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Abstract

In this thesis, we construct a new version of orthogonal calculus for functors F' from Cs-
representations to Cy-spaces, where Cy is the cyclic group of order 2. For example, the
functor BO(—) : V +— BO(V), where BO(V) is the classifying space of the orthogonal
group O(V'), which has a Cy-action induced by the action on the Cy-representation V. We
obtain a bigraded sequence of approximations to F', called the strongly (p, ¢)-polynomial
approximations 7}, , /. The bigrading arises from the bigrading on Cs-representations. The
homotopy fibre D, ,F' of the map T}, 1147}, 441 F — T, ,F is such that the approximation
Toi1,q1p.q+1Dp o F is equivalent to the functor D, [ itself and the approximation 7, D, o F
is trivial. A functor with these properties is called (p,g)-homogeneous. Via a zig-zag of
Quillen equivalences, we prove that (p,q)-homogeneous functors are fully determined by
orthogonal spectra with a genuine action of C5 and a naive action of the orthogonal group
O(p, q) := O(RP*%). The notation ¢ is used to represent the sign Cy-representation, and
Cy acts on O(p, q) by conjugation. Hence, the fibres D, ,F" are (O(p, q¢) x Cy)-spectra over

a non-trivial incomplete universe.
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Chapter 1

Introduction

1.1 Context

Taylor’s Theorem for real functions is well known. Given a real function f : R — R,
Taylor’s theorem describes how f can be approximated by a sequence of polynomial
functions, which are built using the derivatives of f. As a result, in order to study

complex functions, it suffices to study polynomial functions, which are well understood.

This concept of ‘breaking’ a function into more manageable pieces is one that can be
seen throughout other areas of mathematics. A well known example of this in algebraic
topology is the Postnikov tower of a CW space. Given a CW-complex X, one can construct

a tower (inverse system) of spaces { P, X },>0,

~

PX «— X

~

PX ¢—— FiX

2

X

1
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where each map P, X — P,X is a fibration and each fibre F;, X is an Eilenberg-Maclane
space K (m,(X),n). Since Eilenberg-MacLane spaces are well understood, one can study

the space X by studying the layers of it’s Postnikov tower.

Many objects studied in algebraic topology can be realised as functors. Functor calculus
is a method by which one can approximate a given functor by a sequence of functors with
‘nice’ properties, which we call polynomial functors. The resulting sequence of functors
is a similar concept to that of a Postnikov tower. Polynomial functors have properties
that mimic those of the polynomial functions used in differential calculus. For example,
an n-polynomial functor is also (n + 1)-polynomial and the (n + 1)-st derivative of an

n-polynomial functor is trivial.

There are many different branches of functor calculus designed to study different categories
of functors. Goodwillie calculus, originally constructed by Goodwillie [Goo90, Goo91,
Goo03], is used to study endofunctors on the category of topological spaces. The fibres of
the tower produced by Goodwillie calculus are classified by spectra with an action of the
symmetric group ¥,. The main focus of this thesis is the orthogonal homotopy calculus
first constructed by Weiss in [Wei95]. It is the branch of functor calculus involving the
study of functors from the category of finite dimensional real vector spaces to the category
of pointed topological spaces. The tower for a functor I’ produced by orthogonal calculus

looks as follows,

TF(V) +—— Q> _(SW A @%)ho(z)_

TVF(V) +— 0% [(SY A O1), 00,

/ ’

F(V) ———— F(R*)
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where each functor T}, F is n-polynomial and the n'" fibre of the tower is fully determined

by an orthogonal spectrum ©% with an action of the orthogonal group O(n).

Classic examples of functors studied using orthogonal calculus include:

e BO(—):V +— BO(V)
e BTop(—):V — BTop(V)

e BDIiff’(—) : V + BDiff’(M x V)

where BO(V') is the classifying space of the space of linear isometries on V, B Top(V) is
the classifying space of the space of homeomorphisms on V and, for a smooth compact
manifold M, BDiff’ (M x V) is the classifying space of the space of bounded diffeomor-
phisms on M x V.

There exist functors, similar to those above, that have group actions. For example, the
functor BO(—) : V.— BO(V) that sends a G-representation to its classifying space. As
such, there is a natural motivation to construct functor calculi that study functors with
a group action. An equivariant orthogonal calculus of this type could have applications
in many different areas, such as the study of equivariant diffeomorphisms of G-manifolds.
Extensive research focused on equivariance in the Goodwillie calculus setting has been

carried out by Dotto [Dot16a,Dot16b, Dot17] and Dotto and Moi [DM16].

It is very difficult to produce variations of orthogonal calculus due to the nature of its
construction, see Section 1.3.2. Two successful variations are the unitary calculus and
calculus with reality constructed by Taggart in [Tag22b, Tag22c|. In these calculi, real
vector spaces are replaced by complex vector spaces, and in the calculus with reality
one takes into consideration the Cs-action on complex vector spaces given by complex
conjugation. The fibres of the towers produced are classified by spectra with an action of
the unitary group U(n) for unitary calculus and spectra with an action of Cy x U(n) for

calculus with reality. Taggart’s calculus with reality provides a great insight of what can
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be expected from a genuine Cs-equivariant orthogonal calculus, and a number of proofs

in this thesis were inspired by the extensions of Taggart.

1.2 (s-equivariant orthogonal calculus

The Cy-equivariant orthogonal calculus gives a method for studying functors from Cs-

representations to the category of Cy-spaces. For example, the functor
BO(—-):V — BO(V),

where BO(V') is the classifying space of the orthogonal group O(V'), which has a Cy-action
induced by the action on the Cy-representation V. Details of this functor, along with it’s

derivatives, are discussed in Section 6.4.

The main result of the thesis, Theorem A is the classification of (p, ¢)-homogeneous func-
tors (defined in Section 5.1), which are the Cy-equivariant analogue of functors that are
n-homogeneous in orthogonal calculus (functors with polynomial approximations concen-
trated in degree n). We show that (p, ¢)-homogeneous functors are fully determined by
genuine orthogonal Cy-spectra with an action of the orthogonal group O(p, q) := O(RP*+9),
which has a specified Cy-action given in Definition 3.2.8. That is, orthogonal spectra with
a genuine action of Cy and a naive action of O(p, ¢), denoted CoSp®[O(p, q)]. In this way,
we get a richer equivariant structure compared to that of calculus with reality [Tag22c],

in which the classification is in terms of spectra with a naive action of Cy x U(n).

Theorem A (Theorem 6.3.8). Let p,q > 1. If F is a (p,q)-homogeneous functor, then

F' is objectwise weakly equivalent to
V= QST A O 100,);

where O € C2Sp°[0(p, q)] and (—)no@.q denotes homotopy orbits.
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Conversely, every functor of the form
Vi QOO[(S(p’q)V A ©)how.a);
where © € C4,8p°[0(p, q)], is (p, q)-homogeneous.

The classification can alternatively be stated in terms of the following zig-zag of Quillen
equivalences between the calculus input category Cy&y (of functors from the category of
finite dimensional Cy-representations with inner product and linear isometries to Cs Top, )

and the category of genuine orthogonal Cs-spectra with an action of O(p, q).

Theorem B (Theorem 6.3.6 and Theorem 6.1.7). For all p,q > 1, there exist Quillen
equivalences

res(’d /O(p,q) (ap.g):

(p, q) -homog- C2& , O(p, 9)C2E;5, CaSpPlO(p, q)]
indgzga* ay g

Here (p, ¢) -homog- Cy&y ¢ denotes the (p, ¢)-homogeneous model structure on the input
category. This model structure captures the structure of (p, g)-homogeneous functors, in
that the cofibrant-fibrant objects are exactly the projectively cofibrant (p, ¢)-homogeneous
functors. This model structure is detailed in Section 5.2. The zig-zag of equivalences is
made up of two Quillen equivalences. Differentiation (also called induction) forms a
Quillen functor from the (p, ¢)-homogeneous model structure to an intermediate category

of functors O(p, q)CoE?

»g» Which is in turn Quillen equivalent to the category of genuine

orthogonal Cs-spectra with an action of O(p, q).

In comparison to the underlying calculus which is indexed over N, Cs-equivariant or-
thogonal calculus is bi-indexed over N x N. As a result, we can define differentiation
in two directions (the p-direction and the g-direction). These different derivatives act
like partial derivatives in differential calculus; in particular, they commute. In Conjec-
ture 6.4.2, we predict that the two first derivatives of BO(—) are the orthogonal sphere
spectrum S : V + SV (in the p-direction) and the shifted orthogonal sphere spectrum
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S¥ .V s GVER’ (in the g-direction), where R? is the sign representation of Cy (See

Example 2.1.11).

A key difference between the underlying and Cs-equivariant orthogonal calculi is an in-
dexing shift, caused by this bi-indexing. In particular, 7,, in the underlying calculus is
defined using the poset of non-zero subspaces {0 # U C R"™} and 7, in the Cy-calculus
is defined using the poset of non-zero subspaces {0 # U C RP?}. To keep notation
consistent, the author introduced the new term strongly (p, ¢)-polynomial, see Definition
4.1.7. A functor in the input category for Ch-equivariant orthogonal calculus is then
called (p, q)-polynomial if and only if it is both strongly (p+ 1, ¢)-polynomial and strongly
(p,q + 1)-polynomial. In particular, we define the strongly (p,q)-polynomial approxi-
mation functor 7, ,, and the (p, ¢)-polynomial approximation functor is the composition
Tpi1,4Tpq+1- A functor X is (p, ¢)-homogeneous if it is (p, ¢)-polynomial and the strongly

(p, q)-polynomial approximation 7}, ,X is trivial.

Theorem C (Theorem 5.1.6). The homotopy fibres of the maps
Tor1,gIpgr1 £ — Ty o F

are (p,q)-homogeneous, and can therefore be described in terms of genuine orthogonal

Cy-spectra with an action of O(p,q), by the classification given in Theorem A.

A key result of the calculus, which makes the classification work, is the existence of the
following Cy-homotopy cofibre sequences. These cofibre sequences tell us that derivatives
in Cs-equivariant orthogonal calculus are well behaved. The notation Cy 7, , 1= CoJrr.a
denotes the (p, ¢)-th jet category whose objects are Co-representations and morphisms are

given by C27,,(U, V'), which is a Cy-space (see Definition 3.2.5).

Proposition D (Proposition 3.2.6). For all U, V,W in CoJo, the homotopy cofibre of
the map
CoJw (U @ X, V) A SVEX — CoJw (U, V)
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is Co-homeomorphic to CoJwex (U, V), where X = R or X = R? (see Evample 2.1.11),

and SWEX denotes the one point compactification of W @ X.

To replace X with something of higher dimension would mean taking some kind of itera-
tion of cofibre sequences. This indicates that a potentially more involved approach may be
needed if one wants to construct this kind of result in a G-equivariant orthogonal calculus,
for an arbitrary group GG which may have irreducible representations of dimension greater
than one. As a result, it is not obvious how derivatives should behave for the arbitrary GG

setting, see Section 1.3.2.

1.3 Future work

In this chapter we provide a brief overview of some future work that naturally follows from
the content of this thesis. This acknowledges the importance of having a good working
model of Cy-equivariant orthogonal calculus as a key step towards understanding a more

general equivariant orthogonal calculus.

1.3.1 Comparison to orthogonal calculus

As mentioned throughout this thesis, the Cy-equivariant orthogonal calculus has been con-
structed in such a way that orthogonal calculus might be recovered via a forgetful functor.
Comparisons made between existing functor calculi have depended on the inclusion of sub-
automorphism groups. For example, comparisons made by Taggart [Tag21, Tag22a, Tag23]
between orthogonal calculus, unitary calculus and calculus with reality, relied on the sub-

group inclusions

O(n) — U(n) — U(n) x Cs.
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Similarly, one could expect that the comparison between Cs-equivariant orthogonal cal-

culus and orthogonal calculus may depend on the inclusion

O(p,q) = O(p,q) = Ca.

Orthogonal calculus is indexed on the universe é R, meaning that functors in orthogonal

calculus take finite dimensional real inner proﬁilct spaces as their input. The regular

representation, R[Cs], of Cy is Cy-isomorphic to the direct sum of the trivial and sign rep-

resentations of Cy. That is, R[Cy] =2 RGR?. We index Co-equivariant orthogonal calculus
oo

on the universe @@ R[C5], which means that functors in the Cs-equivariant calculus take
i=1

finite dimensional real subrepresentations of é R[Cy] with an inner product as their input.
These subrepresentations have the form R? G;:I[éq‘s (see Section 3.1). We define C»2& o to be
the category of Cs Top,-enriched functors from the category of such representations with
linear isometries to Cy Top,, and Cy-equivariant natural transformations (see Definition

3.1.5). We call Cy&y the input category for Csy-equivariant orthogonal calculus.

Much like the calculus with reality case [Tag23], given a functor in the equivariant input
category C2&), forgetting the Ch-action on the target space and changing the universe

o0

from éR[CQ] to @R gives a functor in the input category for orthogonal calculus &,
(of fuilzcltors from EE}% category of finite dimensional real inner product spaces with linear
isometries to pointed topological spaces). That is, there is a functor from the equivariant
input category C2&y o to the underlying input category &. It is not clear how this functor

behaves, since we choose the fine model structure on C5 Top,, rather than the coarse

model structure used in [Tag22c] (see Proposition 2.1.7 and Proposition 2.1.6).

In future work, these functors should be explored in more detail. In particular, the
most interesting comparisons will be made between the functors 7,, and 7}, , and their
non-equivariant equivalents 7,, and 7;,. We expect, from comparing the indexing, that

the equivariant functors 7,, and 7}, , should correspond to the non-equivariant functors
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Tptq—1 and Ty ,_1. This is interesting, since this would mean that all functors 7}, , with

p + q = n correspond non-equivariantly to the same functor 7,,_;.

1.3.2 G-equivariant orthogonal calculus

The main difficulty in generalising the Cs-equivariant orthogonal calculus to G-equivariant
orthogonal calculus, for an arbitrary group G, is the cofibre sequence of Proposition D.
The cofibre sequence holds for X = R and X = R?, since R and R’ are one-dimensional
irreducible Cy-representations. Replacing X with a representation of dimension greater
than one would require an iterated cofibre sequence. In particular, this indicates that
replicating this type of cofibre sequence for a general group G could be difficult, since G

might have irreducible representations with dimension greater than one.

This difficulty can be avoided if one restricts to abelian groups and the complex setting,
since every irreducible representation of a finite abelian group over C is one-dimensional.
Therefore, it should be possible to construct a G-equivariant unitary calculus, for G a finite
abelian group. It might be possible to then recover G-equivariant orthogonal calculus via
a complexification functor, similar to that used by Taggart [Tag21], however one should

be careful to check that this preserves the G-equivariance.

Naturally, one might then want to consider a change of group. Given a group homo-
morphism G — G’, one could attempt to construct comparison functors between G-
equivariant unitary calculus and G’-equivariant unitary calculus, and then also in the

orthogonal setting.

1.3.3 Global equivariant orthogonal calculus

It is well known that equivariant stable homotopy theory can be recovered from global

stable homotopy theory, see [Sch18]. This raises the following idea: If one could construct a
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‘global orthogonal calculus’, then it might be possible to recover G-equivariant orthogonal

calculus, for an arbitrary group G.

To construct global stable homotopy theory in [Sch18, Chapter 4], one starts by defining
what global equivalences and global fibrations of orthogonal spectra are. In particular,
this allows one to define a global model structure on the category of orthogonal spectra, in
which the weak equivalences are the global equivalences and the fibrations are the global

fibrations.

One could imagine replicating these definitions in the category of orthogonal functors
Jo — Top,. That is, we could define a global model structure on the input category
for orthogonal calculus, which could be used in place of the projective model structure.
Repeating the same constructions of orthogonal calculus with this new model structure
should in theory produce a ‘global orthogonal calculus’. In future work, these definitions

should be made precise, and all of the constructions that follow should be checked carefully.

1.3.4 Comparing the equivariant orthogonal and Goodwillie cal-

culi

Comparisons between the non-equivariant orthogonal and Goodwillie calculi have been
made by Barnes and Eldred [BE16]. Extensive research focused on equivariance in the
Goodwillie calculus setting has been carried out by Dotto [Dotl6a, Dot16b, Dot17] and
Dotto and Moi [DM16]. Differences in the implementation of equivariance make the
equivariant calculi difficult to compare. In particular, there is no obvious way to compare
the notions of (p, ¢)-polynomial in the Cs-equivariant orthogonal calculus sense and J-
excisive in the equivariant Goodwillie sense, for a Cy-set J. Never the less, we make the

following conjecture, which is analogous to [BE16, Theorem 3.5].

Let F' : GTop, — GTop, and R[G] be the regular representation of GG. Define the
restriction of F' by
res F': Vi F(SY)
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for V' a finite dimensional sub-representation of &*R[G] with an inner product.

Conjecture 1.3.1. The G-equivariant Goodwillie calculus on a functor F' is equivalent

to G-equivariant orthogonal calculus on the functor res F.



Chapter 2

Preliminaries

In this chapter we gather any necessary preliminary material that will aid in reading
the main text. We only provide a very concise summary of the material, and provide

references of where greater detail can be found in literature.

2.1 Group actions

The primary goal of the main text is to construct a Cy-equivariant orthogonal calculus.
The functors of interest will take Cs-representations as their input and output Cs-spaces.
As such, we will rely heavily on standard notation and results from equivariant homotopy
theory. In this section, we recall various equivariant constructions and results that will
be used throughout the main text. The main resources for this section are Mandell and

May [MMO02] and May [May96].

2.1.1 Topological G-spaces

In this section, we cover basic definitions and results of G-spaces for a compact topological

group G. This material has been detailed by Mandell and May in [MMO02, Section 3.1].

12



Chapter 2 Preliminaries 13

We will use Top to denote the category of compactly generated weak Hausdorff spaces,
and Top, to denote the category of pointed compact generated weak Hausdorff spaces

with the Quillen model structure below.

Proposition 2.1.1. Top, is a cofibrantly generated model category with weak equivalences
and fibrations given by weak homotopy equivalences and Serre fibrations. The generating
cofibrations Itep. and acyclic cofibrations Jrop, are below, where the map S™* — D™ is

inclusion as the boundary.

Itop, = {57 — D% : n e N}

Jtop, = {D" — (D" x I); :n € N}

Definition 2.1.2. A G-space is a topological space Y with a continuous left group action
of G
GxY =Y, (9.y)— gy

such that ey = y and ¢1(g2y) = (g192)y.

A pointed G-space is a pointed topological space X with a continuous left group action

of G, such that the basepoint g of X is fixed (i.e. grg = x( for all g € G).

An equivariant map of (pointed) G-spaces is a continuous (pointed) map f : X — Y such

that go f = fog forall g € G.
Denote the category of pointed G-spaces and G-equivariant maps by G Top,.

Examples 2.1.3. The following are examples of pointed G-spaces.

1. The trivial G-action on a (pointed) space X is given by gx = z for all g € G,z € X.

2. Let X,Y be pointed G-spaces. There is a G-action on the space of pointed contin-

uous maps Top, (X, Y) called conjugation, which is given by

(g% f)(@)=(go fog ") ()
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forall z € X, f € Top,(X,Y) and g € G.

One can construct a topological space from a G-space by taking fixed points. Taking fixed

points is the most important construction on G-spaces, and can be described as a functor.

Definition 2.1.4. Let H be a closed subgroup of GG. Define the H-fized point functor
(=) : G Top, — Top, by X — X where

X?={oxeX:hx=uxVhecH}.

The fixed point functor (—)¢ has a left adjoint, which is equipping a topological space
with the trivial G-action, see [MMO02, Result 3.1.4]. The quotient map

e: G — G/N,
for a normal subgroup N < G, induces the inflation functor
e*: G/N Top, — G Top,,
which sends a G/N-space X to the underlying space X with G-action given by
gr = (e(g))z.

The left adjoint to (—)¢ is exactly the inflation functor for N = G. Therefore, for a

G-space X and a space K
G Top, (" K, X) = Top, (K, X%).

With the conjugation group action on Top,(X,Y), GTop,(X,Y) is exactly the sub-
space (Top,(X,Y))¥ of Top,(X,Y). Hence, we topologise the set of G-equivariant maps
G Top, (X, Y) as a subspace of the space of continuous maps Top, (X, Y') with the compact-

open topology, via fixed points.
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The category G Top, is a closed symmetric monoidal category. The monoidal product is

given by the smash product X AY, equipped with the diagonal G-action defined by

g(x Ny) =gz Agy.

The internal hom is given by the space of continuous maps Top,(X,Y") with the conjuga-

tion action, and there exists a G-equivariant homeomorphism

Top, (X, Top, (Y, Z)) = Top, (X AY, Z).

Let G, be the group GG with a disjoint basepoint, and let Y be an H-space. One can
define an equivalence relation ~ on the space G, A'Y such that gh Ay ~ g A hy for all
g € G, h e HandyeY. We denote the quotient space G, ANY/ ~ by G4 Ay Y, which
has a G-action given by ¢'(g Ay) = ¢'g Ay for all g,¢’ € G and y € Y. Moreover, if Y is a
G-space, then G4 Ay Y = (G/H)+ AY. The subgroup inclusion map i : H — G induces
the restriction functor +* : G Top, — H Top,, which sends a G-space X to the underlying
space X with H-action given by hz = (i(h))x.

Proposition 2.1.5 ([MMO02, Results 3.1.2 and 3.1.3)). Let H be a closed subgroup of G.
For a G-space X and an H-space Y

G Top, (G4 Ag Y, X) = HTop,(Y,i" X).

In particular, together with the fixed point adjunction discussed previously, this gives

[MMO02, I11.1.5]. That is, for G-spaces X and Y

G Top, ((G/H), AY, X) = Top, (Y, X",

We now give two model structures on the category G Top,. They are called the coarse

and fine model structures respectively, and are related by a Quillen adjunction, where the
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underlying functor is the identity.

Proposition 2.1.6. (Coarse model structure) G Top, is a compactly generated, proper
model category with weak equivalences and fibrations defined as follows. A map f: X =Y
s a coarse weak equivalence or coarse fibration of pointed G-spaces if after forgetting the
G-action the underlying map f : X — Y is a weak homotopy equivalence or Serre fibration
of pointed spaces. Denote this model structure by Top,|G]|. The generating cofibrations

and acyclic cofibrations are respectively

{G+ N1:1€E ITOp*}

{G+ /\] j c JTOp*}-

Proposition 2.1.7 ([MMO02, Theorem 3.1.8]). (Fine model structure) G Top, is a com-
pactly generated, proper model category with weak equivalences and fibrations defined as
follows. A map f: X — Y is a fine weak equivalence or fine fibration of pointed G-spaces
if fH: X% — YH is a weak homotopy equivalence or Serre fibration of pointed spaces
for each closed subgroup H < G. Denote this model structure by G Top,. The generating

cofibrations and acyclic cofibrations are respectively

Ie ={G/H  Ni:1€ In,, ,H < G a closed subgroup}

Joa={G/Hy Nj:j € Jrop ,H < G a closed subgroup}.

Moreover, the coarse model structure is monoidal, and so is the fine model structure

provided that G is a compact Lie group.

Remark 2.1.8. For the remainder of this document we will use the coarse model structure
on O(n)-spaces and O(p, ¢)-spaces, which we will denote by Top,[O(n)] and Top, [O(p, q)]
respectively. We will use the fine model structure on Cs-spaces, which we denote by
C5Top,. The word fine will often be dropped from notation, and a fine weak equiva-
lence/fibration of pointed Cs-spaces will simply be called a weak equivalence/fibration of

Cy-spaces. We let [—, —|¢, denote maps in the homotopy category of Cs Top,.
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2.1.2 (G-representations

Orthogonal calculus is indexed on the universe R*>. That is, the functors considered
in orthogonal calculus take finite dimensional inner product spaces as their input. A
natural replacement for these inner product spaces in the Cy-equivariant setting will be
elements from a universe of Cs-inner product spaces. As such, in this section we recall
basic definitions from representation theory for groups, see for example the work of Howe
[How22]. Throughout the main text we will always be working over R, so that all vector

spaces are real.

Definition 2.1.9. A representation of a group G on an inner product space V' is a map

® : G xV — V such that for all g,91,92 € G, u,v € V and e the identity element of G

e O(g):V =V, v O(g,v) is linear
o Oe,v)=w

d (I)(glv (I)(g% U)) = (I)(gng, U)

and the inner product on V' is G-invariant ((®(g,u), (g,v) = (u,v)). The inner product
space V is called a G-representation. This can also be defined in terms of a map from G

to GL(V').

Remark 2.1.10. In general, a G-representation need not be an inner product space, how-

ever we will assume that all representations have an inner product throughout this thesis.

Example 2.1.11. Let G = Cy = {e,o}. The trivial representation R and the sign

representation R? of C5 have the Ch-actions defined below.

o(z)=x (z€R)

oly)=-y (yER’)

These are the indecomposable Cs-representations, in that they cannot be decomposed as

direct sums of subrepresentations, see Definition 2.1.16.
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Example 2.1.12. The regular representation of Cy = {e, o} is defined as the following
vector space

R[Cs] = {\e+ Ao : A1, Ay € R}

with basis elements e,0. One can decompose
R[C,y] =R{e +a) @ R{e - g).

There is a Cy-equivariant isomorphism R — R({e + ¢) defined by = — z(e + ¢), and a
Cy-equivariant isomorphism R® — R(e — o) defined by y — y(e — o). Therefore, R[Cy] is
Cs-isomorphic to R @ R?, which is given the diagonal Cs-action, since it is a direct sum

of Cy-representations (see below).

Example 2.1.13. The direct sum of two G-representations is a G-representation with
the diagonal G-action. Similarly, the tensor product of two G-representations is a G-
representation, whose underlying vector space is the usual tensor product of vector spaces

and G-action is the diagonal G-action, e.g. R®@R% = R® and R’ ® R? = R.
Much like with G-spaces, we can also take fixed points of G-representations (see Definition
2.1.4).

Definition 2.1.14. Let H be a closed subgroup of G, and V be a G-representation.
Define the H-fixed points of V' by

VI ={veV:hv=uvVhe H}.

Remark 2.1.15. We will use the notation (V) to denote the orthogonal complement of
VH in V. For example, if V is the regular representation of Cy (see Example 2.1.12), then
VO =R and (V) =R,

One can talk about subspaces of a vector space. This notion extends when the vector

space is given a group action.
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Definition 2.1.16. Let (V,®) be a G-representation. A subrepresentation of (V,®) is
a linear subspace W C V' that is preserved by the G-action. That is, ®|gxw defines a
G-action on W.

Lastly, we recall the notion of a G-universe. Choosing a G-universe allows one to specify

which G-representations are to be considered.

Definition 2.1.17. A G-universe U is a countable direct sum of G-representations such

that U contains:

e the trivial G-representation,

e countably many copies of each of its subrepresentations.

A G-universe is called complete if is contains every irreducible representation of G.

Example 2.1.18. For G = (5. The countable direct sum of the regular representation

P R[Cs] forms a complete Cy-universe.
i=1

2.1.3 (G-vector bundles

Vector bundles are used to define the n-th jet categories 7, in orthogonal calculus, see
Definition 2.2.1. The analogous (p, ¢)-th jet categories C»7, , in the Cs-calculus are defined

using Cy-vector bundles, see Definition 3.2.1.

We now briefly introduce for later convenience the definition of a G-vector bundle. This is
an equivariant vector bundle with respect to an action of a compact Lie group G. These
bundles are discussed in more detail by May in [May96, Section 14.1]. Again, we will be

working over R.

Definition 2.1.19. Let G be a compact Lie group and X be a G-space. A G-vector
bundle over X is a vector bundle map p : £ — X and a G-action on the total space E

such that:
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e pis a G-equivariant map,

e if g € G, then p~'(z) = p~*(gx) is a linear map for all z € X.

That is, G' acts linearly on the fibres.

Example 2.1.20. [May96, Section 14.2] A G-vector bundle over a point is precisely the

information of a G-representation.

An important example of a G-vector bundle is the bundle E(V, V") used by Mandell and
May in [MMO02] to describe G-spectra. These are defined analogously to the bundles
v (U, V') used in orthogonal calculus, see Definition 2.2.1.

Example 2.1.21. [MMO02, Definition 2.4.1] Let V, V' be elements of some G-universe of
G-representations. Let J(V, V') be the G-space of linear isometries from V' to V' with
G-action given by conjugation. Let E(V,V’) be the subbundle of the product G-bundle
JV, V) x V" over J(V, V') defined by

E(V, V') ={(f.x): fe T(V.V),z € f(V)"}

where f(V)1 denotes the orthogonal complement of the image of f. The group G acts on
E(V, V") via the diagonal action.

We now recall the definition for the Thom space of a vector bundle.

Definition 2.1.22. [May99, Section 23.5] Let f : E' — B be a real vector bundle. Let
D(E) and S(E) denote the unit disk and sphere fibre bundles of f respectively, with
respect to any choice of metric. The Thom space of the vector bundle f is the pointed
topological quotient space T'(E) = D(F)/S(FE). The basepoint of T'(F) is the image of
S(E) under the quotient.

If the base space B is compact, T'(F) is homeomorphic to the one point compactification

of E. The point at infinity is exactly the basepoint given by S(FE) under the quotient.
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Remark 2.1.23. In particular, if f : E — B is a G-vector bundle, then T'(E) inherits a
G-action from the G-action on F, as GG acts through isometries, and G acts as the identity

on the point at infinity.

2.1.4 The equivariant Freudenthal suspension theorem

Many of the key results of orthogonal calculus are proven using connectivity arguments.
As such, the Freudenthal suspension theorem is heavily relied upon. Analogously, the
Cs-calculus depends on the equivariant Freudenthal suspension theorem. Since the equiv-
ariant Freudenthal suspension theorem does not follow from the non-equivariant theorem
in an obvious way, we state the theorem here. The content of this section can be found

in [May96, Chapters 9 and 11].

Given a G-representation V', one can define disks and spheres (since V' has an inner
product, see Remark 2.1.10). Let S(V') denote the unit sphere of V' and D(V') denote the
unit disk of V. Let SV be the one point compactification of V, with basepoint given by
the point at infinity. The space S inherits a G-action from the action on V, and the
point at infinity has trivial G-action. Alternatively, SV is homeomorphic to the quotient
D(V)/S(V), where the image of S(V) under the quotient corresponds to the point at
infinity. In particular, when V' is the trivial n-dimensional G-representation this gives the

usual n-sphere S™.

We now define two functors which give a notion of equivariant suspension and loops.
They are analogous to the standard X" X = S™ A X and Q"X = Top, (S™, X) functors for

pointed spaces.
Definition 2.1.24. Let X be a G-space and V be a G-representation, then the V-th

suspension functor and V' -th loop space functor are defined by

WX =8S"AX,

QX = Top,(SY, X).
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As expected from Section 2.1.1, G acts on £V X diagonally and on Q¥ X by conjugation.

As with the standard suspension and loops functors, these functors form an adjunction
on (G-spaces

>V GTop, = G Top, : QY.

Now we turn to discussing the connectivity of a G-space.

Given a G-space X, one can take homotopy groups of the space X for each closed
subgroup H of G. Therefore, the connectivity of X can be described as a dimension

function, see [May96, Definition 11.2.1].

Definition 2.1.25. A dimension function v is a function from the set of conjugacy classes
of closed subgroups of G to the integers. A G-space X is v-connected, if each X is a

v(H )-connected space.
Examples 2.1.26. [May96, Definition 11.2.1] The following are examples of dimension
functions, where G is a group and H is a closed subgroup of G:

1. ForneZ,n*: H—n.

2. For V a G-representation, |[V*|: H — dim(VH).

3. For X a G-space, ¢*(X) : H — ¢(X*), where ¢(—) is the connectivity of the space.

If X* is not path connected and non-empty, then set ¢(X) equal to —1.

One can also use dimension functions to describe the connectivity of a map between
(GG-spaces.
Definition 2.1.27. Let X and Y be G-spaces. A map f : X — Y is v-connected, if each

fH X" — YH is (H)-connected.

That is, for each closed subgroup H, f¥ is injective on homotopy groups of degree less

than v(H) and surjective on homotopy groups of degree less than or equal to v(H).
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We can now state the equivariant Freudenthal suspension theorem, a proof of which by

May can be found in [May96, Section 11.5].

Theorem 2.1.28 ([May96, Theorem 9.1.4]). (Equivariant Freudenthal suspension the-
orem) Let Y be a pointed G-space, and V be a G-representation. Then the unit map
n:Y = QVEVY, of the adjunction XV : G Top, = G Top, : QV, is v-connected for any v

satisfying

1. v(H) <2cH(Y)+1, V subgroups H such that VH 0.

2. v(H) < cK(Y), V subgroup pairs K < H such that VX #£ VI,
Therefore, the suspension map
YW X,Y]e — [V X, 2VY]q

is surjective if dim(X*™) < v(H), and bijective if dim(X) < v(H) — 1 for all closed
subgroups H of G, where [—, —|a denotes the set of homotopy classes of based G-maps.

Note that when G = e, this is exactly the standard non-equivariant Freudenthal suspen-
sion theorem, since condition 2 is empty.

For G = (), the theorem becomes much easier to interpret, since there are only a maxi-

mum of three conditions on the dimension function v.

Theorem 2.1.29. (Cy-equivariant Freudenthal suspension theorem) Let' Y be a pointed
Cy-space and V' be a Cy-representation. The map n:Y — QVEVY is v-connected for any
v satisfying

1. v(e) <2c5(Y)+1, if V #0.

2. v(Cy) <2c°2(Y) + 1, if V2 £ 0.

3. v(Cy) < c(Y), if V#£ V.
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Given the non-equivariant Freudenthal suspension theorem, see [BR20, Theorem 1.1.10],

one would expect the Cs-equivariant suspension theorem to look like:

The map 1 : Y — QXYY is v-connected for any v satisfying

1. v(e) <2¢°(Y) + 1.

2. v(Cy) < 2c%2(Y) + 1.

However, there are counter examples that demonstrate why this is false. These are dis-

cussed by May in [May96, Section 11.2], and we just state one of them here.

If V is the sign representation R? of C5 and n > 3, then the above ‘expected theorem’
says that the map
BV [S™ SMe = BV S, BV S g

is an isomorphism. However, [S", S"|¢ = Z and [XV 5™, ¥V S"]; = Z%. Hence, the map

¥V is not surjective.

In this way, the third condition of the Cs-equivariant Freudenthal suspension theorem can

be thought of as the extra condition needed to make the ‘expected theorem’ work.

2.2 Orthogonal calculus

The aim of the main text is to extend the theory of orthogonal calculus to the Cs-
equivariant context. To do this, we will work through the same constructions of the
underlying calculus, while adjusting the categories and results to account for the newly
introduced group actions. As such, in this section we provide an overview of these con-
structions for comparison. The main details of these constructions were originally by
Weiss [Wei95], however towards the classification theorems we choose to follow the model

categorical approach of Barnes and Oman [BO13]. Since the proofs of many results in
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the Cs-equivariant setting mimic those in the underlying calculus, we chose to omit them

here.

Many objects studied in algebraic topology can be realised as functors. Using functor cal-
culus, one can approximate a given functor by a sequence of functors with ‘nice’ properties.
In doing so, we make analysis of the original functor much more simple, by "breaking’ it
into smaller, more manageable parts. The resulting sequence of functors is a similar con-
cept to that of a Postnikov tower, in which we approximate a CW-complex X by a tower
of fibrations, with fibres Eilenberg-MacLane spaces. Language from differential calculus is
adopted, since this is comparable to the Taylor series for a function, in which the function
is approximated by polynomial functions. Hence, we can justify labelling this a form of

calculus.

Orthogonal homotopy calculus is the branch of functor calculus involving the study of
functors from the category of finite dimensional real vector spaces to the category of
pointed topological spaces. Given an input functor F', the end result is a Taylor tower
of approximations, built from polynomial functors 7, F" and spectra ©% with an action of

O(n), for n > 1.

TE(V) +—— Q% _(SW A @%)hom_

~

TF(V) +— 2 [(5" A O}),00,

/ -

F(V) ———— F(R*)

The fibres of the tower are homogeneous functors. The main result of the calculus is
known as the classification theorem. It allows us to characterise n-homogeneous functors
as functors that are completely determined by orthogonal spectra with an action of O(n).

Therefore, giving a means to obtain unstable information from stable data. It can be
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stated as a zig-zag of equivalences between the stable model structure on orthogonal

spectra with an action of O(n) and the n-homogeneous model structure.

resp /O(n) (an )
n -homog- & O(n)&, : SPO [O(n)]
indg e* o,

2.2.1 The functor categories

Let J denote the category of finite dimensional real subspaces of R> with an inner product
and linear isometries. We now define a sequence of Top,-enriched categories 7, for n > 0,
which we will use to define intermediate categories O(n)E,, of enriched functors. We begin

by defining the following vector bundle ~, (U, V'), that will be used to build 7,.

Definition 2.2.1. For U,V € J, define the n-th complement bundle ~, (U, V) to be the

vector bundle on J (U, V'), whose total space is given by

WU, V) ={(f2): f € TU,V),z eR"® f(U)"}

where f(U)* denotes the orthogonal complement of the image of f.

This is a sub-bundle of the product bundle whose total space is J (U, V) x (R" @ V).

Denote the Thom space of the bundle ~,, (U, V) by J,(U, V). This Thom space is the one
point compactification of v, (U, V'), since J (U, V) is compact. Each J,(U, V) is a pointed

space.

Remark 2.2.2. In particular, Jo(U, V') = T(v(U,V)) is equal to J(U,V),.

There is a composition rule induced by the vector bundle map

’Yn(V, W) X PYn(Uv V) — f)/n(U: W)
((f,2),(9,9)) = (fg,z+ (id@f)(y)).
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Passing to Thom spaces then yields the composition law

IV, W)NT(U V) = T (U, W).

One can check that this composition is a continuous map. Moreover, the composition

maps are unital and associative.
We can now define the categories J,,.

Definition 2.2.3. For each n > 0, let the n-th jet category J, be the Top,[O(n)]-enriched
category whose objects are finite dimensional real inner product spaces, and whose mor-
phism spaces are given by J,(U,V) = T(v,(U,V)). Composition in 7, is defined as

above.
The action of O(n) on the space of morphisms 7,(U, V) is induced by the O(n)-action on
R™.

The following theorem by Weiss demonstrates that it is possible to construct 7., from
Jn. Note that there is a functor J,, — J,,1 induced by the standard inclusion R® — R"*!

as the first n coordinates (see Section 2.2.3).

Proposition 2.2.4 ([Wei95, Theorem 1.2]). For all U,V in Jy and for all n > 0,

TR&U,V)AS" = To(U,V) = Fusr (U, V).

15 a homotopy cofibre sequence.

We are now ready to define the intermediate functor categories O(n)é&,,.

Definition 2.2.5. Define &, to be the category of Top,-enriched functors J, — Top,
and natural transformations. Define the n-th intermediate category O(n)E, to be the
category of Top,[O(n)]-enriched functors J7,, — Top,[O(n)] and O(n)-equivariant natural

transformations.
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Remark 2.2.6. Note that Top,[O(n)] is equipped with the coarse model structure, see
Proposition 2.1.6. The category & is equivalent to the category of orthogonal spectra

Sp® by definition.

The input functors for orthogonal calculus are those objects from the category &. Some

examples of such functors are listed below.

Examples 2.2.7.

o J,(U—):V = J(UV):
¢ O(—): Vi O(V),

e Top(—):V — Top(V),

where O(V) is the space of linear isometries on V', and Top(V) is the space of homeomor-
phisms on V. Other examples can be produced by replacing O(V') and Top(V') by their
classifying spaces BO(V'); and B Top(V);.

Remark 2.2.8. We denote the set of natural transformations between E,F € &, by
Nat, (E, F'). There is a natural topology that one can define on Nat,, (F, F), by expressing
Nat,, (F, F') as the enriched end below, see [Kel05, Section 2.2].

Nat, (E, F):/V i Top,(E(V), F(V)) € [ Top.(E(V),F(V))
€In VeTn

Hence, we can equip Nat, (F, F') with the appropriate subspace topology of the product

space.

In a similar way, we can describe a functor E € &, in terms of an enriched coend, by the

enriched Yoneda lemma (see for example [Kel05, Section 3.10]).

/W% E(W) A Jy(W,—) = E.
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There exists a projective model structure on &, by [MMSS01, Theorem 6.5], in which

weak equivalences and fibrations are defined objectwise.

Proposition 2.2.9 ([BO13, Lemma 6.1]). There exists a proper, cellular model structure
on &, where f 1 E — F is a weak equivalence (resp. fibration), if f(V): E(V) — F(V)
is a weak homotopy equivalence (resp. Serre fibration) for all V- € Jy. We call this
model structure the projective model structure on & and denote it by &. It is cofibrantly
generated by the following sets of generating cofibrations and generating acyclic cofibrations

respectively

{To(V,=)Nii€ Iy }
{k70<‘/7 _) /\j j S JTOIO*}v

where V€ Jo, and Ity , J1op, are the generating cofibrations and acyclic cofibrations of

the standard Quillen model structure on Top, respectively (see Proposition 2.1.1).

2.2.2 The intermediate categories as spectra

The intermediate category O(n)E&, is Quillen equivalent to the category of orthogonal
spectra with an action of O(n), when it is equipped with the n-stable model structure.
This Quillen equivalence forms half of the zig-zag of equivalences that gives the classifica-
tion of n-homogeneous functors, see [BO13, Theorem 10.1]. In this section, we summarise

the construction this Quillen equivalence.

First we give the n-stable model structure on the intermediate category O(n)&,. It
is a modification of the stable model structure on orthogonal spectra, see Barnes and
Roitzheim [BR20, Section 2.3]. We begin by first defining homotopy groups on objects
of O(n)&,. These homotopy groups detect the weak equivalences of the n-stable model

structure.
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Definition 2.2.10. Define the n-homotopy groups of X € O(n)&, by
niy (X) = COhml TFnl+kX(Rl),

where k € Z and the colimit runs over the diagram

(—)AS!

. 1
T e X (R S i (X(RD A S™) —2s i X (R 05

in which oy is the structure map of X (see Definition 2.2.11).

Define a map f : X — Y in O(n)&, to be an nm.-equivalence if the induced map on

n-homotopy groups nmi f : nmp X — nmY is an isomorphism for all k.

Now we identify the fibrant objects of the n-stable model structure. These are the n)-

spectra, see [BO13, Definition 7.9].

Definition 2.2.11. An object X of O(n)&, has structure maps
ox :SVAX(W) = X(WaV).
The object X is called an n{2-spectrum if its adjoint structure maps
Gx : X(W) = QVX(WaV)
are weak homotopy equivalences, for all VW € 7.

Recall from Remark 2.2.6 that Top,[O(n)] is equipped with the coarse model structure.

Proposition 2.2.12 ([BO13, Proposition 7.14]). There is a cofibrantly generated, proper,
cellular model structure on O(n)E, called the n-stable model structure. The weak equiva-

lences are the nm.-equivalences. The fibrations are the maps f : X — 'Y such that f(V)
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1s a Serre fibration for each V- € Jy and such that the diagram

X(V) —— QW X(V W)

| |

Y(V) —— QWY (Vo W)

18 a homotopy pullback for all V,W € Jy. The fibrant objects are the nS)-spectra. Denote
this model category by O(n)ES.

This model structure is constructed as a left Bousfield localisation of the levelwise model
structure O(n)&L ([MMSSO01, Theorem 6.5]), where fibrations and weak equivalences are

defined levelwise.

To relate the intermediate categories to orthogonal spectra with an action of O(n),
Sp[0(n)], we define explicitly a functor «*. The construction of this functor is detailed
by Barnes and Oman in [BO13, Section 8], and it forms a Quillen equivalence between
these categories. Recall that the category of orthogonal spectra Sp© is equivalent to the
category &, by definition (see Remark 2.2.6). Therefore, the categories Sp®[O(n)] and
£1]0(n)] are also equivalent. The category Sp®[O(n)] has a stable model structure, where
weak equivalences and fibrations are defined by the underlying stable model structure on

SpO.

Definition 2.2.13. Define a Top,-enriched functor «,, : J, — J1 by
U—R'®QU :=nU
on objects, and

Tn(U, V) = Ji(nU,nV)
(f;2) = (R*® f,x)

on morphism spaces.
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This induces a well defined functor

3 *

Sp°l0(n)] » O(n)&,
Funrp, (\717 Top, [O(n>]> FunTop*[O(n)} (jna Top, [O<n)])
which is precomposition with «,, on objects, where Funs(—, —) denotes the category of

(C-enriched functors.

Given © € Sp°[O(n)], there are two O(n)-actions on the image aO(V) = ©(nV). The
first action is the internal action on ©(nV’) induced by the action on nV', which is denoted
by O(9g ® V') for g € O(n). The second is the external action from ©(nV’) being an
O(n)-space, which is denoted by ge@v) for g € O(n). These two actions commute by
construction. Since we want the functor a*© to be Top,[O(n)]-enriched, we define the

action of O(n) on ©(nV) as the composition

O(g®@V) o gomv).

The left Kan extension along «, forms a left adjoint to «. Using the notation (a;,) to
denote taking the left Kan extension along ay,, this can be described by the Top,[O(n)]-

enriched coend
UeTn

(@)©)V) = [ A@UV)nO©).

Theorem 2.2.14 ([BO13, Proposition 8.3]). The adjoint pair

is a Quillen equivalence, where Sp°[0(n)] is equipped with the stable model structure.
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2.2.3 Derivatives

As suggested by the name orthogonal calculus, one can expect to define a notion of differ-
entiation for functors. The derivatives of input functors play a key role in the structure of
the tower of approximations produced by orthogonal calculus. We construct these deriva-
tives by defining an adjunction between the intermediate categories. In particular, by the
previous section, this says that the derivatives of an input functor are given by spectra

with an action of O(n).

Let n > m. Consider the map

(i%)WW : Vm(va W) — 'Vn(Va W)
(f,2) = (f, (i, @id)(x))

where ¢ : R™ — R" is the standard inclusion as the first m entries. Passing to Thom

spaces yields a sequence of enriched functors
it i i3
Jo—=T =T =>Ts— ...

Definition 2.2.15. Let m < n. Define the restriction functor res), : &, — &, as

precomposition with i), : J, = Tn.

Define the induction functor ind}, : €, — &, by
(ind? F) (U) = Nat,,(J.(U, —), F).

Remark 2.2.16. Note that the restriction functor res], is often omitted from notation. For
a functor X € &,,, we call ind”, X the (n — m)-derivative of X, denoted by X~™). In

particular, X(™ = ind} X is the n-th derivative of an input functor X € &.
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With the addition of inflation-orbit change-of-group functors for spaces, see [BO13, Section

4], this defines an adjunction
resg /O(n) : O(n)€, = & : indg "

which is upgraded to a Quillen equivalence when the categories are equipped with the

stable and homogeneous model structures, see [BO13, Theorem 10.1].

The following proposition defines induction iteratively as a homotopy fibre, and acts as a

tool for calculating the derivatives.

Proposition 2.2.17 ([Wei95, Theorem 2.2]). For all U € Jy and for all F € &,, there

exists a homotopy fibre sequence
ind”™' F(U) = F(U) = Q"F(U @ R)
where Q™Y is the space of pointed maps S™ — Y, for a pointed topological space Y .

Proof. From Proposition 2.2.4 there exists a homotopy cofibre sequence

Pick F' € &, and apply the contravariant functor Nat, (—, F') to the cofibre sequence

above. This yields a homotopy fibre sequence
Nat, (J.(R& U,—) AS™, F) < Nat,, (J.(U, —), F) < Nat, (Jn+1(U,—), F).
Application of the Yoneda Lemma and the definition of ind”™ gives the desired fibre

sequence. ]

Example 2.2.18. [Wei95, Example 2.7] The first derivative of BO(—) is the orthogonal
sphere spectrum S : V +— SY. The second derivative of BO(—) is a shifted sphere
spectrum, and the third derivative of BO(—) is a shifted Z/3-Moore spectrum.
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2.2.4 Polynomial functors

In differential calculus, a real function is approximated by polynomial functions, which
are the partial sums of the associated Taylor series. Analogously, polynomial functors are
a crucial ingredient in orthogonal calculus. In particular, the n-polynomial approximation
functors form the layers of the tower of approximations. As suggested by the name, these
functors have similar properties to polynomial functions. They are discussed in detail by

Weiss [Wei95, Section 5] and Barnes and Oman [BO13, Sections 5 and 6].

Definition 2.2.19. Let X € &y. Define the functor 7,,X € & by

T X (V) = Nato(Syns1(V, =), X).

The functor 7, can be defined in a different way using [Wei95, Proposition 4.2].

7,X (V)= holim X(Ua&V).
0AUCRn+1

This homotopy limit is taken over the poset of non-zero subspaces of R**! and is con-
structed to take into account that this poset is internal to Top,. This is discussed in more

detail by Weiss in [Wei98].

Now we define what it means for a functor to be n-polynomial. This is exactly Weiss’

definition of polynomial of degree less than or equal to n [Wei95, Definition 5.1].

Definition 2.2.20. A functor X € & is defined to be n-polynomial if and only if the
map

(pn)x : X(V) = 7 X(V)
is a weak homotopy equivalence, for all V' € 7.
In differential calculus, an n-polynomial function is also (n + 1)-polynomial. The same

property holds for polynomial functors. This is [Wei95, Proposition 5.4], which is also
found in [BO13, Proposition 6.7].
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Proposition 2.2.21 ([Wei95, Proposition 5.4]). Let X € &. If X is n-polynomial, then

it is also (n + 1)-polynomial.

The fibre of the map X — 7, X determines how far a functor X is from being n-polynomial,
and this fibre is exactly the (n + 1)-derivative of X. The following Proposition [Wei95,

Proposition 5.3] describes how this fibre can be calculated.

Proposition 2.2.22 ([Wei95, Proposition 5.3]). For all X € &, and for all V € Jy, there

exists a natural fibration sequence

X1y 5 X (V) 2 7 x(v),

In particular, Proposition 2.2.22 describes the relation between differentiation and poly-

nomial functors. From this fibration sequence, one can see that if a functor X is n-

(n+1)

polynomial, then X is contractible. This is analogous to an n-polynomial function

having zero (n + 1)-st derivative.

Definition 2.2.23. Let X € &;. Define the n-polynomial approzimation functor of X by
7_2
T, X = hocolim (X 2 X I 2y P ) :

There is a natural transformation 7, : X — T, X, which is the map of homotopy colimits

hocolim(X — X - X — ...)

|n

hocolim (X — 7,, X — 72 X — ...)

There are also maps 7,,X — T,,_1 X, induced by the inclusions R*~! — R".

As the name would suggest, T, X € & is an n-polynomial functor. This can be proven
using relations between homotopy limits and sequential homotopy colimits, see [Wei95,

Theorem 6.3] and [Wei98]. It is also true that if the functor X is already n-polynomial,
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then X ~ T, X, see [Wei95, Theorem 6.3]. In particular, this implies that 7,7, X ~ T, X

for any m > n.

Example 2.2.24. If X is 0-polynomial, then X (V') ~ X(V @& R). That is, X is homo-
topically constant. In particular, the 0-polynomial approximation of a functor X is the

constant functor which takes value
ToX (V) = X(R*) := hocolim,, X (R")
for each V € J,.

To better understand polynomial functors, we construct a model structure on the input
category &, whose fibrant objects are the n-polynomial functors. We call this the n-

polynomial model structure.

Proposition 2.2.25 ([BO13, Proposition 6.5]). There is a proper model structure on
&y such that a morphism f is a weak equivalence if and only if T, f is a levelwise weak
equivalence. The fibrant objects are the n-polynomial functors. A morphism f is a fibration

iof and only if it is an objectwise fibration and the diagram

x 1 .y

| |

15 a homotopy pullback square in . We call this the n-polynomial model structure, and

denote it by n-poly-&.

Proof. The model structure can be constructed as the Bousfield-Friedlander localisation
of the projective model structure at the functor 7,,, see Proposition 2.2.9. This proves
the existence of the model structure, and guarantees that it is proper. Alternatively, one

can construct the n-polynomial model structure as the left Bousfield localisation of the
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projective model structure with respect to the set of maps
S = {5V, )i = oV, =) : V € T}

This construction guarantees that the model structure is also cellular. Since Bousfield-
Friedlander and left Bousfield localisations do not change cofibrations, and the fibrant

objects of both model structures are the same, these two constructions do indeed agree. [

2.2.5 Homogeneous functors

The fibre of the map 7, X — 71,1 X is n-polynomial and has trivial (n — 1)-polynomial
approximation. Functors of this type are called n-homogeneous. The main result of the
calculus is that n-homogeneous functors are completely determined by orthogonal spectra

with an action of O(n). Therefore, these fibres are much more computable.

Definition 2.2.26. Let X € &. X is defined to be n-homogeneous if it is n-polynomial
and T,,_; X (V) is contractible for all V' € J.

The following example is [Wei95, Example 5.7]. It forms one half of the classification

theorem.

Example 2.2.27. Let © € Sp°[O(n)]. The functor in & defined by
V= Q%[(S™ A ©)now)]

is n-homogeneous.

Proposition 2.2.28. The homotopy fibre D, X = hofibre[T, X — T,_1X] is an n-

homogeneous functor.

Proof. One can prove, using an application of the Five Lemma, that the homotopy fibre

of a map between two n-polynomial functors is also n-polynomial. We know already that
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T, X is n-polynomial. 7,1 X is also n-polynomial, given that it is (n — 1)-polynomial and

using [Wei95, Proposition 5.4]. Hence, D, X is n-polynomial.

Using that 7}, and T},,_; commute with homotopy fibres, and in particular that

T T, X 1T, 1 X ~T, X,

we get
T,-1D,X =T, 4 hofibre[T,, X — T,,_1 X]
~ hofibre[T}, T, X — T, X]
~ hofibre[T,,T,, -1 X — T,,_1X]
~ hofibre[T,, 1 X — T,,_1X]
~ %
Thus, D, X is n-homogeneous. O]

As with n-polynomial functors, there is a model structure on the input category &, that

captures the structure of the n-homogeneous functors.

Proposition 2.2.29 ([BO13, Proposition 6.9]). There exists a model structure on &
whose cofibrant-fibrant objects are the n-homogeneous functors that are cofibrant in the
projective model structure on &. Fibrations are the same as for the n-polynomial model
structure and weak equivalences are morphisms f such that resyindy 1), f is an objectwise
weak equivalence. We call this the n-homogeneous model structure on & and denote it by

n-homog- &.

There is a Quillen adjunction

Id : n-homog- & = n-poly-&, : 1d.
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Proof. Right Bousfield localisation of the n-polynomial model structure with respect to

the set

K, ={J.(V,=):V € Jo}
yields the desired model structure and adjunction. O]

2.2.6 The classification of n-homogeneous functors

To recap, so far we have constructed a tower of n-polynomial approximation functors

T, X, and the fibres of the maps between them D, X are n-homogeneous functors.

X(V)
L LX(V) —— T, X (V) > >y iIX(V) —— X(R*)
D, X(V) Dy 1 X(V) DiX(V)

We now wish to characterise the fibres D,, X as a functors built from spectra. This process
is outlined by Barnes and Oman in [BO13, Sections 9 and 10]. The model categories and

their relations discussed in the previous sections are summarised by the following diagram.

resyy /O(n) . Id .
O(n)&! " & " n-poly- &

S

Y indger 1d
Idl Tld IdT lld
res(; /O(n)

" n-homog- &

3
AN

indg e*
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In [BO13, Theorem 10.1], the bottom horizontal Quillen adjunction is proven to be a

Quillen equivalence.

Theorem 2.2.30 ([BO13, Theorem 10.1)). There exists a Quillen equivalence

resg /O(n) : O(n)€; = n-homog- & : ind €*.

Combined with the bottom left vertical Quillen equivalence, see Section 2.2.2, this results
in a zig-zag of equivalences between the stable model structure on spectra with an action

of O(n) and the n-homogeneous model structure on &.

Under this zig-zag of equivalences, we denote the spectrum which is the image of an input
functor X by ©%. That is, ©% = L(a,)Rindjec*X, where L and R denote taking the
left and right derived functors respectively. This is weakly equivalent to the spectrum
©X™ constructed in [Wei95, Section 2]. The classification theorem states that an n-
homogeneous functor X is levelwise weakly equivalent to a functor built from the spectrum

or.

Theorem 2.2.31 ([Wei95, Theorem 7.3]). Let X be an n-homogeneous functor in &, for

n > 0. Then X is levelwise weakly equivalent to the functor defined by
V= Q%[(S™ A O ) hom)-
Conversely, any functor of the form
V= Q%[(S™ A O)nowm)
for © € Sp°[0(n)], is n-homogeneous.

Note that the converse statement is exactly Example 2.2.27.

In particular, applied to the fibres of the maps 7, X — T, _1.X, this gives a description of

the fibres of the orthogonal tower in terms of spectra with an action of O(n).
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Theorem 2.2.32 ([Wei95, Theorem 9.1]). For each X € &, n >0, V € Jy, there exists

a homotopy fibre sequence

Q°1(S™ A O how)] = T X (V) = T, X (V).
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Equivariant functor categories

The primary objects of study in calculus of real functions are derivatives. In orthogonal
calculus, one constructs derivatives of input functors via combinations of restriction func-
tors and the inflation-orbit change-of-group functors for spaces (see Definition 2.2.15).
These derivatives play a key role in the classification of n-homogeneous functors, as they
form part of the zig-zag of Quillen Equivalences used to derive the classification Theorem

(Theorem 2.2.31).

We will extend this notion to the Cy-equivariant setting by defining new functor cate-
gories and adjunctions analogous to those used in the underlying calculus. We begin by
choosing a new indexing category that will induce the Cs-actions used throughout the cal-
culus. With the Cs-setting fixed, we can construct the jet categories C.7, 4 as well as the
intermediate categories O(p, ¢)C2&, 4. The relationships between these categories (which
include derivatives), and in particular their various model structures, are heavily relied
upon later in the homotopical part of the calculus; the classification of (p, ¢)-homogeneous
functors as a category of orthogonal Cy-spectra with an action of O(p,q). In particular,
objects in this category of orthogonal spectra have a genuine action of C5 and a naive

action of O(p, q).

43
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3.1 The input functors

The input functors to Cy-equivariant orthogonal calculus are continuous functors from a
category of finite dimensional Cs-representations (with inner product, see Remark 2.1.10)

to the category of pointed Cs-spaces. For example, the functor
BO(=):V = BO(V)4,

see Examples 3.1.6. We call the category of such functors Cy&y . In this section we give

a more detailed description of this category, by defining a new indexing category CyL.

First, recall that Cy is the cyclic group of order two, which we write as Cy = {e,0}. The
category of Cy-spaces is assumed to be equipped with its fine model structure throughout
this main text, see Proposition 2.1.7. In particular, a map f : X — Y in C;Top, is a
weak equivalence if and only if f¢2 : X2 — Y2 and f¢: X¢ — Y* are weak homotopy

equivalences.

Orthogonal calculus is indexed on the universe R*, which makes the input category of
functors enriched over topological spaces. To guarantee that the category of input functors
for Cy-equivariant orthogonal calculus is enriched over pointed Cs-spaces, we must specify

a new universe which is closed under Cs-action.

Recall from Example 2.1.12 that the regular representation of Cy = {e, o} is defined as

the following vector space
R[CQ] = {/\1Q+ )\QQI )\1, )\2 € R}

with basis elements e, 0. To better understand the Cs-action on the vector space R[Cy],

we can decompose

R[C5] =R(e+ o) @ R{e — ).
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This direct sum is Cy-isomorphic to R @ R?, where R and R’ are the trivial and sign

Cs-representations respectively with Cy-actions defined below

o(z) =z (z€R),

oly)=—y (yeR’).

Choosing the universe @ R[C5], we define a new indexing category as follows.
i=1

Definition 3.1.1. The equivariant indexing category CoL is a Cy Top,-enriched category
whose objects are the finite dimensional subrepresentations of é R[Cy] with inner product.
Let L(U, V') denote the space of (not necessarily C'g—equivaria;l?)l linear isometries with the
Cy-action that is conjugation. That is, for f € L(U,V),exf = fandoxf =ofo: U = V.

The hom-object of morphisms U — V' is the pointed Cy-space L(U,V),.

From the discussion above on the decomposition of R[C5], we can see that an object in the
category C»L is isomorphic to an object of the form RPT% = RP ¢ R%, for some p, ¢ € N.
That is, p copies of the trivial representation and ¢ copies of the sign representation.

Remark 3.1.2. We will use the notation RP? to mean RPT4°. We will also use the notation

(p,q)V to mean RP? @ V' equipped with the diagonal action of Cy, where V € CyL.

Example 3.1.3. By definition, £(R*,R"), is the space of linear isometries from R* to
R"™, which is known to be isomorphic to O(n)/O(n— k) (via the map O(n) — L(R* R")

that sends a matrix A to the matrix given by the first & columns of A).

Let f € L(R* R"),, then ofc is as follows, where the last equality is known from

linearity, rather than an assumption in equivariance.

That is, Cy acts on £(R*¥ R™), as multiplication by -1.

Remark 3.1.4. Note that C Top, is also enriched over itself, by equipping the space of

continuous maps Top, (X,Y) with the conjugation action (see Section 2.1.1).
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We can now define the input category for Cy-orthogonal calculus, which we denote by

ng(]’o.

Definition 3.1.5. Define Cy7) to be the C; Top,-enriched category with the same ob-
jects as CoL and morphisms defined by CoJy0(U, V) = L(U, V). Define the input cate-
gory Cy&y to be the category of s Top,-enriched functors from CyJy o to Cs Top, and

Cy-equivariant natural transformations (see Remark 3.2.12 for details).

Examples 3.1.6.

e BO(—):V+— BO(V),
e SV SV

o Oy Jp,(U,—): V= CoJ, (U, V)

where BO(V) is the classifying space of the space of linear isometries on V and SV is
the one point compactification of V. The Cs-action on O(V') is conjugation, that is
oxh=cho™! for h € O(V). The Cy-action on BO(V) is induced by the action on O(V),
see Section 6.4. The Cy-action on SV is induced by the Cy-action on V, and the Cs-action

on C2J,,(U, V) is induced by the Cy-action on Cyy,,(U, V) (see Definition 3.2.1).

We now define a model structure on the input category C9&y . This model structure is
the projective model structure, similar to that of [MMSS01, Theorem 6.5, and will be
used to build the polynomial and homogeneous model structures. The projective model
structure on Cy&y is a special case of the projective model structure on O(p, q)Cs2E, , for

p = q =0, as such we defer the proof to Lemma 3.4.7.

Proposition 3.1.7. There is a proper, cellular, Cy-topological model structure on Cs& g
where the fibrations and weak equivalences are defined objectwise from the fine model struc-
ture on Cy Top,. We call them objectwise fibrations and objectwise weak equivalences. We

call this the projective model structure on C2&y o and denote it by Ca& . It is cofibrantly
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generated by the following sets of generating cofibrations and generating acyclic cofibra-

tions respectively

[proj = {CQ%,()(V, —) ANt:1€E IC2}
Jproj = {02‘7070(‘/? _) /\] j € JCQ}7

where V- € CoJoo and Ic,, Jo, are the generating cofibrations and acyclic cofibrations of

the fine model structure on Cy Top, (see Proposition 2.1.7).

3.2 The intermediate categories

In orthogonal calculus, one constructs intermediate categories O(n)&, which are interme-
diate between the input category and the category of orthogonal spectra with an action of
O(n). We replicate this process in the Cy-equivariant setting to construct new intermedi-
ate categories O(p, ¢)C2E, 4. These categories will give greater insight into the structure of
the input category Cs& o defined in Section 3.1. The construction follows the orthogonal
calculus version of Weiss [Wei95, Sections 1 and 2] and Barnes and Oman [BO13, Sections

3 and §].
We begin by defining the following Cs-equivariant vector bundle.

Definition 3.2.1. Let U,V € CyL. Define the (p, q)-th complement bundle Cy, (U, V)
to be the Cs-equivariant vector bundle on L(U, V'), whose total space is given by

Corp(U, V) ={(f,2) : f € LU, V), 2 e R @ f(U)*},

where f(U)* denotes the orthogonal complement of the image of f.

Let (f,x) € Covp (U, V). Where 0 x f = o fo, define a Cy-action on Cyy,,(U, V) by

o(f,x) = (ox* f,ox).



Chapter 3 Equivariant functor categories 48

Note that Cy7,,(U, V) is a subbundle of the product bundle over £(U, V') whose total
space is L(U,V) x (RP1® V).

One can verify that the Cy-action on Cyy, (U, V') is well defined by considering an element
T = Zwi ®uv € R @ f(U)*,

Under the Cy-action this is mapped to oz = ) ow; ® ov;. Clearly ow; € RP? for all i,
since R is closed under the Cy-action. Now take an arbitrary element of (o f)(U),
which is of the form (o f)(y) = (o fo)(Y), for y € U. Then, as there is an inner product
onV,

((0fo)(y), ovi) = (f(oy),vi) =0,

since v; € f(U)*, oy € U and the inner product on V is G-invariant. Therefore, ov; is an

element of o fo(U)*, and the action is well defined.

Example 3.2.2. The total space
Criom(BY,RY) = {(f,2) : f € LRV, RY), 2 € R™ © f(R¥)"}

has Cs-action

O-(fa CL’) = (_f7 _I)'

The following result outlines the effect of the fixed point functor (—)“2 : Cy Top, — Top,
on the Cy-spaces L(R*®, R%?) and Cyy, ,(R*?, R*).

Theorem 3.2.3 (The Equivariant Splitting Theorems). There are homeomorphisms
L(Ra,b7Rc,d)Cg ~ L(RG,RC) % E(Rbé,Rd(S)

CoYpg(R™", RO 22 Cyy o(R, RE) X Coyog(R”, R?).
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Proof. A map f : R*® — R%¢ is Cy-fixed if and only if it is Cy-equivariant. As there
are no non-zero Ch-equivariant maps R? — R% or R? — R the first splitting theorem

follows.

Let (f,x) € Coypq(R™ R*?). Then (f,x) is Cy-fixed if and only if

(o fox) = (f, ).

By the first splitting theorem o * f = f if and only if f € L(R? R¢) x L(R¥ R%). That
is, f is of the form fi x fo, where f; € L(R* R®) and f, € L(RY R%¥).

Now, since x € RP @ Im(f)+ C R @ R*4, r is in
(R? ® R%) @ (R? @ R?) @ (R” ® R°) @ (R? @ R%)
where Cy acts as id® — 1 @ —1 @ id. Therefore o(z) = z if and only if
z € (RP @ R°) @ (R® @ R%).

That is, z is of the form x; @ o, where x; € R”? ® Im(f1)* and zo € R” @ Im(f)*. The

second splitting theorem follows from the well defined homeomorphism

(f1 X foy 21 @ 22) = ((f1,21), (f2, 22))- o

Now we define what will become the morphism spaces for the categories C5 7, 4. These
categories are analogous to the n-th jet categories of orthogonal calculus, and will be used

to build the intermediate categories.

Definition 3.2.4. Let U,V € (L. Define C2J,,(U,V) to be the Thom space of
CQ")/pg(U, V)
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This Thom space is the one point compactification of Cyv, (U, V'), since L(U, V) is com-
pact. Hence, each C27,,(U,V) is a pointed Cy-space, with Cs-action inherited from
Cg’)/%q(U, V)

We can now define the categories Ca2 7, 4.

Definition 3.2.5. Let the (p, q)-th jet category C2J,, be the C Top-enriched category

whose objects are the same as CyL£, and whose morphism are given by C27, ,(U, V).

Composition in Cy7,, is defined as follows. There are maps of Cs-spaces defined by

CoYpg(V, X) X Corp (U, V) — Coryp (U, X)
((f,2),(9,9) = (fog,z+ (Id@f)(y))

Passing to Thom spaces then yields the desired composition maps

Cﬂjp,q(va X) A Cij,q(U7 V) — CZ\ZLQ(U’ X)

One can check that this composition is a continuous map. Moreover, the composition

maps are unital and associative. The following argument verifies that it is Cs-equivariant.

o(fog,x+(def)(y)) = (o (fog),o(x+ (daf)(y))

= (0% f)o(oxg), 00+ (id@afo)(oy)),

which is equal to the image of ((o * f,o0x), (0 * g,0y)) under the composition map.

One can see that the category CoJo ¢ has morphisms CoJoo(U, V') = L(U, V), and there-
fore is exactly the category defined in Definition 3.1.5.

The following is the a Cy-equivariant generalisation of [Wei95, Theorem 1.2]. It demon-
strates that it is possible to build the morphism spaces C5.7, ,(U, V') inductively. That is,

we can construct CoJp41,4 and CoJ, g+1 from Co 7, 4.
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Proposition 3.2.6. For all U, V,W in C2Jo 0, the homotopy cofibre (specific construction

given in proof) of the restricted composition map
CoJw (U @ X, V) NSV = CyTw (U, V)
is Cy-homeomorphic to CoJwex (U, V), where X =R or X = R°.

Proof. We give the proof for the X = R? case, and leave the similar X = R case to the

reader.

We can Ch-equivariantly identify the one point compactification of W ® R, denoted
SWEE’ with a subspace of CoJiw (U, U @ R?). Consider the map

W @ R® — Coyw (U, U ®R?)

w®y'_> (ZU,’IU@(O,Z])),

where iy : U — U ®R° is the map u +— (u,0). Taking Thom spaces then gives the desired

identification.

Composing this identification map with the composition map
CoTw (U @R’ V) A CoTw (U,U @ R°) = CoJw (U, V)
yields a continuous map
Cow (RS @ U, V) A SWEF 5 Oy (U, V)

which is Cs-equivariant, since both the identification and composition are Cy-equivariant

maps. This map is defined as

(f;2) AMw@y) = (flo, 2 + (dw & flrs ) (w @ y)).
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Since the map is surjective, the homotopy cofibre is a quotient of
[0, 00] x CoJw (R @ U, V) x (W ® R?).

Using the element form of this map, we can construct a homeomorphism ¢ from this

cofibre to CoJwers (U, V) defined by

t fiz,w@y) = (flo,z + (dw @ f|rs) (w @ y) + ta(flrs(1))),
where

t €0, 00]
fRaU—=V
reW® f(RRaoU)”*

wRyeW R

and a @ V — (W @ R°) ® V is the map that sends V to the orthogonal complement of
WV in (WoOR%)®V. That is, a(v) = (0,1@v) in (W V)d (R V)= (WoORY)QV.

Note that a need not be Csy-equivariant, and in this case it is not.
All that remains is to check that the map ¢ is Cr-equivariant.
¢(t70- * f,O'.CU,O'U) ® _y>

=((o % v, o2+ (W & (0 % f)lps) (ow @ —y) +ta((o * f)|rs (1))
=((0x f)lv, oz +o(w® f(y)) +t((o * f)lrs(1))),

where we have used that a(o(v)) = (0,1 ® o(v)) and o(a(v)) = (0,—1 ® o(v)). This is
equal to the image of (f|y,z+ (W & flrs)(w ® y) + ta(f|rs(1)) under the Cy-action. O
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Remark 3.2.7. These cofibre sequences are analogous to the following cofibre sequences

constructed in the underlying calculus (see Proposition 2.2.4).
TAUORV)ASE = Ju(UV) = T (U,V)

If one wanted to replace R with something higher dimensional this would involve ‘gluing’
these cofibre sequences together in an iterative manner. We want the Cy-equivariant cal-
culus constructed in this thesis to reduce down to the underlying calculus after forgetting
the Cy-actions. This forces that the cofibre sequences in Proposition 3.2.6 only hold for
X =R and X = R, since these cases both correspond R in the non-equivariant state-
ment. To replace X with something of higher dimension, for example R would again
mean taking some kind of iteration of cofibre sequences. This indicates that a potentially
more involved approach may be needed if one wants to construct this kind of result in a
G-equivariant orthogonal calculus, for an arbitrary group G. As a result, it is also not ob-
vious how derivatives should behave for the arbitrary G setting, since the fibre sequences
that describe derivatives (see Proposition 3.3.7) are a direct consequence of these cofibre

sequences.

We now wish to define the functor categories C3&,,. At the same time, we will also
define functor categories O(p, ¢)Cs&,,4, which will later be used to classify the layers of
the orthogonal tower. Before we can do this, we introduce the group O(p, ¢) and discuss

its actions.

Definition 3.2.8. Define O(p, q) to be the group of linear isometries from RP? to RP4
with the Cy-action defined as follows. Let Cy act on O(p, ¢) by conjugation by the matrix

where Id,, denotes the m-dimensional identity matrix. That is, cg = AgA~! for ¢ in

O(p, q). In particular, O(p, ¢)** = O(p) x O(q).
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The group action of Cy on O(p, q) can be described by the group homomorphism
¢ : Cy = Aut(O(p,q)), ar— @,

where @©,(g9) = aga™! for g € O(p,q). If a = e, then @, is the identity on O(p,q). We
can construct a new group called the semidirect product of O(p,q) and Cy with respect

to the map @. The underlying set is O(p, q¢) x Cy and the group operation is given by

(91,01) ® (92, 22) = (G1Qa, (92), 102).

The actions of Cy and O(p, ¢) do not commute, but they do commute up to the operation

@, that is ga = a@,(g). We denote this semidirect product by O(p, q) x Cs.

The group homomorphisms

inc: O(p,q) — O(p,q) x Cy

g+ (g,e)
and

proj : O(p, q) x Cy = Cy

(9,a) = o
form a short exact sequence
1 0(p.q) ™5 Op,q) » C2 ™3 Cy — 1,

where 1 is the trivial group. The group homomorphism 5 : Cy — O(p, q) x Cs, defined by
a — (Idy4q, @) is such that proj 8 = Idg,.

Remark 3.2.9. Throughout this thesis, we equip the category of Cs-spaces with the fine

model structure and the category of O(p, ¢)-spaces with the coarse model structure (see
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Propositions 2.1.6 and 2.1.7). We then equip the category of (O(p, q) x Cs)-spaces with a
model structure which is fine with respect to Cy and coarse with respect to O(p, ¢). This

is discussed more in Remark 3.4.8.

There is an action of O(p,q) x Cy on RP given by (7, 0)(z) := T'(o(x)). This can be
extended to an action on RP? @ f(U)* by (T,0)x :== ((T,0) ® o)(x), where f € L(U,V).
This induces an O(p, q) x Cy-action on Cyy, ,(U, V) by

(T,0)(f,2) = (o x [, (T, 0) @ o) ().

Hence, there is also an O(p, ¢) X Cy-action on its Thom space C2 7, ,(U, V'), making C»27,
an (O(p, q) x Cy) Top,-enriched category.

Proposition 3.2.10. For all p > 0 and g > 0, there exists a Cy-equivariant homeomor-
phism
O(p,q)/O(p — 1,9) = S(R"**).

Proof. Since O(p,q) acts on RP*% transitively by linear isometries, there is a restricted
transitive action of O(p,q) on S(RP*%°). Fix the vector e; = (1,0,...,0) in S(RPT).
There is a continuous Cs-equivariant map ¢ : O(p, q) — S(RPY%) given by g + ge;. The
stabiliser of e; is the subgroup of O(p, ¢) given by

1 0
{ AEO(p_LQ)}a
0 A

which is Cy-homeomorphic to O(p — 1,¢q). The quotient O(p,q)/O(p — 1,q) inherits a
Cy-action defined by o([g]) := [0(g)]. It follows by the orbit-stabiliser theorem that there
is a continuous homeomorphism O(p,q)/O(p — 1,q) = S(RP*%°). This is shown in the
following commutative diagram, where ¢ is the inclusion as the subgroup above and proj

is the projection onto the quotient.
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O(p—1,q9) ———— O(p,q) —2—— S(RP+a)

-
roj -7
o

O(p,q)/O(p — i&)

By the commutativity of the diagram, the homeomorphism is given by [g] — ge;, which

is a Cy-equivariant map, since the Cy-action on S(RPT%) fixes e;. ]

We can now define the intermediate categories.

Definition 3.2.11. Define (&, , to be the category of C; Top, enriched functors from
the (p, ¢)-th jet category C27,, to Cy Top, and Cs-equivariant natural transformations,
denoted by Cy Nat,, ,(—, —).

Define the (p, q)-th intermediate category O(p,q)CsE,, to be the category of (O(p,q) X
C5) Top,-enriched functors from the (p, ¢)-th jet category C2J,, to (O(p,q) x Cs) Top,,

and (O(p, q) x Cy)-equivariant natural transformations.

For p, ¢ = 0 this definition is exactly the category C2& in Definition 3.1.5.

Remark 3.2.12. The set of natural transformations between E, ' € (1€, , is denoted by
Nat, ,(E, F'). There is a natural topology on Nat, ,(E, F), which is the subspace topology

of a product space as follows.

Nat,q(E, F) := / Top, (E(V), F(V))

There is a Cy-action on the space of natural transformations Nat, ,(E£, F') induced by the

conjugation action on Top, (E(V), F(V)). This defines an enrichment of C»&, , in C; Top,.

With respect to this conjugation action, we topologise the set of Cs-equivariant natural

transformations between E, F' € C5&,,, denoted by Cy Nat,, ,(E, F) := Nat,, ,(E, F)°? as
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follows.

Oy Nat, (B, F) = / Cy Top, (E(V), F(V))

VeCaTp,q

C ] CGTop(E(V),F(V))

VeCaTp,q

Similar descriptions exist for the morphisms in O(p, ¢)C2&, 4.

We can describe a functor E € Cy€,, in terms of an enriched coend (and similarly for

O(p, q)C2E,4), by the Yoneda lemma (see for example [Kel05, Section 3.10]).
WeCaTp.q
[N MU ES

Alternatively, we can describe a functor £ € C2&, , in terms of natural transformations,

by the enriched Yoneda lemma.

E(W) & Naty o(CoJ (W, —), E) = / Top. (Co,q(W, V), E(V).

VeCaTp,q

Another useful result, that we use throughout the thesis, is that Nat, ,(—, F') sends ho-
motopy cofibre sequences to homotopy fibre sequences. This follows from the fact that
the functor Top,(—, A) : Cy Top, — Cy Top, sends homotopy cofibre sequences to homo-
topy fibre sequences (it is contravariant, sends colimits to limits, and Cy Top, is closed

symmetric monoidal) and using the definition of Nat, ,(—, F') as the end above.

3.3 Derivatives

Derivatives play a key role in calculus of real functions. They describe the difference
between successive polynomial approximations in the Taylor series. As the name calculus

suggests, one can define a notion of derivatives of functors in orthogonal calculus, as
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done by Weiss in [Wei95, Section 2] and Barnes and Oman in [BO13, Section 4]. In
this section, we will extend this theory to the Chy-equivariant setting. The derivatives
of these functors play a key role in the classification of (p,¢)-homogeneous functors, as
the derivative adjunctions form one half of the zig-zag of equivalences between the (p, q)-

homogeneous model structure and the category of orthogonal Cy-spectra with an action

of O(p, q), see Theorem 6.3.7.

Let i : RP4 — RY™ be the Ch-equivariant inclusion map (z,y) — (z,0,y,0), where
p <l and ¢ < m. Such a map induces a group homomorphism O(p,q) — O(l, m), which
is O(p, q)-equivariant by letting O(p, q) act on the first p and ¢ coordinates of O(l,m).
That is, both R?? and RY™ are (O(p, q) x Cy)-spaces.

This map induces a map of (O(p, q) x Cs)-equivariant spaces

(il’m)U,V . 02/7p,q(U) V) — 02/7l,m(U7 V)

(f,2) = (f. (G ®id)(x))

which in turn induces a map on the associated Thom spaces, and hence also on the
(O(p, q) » Cy) Top,-enriched categories CoJp, g — CoJim- These maps form commutative

diagrams of categories as follows.

-p+1,q

’p,q
02\7]3 q E— 02\717"1‘17‘1

p+1,q+1
p+1,q

C2t7p+1,q+1

_—
’ l-p+1,q+1
p,q+1

We can use these maps to define functors between the categories Cy€,,, and with the

addition of an orbit functor we can do the same for the categories O(p, ¢)C2&, ;.
Definition 3.3.1. Let p <[ and ¢ < m.

. . l,m . o . . .l7m
Define the restriction functor res; : Co&p — Co&, 4 as precomposition with 4"
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Define the restriction-orbit functor by

l"eSi)’ZL /O(l -—p,m— (]) : O(lam)c2€l,m — O(p, Q)ngpg
F i (Foigy)/O(—p,m—q).

Remark 3.3.2. For an O(l,m)-space X, the O(p,q) action on X/O(l — p,m — ¢q) is given
by g[z] := [gx], where g € O(p,q) and x € X. This is a well defined action, since for

heO(l—-p,m-—q)
glr] = [g7] ~ [hgx] = [ghx] = g[hx].

Note that the restriction functor is often omitted from notation.

The restriction functors also form commutative diagrams, induced by the diagram above.

p+1,q+1
TeSp11,q

025p+1,q+1 E— O2gp+1,q

p+1,g+1 p+1,q
S resp,q

re
p,atl resP T Lat1
P,q

Oggnq_;,_l e Oggpﬂ

p,q+1
IeSp,q

The restriction and restriction-orbit functors have right adjoints. Before we can define

them, we must define an adjoint to the orbit functor, see [BO13, Lemma 4.2].

Lemma 3.3.3. Let p <1 and ¢ < m. There is an adjoint pair
(=)/O(l = p,m — q) : (O(1,m) x Cy) Top, = (O(p, q) x Cs) Top, : CL;' .

The right adjoint CI," is defined as follows. An (O(p,q) x Cs)-space A can be considered
as an ((O(p, q) xO(l—p,m—q)) xCy)-space, by letting O(l—p, m—q) act trivially. Call this
space e*A. Define CI;’Z1 A to be the space of (O(p,q) x O(l — p,m — q))-equivariant maps
from O(l,m) x Cy to e* A, which has the (O(l,m) x Cy)-action induced by the conjugation

Cy-action and the action of O(l,m) on itself.
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Definition 3.3.4. Let p <[ and ¢ < m.

Define the induction functor indﬁ;;’] 1 C9&, 4 = C2&m by
ind} F - U + Naty, o(CoJym (U, —), F),

where the space of natural transformations of objects of C2€,, is equipped with the

conjugation Cy-action (see Remark 3.2.12).

Define the inflation-induction functor indi;f; CI: O(p,q)Cs&,, — O(1,m)Cs&, ,, by
indy™ CLF : U = Natog,gcse, o (Codim(U, =), CIL7 o F).

When p,q =0, CI;;ZL simply gives F' the trivial O(l, m)-action, hence we write indé’jg CIF
as indj7 o €°F. This is what we call the (I, m)-th derivative of I, denoted by

Flm) 1ndO 0 E"

Lemma 3.3.5. The induction functor ind;’;’; 1s right adjoint to the restriction functor
reslm The inflation-induction functor ind;’f; CI is right adjoint to the restriction-orbit

functor resh™ /O(1 — p,m — q).

Proof. We will prove the adjunction between the restriction and induction functors, leav-

ing the restriction-orbit inflation-induction adjunction to the reader.

Cy Nat,, 4 (reslmE F)

- / Cy Top, (resl mE(V),F(V))
VECQJP,q

= / Cs Top, ([( m) E](V),F(V))

VeCaTp,q
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WeCHT)m
= [ (@ [ B0 AGT.W-) | 1).F0)
VeCaTp,q
WeCL T m
= [ atw ([ B AL CTn(W (V)W)
VelCaTp,q

~ / / Cy Top, (E(W) A [(i57)Codim(W, =) (V), F(V))

VGCQJp,q WecQu’]l,m

N / / Cy Top. (E(W), Top, ([(15™) Cofim(W, )] (V). F(V)))

W€C2L7l7m VGCQJp,q

~ /'cwm*Emm / Top, ([(57) Codim(W, =) (V), F(V))

W602u7l,m VECQJp,q

./ Cy Top, (E(W), Natyq ((5/5)" CoTin(W, =), F))
WeCaJi,m

/ Cy Top, (E(W),ind};? F(W))
WeCaT)m

= Cy Naty,, (E,ind}7 F)

12

1%

where (zé’g)* represents precomposition with iﬁ;g‘. Here we have made use of standard
results of enriched ends and coends, including the Yoneda Lemma [BR20, Lemma 6.3.5].

[]

As a result of the adjuction above and the commutative diagrams involving the restriction

functors, there are commutative diagrams of categories

Pt 1a
indp g

0251?41 : ? C2gp+1,q

: 1 - ap+1l,g+1
indBd+ ind
P indp+1’q+1 ptl.a
P,q

Cobpgrr —— i Cobprian
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Remark 3.3.6. As in [Wei95], the induction functors give us a notion of differentiation
of functors in our input category C2& o (see Definition 3.1.5). In particular, for the Cs-
equivariant case, there are two directions in one can take a derivative; in the p direction
and in the ¢ direction. These two different directions of differentiating can be thought of
as partial derivatives, and then the commuting diagram above tells us that taking both

possible orders of mixed partial derivatives is the same as taking the total derivative.

We have already seen one relation between induction and the (p, g)-jet categories Cs.7, ,
in Proposition 3.2.6. We now recreate another key result [Wei95, Theorem 2.2] in the Cs-
equivariant setting. The following proposition defines induction iteratively as a homotopy

fibre, and acts as a tool for calculating the derivatives.

Proposition 3.3.7. For all U € CaJyo and for all F' € CyE, ,, there are homotopy fibre

sequences of Cy-spaces
rest M ind? P (U) — F(U) — QPORF(U @ R)

and

reshd*t! indﬁ:g“ F(U) = F(U) - QPO% p(I7 ¢ RY),

where Q®9VY represents the space of maps S®9V — Y, for a Cy-space Y, and is given

the conjugation Cs-action.

Proof. We prove the existence of the first fibre sequence and leave the similar second case

to the reader. From Proposition 3.2.6 there exists a homotopy cofibre sequence
CoTpq(U DR, =) A SPIE 5 O T, (U, =) = CoTpi1,4(U, —).

Pick F' € (5, , and apply the contravariant functor Nat, ,(—, F') to the cofibre sequence
above. This yields a homotopy fibre sequence (see Remark 3.2.12)
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Nat,, (Codpq(U ®R, =) A SPDR ) « Nat,, (Copq(U, =), F)
< Natpyq (02\7]7-&-141(0" _)7 F) .

Application of the enriched Yoneda Lemma and the definition of indg”;l’q gives the desired

fibre sequence, since the functor Nat, ,(—, F) preserves Csy-equivariant maps. O

3.4 The (p,q)-stable model structure

We want to compare the (p, ¢)-th intermediate category O(p, q¢)Ca&,,, with the category
of orthogonal Chy-spectra with an action of O(p,q). The (p,q)-stable model structure
constructed will be a modification of the stable model structure on orthogonal Cs-spectra,
see [MMO02, Section 3.4]. This modification will account for the fact that the structure

maps of objects in O(p, ¢)C2E,, are of the form
ox : SPOVAX(W) = X(W e V).

The structure maps oy of an object X € O(p, q)CsE,,, are induced by the identification
of SPDV as a subspace of CoJ,, 4(W, W @ V) (see the proof of Proposition 3.2.6) and the

structure maps of X being an enriched functor.

Remark 3.4.1. In the underlying calculus, there exists a description of the intermediate
category O(n)&, as a category of diagram spectra (see [MMSS01, Part 1]). An analogous
description is also true in the Cy-equivariant setting for the (p, ¢)-th intermediate category
O(p, q)Cs&,,4. Since this description will not be used in the remainder of the thesis, we
omit the details. The statement is analogous to the underlying calculus version of Barnes
and Oman [BO13, Lemma 7.3 and Proposition 7.4] and checking that the maps used are
equivariant uses the same method as Taggart in [Tag22c, Lemma 5.12 and Proposition

5.13).
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We begin by defining four functors. These functors will form adjoint pairs that when
composed give an adjunction between the categories Cy Top, and O(p,q)C2E,,. Recall
from Definition 3.2.8 that 5 : Cy — O(p,q) x Cs is defined by a — (Id,44, @).

Definition 3.4.2. Let $* be the restriction functor (O(p, q) x Cy) Top, — C5 Top,, which
sends X to the underlying space X with Cs-action given by oz = (5(0))x.

Let (5, be the functor Cy Top, — (O(p, q) x Cy) Top, defined by

X = (0O(p,q) © C2)4 Ny, X.

Let C37, (U, —) A (—) be the free functor (O(p, q) x C3) Top, — O(p, ¢)C2E,,, defined by

X = CoJpq(U, =) A X.

Let Evy be the evaluation at U € CyJp functor O(p, ¢)C2&,, — (O(p, q) x Cy) Top,
defined by
F s F(U).

Proposition 3.4.3. The restriction functor B* is right adjoint to the functor pi. The
evaluation at U functor Evy is right adjoint to the free functor CoJ, (U, —) A (=). The

right adjoints commute with colimits and hence pushouts.

Proof. The adjunction between the restriction functor 5* and the functor £ is well known

(see Proposition 2.1.5). The following argument proves the second adjoint pair,

O(p, Q)CQEPH(CQJP,(](U? _> A X7 F)
- / (O(p. ) » Cs) Top, (G, (U, W) A X, F(W))
WeC2Tp,q

= [ (Olp.a) 5 C) Top, (X, Top,(Ca (U, 1W). F(W))

WeCaTp,q
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= (O(p,q) x Cy) Top, | X, / Top,(CoTp (U, W), F(W))
WeC2Tp.q

~ (O(p’ q) X 02) Top*(X,F(U))

where X € (O(p,q) x C2) Top, and F € O(p,q)C2E,,. Here we have used a standard
smash product adjunction along with the Yoneda Lemma, and (O(p,q) x C3) acts on

Top, (CoTp (U, W), F(W)) by conjugation.

The right adjoints f* and Evy commute with colimits, since colimits in Ch-spaces are
constructed in spaces and then given a Cy-action, and colimits in O(p, ¢)C2E,, are con-

structed objectwise. O]

There is a projective model structure on the intermediate categories O(p, ¢)C2&, 4, similar
to the levelwise model structure constructed by Barnes and Oman [BO13, Lemma 7.6], in
which fibrations and weak equivalences are defined objectwise. A left Bousfield localisation
of this model structure will give the (p, g)-stable model structure. This projective model

structure is exactly the level model structure of [MMSS01, Section 6].

Definition 3.4.4. Let f : X — Y beamap in O(p, ¢)Cs&,,. Call f an objectwise fibration
or an objectwise weak equivalence if 5*(f(U)) : f*(X(U)) — B*(Y(U)) is a fibration or
weak equivalence of pointed Cs-spaces, for each U € CyJpp. Call f a cofibration if it
has the left lifting property with respect to the objectwise acyclic fibrations. Denote the

collection of objectwise weak equivalences by Wi per.

Now we define two sets of maps in the (p, ¢)-th intermediate category O(p, ¢)C2&, 4.

Definition 3.4.5. Define sets [jce; and Jiepe in O(p, q)C2E, 4 by

]level - {C2x7p,q(U7 _) A 6'@) U e 02\7070,2. S ]Cg}
Jievel = {Co2Tp (U, =) N Bi(7) : U € CoJo0,7 € Jo, }
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where I, Jo, are the generating cofibrations and acyclic cofibrations of the fine model

structure on Cy Top, (see Proposition 2.1.7).
For a class of maps K in a category C, let K-inj denote the class of maps that have the
right lifting property with respect to every map in K (see [Hov99, Definition 2.1.7]).

Proposition 3.4.6. [;.,.-inj is the class of objectwise acyclic fibrations and Jieye-ing is

the class of objectwise fibrations.

Proof. Let U € CyJyp, @ € I, and consider a diagram

CoTpg(U, =) A B(Co/H A ST ———— X
C2~7p,q(U7_)/\5!(i) ‘
Y

O2x7p,q(U7 _) A B!<02/H+ N Di) .

Using the adjunctions of Proposition 3.4.3, the square above has a lift if and only if the
following square lifts in (O(p, q) x Cy) Top,.

Bi(Cof Hy A SYTY) ———— X(U)
Bi (1)
B(Co/Hy NDY) ———— Y(U)

Again, by adjunctions, the square above has a lift if and only if the following square lifts

in C5 Top,.
Co/H NS ——— B5(X(U))

Cy/H{ AD} ——s BX(Y(U))
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By the fine model structure on Cy Top, (Proposition 2.1.7), the above square lifts if and
only if the map f*(X(U)) — B*(Y(U)) is an acyclic fibration of Cy-spaces. Thus, the first

diagram lifts if and only if the map X — Y is an objectwise acyclic fibration.
A similar proof gives the Jj.,. case. O

Lemma 3.4.7. There is a cellular, proper, Cy-topological model structure on the (p, q)-th
intermediate category O(p, q)C2E, , formed by the objectwise weak equivalences and object-
wise fibrations. Denote this model category by O(p, q)Cgé’Aq and call it the projective model
structure on O(p, q)C2E, .. The generating cofibrations and generating acyclic cofibrations

are given by Lieper and Jiewer TESpEctively.

Proof. We will use the recognition theorem of Hovey [Hov99, Theorem 2.1.19] to prove

the existence of the model structure.

1. (2 out of 3) Objectwise weak equivalences clearly have the 2 out of 3 property, since

they are defined objectwise.

2. (Smallness) Let B be small in Cy Top, and X; in [je.e-cell (respectively Jiepe-cell),
where [jope-cell (respectively Jie,e-cell) denotes the collection of transfinite compositions

of pushouts of elements of ., (respectively Jieper). Let ¢ be a map

¢ : colim; O(p, ¢)Co&, 4(Ca T, (U, —) NO(p, q)+ N B, X;)
— O(p, q)C2&, 4 (Co T, (U, =) AN O(p, q)+ N B, colim; X;).

We let S and R denote the domain and codomain of ¢ respectively to save space. Using

the adjunctions of Proposition 3.4.3 gives a commutative diagram

S ¢ s R

|

colim; Cy Top, (B, f*(X;(U))) ———— C5 Top, (B, 5*(colim; X;(U)))

-

1%



Chapter 3 Equivariant functor categories 68

where the diagonal map is an isomorphism because B is small in C; Top,, and the bottom
right vertical map is an isomorphism because the right adjoints commute with colimits

by Proposition 3.4.3. Hence, the map ¢ is an isomorphism as required.
3. (Lieverrinj = Jjeper-inj N Wieyer) This is clear by Proposition 3.4.6.

4. (Jieper-cell C Leper-cof N Wiewer) Since Jo, € Ie,-cof, Jieper C Lieper-cof.  Therefore

Jlevel'ceu g Ilevel’COf-

It remains to show that Jy.,e-cell € Wigyer. Since Jieper € Jiever-cof, each map f € Jieper 1S

such that §*f(U) is an acyclic cofibration, for each U € CyJo. Now consider a pushout

¢ ——D

square
—_

where f € Jiepe. Since the right adjoints f* and Evy commute with pushouts (see
Proposition 3.4.3), f*(k(U)) is the pushout of g*(f(U)), for each U € CaoJpp. Since
B*(f(U)) is an acyclic cofibration and C5 Top, is a model category, the pushout *(k(U))
is also an acyclic cofibration (see [Hov99, Corollary 1.1.11]). In particular, this means

that the map k is an objectwise weak equivalence.
Now consider a diagram

ko

~

X() > X1 > X2

where each k; is a pushout of a map in Jj..¢. Since the right adjoints §* and Evy commute
with colimits (see Proposition 3.4.3) and the maps f*(k;(U)) are acyclic cofibrations by
above, the map *(a(U)) is a weak equivalence in Cy Top,, where o : Xy — colim; X;.

Therefore, « is an objectwise weak equivalence.
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(Properness) The functors 8* and Evy preserve weak equivalences, fibrations and cofibra-
tions. Then, since 5* and Evy commute with pushouts and pullbacks, properness follows

from taking adjoints of the appropriate diagrams. O]
Remark 3.4.8. A similar method using only the adjunction

B

C; Top, | (O(p, q) x Cy) Top,
/B*

shows that there exists a cellular, proper, Cy-topological model structure on the category
(O(p,q) x Cy) Top,, where weak equivalences and fibrations are defined by restricting to
C5 Top, along B*. The generating (acyclic) cofibrations are of the form (i) where i is a
generation (acyclic) cofibration of Cy Top,. This is exactly the model structure which is
coarse with respect to O(p, ¢) and fine with respect to Cy (see Remark 3.2.9). In our chosen
notation for these model structures, this could be denoted by C3 Top,[O(p, ¢)], however
we chose to denote it by (O(p, q) x Cy) Top, to remind ourselves of the underlying group.
As such, the projective model structure could alternatively be constructed by evaluating

at U and using this model structure on (O(p, q) x Csy)-spaces.

We will use this projective model structure to construct the (p, ¢)-stable model structure
using a left Bousfield localisation. In the same was as for Cy-spectra [MMO02, Chapter 3],
we begin by first defining homotopy groups on objects of O(p, ¢)C2E,,. These homotopy

groups detect the weak equivalences of the (p, g)-stable model structure.

Definition 3.4.9. Define the (p, ¢)-homotopy groups of X € O(p, q)C2&,,, by

colimy 7z (Q@9V X (V)" if k>0

(P, )i X = H
* colitmy g 7o (QMW—R““UX(V)) ik <0

where V' runs over the indexing Cs-representations in CoL, H < (5 is a closed subgroup,
and V —RI*l denotes the orthogonal complement of R*/ in V. Define amap f: X — Y in
O(p, q)C2&, 4 to be a (p, q)m.-equivalence if the map (p,¢)7 f : (p, Q)7 X — (p,q)7}Y

is an isomorphism for all £ and all closed subgroups H < Cj.
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One can easily verify that if Cy was replaced by the trivial group, the (p,¢)-homotopy
groups for p+ ¢ = n are exactly the n-homotopy groups defined in [BO13, Definition 7.7].

The (p, q)m.-equivalences will be the weak equivalences in our stable model structure.
Lemma 3.4.10. An objectwise weak equivalence in O(p, q)Co&, 4 is a (p, q)m-equivalence.
Proof. One can show that if 5*(f(V)) : 5*(X(V)) — B*(Y(V)) is a weak equivalence of

Cy-spaces, then the induced map Top, (SY, 8*(X(V))) — Top,(SY,B*(Y(V))) is a weak
equivalence of Cy-spaces (see [MMO02, Lemma 3.3]). The lemma then follows. O

Now we want to identify the fibrant objects of the (p, ¢)-stable model structure. These are
a generalisation of {)-spectra, which are the fibrant objects of the stable model structure
on orthogonal spectra (see Barnes and Roitzheim [BR20, Corollary 5.2.17]). They are
defined analogously to the nQ-spectra of orthogonal calculus [BO13, Definition 7.9].

Definition 3.4.11. An object X of O(p, ¢)C:2&, 4 has structure maps
ox : SPOVAX(W) = X(Wa V)

induced by the identification of S®?V as a subspace of CoJ,, ,(W, W @ V) (see the proof
of Proposition 3.2.6) and the structure maps of X being an enriched functor. The object

X is called a (p, q)Q2-spectrum if its adjoint structure maps
Gx: X(W) = QPIVX(W a V)

are weak equivalences of Cy-spaces, for all V,W € CyJ) 0.

Lemma 3.4.12. X is a (p, q)2-spectrum if and only if for all W € CaJoo the maps

X(W) = QPIORX (W @ R)
X(W) — QPO¥ X (W & RY)

are weak equivalences of Cy-spaces.
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Proof. 1If X is a (p, ¢)Q2-spectrum, then clearly both maps are weak equivalences by setting
V =R and V = R? in Definition 3.4.11.

If X is such that the two maps are weak equivalences, then X being a (p, ¢)Q2-spectrum
follows by repeated application of the weak equivalences, as demonstrated in the diagram

below.

X (W) = y QPIRX (W O R) —=— ... —=— QPIR" X (W @ R™)

~ ~

|
1

+ ~

QPDR™ X (P @ TRMTY oo y QEOR™™ X (T @ R™")

]

The following Lemma is a partial converse to Lemma 3.4.10.

Lemma 3.4.13. A (p, q)m.-equivalence between (p, q)Q2-spectra is an objectwise weak equiv-

alence.

Proof. The proof is identical to that of Mandell and May [MMO02, Section 3.9], where in
the inductive steps we only need to consider the cases where H € {e, Cs}, since the only

closed subgroups of Cy are e and C} itself. n

We now want to identify the class of maps that will be used in the left Bousfield localisa-
tion. Let
Nt Codpg(W eV, =) ASPOW — Co 7, (V, —)

be the restricted composition map, where S®PW has been Cs-equivariantly identified
with the closure of the subspace of pairs (i,2) € Cy7,,(V,W & V) with ¢ the standard

inclusion (see the proof of Proposition 3.2.6).



Chapter 3 Equivariant functor categories 72

The maps A%, are (p, ¢)m.-equivalences, by a similar argument as in the non-equivariant

case [BO13, Lemma 7.12].

Lemma 3.4.14. The maps Ay are (p, q)T.-equivalences.

Proof. As in the non-equivariant case, by fixing a linear isometry W @& V' — U, the map

Ay can be written
)\1‘?/7:%4/((]) . O(U)+ Ao(vafw) S(p,q)(U—V) — O(U)+ /\0(va) S(p’Q)(U_V).

This map is a (p, ¢)m.-equivalence if and only if its suspension by (p, ¢)V is (see for example

[MMO02, Theorem II1.3.7]). Therefore, we only need to consider the map
SEOVARL(U) : O(U)JO(U =V = W), ASPIY — O(U)/OU — V)4 A SPIY,
This map is v-connected, for the dimension function v defined by

vie)=(p+q+1)dimU —dimV — dim W
v(Cy) = (p+ 1) dim U + (¢ + 1) dim(U?)* — dim(W @ V)2 — dim(W & V)“2)*,

where (U2)+ denotes the orthogonal complement of U®2. That is, (E(p’q)v)\%}/v(U )€ is

v(e)-connected, and (SPDVAYY (U)) is v(Cy)-connected.

When we take (p, ¢)mf -homotopy groups, the dimension of U (and in turn the dimensions
of U2 and (U®?)1) increases in the colimit, and we get an isomorphism of homotopy

groups. ]

Now we will follow the same procedure as Mandell and May [MMO02, Section 3.4] to turn
these maps into cofibrations, in order to make generating sets for the (p, ¢)-stable model

structure.
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Let MV, be the mapping cylinder of Ay, Then the map A7, can be factored as a

cofibration k%,%v and a deformation retract 7’1"},%‘, as follows.
W kl"/’}/‘/ D,q TI‘)/’,?/V
C2~7p,q(W eV, _> A SP1 ? M/\X},W ’ C2~7p,q(v7 _)

Definition 3.4.15. Define Jyupe = Jiever U {ka%f{,V 21 € Ie, and V.W € CoJo o}, where
fOg denotes the pushout product of two maps f : A — B and g : X — Y, which is
defined by

fOg: ANY [ BAX — BAY.
ANX

The next lemma classifies the fibrations of the (p, ¢)-stable model structure. The proof is

identical to that of Mandell and May [MMO02, Proposition 4.8], so we can omit it here.
Lemma 3.4.16. A map f : E — B in O(p, q)C2&,4 has the right lifting property with
respect to Jsape if and only if f is an objectwise fibration and the diagram
E(V) — 22 QpaVE(\ & W)
f() QP OV f(Vew)

B(V) &—B> Q(p,q)WB(V D W)

1s a homotopy pullback for all V,W .

Proposition 3.4.17. There is a cofibrantly generated, proper, cellular Cs-topological
model structure on the (p, q)-th intermediate category O(p, q)C2E,, called the (p, q)-stable
model structure. The cofibrations are the same as for the projective model structure, the
weak equivalences are the (p,q)m.-equivalences, and the fibrant objects are the (p,q)$2-
spectra. The generating cofibrations and generating acyclic cofibrations are the sets Ijepe

and Jstanie Tespectively. Denote this model category by O(p, q)C2E, -

Proof. Letting A be the class of maps Ayy;. By a theorem of Hirschhorn [Hir03, Theorem
4.1.1], the fibrant objects of the left Bousfield localisation L,O(p, q)025]l),q are the \-local
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objects. It can easily be seen that a A-local object is the same as a (p, ¢){2-spectrum. It
follows that the (p, ¢)-stable model structure on O(p, ¢)CsE,, is exactly the left Bousfield
localisation of the projective model structure with respect to the class of maps A, since
the fibrant objects and cofibrations are the same. O

We get the following corollary as an application of [Hir03, Proposition 3.3.4].

Corollary 3.4.18. There is a Quillen adjunction

Id : O(p, q)C2E, , = O(p,q)CoE;, - 1d.



Chapter 4

Equivariant polynomial functors

In differential calculus, polynomial functions and derivatives are used to approximate real
functions via the Taylor series. In orthogonal calculus, Weiss defines a class of input
functors with properties analogous to those of polynomial functions, called polynomial
functors, see [Wei95, Section 5|. These polynomial functors can be constructed into a tower
that approximates a given functor, much like the Taylor series does for functions. It is the
fibres of the maps between these polynomial approximation functors that are classified
as spectra by the classification theorem, see [Wei95, Theorem 9.1} and [BO13, Theorem
10.3].

One can define a class of functors with polynomial properties in the Cs-equivariant input
category Co&y . The addition of the Cs-action makes it necessary to introduce an indexing
shift from the underlying calculus. In particular, 7, in the underlying calculus is defined
using the poset {0 # U C R"™} and 7,, in the Cy-calculus is defined using the poset
{0 # U C RP?}. The author introduces a new class of ‘strongly’ polynomial functors to

account for this indexing shift, see Definition 4.1.7.

)
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4.1 Polynomial functors

In this section, we will adapt the definition of polynomial functors from the underlying
calculus to fit the new Chy-equivariant categories defined in Chapter 3. These functors
should be input functors (see Definition 3.1.5), which have properties that mimic those of

polynomial functions.

We begin by defining a functor 7, , on the input category. The functor 7,, is analogous
to the functor 7, from the underlying calculus, but requires a slightly different indexing
due to the group action. The (p, ¢)-th complement bundle Cyv, ,(U, V') has an associated
sphere bundle SCyv, ,(U, V). Considering SCyyp4(—, —) : CoTyo x CaJoo — Cy Top, as

a Cy Top,-enriched functor, we can define the functor 7, , : C2&y o — Ca&p o as follows.

Definition 4.1.1. Let E' € C3&y . Define the functor 7, .5 € Cy&y o by

T (V) = Nato o (SCovpq(V, =)+, E).

The composition of the sphere bundle inclusion map SCyv, ,(V, W) — Coypo(V, W),
with the projection map Covpo(V, W)y — CoJoo(V, W), defined by (f,z) — f, results
in a map SCy7y,,(V, W)y = CoJoo(V,W),. This map induces a natural transformation
SCypa(V. =) — CoJoo(V,—)+. Applying the contravariant functor Natgo(—, E), for

some E € (&), gives a map
Nato,o(Codoo(V, =)+, E) = Natoo(SCopq(V, =), E).

Identifying the left side with E(V') using the Yoneda Lemma, and the right side with
TpqE (V') by definition, yields a map p,,E(V) : E(V) — 7,,£(V). That is, there is a

Cs-equivariant natural transformation

Ppq i Id = Tp 4.
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There is an alternative description of 7, , as a homotopy limit, that can be derived as a
consequence of the following Proposition. This a generalisation of another key result of
orthogonal calculus by Weiss [Wei95, Proposition 4.2]. The proposition states that the
sphere bundle of the vector bundle Cyv,,(U, V) can be written as a homotopy colimit,

and in particular we can do this in a Cs-equivariant way.

Recall that CyJp ¢ is the category of finite dimensional subrepresentations of ®©R[Cs] with
inner product and with morphism spaces CoJoo(U, V) = L(U, V)4 (Definition 3.1.5).

Definition 4.1.2. Let C2Jyo denote the Top,-enriched category of finite dimensional

subspaces of ®°R[Cy] with inner product and with morphism spaces

CQ%,O(Ua V) = E(Ua V)-‘r

There is a Top,-enriched inclusion functor

CaoJoo — CaToo,

since CaJp,0 forms a subcategory of CaJp 0.

Let VW, X € CyJv0. Let C be the category of non-zero subspaces of X ordered by

reverse inclusion. Consider the functor Z from C to Top, defined by
Z:U— CoJoo(Us V, V).

By [Wei95, Section 4], the homotopy colimit of Z is the geometric realisation of the
simplicial space

K — [ c@Goev.w),

G:[k]—C

where GG runs over the order-preserving injections from the poset [k] = {0,1,...,k} to C.
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The geometric realisation is, by definition, a quotient of

IT II o ev,w)xak

k>0 G:[k]—C

Therefore, there is a Cs-action on the homotopy colimit of Z given by
o(G,l,s) = (6G,0al,s),

where G : [k] — C, 1 € L(G(0)®V,W) and s € A*. Details of this action are given in the
following proof. Details of this homotopy colimit construction are discussed for the dual

homotopy limit in Lemma 4.2.4

Proposition 4.1.3. For all V,W, X € CyJ0, there is a Cy-homeomorphism
SCyyx(V, W), = }%&Cééi)r(nCQJO,O(U eV,W),

where U is a non-zero subspace of X.

Remark 4.1.4. Since U is not necessarily closed under the induced Cs-action from X, the
notation CyJoo(U @&V, W) would not make sense, however this morphism spaces is exactly

the space CyJoo(U @ V, W) by definition.
Proof. To prove this result, we will construct a homeomorphism

¢ : CoTIx (V,IW)O\CaTo0(V, W) — (0, 00) x hocglimm(U eV, W)
and then the Cy-equivariant identification (see [Wei95, Proposition 4.2])

ngx(‘/, W)\CQJO’O(V, W) — (0, OO) X SCQ’}/XO/, W)+
(f,z) = (=l (f, 2/[l]]))

yields the desired homeomorphism.
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Let (f,z) € CoTx(V,W)\CoTJoo(V,W). That is, f € L(V,W) and z € X @ f(V)* such
that z # 0. Since X and f(V)* are finite dimensional inner product spaces, the duality

isomorphism tells us that

X f(VP=2X e f(V)"
= Hom(X,R) ® f(V)*
=~ Hom(X, f(V)*).

Hence, we can think of z as a linear map from X to f(V)*. In this way, = has an adjoint

" . f(V)* — X, and their composition z*z : X — X is self adjoint, since

As a result of [FIS89, Theorem 6.25], we can write X as a direct sum of the eigenspaces
of z*x. Thus

X =ker(z*z) & E(X\) @ -+ & E(\g),

where 0 < \g < - -+ < A are the non-zero eigenvalues of x*z and E();) is the eigenspace

corresponding to the eigenvalue \;. Note that all of the \; are real.
Given the data of (f,x) € CoJx(V, W)\CaTJoo(V, W) we can then define the following.

1. A functor G : [k] — C defined by
r= E(X) @ @ E(Ap—r),

where C is the category of non-zero subspaces of X with reverse inclusion ordering, and

[k] is the category with objects {0, 1,...,k} with the standard ordering.
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2. A linear isometry [ € L(G(0) @ V, W) defined by

, fonV

)\i_%x on E(\;)

3. s € A¥ defined in barycentric coordinates by

A0, AL = Aoy Ak — Ael).

4.t:)\k>0.

Now, by Bousfield and Kan [BK72, Section VIII.2.6], we know that the homotopy colimit
hocglim02j070(U ® V, W) is a quotient of

IT I z@coev,w)xak
k>0 G:[k]—C

We can define the desired homeomorphism as follows.

¢ CoTIx (V,IW)O\CaTo0(V, W) — (0,00) x hocglimC'gjgvo(U eV, W)

(f,x)— (t,G,l,s)

Note that this is a well defined homeomorphism, since it was in the non-equivariant case,
as demonstrated by Weiss in [Wei95, Theorem 4.2]. What remains is to show that this

homeomorphism is Cy-equivariant.

Let (f,x) € CoTx(V,W)\CoToo(V,W). We know that o(f,z) = (o * f,ox). Via the
duality isomorphism, we see that the vector oz is the map o - x := ogxo. In the same way
as for the map x, o - = has an adjoint, which is given by (¢ - x)* = ox*o. Hence, in the

same way as for z*z, the composition (o - z)*(o - z) is self-adjoint, and it is defined by
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ox*xo. Now, consider the following calculations.

These arguments show that the eigenvalues of z*x and (o -x)*(o - x) are the same, and the
eigenvectors of (o -x)*(o - x) associated to the eigenvalue A are of the form ov, where v is
an eigenvector of x*z corresponding to the eigenvalue A. Denote by o E();) the eigenspace

of eigenvectors of (o - z)*(o - x) associated to the eigenvalue A;.
The image of (o fo, ox) under the homeomorphism ¢ is (¢,0G, oq, p), where

1. oG : [k] — C is the functor

T O'E()\o) ©---D O'E()\k,r).

2. ol € L(G(0) & V, W) is the linear isometry below.

oxfonV

1

A\ 2(o-x) on cE(N\)

(2

ol =
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3. s € A¥ defined in barycentric coordinates by

A o A= Aoy Ak — Aeca).

4. t =X, > 0.

The Cy-action on (0, 00) X hoc((J)lingj(),o(U @V, W) is given by
(t,G,l,s) — (t,0G, ol s),

hence we conclude that o¢(f,z) = ¢(o * f,ox). That is, the homeomorphism ¢ is Cy-

equivariant. O

Remark 4.1.5. Notice that the splitting of X into eigenspaces is not a Cs-equivariant
splitting. That is, the eigenspaces E(J\;) are not necessarily closed under the Cy-action
inherited from X. This forces the homotopy colimit to be taken over the poset of non-zero
subspaces of R”Y rather than non-zero subrepresentations. Since the proof doesn’t rely
on any specific properties of Cs, it should also hold if C5 were replaced by an arbitrary
finite group G' (with suitable replacements for the categories involved). In particular, this
implies that for a general G-equivariant calculus there should be a natural description of
polynomial functors analogous to the Cs-equivariant polynomial functors discussed in the

remainder of this section.

Using Proposition 4.1.3, we get the following alternative description of 7,,. Recall from
Definition 4.1.2 that m is the Top,-enriched category whose objects are finite dimen-
sional subspaces of @i°R[C;] with inner product. Note that the categories CaJp and
C5 Top, are also Top,-enriched, and that Cs Top, is powered over Top,. We use the nota-
tion E to represent the right Kan extension of an input functor E € C»& along the in-
clusion Ca 750 — C2—~70,0- In particular, £ is the Top,-enriched functor C’g—j(w — C5 Top,
defined by

B(X) = / Top, (CoJoo(X, W), E(W)) |
WeC290,0
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with the Cs-action induced by the following Cs-action on Top, (02‘7070(X W) E (W))

ox f(x) :=o(f(x))

for all f € Top, (02\7070()(, W),E(W)) and z € CaJoo(X,W). For details of this con-
struction see [Kel05, Chapter 4].

The homotopy limit Oilglciﬂrg qE(U @ V) is the homotopy limit of the functor

Z :{0#U C RP?} — Top,
U EBUGV).

This homotopy limit has a Csy-action, since it can be expressed as the totalization of a
cosimplicial space, which has a Cs-action. This is discussed in more detail in Lemma

4.2.4.

Proposition 4.1.6. Let E' € Cy&y . There is a Cy-equivariant homeomorphism

T E(V) = OQSIQIJ{Q&E(U SV).

Proof. Using Proposition 4.1.3, we get that
Tp.a (V') = Nato o(SCo7pqe(V, =)+, E)
= Natg g (hocolimCQ%7O(U ev,-), E)
0£UCRP-4

— / Top, (hocolimCzj()’o(U eV, W), E(W))

0£UCRP4
WeCaJ0,0
= ol [ Top. (CadhulU @ V.IW), EOD))
WeCaJo,0

= holim E(U® V)

0AUCRP:4
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The homeomorphism in line 4 above is the comparison, made by Weiss, between the
homotopy colimit and homotopy limit constructions (see [Wei95, Proposition 5.2]). The

comparison used in the underlying calculus is naturally Cs-equivariant. [

Now we can define what it means for a functor to be (strongly) polynomial. This definition

is a Cy-equivariant version of [Wei95, Definition 5.1].

Definition 4.1.7. A functor E € C2& is called strongly (p, q)-polynomial if and only if
the map
Ppgll T B — 1,

is an objectwise weak equivalence.

A functor E € Cy& is called (p, q)-polynomial if and only if E is both strongly (p+1, ¢q)-
polynomial and strongly (p, ¢ + 1)-polynomial.

Remark 4.1.8. The term ‘strongly’ is needed in order to keep notation as consistent as
possible. In particular, we do this so that (p, ¢)-homogeneous functors are indeed (p, q)-

polynomial (Section 5.1).

Functors that are strongly (p, ¢)-polynomial satisfy properties that one might expect based
on the properties of polynomial functions. For example, a strongly (p,q)-polynomial
functor is also strongly (p+ 1, ¢) and strongly (p, ¢+ 1)-polynomial, see Proposition 4.3.6.
In particular, this means that a strongly (p, ¢)-polynomial functor is (p, ¢)-polynomial. A

number of other properties of polynomial functors are discussed in this section.

The fibre of the map p, ,E determines how far a functor £ is from being strongly (p, q)-
polynomial. Lemma 4.1.11 is a Cy-equivariant generalisation of [Wei95, Proposition 5.3],
and it describes how this fibre can be calculated. In particular, this fibre is a derivative of
the functor in question. To prove this, we first need the following Cs-equivariant cofibre

sequermnce.

Proposition 4.1.9. For all V,W € CyJy there is a homotopy cofibre sequence in Cs Top,

SCQ’}/IJ,q(‘/, W)+ — 02‘7070(‘/, W) — 02%7q(v, W)
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Proof. The proof follows that of the non-equivariant setting, see [BO13, Proposition 5.4].
In particular, we construct the relevant cofibre using a pushout diagram and define a

specific homeomorphism from this pushout to C27,,(V, W).

The relevant cofibre is the pushout P of the diagram

SCopq(V, W)+ » CoJoo(V,W)
P

where [0, 0] is the one point compactification of [0,00) with base point oo, the top

SCyp (V. W) A [0, 0] >

horizontal map is the projection (f,x) — f, and the left vertical map is y — (y,0).

Elements of the pushout are points (f, x,t), where (f,z) € SCyv,,(V,W) and ¢ € [0, 00},

with the following identifications.

(f7x7 OO) = (f/7xl7oo)
(f?‘%.?()) = (f/7',’C/7O)

The homeomorphism ¢ from P to C37, ,(V, W) is then defined by

(f,x,00) — basepoint

(f,z,t) — (f,xt).

From the non-equivariant case, it is clear that this map is a well defined homeomorphism

(see [BO13, Proposition 5.4]). It remains to show that it is a Cy-equivariant map.

Yoao(f,x,t)=1(ox f,on,t)= (0% [ (ox)t)
co(f,x,t) =0o(f,xt) = (o * f,(ox)t) O
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Using this proposition, we can prove that the functors SCyy,,(V, =)+ and CoJ,,(V, —)

are cofibrant in the projective model structure.

Lemma 4.1.10. The functors SCa,4(V, =)+ and CoJ,,(V,—) are cofibrant objects in
Ca2&o,0-

Proof. The representable functor CaJy0(V, —) is cofibrant by construction.

The homotopy limit used to construct 7, , (see Lemma 4.2.4) preserves objectwise acyclic
fibrations, since (indexed) products, totalization and the functor Top, (A, —), for a C5-CW
complex A, all preserve acyclic fibrations in Cy Top,. It follows that SCoyy,,(V, —)4 is
cofibrant, by applying 7, , to the diagram

e

SCQVp,q(Va _>+ I

o=

where F — F is an objectwise acyclic fibration.

Since, by Proposition 4.1.9, C5.7,,(V, —) is the cofibre of a map of cofibrant objects, it is

also cofibrant. O]

The following result describes the relation between derivatives and polynomial functors.
From this fibration sequence, one can see that if a functor F is strongly (p, ¢)-polynomial,
then indgjg E(V) is contractible. This is analogous to an n-polynomial function having

zero (n + 1)* derivative.

Lemma 4.1.11. For all E € Cy&, and for all V € CyJo there is a homotopy fibre
sequence in Cs Top,

ind?4 E(V) = E(V) = 1,4 E(V).

Proof. By the previous proposition, there is a Cs-equivariant homotopy cofibre sequence
in 025070
SCoYpg(V, =) = CoJoo(V, =) = CoTpe(V, —).
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Pick E € Cy&p and apply the contravariant functor Nat, ,(—, £) to the cofibre sequence
above. This yields a homotopy fibre sequence (see Remark 3.2.12)

Nat070 (SCQ’}/]M](‘/, _>Jr, E) — Nato?g (ngo’o(v, —), E) — Nato’o (Csz’q(v, —), E) .
Application of the Yoneda Lemma and the definitions of indgjg and 7, , I gives the desired

fibre sequence. O

Corollary 4.1.12. If E € Cy& is strongly (p, q)-polynomial, then indgg E and indgge* E

are objectwise contractible.

4.2 Polynomial approximation

The partial sums of the Taylor series for a real function are known as the Taylor polyno-
mials. These polynomial functions approximate the given function, and in general become
better approximations as the degree of polynomial increases. In orthogonal calculus, Weiss
defines a polynomial approximation functor 7,,, see [Wei95, Theorem 6.3]. For an input
functor £ € Cy&y, each T, E is indeed an n-polynomial functor. In the Cs-equivariant
setting, we define an analogous functor 7, ,, and the (p,q)-polynomial approximation

functor is given by the composition T}, 41,47} g+1-

Definition 4.2.1. Let E € (&, define the functor T}, ; by
T)oE = hocolim (E — 7, ,E — Tin — ...,
where the homotopy colimit is taken over the maps

k .k k+1
ppyq(Tp’qE) T B T B
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There is a natural transformation n : £ — T), ,F, which is inclusion as the first term in

the colimit. Alternatively, this map can be thought of as a map of homotopy colimits

hocolim(E — EF — E — ...)

|n

hocolim (E — 7,,F — 72 E — ...)

where each £ — T[’in is made from the maps pp,q(TI’in).

Example 4.2.2. Let E € (58 o. Then T\ oE is E(— & R*®) and Ty, F is E(— @& R>).

This can be seen by the following calculations.
T1,0E(V) = hocolim; 7{ ,E(V) = hocolim; E(V & R?) := E(V & R™)

T E(V) = hocolim; 73, E(V) = hocolim; E(V & R?) := E(V @& R>?),

where R*® := hocolim; R? and R> := hocolim; R?°. Recall that, as a consequence of
Proposition 4.1.3, 7, ,E(V) = Ogglci]gl E(U®V), where E is the right Kan extension of £
along C2Jo0 < CaJoo- However,_since V @RI and V @ R are elements of CyJp 0, the

right Kan extension F is exactly the functor £ on these values.

The strongly (0, 0)-polynomial approximation is the constant functor Ty oE (V') = *, since

To0F is the homotopy limit over the empty set.

Remark 4.2.3. In orthogonal calculus, the 0-polynomial approximation 7Ty F of an input
functor F' € & is the constant functor taking value F(R*). In particular, ToF is a
constant functor, but 7' o£ and T E are not in general. See Example 4.2.11 for the

correct Cy-analogue of Ty F'.

The functor T, ,F is strongly (p, ¢)-polynomial for all £ € C2&yo. To prove this, we need
to generalise the erratum to orthogonal calculus [Wei98| to the Chy-equivariant setting.
This is done over the following collection of lemmas. A formula similar to that used for

the connectivity of (7,,5(1W))2 in Part 2 of the following lemma is used by Dotto in
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[Dot16b, Corollary A.2]. Recall that for a functor G € Cy&, the functor 7, ,G € C2&y
is given by

74G(W) = holim G(U & W).

By abuse of notation, for a functor G € Funrep,_(C2Jo,0, C2 Top,,), we define the functor
Tp’qG < 025070 by
TpoG(W) := holim G(U & W).

0£U CRP-a

Lemma 4.2.4. Let s : G — F be a morphism in Funry, (CoJo 0, Co Top,) and p,q > 0.
If there exists integers b, ¢ such that s(W) is v-connected for all W € CyJo, where

v(ie) = (p+q)dimW —b
v(Cy) = min{(p + ¢) dim W — b, pdim W 4 ¢ dim(W2)*+ — ¢},

then 1, ,s(W) is (v + 1)-connected.

Proof. Let D be the topological poset of non-zero linear subspaces of RP*%. Similar to
[Wei98, Lemma e.3], the homotopy limit in 7,,5(1/) is the totalization of a cosimplicial
object as follows. For Z : D — Top,, the homotopy limit of Z is the totalization of the
cosimplicial space

k= I 2(LK))

L:[k]—»D
taken over all monotone injections [k] — D. In particular, we are interested in the cases

ZU)=GUa®W)and Z(U) :=FUa®W)

Note that D is a category internal to Cs-spaces. The space of objects is given by a disjoint

union of Cy-Grassmann manifolds

[T 2@ r*)/00)

0<i<p+q
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and the space of morphisms is the space of flags of subspaces of RPt% of length two

[T LE®.R)/0G i) x 0(),

0<i<j<p+q
where Cy acts by conjugation.

To capture this structure, we can replace the cosimplicial space above by another. Let &

be the fibre bundle over D,

[T Z®) xom ® R T LR, RP*)/0(i) = ob(D),

0<i<p+q 0<i<p+q

such that the fibre of U € D is Z(U). Let e : C — D be defined by L — L(k), where
C is the Cy-space of monotone injections [k] — D. Then we can replace the previous
cosimplicial space by

[k] = T'(ex8),
where e;¢ is the pullback bundle over C and I' denotes taking the section space.

The space C is a disjoint union of Cy-manifolds C()), taken over monotone injections

At [k] = [p+ ¢] that avoid 0 € [p+ ¢|. These manifolds are defined by
C(\) =A{L: k] = D:dim(L(7)) = A(4), Vi}.

That is, C'(\) is the space of all flags of length & and weight A\. Writing this as a quotient

of orthogonal groups (where \; = A(7))

C(\) = 11 LR RPFL) /O(A — Ap_1) X O(Nj_1 — Mp_g) X ... X O(Ng),

0<Xo<...< A, <p+q

one can calculate the dimension of C'()\).
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dm(CO)) = (0 + @) — ARDAGK) + S G+ 1) — A@DAG)
:=@+QMMQ+§iMDMP+D—§:A@2

< (p+QME) -k

The final inequality results from expanding the two sums and noting that —A\(0)? < —1
and A\(i — D)A(i) — A\(1)? < —1.

Using the discussion of the homotopy limit as the totalization above, we see that the

connectivity of (7,,5(W))° is greater than or equal to the minimum of
conn(s(L(k) & W)) — dim((C(\)) — k

taken over triples (L, \, k) with L € C(\) and A : [k] — [p+ ¢]. That is, the connectivity
of the map s at the level £ minus the dimension of the space we are mapping from when
considering the totalization as an enriched end. Substituting in the hypothesis on the
connectivity of s(L(k) @ W) and the bound on the dimension of C'(\) yields that the
connectivity of (7,,5(W))¢ is at least v(e) + 1.

Note that for G-spaces A, B
conn(Top, (A, B)Y) > Ir}lig{conn BY — dim A"}

taken over closed subgroups H of G. Using this, along with the fact that fixed points
commute with totalization, we see that the connectivity of (7,,s(W))%? is greater than
or equal to the minimum of

min {conn(s(L(k) ® W)*) — dim((C(\)7) — k}

H<C9
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taken over triples (L, A\, k) with L € C(\) and A : [k] — [p+¢|. A similar formula is used
by Dotto in [Dot16b, Corollary A.2].

One can determine C'(\)“2 by applying the splitting theorem, Theorem 3.2.3, to the
definition of C'(A). Then a calculation similar to that above for dim(C'()\)) shows that

dim(C(A)) < pA(k) + a(A(k)*)" — &,

where \(k)? = dim(L(k)“?) and (A\(k)2)* = dim((L(k)“?)*). The result then follows
by substituting in the hypothesis on the connectivity of s(L(k) & W) as we did for the
first result above. []

The following corollary can be proved using the same method as Lemma 4.2.4.

Corollary 4.2.5. Let s : G — F be a morphism in Funre, (CoJo,0, C2 Top,) and p,q > 1.

1. If there exists integers b, ¢ such that s(W) is v-connected for all W € CyJy 0, where

vie) =2(p+q)dimW —b
v(Cy) = min{2(p + q) dim W — b, 2p dim W2 + 2¢ dim(W )+ — ¢},
then Tyi1,4Tpq+r15(W) is at least (v + 1)-connected.
2. If there exists integers b, ¢ such that s(W) is v-connected for all W € CaJo, where
v(e) =2(p+q)dimW —b
v(Cq) = min{2(p+ ¢) dim W — b, (p + ¢q) dim W — ¢},
then Tyi1,4Tpqr15(W) is at least (v + 1)-connected.

Remark 4.2.6. Let F,G € Cy&y . Recall that G, F are the right Kan extensions of F,G
respectively along the inclusion Cy 750 — CoJpo. If the map s(W) : F(W) — G(W) is
v-connected for all W € CyJp 0, then the map 5(V) : F(V) — G(V) is v-connected for
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all Ve CyJoo. In particular, this means that given the connectivity of the map s(W),
Lemma 4.2.4 can be applied to the map 5(V') to make conclusions about the connectivity

of the map 7, ,s(W) = 7,,5(W).

We aim to show that T, ,E is strongly (p, ¢)-polynomial for any £ € C2&yo. That is, we
wish to show that p: T, ,F — 7, /1, & is an objectwise weak equivalence. To do this we
will need the following two Lemmas, the first of which is a Cy-version of [Wei98, Lemma

e.7].

Lemma 4.2.7. Let G := SCyy,4(V,—), F := CoJoo(V,—), and let s : G — F be the

projection sphere bundle map. T, ,s is an objectwise weak equivalence.

Proof. We know from the underlying calculus that s(W)¢ is [(p+¢)(dim W —dim V') — 1]-

connected. Using the splitting theorem (see Theorem 3.2.3), we see that

CoTpa(V, W) = [T(Coyp g (V, W)
2 T[Coypq(V, W)
2= T[Corp (VR W) x Coro (V)T (WR)H)]
= CoJpo(V, W) A CoJo o (V) (W) H)

which is [p(dim W — dim V) + ¢(dim(W2)+ — dim(V“?)+) — 1]-connected. Therefore,
so is the map s(W)%2, since CoJ,, ,(V, W) is the homotopy cofibre of s(W)°=.

Thus, s(W) satisfies the hypothesis of Lemma 4.2.4 with

b=(p+qdimV +1

¢ =pdim V? + ¢dim(V2)*: 4 1.

Repeated application of Lemma 4.2.4 shows that the connectivity of both (7. s(W))¢ and
(7} 45(W)) tend to infinity as [ tends to infinity. Thus, (T},4s(W))¢ and (T, 4s(W))“> are
weak homotopy equivalences, which is exactly that 7T}, ;s is an objectwise weak equivalence.

]
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The following Lemma is a Cy-equivariant version of the discussion above [Wei98, Theorem

6.3.1]. Note that when H = e these diagrams are similar to [Wei98, e.8 and e.9].

Lemma 4.2.8. Let p,q > 0 and E € Cy&y9. The commutative diagram

E(V)T ——"—— (T, E(V))"
(Tog E(V))H n—H> (TpaTp g E(V))H

can be enlarged to a commutative diagram

E(W) > X ’ (anE(V))H
p g p
(Tp,qE(V))H > Y ’ (Tp,qu,qE(V))H

where g 1s a weak homotopy equivalence.

Proof. By the Yoneda Lemma and definition of 7,,, we have a commutative diagram
similar to [Wei98, e.6], where G := SCyv,,(V,—), F = CoJpo(V,—) and s : G — F is

the projection sphere bundle map..

EW)T - r (g E(V))T

R
I
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Using this, the first diagram above can be written as

Nato’o(F, E(—))H e Nat070(F, Tp,qE<—>>H

Natoo(G, E(—=)) ——— Natgo(G, T, ,E(-))"
which in the same way as [Wei98, e.10] can be enlarged as below.

Tpq res
Nat07()(F, E(—))H —_— NatO’O (TP7QF7 Tp7qE(—))H e Natojo(F, Tp7qE(—>)H
s* (Tp,q9)* s*

Natoo(G, E(—))" - Natoo(Tp.gG, Tpg B(—))" ——— Natoo(G, T,,E(—))"

In the projective model structure defined in Proposition 3.1.7, we can factorize the maps
np: F —T,,F and ng : G — T, ,G as a cofibration followed by an acyclic fibration. This
looks as follows.

F < M>T,,F
G < N>T, G

We know that G and F are cofibrant in the projective model structure, by Lemma 4.1.10,
therefore M and N are also cofibrant. Hence, they act as cofibrant replacements for 7), , F’

and T}, ,G respectively.

Applying these cofibrant replacements in the above diagram we get another commutative

diagram

Natoyo(F,E(—))H s Nato,O(M, TZMZE(_))H L) Nato’o(F, Tp7qE(—))H

Natoyo(G7E(—))H E— Nat(),[)(N, Tp’qE(—))H T> Natovo(G,Tp,qE(—))H
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Since T}, ,s is an objectwise weak equivalence, by Lemma 4.2.7, we get that M and N
are objectwise weakly equivalent. Finally, since the projective model structure is Cs-
topological, Natgo(—, A) preserves weak equivalences of cofibrant objects, and we can

conclude that j is a weak homotopy equivalence as required.
O
Theorem 4.2.9. T, E is strongly (p, q)-polynomial for all E € Cy&y and all p,q > 0.

Proof. We must show that the map T, ,F — 7, ,1,, £ is an objectwise weak equivalence.

The proof follows in the same way as [Wei98, Theorem 6.3.1].

eyt — 5 (r, EON! —L— (P2 BV — s .

(T BV ——7= (o BV ———= (1 BV ——— ...

It suffices to show that the the vertical maps in the diagram above induce a weak homotopy
equivalence, r : (T, ,E(V ) — (1,,T,,E(V))H for all closed subgroups H < Cs, between

the homotopy colimits of the rows. By Lemma 4.2.8, each diagram

(Th BV —=— (T, ,E(V))"

g !

(T,ﬁlE(V))H T> (Tp,qu,qE(V>)H

can be enlarged to a commutative diagram

(o BV > 1( r (Tp  E(V))Y
(T;]f,qulE(V))H > Y ’ (Tp,qu,qE(V>>H

where ¢ is a weak homotopy equivalence.
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Any element in the homotopy group m.(7,,E(V))¥ may be realised as an element of
the corresponding homotopy group (7 E(V))", for some k. Proving injectivity and
surjectivity of m,r follows from the existence of g. Then T}, ,F is strongly (p, ¢)-polynomial.

O

In particular, this allows us to define the (p, ¢)-polynomial approximation functor.

Definition 4.2.10. Define the (p, q)-polynomial approzimation to E € Cy&y to be the

functor 7,11 41, 4+1F. By the above lemma, this is indeed a (p, ¢)-polynomial functor.

Example 4.2.11. The (0, 0)-polynomial approximation of a functor F is the constant
functor

Ty oTo  E(V) = hocglimE(]Rk”k) = hocoblimE(]R“’b) =: B(R>™).

This is analogous to the 0-polynomial approximation of a functor E being the constant

functor ToE(V) = E(R*) in the underlying calculus.

The following is the Cy-equivariant generalisation of [Wei95, Theorem 6.3.2]. The lemma
demonstrates another property that one might expect strongly (p, ¢)-polynomial functors
to satisfy based on the properties of polynomial functions. That is, the strongly (p, q)-

polynomial approximation of a strongly (p, ¢)-polynomial functor is the functor itself.

Lemma 4.2.12. If E is strongly (p, q)-polynomial, then n : E — T, ,E is an objectwise

weak equivalence.

Proof. 1f E is strongly (p, q)-polynomial, then by definition p* : E(V)# — (7, ,E(V))H
is a weak homotopy equivalence, for all V' € CyJyo and all H closed subgroups of Cb.
Therefore, E(V)" — (hocolimy 75, E(V))" is a weak homotopy equivalence, since fixed

points commute with sequential homotopy colimits, which is exactly the map 7. O

Remark 4.2.13. Combining this result with Example 4.2.2 shows that a strongly (1,0)-

polynomial functor is constant in the R direction, and a strongly (0, 1)-polynomial functor
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is constant in the R? direction. We can think of these types of functors as being ‘hor-
izontally constant’ and ‘vertically constant’ respectively. This can be illustrated by the

following diagram for a functor F.

E(Royoo) ............................................................... > E(Ro>)

T

E(R™) —— E(RM)

| |

E(R%%) —— E(RY) o y E(R>Y)

If F is strongly (1, 0)-polynomial, then each horizontal arrow is a weak equivalence and E
is ‘horizontally constant’. If F is strongly (0, 1)-polynomial, then each vertical arrow is a
weak equivalence and E is ‘vertically constant’. If F is (0,0)-polynomial, then all arrows
are weak equivalences and we call £/ ‘constant’.

Combining Lemma 4.2.12 with Theorem 4.2.9 gives the following Corollary.

Corollary 4.2.14. Let E € Cy&, then T, (F is objectwise weakly equivalent to T, /T, F .

The following Lemma is a Cy-equivariant version [Wei95, Lemma 5.11]. It says that 7,

preserves strongly (p, ¢)-polynomial functors.

Lemma 4.2.15. If E is strongly (p, q)-polynomial, then so is 1., E for all I,m > 0.

Proof. Since homotopy limits commute and 7, preserves objectwise weak equivalences

we get the following.

Tp,qu,mE(‘/) = 7'l,mTp,qEG/)
~ Tl7mE(V) Il

Corollary 4.2.16. If E is strongly (p, q)-polynomial, then so is 1), E for all [,m > 0.
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Proof. This is clear from Lemma 4.2.15 using that 7, , commutes with sequential homotopy

colimits. [

Combining Lemma 4.2.12 and Corollary 4.2.16, extends the result of Lemma 4.2.12 from

strongly polynomial functors to polynomial functors.

Lemma 4.2.17. If E is (p, q)-polynomial, then E ~ T, /T, ;+1E. O

4.3 The (p, q)-polynomial model structure

Similar to Barnes and Oman [BO13], we would like to construct a model structure on
the input category C12&y (see Definition 3.1.5), that captures the homotopy theory of
polynomial functors. We will construct the (p, ¢)-polynomial model structure on Cy&
whose fibrant objects are functors that are (p,q)-polynomial. We construct this model
structure, using the same method as Barnes and Oman in [BO13, Section 6], by Bousfield-
Friedlander localisation and left Bousfield localisation. To do this, we will also need the

projective model structure on Cy&; o defined in Proposition 3.1.7.

To begin, we will construct a model structure on C2&;, whose fibrant objects are the
strongly (p, ¢)-polynomial functors. This model structure will allow us to easily deduce
results about strongly (p, ¢)-polynomial functors, without having to keep track of the more

complex indexing of the (p, ¢)-polynomial model structure.

Definition 4.3.1. A morphism f € Cy&y is a T}, 4-equivalence if T, ,f is an objectwise

weak equivalence (see Definition 3.4.4).

Proposition 4.3.2. There is a proper model structure on C2&y such that a morphism f
s a weak equivalence if and only if it is a T, 4-equivalence. The cofibrations are the same
as for the projective model structure. The fibrant objects are the strongly (p, q)-polynomial

functors. A morphism f is a fibration if and only if it is an objectwise fibration and the
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diagram

T, X ————— T1,,Y
) prqf )

is a homotopy pullback square in C2&y . Denote this model structure by (p, q) -poly- 02505:0.

Proof. We claim that this model structure is the Bousfield-Friedlander localisation of
C2&p0 with respect to the functor T,, : Ch& o — C2&p. Since Cy&y is a proper
model category, [BouO1, Theorem 9.3] applies and to prove the existence of the Bousfield-

Friedlander localisation we must verify the following three axioms:
(A1) T}, preserves objectwise weak equivalences.

(A2) For every E € C&y9, the morphisms 1y, g, Tpqne : TpoE — 1), 41, F are objectwise

weak equivalences.

(A3) If given a pullback square in Cy& o

vV —r X
gk Bf
W——>>Y

where f is a fibration of fibrant objects and 7,, ny and T, ,h are all objectwise weak

equivalences, then k is a T}, ;-equivalence.

(A1) amounts to using that taking fixed points commutes with sequential homotopy col-
imits, homotopy colimits preserve weak equivalences in Top, and 7, , preserves objectwise

weak equivalences (see the proof of Lemma 4.1.10).

(A2) follows by combining Theorem 4.2.9, Lemma 4.2.12 and Corollary 4.2.14.
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(A3) follows in the same way as [BO13, Proposition 6.5], and using that 7},, preserves
fibrations of fibrant objects in C2& (see the proof of Lemma 4.1.10).

Now that we know the model structure exists, we can use the classification of fibrations
provided by the localisation to classify the fibrant objects. By the localisation, X € C5&y o

is fibrant if X — % is an objectwise fibration (which it is for all X') and the diagram below

*
k = %k

This diagram is a homotopy pullback square if and only if  : X — T, ,X is an objectwise

is a homotopy pullback in C2& .

X 5

Ty X ——— 1,,

weak equivalence. Hence we have a commutative diagram

P
X > TpgX
n Tp,qT
—
TpeX P TpalpgX

where the bottom map along with the two vertical maps are all objectwise weak equiva-
lences, making the top map an objectwise weak equivalence, and thus making X strongly

(p, q)-polynomial as required. 0

Remark 4.3.3. Since the cofibrations of C2&y ¢ and (p, q) -poly- 025()5:0 are the same and

T, 4 preserves objectwise weak equivalences, there is a Quillen adjunction

Id : C2&y0 = (p, q) -poly- 02850 c1d.
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In the same way as in [BO13, Section 6], if we let [—, —]?»2 denote maps in the homotopy

category of (p, q)-poly- Cgé’(fo, then we find that
(X, TpqY] = [X, Y]Tp’q-

Hence, T, is indeed a fibrant replacement in (p, ¢) -poly- 02850.

We could alternatively construct this model structure by a left Bousfield localisation.
The benefit of this type of localisation is that we will then be able to conclude that
(p, q) -poly- 0250570 is cellular.

Proposition 4.3.4. The model category (p, q) -poly- 0255?0 is the left Bousfield localisation
of Co&y o with respect to the class of maps

Spq = 15C7pq(V, =)+ = CoJoo(V, =) : V € CoJoo}-

Proof. The proof is analogous to that of Barnes and Oman [BO13, Proposition 6.6],
where is sufficient to show that the fibrant objects of the left Bousfield localisation are

the strongly (p, ¢)-polynomial functors, since both classes of cofibrations are the same.

Note that given a weak equivalence of Cs-spaces, applying the fixed point functor (—)

and then the singular functor S : Top, — sSet (see [May99, Chapter 16]) gives a weak
equivalence of simplicial sets. By the model theoretic properties of C; Top,-enrichment,
it suffices to use Natgo(¢X,Y’), where ¢ denotes cofibrant replacement in Cy&y, as a
homotopy mapping object X — Y in Cy&y, since Cy&y is enriched over C; Top, and
all objects of Cy& are fibrant. Note that the domains of S, , are already cofibrant by
Lemma 4.1.10.

By a theorem of Hirschhorn [Hir03, Theorem 4.1.1}, the fibrant objects of Lg, C2&y are
the S, 4-local objects of Cy&y . That is, X € Cy&y is fibrant in Lg, ,Co&yp if

Nato,o(CoJo,0(V, —), X) — Natgo(SCoyp,q(V, =)+, X)
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is a weak equivalence in C5 Top,, for all V' € CyJ). Application of the Yoneda lemma
and the definition of 7,, yields that X (V) — 7, ,X (V) is a weak equivalence in C, Top,
for all V- € CyJo 0, which is exactly that X is strongly (p, ¢)-polynomial. ]

Corollary 4.3.5. The class of T, ;-equivalences is the collection of S, 4-local equivalences.

Using this model structure, one can finally prove that a strongly (p, ¢)-polynomial functor
is indeed (p,¢)-polynomial. The underlying version is proven in by Weiss in [Wei95,
Proposition 5.4] and by Barnes and Oman in [BO13, Proposition 6.7].

Proposition 4.3.6. If X € C2& is strongly (p, q)-polynomial, then it is (p, q)-polynomial.

To prove Proposition 4.3.6 we will use the following proposition.

Proposition 4.3.7. Let resg and resgs be the restriction maps

resg : CoJoo(R® V., W) = CoJoo(V, W)
resps : CoJoo(R? @V, W) — CoJoo(V, W).

There exist Cy-equivariant homeomorphisms

resg CoYp, (V. W) = e @ Coppg(R OV, W)

resgps Covp(V, W) = egf @ Cop (R &V, W),
where €y is the total space of the trivial bundle
R™™ x CoJoo(X &V, W) = CoJoo(X &V, W),
and res’; Coy, (V, W) is the pullback of the following diagram
res x

CoJoo(X DV, W) —5 s CoToo(V, W) 2 Oy, o(V, W)

with py the fibre bundle map (projection onto first factor).
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Proof. The space resg Coy,o(V, W) consists of pairs (f,x), where f is a linear isometry
R®V — W and x € RP? @ f(V)L. The space e§? & Cyy, (R & V, W) consists of triples
(f,z,y), where f is a linear isometry R®V — W, 2z € RP*® f(R® V) and y € RP.

We claim that the map

t: R P® Coypg(RBV, W) — resg Coypo(V, V)

(f;z,9) = (f,z+ (@ f(1,0)

is a Cy-equivariant homeomorphism. Indeed, the map ¢ is a homeomorphism since it is

continuous and has continuous inverse

t7 resy Coyp (Vo W) — 7@ Coyp g (R® V, W)

(f,x) = (f.2".9)

where

=1 — (S, e @ f(1,0))e; @ f(1,0))

y =Xz e; @ f(1,0)e;
and e; is the i-th unit vector in RPY.
It remains to show that ¢ is Cy-equivariant.
o(t(f,z,y) = o(f,z+ (y® f(1,0))
— (0% .00+ (oy @ 0 f(1,0))

=(ox f,ox+ (cy ® (o f)(1,0))

=t(o* f,on,0y)
=t(o(f,7,y))

We now prove the second homeomorphism. The space resg; Coyp(V, W) consists of pairs
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(f,x), where f is a linear isometry R® @V — W and x € RP @ f(V)*. The space
€ns DCy7,.4(R°®V, W) consists of triples (f, z,y), where f is a linear isometry R°@V — W,
r€RPI® (R D V) and y € R9? = RPY @ R®. We claim that the map

€4 ® Covpg(R® & V, W) — tesgs Coypq(V, W)
(fiz,y) = (fiz+ (y® 15) ® f(15,0))

is a Cy-equivariant homeomorphism, where 14 is the identity element in R?.

Indeed, the map s is a homeomorphism since it is continuous and has continuous inverse

s i reshs CoYpg(V, W) = €22 @ Coyp o (R @ V, W)
(f,z) = (f.2',y)

where

=z — (S z, e @ f(15,0))e; ® f(15,0))

y =S e, e @ f(15,0))e ® 15
and e; is the i-th unit vector in RP9. It remains to show that s is Cy-equivariant.

a(s(f,2,y)) = o(f,z+ ((y®1s) @ f(15,0))

= (0 x f,o0 + (0(y ® 15) ® 0 f(15,0))

= (ox fiox+ ((oy ® —1s) ® (0% [)(=15,0))
(o* fiox 4 (—(oy ® 1s) ® 0 f(15,0))
= ( (
( (

ox fior+ ((oy ® 1s) ® —o f(15,0))
ox f,or+ ((oy ® 1s) ® (o % f)(14,0))
= s(ox f,ox,0y)

=s(a(f, 2, y)) O
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Proof of Proposition 4.3.6. Since the weak equivalences in (p, q)—poly—ng(fO are the Sy, ;-
local equivalences (see Corollary 4.3.5), it suffices to show that S, ;~equivalences and
Sp.g+1-equivalences are S ;-equivalences. This is sufficient, since it proves the existence

of Quillen adjunctions

Id : (p + 17 q) 'pOIY' 02565:0 = (p, Q) —poly- 02565:0 - 1d

Id : (p,q + 1)-poly- 02550 = (p, q) -poly- 02550 - 1d,

and Id being right Quillen yields the desired result.

We start by showing that an S, ;-equivalence is an S, ;-equivalence. The proof is anal-

ogous to [BO13, Proposition 6.7].

We must prove that the sphere bundle map SCav,414(V, —)3 — CoJoo(V,) is an S, 4

equivalence for any V' € CyJyo. There is a map of unit sphere bundles
a: SCyy(V, =)+ = SCovpi14(V, =)

induced by the standard inclusion RP¢ — RPTL4 (7, y) — (z,0,y). It then suffices to

show that « is an S, ;-equivalence, since there is a commutative diagram

SOZ’VW](Vv —)+ — SC27P+1,q(Va —)+

\ l

Codoo(V, —)
where the diagonal map is an S, ;-equivalence, since it is an element of S, .

The vector bundle Cyypi1,4(V, =)+ is Cr-equivariantly homeomorphic to the Whitney
sum of vector bundles Cy7, 4(V, —)+ & Cav10(V, —)+. Since the unit sphere of a Whitney
sum of Cs-vector bundles is Cy-equivariantly equivalent to the fibrewise join of the unit
sphere bundles, we know that SCy7y,+1,4(V, —)4+ is the homotopy pushout in the following

diagram, where X denotes the fibrewise product.
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SCoyp (Ve =) BSCoyio(V, =)y ———— SComio(V, =)+

SCQ’Yp,q<Va —)+

« ’ 5027p+1,q(v> —)+

Therefore, since homotopy pushouts preserve .S, ,-equivalences, it suffices to show that p,

is an S, ,-equivalence.

By Proposition 4.3.7, there is a pullback square

(E%q S C27p,q(R OV, =)y ————— Conpe(V, —)+

OQJO,O(R ©® ‘/7 _) resg > 02‘7070(‘/, _)
where € is the total space of the trivial bundle
RP9 x Cg%yo(R ) V, —) — 02\7070(R D ‘/, —)

and resg is the restriction map. Note that Cy70(R & V, —) is Cy-equivariantly homeo-
morphic to SCy710(V, —)+ by Proposition 4.1.3. Hence, the diagram

S(E%q D C27p,q(R OV, =)y — 502710,(1(‘/7 )+

SCoymio(V, =)+ - > SCoJo0(V, —)

is a homotopy pullback square. The homotopy pullback is SCy7, ,(V, =)+ ®SCoy10(V, =)+,
by the definition of the fibrewise product. Therefore, the map py can be Cy-equivariantly
identified as the sphere bundle map

SR ® Coypq(ROV, =) 1 = CoJoo(RDV, —).
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Since the unit sphere of a Whitney sum of Cy-vector bundles is Cy-equivariantly equivalent
to the fibrewise join of the unit sphere bundles, the following diagram is a homotopy

pushout.

SEUA SCyypgR @V, =)y ———— ST ACoTo0(R @V, —)

SCa ROV, )+  S(1® Coip(ROV, -)s

The map 0 is an S, ;~equivalence, since it is an element of S, , smashed with a Co-CW

complex. Therefore, the pushout p is also an S, ;-equivalence.

There is a commutative diagram

SCQ/YPJ](R D ‘/7 _>+ % S(G‘%q 5> CQrYp,q(R © V, —))_;,_

\ |

C2L7O,O(R D Va _)

where p is an S, j-equivalence, by above, and the diagonal map is an S, ;-equivalence,
since it is an element of S, ;. Hence, by the two-out-of-three property, the map p; is an

Sp.q-€quivalence as required.

Proving that an S ,y1-equivalence is an S, ,-equivalence is similar, and uses the other

case of Proposition 4.3.7. O

Corollary 4.3.8. There exists a Quillen adjunction
10 (5.0)-poly-Catiy = (m,m)-poly- Cots1d
form <p andn < q.

Combining Proposition 4.3.6 with Theorem 4.2.9 and Lemma 4.2.12, gives an important

result about how the functors 7,, , interact.
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Corollary 4.3.9. Let E € Cy&yp. If 1 > p and m > q, then

Ty TimE ~ TyTy o E = T, E.

We now construct another model structure on Cy&y. We call this model structure the
(p, q)-polynomial model structure, and denote it by (p, ¢)-poly-C2& . The fibrant objects
of this model structure will be the functors which are (p, ¢)-polynomial. The construction
of this model structure is done in a similar way as for the model structure (p, q)—poly—Cgé'g 0-
We use a Bousfield-Friedlander localisation to prove the existence of the model structure
and then use a left Bousfield localisation to show that it is cellular. This ensures that
we can construct a right Bousfield localisation of the (p, ¢)-polynomial model structure
and, by choosing the right set of objects to localise at, this right Bousfield localisation

has fibrant-cofibrant objects which are the (p, ¢)-homogeneous functors, see Section 5.2.

Proposition 4.3.10. There is a proper model structure on Co&y o such that a morphism
f is a weak equivalence if and only if it is a T,y1 41}, q41-equivalence. The cofibrations
are the same as for the projective model structure. The fibrant objects are the functors
that are (p,q)-polynomial. A morphism f is a fibration if and only if it is an objectwise

fibration and the diagram

Toi1l) g1 X Tt Ty g1Y
p+1,g+- pg+1 Tpi1.9Tpqr1 p+1,g+ pg+1

is a homotopy pullback square in C2&y . Denote this model structure by (p, q) -poly- C2& o.

The proof is similar to Proposition 4.3.2, using 7)+1 41} 4+1 in place of T}, ,, so we omit it

here.
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Remark 4.3.11. Since the cofibrations of C2& o and (p, q)-poly-C2& o are the same and
T,

v+1.91p.q+1 Dreserves objectwise weak equivalences, there is again a Quillen adjunction

Id : Co&o0 = (p, q) -poly- Ca&oy : 1d,
and similarly to Corollary 4.3.8, there is a Quillen adjunction
Id : (p, q) -poly- C2& o = (m,n)-poly- C2&p : Id

where m < p and n <q.

Additionally, the two localisations are related by the following Quillen adjunction.

Id : (p, q) -poly- Cafoo = (p, q) -poly- Co&gg : 1d

We will now construct this model structure again, this time by a left Bousfield localisation.

Proposition 4.3.12. The model category (p, q) -poly- Co&y is the left Bousfield localisa-

tion of Ca&no with respect to the class of maps Spi14 ][ Spgr1 where

Spi1,q = {5027p+1,q(v7 —)y — CoJoo(V, -): Ve 02\70,0}
Spat1 = 1S5CxYp g1 (V, =)y = CoJop(V, =) : V € CaJoo}-

Proof. The proof follows in the same way as for Proposition 4.3.4. O]
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Equivariant homogeneous functors

In orthogonal calculus, the homotopy fibre of the map T,F — T, _1F is n-polynomial
and has trivial (n — 1)-polynomial approximation. Functors of this type are called n-
homogeneous, and are completely determined by orthogonal spectra with O(n)-action, see
[Wei95, Theorem 7.3]. In this section we define a new class of (p, ¢)-homogeneous functors
in the Csy-equivariant input category. The main goal will be to classify such functors by
a category of spectra, as is done in the underlying calculus. The relation between the
(p, ¢)-homogeneous model structure and the stable model structure in Proposition 3.4.17,
forms one half of the zig-zag of equivalences that gives this classification, see Theorem

6.3.7.

5.1 Homogeneous functors

We want to use the properties of the homotopy fibre
Dp,qF - Tp+1,quyq+1F - Tp,qF

to define a class of (p, ¢)-homogeneous functors in the input category Ca&y o (see Definition
3.1.5). First, we will need to determine what these properties are, and to do so we will

111
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need to give some important and useful properties of polynomial functors. Many of these
properties will also be needed when constructing the homogeneous model structure in

Section 5.2.
The following is the Cy-version of [Wei95, Lemma 5.5].

Lemma 5.1.1. Let g : E — G in Cy€yp be such that indg§ G is objectwise contractible and

E is strongly (p, q)-polynomial, then the homotopy fibre of g is strongly (p, q)-polynomial.

Proof. This follows, as in [Wei95], from the homotopy fibre sequence in Lemma 4.1.11. [

Corollary 5.1.2. Let g : E — F in Cs&p be such that ind} 5" F and ind5¢™ F are
both objectwise contractible and E is (p,q)-polynomial, then the homotopy fibre of g is
(p, q)-polynomial. O

The following is a Cy-generalisation of [Wei95, Corollary 5.6], which is an instant conse-

quence Corollary 5.1.2 by setting F = x.

Corollary 5.1.3. Let F € Cy&y be such that ind) s F' and ind}§*" F are both objectwise
contractible, then the functor

V= QF(V)

is (p, q)-polynomial. O

Now we can determine the properties of the homotopy fibre D, ,F'.

Definition 5.1.4. Let E € C2& . Define E to be (p, q)-reduced if T, ,E is objectwise

contractible.

Remark 5.1.5. Note that if £ € C2& 0 is (p, q)-reduced, then E is also (a,b)-reduced for
all pairs (a,b) with 0 < a < pand 0 < b < ¢g. This follows from Corollary 4.3.9.

Theorem 5.1.6. The homotopy fibre Dy, F of the map 1,4 @ Tpr1,4Tp g1 F — Tp o is

(p, q)-polynomial and (p, q)-reduced.
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Proof. Indeed, applying 7, , to the homotopy fibre sequence and applying Corollary 4.3.9

gives
TpqDpgF' —— TpgTpr1.4Tpqr1 —% TpgTpoF
12 12
TypoF ——7— TpoF
Therefore, T}, ,D, ,F" =~ hofibre[T}, ,F’ < Ty F] ~ *. That is, D, ,F' is (p,q)-reduced (see
Definition 5.1.4).

The functors Ty .7}, .1 F and T, ,F are both (p,q)-polynomial (see Definition 4.1.7).
This follows from Theorem 4.2.9 and Proposition 4.3.6. Therefore, D, ,F is (p, ¢)-polynomial,
by Corollary 5.1.2. m

Definition 5.1.7. Let E € (C2& 0. E is defined to be (p, q)-homogeneous if it is (p, q)-
polynomial and (p, ¢)-reduced.
We now define the equivariant generalisation of the term ‘connected at infinity’, this is

analogous to [Wei95, Definition 5.9].

Definition 5.1.8. E € (1€ is defined to be connected at infinity if the Cy-space
hocoblirnE(]R“’b) = B(R>™)

is connected (meaning that the equivariant homotopy groups ! E(R>>°) are trivial for

all closed subgroups H of C5).
Lemma 5.1.9. If E is (p,q)-homogeneous for pairs (p,q) where at least one of p,q is
greater than zero, then E is connected at infinity.

Proof. This is a straightforward calculation that follows from Example 4.2.11. O

The next result is [Wei95, Proposition 5.10]. It is used in conjunction with Lemma 5.1.9 to
construct the (p, ¢)-homogeneous model structure. The proof follows as in [BO13, Lemma

5.10], replacing 7;, by T, ,, so we omit it here.
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Lemma 5.1.10. Let g : E — F be a map between strongly (p, q)-polynomial objects such
that the homotopy fibre of g is objectwise contractible and F' is connected at infinity. Then

g is an objectwise weak equivalence.

Finally we will prove a version of [Wei95, Corollary 5.12]. We will use this result later,
along with Lemma 3.4.12, to show that the induction functor takes objects that are (p, q)-
polynomial to (p,q)Q2-spectra. This guarantees that induction is a right Quillen functor

from the (p, ¢)-polynomial model structure on C»2& ¢ to the (p, g)-stable model structure

on C2gp,q'

Proposition 5.1.11. Let E € Cy&y be (p, q)-polynomial. Then for all V € Cy Ty there

exist weak equivalences of Cy-spaces

ind5 ¢ E(V) —» QP indjd E(V ® R)

ind? B(V) — QP indld B(V @ RY).
Proof. We will prove the first weak equivalence, since the second follows by a similar
argument.

If p= ¢ =0, then there is nothing to prove, since E is constant (see Remark 4.2.13) and
ind8:8 E ~ E by the enriched Yoneda lemma.

Let p, g be such that at least one of p, g is non-zero. By Proposition 3.3.7, there exists a

Cs-homotopy fibre sequence
restt M indf 5 E(V) — indhg E(V) — QP ind}f E(V @ R).

We know that indgzl’q E(V) is a contractible Cy-space, since F is strongly (p + 1,¢)-
polynomial and by Corollary 4.1.12. Thus, if we can show that both indfg £ and

F: Vs QP%indf E(V @ R)
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are strongly (p+ 1, ¢)-polynomial and F' is connected at infinity, then Lemma 5.1.10 gives
the weak equivalence. Showing this is the same as for [BO13, Proposition 5.12]. m

5.2 The (p, q)-homogeneous model structure

We now construct a right Bousfield localisation of the (p, ¢)-polynomial model structure
in order to build a model structure on C5& analogous to the n-homogeneous structure
in [BO13, Proposition 6.9]. The cofibrant-fibrant objects of this model structure are the
projectively cofibrant (p, ¢)-homogeneous functors and the weak equivalences are detected
by derivatives. This model structure allows for the classification of (p, ¢)-homogeneous

functors in terms of a Quillen equivalence, see Theorem 6.3.6.

Proposition 5.2.1. There exists a model structure on C2&y o whose cofibrant-fibrant ob-
jects are the (p, q)-homogeneous functors that are cofibrant in the projective model structure
on Cy&y . Fibrations are the same as (p,q)-poly- Co&no and weak equivalences are mor-
phisms f such that resg§indgg Tpy1,4Tpq41f is an objectwise weak equivalence. We call this

the (p, q)-homogeneous model structure on C2€yo and denote it by (p, q) -homog- C2& o.

There is a Quillen adjunction
Id : (p, q) -homog- C2& 0 2 (p, ) -poly- Ca&pp : 1d

Proof. We show that right Bousfield localisation of (p, ¢)-poly-C2& o with respect to the

set of objects

Kyq =1{CoTpq(V, =) V € CoJoo}
yields the desired model structure.

Since (p, q)-poly-C2& ¢ is proper and cellular, we know that the right Bousfield localisation
Rk, ,((p,q) -poly- C2& ) exists by [Hir03, Theorem 5.1.1].
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It suffices (by the same argument used in the proof of Proposition 4.3.4) to use
Nato,o(¢X, Tpt1,4Tpg+1Y),

where ¢ denotes cofibrant replacement in (p, g) -poly- C2& 0, as a homotopy mapping ob-
ject X — Y in (p, q) -poly- C2& 0, since (p, q) -poly- Co& is enriched over C Top, and
Tpi1,41pq+1 1s the fibrant replacement. Note that all elements of K, , are already cofi-
brant by Lemma 4.1.10, since the cofibrant object of (p, ¢)-poly-C2&y o are the same as for
Ca&o -

The weak equivalences of R,  ((p, q) -poly- C2&y) are the I, ;-colocal equivalences. That
is, f: X =Y is a weak equivalence in Rk, ((p, q) -poly- C2& ) if and only if

Nat0,0(02~7p,q(v7 -); Tp+17qu,q+1X> - Nat0,0(02\7p,q(v’ -); Tp+1,qu,q+1Y)

is a weak equivalence in C; Top,, for all V' € CyJ. By Definition 3.3.4, we see that
this map is exactly resg§indgg Tps1,47p,q+1f (V). Therefore, f is a weak equivalence if and

only if resg§indg( Tp11,47p,q+1f is an objectwise weak equivalence as desired.

The fibrations are the same as for (p, ¢)-poly-Cs&, since fibrations are unchanged by

right Bousfield localisation. Thus, the fibrant objects are the (p, ¢)-polynomial functors.

The cofibrant objects are those functors X such that X is cofibrant in Cy&,, and such

that for all K, ,~colocal equivalences f : A — B the map
Nat070 (X, Terl,qu,qulA) — Nato’o (X, Tp+17qu7q+1B)

is a weak equivalence in C5 Top,.

We now show that the cofibrant-fibrant objects of Ry, ((p,q)-poly- C2&y ) are the pro-

jectively cofibrant (p, ¢)-homogeneous functors.
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Let A be a cofibrant-fibrant object of Ry, ((p, q) -poly- C2€0 ). Then Ais (p, q)-polynomial

and projectively cofibrant by above. There is a K, ,-colocal equivalence x — T}, ;. A, since

D,q : p,q D,q p,q
r'eSy g mdo,o Tyi1,4Tpgi1 Ty AV) =~ €Sy mdo,o T,4A(V)
~ x

~ P,q s p,q
=~ resy indgy Tp1.gTpqr1 * (V)

where the first equivalence is by Corollary 4.3.9 and the second equivalence is by Theorem

4.2.9 and Corollary 4.1.12. Therefore, there is a weak equivalence of Cs-spaces
Nato (A, *) — Natgo(A,T,,A)
Using this map and Remark 4.3.3, there are isomorphisms
0=[A,T,,Al =[A, A]re 2 [T, ,A,T,, A 2 [T, ,A, T, A

Hence, T, ,A is objectwise contractible, and A is (p, ¢)-homogeneous.

Let B be a (p, q)-homogeneous functor that is cofibrant in C5&y. Then B is fibrant in
Rk, ,((p, q) -poly- C2&y ), since it is (p, ¢)-polynomial. It is left to show that B is cofibrant.

Let f : ¢B — B be the cofibrant replacement of B in (p, ¢)-homog-C5&y . Since B is
fibrant, so is ¢B. Therefore, resggindgg f is an objectwise weak equivalence. If we can

show that f is an objectwise weak equivalence, then it will follow that B is cofibrant.

Let D be the homotopy fibre of f. Since both B and ¢B are fibrant, so is D (see Corollary
5.1.2. Since respindgg f is an objectwise weak equivalence, resgindgg D is objectwise
contractible. Hence, we have a homotopy fibre sequence of fibrant ((p,q)-polynomial)
objects

resggindyg D — D — 7, ,D

whose homotopy fibre is objectwise contractible. By Lemma 5.1.10, if 7, ;D is connected

at infinity, then D — 7,,D is an objectwise weak equivalence. This is true, since 7,,
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commutes with sequential homotopy colimits and D is connected at infinity as it is (p, q)-

homogeneous (see Lemma 5.1.9). Therefore, D is strongly (p, ¢)-polynomial.

We know that D is (p, ¢)-polynomial (fibrant) from above. It remains to check that 7}, ,D
is objectwise contractible in order to confirm that D is indeed (p, ¢)-homogeneous as stated
above. The sequential homotopy colimit used to describe 7}, ;D commutes with homotopy

pullbacks. Therefore, there is a homotopy fibre sequence
1,,D —T,,cB —1T,,B.

The functors ¢B and B are both (p, ¢)-homogeneous (B by assumption and ¢B by cofibrant-
fibrant). Therefore, T, ,¢B and T, ,B are both objectwise contractible, which implies that

T,.4D is objectwise contractible as required.

Since D is strongly (p, ¢)-polynomial, D is objectwise weakly equivalent to 7}, ,D. Hence,
D is objectwise contractible, which by Lemma 5.1.10 implies that f is an objectwise weak

equivalence as desired.

If fis a Tpi14Tp¢41-equivalence, then resgindgg Ty 1,4Tpq+1f is an objectwise weak
equivalence, since resfgindbd preserves objectwise weak equivalences. Therefore, Id is

right Quillen, and the adjunction exists. m

Remark 5.2.2. Detecting weak equivalences via ind§§ 7,41,47,4+1 can be difficult, since
the induction functor indg:g is complex. In unitary calculus, Taggart shows that a map is
an indy T),-equivalence if and only if it is a D,,-equivalence, where D, F' is the homotopy
fibre of T, — T,,_1 F' (see [Tag22b, Proposition 8.2]). Via a similar proof, one can show

that a map is an indﬁ:g Ty11,4T) 4+1-equivalence if and only if it is a D, ,~equivalence.
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The equivariant classification

theorem

The main result of orthogonal calculus is the classification of n-homogeneous functors,
as functors fully determined by a category of spectra. This is given by the classification
theorem of Weiss [Wei95, Theorem 7.3], which states that an n-homogeneous functor
is weakly equivalent to a functor of the form V — Q®[(S™V A U),0(m], where ¥ is an
orthogonal spectrum with an action of O(n). In [BO13], this classification is derived
as a Quillen equivalence on the model categories constructed, see Section 2.2.6. As a
result, the homotopy fibres of the maps 7;,.1 X — T, X for an input functor X, which are

n-homogeneous, stand a chance of begin computed.

In this chapter, we construct two Quillen equivalences. These Quillen equivalences form
a zig-zag of equivalences between the (p, ¢)-homogeneous model structure on Co2& o and

the stable model structure on Cy,Sp°[O(p, q)].

resg’g /O(,q) (otp.q):
— s ————»
(p, q) -homog- Cy& —— O(p, Q)ngp,q : ; C’QSpO[O(p, q)]
ind§ e %p,q
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In the same way as for Barnes and Oman in [BO13, Section 10], this leads to a classification
theorem for (p, ¢)-homogeneous functors (Theorem 6.3.8), as functors fully determined by

genuine orthogonal Cy-spectra with an action of O(p, q).

6.1 The intermediate category as a category of spec-

tra

In this section we show that the (p, ¢)-th intermediate category O(p, q)C2E,, is Quillen
equivalent to the category of O(p, ¢)-equivariant objects in orthogonal Cs-spectra. Thus,
the (p, q)-derivative of an input functor (see Definition 3.1.5) can be described in terms of
these spectra. This section is analogous to [BO13, Section 8|, where the only differences
are due to the additional Csy-action, which does not effect the O(p, ¢)-equivariance of maps
considered. The resulting Quillen equivalence

(O‘p,q)! : O(p, Q)C2gp,q = CgSpO[O(p, q)] : o,

p.q

forms one half of the zig-zag of equivalences which gives the classification of (p,q)-
homogeneous functors, see Theorem 6.3.7. The spectrum (a,,)iF for a functor F €
O(p, q)C2E, 4 is the categorification of the spectrum OF constructed in [Wei95, Section
2].

We begin by describing the category of orthogonal Cy-spectra. Details of these construc-
tions have been discussed by Mandell and May in [MMO02, Section II.4].

Definition 6.1.1. The category of orthogonal Cy-spectra CoSp© is the category Co& .

This category has a cofibrantly generated proper stable model structure where the cofi-
brations are g-cofibrations and the weak equivalences are the (1,0)m.-equivalences (see
Definition 3.4.9). That is, f if a weak equivalence if (1,0)7} f is an isomorphism for all

closed subgroups H < (5 and integers k. It is cofibrantly generated by the following sets
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of generating cofibrations and generating acyclic cofibrations respectively

{Fvi:ielg)

{ij ] - JC2}

where Fy, : Oy Top, — CoSp? is the left adjoint to evaluation at V, and Ig,, Jo, are the

generating cofibrations and acyclic cofibrations for Cy Top, (see Proposition 2.1.7).

Remark 6.1.2. Sometimes in the literature, an orthogonal G-spectrum is defined as a
collection of based spaces {X,, }nen with an action of G x O(n) on each X,,. The structure
maps are G-equivariant maps

Xn VAN Sl — Xn+17

such that the iterated structure maps

X, AS™ = Xy

are O(m) x O(n)-equivariant, where G acts trivially on S™.

This is what we refer to as a naive orthogonal G-spectrum. Genuine G-spectra are indexed
on a complete G-universe of all G-representations, whereas naive G-spectra are indexed
on the trivial G-universe. That is, naive G-spectra are just spectra with an action of GG
on each level, and G-equivariant structure maps. These two descriptions of G-spectra
are categorically equivalent, however they are not homotopically equivalent (see [HHR21,
Section 9.3]), in that the most natural model structures associated to these categories are
not Quillen equivalent. In what follows, we consider orthogonal spectra that are genuine

with respect to Cy and naive with respect to O(p, q).

Definition 6.1.3. The category of O(p, q)-objects in orthogonal Cy-spectra, CoSp°[O(p, )],
is the category of O(p, g)-objects in C5&; o and O(p, q)-equivariant maps. An O(p, g)-object
in Cy&; o is a Cy Top,-enriched functor from CyJ1 ¢ to (O(p,q) »x Csy) Top,.
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Theorem 6.1.4. The category of genuine orthogonal Cy-spectra with an action of O(p, q),
CySp°[O(p, q)], has a cofibrantly generated proper stable model structure where fibrations

and weak equivalences are defined by the underlying model structure on CySp° above.

One can prove the existence of this model structure in a similar way as for Remark 3.4.8,

using the adjunction

(O(p,q) % Ca) A, (=) : CaSp° " CoSpP[O(p,q)] : #*

where ¢* is the restriction functor.

We want to define a functor CoSp°[O(p, ¢)] — O(p, ¢)C2&, . This functor will be called

ay ., and it is analogous to the a;, functor built in [BO13, Section 8].

Definition 6.1.5. Define the functor oy, : Co7,, — CoJ10 by
U=RMQU = (p,q)U

on objects, and

(f;2) = (R ® f, )

on morphisms.

The map on morphisms is clearly (O(p,q) x Cy)-equivariant, and thus o, is enriched

over (O(p, q) x Cy)-spaces.

This induces a functor
o, - C2SpP10(p, q)] = O(p, q)C2E,

defined by precomposition. For X € CySp°[O(p, q)] we define the (O(p, q) x Cy)- action
on (ap,X)(V) := X((p,q)V) by

X(go ®@ ) © (90) x((pg)v)



Chapter 6 The equivariant classification theorem 123

Here X (go ® o) is the internal action on X ((p, ¢)V) induced by the action on (p,q)V, and
(99) x((p.gv) is the external action from X ((p, q)V') being an (O(p, q) x Cs)-space. These

two actions commute by construction.

Checking that a3 X is well defined (i.e. that o X is (O(p, q) x C2) Top,-enriched) is the

same as checking that the map

CoTpo(U, V) = (O(p, q) x Ca) Top, (X ((p, ¢)V), X ((p,q)V))

is (O(p, q) x Cy)-equivariant.

To do this we consider the following commutative diagram. We use the notation (—)*
to mean pre-composition and (—), to mean post-composition. Let s denote the map
((go) ' ®0)* o (g0 ® 7)., and ¢ be the map (X ((g0)™' ® 0))* o (X(go @ 7)).. We have
abbreviated (O(p, q) x Cy) Top, to S Top, to save space (S for semi-direct product).

CoJp (U, V) =5 CoJhol(p, @)U, (p,@)V) —— S Top, (X ((p,q)U), X ((p, )V))
Copq(U,V) — CoTio((p, U, (p,9)V) —— S Top (X ((p, 9)U), X((p,0)V))

Given a pair (f,z) € C2J,,4(U, V'), by applying a5 X we get a a (O(p, q) x Cy)-equivariant
map

XRP @ f): X((p,q)V) = X((p,)V).

Therefore, the following two expressions are equal
X(go@V)o X(RM® f,x) 0 X((go)~' @ U)

(90)x@) o X(go @ V) o X(R ® f,x) 0 X((go) ' @ U)o (90);<I(V)
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which by comparison to the commutative diagram tells us exactly that the map

CoTpq(U, V) = (O(p, q) x C2) Top. (X ((p, 9)V), X((p, )V))

is (O(p,q) x Cy)-equivariant, and hence that o X is well defined.

Remark 6.1.6. Note that any other choice of internal action on X ((p,q)V') results in the
failure of the diagram being commutative. For example, taking X (go ®id) as the internal
action means that the left square in the diagram commutes only if f, from the pair (f, z),

is Cy-equivariant, which is not necessarily the case.

The left Kan extension of X € C2Sp°[O(p, )] along a,, can be described by the following
(O(p, q) x Cy) Top,-enriched coend. If we use the notation (o, )i to denote taking the left

Kan extension along a4, then

UeCaJp,q
(@ DV = [ Caallp.alU.V) A X(V),

We make this functor suitable enriched by ‘twisting’ the action as in [BO13, Definition
8.2]. That is, we let CoJ1 act on CoJ10((p,q)U, V) on the left by composition, and let
Co Ty, act on CoJ10((p,q)U, V') on the right by composition. It is not hard to show, by
an argument of coends, that () forms a left adjoint to a5 . We now prove that this

adjunction is indeed a Quillen equivalence.

Theorem 6.1.7. The adjoint pair

(apq)r 1 O(p, ) CoES . = CaSp°[0(p, q)] :

p.q

15 a Quillen equivalence, where both categories are equipped with their stable model struc-

tures (see Proposition 3.4.17 and Theorem 6.1.4).

Proof. The proof follows as in [BO13, Proposition 8.3]. Since o, is defined by precompo-

sition, it preserves objectwise fibrations and objectwise acyclic fibrations. It can easily be
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shown that «; , also preserved homotopy pullbacks. Hence, it preserves stable fibrations.
An argument using finality shows that o , preserves and reflects weak equivalences, and

therefore preserves stable acyclic fibrations, making the adjunction Quillen.

It remains to show that the Quillen adjunction is a Quillen equivalence. By Hovey [Hov99,
Theorem 1.3.16], it suffices to show that the derived unit is a weak equivalence. Since the
categories are stable and a; , preserves coproducts, it suffices to do this for the generators
of O(p,q)C5E,,,. This can be done by plugging in the generators O(p, ¢)+ A (p,¢)S and
(Cy x O(p,q))+ A (p,q)S into the formula for the unit, where (p, ¢)S sends V' € Cy Ty to
the one point compactification of RP*% @ V| denoted S®9V. n

6.2 Induction as a Quillen functor

In this section we construct a Quillen adjunction between the (p, ¢)-homogeneous model
structure and the stable model structure on C%&,,. The right adjoint of this adjunc-
tion will be the differentiation functor indg§e*. Moreover, we will show that this Quillen
adjunction is in fact a Quillen equivalence between these categories. Combined with
the Quillen equivalence of Theorem 6.1.7, this allows for the classification of (p,q)-

homogeneous functors in terms of orthogonal Cs-spectra with an action of O(p, q).

The steps taken to construct this Quillen equivalence are similar to [BO13, Section 9 and
Section 10]. We begin by explicitly proving the existence of a Quillen adjunction between
the projective model structures on O(p, ¢)Cs&, , and C2& o, which can then be extended

via properties of Quillen adjunctions and Bousfield localisations.

Lemma 6.2.1. There exists a Quillen adjunction

resqs /O(p, q) - O(p, q)CQSZqu = Cy&y - indgge”
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Proof. The generating (acyclic) cofibrations of O(p, q)CQS;),q are of the form
02\7}7711(Ua _) N O(pa q) A 2.7

where i is a generating (acyclic) cofibration of the fine model structure on Cs Top,, see

Theorem 2.1.7.

Applying the left adjoint gives resg§ CoJyq(U, —) Ad in Cy& 9. We know that the functor
resgs CaJpq(U, —) is cofibrant in Co&y o by Lemma 4.1.10, hence resgg CoJ),q(U, —) A is a
(acyclic) cofibration in Cy&yo. Therefore, the left adjoint preserves (acyclic) cofibrations,

which by Hovey [Hov99, Lemma 2.1.20] shows that the adjunction is Quillen. O

This adjunction can be extended to the (p, ¢)-polynomial model structure, via a composi-
tion of Quillen adjunctions. Furthermore, since the stable model structure on CyE, , is a
left Bousfield localisation of the projective model structure, the Theorems of Hirschhorn
[Hir03, Theorem 3.1.6, Proposition 3.1.18] can be used to additionally extend the adjunc-
tion to the stable model structure. In particular, this Quillen adjunction implies that the

derivative of a (p, ¢)-polynomial functor is a (p, ¢)Q2-spectrum.

Lemma 6.2.2. There exists a Quillen adjunction
resy’s /O(p,q) - O(p, q)C2&, , = (p, q) -poly- Ca&o = indffe”
Proof. We know by Remark 4.3.11 that there exists a Quillen adjunction
Id : C2€00 = (p, q) -poly- Ca&op - 1d

Since the composition of Quillen adjunctions is a Quillen adjunction, combining the above

adjunction with Lemma 6.2.1 gives a Quillen adjunction

resy’t /O(p, q) : O(p,q)C2E,, , = (p, q) -poly- C2€op : indff &*
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We now use [Hir03, Theorem 3.1.6, Proposition 3.1.18] to show that this Quillen equiv-
alence passes to O(p,q)C2&;,. That is, we show that indfje* takes objects that are

(p, ¢)-polynomial to (p, ¢)Q2-spectra. This has been done in Proposition 5.1.11 and Lemma,
3.4.12. [

Since the (p, ¢)-homogeneous model structure is a right Bousfield localisation of the (p, q)-
polynomial model structure, the Theorems [Hir03, Theorem 3.1.6, Proposition 3.1.18] can

again be used to extend this Quillen adjunction to the (p, ¢)-homogeneous model structure.

Lemma 6.2.3. There exists a Quillen adjunction
resgzg /O(p;q) : Olp, Q)CQ‘C";,q = (p, q) -homog- C5& : indﬁjg e*

Proof. Let f : X — Y be a weak equivalence between fibrant objects in the (p,q)-

homogeneous model structure. Then the map
f*: Natoo(CaTpe(V, =), X) — Natoo(CaJpq(V, —), Y)

is a weak equivalence of Cy-spaces for all V' € Uy 700, by definition of the right Bousfield
localisation. Therefore, indfge* f is an objectwise weak equivalence. An application of

Hir03, Lemma 3.1.6, Proposition 3.1.18] now gives that indh'¢ e* is right Quillen. O
0,0

The Quillen adjunctions between the model categories constructed are summarised in the

following diagram (which we do not claim commutes).

resgjg /O(p,q) 1d
O(p,9)C2E,, Cao (p, q) -poly- Cr&0 0
indg:g e* 1d
Id 1d Id Id

rest’s /O(p,q)

' (p, Q) -homog- 0250,0

O(p, q)Co&;,

p,q <
) ind®d ¢*
0.0
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6.3 The classification of (p, ¢)-homogeneous functors

We now aim to show that the Quillen adjunction of Theorem 6.2.3, between the (p, q)-
stable model structure and the (p,¢)-homogeneous model structure, is in fact a Quillen
equivalence. To do this, we take the same approach as Barnes and Oman [BO13, Section
10], but first we will need to generalise a few more results from the underlying calculus to

the Cy-equivariant setting. The following is a Cs-generalisation of [BO13, Lemma 9.3].

Lemma 6.3.1. The left derived functor of resg /O(p, q) is objectwise weakly equivalent

to EO(p,q)+ Nop,g) resgjg(—).

Proof. Let X € O(p, q)C5€; , and denote the cofibrant replacement of X in the projective
model structure O(p, q)C'gé’Aq by ¢X. Then ¢X is in particular O(p, q)-free. Hence, there

are objectwise weak equivalences

EO(p, q)+ NO(p,q) resgzg(éX) — EO(p,q)+ No(p,q) resgjg (X)

EO(p, q)+ No.q Tesps(eX) — resg(¢X)/O(p, q)

induced by the maps ¢X — X and EO(p,q), — S° respectively. The result follows
directly from this. O

The following two examples play a key role in classifying homogeneous functors. These
examples generalise [Wei95, Example 5.7 and Example 6.4] respectively. Example 6.3.2
proves that the functor F(V) = Q®[(S®DV A ©)4004.0] is (p, ¢)-homogeneous. Alterna-
tively, one can take the perspective that (p,q)-homogeneous functors are defined using
the properties of this functor F'. If one were to chose a different functor F', still in terms
of spectra, it may be possible to classify a different class of input functors. However, we
choose to work with the functor F' defined above, since it is analogous to the functor

F(V) =Q®[(S™ A ©)ro(m) used in the underlying calculus, see [Wei98, Example 5.7].
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The subscript (—)no@.,q denotes taking homotopy orbits. For X € C2Sp°[O(p,q)],

Xho(p,q) 1s the genuine orthogonal Cy-spectrum defined by

Xnowa) = EOP, 1)+ Nowg X,

where EO(p, q) is the universal space of O(p,q). This universal space has a Cs-action,
which is given in Section 6.4. Hence, the homotopy orbits X0, has a diagonal Cs-
action. The notation 2> denotes taking the infinite loop space. For a genuine orthogonal

Cy-spectrum X € C5,9p?, Q°X is the Cy-space defined by
QX := hocolimy QY X (V),

where the homotopy colimit is taken over V' € CyJyo. This homotopy colimit has a

natural Cy-action induced by the actions on each X (V).

Example 6.3.2. Let © be an orthogonal Cs-spectrum with O(p, ¢)-action and p,q > 1.
The functor F' € C92& o defined by

F:V— QOO[(S(p’q)V A ©)ho(p.g)]
is (p, g)-homogeneous.

Proof. Since F' has a delooping, by Corollary 5.1.3, in order to show that F' is (p,q)-
polynomial it suffices to show that F®*19 and F®9+1) are both objectwise contractible

(where F(™™) denotes the (m,n)-derivative of F, indgy" F).

Recall (see Proposition 3.3.7) that F"+19 (V) is the homotopy fibre of
F(p,Q)(V) N anRF(p,Q)(V ®R)
and that F®+1) (V) is the homotopy fibre of

F(p#])(v) N vaqRéF(pﬂ)(V D R‘s).
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Iterating this process gives a lattice of derivatives

Fa _  p-1a) y v [(0.9)
el plp—1a-1)
We will “identify” this lattice with another lattice
Flp,q) — Flp—1,¢| > > F[0, ¢
Flp,q—1] —— Flp—1,q—1]
F[D, O] oo . F

where F[i, j](V) = Q®[(S®DV A ©)n0(p—iq—j)- That is, we will verify that F[i,j]*? is
objectwise equivalent to F[i + 1,5] and F[i, j]®Y is objectwise equivalent to F[i,j + 1],

as is true for the functors F(9),

Here O(p — i,q — j) is the subgroup of O(p, q) that fixes the first ¢ coordinates and the
(p+1)* to (p+ 7)™ coordinates. That is, for all g in O(p—i,q—j) and all (z1, ..., x,4,) in

RPFO if g(21, .o, Tprg) = (Y1y s Ypig), then z, = y, foralln <iand all p+1 <n < p+j.
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Each Fi, j] is an element of Cy&; ;. The structure maps are defined by the following series

of maps

SEIV A FJi, j)(V) = SEDYAQR[(SPDY A O)nogp-ig—)]
— Q®[SEV A (SPDV A O)00—igi)]
= Q®[(SEIV A SPDY A O)1o0pigi)]
— QF[(SPDU A SPDV A O)0(—iams)]
~ Q[(SPOUEV) A ©)ho(p—isg—j)]

=Fli,jJUaV)
where the second equality holds since O(p — i,q — j) fixes R*. Moreover, F[p,q| is a
(p, ¢)Q2-spectrum (by substituting F'[p, ¢] into the adjoint structure map).

We now want to show that F[i, j]1? is objectwise equivalent to F[i + 1, j] and F[i, ]!
is objectwise equivalent to F[i, j + 1]. Then, since F[p,q| is a (p, ¢)Q-spectrum

s~ Flp, ¢/ = (F®9)1.0) = pt+ia)

* F[ 7q] (0,1) = (F(pﬂ))(ovl) — F(p7q+1)

as desired. We do this by calculating F[i, j]*% and F[i, j]Y using Proposition 3.3.7.

Firstlet 0 <i<pand 0 <j <gq

Fli, j]%9(V) = hofibre [F[i, j)(V) — QUIEF[i, (R & V)]
= hofibre [Q[(SPDV A ©)o(pig—jy] = QEDEQX[(SPDEE) A Q)60 0]
=0 hofibre [(SPDV A ©)no(p-ig—j) — QUIE[(SPDEE) A O)400,i4-5)]]
~0> hofibre [(SPDY A ©)nogp—ig—j) — QLEF[(SPVE A SEDV A O)00i0-)]]

~()* hofibre [
~Q hofibre [(SPDV A ©)o(p-isg—j) — QUIESEDR[(SE=a=DR A GEOV A Q)60 10— i)]]

(8" )
(¢ )
(S(p,q)V A ©)ho(p—isg—j) — Q(i,j)R[(S(i,J‘)R A §P=ta=iR A gP.a)V A @)hO(p—i,q—j)H
(8" )
(8" )

~0 hofibre [(SPDV A ©)op-ig—j) — (ST IEASCD N O) 100 i 0]
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where the last weak equivalence is by the 7,-equivalence VXY X — X for C,.Sp°[O(p, q)].

The map S®IV A O — SP—0a-IR A SPOV A © is given by
G0.0 A gV A @ NN Gp—ig-R \ gV A o,

where i : S%0 — S(P=4a=9)R i5 the canonical inclusion, which has stable homotopy fibre
Sf_i_l’q_j)R. Therefore, the homotopy fibre of u A idAid is ng’_i_l’q_j)R A SPaV
©. Here O(p —i,q — j) acts on Sp i—La—R by identifying S®=*~14=)R with the unit
sphere S(RP~"77) in RP~97J. Since taking homotopy orbits preserves fibre sequences,
the homotopy fibre of the map (S®9VAO)yo(p—i4—j) — (SPTHIRASCIV AO)1600—i0—i)
is (SPTTHIIRA SRV A O)o0ig -

Then we conclude as follows, where the second weak equivalence is described below.

F[l ]](10) NQoo [ S(p i—1,g— J)R/\S’pq)V/\@)hOp i ])]
= Q% [(SR), A SPDY A O)opmig—i)]

NQOO[ pQ)V/\@hO(pz 1g— ])}

= Fli+1,j]

The second weak equivalence holds by Proposition 3.2.10 and that for X a Cs-spectrum

with O(m, n)-action, m > 0 and n > 0,

(S(Rm’n)+ A X)hO(m,n) = FEO(m, TL)+ NO(m,n) (S(Rm’n)+ VAN X)
= EO(m,n)+ Ao (O(m,n)/O(m —1,n); A X)

)+ /\O(m—l,n) X

I
53|
—~ /‘O\ — ~~
3
3

= XhO(m—l,n)
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since the map t* : (O(m,n) x Cy) Top, — (O(m — 1,n) x Cy) Top,, induced by the Cy-
equivariant subgroup inclusion map ¢ : O(m — 1,n) — O(m,n), exhibits t* FO(m,n) as a

model for FO(m — 1,n).

Now let 0 < i <pand 0 <j < q. A similar calculation shows that

.. o —i,q—j—1)R®
Fli, )00 (V) = @ [($P777 0% A S0V A ©)0(i
~ Q% [(SPDY A O)row—ig—i-1)]

= Fli,j+1]

As above, the second weak equivalence holds by Proposition 3.2.10 and that

+
>
2
E
5
2
S
2
~
S
S
|
\'l—\
2
+
>
s’

where the third step uses the Cy-equivariant group isomorphism O(m,n) — O(n,m)

defined for m,n > 1 by

0 Id, 0 Id,,
A— A

Id,, 0 Id, O

What remains to show is that F' is (p, ¢)-reduced (7}, ,F'(V) >~ * for all V € CyJy). The
notions of dimension functions for G-spaces discussed in Section 2.1.4 can also be used to
describe the connectivity of a G-spectrum. Since the category of spectra Co,Sp°[O(p, q)]

is stable with respect to Ch-representations, the spectrum X = S®9V A © has equivariant
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connectivity given by the dimension function ¢*(X) = |(p,q)V*| + ¢*(©) (see Examples

2.1.26 for similar notation).

That is, 72 X is trivial for n < (X)), where

(X)) = (p+q)dim(V) + ()
¢?(X) = pdim(V?) + ¢dim((V)") + (),

cH(0©) denotes the connectivity of © with respect to its equivariant homotopy groups w20

and (V)+ denotes the orthogonal complement of V2 (see Remark 2.1.15).

Therefore, the map
F(V) = x(V)=x

is (¢*(X) 4 1)-connected, since homotopy orbits and 2°° do not decrease connectivity.

Repeated application of Lemma 4.2.4 gives that this map is a T}, ;-equivalence. That is,
T (V) T, % (V) == H

Remark 6.3.3. If one replaces the group O(p,q) with the group O(p) x O(q) of Cs-
equivariant linear isometries on RP¥9 then a generalisation like Example 6.3.2 cannot
be achieved. This is because there is no equivariant description of the sphere S(RP) as

a quotient of these groups like there is for the groups O(p, q) (see Proposition 3.2.10).

Before we give the Cy-generalisation of [Wei95, Example 6.4], we first prove an equivariant
version of a key result used in the proof of the underlying example. The theorem describes
how close the map [Q*X],, — Q%°[X,.] is to being an equivalence, where X is a G-
spectrum with an action of a compact Lie group L. Here homotopy orbits (—);z, and the
infinite loop space Q> of X € GSp?[L] are defined in a similar way to (—)x0(p,q) and Q>
of X € C2Sp°[O(p, q)] in Example 6.3.2. For a (L x G)-space X, X, is defined to be the
space

XhL = FL /\L X,
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which has a G-action induced by the G-actions on E'L (the universal space of L) and X.

Theorem 6.3.4. For a finite group G that acts on L, let X be a G-spectrum with an

action of L, and R[G] be the reqular representation of G. Then the canonical map
5 : [QOOX]}LL — QOO[XhL]
18 v-connected for any dimension function v satisfying

o v(H) < 2c7(X) + 1

o v(H) < cK(X)
for all closed subgroups H < G and subgroup pairs K < H, where ¢ (X) := conn(X*#).

Proof. To show that the map & : [Q*°X],, — Q%°[X,z] is v-connected it will suffice to

show that the maps f, g in the following commutative diagram are v-connected,

[ X —— QX))

\lf

Qoo XhL]
where QY := hocolim,, Q"RICIS"RICTY
Q(2*°X) is the homotopy colimit of the sequential diagram
0> X — QMASRC Q= X) - QFEISRA Q> X) —

where each map QEICIYnRIG (o X) — QUHDRIE Y (+DRIG) () X) is obtained by sending
a map S™RICl — SnRIG] A 0> X to its smash product with the identity map on SRIC.
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By the Equivariant Freudenthal Suspension Theorem (see Section 2.1.4), the first of these

maps is v-connected for v satisfying

w(H) < 27 (X) + 1

v(H) < 5(X)

for all closed subgroups H < G and subgroup pairs K < H, where we have used that
cH(Q>X) = ¢ (X). Moreover, each successive map in the homotopy colimit is at least as
connected as the first (this can be seen by applying the equivariant Freudenthal suspension
to the maps in the colimit). Since equivariant homotopy groups commute with sequential

homotopy colimits, we conclude that the unit map i : Q°X — Q(2°X) is v-connected.

Since taking homotopy orbits does not decrease connectivity, the map ¢ is as connected

as the map 7. Therefore the map g is v-connected as required.

There is a commutative diagram of equivariant homotopy groups (x > 0)

rH(Q*X) —— 7H(QO®X) «+—— 7H(2*°0>X)
\ l 3 lp’
BQ©X) ¢+—— 7iX

In particular, the connectivity of the map p’ is the same as the connectivity of the map 7.
Hence, p' is also v-connected. Since taking homotopy orbits does not decrease connectivity

and 2> commutes with homotopy orbits, the composition map
oo oo ~Y oo oo p
Y X ) = (20X ] 5 Xor

is also v-connected. Call this composition p},. The map f is 2°° of the map pj;, above.

Therefore the map f is v-connected as required, since {2°° preserves connectivity. O
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Example 6.3.5. Let © be a Cy-spectrum with an action of O(p, q), where p,q > 1. Then

the input functors

E:V =[SV A O) o

F Vs Q%S9 A 0)4o0p,g)]
are Tp,41 41}, o+1-equivalent under the canonical subfunctor inclusion map r : £ — F.

Proof. The spectrum X = S®9V A© has equivariant connectivity given by the dimension
function ¢*(X) = |(p,q)V*| + ¢*(©), see Section 2.1.4. That is, 72X is trivial for all

n < cf(X), where

(X)) = (p+q)dim(V) + ()
¢?(X) = pdim(V?) + ¢dim((V)1) 4+ c2(0),

cH(©) denotes the connectivity of © with respect to its equivariant homotopy groups 7276

and (V)+ denotes the orthogonal complement of V2 (see Remark 2.1.15).

Applying Theorem 6.3.4 yields that the map r(V) : E(V) — F(V) is v-connected, where

vie) =2(p+q)dim(V) +2¢°(0) + 1
v(Cy) = min{2p dim (V) + 2¢ dim((V2)*4) +2¢%2(0) + 1, (p + ¢) dim(V) + ¢*(0)}

Corollary 4.2.5 implies that 7,11 47 q+17(V) © Tpr1,4Tpgr1 E(V) = Tpi1,4Tp g1 F(V) is at
least (v + 1)-connected. Repeated application of Corollary 4.2.5 yields that the connec-
tivity of 7., ;7 .17(V) tends to infinity as [ tends to infinity. Hence Tpiq ¢Tp g417 is an

objectwise weak equivalence. O

We can now prove that the Quillen adjunction of Theorem 6.2.3 is a Quillen equivalence.

The proof resembles that of Barnes and Oman in [BO13, Theorem 10.1] and Taggart in
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[Tag22b, Theorem 7.5], using the new Cy-equivariant versions of [Wei95, Example 5.7 and
Example 6.4] given in Examples 6.3.2 and 6.3.5 respectively.

Theorem 6.3.6. For all p,q > 1, the Quillen adjunction
resp’s /O(p, q) = O(p, q)Ca&, , = (p, q) -homog- Ca&o o : indffe”
18 a Quillen equivalence.

Proof. Let f : A — B be a map of fibrant objects in (p, ¢)-homog-Cy&y such that
indfge* f is a weak equivalence in O(p, q)Co&; . Then indfge*T,1,4Tp g1 f is a weak

equivalence of fibrant objects in O(p, ¢)C2E? ., and by Lemma 3.4.13 it is also an objectwise

p,q’
weak equivalence. That is, f is a weak equivalence in (p, ¢)-homog-Cs&, so the right

adjoint indf§ e* reflects weak equivalences of fibrant objects.

By Hovey [Hov99, Theorem 1.3.16], what remains to check is that the derived unit is a

weak equivalence of O(p, q)C2&;, on cofibrant objects.

Let X be cofibrant in O(p, ¢)C2&, . There is a Quillen equivalence

(pa)r = O(p, ) CoES , = CoSp°[0(p, q)] «

pq

by Theorem 6.1.7. Therefore, an application of [Hov99, Theorem 1.3.16] says that there
exists a (p, ¢)m,-isomorphism

X — a;,qf(ap,q)!Xa
where f represents fibrant replacement in C5Sp°[O(p, q)].

Let ¢ represent cofibrant replacement in O(p, q)C2ES , and denote the Q2-spectrum with

D,q’

O(p, q)-action f(ay )X by W. There is a commutative diagram in O(p, q)C2E;5 ,

X > car W

| |

indg'g e*Tpy1,4Tp.qr11es0 o X/O(p,q) — indgg e Ty11,4T) 441 re855(C0sy W) /O(p, q)

)
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The map 7 is the derived unit, which we want to show is a (p, ¢)m.-isomorphism.

The top horizontal map is a (p, ¢)m.-isomorphism, since it is the (p, ¢)m,-isomorphism given
above composed with cofibrant replacement. The bottom horizontal map is a (p, q)m,-
isomorphism, since the top one is and derived functors preserve weak equivalences. The
same method as [BO13, Theorem 10.1] shows that the right vertical map is also a (p, ¢)m.-
isomorphism. This argument uses the Cy-equivariant generalisations of [Wei95, Examples
5.7 and 6.4], which are given by Example 6.3.2 and Example 6.3.5 respectively. Therefore,

n is also a (p, ¢)m.-isomorphism as required. O]

Corollary 6.3.7. There is an equivalence of homotopy categories
Ho(C25p°[0(p, 4)]) = Ho((p, q) -homog- C2&y.9)

forp,q>1.

Proof. Let p,q > 1. The adjunctions
resgo /O(p,q) : O(p, ¢)C2€, , = (p, q) -homog- C2&yp = indfg e*

and

(apg)r 1 O(p, 9)CoES . = CaSp°[0(p, q)] :

p.q

are Quillen equivalences. Composition of the left and right derived functors gives the

desired zig-zag of equivalences. O]

Rephrasing this classification using the derived adjunctions, we can explicitly describe how
(p, ¢)-homogeneous functors are completely determined by genuine orthogonal Cs-spectra,
with an action of O(p,q). The following classification is a Cy-equivariant generalisation
of [Wei95, Theorem 7.3]. We will denote the image L(a, o) Rindf§e*F € C2Sp°[0(p, q)]
of a F € Cy&y under the derived zig-zag of Quillen equivalences by ©%7. That is, O97 is
a specific Cy-spectrum with an action of O(p, ¢), which is determined by the functor F.
The proof follows the method used by Taggart [Tag22b, Theorem 8.1].
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Theorem 6.3.8. Let p,q > 1. If F € Cy& is a (p, q)-homogeneous functor, then F is

objectwise weakly equivalent to
V= (ST A OF ) hop,)]
Conversely, every functor of the form
Vs Q[(SEOV A ©)hom.a)
where © € C,8p°[0(p, q)] is (p, q)-homogeneous.

Proof. The proof of the converse statement is exactly Example 6.3.2.

Let F' be cofibrant-fibrant in (p, ¢)-homog-C2&yo. That is, F' is (p, ¢)-homogeneous and

cofibrant in the projective model structure. Define functors £, G € Cy&y o by

E(V) = (indg”g 5*F(V))h0(p7q)
G(V) = Q®[(SP A OFN) o)

The functors £ and G are Tj41 41}, +1-equivalent, since
indfd e F(V) = o, O8R4 (V) = Q®(SPIV A oht)

and [Q®(SPDV A O8N ho(p.q) 18 Tpi1,4Tpe+1-equivalent to G by Example 6.3.5.

Since G is (p, q¢)-polynomial by Example 6.3.2, Lemma 4.2.12 implies that G is objectwise
weakly equivalent to Tp,y1,,7},4+1F. Therefore, there is an objectwise weak equivalence
between indgg e T,11,4Tp,g+1 E and indgge*G, since indfg e* is right Quillen and preserves

weak equivalences of fibrant objects.

Using the “identification” = from Example 6.3.2, we get the following.

ind§d e*G(V) = Glp, q(V) := Q°(SPIV A O%) ~ ind}d " F(V)
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Therefore, there is a zig-zag of objectwise weak equivalences between indgg " Ty 1,41 g1 E

and indgge*F (V).

Since F'is (p, ¢)-homogeneous by assumption, it is in particular (p, ¢)-polynomial. Then

by an application of Lemma 4.2.12, there is a zig-zag of objectwise weak equivalences
indgg e Tpi1,¢Tp g1 £ = indgg e Tyi1 g Tp g F

That is, E and F' are weakly equivalent in the (p, ¢)-homogeneous model structure.

Since both E and F are cofibrant in (p, ¢)-homog-C5& o, an application of [Hir03, Theorem
3.2.13 (2)] implies that £ and F' are weakly equivalent in the (p,¢)-polynomial model
structure. Since both E and F' are fibrant in (p, ¢)-poly-C2& 0, an application of [Hir03,
Theorem 3.2.13 (1)] implies that E and F are weakly equivalent in the projective model

structure. Hence, there are objectwise weak equivalences
G~ Top1gTp g1 B> Ty g Tp g = F

since Tp+1,41, 4+1 DPreserves objectwise equivalences and F is (p, ¢)-homogeneous.

For general (p,q)-homogeneous F' the result follows by cofibrantly replacing F' in the

projective model structure and then applying the argument above. O]

The final theorem is an application of the classification Theorem 6.3.8. This theorem
describes how the classification is actually used, in order to study one of the input functors

(see Definition 3.1.5). In particular, the fibre
Dp,qX(V) - Tp+17qu,q+1X(V) - Tp,qX(V>

is determined by the (p, ¢)-derivative of D, ,X. This is analogous to studying the layers
of the Taylor tower of approximations in the underlying calculus, see Section 2.2.6, and

the statement is similar to that of Weiss [Wei95, Theorem 9.1].
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Theorem 6.3.9. For all X € Cy&yp, p,g > 1 and V € CyJyp, there exists homotopy

fibre sequences
QOO[(S(p’q)V A @%Z,qx)ho(p,q)] = Tpi1,gDpg1 X (V) = T, X (V)

Proof. The map Tp,41,41p 441X — T, X is exactly Tp41 41 4+1 of the canonical inclusion

map X — T, ,X, by Lemma 4.2.12.

Let D,,X be the homotopy fibre of this map. Then D, ,X is (p,¢)-homogeneous (see
Theorem 5.1.6). An application of the classification Theorem 6.3.8 gives that

Dy X (V) =~ QOO[(S(p’q)V A Q%Zﬁqx)ho(pvq)]- [

6.4 The functor BO(—)

The complexity of computations in orthogonal calculus is widely acknowledged. In [Wei95,

Example 2.7], Weiss gives calculations for low degree derivatives of the functor
BO(=):V — BO(V)

where V € Jy. In [Aro02, Theorem 2|, Arone gives a formula for the remaining higher

derivatives of this functor.

In this section, we find some good candidates for the first derivatives of an input functor
for Cy-equivariant orthogonal calculus, BO(—) € C2& 0. These calculations are analogous

to that of [Wei95, Example 2.7] for BOW(-).

We define an input functor to Cy-equivariant orthogonal calculus BO(—) by

BO(=):V — BO(V)
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where V' € CoJo 0. The space BO(V) is the classifying space of O(V'), with the Cy-action

inherited from the Cs-action on V.

More specifically, since O(V') has a Cy-action, which is conjugation by the matrix A
defined in 3.2.8, finite products O(V) x --- x O(V') can be equipped with the diagonal
Cy-action. The universal space FO(V) is the geometric realisation of a simplicial space
whose n-simplices are (n + 1)-tuples of elements of O(V'), see [Hat02, Example 1B.7]. As
such, EO(V) inherits a Cy-action, which is the diagonal action on simplices, and so does

the orbit space EO(V)/O(V) =: BO(V).

Note that the universal space FO(V) is a contractible Cy-space. That is, the equivariant
homotopy groups 7 EO(V) are trivial for all n and for each closed subgroup H of Cs.
This follows from the fact that taking fixed points commutes with taking the geometric

realisation (see [May96, Section V.1]), so that in particular
(EO(p,q))™ = E (O(p,q)*) = E(O(p) x O(g)) = EO(p) x EO(q),

which is a contractible space, since EO(p) and EO(q) are both contractible.

Consider the long exact sequence of Chy-equivariant homotopy groups 72 on the C,-
equivariant fibre sequence O(V) — EO(V) — BO(V). Since the homotopy groups

7 EO(V) are all trivial, we see that there is a weak equivalence of Cy-spaces
QBO(V) ~O(V).

Here the Cy-action on S! is trivial and so Cy acts on f € QBO(V) by o(f) ;=0 o f.

Remark 6.4.1. There are other descriptions for the classifying space of O(V'), which may
lead to more interesting calculations. For example, in [GMM17], Guillou, May and Merling
define a classifying space for principal (G,II)-bundles, where G and II are topological
groups and G acts on II so that

1-1I—=1IxG—-G—1
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is a split extension. Since the conjugation Cs-action on O(V') induces a split exact sequence
identical to that above (see Definition 3.2.8), this theory of (Cy, O(V'))-bundles is appli-
cable. The description of E(G,1I) is given in terms of the classifying space of a category
of functors € (G,1I), and B(G,1I) = E(G,II)/II is the orbit space. In [May96, Chapter
VII], May presents a more general theory of (II : I')-bundles that is applicable to non-split
extensions

1-1I—-1T—-G—1.

The ‘calculation’ of the derivatives of BO(—) € C2&y uses the iterative description of

derivatives given by the homotopy fibre sequence of Proposition 3.3.7.

Let BO(—) € C2& be defined as above. By Proposition 3.3.7, there exist Cy-equivariant

homotopy fibre sequences
BOM)(V) = indgy BO(V) — BO(V) — BO(V & R)

and

BON(V) = ind$t BO(V) — BO(V) — BO(V & R?).

The subgroup inclusion map ¢ : O(V) — O(V & X) induces a Cy-equivariant homotopy

fibre sequence
OV e X)/OV)~QBOV @ X)/O(V)) - BO(V) — BO(V @& X)

where X =R or X = RY.

That is, there exist Cy-equivariant homotopy fibre sequences
OV a&R)/O(V)— BO(V) — BO(V &R)

and

OV @R’ /O(V) = BO(V) = BO(V @ R%)
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Therefore, the functors £ € Cy€ ¢ and F' € Cy&y; defined by

E: V= OWVaR)/OWV)x2SY
F:V OV aeR)/OV) =~ gVer

are good candidates for BO*%(—) and BO(®V(—) respectively.

Conjecture 6.4.2. The (1,0)-derivative of BO(—) is the orthogonal sphere spectrum
S: V i+ 8V and the (0, 1)-derivative of BO(—) is the twisted orthogonal sphere spectrum

SE LV s SVER,

Remark 6.4.3. In [Wei95], see also [Tag], the second derivative BO®)(—) is calculated
using spectral sequence methods. Trying to generalise the method to calculate BO®Z0) (—),

BOWY(—) and BO®?(—) would be an interesting task.
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