Remark 4.2.13. Combining this result with Example 4.2.2 shows that a strongly (1, 0)-

polynomial functor is constant in the R direction, and a strongly (0, 1)-polynomial functor
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is constant in the Rδ direction. We can think of these types of functors as being ‘hor-

izontally constant’ and ‘vertically constant’ respectively. This can be illustrated by the

following diagram for a functor E.

E(R0,∞) E(R∞,∞)

... . .
.

E(R0,1) E(R1,1)

E(R0,0) E(R1,0) . . . E(R∞,0)

If E is strongly (1, 0)-polynomial, then each horizontal arrow is a weak equivalence and E

is ‘horizontally constant’. If E is strongly (0, 1)-polynomial, then each vertical arrow is a

weak equivalence and E is ‘vertically constant’. If E is (0, 0)-polynomial, then all arrows

are weak equivalences and we call E ‘constant’.

Combining Lemma 4.2.12 with Theorem 4.2.9 gives the following Corollary.

Corollary 4.2.14. Let E ∈ C2E0,0, then Tp,qE is objectwise weakly equivalent to Tp,qTp,qE.

The following Lemma is a C2-equivariant version [Wei95, Lemma 5.11]. It says that τl,m

preserves strongly (p, q)-polynomial functors.

Lemma 4.2.15. If E is strongly (p, q)-polynomial, then so is τl,mE for all l,m ≥ 0.

Proof. Since homotopy limits commute and τl,m preserves objectwise weak equivalences

we get the following.

τp,qτl,mE(V ) = τl,mτp,qE(V )

≃ τl,mE(V )

Corollary 4.2.16. If E is strongly (p, q)-polynomial, then so is Tl,mE for all l,m ≥ 0.
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Proof. This is clear from Lemma 4.2.15 using that τp,q commutes with sequential homotopy

colimits.

Combining Lemma 4.2.12 and Corollary 4.2.16, extends the result of Lemma 4.2.12 from

strongly polynomial functors to polynomial functors.

Lemma 4.2.17. If E is (p, q)-polynomial, then E ≃ Tp+1,qTp,q+1E.

4.3 The (p, q)-polynomial model structure

Similar to Barnes and Oman [BO13], we would like to construct a model structure on

the input category C2E0,0 (see Definition 3.1.5), that captures the homotopy theory of

polynomial functors. We will construct the (p, q)-polynomial model structure on C2E0,0
whose fibrant objects are functors that are (p, q)-polynomial. We construct this model

structure, using the same method as Barnes and Oman in [BO13, Section 6], by Bousfield-

Friedlander localisation and left Bousfield localisation. To do this, we will also need the

projective model structure on C2E0,0 defined in Proposition 3.1.7.

To begin, we will construct a model structure on C2E0,0 whose fibrant objects are the

strongly (p, q)-polynomial functors. This model structure will allow us to easily deduce

results about strongly (p, q)-polynomial functors, without having to keep track of the more

complex indexing of the (p, q)-polynomial model structure.

Definition 4.3.1. A morphism f ∈ C2E0,0 is a Tp,q-equivalence if Tp,qf is an objectwise

weak equivalence (see Definition 3.4.4).

Proposition 4.3.2. There is a proper model structure on C2E0,0 such that a morphism f

is a weak equivalence if and only if it is a Tp,q-equivalence. The cofibrations are the same

as for the projective model structure. The fibrant objects are the strongly (p, q)-polynomial

functors. A morphism f is a fibration if and only if it is an objectwise fibration and the
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diagram

X Y

Tp,qX Tp,qY

f

η η

Tp,qf

is a homotopy pullback square in C2E0,0. Denote this model structure by (p, q) -poly-C2ES0,0.

Proof. We claim that this model structure is the Bousfield-Friedlander localisation of

C2E0,0 with respect to the functor Tp,q : C2E0,0 → C2E0,0. Since C2E0,0 is a proper

model category, [Bou01, Theorem 9.3] applies and to prove the existence of the Bousfield-

Friedlander localisation we must verify the following three axioms:

(A1) Tp,q preserves objectwise weak equivalences.

(A2) For every E ∈ C2E0,0, the morphisms ηTp,qE, Tp,qηE : Tp,qE → Tp,qTp,qE are objectwise

weak equivalences.

(A3) If given a pullback square in C2E0,0

V X

W Y

k

fg

h

where f is a fibration of fibrant objects and ηx, ηY and Tp,qh are all objectwise weak

equivalences, then k is a Tp,q-equivalence.

(A1) amounts to using that taking fixed points commutes with sequential homotopy col-

imits, homotopy colimits preserve weak equivalences in Top∗ and τp,q preserves objectwise

weak equivalences (see the proof of Lemma 4.1.10).

(A2) follows by combining Theorem 4.2.9, Lemma 4.2.12 and Corollary 4.2.14.
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(A3) follows in the same way as [BO13, Proposition 6.5], and using that Tp,q preserves

fibrations of fibrant objects in C2E0,0 (see the proof of Lemma 4.1.10).

Now that we know the model structure exists, we can use the classification of fibrations

provided by the localisation to classify the fibrant objects. By the localisation, X ∈ C2E0,0
is fibrant if X → ∗ is an objectwise fibration (which it is for all X) and the diagram below

is a homotopy pullback in C2E0,0.

X ∗

Tp,qX Tp,q∗ = ∗

This diagram is a homotopy pullback square if and only if η : X → Tp,qX is an objectwise

weak equivalence. Hence we have a commutative diagram

X τp,qX

Tp,qX τp,qTp,qX

ρ

η

ρ

τp,qη

where the bottom map along with the two vertical maps are all objectwise weak equiva-

lences, making the top map an objectwise weak equivalence, and thus making X strongly

(p, q)-polynomial as required.

Remark 4.3.3. Since the cofibrations of C2E0,0 and (p, q) -poly-C2ES0,0 are the same and

Tp,q preserves objectwise weak equivalences, there is a Quillen adjunction

Id : C2E0,0 ⇄ (p, q) -poly-C2ES0,0 : Id .
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In the same way as in [BO13, Section 6], if we let [−,−]Tp,q denote maps in the homotopy

category of (p, q) -poly-C2ES0,0, then we find that

[X,Tp,qY ] ∼= [X, Y ]Tp,q .

Hence, Tp,q is indeed a fibrant replacement in (p, q) -poly-C2ES0,0.

We could alternatively construct this model structure by a left Bousfield localisation.

The benefit of this type of localisation is that we will then be able to conclude that

(p, q) -poly-C2ES0,0 is cellular.

Proposition 4.3.4. The model category (p, q) -poly-C2ES0,0 is the left Bousfield localisation

of C2E0,0 with respect to the class of maps

Sp,q = {SC2γp,q(V,−)+ → C2J0,0(V,−) : V ∈ C2J0,0}.

Proof. The proof is analogous to that of Barnes and Oman [BO13, Proposition 6.6],

where is sufficient to show that the fibrant objects of the left Bousfield localisation are

the strongly (p, q)-polynomial functors, since both classes of cofibrations are the same.

Note that given a weak equivalence of C2-spaces, applying the fixed point functor (−)H

and then the singular functor S : Top∗ → sSet (see [May99, Chapter 16]) gives a weak

equivalence of simplicial sets. By the model theoretic properties of C2Top∗-enrichment,

it suffices to use Nat0,0(ĉX, Y ), where ĉ denotes cofibrant replacement in C2E0,0, as a

homotopy mapping object X → Y in C2E0,0, since C2E0,0 is enriched over C2Top∗ and

all objects of C2E0,0 are fibrant. Note that the domains of Sp,q are already cofibrant by

Lemma 4.1.10.

By a theorem of Hirschhorn [Hir03, Theorem 4.1.1], the fibrant objects of LSp,qC2E0,0 are

the Sp,q-local objects of C2E0,0. That is, X ∈ C2E0,0 is fibrant in LSp,qC2E0,0 if

Nat0,0(C2J0,0(V,−), X)→ Nat0,0(SC2γp,q(V,−)+, X)



Chapter 4 Equivariant polynomial functors 103

is a weak equivalence in C2Top∗, for all V ∈ C2J0,0. Application of the Yoneda lemma

and the definition of τp,q yields that X(V ) → τp,qX(V ) is a weak equivalence in C2Top∗

for all V ∈ C2J0,0, which is exactly that X is strongly (p, q)-polynomial.

Corollary 4.3.5. The class of Tp,q-equivalences is the collection of Sp,q-local equivalences.

Using this model structure, one can finally prove that a strongly (p, q)-polynomial functor

is indeed (p, q)-polynomial. The underlying version is proven in by Weiss in [Wei95,

Proposition 5.4] and by Barnes and Oman in [BO13, Proposition 6.7].

Proposition 4.3.6. If X ∈ C2E0,0 is strongly (p, q)-polynomial, then it is (p, q)-polynomial.

To prove Proposition 4.3.6 we will use the following proposition.

Proposition 4.3.7. Let resR and resRδ be the restriction maps

resR : C2J0,0(R⊕ V,W )→ C2J0,0(V,W )

resRδ : C2J0,0(Rδ ⊕ V,W )→ C2J0,0(V,W ).

There exist C2-equivariant homeomorphisms

res∗RC2γp,q(V,W ) ∼= ϵp,qR ⊕ C2γp,q(R⊕ V,W )

res∗Rδ C2γp,q(V,W ) ∼= ϵq,pRδ ⊕ C2γp,q(Rδ ⊕ V,W ),

where ϵm,n
X is the total space of the trivial bundle

Rm,n × C2J0,0(X ⊕ V,W )→ C2J0,0(X ⊕ V,W ),

and res∗X C2γp,q(V,W ) is the pullback of the following diagram

C2J0,0(X ⊕ V,W ) C2J0,0(V,W ) C2γp,q(V,W )+
p1resX

with p1 the fibre bundle map (projection onto first factor).
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Proof. The space res∗RC2γp,q(V,W ) consists of pairs (f, x), where f is a linear isometry

R⊕ V → W and x ∈ Rp,q ⊗ f(V )⊥. The space ϵp,qR ⊕ C2γp,q(R⊕ V,W ) consists of triples

(f, x, y), where f is a linear isometry R ⊕ V → W , x ∈ Rp,q ⊗ f(R ⊕ V )⊥ and y ∈ Rp,q.

We claim that the map

t : ϵp,qR ⊕ C2γp,q(R⊕ V,W )→ res∗RC2γp,q(V,W )

(f, x, y) 7→ (f, x+ (y ⊗ f(1, 0))

is a C2-equivariant homeomorphism. Indeed, the map t is a homeomorphism since it is

continuous and has continuous inverse

t−1 : res∗RC2γp,q(V,W )→ ϵp,qR ⊕ C2γp,q(R⊕ V,W )

(f, x) 7→ (f, x′, y′)

where

x′ = x−
(
Σp+q

i=1 ⟨x, ei ⊗ f(1, 0)⟩ei ⊗ f(1, 0)
)

y′ = Σp+q
i=1 ⟨x, ei ⊗ f(1, 0)⟩ei

and ei is the i-th unit vector in Rp,q.

It remains to show that t is C2-equivariant.

σ(t(f, x, y)) = σ(f, x+ (y ⊗ f(1, 0))

= (σ ∗ f, σx+ (σy ⊗ σf(1, 0))

= (σ ∗ f, σx+ (σy ⊗ (σ ∗ f)(1, 0))

= t(σ ∗ f, σx, σy)

= t(σ(f, x, y))

We now prove the second homeomorphism. The space res∗Rδ C2γp,q(V,W ) consists of pairs
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(f, x), where f is a linear isometry Rδ ⊕ V → W and x ∈ Rp,q ⊗ f(V )⊥. The space

ϵq,pRδ⊕C2γp,q(Rδ⊕V,W ) consists of triples (f, x, y), where f is a linear isometry Rδ⊕V → W ,

x ∈ Rp,q ⊗ f(Rδ ⊕ V )⊥ and y ∈ Rq,p ∼= Rp,q ⊗ Rδ. We claim that the map

s : ϵq,pRδ ⊕ C2γp,q(Rδ ⊕ V,W )→ res∗Rδ C2γp,q(V,W )

(f, x, y) 7→ (f, x+ ((y ⊗ 1δ)⊗ f(1δ, 0))

is a C2-equivariant homeomorphism, where 1δ is the identity element in Rδ.

Indeed, the map s is a homeomorphism since it is continuous and has continuous inverse

s−1 : res∗Rδ C2γp,q(V,W )→ ϵq,pRδ ⊕ C2γp,q(Rδ ⊕ V,W )

(f, x) 7→ (f, x′, y′)

where

x′ = x−
(
Σp+q

i=1 ⟨x, ei ⊗ f(1δ, 0)⟩ei ⊗ f(1δ, 0)
)

y′ = Σp+q
i=1 ⟨x, ei ⊗ f(1δ, 0)⟩ei ⊗ 1δ

and ei is the i-th unit vector in Rp,q. It remains to show that s is C2-equivariant.

σ(s(f, x, y)) = σ(f, x+ ((y ⊗ 1δ)⊗ f(1δ, 0))

= (σ ∗ f, σx+ (σ(y ⊗ 1δ)⊗ σf(1δ, 0))

= (σ ∗ f, σx+ ((σy ⊗−1δ)⊗ (σ ∗ f)(−1δ, 0))

= (σ ∗ f, σx+ (−(σy ⊗ 1δ)⊗ σf(1δ, 0))

= (σ ∗ f, σx+ ((σy ⊗ 1δ)⊗−σf(1δ, 0))

= (σ ∗ f, σx+ ((σy ⊗ 1δ)⊗ (σ ∗ f)(1δ, 0))

= s(σ ∗ f, σx, σy)

= s(σ(f, x, y))
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Proof of Proposition 4.3.6. Since the weak equivalences in (p, q)-poly-C2ES0,0 are the Sp,q-

local equivalences (see Corollary 4.3.5), it suffices to show that Sp+1,q-equivalences and

Sp,q+1-equivalences are Sp,q-equivalences. This is sufficient, since it proves the existence

of Quillen adjunctions

Id : (p+ 1, q) -poly-C2ES0,0 ⇄ (p, q) -poly-C2ES0,0 : Id

Id : (p, q + 1) -poly-C2ES0,0 ⇄ (p, q) -poly-C2ES0,0 : Id,

and Id being right Quillen yields the desired result.

We start by showing that an Sp+1,q-equivalence is an Sp,q-equivalence. The proof is anal-

ogous to [BO13, Proposition 6.7].

We must prove that the sphere bundle map SC2γp+1,q(V,−)+ → C2J0,0(V, ) is an Sp,q-

equivalence for any V ∈ C2J0,0. There is a map of unit sphere bundles

α : SC2γp,q(V,−)+ → SC2γp+1,q(V,−)+

induced by the standard inclusion Rp,q → Rp+1,q, (x, y) 7→ (x, 0, y). It then suffices to

show that α is an Sp,q-equivalence, since there is a commutative diagram

SC2γp,q(V,−)+ SC2γp+1,q(V,−)+

C2J0,0(V,−)

α

where the diagonal map is an Sp,q-equivalence, since it is an element of Sp,q.

The vector bundle C2γp+1,q(V,−)+ is C2-equivariantly homeomorphic to the Whitney

sum of vector bundles C2γp,q(V,−)+ ⊕C2γ1,0(V,−)+. Since the unit sphere of a Whitney

sum of C2-vector bundles is C2-equivariantly equivalent to the fibrewise join of the unit

sphere bundles, we know that SC2γp+1,q(V,−)+ is the homotopy pushout in the following

diagram, where ⊠ denotes the fibrewise product.
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SC2γp,q(V,−)+ ⊠ SC2γ1,0(V,−)+ SC2γ1,0(V,−)+

SC2γp,q(V,−)+ SC2γp+1,q(V,−)+

p2

α

p1

Therefore, since homotopy pushouts preserve Sp,q-equivalences, it suffices to show that p2

is an Sp,q-equivalence.

By Proposition 4.3.7, there is a pullback square

(ϵp,qR ⊕ C2γp,q(R⊕ V,−))+ C2γp,q(V,−)+

C2J0,0(R⊕ V,−) C2J0,0(V,−)resR

where ϵp,qR is the total space of the trivial bundle

Rp,q × C2J0,0(R⊕ V,−)→ C2J0,0(R⊕ V,−)

and resR is the restriction map. Note that C2J0,0(R ⊕ V,−) is C2-equivariantly homeo-

morphic to SC2γ1,0(V,−)+ by Proposition 4.1.3. Hence, the diagram

S(ϵp,qR ⊕ C2γp,q(R⊕ V,−))+ SC2γp,q(V,−)+

SC2γ1,0(V,−)+ SC2J0,0(V,−)resR

is a homotopy pullback square. The homotopy pullback is SC2γp,q(V,−)+⊠SC2γ1,0(V,−)+,

by the definition of the fibrewise product. Therefore, the map p2 can be C2-equivariantly

identified as the sphere bundle map

S(ϵp,qR ⊕ C2γp,q(R⊕ V,−))+ → C2J0,0(R⊕ V,−).
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Since the unit sphere of a Whitney sum of C2-vector bundles is C2-equivariantly equivalent

to the fibrewise join of the unit sphere bundles, the following diagram is a homotopy

pushout.

Sp−1,q
+ ∧ SC2γp,q(R⊕ V,−)+ Sp−1,q

+ ∧ C2J0,0(R⊕ V,−)

SC2γp,q(R⊕ V,−)+ S(ϵp,qR ⊕ C2γp,q(R⊕ V,−))+µ

δ

The map δ is an Sp,q-equivalence, since it is an element of Sp,q smashed with a C2-CW

complex. Therefore, the pushout µ is also an Sp,q-equivalence.

There is a commutative diagram

SC2γp,q(R⊕ V,−)+ S(ϵp,qR ⊕ C2γp,q(R⊕ V,−))+

C2J0,0(R⊕ V,−)

p2

µ

where µ is an Sp,q-equivalence, by above, and the diagonal map is an Sp,q-equivalence,

since it is an element of Sp,q. Hence, by the two-out-of-three property, the map p2 is an

Sp,q-equivalence as required.

Proving that an Sp,q+1-equivalence is an Sp,q-equivalence is similar, and uses the other

case of Proposition 4.3.7.

Corollary 4.3.8. There exists a Quillen adjunction

Id : (p, q) -poly-C2ES0,0 ⇄ (m,n) -poly-C2ES0,0; Id

for m < p and n < q.

Combining Proposition 4.3.6 with Theorem 4.2.9 and Lemma 4.2.12, gives an important

result about how the functors Tp,q interact.
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Corollary 4.3.9. Let E ∈ C2E0,0. If l ≥ p and m ≥ q, then

Tp,qTl,mE ≃ Tl,mTp,qE ≃ Tp,qE.

We now construct another model structure on C2E0,0. We call this model structure the

(p, q)-polynomial model structure, and denote it by (p, q)-poly-C2E0,0. The fibrant objects

of this model structure will be the functors which are (p, q)-polynomial. The construction

of this model structure is done in a similar way as for the model structure (p, q)-poly-C2ES0,0.

We use a Bousfield-Friedlander localisation to prove the existence of the model structure

and then use a left Bousfield localisation to show that it is cellular. This ensures that

we can construct a right Bousfield localisation of the (p, q)-polynomial model structure

and, by choosing the right set of objects to localise at, this right Bousfield localisation

has fibrant-cofibrant objects which are the (p, q)-homogeneous functors, see Section 5.2.

Proposition 4.3.10. There is a proper model structure on C2E0,0 such that a morphism

f is a weak equivalence if and only if it is a Tp+1,qTp,q+1-equivalence. The cofibrations

are the same as for the projective model structure. The fibrant objects are the functors

that are (p, q)-polynomial. A morphism f is a fibration if and only if it is an objectwise

fibration and the diagram

X Y

Tp+1,qTp,q+1X Tp+1,qTp,q+1YTp+1,qTp,q+1f

f

ηη

is a homotopy pullback square in C2E0,0. Denote this model structure by (p, q) -poly-C2E0,0.

The proof is similar to Proposition 4.3.2, using Tp+1,qTp,q+1 in place of Tp,q, so we omit it

here.
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Remark 4.3.11. Since the cofibrations of C2E0,0 and (p, q)-poly-C2E0,0 are the same and

Tp+1,qTp,q+1 preserves objectwise weak equivalences, there is again a Quillen adjunction

Id : C2E0,0 ⇄ (p, q) -poly-C2E0,0 : Id,

and similarly to Corollary 4.3.8, there is a Quillen adjunction

Id : (p, q) -poly-C2E0,0 ⇄ (m,n) -poly-C2E0,0 : Id

where m ≤ p and n ≤ q.

Additionally, the two localisations are related by the following Quillen adjunction.

Id : (p, q) -poly-C2E0,0 ⇄ (p, q) -poly-C2ES0,0 : Id

We will now construct this model structure again, this time by a left Bousfield localisation.

Proposition 4.3.12. The model category (p, q) -poly-C2E0,0 is the left Bousfield localisa-

tion of C2E0,0 with respect to the class of maps Sp+1,q

∐
Sp,q+1 where

Sp+1,q = {SC2γp+1,q(V,−)+ → C2J0,0(V,−) : V ∈ C2J0,0}

Sp,q+1 = {SC2γp,q+1(V,−)+ → C2J0,0(V,−) : V ∈ C2J0,0}.

Proof. The proof follows in the same way as for Proposition 4.3.4.
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Equivariant homogeneous functors

In orthogonal calculus, the homotopy fibre of the map TnF → Tn−1F is n-polynomial

and has trivial (n − 1)-polynomial approximation. Functors of this type are called n-

homogeneous, and are completely determined by orthogonal spectra with O(n)-action, see

[Wei95, Theorem 7.3]. In this section we define a new class of (p, q)-homogeneous functors

in the C2-equivariant input category. The main goal will be to classify such functors by

a category of spectra, as is done in the underlying calculus. The relation between the

(p, q)-homogeneous model structure and the stable model structure in Proposition 3.4.17,

forms one half of the zig-zag of equivalences that gives this classification, see Theorem

6.3.7.

5.1 Homogeneous functors

We want to use the properties of the homotopy fibre

Dp,qF → Tp+1,qTp,q+1F → Tp,qF

to define a class of (p, q)-homogeneous functors in the input category C2E0,0 (see Definition

3.1.5). First, we will need to determine what these properties are, and to do so we will

111
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need to give some important and useful properties of polynomial functors. Many of these

properties will also be needed when constructing the homogeneous model structure in

Section 5.2.

The following is the C2-version of [Wei95, Lemma 5.5].

Lemma 5.1.1. Let g : E → G in C2E0,0 be such that indp,q
0,0G is objectwise contractible and

E is strongly (p, q)-polynomial, then the homotopy fibre of g is strongly (p, q)-polynomial.

Proof. This follows, as in [Wei95], from the homotopy fibre sequence in Lemma 4.1.11.

Corollary 5.1.2. Let g : E → F in C2E0,0 be such that indp+1,q
0,0 F and indp,q+1

0,0 F are

both objectwise contractible and E is (p, q)-polynomial, then the homotopy fibre of g is

(p, q)-polynomial.

The following is a C2-generalisation of [Wei95, Corollary 5.6], which is an instant conse-

quence Corollary 5.1.2 by setting E = ∗.

Corollary 5.1.3. Let F ∈ C2E0,0 be such that indp+1,q
0,0 F and indp,q+1

0,0 F are both objectwise

contractible, then the functor

V 7→ ΩF (V )

is (p, q)-polynomial.

Now we can determine the properties of the homotopy fibre Dp,qF .

Definition 5.1.4. Let E ∈ C2E0,0. Define E to be (p, q)-reduced if Tp,qE is objectwise

contractible.

Remark 5.1.5. Note that if E ∈ C2E0,0 is (p, q)-reduced, then E is also (a, b)-reduced for

all pairs (a, b) with 0 ≤ a ≤ p and 0 ≤ b ≤ q. This follows from Corollary 4.3.9.

Theorem 5.1.6. The homotopy fibre Dp,qF of the map rp,q : Tp+1,qTp,q+1F → Tp,qF is

(p, q)-polynomial and (p, q)-reduced.
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Proof. Indeed, applying Tp,q to the homotopy fibre sequence and applying Corollary 4.3.9

gives

Tp,qDp,qF Tp,qTp+1,qTp,q+1F Tp,qTp,qF

Tp,qF Tp,qF

rp,q

≃ ≃
id

Therefore, Tp,qDp,qF ≃ hofibre[Tp,qF
id→ Tp,qF ] ≃ ∗. That is, Dp,qF is (p, q)-reduced (see

Definition 5.1.4).

The functors Tp+1,qTp,q+1F and Tp,qF are both (p, q)-polynomial (see Definition 4.1.7).

This follows from Theorem 4.2.9 and Proposition 4.3.6. Therefore,Dp,qF is (p, q)-polynomial,

by Corollary 5.1.2.

Definition 5.1.7. Let E ∈ C2E0,0. E is defined to be (p, q)-homogeneous if it is (p, q)-

polynomial and (p, q)-reduced.

We now define the equivariant generalisation of the term ‘connected at infinity’, this is

analogous to [Wei95, Definition 5.9].

Definition 5.1.8. E ∈ C2E0,0 is defined to be connected at infinity if the C2-space

hocolim
a,b

E(Ra,b) =: E(R∞,∞)

is connected (meaning that the equivariant homotopy groups πH
0 E(R∞,∞) are trivial for

all closed subgroups H of C2).

Lemma 5.1.9. If E is (p, q)-homogeneous for pairs (p, q) where at least one of p, q is

greater than zero, then E is connected at infinity.

Proof. This is a straightforward calculation that follows from Example 4.2.11.

The next result is [Wei95, Proposition 5.10]. It is used in conjunction with Lemma 5.1.9 to

construct the (p, q)-homogeneous model structure. The proof follows as in [BO13, Lemma

5.10], replacing Tn by Tp,q, so we omit it here.
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Lemma 5.1.10. Let g : E → F be a map between strongly (p, q)-polynomial objects such

that the homotopy fibre of g is objectwise contractible and F is connected at infinity. Then

g is an objectwise weak equivalence.

Finally we will prove a version of [Wei95, Corollary 5.12]. We will use this result later,

along with Lemma 3.4.12, to show that the induction functor takes objects that are (p, q)-

polynomial to (p, q)Ω-spectra. This guarantees that induction is a right Quillen functor

from the (p, q)-polynomial model structure on C2E0,0 to the (p, q)-stable model structure

on C2Ep,q.

Proposition 5.1.11. Let E ∈ C2E0,0 be (p, q)-polynomial. Then for all V ∈ C2J0,0 there

exist weak equivalences of C2-spaces

indp,q
0,0E(V )→ Ωp,qR indp,q

0,0E(V ⊕ R)

indp,q
0,0E(V )→ Ωp,qRδ

indp,q
0,0E(V ⊕ Rδ).

Proof. We will prove the first weak equivalence, since the second follows by a similar

argument.

If p = q = 0, then there is nothing to prove, since E is constant (see Remark 4.2.13) and

ind0,0
0,0E ≃ E by the enriched Yoneda lemma.

Let p, q be such that at least one of p, q is non-zero. By Proposition 3.3.7, there exists a

C2-homotopy fibre sequence

resp+1,q
p,q indp+1,q

0,0 E(V )→ indp,q
0,0E(V )→ Ωp,qR indp,q

0,0E(V ⊕ R).

We know that indp+1,q
0,0 E(V ) is a contractible C2-space, since E is strongly (p + 1, q)-

polynomial and by Corollary 4.1.12. Thus, if we can show that both indp,q
0,0E and

F : V 7→ Ωp,qR indp,q
0,0E(V ⊕ R)
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are strongly (p+1, q)-polynomial and F is connected at infinity, then Lemma 5.1.10 gives

the weak equivalence. Showing this is the same as for [BO13, Proposition 5.12].

5.2 The (p, q)-homogeneous model structure

We now construct a right Bousfield localisation of the (p, q)-polynomial model structure

in order to build a model structure on C2E0,0 analogous to the n-homogeneous structure

in [BO13, Proposition 6.9]. The cofibrant-fibrant objects of this model structure are the

projectively cofibrant (p, q)-homogeneous functors and the weak equivalences are detected

by derivatives. This model structure allows for the classification of (p, q)-homogeneous

functors in terms of a Quillen equivalence, see Theorem 6.3.6.

Proposition 5.2.1. There exists a model structure on C2E0,0 whose cofibrant-fibrant ob-

jects are the (p, q)-homogeneous functors that are cofibrant in the projective model structure

on C2E0,0. Fibrations are the same as (p, q) -poly-C2E0,0 and weak equivalences are mor-

phisms f such that resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1f is an objectwise weak equivalence. We call this

the (p, q)-homogeneous model structure on C2E0,0 and denote it by (p, q) -homog-C2E0,0.

There is a Quillen adjunction

Id : (p, q) -homog-C2E0,0 ⇄ (p, q) -poly-C2E0,0 : Id

Proof. We show that right Bousfield localisation of (p, q)-poly-C2E0,0 with respect to the

set of objects

Kp,q = {C2Jp,q(V,−) : V ∈ C2J0,0}

yields the desired model structure.

Since (p, q)-poly-C2E0,0 is proper and cellular, we know that the right Bousfield localisation

RKp,q((p, q) -poly-C2E0,0) exists by [Hir03, Theorem 5.1.1].
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It suffices (by the same argument used in the proof of Proposition 4.3.4) to use

Nat0,0(ĉX, Tp+1,qTp,q+1Y ),

where ĉ denotes cofibrant replacement in (p, q) -poly-C2E0,0, as a homotopy mapping ob-

ject X → Y in (p, q) -poly-C2E0,0, since (p, q) -poly-C2E0,0 is enriched over C2Top∗ and

Tp+1,qTp,q+1 is the fibrant replacement. Note that all elements of Kp,q are already cofi-

brant by Lemma 4.1.10, since the cofibrant object of (p, q)-poly-C2E0,0 are the same as for

C2E0,0.

The weak equivalences of RKp,q((p, q) -poly-C2E0,0) are theKp,q-colocal equivalences. That

is, f : X → Y is a weak equivalence in RKp,q((p, q) -poly-C2E0,0) if and only if

Nat0,0(C2Jp,q(V,−), Tp+1,qTp,q+1X)→ Nat0,0(C2Jp,q(V,−), Tp+1,qTp,q+1Y )

is a weak equivalence in C2Top∗, for all V ∈ C2J0,0. By Definition 3.3.4, we see that

this map is exactly resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1f(V ). Therefore, f is a weak equivalence if and

only if resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1f is an objectwise weak equivalence as desired.

The fibrations are the same as for (p, q)-poly-C2E0,0, since fibrations are unchanged by

right Bousfield localisation. Thus, the fibrant objects are the (p, q)-polynomial functors.

The cofibrant objects are those functors X such that X is cofibrant in C2E0,0 and such

that for all Kp,q-colocal equivalences f : A→ B the map

Nat0,0(X,Tp+1,qTp,q+1A)→ Nat0,0(X,Tp+1,qTp,q+1B)

is a weak equivalence in C2Top∗.

We now show that the cofibrant-fibrant objects of RKp,q((p, q) -poly-C2E0,0) are the pro-

jectively cofibrant (p, q)-homogeneous functors.
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LetA be a cofibrant-fibrant object ofRKp,q((p, q) -poly-C2E0,0). ThenA is (p, q)-polynomial

and projectively cofibrant by above. There is a Kp,q-colocal equivalence ∗ → Tp,qA, since

resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1Tp,qA(V ) ≃ resp,q0,0 ind

p,q
0,0 Tp,qA(V )

≃ ∗

≃ resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1 ∗ (V )

where the first equivalence is by Corollary 4.3.9 and the second equivalence is by Theorem

4.2.9 and Corollary 4.1.12. Therefore, there is a weak equivalence of C2-spaces

Nat0,0(A, ∗)→ Nat0,0(A, Tp,qA)

Using this map and Remark 4.3.3, there are isomorphisms

0 = [A, Tp,qA] ∼= [A,A]Tp,q ∼= [Tp,qA, Tp,qA]
Tp,q ∼= [Tp,qA, Tp,qA].

Hence, Tp,qA is objectwise contractible, and A is (p, q)-homogeneous.

Let B be a (p, q)-homogeneous functor that is cofibrant in C2E0,0. Then B is fibrant in

RKp,q((p, q) -poly-C2E0,0), since it is (p, q)-polynomial. It is left to show that B is cofibrant.

Let f : ĉB → B be the cofibrant replacement of B in (p, q)-homog-C2E0,0. Since B is

fibrant, so is ĉB. Therefore, resp,q0,0 ind
p,q
0,0 f is an objectwise weak equivalence. If we can

show that f is an objectwise weak equivalence, then it will follow that B is cofibrant.

Let D be the homotopy fibre of f . Since both B and ĉB are fibrant, so is D (see Corollary

5.1.2. Since resp,q0,0 ind
p,q
0,0 f is an objectwise weak equivalence, resp,q0,0 ind

p,q
0,0D is objectwise

contractible. Hence, we have a homotopy fibre sequence of fibrant ((p, q)-polynomial)

objects

resp,q0,0 ind
p,q
0,0D → D → τp,qD

whose homotopy fibre is objectwise contractible. By Lemma 5.1.10, if τp,qD is connected

at infinity, then D → τp,qD is an objectwise weak equivalence. This is true, since τp,q
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commutes with sequential homotopy colimits and D is connected at infinity as it is (p, q)-

homogeneous (see Lemma 5.1.9). Therefore, D is strongly (p, q)-polynomial.

We know that D is (p, q)-polynomial (fibrant) from above. It remains to check that Tp,qD

is objectwise contractible in order to confirm thatD is indeed (p, q)-homogeneous as stated

above. The sequential homotopy colimit used to describe Tp,qD commutes with homotopy

pullbacks. Therefore, there is a homotopy fibre sequence

Tp,qD → Tp,q ĉB → Tp,qB.

The functors ĉB andB are both (p, q)-homogeneous (B by assumption and ĉB by cofibrant-

fibrant). Therefore, Tp,q ĉB and Tp,qB are both objectwise contractible, which implies that

Tp,qD is objectwise contractible as required.

Since D is strongly (p, q)-polynomial, D is objectwise weakly equivalent to Tp,qD. Hence,

D is objectwise contractible, which by Lemma 5.1.10 implies that f is an objectwise weak

equivalence as desired.

If f is a Tp+1,qTp,q+1-equivalence, then resp,q0,0 ind
p,q
0,0 Tp+1,qTp,q+1f is an objectwise weak

equivalence, since resp,q0,0 ind
p,q
0,0 preserves objectwise weak equivalences. Therefore, Id is

right Quillen, and the adjunction exists.

Remark 5.2.2. Detecting weak equivalences via indp,q
0,0 Tp+1,qTp,q+1 can be difficult, since

the induction functor indp,q
0,0 is complex. In unitary calculus, Taggart shows that a map is

an indn
0 Tn-equivalence if and only if it is a Dn-equivalence, where DnF is the homotopy

fibre of TnF → Tn−1F (see [Tag22b, Proposition 8.2]). Via a similar proof, one can show

that a map is an indp,q
0,0 Tp+1,qTp,q+1-equivalence if and only if it is a Dp,q-equivalence.
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The equivariant classification

theorem

The main result of orthogonal calculus is the classification of n-homogeneous functors,

as functors fully determined by a category of spectra. This is given by the classification

theorem of Weiss [Wei95, Theorem 7.3], which states that an n-homogeneous functor

is weakly equivalent to a functor of the form V 7→ Ω∞[(SnV ∧ Ψ)hO(n)], where Ψ is an

orthogonal spectrum with an action of O(n). In [BO13], this classification is derived

as a Quillen equivalence on the model categories constructed, see Section 2.2.6. As a

result, the homotopy fibres of the maps Tn+1X → TnX for an input functor X, which are

n-homogeneous, stand a chance of begin computed.

In this chapter, we construct two Quillen equivalences. These Quillen equivalences form

a zig-zag of equivalences between the (p, q)-homogeneous model structure on C2E0,0 and

the stable model structure on C2Sp
O[O(p, q)].

(p, q) -homog-C2E0,0 O(p, q)C2Esp,q C2Sp
O[O(p, q)]

indp,q0,0 ε
∗

resp,q0,0 /O(p,q) (αp,q)!

α∗
p,q

119
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In the same way as for Barnes and Oman in [BO13, Section 10], this leads to a classification

theorem for (p, q)-homogeneous functors (Theorem 6.3.8), as functors fully determined by

genuine orthogonal C2-spectra with an action of O(p, q).

6.1 The intermediate category as a category of spec-

tra

In this section we show that the (p, q)-th intermediate category O(p, q)C2Ep,q is Quillen

equivalent to the category of O(p, q)-equivariant objects in orthogonal C2-spectra. Thus,

the (p, q)-derivative of an input functor (see Definition 3.1.5) can be described in terms of

these spectra. This section is analogous to [BO13, Section 8], where the only differences

are due to the additional C2-action, which does not effect the O(p, q)-equivariance of maps

considered. The resulting Quillen equivalence

(αp,q)! : O(p, q)C2Ep,q ⇄ C2Sp
O[O(p, q)] : α∗

p,q

forms one half of the zig-zag of equivalences which gives the classification of (p, q)-

homogeneous functors, see Theorem 6.3.7. The spectrum (αp,q)!F for a functor F ∈

O(p, q)C2Ep,q is the categorification of the spectrum ΘF constructed in [Wei95, Section

2].

We begin by describing the category of orthogonal C2-spectra. Details of these construc-

tions have been discussed by Mandell and May in [MM02, Section II.4].

Definition 6.1.1. The category of orthogonal C2-spectra C2Sp
O is the category C2E1,0.

This category has a cofibrantly generated proper stable model structure where the cofi-

brations are q-cofibrations and the weak equivalences are the (1, 0)π∗-equivalences (see

Definition 3.4.9). That is, f if a weak equivalence if (1, 0)πH
k f is an isomorphism for all

closed subgroups H ≤ C2 and integers k. It is cofibrantly generated by the following sets
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of generating cofibrations and generating acyclic cofibrations respectively

{FV i : i ∈ IC2}

{FV j : j ∈ JC2}

where FV : C2Top∗ → C2Sp
O is the left adjoint to evaluation at V , and IC2 , JC2 are the

generating cofibrations and acyclic cofibrations for C2Top∗ (see Proposition 2.1.7).

Remark 6.1.2. Sometimes in the literature, an orthogonal G-spectrum is defined as a

collection of based spaces {Xn}n∈N with an action of G×O(n) on each Xn. The structure

maps are G-equivariant maps

Xn ∧ S1 → Xn+1,

such that the iterated structure maps

Xn ∧ Sm → Xn+m

are O(m)×O(n)-equivariant, where G acts trivially on Sm.

This is what we refer to as a naive orthogonal G-spectrum. Genuine G-spectra are indexed

on a complete G-universe of all G-representations, whereas naive G-spectra are indexed

on the trivial G-universe. That is, naive G-spectra are just spectra with an action of G

on each level, and G-equivariant structure maps. These two descriptions of G-spectra

are categorically equivalent, however they are not homotopically equivalent (see [HHR21,

Section 9.3]), in that the most natural model structures associated to these categories are

not Quillen equivalent. In what follows, we consider orthogonal spectra that are genuine

with respect to C2 and naive with respect to O(p, q).

Definition 6.1.3. The category ofO(p, q)-objects in orthogonal C2-spectra, C2Sp
O[O(p, q)],

is the category ofO(p, q)-objects in C2E1,0 andO(p, q)-equivariant maps. AnO(p, q)-object

in C2E1,0 is a C2Top∗-enriched functor from C2J1,0 to (O(p, q)⋊ C2) Top∗.
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Theorem 6.1.4. The category of genuine orthogonal C2-spectra with an action of O(p, q),

C2Sp
O[O(p, q)], has a cofibrantly generated proper stable model structure where fibrations

and weak equivalences are defined by the underlying model structure on C2Sp
O above.

One can prove the existence of this model structure in a similar way as for Remark 3.4.8,

using the adjunction

(O(p, q)⋊ C2) ∧C2 (−) : C2Sp
O C2Sp

O[O(p, q)] : i∗

where i∗ is the restriction functor.

We want to define a functor C2Sp
O[O(p, q)] → O(p, q)C2Ep,q. This functor will be called

α∗
p,q, and it is analogous to the α∗

n functor built in [BO13, Section 8].

Definition 6.1.5. Define the functor αp,q : C2Jp,q → C2J1,0 by

U 7→ Rp,q ⊗ U = (p, q)U

on objects, and

(f, x) 7→ (Rp,q ⊗ f, x)

on morphisms.

The map on morphisms is clearly (O(p, q)⋊ C2)-equivariant, and thus αp,q is enriched

over (O(p, q)⋊ C2)-spaces.

This induces a functor

α∗
p,q : C2Sp

O[O(p, q)]→ O(p, q)C2Ep,q

defined by precomposition. For X ∈ C2Sp
O[O(p, q)] we define the (O(p, q) ⋊ C2)- action

on (αp,qX)(V ) := X((p, q)V ) by

X(gσ ⊗ σ) ◦ (gσ)X((p,q)V )
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Here X(gσ⊗σ) is the internal action on X((p, q)V ) induced by the action on (p, q)V , and

(gσ)X((p,q)V ) is the external action from X((p, q)V ) being an (O(p, q)⋊ C2)-space. These

two actions commute by construction.

Checking that α∗
p,qX is well defined (i.e. that α∗

p,qX is (O(p, q)⋊C2) Top∗-enriched) is the

same as checking that the map

C2Jp,q(U, V )→ (O(p, q)⋊ C2) Top∗(X((p, q)V ), X((p, q)V ))

is (O(p, q)⋊ C2)-equivariant.

To do this we consider the following commutative diagram. We use the notation (−)∗

to mean pre-composition and (−)∗ to mean post-composition. Let s denote the map

((gσ)−1 ⊗ σ)∗ ◦ (gσ ⊗ σ)∗, and t be the map (X((gσ)−1 ⊗ σ))∗ ◦ (X(gσ ⊗ σ))∗. We have

abbreviated (O(p, q)⋊ C2) Top∗ to S Top∗ to save space (S for semi-direct product).

C2Jp,q(U, V ) C2J1,0((p, q)U, (p, q)V ) S Top∗(X((p, q)U), X((p, q)V ))

C2Jp,q(U, V ) C2J1,0((p, q)U, (p, q)V ) S Top∗(X((p, q)U), X((p, q)V ))

tsgσ

αp,q

αp,q

X

X

Given a pair (f, x) ∈ C2Jp,q(U, V ), by applying α∗
p,qX we get a a (O(p, q)⋊ C2)-equivariant

map

X(Rp,q ⊗ f) : X((p, q)V )→ X((p, q)V ).

Therefore, the following two expressions are equal

X(gσ ⊗ V ) ◦X(Rp,q ⊗ f, x) ◦X((gσ)−1 ⊗ U)

(gσ)X(U) ◦X(gσ ⊗ V ) ◦X(Rp,q ⊗ f, x) ◦X((gσ)−1 ⊗ U) ◦ (gσ)−1
X(V )
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which by comparison to the commutative diagram tells us exactly that the map

C2Jp,q(U, V )→ (O(p, q)⋊ C2) Top∗(X((p, q)V ), X((p, q)V ))

is (O(p, q)⋊ C2)-equivariant, and hence that α∗
p,qX is well defined.

Remark 6.1.6. Note that any other choice of internal action on X((p, q)V ) results in the

failure of the diagram being commutative. For example, taking X(gσ⊗ id) as the internal

action means that the left square in the diagram commutes only if f , from the pair (f, x),

is C2-equivariant, which is not necessarily the case.

The left Kan extension of X ∈ C2Sp
O[O(p, q)] along αp,q can be described by the following

(O(p, q)⋊C2) Top∗-enriched coend. If we use the notation (αp,q)! to denote taking the left

Kan extension along αp,q, then

((αp,q)!(X))(V ) =

U∈C2Jp,q∫
C2J1,0((p, q)U, V ) ∧X(U).

We make this functor suitable enriched by ‘twisting’ the action as in [BO13, Definition

8.2]. That is, we let C2J1,0 act on C2J1,0((p, q)U, V ) on the left by composition, and let

C2Jp,q act on C2J1,0((p, q)U, V ) on the right by composition. It is not hard to show, by

an argument of coends, that (αp,q)! forms a left adjoint to α∗
p,q. We now prove that this

adjunction is indeed a Quillen equivalence.

Theorem 6.1.7. The adjoint pair

(αp,q)! : O(p, q)C2Esp,q ⇄ C2Sp
O[O(p, q)] : α∗

p,q

is a Quillen equivalence, where both categories are equipped with their stable model struc-

tures (see Proposition 3.4.17 and Theorem 6.1.4).

Proof. The proof follows as in [BO13, Proposition 8.3]. Since α∗
p,q is defined by precompo-

sition, it preserves objectwise fibrations and objectwise acyclic fibrations. It can easily be
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shown that α∗
p,q also preserved homotopy pullbacks. Hence, it preserves stable fibrations.

An argument using finality shows that α∗
p,q preserves and reflects weak equivalences, and

therefore preserves stable acyclic fibrations, making the adjunction Quillen.

It remains to show that the Quillen adjunction is a Quillen equivalence. By Hovey [Hov99,

Theorem 1.3.16], it suffices to show that the derived unit is a weak equivalence. Since the

categories are stable and α∗
p,q preserves coproducts, it suffices to do this for the generators

of O(p, q)C2Ep,q. This can be done by plugging in the generators O(p, q)+ ∧ (p, q)S and

(C2 ×O(p, q))+ ∧ (p, q)S into the formula for the unit, where (p, q)S sends V ∈ C2J0,0 to

the one point compactification of Rp+qδ ⊗ V , denoted S(p,q)V .

6.2 Induction as a Quillen functor

In this section we construct a Quillen adjunction between the (p, q)-homogeneous model

structure and the stable model structure on C2Ep,q. The right adjoint of this adjunc-

tion will be the differentiation functor indp,q
0,0 ε

∗. Moreover, we will show that this Quillen

adjunction is in fact a Quillen equivalence between these categories. Combined with

the Quillen equivalence of Theorem 6.1.7, this allows for the classification of (p, q)-

homogeneous functors in terms of orthogonal C2-spectra with an action of O(p, q).

The steps taken to construct this Quillen equivalence are similar to [BO13, Section 9 and

Section 10]. We begin by explicitly proving the existence of a Quillen adjunction between

the projective model structures on O(p, q)C2Ep,q and C2E0,0, which can then be extended

via properties of Quillen adjunctions and Bousfield localisations.

Lemma 6.2.1. There exists a Quillen adjunction

resp,q0,0 /O(p, q) : O(p, q)C2E lp,q ⇄ C2E0,0 : indp,q
0,0 ε

∗
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Proof. The generating (acyclic) cofibrations of O(p, q)C2E lp,q are of the form

C2Jp,q(U,−) ∧O(p, q) ∧ i,

where i is a generating (acyclic) cofibration of the fine model structure on C2Top∗, see

Theorem 2.1.7.

Applying the left adjoint gives resp,q0,0C2Jp,q(U,−)∧ i in C2E0,0. We know that the functor

resp,q0,0C2Jp,q(U,−) is cofibrant in C2E0,0 by Lemma 4.1.10, hence resp,q0,0C2Jp,q(U,−)∧ i is a

(acyclic) cofibration in C2E0,0. Therefore, the left adjoint preserves (acyclic) cofibrations,

which by Hovey [Hov99, Lemma 2.1.20] shows that the adjunction is Quillen.

This adjunction can be extended to the (p, q)-polynomial model structure, via a composi-

tion of Quillen adjunctions. Furthermore, since the stable model structure on C2Ep,q is a

left Bousfield localisation of the projective model structure, the Theorems of Hirschhorn

[Hir03, Theorem 3.1.6, Proposition 3.1.18] can be used to additionally extend the adjunc-

tion to the stable model structure. In particular, this Quillen adjunction implies that the

derivative of a (p, q)-polynomial functor is a (p, q)Ω-spectrum.

Lemma 6.2.2. There exists a Quillen adjunction

resp,q0,0 /O(p, q) : O(p, q)C2Esp,q ⇄ (p, q) -poly-C2E0,0 : indp,q
0,0 ε

∗

Proof. We know by Remark 4.3.11 that there exists a Quillen adjunction

Id : C2E0,0 ⇄ (p, q) -poly-C2E0,0 : Id

Since the composition of Quillen adjunctions is a Quillen adjunction, combining the above

adjunction with Lemma 6.2.1 gives a Quillen adjunction

resp,q0,0 /O(p, q) : O(p, q)C2E lp,q ⇄ (p, q) -poly-C2E0,0 : indp,q
0,0 ε

∗
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We now use [Hir03, Theorem 3.1.6, Proposition 3.1.18] to show that this Quillen equiv-

alence passes to O(p, q)C2Esp,q. That is, we show that indp,q
0,0 ε

∗ takes objects that are

(p, q)-polynomial to (p, q)Ω-spectra. This has been done in Proposition 5.1.11 and Lemma

3.4.12.

Since the (p, q)-homogeneous model structure is a right Bousfield localisation of the (p, q)-

polynomial model structure, the Theorems [Hir03, Theorem 3.1.6, Proposition 3.1.18] can

again be used to extend this Quillen adjunction to the (p, q)-homogeneous model structure.

Lemma 6.2.3. There exists a Quillen adjunction

resp,q0,0 /O(p, q) : O(p, q)C2Esp,q ⇄ (p, q) -homog-C2E0,0 : indp,q
0,0 ε

∗

Proof. Let f : X → Y be a weak equivalence between fibrant objects in the (p, q)-

homogeneous model structure. Then the map

f ∗ : Nat0,0(C2Jp,q(V,−), X)→ Nat0,0(C2Jp,q(V,−), Y )

is a weak equivalence of C2-spaces for all V ∈ C2J0,0, by definition of the right Bousfield

localisation. Therefore, indp,q
0,0 ε

∗f is an objectwise weak equivalence. An application of

[Hir03, Lemma 3.1.6, Proposition 3.1.18] now gives that indp,q
0,0 ε

∗ is right Quillen.

The Quillen adjunctions between the model categories constructed are summarised in the

following diagram (which we do not claim commutes).

O(p, q)C2E lp,q C2E0,0 (p, q) -poly-C2E0,0

O(p, q)C2Esp,q (p, q) -homog-C2E0,0

Id

Id

Id

Id Id

resp,q0,0 /O(p,q)

indp,q0,0 ε
∗

resp,q0,0 /O(p,q)

indp,q0,0 ε
∗

Id
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6.3 The classification of (p, q)-homogeneous functors

We now aim to show that the Quillen adjunction of Theorem 6.2.3, between the (p, q)-

stable model structure and the (p, q)-homogeneous model structure, is in fact a Quillen

equivalence. To do this, we take the same approach as Barnes and Oman [BO13, Section

10], but first we will need to generalise a few more results from the underlying calculus to

the C2-equivariant setting. The following is a C2-generalisation of [BO13, Lemma 9.3].

Lemma 6.3.1. The left derived functor of resp,q0,0 /O(p, q) is objectwise weakly equivalent

to EO(p, q)+ ∧O(p,q) res
p,q
0,0(−).

Proof. Let X ∈ O(p, q)C2Esp,q and denote the cofibrant replacement of X in the projective

model structure O(p, q)C2E lp,q by ĉX. Then ĉX is in particular O(p, q)-free. Hence, there

are objectwise weak equivalences

EO(p, q)+ ∧O(p,q) res
p,q
0,0(ĉX)→ EO(p, q)+ ∧O(p,q) res

p,q
0,0(X)

EO(p, q)+ ∧O(p,q) res
p,q
0,0(ĉX)→ resp,q0,0(ĉX)/O(p, q)

induced by the maps ĉX → X and EO(p, q)+ → S0 respectively. The result follows

directly from this.

The following two examples play a key role in classifying homogeneous functors. These

examples generalise [Wei95, Example 5.7 and Example 6.4] respectively. Example 6.3.2

proves that the functor F (V ) = Ω∞[(S(p,q)V ∧ Θ)hO(p,q)] is (p, q)-homogeneous. Alterna-

tively, one can take the perspective that (p, q)-homogeneous functors are defined using

the properties of this functor F . If one were to chose a different functor F , still in terms

of spectra, it may be possible to classify a different class of input functors. However, we

choose to work with the functor F defined above, since it is analogous to the functor

F (V ) = Ω∞[(SnV ∧Θ)hO(n)] used in the underlying calculus, see [Wei98, Example 5.7].
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The subscript (−)hO(p,q) denotes taking homotopy orbits. For X ∈ C2Sp
O[O(p, q)],

XhO(p,q) is the genuine orthogonal C2-spectrum defined by

XhO(p,q) := EO(p, q)+ ∧O(p,q) X,

where EO(p, q) is the universal space of O(p, q). This universal space has a C2-action,

which is given in Section 6.4. Hence, the homotopy orbits XhO(p,q) has a diagonal C2-

action. The notation Ω∞ denotes taking the infinite loop space. For a genuine orthogonal

C2-spectrum X ∈ C2Sp
O, Ω∞X is the C2-space defined by

Ω∞X := hocolimV ΩVX(V ),

where the homotopy colimit is taken over V ∈ C2J0,0. This homotopy colimit has a

natural C2-action induced by the actions on each X(V ).

Example 6.3.2. Let Θ be an orthogonal C2-spectrum with O(p, q)-action and p, q ≥ 1.

The functor F ∈ C2E0,0 defined by

F : V 7→ Ω∞[(S(p,q)V ∧Θ)hO(p,q)]

is (p, q)-homogeneous.

Proof. Since F has a delooping, by Corollary 5.1.3, in order to show that F is (p, q)-

polynomial it suffices to show that F (p+1,q) and F (p,q+1) are both objectwise contractible

(where F (m,n) denotes the (m,n)-derivative of F , indm,n
0,0 F ).

Recall (see Proposition 3.3.7) that F (p+1,q)(V ) is the homotopy fibre of

F (p,q)(V )→ Ωp,qRF (p,q)(V ⊕ R)

and that F (p,q+1)(V ) is the homotopy fibre of

F (p,q)(V )→ Ωp,qRδ

F (p,q)(V ⊕ Rδ).
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Iterating this process gives a lattice of derivatives

F (p,q) F (p−1,q) . . . F (0,q)

F (p,q−1) F (p−1,q−1)

...
. . .

F (p,0) F

We will “identify” this lattice with another lattice

F [p, q] F [p− 1, q] . . . F [0, q]

F [p, q − 1] F [p− 1, q − 1]

...
. . .

F [p, 0] F

where F [i, j](V ) = Ω∞[(S(p,q)V ∧ Θ)hO(p−i,q−j)]. That is, we will verify that F [i, j](1,0) is

objectwise equivalent to F [i + 1, j] and F [i, j](0,1) is objectwise equivalent to F [i, j + 1],

as is true for the functors F (i,j).

Here O(p − i, q − j) is the subgroup of O(p, q) that fixes the first i coordinates and the

(p+1)st to (p+ j)th coordinates. That is, for all g in O(p− i, q− j) and all (x1, ..., xp+q) in

Rp+qδ, if g(x1, ..., xp+q) = (y1, ..., yp+q), then xn = yn for all n ≤ i and all p+1 ≤ n ≤ p+j.
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Each F [i, j] is an element of C2Ei,j. The structure maps are defined by the following series

of maps

S(i,j)U ∧ F [i, j](V ) = S(i,j)U ∧ Ω∞[(S(p,q)V ∧Θ)hO(p−i,q−j)]

→ Ω∞[S(i,j)U ∧ (S(p,q)V ∧Θ)hO(p−i,q−j)]

= Ω∞[(S(i,j)U ∧ S(p,q)V ∧Θ)hO(p−i,q−j)]

→ Ω∞[(S(p,q)U ∧ S(p,q)V ∧Θ)hO(p−i,q−j)]

≃ Ω∞[(S(p,q)(U⊕V ) ∧Θ)hO(p−i,q−j)]

= F [i, j](U ⊕ V )

where the second equality holds since O(p − i, q − j) fixes Ri,j. Moreover, F [p, q] is a

(p, q)Ω-spectrum (by substituting F [p, q] into the adjoint structure map).

We now want to show that F [i, j](1,0) is objectwise equivalent to F [i+1, j] and F [i, j](0,1)

is objectwise equivalent to F [i, j + 1]. Then, since F [p, q] is a (p, q)Ω-spectrum

∗ ≃ F [p, q](1,0) ≡ (F (p,q))(1,0) = F (p+1,q)

∗ ≃ F [p, q](0,1) ≡ (F (p,q))(0,1) = F (p,q+1)

as desired. We do this by calculating F [i, j](1,0) and F [i, j](0,1) using Proposition 3.3.7.

First let 0 ≤ i < p and 0 ≤ j ≤ q

F [i, j](1,0)(V ) = hofibre
[
F [i, j](V )→ Ω(i,j)RF [i, j](R⊕ V )

]
=hofibre

[
Ω∞[(S(p,q)V ∧Θ)hO(p−i,q−j)]→ Ω(i,j)RΩ∞[(S(p,q)(R⊕V ) ∧Θ)hO(p−i,q−j)]

]
=Ω∞ hofibre

[
(S(p,q)V ∧Θ)hO(p−i,q−j) → Ω(i,j)R[(S(p,q)(R⊕V ) ∧Θ)hO(p−i,q−j)]

]
≃Ω∞ hofibre

[
(S(p,q)V ∧Θ)hO(p−i,q−j) → Ω(i,j)R[(S(p,q)R ∧ S(p,q)V ∧Θ)hO(p−i,q−j)]

]
≃Ω∞ hofibre

[
(S(p,q)V ∧Θ)hO(p−i,q−j) → Ω(i,j)R[(S(i,j)R ∧ S(p−i,q−j)R ∧ S(p,q)V ∧Θ)hO(p−i,q−j)]

]
≃Ω∞ hofibre

[
(S(p,q)V ∧Θ)hO(p−i,q−j) → Ω(i,j)RΣ(i,j)R[(S(p−i,q−j)R ∧ S(p,q)V ∧Θ)hO(p−i,q−j)]

]
≃Ω∞ hofibre

[
(S(p,q)V ∧Θ)hO(p−i,q−j) → (S(p−i,q−j)R ∧ S(p,q)V ∧Θ)hO(p−i,q−j)

]
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where the last weak equivalence is by the π∗-equivalence Ω
VΣVX → X for C2Sp

O[O(p, q)].

The map S(p,q)V ∧Θ→ S(p−i,q−j)R ∧ S(p,q)V ∧Θ is given by

S0,0 ∧ S(p,q)V ∧Θ
µ∧id∧ id−−−−−→ S(p−i,q−j)R ∧ S(p,q)V ∧Θ,

where µ : S0,0 → S(p−i,q−j)R is the canonical inclusion, which has stable homotopy fibre

S
(p−i−1,q−j)R
+ . Therefore, the homotopy fibre of µ ∧ id∧ id is S

(p−i−1,q−j)R
+ ∧ S(p,q)V ∧

Θ. Here O(p − i, q − j) acts on S
(p−i−1,q−j)R
+ by identifying S(p−i−1,q−j)R with the unit

sphere S(Rp−i,q−j) in Rp−i,q−j. Since taking homotopy orbits preserves fibre sequences,

the homotopy fibre of the map (S(p,q)V ∧Θ)hO(p−i,q−j) → (S(p−i,q−j)R∧S(p,q)V ∧Θ)hO(p−i,q−j)

is (S
(p−i−1,q−j)R
+ ∧ S(p,q)V ∧Θ)hO(p−i,q−j).

Then we conclude as follows, where the second weak equivalence is described below.

F [i, j](1,0)(V ) ≃ Ω∞
[
(S

(p−i−1,q−j)R
+ ∧ S(p,q)V ∧Θ)hO(p−i,q−j)

]
= Ω∞ [

(S(Rp−i,q−j)+ ∧ S(p,q)V ∧Θ)hO(p−i,q−j)

]
≃ Ω∞ [

(S(p,q)V ∧Θ)hO(p−i−1,q−j)

]
= F [i+ 1, j]

The second weak equivalence holds by Proposition 3.2.10 and that for X a C2-spectrum

with O(m,n)-action, m > 0 and n ≥ 0,

(S(Rm,n)+ ∧X)hO(m,n) = EO(m,n)+ ∧O(m,n) (S(Rm,n)+ ∧X)

= EO(m,n)+ ∧O(m,n) (O(m,n)/O(m− 1, n)+ ∧X)

= EO(m,n)+ ∧O(m−1,n) X

≃ EO(m− 1, n)+ ∧O(m−1,n) X

= XhO(m−1,n)
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since the map t∗ : (O(m,n) ⋊ C2) Top∗ → (O(m − 1, n) ⋊ C2) Top∗, induced by the C2-

equivariant subgroup inclusion map t : O(m− 1, n)→ O(m,n), exhibits t∗EO(m,n) as a

model for EO(m− 1, n).

Now let 0 ≤ i ≤ p and 0 ≤ j < q. A similar calculation shows that

F [i, j](0,1)(V ) ≃ Ω∞
[
(S

(p−i,q−j−1)Rδ

+ ∧ S(p,q)V ∧Θ)hO(p−i,q−j)

]
≃ Ω∞ [

(S(p,q)V ∧Θ)hO(p−i,q−j−1)

]
= F [i, j + 1]

As above, the second weak equivalence holds by Proposition 3.2.10 and that

(S(Rn,m)+ ∧X)hO(m,n) = EO(m,n)+ ∧O(m,n) (S(Rn,m)+ ∧X)

= EO(m,n)+ ∧O(m,n) (O(n,m)/O(n− 1,m)+ ∧X)

∼= EO(m,n)+ ∧O(m,n) (O(m,n)/O(m,n− 1)+ ∧X)

= EO(m,n)+ ∧O(m,n−1) X

≃ EO(m,n− 1)+ ∧O(m,n−1) X

= XhO(m,n−1)

where the third step uses the C2-equivariant group isomorphism O(m,n) → O(n,m)

defined for m,n ≥ 1 by

A→

 0 Idn

Idm 0

A

 0 Idm

Idn 0

 .

What remains to show is that F is (p, q)-reduced (Tp,qF (V ) ≃ ∗ for all V ∈ C2J0,0). The

notions of dimension functions for G-spaces discussed in Section 2.1.4 can also be used to

describe the connectivity of a G-spectrum. Since the category of spectra C2Sp
O[O(p, q)]

is stable with respect to C2-representations, the spectrum X = S(p,q)V ∧Θ has equivariant
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connectivity given by the dimension function c∗(X) = |(p, q)V ∗| + c∗(Θ) (see Examples

2.1.26 for similar notation).

That is, πH
n X is trivial for n ≤ cH(X), where

ce(X) = (p+ q) dim(V ) + ce(Θ)

cC2(X) = p dim(V C2) + q dim((V C2)⊥) + cC2(Θ),

cH(Θ) denotes the connectivity of Θ with respect to its equivariant homotopy groups πH
n Θ

and (V C2)⊥ denotes the orthogonal complement of V C2 (see Remark 2.1.15).

Therefore, the map

F (V )→ ∗(V ) = ∗

is (c∗(X) + 1)-connected, since homotopy orbits and Ω∞ do not decrease connectivity.

Repeated application of Lemma 4.2.4 gives that this map is a Tp,q-equivalence. That is,

Tp,qF (V ) ≃ Tp,q ∗ (V ) = ∗

Remark 6.3.3. If one replaces the group O(p, q) with the group O(p) × O(q) of C2-

equivariant linear isometries on Rp+qδ, then a generalisation like Example 6.3.2 cannot

be achieved. This is because there is no equivariant description of the sphere S(Rp,q) as

a quotient of these groups like there is for the groups O(p, q) (see Proposition 3.2.10).

Before we give the C2-generalisation of [Wei95, Example 6.4], we first prove an equivariant

version of a key result used in the proof of the underlying example. The theorem describes

how close the map [Ω∞X]hL → Ω∞[XhL] is to being an equivalence, where X is a G-

spectrum with an action of a compact Lie group L. Here homotopy orbits (−)hL and the

infinite loop space Ω∞ of X ∈ GSpO[L] are defined in a similar way to (−)hO(p,q) and Ω∞

of X ∈ C2Sp
O[O(p, q)] in Example 6.3.2. For a (L⋊G)-space X, XhL is defined to be the

space

XhL := EL ∧L X,
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which has a G-action induced by the G-actions on EL (the universal space of L) and X.

Theorem 6.3.4. For a finite group G that acts on L, let X be a G-spectrum with an

action of L, and R[G] be the regular representation of G. Then the canonical map

ξ : [Ω∞X]hL → Ω∞[XhL]

is v-connected for any dimension function v satisfying

• v(H) ≤ 2cH(X) + 1

• v(H) ≤ cK(X)

for all closed subgroups H ≤ G and subgroup pairs K < H, where cH(X) := conn(XH).

Proof. To show that the map ξ : [Ω∞X]hL → Ω∞[XhL] is v-connected it will suffice to

show that the maps f, g in the following commutative diagram are v-connected,

[Ω∞X]hL Q([Ω∞X]hL)

Ω∞[XhL]

g

f
ξ

where QY := hocolimn Ω
nR[G]ΣnR[G]Y .

Q(Ω∞X) is the homotopy colimit of the sequential diagram

Ω∞X → ΩR[G]ΣR[G](Ω∞X)→ Ω2R[G]Σ2R[G](Ω∞X)→ . . .

where each map ΩnR[G]ΣnR[G](Ω∞X)→ Ω(n+1)R[G]Σ(n+1)R[G](Ω∞X) is obtained by sending

a map SnR[G] → SnR[G] ∧ Ω∞X to its smash product with the identity map on SR[G].
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By the Equivariant Freudenthal Suspension Theorem (see Section 2.1.4), the first of these

maps is v-connected for v satisfying

v(H) ≤ 2cH(X) + 1

v(H) ≤ cK(X)

for all closed subgroups H ≤ G and subgroup pairs K < H, where we have used that

cH(Ω∞X) = cH(X). Moreover, each successive map in the homotopy colimit is at least as

connected as the first (this can be seen by applying the equivariant Freudenthal suspension

to the maps in the colimit). Since equivariant homotopy groups commute with sequential

homotopy colimits, we conclude that the unit map i : Ω∞X → Q(Ω∞X) is v-connected.

Since taking homotopy orbits does not decrease connectivity, the map g is as connected

as the map i. Therefore the map g is v-connected as required.

There is a commutative diagram of equivariant homotopy groups (∗ ≥ 0)

πH
∗ (Ω∞X) πH

∗ (QΩ∞X) πH
∗ (Σ∞Ω∞X)

πH
∗ (Ω∞X) πH

∗ X

i

p
id

∼=

∼=

p′

In particular, the connectivity of the map p′ is the same as the connectivity of the map i.

Hence, p′ is also v-connected. Since taking homotopy orbits does not decrease connectivity

and Σ∞ commutes with homotopy orbits, the composition map

Σ∞([Ω∞X]hL) ∼= [Σ∞Ω∞X]hL
p′hL−→ XhL

is also v-connected. Call this composition p′′hL. The map f is Ω∞ of the map p′′hL above.

Therefore the map f is v-connected as required, since Ω∞ preserves connectivity.



Chapter 6 The equivariant classification theorem 137

Example 6.3.5. Let Θ be a C2-spectrum with an action of O(p, q), where p, q ≥ 1. Then

the input functors

E : V 7→ [Ω∞(S(p,q)V ∧Θ)]hO(p,q)

F : V 7→ Ω∞[(S(p,q)V ∧Θ)hO(p,q)]

are Tp+1,qTp,q+1-equivalent under the canonical subfunctor inclusion map r : E → F .

Proof. The spectrum X = S(p,q)V ∧Θ has equivariant connectivity given by the dimension

function c∗(X) = |(p, q)V ∗| + c∗(Θ), see Section 2.1.4. That is, πH
n X is trivial for all

n ≤ cH(X), where

ce(X) = (p+ q) dim(V ) + ce(Θ)

cC2(X) = p dim(V C2) + q dim((V C2)⊥) + cC2(Θ),

cH(Θ) denotes the connectivity of Θ with respect to its equivariant homotopy groups πH
n Θ

and (V C2)⊥ denotes the orthogonal complement of V C2 (see Remark 2.1.15).

Applying Theorem 6.3.4 yields that the map r(V ) : E(V )→ F (V ) is v-connected, where

v(e) = 2(p+ q) dim(V ) + 2ce(Θ) + 1

v(C2) = min{2p dim(V C2) + 2q dim((V C2)⊥) + 2cC2(Θ) + 1, (p+ q) dim(V ) + ce(Θ)}

Corollary 4.2.5 implies that τp+1,qτp,q+1r(V ) : τp+1,qτp,q+1E(V ) → τp+1,qτp,q+1F (V ) is at

least (v + 1)-connected. Repeated application of Corollary 4.2.5 yields that the connec-

tivity of τ lp+1,qτ
l
p,q+1r(V ) tends to infinity as l tends to infinity. Hence Tp+1,qTp,q+1r is an

objectwise weak equivalence.

We can now prove that the Quillen adjunction of Theorem 6.2.3 is a Quillen equivalence.

The proof resembles that of Barnes and Oman in [BO13, Theorem 10.1] and Taggart in
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[Tag22b, Theorem 7.5], using the new C2-equivariant versions of [Wei95, Example 5.7 and

Example 6.4] given in Examples 6.3.2 and 6.3.5 respectively.

Theorem 6.3.6. For all p, q ≥ 1, the Quillen adjunction

resp,q0,0 /O(p, q) : O(p, q)C2Esp,q ⇄ (p, q) -homog-C2E0,0 : indp,q
0,0 ε

∗

is a Quillen equivalence.

Proof. Let f : A → B be a map of fibrant objects in (p, q)-homog-C2E0,0 such that

indp,q
0,0 ε

∗f is a weak equivalence in O(p, q)C2Esp,q. Then indp,q
0,0 ε

∗Tp+1,qTp,q+1f is a weak

equivalence of fibrant objects in O(p, q)C2Esp,q, and by Lemma 3.4.13 it is also an objectwise

weak equivalence. That is, f is a weak equivalence in (p, q)-homog-C2E0,0, so the right

adjoint indp,q
0,0 ε

∗ reflects weak equivalences of fibrant objects.

By Hovey [Hov99, Theorem 1.3.16], what remains to check is that the derived unit is a

weak equivalence of O(p, q)C2Esp,q on cofibrant objects.

Let X be cofibrant in O(p, q)C2Esp,q. There is a Quillen equivalence

(αp,q)! : O(p, q)C2Esp,q ⇄ C2Sp
O[O(p, q)] : α∗

p,q

by Theorem 6.1.7. Therefore, an application of [Hov99, Theorem 1.3.16] says that there

exists a (p, q)π∗-isomorphism

X → α∗
p,qf̂(αp,q)!X,

where f̂ represents fibrant replacement in C2Sp
O[O(p, q)].

Let ĉ represent cofibrant replacement in O(p, q)C2Esp,q, and denote the Ω-spectrum with

O(p, q)-action f̂(αp,q)!X by Ψ. There is a commutative diagram in O(p, q)C2Esp,q

X ĉα∗
p,qΨ

indp,q
0,0 ε

∗Tp+1,qTp,q+1 res
p,q
0,0X/O(p, q) indp,q

0,0 ε
∗Tp+1,qTp,q+1 res

p,q
0,0(ĉα

∗
p,qΨ)/O(p, q)

η
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The map η is the derived unit, which we want to show is a (p, q)π∗-isomorphism.

The top horizontal map is a (p, q)π∗-isomorphism, since it is the (p, q)π∗-isomorphism given

above composed with cofibrant replacement. The bottom horizontal map is a (p, q)π∗-

isomorphism, since the top one is and derived functors preserve weak equivalences. The

same method as [BO13, Theorem 10.1] shows that the right vertical map is also a (p, q)π∗-

isomorphism. This argument uses the C2-equivariant generalisations of [Wei95, Examples

5.7 and 6.4], which are given by Example 6.3.2 and Example 6.3.5 respectively. Therefore,

η is also a (p, q)π∗-isomorphism as required.

Corollary 6.3.7. There is an equivalence of homotopy categories

Ho(C2Sp
O[O(p, q)]) ⇄ Ho((p, q) -homog-C2E0,0)

for p, q ≥ 1.

Proof. Let p, q ≥ 1. The adjunctions

resp,q0,0 /O(p, q) : O(p, q)C2Esp,q ⇄ (p, q) -homog-C2E0,0 : indp,q
0,0 ε

∗

and

(αp,q)! : O(p, q)C2Esp,q ⇄ C2Sp
O[O(p, q)] : α∗

p,q

are Quillen equivalences. Composition of the left and right derived functors gives the

desired zig-zag of equivalences.

Rephrasing this classification using the derived adjunctions, we can explicitly describe how

(p, q)-homogeneous functors are completely determined by genuine orthogonal C2-spectra

with an action of O(p, q). The following classification is a C2-equivariant generalisation

of [Wei95, Theorem 7.3]. We will denote the image L(αp,q)!R indp,q
0,0 ε

∗F ∈ C2Sp
O[O(p, q)]

of a F ∈ C2E0,0 under the derived zig-zag of Quillen equivalences by Θp,q
F . That is, Θp,q

F is

a specific C2-spectrum with an action of O(p, q), which is determined by the functor F .

The proof follows the method used by Taggart [Tag22b, Theorem 8.1].
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Theorem 6.3.8. Let p, q ≥ 1. If F ∈ C2E0,0 is a (p, q)-homogeneous functor, then F is

objectwise weakly equivalent to

V 7→ Ω∞[(S(p,q)V ∧Θp,q
F )hO(p,q)]

Conversely, every functor of the form

V 7→ Ω∞[(S(p,q)V ∧Θ)hO(p,q)]

where Θ ∈ C2Sp
O[O(p, q)] is (p, q)-homogeneous.

Proof. The proof of the converse statement is exactly Example 6.3.2.

Let F be cofibrant-fibrant in (p, q)-homog-C2E0,0. That is, F is (p, q)-homogeneous and

cofibrant in the projective model structure. Define functors E,G ∈ C2E0,0 by

E(V ) = (indp,q
0,0 ε

∗F (V ))hO(p,q)

G(V ) = Ω∞[(S(p,q)V ∧Θp,q
F )hO(p,q)]

The functors E and G are Tp+1,qTp,q+1-equivalent, since

indp,q
0,0 ε

∗F (V ) = α∗
p,qΘ

p,q
F (V ) ≃ Ω∞(S(p,q)V ∧Θp,q

F )

and [Ω∞(S(p,q)V ∧Θp,q
F )]hO(p,q) is Tp+1,qTp,q+1-equivalent to G by Example 6.3.5.

Since G is (p, q)-polynomial by Example 6.3.2, Lemma 4.2.12 implies that G is objectwise

weakly equivalent to Tp+1,qTp,q+1E. Therefore, there is an objectwise weak equivalence

between indp,q
0,0 ε

∗Tp+1,qTp,q+1E and indp,q
0,0 ε

∗G, since indp,q
0,0 ε

∗ is right Quillen and preserves

weak equivalences of fibrant objects.

Using the “identification” ≡ from Example 6.3.2, we get the following.

indp,q
0,0 ε

∗G(V ) ≡ G[p, q](V ) := Ω∞(S(p,q)V ∧Θp,q
F ) ≃ indp,q

0,0 ε
∗F (V )
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Therefore, there is a zig-zag of objectwise weak equivalences between indp,q
0,0 ε

∗Tp+1,qTp,q+1E

and indp,q
0,0 ε

∗F (V ).

Since F is (p, q)-homogeneous by assumption, it is in particular (p, q)-polynomial. Then

by an application of Lemma 4.2.12, there is a zig-zag of objectwise weak equivalences

indp,q
0,0 ε

∗Tp+1,qTp,q+1E ≃ indp,q
0,0 ε

∗Tp+1,qTp,q+1F

That is, E and F are weakly equivalent in the (p, q)-homogeneous model structure.

Since both E and F are cofibrant in (p, q)-homog-C2E0,0, an application of [Hir03, Theorem

3.2.13 (2)] implies that E and F are weakly equivalent in the (p, q)-polynomial model

structure. Since both E and F are fibrant in (p, q)-poly-C2E0,0, an application of [Hir03,

Theorem 3.2.13 (1)] implies that E and F are weakly equivalent in the projective model

structure. Hence, there are objectwise weak equivalences

G ≃ Tp+1,qTp,q+1E ≃ Tp+1,qTp,q+1F ≃ F

since Tp+1,qTp,q+1 preserves objectwise equivalences and F is (p, q)-homogeneous.

For general (p, q)-homogeneous F the result follows by cofibrantly replacing F in the

projective model structure and then applying the argument above.

The final theorem is an application of the classification Theorem 6.3.8. This theorem

describes how the classification is actually used, in order to study one of the input functors

(see Definition 3.1.5). In particular, the fibre

Dp,qX(V )→ Tp+1,qTp,q+1X(V )→ Tp,qX(V )

is determined by the (p, q)-derivative of Dp,qX. This is analogous to studying the layers

of the Taylor tower of approximations in the underlying calculus, see Section 2.2.6, and

the statement is similar to that of Weiss [Wei95, Theorem 9.1].



Chapter 6 The equivariant classification theorem 142

Theorem 6.3.9. For all X ∈ C2E0,0, p, q ≥ 1 and V ∈ C2J0,0, there exists homotopy

fibre sequences

Ω∞[(S(p,q)V ∧Θp,q
Dp,qX

)hO(p,q)]→ Tp+1,qTp,q+1X(V )→ Tp,qX(V )

Proof. The map Tp+1,qTp,q+1X → Tp,qX is exactly Tp+1,qTp,q+1 of the canonical inclusion

map X → Tp,qX, by Lemma 4.2.12.

Let Dp,qX be the homotopy fibre of this map. Then Dp,qX is (p, q)-homogeneous (see

Theorem 5.1.6). An application of the classification Theorem 6.3.8 gives that

Dp,qX(V ) ≃ Ω∞[(S(p,q)V ∧Θp,q
Dp,qX

)hO(p,q)].

6.4 The functor BO(−)

The complexity of computations in orthogonal calculus is widely acknowledged. In [Wei95,

Example 2.7], Weiss gives calculations for low degree derivatives of the functor

BO(−) : V → BO(V )

where V ∈ J0. In [Aro02, Theorem 2], Arone gives a formula for the remaining higher

derivatives of this functor.

In this section, we find some good candidates for the first derivatives of an input functor

for C2-equivariant orthogonal calculus, BO(−) ∈ C2E0,0. These calculations are analogous

to that of [Wei95, Example 2.7] for BO(1)(−).

We define an input functor to C2-equivariant orthogonal calculus BO(−) by

BO(−) : V → BO(V )
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where V ∈ C2J0,0. The space BO(V ) is the classifying space of O(V ), with the C2-action

inherited from the C2-action on V .

More specifically, since O(V ) has a C2-action, which is conjugation by the matrix A

defined in 3.2.8, finite products O(V ) × · · · × O(V ) can be equipped with the diagonal

C2-action. The universal space EO(V ) is the geometric realisation of a simplicial space

whose n-simplices are (n+ 1)-tuples of elements of O(V ), see [Hat02, Example 1B.7]. As

such, EO(V ) inherits a C2-action, which is the diagonal action on simplices, and so does

the orbit space EO(V )/O(V ) =: BO(V ).

Note that the universal space EO(V ) is a contractible C2-space. That is, the equivariant

homotopy groups πH
n EO(V ) are trivial for all n and for each closed subgroup H of C2.

This follows from the fact that taking fixed points commutes with taking the geometric

realisation (see [May96, Section V.1]), so that in particular

(EO(p, q))C2 ∼= E
(
O(p, q)C2

)
= E (O(p)×O(q)) ∼= EO(p)× EO(q),

which is a contractible space, since EO(p) and EO(q) are both contractible.

Consider the long exact sequence of C2-equivariant homotopy groups πH
n on the C2-

equivariant fibre sequence O(V ) → EO(V ) → BO(V ). Since the homotopy groups

πH
n EO(V ) are all trivial, we see that there is a weak equivalence of C2-spaces

ΩBO(V ) ≃ O(V ).

Here the C2-action on S1 is trivial and so C2 acts on f ∈ ΩBO(V ) by σ(f) := σ ◦ f .

Remark 6.4.1. There are other descriptions for the classifying space of O(V ), which may

lead to more interesting calculations. For example, in [GMM17], Guillou, May and Merling

define a classifying space for principal (G,Π)-bundles, where G and Π are topological

groups and G acts on Π so that

1→ Π→ Π⋊G→ G→ 1
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is a split extension. Since the conjugation C2-action onO(V ) induces a split exact sequence

identical to that above (see Definition 3.2.8), this theory of (C2, O(V ))-bundles is appli-

cable. The description of E(G,Π) is given in terms of the classifying space of a category

of functors C (G̃, Π̃), and B(G,Π) = E(G,Π)/Π is the orbit space. In [May96, Chapter

VII], May presents a more general theory of (Π : Γ)-bundles that is applicable to non-split

extensions

1→ Π→ Γ→ G→ 1.

The ‘calculation’ of the derivatives of BO(−) ∈ C2E0,0 uses the iterative description of

derivatives given by the homotopy fibre sequence of Proposition 3.3.7.

Let BO(−) ∈ C2E0,0 be defined as above. By Proposition 3.3.7, there exist C2-equivariant

homotopy fibre sequences

BO(1,0)(V ) = ind1,0
0,0BO(V )→ BO(V )→ BO(V ⊕ R)

and

BO(0,1)(V ) = ind0,1
0,0BO(V )→ BO(V )→ BO(V ⊕ Rδ).

The subgroup inclusion map i : O(V ) ↪→ O(V ⊕X) induces a C2-equivariant homotopy

fibre sequence

O(V ⊕X)/O(V ) ≃ ΩB(O(V ⊕X)/O(V ))→ BO(V )→ BO(V ⊕X)

where X = R or X = Rδ.

That is, there exist C2-equivariant homotopy fibre sequences

O(V ⊕ R)/O(V )→ BO(V )→ BO(V ⊕ R)

and

O(V ⊕ Rδ)/O(V )→ BO(V )→ BO(V ⊕ Rδ)
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Therefore, the functors E ∈ C2E1,0 and F ∈ C2E0,1 defined by

E : V 7→ O(V ⊕ R)/O(V ) ∼= SV

F : V 7→ O(V ⊕ Rδ)/O(V ) ∼= SV⊗Rδ

are good candidates for BO(1,0)(−) and BO(0,1)(−) respectively.

Conjecture 6.4.2. The (1, 0)-derivative of BO(−) is the orthogonal sphere spectrum

S : V 7→ SV and the (0, 1)-derivative of BO(−) is the twisted orthogonal sphere spectrum

S⊗δ : V 7→ SV⊗Rδ
.

Remark 6.4.3. In [Wei95], see also [Tag], the second derivative BO(2)(−) is calculated

using spectral sequence methods. Trying to generalise the method to calculate BO(2,0)(−),

BO(1,1)(−) and BO(0,2)(−) would be an interesting task.
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