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Abstract This paper tackles the extension problems for the homotopy groups π39(S
6), π40(S

7), and
π41(S

8) localized at 2, the puzzles having remained unsolved for forty-five years. We introduce a tool
for the theory of determinations of unstable homotopy groups, namely, the rectangular Toda bracket, by
which we are able to solve the extension problems with respect to these three homotopy groups.
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1 Introduction

The extension problems from the 1979 literature by N. Oda ([7, pp. 145]), which have gone uncracked
for the past 45 years, are as follows:

π39(S
6) ≈ (Z/2)8 or (Z/2)6 ⊕ Z/4,

π40(S
7) ≈ (Z/2)6 or (Z/2)4 ⊕ Z/4

and π41(S
8) ≈ Z/8⊕ (Z/2)8 or Z/8⊕ (Z/2)6 ⊕ Z/4 localized at 2.

The key aspect of addressing these problems lies in determining the order of the element κ′
6 ∈ π39(S

6
(2))

with nontrivial Hopf invariant ν̄11κ̄19. The puzzles have proven insurmountable by conventional strate-
gies. In this paper, we introduce the rectangular Toda bracket, by which we are able to determine
the group extensions for these three homotopy groups. It is noteworthy that our capacity to employ
the rectangular Toda bracket in resolving Oda’s extension problems arises from our establishment of
the H-formula (see Theorem 2), which cannot be straightforwardly or congruently derived from Toda’s
H-formula ([1, Proposition 2.6]), but rather deduced through the theory of groups [(CΣX,X), (Y,B)].

Homotopy groups occupy a central and foundational position in homotopy theory, encapsulating the
essence of building spaces. These groups serve as pivotal invariants, providing profound insights into
the inherent geometric and algebraic characteristics of spaces. Among the myriad of homotopy groups,
those pertaining to spheres hold a particularly preeminent and influential status. Through meticulous
analysis of these groups, researchers have devised sophisticated techniques and unearthed unexpected
results, significantly impacting areas such as algebraic topology, differential geometry, and theoretical
physics.

Given k ∈ Z+, the groups πn+k(S
n) (n ≥ 2) are called the k -stem homotopy groups of spheres. The

initial systematic and effective computation of homotopy groups of spheres is presented in [1] (the 1 to
19 -stems) by H. Toda in 1962, followed subsequently by [3] (the 20 -stem), [4] (the 21,22 -stems localized
at 2) and [5] (the 23,24 -stems localized at 2).

In 1979, N. Oda ([7]) studies the homomotopy groups of spheres πn+k(S
k) (25 ≤ n ≤ 31) for all

k ≥ 2 and πn+k(S
k) (n = 32, 33) for 2 ≤ k ≤ 8 localized at 2. This work epitomizes an exceptional

blend of rigorous logic and artistic flair. Oda employs an array of sophisticated techniques to compute
these homotopy groups, manifesting an extraordinary level of mathematical prowess. The employed
methodologies encompass the classical Toda bracket method, the 4 -fold Toda bracket method, the Adams
spectral sequence and Im(J)-theory. However, the 33 -stem homotopy groups π39(S

6), π40(S
7) and

π41(S
8) localized at 2 are incompletely determined.

In 2017, the determinations of the 32 -stem homotopy groups localized at 2, namely, the groups
π32+k(S

k
(2)) for all k ≥ 2, are comprehensively concluded by T. Miyauchi and J. Mukai ([11]). The

authors provide a new tool for determinations of unstable homotopy groups, that is, the matrix Toda
bracket indexed by n, which makes better use of the desuspension property of homotopy classes if
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n ≥ 1 and is a key ingredient to compute π46(S
14
(2)). Notably, [11] gives a comprehensive computation

of the homotopy group π42(S
9
(2)), a 33 -stem homotopy group localized at 2. While the three groups

π33+n(S
n
(2)) (n = 6, 7, 8) are still unresolved within [11].

Herein lies our first main theorem, which constitutes the primary objective of this manuscript and
addresses the extension problems posed by Oda ([7, pp. 145]), (see Proposition 4.2.1).

Theorem 1 Localized at 2,

π39(S
6) ≈ (Z/2)8, ord(κ′

6) = 2; π40(S
7) ≈ (Z/2)6; π41(S

8) ≈ Z/8⊕ (Z/2)8.

To prove Theorem 1, we define rectangular Toda brackets and study their properties in the spirit
of [12]. In particular, we propose a theorem that explicates the interaction of the homomorphism H
with P in the process of using the rectangular Toda bracket, which theorem constitutes the most pivotal
technique in our conquest of Oda’s extension problems.

Our second main theorem which generalizes Toda’s H-formula given by [1, Proposition 2.6, pp. 22-23],
is stated as follows, (see Proposition 3.1.4).

Theorem 2

ΣX1 ΣY1

Sm+1 ΣZ

ΣX2 ΣY2

Σα1

{{

Σα2

cc

Σβ2oo

Σβ
1oo

Σγ1

cc

Σγ2{{

Localized at 2, given the above diagram of spaces and homotopy classes with Y1, Y2 and Z suspensions
such that Σα1 ◦ Σβ1 = Σα2 ◦ Σβ2 = β1γ1 + β2γ2 = 0, we have

H

[
Σα1 Σβ1 Σγ1
Σα2 Σβ2 Σγ2

]
1

= −P−1(α1β1) ◦ Σ2γ1 − P−1(α2β2) ◦ Σ2γ2.

Acknowledgement. This work is supported in part by the start-up research fund from Beijing Institute
of Mathematical Sciences and Applications. The authors are indebted to professor Juno Mukai and Fedor
Pavutnitskiy for many fruitful conversations on this project.

2 Preliminaries

2.1 Notations

In this paper, all spaces, maps, homotopy classes are pointed. By a space we mean a path-connected
CW complex. If we take the 2-localization, we always use the original symbols of the spaces, maps and
homotopy classes to denote them after localization at 2. Basepoints and constant maps are denoted
by ∗, homotopy classes of constant maps are denoted by 0. To indicate the domain and codomain, the

trivial element in πn+k(S
n) is also denoted by 0

(k)
n . In our discourse on the sphere Sm, we consistently

presuppose m ≥ 1. For a map or a homotopy class f , the notation Cf stands for the homotopy cofibre
of f . We shall not differentiate between a map and its homotopy class when no confusion arises.

Let α ∈ πn(X), β ∈ πm(Sn) where n ≥ 2 and let k ∈ Z; usually and reasonably, αβ is the the
abbreviation of α◦β and kα◦β is the the abbreviation of (kα)◦β; in this article we only use the symbol
kαβ to denote k(αβ). So it’s necessary to point out that,

kαβ ̸= kα ◦ β in general.

Of course kαβ = kα ◦ β always holds if β is a suspension or the codomain of α is S7 or a group-like
H -space ([6, p. 118]), especially a topological group.

For a non-negative integer m, let Z/m denote Z/mZ; let Z(2) be the group or the ring of 2-local

integers; for a Z(2)-module A of form Z(2) or Z/2k, we use G = A{x} to denote a Z(2)-module G which
is ismorphic to A and generated by x. For example, G = Z/4{x} stands for G ≈ Z/4 and G is generated
by x. (Z/m)k denotes the direct sum of k-copies of Z/m; we use ⊕ to denote both the internal direct
sum and the external direct sum. And ord(x) denotes the order of the element x of a group.

Let G be an abelian group and A be a subgroup, g, g′ ∈ G; following Oda ([7]), we write g ≡ g′ modA
if g − g′ ∈ A. If A is generated by {aλ}λ∈Λ, then “ modA ” is also denoted by “ mod aλ, (λ ∈ Λ) ”.
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2.2 Some fundamental facts

Given the following sequence of spaces and homotopy classes where Z is a suspension such that α◦Σnβ =
βγ = 0,

W ΣnX ΣnY ΣnZ,
Σnβ
oo

Σnγ
ooαoo

the (ordinary) Toda bracket which is denoted by {α,Σnβ,Σnγ}n is defined to be the set of all composi-
tions of the form

(−1)next
Σnβ

(α) ◦ Σncoext
β
(γ),

where ext
Σnβ

(α) ∈ [CΣnβ , W ] is an extension of α with respect to Σnβ, and coext
β
(γ) ∈ [ΣZ,Cβ ] is

a coextsion of γ with respect to β, (in [1, p. 13], ext
Σnβ

(α) and coext
β
(γ) are denoted by α and γ̃

respectively ♯ ). Such a Toda bracket is a coset included in [Σn+1Z,W ], that is,

{α,Σnβ,Σnγ}n ∈ [Σn+1Z,W ]/A,

where A = α ◦Σn[ΣZ,X] + [Σn+1Y,W ] ◦Σn+1γ. Furthermore, as a group homorphism sends a coset to
a coset, it is clear that f ◦ {α,Σnβ,Σnγ}n is a coset of f ◦ A, and {α,Σnβ,Σnγ}n ◦ Σg is a coset of
A ◦Σg, (f, g : maps). For a fixed n, {α,Σnβ,Σnγ}n depends only on (α, β, γ) but not (α,Σnβ,Σnγ). It
is necessary to point out that even if Σnβ′ = Σnβ,Σnγ′ = Σnγ and β′γ′ = 0,

{α,Σnβ′,Σnγ′}n ̸= {α,Σnβ,Σnγ}n in general,

(see [10, Remark 3.1]). For more basic properties of Toda brackets, see [1, pp. 10-12].
Next, let us reminisce upon the the generalized EHP sequence. The following is from [12, Proposition

4.2].

Proposition 2.2.1 After localization at 2, let the following sequence (called the generalized EHP se-
quence) be given,

· · · H // [Σ2Z, Sm]
Σ // [Σ3Z, Sm+1]

H // [Σ3Z, S2m+1]
P // [ΣZ, Sm]

Σ // [Σ2Z, Sm+1],

where each H is induced by H2 up to the obvious isomorphism, and each P : [Σr+1Z, S2m+1] →
[Σr−1Z, Sm] is defined to be P = ∂ ◦ (H2∗)

−1 ◦ Ω1 with Ω1 : [Σ− , S2m+1]
≈−→ [−, JS2m] the classical

isomorphism and ∂ : [(CΣr−1Z,Σr−1Z), (JSm, Sm)] → [Σr−1Z, Sm] (r ≥ 2) the boundary homomor-
phism. Then this sequence is exact in the category of groups. Moreover,

{[Σ3Z, S2m+1]
P→ [ΣZ, Sm] | Z is a 2-local space}

is a natural transformation from the cofounctor [Σ−, Sm] to the cofounctor [Σ2−, S2m+1].

Remark 2.2.2 (1) We can derive a long exact sequence with ease by applying the functor [ΣZ,−] to the

2-local homotopy fibration sequence, · · · −→ Ω2S2m+1 → Sm ↪→ ΩSm+1 H2−→ ΩS2m+1. Proposition
2.2.1 primarily highlights the specific constructions of the boundary homomorphisms P , in order
to use [9, Proposition 2.4] to derive the H-formulas such as Theorem 2.

(2) Worth mentioning is the absence of the relative Whitehead theorem (also see [6, pp. 184-185]).

That is, after localization at 2, the fact that πk(JS
m, Sm)

H2∗−→ πk(JS
2m, ∗), (k ≥ 1) are isomor-

phisms for the path-connected CW pairs (JSm, Sm) and (JS2m, ∗), does not imply (JSm, Sm) ≃
(JS2m, ∗). ♯♯ The invocation of the theory of groups of relative homotoy classes [(CΣX,ΣX), (Y,B)]

is imperative in confirming that the homomorphisms H2∗ : [(CΣr−1Z,Σr−1Z), (JSm, Sm)]
≈−→

[(CΣr−1Z,Σr−1Z), (JS2m, ∗)] (r ≥ 1) are isomorphisms localized at 2. See [12] for more details.

The ensuing result from [12, Corrollary 4.2] is particularly advantageous in the proof of the generalized
H-formula (Proposition 3.1.4).

Lemma 2.2.1 After localization at 2, suppose L1, L2 are suspensions; then there exists a commutative
diagram where p1 : L1∨L2 → L1 is the pinch map and i2 : L2 → L1∨L2 is the inclusion map. Moreover,
the vertical arrows are short exact sequences which split into direct products and the split homomorphisms
are induced by the obvious pinch and inclusion maps.

♯ For more properties of extensions and coextensions, see [10, Lemma2.2 and Lemma2.3]
♯♯ (JSm, Sm) ̸≃ (JS2m, ∗) localized at 2, by checking the Z/2-homology.
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[Σ2L1, S
2m+1]

(Σ2p1)
∗

��

P // [L1, S
m]

p∗
1

��

[Σ2(L1 ∨ L2), S
2m+1]

(Σ2i2)
∗

��

P // [L1 ∨ L2, S
m]

i∗2
��

[Σ2L2, S
2m+1]

P // [L2, S
m]

3 Rectangular Toda brackets

In the spirit of [12], we define the rectangular Toda bracket indexed by n, (Definition 3.1), which is
essentially a special case of the 3 -fold Toda bracket. Recall that in the seminal works [1], [3],[4],[5],[7]
and [11] on computing homotopy groups of spheres, to determine π∗(S

n), in particular, to define elements
with nontrivialH-images, all instances of 3 -fold Toda brackets are brackets of three elements of homotopy
groups of spheres. Within this purview, our rectangular Toda bracket elaborates on the use of the 3 -fold
Toda bracket. It is worthy mentioning that the 3 -fold, matrix and rectangular Toda brackets indexed
by n (n ≥ 1) make better use of the desuspension property of homotopy classes, and play an important
role in unstable homotopy theory.

Our ability to address Oda’s extension problems is largely attributed to the utilization of a rectangular
Toda bracket indexed by 2, see Lemma 4.2.1.

Additionally, while the rectangular Toda bracket is a particular case of the 3 -fold one, not all proper-
ties of the 3 -fold one can be preserved in a “rectangular pattern” for the rectangular Toda bracket, (see
Proposition 3.1.1, Lemma 3.1.1 (4), (5)). Hence, a specific investigation into its properties is warranted.

Suppose fi : Ui → W (i = 1, 2) are maps or homotopy classes. By abuse of notation, the following
composition is still denoted by f1 ∨ f2,

W oo ∇
folding

W ∨W oo
f1∨f2

U1 ∨ U2.

Definition 3.1

ΣnX1 ΣnY1

W ΣnZ

ΣnX2 ΣnY2

α1

zz

α2

dd

Σnβ
2oo

Σnβ1oo

Σnγ1

dd

Σnγ2zz

For the above diagram of spaces and homotopy classes with Z a suspension such that α1 ◦ Σnβ1 =

α2 ◦ Σnβ2 = β1γ1 + β2γ2 = 0, let Yk
jk
↪→ Y1 ∨ Y2 be the inclusions (k = 1, 2); the rectangular Toda

bracket indexed by n [
α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

is defined to be the ordinary Toda bracket

{α1 ∨ α2, Σ
n(β1 ∨ β2), Σ

n(j1γ1 + j2γ2)}n

with respect to the following sequence

W oo
α1∨α2

Σn(X1 ∨X2) oo
Σn(β1∨β2)

Σn(Y1 ∨ Y2) oo
Σn(j1γ1+j2γ2)

ΣnZ.

Proposition 3.1.1 Under the condition of Definition 3.1, further suppose n ≥ 1, X1 and X2 are sus-
pensions. Then, [

α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

∈ [Σn+1Z,W ]/A, where

4



A = α1 ◦ Σn[ΣZ,X1] + α2 ◦ Σn[ΣZ,X2] + [Σn+1Y1,W ] ◦ Σn+1γ1.

Proof. By the assumption, we see that n ≥ 1, X1 and X2 are suspensions. Then, according to the proof
of [12, Proposition 3.2], we derive

[α1 ∨ α2] ◦ Σn[ΣZ,X1 ∨X2] = α1 ◦ Σn[ΣZ,X1] + α2 ◦ Σn[ΣZ,X2]. (3.1)

Therefore, the proposition follows from Definition 3.1 and [1, Lemma 1.1, pp. 9]. □

Remark 3.1.2 In Proposition 3.1.1, the condition “n ≥ 1” is necessary. Since Formula (3.1) is not
true in general if n = 0 is allowed. See [12, Example 3.3].

Proposition 3.1.3 Under the condition of Definition 3.1, further suppose n ≥ 1, X1, X2 are suspen-
sions, and β1γ1 = β2γ2 = 0. Then,[

α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

⊆ {α1,Σ
nβ1,Σ

nγ1}n + {α2,Σ
nβ2,Σ

nγ2}n.

Proof. Recall from Definition 3.1 that the maps Yk
jk
↪→ Y1 ∨ Y2 are the inclusions (k = 1, 2). Let

Xk
ik
↪→ X1 ∨X2 be the inclusions (k = 1, 2). Then, (β1 ∨ β2) ◦ j1 = i1β1, (β1 ∨ β2) ◦ j2 = i2β2. And so,[

α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

= {α1 ∨ α2, Σ
n(β1 ∨ β2), Σ

n(j1γ1 + j2γ2)}n

⊆ {α1 ∨ α2, Σ
n(β1 ∨ β2), Σ

n(j1γ1)}n + {α1 ∨ α2, Σ
n(β1 ∨ β2), Σ

n(j2γ2)}n
⊆ {α1 ∨ α2, Σ

n((β1 ∨ β2) ◦ j1), Σnγ2}n + {α1 ∨ α2, Σ
n((β1 ∨ β2) ◦ j2), Σnγ2}n

= {α1 ∨ α2, Σ
n(i1β1), Σ

nγ2}n + {α1 ∨ α2, Σ
n(i2β2), Σ

nγ2}n (3.2)

⊇ {(α1 ∨ α2) ◦ Σni1, Σ
nβ1, Σ

nγ2}n + {(α1 ∨ α2) ◦ Σni2, Σ
nβ2, Σ

nγ2}n (3.3)

= {α1, Σ
nβ1, Σ

nγ2}n + {α2, Σ
nβ2, Σ

nγ2}n. (3.4)

It suffices to show that the relation “⊇ ” in Equation (3.3) is in fact an equality. By Formula (3.1), we
infer the sum in Equation (3.2) is a coset of

M = α1 ◦ Σn[ΣZ,X1] + α2 ◦ Σn[ΣZ,X2] + [Σn+1Y1,W ] ◦ Σn+1γ1 + [Σn+1Y2,W ] ◦ Σn+1γ2.

Through straightforward verification, we can easily deduce that the sum in Equation (3.4) is also a coset
of M . Therefore, the sum in Equation (3.4) is equal to the sum in Equation (3.2). □

Proposition 3.1.4

ΣX1 ΣY1

Sm+1 ΣZ

ΣX2 ΣY2

Σα1

{{

Σα2

cc

Σβ
2oo

Σβ1oo

Σγ1

cc

Σγ2{{

Localized at 2, given the above diagram of spaces and homotopy classes with Y1, Y2 and Z suspensions
such that Σα1 ◦ Σβ1 = Σα2 ◦ Σβ2 = β1γ1 + β2γ2 = 0, we have

H

[
Σα1 Σβ1 Σγ1
Σα2 Σβ2 Σγ2

]
1

= −P−1(α1β1) ◦ Σ2γ1 − P−1(α2β2) ◦ Σ2γ2.

Proof. By Proposition 2.2.1 and Lemma 2.2.1, we infer

P−1(α1β1 + α2β2) = (Σ2p1)
∗(P−1(α1β1)) + (Σ2p2)

∗(P−1(α2β2))

where pi : Y1 ∨ Y2 → Yi (i = 1, 2) are the pinch maps. Then the proposition follows from Definition 3.1
and [9, Proposition 2.4]. (Notice that the proof is similar to [12, Proof of Theorem 2 and 3]). □

Suppose k ∈ Z; following Fred. R. Cohen ([8, pp. 16]), we use [k] to denote the self-map of degree k

whose domain is a suspension. Notice that [k] ◦ α = α ◦ [k] = kα if ΣX
α−→ ΣY is a suspension.

The lemma presented below can be directly concluded from Definition 3.1 and the well-known prop-
erties of Toda brackets given by [1, pp. 10-12].

5



Lemma 3.1.1 Under the condition of Definition 3.1 and setting Z = ΣZ ′, we have the following.

(1) [
α1 Σn−1(Σβ1) Σn−1(Σγ1)
α2 Σn−1(Σβ2) Σn−1(Σγ2)

]
n−1

⊆
[
α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

, (n ≥ 1).

(2)

Σ

[
α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

⊆ −
[
Σα1 Σn+1β1 Σn+1γ1
Σα2 Σn+1β2 Σn+1γ2

]
n+1

.

(3) [
α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

◦ Σn+1δ ⊆
[
α1 Σnβ1 Σn(γ1 ◦ Σδ)
α2 Σnβ2 Σn(γ2 ◦ Σδ)

]
n

, (δ ∈ [K,Z ′], K : a space);

ξ ◦
[
α1 Σnβ1 Σnγ1
α2 Σnβ2 Σnγ2

]
n

⊆
[
ξα1 Σnβ1 Σnγ1
ξα2 Σnβ2 Σnγ2

]
n

, (ξ ∈ [W,L], L : a space).

(4) [
α1 Σnβ1 Σn([k] ◦ y1)
α2 Σnβ2 Σn([k] ◦ y2)

]
n

⊆
[
α1 Σn(kβ1) Σny1

α2 Σn(kβ2) Σny2

]
n

, (k ∈ Z),

if the spaces Ys are suspensions and γs = [k] ◦ ys, (s = 1, 2).

(5) [
kα1 Σnb1 Σnγ1
kα2 Σnb1 Σnγ2

]
n

⊆
[
α1 Σn(kb1) Σnγ1
α2 Σn(kb1) Σnγ2

]
n

, (k ∈ Z),

if the elements αs are suspensions and βs = kbs with bs suspensions, (s = 1, 2).

4 On the extension problems for π6
39, π

7
40 and π8

41

In this section, all spaces and homotopy classes are localized at 2 unless otherwise stated. The 2-local
homotopy group πm(Sn) is also denoted by πn

m. We follow Toda’s notations in [1] of the generators of
πn
∗ , whose notations and naming convention are also adopted by [3],[4],[5],[7],[11] and so on. Recall from

[1] that a set containing a single element is identified with its element. We denote Toda’s E by Σ, the
suspension functor, and we denote Toda’s ∆ by P , the boundary homomorphism of the EHP sequence.
For the convenience of readers, in next paragraph we shall give a brief introduction of Toda’s naming
convention for the generators of πn

∗ to help readers to read some of our lemmas and their proofs. Since
Toda’s 2-primary component method in [1] naturally corresponds to the 2-localization method. In this
article we use the language of the 2-localization to state the facts on the 2-primary components.

Roughly speaking, for x which represents a Greek letter, xn denotes one of the generators of πn
n+r

for some r, the subscript n indicates the codomain of xn. Moreover, xn+k := Σkxn, x := Σ∞xn, and
xℓ
n is the abbreviation of xn ◦ xn+r ◦ · · · ◦ xn+(ℓ−1)r, (ℓ factors). The usages of xn and x∗

n are similar

to above. In πj
j+r (not a stable homotopy group), if a generator is written without a subscript, then

this generator does not survive in the stable homotopy group πS
r (S

0) or its Σ∞- image is divisible by 2.
For example, for θ ∈ π12

24 , σ
′′′ ∈ π5

12, their Σ∞- images satisfy Σ∞θ = 0, Σ∞σ′′′ = 8σ of order 2. There
is an advantage of this naming convention, that is, we can examine the commutativity of the unstable
composition conveniently,

xn ◦ yi = ±yn ◦ xj for some i, j if n ≥ a+ b,

where {xk} was born in πa
∗ and {yℓ} was born in πb

∗, (see [1, Proposition 3.1]). For instance, for the
elements in [1],

σn ∈ πn
7+n (n ≥ 8) and µn ∈ πn

9+n (n ≥ 3),

we have σ8+3µi = ±µ8+3σj , successively, σ11µ18 = µ11σ20, (± is not necessary, since µ3 is of order 2).
But σ10µ17 ̸= µ10σ19, (see [1, p. 156]). Some common generators are summarized in [1, p. 189] and [2,
(1.1), p. 66].
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4.1 Some relations on the generators of πn
∗

The following lemma is intended to lay the groundwork for the subsequent subsection.

Lemma 4.1.1 (1) η7ν̄8κ̄16 = ν37 κ̄16 = ν7κ̄10ν
2
30.

(2) σ11ρ18ν
2
33 = ε11κ19ν

2
33 = ν11σ̄14ν

2
33 = 0

(26)
11 .

(3) P−1(0
(26)
11 ) ◦ ν233 = 0.

(4) P (ι11) = ν5η8.

(5) ν6 ◦ ν9σ12κ̄19 = ν6 ◦ ϕ9σ32 = 0.

(6) ν6 ◦ Σ2π7
37 = 0.

Proof.

(1) It follows from [7, Formula (7.5), pp. 130] and η5ν̄6 = ν35 ,([1]).

(2) By [2, Table, pp. 105], we have ρ18ν33 = 4E5λ = 8ν∗18 = 0. Therefore, σ11ρ18ν
2
33 = 0. By [2, Table,

pp. 104], we have ν7ε10 = 0. Hence, ε11κ19ν
2
33 = ν11ε14ν22κ25 = 0. By [7, Proposition 2.3 (3),

pp. 86], we see that ν36 σ̄15 = 0. Then, ν11σ̄14ν
2
33 = 0.

(3) π11
22+11 is given by [4]; then (2) of our lemma shows that π11

22+11 ◦ ν233 = 0. Notice that π11
22+11 ⊇

P−1(0
(26)
11 ). Hence the result holds.

(4) See [1, Formula (5.10), pp. 44].

(5) By [1, Formula (7.19), pp. 71], we know ν9σ12 = 2aσ9ν16 for some odd a. Notice 2Σπ5
38 = 0, ([7,

Formula (9.25), pp. 146]). So, ν6 ◦ ν9σ12κ̄19 = 2aν6σ9ν16κ̄19 ∈ 2Σπ5
38 = 0. By [7, Proposition 3.5

(5), pp. 60], we see that 2σ̄6σ25 = ν6ϕ9. So, ν6 ◦ ϕ9σ32 = 2σ̄6σ25σ32 = σ̄6 ◦ 2σ25σ32 = 0.

(6) Notice that π7
37 is given by [7, pp. 105] and Σ2σ′ = 2σ9. Then the result follows from (5) of our

lemma.

□

4.2 The element κ′
6 ∈ π6

39 and its order

Leveraging the groundwork laid out above, we can devise a more refined construction for the element
κ′
6 ∈ π6

39, allowing for the precise determination of its order. And we are therefore able to solve Oda’s
extension problems for the homotopy groups π6

39, π
7
40 and π8

41.
Recall from [7, Formula (9.16), pp. 144] that the element ν̄11κ̄19 ∈ π11

39 is of order 2.

Lemma 4.2.1 The following rectangular Toda bracket

T =

[
ν6 η9 ν̄10κ̄18

2ν6 ν9κ̄12 ν232

]
2

⊆ π6
39

is well-defined. And H(T ) = ν̄11κ̄19 ̸= 0.

Proof. By Lemma 4.1.1 (1), we know η7ν̄8κ̄16 = ν7κ̄10ν
2
30; equivalently saying, η7ν̄8κ̄16 + ν7κ̄10ν

2
30 = 0.

It is well-known that ν6η9 = 2ν6 ◦ ν9 = 0, ([1]). Then, by Definition 3.1, we know T is well-defined.
Recall Proposition 3.1.4. By Lemma 4.1.1 (3) and (4), we have

H(T ) ⊆ H

[
ν6 η9 ν̄10κ̄18

2ν6 ν9κ̄12 ν232

]
1

= −P−1(ν5η8) ◦ ν̄11κ̄19 − P−1(2ν5 ◦ ν8κ̄11) ◦ ν233
= ν̄11κ̄19 + P−1(0

(26)
5 ) ◦ ν233

= ν̄11κ̄19 ̸= 0.

□
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Lemma 4.2.2 Choosing κ′
6 ∈ T , we have H(κ′

6) = ν̄11κ̄19, 2κ
′
6 = 0. Successively, κ′

6 is of order 2. All
properties of the original κ′

6 defined in [7, pp. 145] satisfies, this new choice of κ′
6 still satisfies.

Proof. By Lemma 4.2.1, we see thatH(κ′
6) = ν̄11κ̄19 ̸= 0 for κ′

6 ∈ T . Recall from [1] that 2ν̄8 = 2ν230 = 0.
Then, by Proposition 3.1.3 and Lemma 4.1.1 (6), we derive

2κ′
6 ∈

[
ν6 η9 ν̄10κ̄18

2ν6 ν9κ̄12 ν232

]
2

◦ 2ι39

⊆
[
ν6 η9 2ν̄10κ̄18

2ν6 ν9κ̄12 2ν232

]
2

=

[
ν6 η9 0

(28)
10

2ν6 ν9κ̄12 0
(29)
32

]
2

⊆ {ν6, η9, 0(28)10 }2 + {2ν6, ν9κ̄12, 0
(29)
32 }2.

= ν6 ◦ Σ2π7
37

= 0.

Thus, κ′
6 is of order 2. Notice the proof of [7, Formula (9.27), pp. 145-146]. For any element x ∈ π6

39

satisfying H(x) = ν̄11κ̄19, the original κ′
6 in [7] can be taken as κ′

6 = x. Hence the result holds. □

Following [7], κ′
6+i := Σiκ′

6.
Recall the following facts on the determination of π6

39 from [7]. The EHP sequence

π11
40

P // π5
38

Σ // π6
39

H // π11
39

P // π5
37

induces a short exact sequence

0 // Σπ5
38

// π6
39

H // Im(H) // 0,

where Σπ5
38 = span{ν6σ9ν16κ̄19, µ4,6, η6µ3,7σ32} ≈ (Z/2)3

and Im(H) = span{C1ω23, ΣF
(1)
1 , σ4

11, C
(2)
1 , ν̄11κ̄19} ≈ (Z/2)5.

Moreover, H(P (ΣA1 ◦ ω25)) = C1ω23, H(P (ΣA1 ◦ σ25µ32)) = ΣF
(1)
1 ,

H(σ̄6σ
2
25) = σ4

11 and H(P (ΣA
(2)
1 )) ≡ C

(2)
1 modC1ω23, ΣF

(1)
1 , σ4

11, ν̄11κ̄19.

The four liftings P (ΣA1 ◦ ω25), P (ΣA1 ◦ σ25µ32), σ̄6σ
2
25 and P (ΣA

(2)
1 ) are all of order 2.

By these facts, Lemma 4.2.2 together with [7, Proposition 9.20, pp. 144-145], we infer the following
proposition, which solves the group extension problems left by Oda ([7]).

Proposition 4.2.1

π6
39 = span{κ′

6, P (ΣA1 ◦ ω25), P (ΣA1 ◦ σ25µ32), σ̄6σ
2
25,

P (ΣA
(2)
1 ), ν6σ9ν16κ̄19, µ4,6, η6µ3,7σ32}

≈ (Z/2)8,
π7
40 = span{σ′η14µ3,15, κ

′
7, σ̄7σ

2
26, ν7σ10ν17κ̄20, µ4,7, η7µ3,8σ33}

≈ (Z/2)6,
π8
41 = span{σ8 ◦ Σ3τ IV, σ8η15µ3,16, σ8ν

2
15κ̄21, Σσ

′ ◦ η15µ3,16, κ
′
8, σ̄8σ

2
27,

ν8σ11ν18κ̄21, µ4,8, η8µ3,9σ34}
≈ Z/8⊕ (Z/2)8.
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4.3 A problem

Suppose p is a prime and X (without taking the 2-localization) is simply-connected CW complex of
finite type. After localization at p, let rn(X) = dim(πn(X) ⊗ Z/p), i.e., the dimension of πn(X) ⊗ Z/p
as a Z/p-vector space. It is clear that rn(X) is an invariant dependent solely on n and the homotopy
type of X. And it is the count of non-trivial direct summands of πn(X). ♯

This invariant will afford formidable aid in addressing extension problems for homotopy groups, also
assists in resolving the group extension problems left by spectral sequences of homotopy groups such as
Adams spectral sequences. Notice that Oda’s first extension problem can state as r39(S

6) = 7 or 8 in
the case p = 2.

Problem: How can we analyze the invariant rn(X) from some perspectives, whether geometric or
algebraic? Alternatively, how might we construct a new theoretical framework to examine this invariant,
thereby assisting in our exploration of extension problems for homotopy groups?
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