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Abstract
Genuine equivariant homotopy theory is equipped with a multitude of coherently commuta-

tive multiplication structures generalizing the

classical notion of an E-algebra. In this paper

we study the Cp-Eco-algebras of Nardin—-Shah with respect to a cyclic group C;, of prime power
order. We show that many of the higher coherences inherent to the definition of parametrized
algebras collapse; in particular, they may be described more simply and conceptually in terms
of ordinary E-algebras as a diagram category which we call normed algebras. Our main result
provides a relatively straightforward criterion for identifying Cp,-Ec-algebra structures. We visit
some applications of our result to real motivic invariants.
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1 Introduction

1.1 Motivation

Algebraic invariants such as integral cohomology H*(—;Z) detect information about spaces;
identifying and applying such tools form the basic premise of algebraic topology. Moreover,
considering more structured algebraic objects leads to more refined invariants: Cochains with
integral coefficients X — C*(X;Z) considered as a functor from spaces to [E-Z-algebras is better
at detecting information about spaces than integral cohomology. For instance, C*(X; Z) inherits
power operations as a consequence of its [Es-structure, and two (non-equivalent) spaces X and Y
may have isomorphic cohomology rings but different power operations. In this way, we see that
the study of structured multiplications and their operations is foundational to homotopy theory.

In parallel, the study of structured multiplications is essential to the study of genuine equivariant
homotopy types. Our line of inquiry naturally leads to algebraic structures whose operations are
inherently genuine equivariant. To motivate the particular equivariant multiplicative structure we
will focus on, recall that an ordinary E«-algebra in spectra may be modeled by a functor satisfying
certain conditions defined on the category of finite pointed sets [Seg74]. In particular, the smash
product A®! parametrizes formal sums of /-tuples in A, and said functor takes the collapse map
(2) — (1) to a morphism A®? — A. In particular, E-algebra structures are governed by the
category of finite pointed sets.

In genuine equivariant homotopy theory with respect to the finite cyclic group C, of order
a prime p, the role of finite sets is supplanted by finite pointed sets with C,-action [HH14, §4;

HHI16, §3.3]. The Hill-Hopkins-Ravenel norm NEC YA =: A®Cr parametrizes |Cp|-tuples in A

indexed by a free Cp-set. In [BH15], Blumberg and Hill introduced a genuine equivariant operads

encoding multiplications indexed by G-sets; the algebras they give rise to are called Ne.-algebras.

In [NS22, Definition 2.2.2], Nardin and Shah defined an co-categorical analogue of the N.-algebras

of Blumberg-Hill'; we shall refer to the latter as Cj-Ew-algebras (Definition 2.32, Example 2.33).

Their structure of operations is governed by the category of finite pointed Cp-sets Finc, ..
Unravelling definitions, a C,-[E-algebra is the data of

(1) Anunderlying Cy-genuine equivariant spectrum R.

(2) For each morphism of finite Cy-sets S — T, a morphism of Cp-spectra NJR — NJR. In

particular, the collapse map C, — C,/C; indexes a morphism of Eq rings ng: NeC ’R— R
called the norm.

(3) higher coherences...

To exhibit a Cy-E«-algebra structure on a genuine C-spectrum R is no small task. In the literature,
one often resorts to simplifying assumptions such as requiring R to be Borel, e.g. [Hil22, Proposition
3.3.6]. We set out to provide a relatively straightforward criterion for identifying C,-Ec-algebra
structures.

When p = 2, by [QS22, Definition 5.2] the category of Cy-Ec-algebras is the natural domain of
definition for real (i.e. Cz-equivariant) topological Hochschild homology and other real motivic
invariants. This work grew out of the author’s interest in real motivic invariants and will be used
in upcoming work on a real version of the Hochschild—Kostant-Rosenberg theorem.

IThese notions are expected to agree.



1.2 Main result

To motivate our main result, note that any morphism of Cp,-sets S — C,/C;, can be expressed as
the composite of ‘collapse the free C,-orbits” followed by a (non-equivariant) map of finite sets.
Thus a C)-E« algebra, regarded as functor defined on Cp-sets, determines two pieces of data: its
restriction to sets on which C,, acts trivially, and its value on collapse maps. The former specifies an
[Eo-algebra structure, while the latter specifies a norm map #. To assert that these data are enough
to specify a C,-[E-algebra structure means that any higher coherence conditions on the norm map
n collapse. We might hope that this is indeed the case, since the category Finc, . is freely generated
by the C,-set C,/Cp.
Let A € EeAlg(SpP©?) be an E-algebra with naive Cp-action and ¢ € C,, a generator.

Observation 1.1 (Observation 3.7). Write AP for the object in EeAlg(SpB©r) with the diagonal
action, i.e. such that o acts by o(a1 ® - - ® ap) = 0(ap) ® 0(a1) ® -+ ® 7 (a,_1). Write A®"P for
the object in B, Alg(Sp2©#) with the transposition action, i.e. such that o acts by o'(a; @ - - - ® ap) =
ap®a1®- - ®@a,_q. Then the endomorphismidy ® 0 ® - - - ® 0?1 of A¥P € Eo,Alg(Sp) promotes
to an equivalence AP 5 A9P in EoAlg(Sp)B¢r—in particular it is Cp-equivariant.
Definition 1.2 (Definition 3.11). Write Ocp for the category of finite sets with transitive Cp-action,
and let ¢ € C, be a generator. A normed E-algebra in C,-spectra is the data of an [E-algebra A
in SpCV, a morphism of Ee-rings n14: N (Aflcp) — A, and a homotopy making the following
diagram Oc, — EcAlg(Sp)5cr
w7

A

—

id®0®~~®a”1} ¢

S

()=
commute, where the Cp-action on (Ae)®AP corresponding to the inclusion BC, C Oc, is the
transposition.

The main result of this paper both formalizes and confirms the aforementioned intuitive picture.

Theorem 1.3 (Corollary 4.7 & Theorem 4.23). The canonical forgetful functor from the category of Cp-Ec
algebras in Cp-spectra (Example 2.33) to the category of normed BEeo-algebras in Cp-spectra is an equivalence.

A key input to the proof of Theorem 4.23 is an explicit description of the free C,-[Ec algebra

in Spcf’ on an [Ex-algebra A in SpCP. By Theorem 4.14 and Proposition 2.15, the underlying
Cp-spectrum of the free Cp-IEq algebra F(A) on A is given by

C
AP @ Aje,
F(A) ~ lsA®VA
Ae AtCV

where u is the unit, s 4 : A?“? — A!Cr is the structure map, and v4 is the twisted Tate-valued norm
(Definition 3.8).



Remark 1.4. There is an analogous statement (Theorem 5.15), proved in essentially the same way,
for relative normed algebras, i.e. C)-Ec-algebras over a fixed Cp-E-algebra A.

One expects an analogous result to hold for arbitrary G, but we stick with C;, here because the
author’s motivating example is the case G = C;, and because the complexity of (3.12) seemingly
grows exponentially in the subgroup lattice of G.

1.3 Applications & Examples

The power of Theorem 4.23 is that, in many cases, it is easier to identify objects in the diagram
category Definition 3.11 than to produce a Cp-Ec-algebra in the sense of Definition 2.32, which
requires exhibiting an infinite amount of coherence data. In particular, a normed ring is the data of
an Eeo-ring in Sp®* plus the additional datum of a commutative diagram (3.18). As an application,
in §5 we show that various Ee-rings in Sp admit natural lifts to Cp-Eco-rings in Sp©r.

Corollary 1.5 (Theorem 5.1). Let k be a discrete commutative ring. The constant C,-Mackey functor k on
k acquires an essentially unique structure of a Cp-IEoo-ring.

Using our main theorem, we are able to give an alternative proof of a special case of a result
[Hil22, Proposition 3.3.6] of Kaif Hilman. In view of the expected correspondence between Neo-
algebras and Cp-Ec-algebras, the following result should also be compared to Theorem 6.26 of
[BH15].

Corollary 1.6 (Proposition 5.3). Every Borel Ec-algebra in Cp-spectra admits an essentially unique
refinement to a Cp-Eco-algebra.

Many examples arise in the case p = 2 because involutions are ubiquitous in topology. Natural
examples of [Ee-rings in Sp*? include real topological and algebraic K-theories ([Ati66] & 5.8).

Corollary 1.7 (Corollary 5.10). » Real topological K-theory KUR admits a unique refinement to a
Co-E ring spectrum.

» If A satisfies the homotopy limit problem, then K (A) admits a unique refinement to a C-Eo ring
spectrum.

A slightly less trivial class of examples are provided by the following

Corollary 1.8 (Proposition 5.5). Let B € ExAlg(Sp) be an Ew-algebra. Then N B admits a canonical
structure of a Cp-Eeo-algebra.

Remark 1.9. Real motivic invariants and their associated real trace theories provided the impetus
for this work. In particular, Theorem 5.1 will be used in the author’s upcoming work on real trace
theories.

1.4 Outline

Despite the nice intuitive picture outlined in §1.1, handling the higher coherence conditions associ-
ated to n gets complicated quickly. Thus our proof strategy does not appeal directly to understand-
ing the operadic indexing category (although we will need some understanding of this to write
down a comparison functor).



In §2, we collect background on genuine equivariant homotopy theory, as well as the parametrized
oo-categorical perspective on equivariant algebras. In §3, we define normed rings. In §4.1, we define
a comparison functor from parametrized algebras to normed rings. In §4.2, we exhibit a formula
for the free Cp-E-algebra on an [Ec-algebra. In §4.3, we show that the free C,-E-algebra on an
Eo-algebra also computes the free normed algebra, and conclude by the Barr—Beck-Lurie theorem.
In 85, we look into a few examples and applications.

1.5 Background, Notation, & Conventions

We assume some familiarity with the language of co-categories (in the form of quasi-categories)
as introduced by Joyal [Joy08] and developed in [Lur(9]. All categories are understood to be
oco-categories unless otherwise specified. We do a cursory review of the theory of parametrized
oo-categories as developed by Barwick, Dotto, Glasman, Nardin, and Shah [Bar+16a; Bar+16b;
Bar+17; Nar17; Shal8], but the reader should consult the former references for more details. We will
assume some familiarity with the co-operads of [Lurl7, Chapters 2 & 3], which we will compare to
the parametrized algebras of [NS22].

To reduce visual clutter, we regularly drop subscripts such as a prime p or a (Cp-)Ec-algebra A
when they are understood to be fixed (e.g. within the proof of a particular proposition).

1.6 Acknowledgements

The author is indebted to Denis Nardin and Jay Shah for numerous enlightening conversations and
for, in collaboration Clark Barwick, Emanuele Dotto, and Saul Glasman, setting up the foundations
of parametrized co-categories. The author would like to thank Elden Elmanto and Noah Riggenbach
for helpful conversations, and Andrew Blumberg and Elden Elmanto for feedback on an early draft.
The author was supported by a NSF Graduate Research Fellowship under Grant No. DGE 2140743
during the completion of this work.

2 Background

We collect some background on genuine equivariant homotopy theory and parametrized co-
categories here. In §2.1 and §2.3, we recall the parametrized co-categorical language and parametrized
algebras, resp. of Barwick-Dotto-Glasman—Nardin-Shah. In §2.2, we collect background and struc-
tural results on the Cj,-genuine equivariant category.

2.1 Parametrized co-categories
Let G be a finite group.

Recollection 2.1. The orbit category O is the category with objects finite transitive G-sets and
morphisms G-equivariant maps. We let Fing denote the finite coproduct completion of O, i.e. the
category of finite G-sets and G-equivariant maps. We recall that ng is an orbital co-category in the
sense of Definition 1.2 of [Nar17].

Definition 2.2. ([Narl7, between Examples 1.3 & 1.4; Bar+16b, Definition 1.3]) A G-co-category is a
cocartesian fibration C — (’)?;p .



[Narl?7, beginning of §1.2] A morphism of G-co-categories is a functor F of co-categories over
oF:
G

c—f .7

N
OG
which takes p-cocartesian arrows in C to g-cocartesian arrows in D. We denote the category of
G-functors by Fung (C, D).

Remark 2.3. [Lur(09, §3.2.2; Shal8, Example 2.5] Let Cat., denote the large co-category of small
oo-categories. There is a universal cocartesian fibration &/ — Cats, such that pullback induces an

equivalence
op ~ t
Fun(O", Cate) ~ Gat;?;ggp.

Unraveling definitions and taking G = C,, a C-co-category is the data of
» an co-category C©7,
» an co-category with Cp-action C¢, and

» a functor C» — C° which lifts along the Cp homotopy fixed points (C* )#Cr — C°. In particular,
if C* is endowed with the trivial Cp-action, then (C¢)"“r ~ (C¢)BC» ~ Fun(BC,, C®) comprises
objects in C® with (naive) Cp-action.

In particular, we see that a cocartesian section o: (’)glz — C is determined by its value on (C,/Cp).
Informally, we regard the category of cocartesian sections of C as the category of objects in C.

Notation 2.4. Going forward, we use the notation 7 for ng to reduce notational clutter. While

4
most of the general theory in §2.1 and §2.3 applies to 7 a general atomic orbital co-category, we
will not need this level of generality to formulate our main results.

There is an (internal to 7 -parametrized categories) version of functor categories. The notion of
parametrized functor categories of [Shal8, §3] will be necessary to our investigation of parametrized
colimits.

Proposition 2.5. [Shal8, Proposition 3.1; Bar+16b, Construction 5.2] Let C — TP, D — TP be
cocartesian fibrations. Then there exists a cocartesian fibration Fun(C, D) — T such that under the
straightening-unstraightening equivalence of Remark 2.3, Fun(C, D) represents the presheaf

E— hOl’nTop (5 X op C, D) .
Notice that an object of Fun(C, D) over t € T is a (7°P);,-functor
(TP)ty X700 C = (TP)t) X700 D.

Construction 2.6 (7 -category of objects). [Bar+16b, Definition 7.4] Let E be a (non-parametrized) co-
category. The product E x 7°P may be regarded as a 7 -co-category via projection onto the second



factor. Evaluation at the source exhibits the (non-parametrized) functor category Fun(A!, 7°P) £,

T°P as a cartesian fibration. The parametrized functor category of [Bar+16b, Recollection 5.1]
E = Fungep (Fun(Al, 7°F), E x T°F)

is the T -oco-category of T -objects in E.

Theorem 2.7. [Bar+16b, Theorem 7.8] Let C be a T-co-category. Let D be an co-category. Then the
T -category of objects of Construction 2.6 satisfies

Funyo (C,D) ~ Fun(C, D).

Example 2.8. Taking E = Spc and C = TP in Theorem 2.7, we see that cocartesian sections of
Spc- correspond exactly to Fun(7°P,Spc).

We will need to know what a G-left Kan extension is. In service of keeping the background
section brief, we take Remark 10.2(3) of [Sha18], which is equivalent to Definition 10.1 of loc.cit.

Notation 2.9. [Shal8, Notation 2.29] Let p : D — T°P be a T -co-category. Given an object x € D,
define
x:= {x} xp Ar"(D).

Given a T -functor ¢ : C — D, define the parametrized fiber of 1 over x € D to be

Cy:=x x C.
x Dy

Observe that Cy may be naturally regarded as a (7°P)” =)/ ~ -category.
Definition 2.10. [Shal8, Remark 10.2(3)] Suppose given a diagram of T -co-categories

ct.E

U
i \/ '
G
D
We say that G is a left T-Kan extension of F along i if for all t € T and all x € D¢, G|, is a left
(T°P)!/-Kan extension of F|, : Cy — E; along 9.

2.2 Genuine equivariant homotopy theory

In this section, we introduce the stable C,-genuine equivariant category, discuss a parametrized lift
(Example 2.14) and give an alternative presentation (Proposition 2.15) which will be useful to our
study of algebras. Finally, we recall the Hill-Hopkins-Ravenel norms.

Proposition 2.11. Let G be a finite group. Then there exists an co-category Span (Fing) having
» the same objects as Fing

» homotopy classes of morphisms from V to U in Span(Fing ) are in bijection with diagrams V <— T — U
up to isomorphism of diagrams fixing V and U.



» The composite of V <— T — U and U < S — W is equivalent to the diagram V <~ T xy S — W.

Moreover, Span(Fing) is semiadditive, i.e. finite coproducts and products are isomorphic, and are given on
underlying G-sets by the disjoint union.

Proof. The construction of Span(Fing) is [Bar17, Proposition 5.6] applied to [Bar17, Example 5.4].
The (0-)semiadditivity of Span(Fing) follows from noticing that Span(Fing) is a module over
Span(Fin) and [Har20, Corollary 3.19]. O

The notion of a Mackey functor first appeared in [Dre71] in algebra and in [May96] in homotopy
theory; the following co-categorical version of the definition is taken from [Nar17, §2.3].

Definition 2.12. Let G be a finite group and let Span(Fing) be the span category of Proposition
2.11. Let C be a category which admits finite products. Then the category of C-valued G-Mackey
functors is given by

Mackg (C) := Fun*(Span(Fing),C)
where the right-hand side denotes the full subcategory on functors which take direct sums in
Span(Fing) to products in C. We will denote the category of genuine equivariant G-spectra by
Sp® = Mackg(Sp).

We identify the theory of orthogonal G-spectra (where weak equivalences are detected levelwise)
with G-spectral Mackey functors via the equivalence established in [GM17, §3].

Recollection 2.13 (Smash product of G-Mackey functors). The category Span(Fing) inherits a
symmetric monoidal structure from Fing given on underlying objects by cartesian product of finite
G-sets [BGS16, Proposition 2.9]. Suppose that C has a presentably symmetric monoidal structure? ®.
Then we can equip Mackg (C) = Fun®(Span(Fing), C) with a symmetric monoidal structure given
by Day convolution [Gla16, Proposition 2.11]. When we take C = Sp and the symmetric monoidal
structure to be the smash product on spectra, this recovers the usual smash product of G-spectra.

The co-category of G-Mackey functors in spectra is equivalent to the category of cocartesian
sections of a G-parametrized co-category.

Example 2.14. The G-co-category of G-spectra Sipc is [Nar16, Definition 7.3 & Corollary 7.4.1]
applied to D = %G.

There is an alternative way of understanding Mackc, (C) as a recollement when C is stable and
admits BCp-shaped colimits. The following is [MNN17, Theorem 6.24].

Proposition 2.15. There is an equivalence of stable co-categories
Sp&r = Mackc, (Sp) — SpPr xg, Ar(Sp)
X (Xe,cofib ((Xe)hcp LN ch) — (Xf)fcn)

where the map Ar(Sp) — Sp is evaluation at the target. We call X9<r := cofib ((Xe)hcp LN XCP> the
Cp-geometric fixed points of X.

2That is, the tensor product commutes with (small) colimits separately in each variable.



Notation 2.16. We will denote the projection Sp“» — Ar (Sp) by $(), i.e. for any Cp-spectrum A
we have amap s : APy — A'Cr,

It will be convenient to know that the recollement of Proposition 2.15 is compatible with
symmetric monoidal structures.

Proposition 2.17. Let C be a cyclic group of prime power order. Then the recollement of Notation 2.15 is a
symmetric monoidal recollement in the sense of [Sha21, Definition 2.20].

Corollary 2.18. Let Cp, be a cyclic group of prime power order. Then there is an equivalence of co-categories
Alg Sp™ = Algg_Sp° X alg, sp Ar(Algg, Sp)

such that applying forgetful functors recovers the equivalence of Proposition 2.15.
Proof. The corollary follows from [Sha21, Theorem 1.2] and the definition of E..-algebras. O

Observation 2.19. Now suppose A, B € E,Alg (Spcﬁ> . Then the morphism space is computed as

A9y
~ e e
hom]EwAlg(SpCP)(A’B) _homIEooAlg(SpBCP)(A /B )h X (Cp piCy hom (g, Alg(sp)) U
OmIEooAlg(Sp)(A B ) Ath

Recollection 2.20 (Tate diagonal). [NS18, Definition III.1.4] The Tate diagonal is a natural transfor-
mation id — (—®7)'C» of exact functors Sp — Sp where C,, acts on (A)®¥ via a cyclic permutation.

Recollection 2.21. Given a subgroup inclusion H C G, the Hill-Hopkins—-Ravenel norm [HHR16,
Definition A.52] is a (non-exact) functor

NS : spH — spC©.
When H = {e} C G = Cp, the norm is uniquely characterized by the existence of natural equiva-

C
lences (NEVX>(P "~ XinSp{* ~ Sp and (NEC’]X)E ~ X®P in SpPCr, where C, acts on the smash

product by permuting the terms. The connecting map X — (X®?)fCr is given by the Tate diagonal

of [NS18, Theorem 1.7]. The functor N§ enjoys the properties of being symmetric monoidal and it
preserves sifted colimits [HHR16, Proposition A.54], so it lifts to a functor [HHR16, Proposition
A.56]

NS : Alg]EOOSpH — AlgIEwSpG.

Lemma 2.22. The Hill-Hopkins—Ravenel norm N : EsAlg(Sp) — EeAlg (Spcl’) preserves all small
colimits.

Proof. By [BH21, Lemma 2.8], it suffices to show that N preserves sifted colimits and finite
coproducts. The norm N preserves sifted colimits of algebras because they are computed at the
level of underlying spectra, and N preserves finite coproducts of algebras because it is symmetric
monoidal with respect to the smash product on Sp and Sp“* (Recollections 2.2 & 2.21). O

BYCp
1
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2.3 Cp-Ec-rings

In this section we introduce the genuine equivariant algebraic structures of interest via the formalism
of parametrized operads of Nardin—-Shah [NS22]. We fix notation for the remainder of the paper.
Notation 2.23. Let p be a prime and let 7" denote the orbital co-category Oc, of Recollection 2.1.

Definition 2.24. The category Finy = Finc, of parametrized T -sets is the T-co-category classified by
the functor V ~ Fin/v. Equivalently, it is described by the fiber product Ar (Fin /v ) Xgin, {V}.
The category Finy , of parametrized pointed T -sets is the T -co-category classified by the functor
V= (FinT/V)idV/‘
Fin% := Ar (Finyv) x T
Finy
Example 2.25. We unpack the definition in the case 7 = Oc,. For each orbit, the fiber is given by

. ~ T . o TinF
(Fﬂ%}’)cp/cp =~ Finc, (Fﬂ%)cp = ch;ge

Free

and the morphism C;,/Cp <= C, classifies the functor Finc, — Fincp V= Vxc,c,Cp

Definition 2.26. [NS22, Definition 2.1.2] Let 7 be an atomic orbital co-category. The (7 -parametrized)
oco-category of finite pointed T -sets is

Fing,, = Span (Fin, (Fin})", (Fin)"*%)

where a morphism [¢ : f — g] of Fin%-

u -y ox
fl 8
vy

tdeg

» belongs to (Fin%-)™** if k is degenerate, and

» belongs to (Fin%)* "if U — V xy X is a summand inclusion.

Definition 2.27. [NS22, Definition 2.1.7] A T -co-operad is a pair (C%, p) consisting of a T -co-category
C® and a T-functor p : C¥ — Finy , which is a categorical fibration and satisfies the following
additional conditions
(1) For every inert morphism ¢ : f. — gy of Finy, and every object x € Cﬁi, there is a
p-cocartesian edge x — y covering 1.

(2) For any object fy = [U} — V] of Finy ,, the p-cocartesian edges lying over the characteristic
morphisms

{X[Wgu} e = I(W)y | We Orbit(u)}
together induce an equivalence

T (wew), 6> TT Gy
WeOrbit(LI) : WeOrbit(LT)

10



(3) For any morphism
Y fr=[Up = V] =g =[UL = V]

of Finy ,, objects x € Cﬁ andy € Cg, and any choice of p-cocartesian edges

{y = yw | W € Orbit(U’)}

lying over the characteristic morphisms

{X[wgu] g+~ IW) [ We Orbit(u’)},

the induced map

Maph. (x,y) 5[] Mapol ™™ (x,yw)
WeOTrbit(U')

is an equivalence.
Given a T-co-operad (C%, p), its underlying T -co-category is the fiber product
C:=T% x (C®.

FiJr *

[NS22, Definition 2.1.8] Given a T -o0-operad (C%, p), an edge of C¥ is inert if it is p-cocartesian
over an inert edge of Finy ,, and it is active if it factors as a p-cocartesian edge followed by an edge
lying over a fiberwise active edge in Finy ..

Example 2.28 (Indexing systems). Let us recall that the C,-[Ec-operad is given by Coma = Finc .
the Oc,-operad corresponding to the maximal indexing system [NS22, Example 2.4.7]. The minimal
indexing system Comgg is a Cp-c0 operad with underlying category the wide subcategory of

Finp. . containing those morphisms
”

m

i

where m is a coproduct of (possibly empty) fold maps. The structure map is the natural inclusion

Com2. C Com?.
06 = Cp

Definition 2.29. [NS22, Definition 2.2.3] Let p : C¥ — Finy , be a fibration of 7-co-operads in which
p is moreover a cocartesian fibration. Then we will call C SaT- symmetric monoidal ‘T -oo-category.

Recollection 2.30. [NS22, Example 2.4.2; BH21, §9] The Cj-co-category of Cp-spectra is endowed
with a Cp-symmetric monoidal structure via the Hill-Hopkins-Ravenel norm functors as follows:
Example 2.4.2 [NS22] and §9 of [BH21] define a functor

¢ :=SH” owc,: Span(Finc,) — Algy, (Cat)
T +— SH% o pr(T)

11



Unravelling definitions, this functor takes
i (Cp— Cp/Cp) > SpPr
1 (Cp = Cp) > SpP<r
: (Cp/Cp = Cp/Cp) > Sp*r

Cp/Cp +—— Cp Spc,,
H L= e
Cp/Cp == Cp/Cp SpBCr
2.31
Cp — Cp/Cp Sp ( )
| | = b
Cp/Cp == Cp/Cyp SPC,,

l | = L

Cp/Cp+— Cp  SpbS

®
Under Theorem 2.3.9 of [NS22], this corresponds to a cocartesian fibration p : [ { := (Sﬁcﬂ) —
F@cp,*-

In this paper we use the notion of a Cp-E«-ring in the sense of Nardin—-Shah [NS22, Definition
2.21].

Definition 2.32. Let C®, D® — O be fibrations of Cp-c0-operads. A T-functor p : C¥ — D% isa
morphism of T -co-operads over O if p takes inert morphisms in C® to inert morphisms in D®. Then
the category of C®-algebras in D

Alg,, (€. D)

is the full 7-subcategory of Funs(C, D) on the morphisms of T -co-operads over 0. We write
Algy 7(C, D) for the (ordinary) co-category of T-objects in Alg | T(C’ D).
When O and/or C are equivalent to Finy ., we drop them from notation.

We write Alglincp,* (Fincp,*, (SI)C;?)@) =: CpEwAlg (Spcp).

Example 2.33. The category of C,-E-rings in C,-spectra is Cp]EooAlg(SpCP) the space of sections
®
of p: (SECP> — Finc . (Recollection 2.30) which take inert morphisms to inert morphisms.

The inclusion Com?.. € Com? of Example 2.28 induces a forgetful map

G: Alg, (Comcp,D) — Alg (com@a,p) . (2.34)
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The discussion immediately following [NS22, Theorem 4.3.4] is summarized by the following
result.

Theorem 2.35. Suppose p : C¥ — O is a fibration of T -co-operads, and let £¥ — OF be a T -co-operad.
Then the restriction functor

Pt Algy 1(€) = Algp 7(C,€)
admits a left adjoint p.

Definition 2.36. Suppose p : C¥ — O is a fibration of T-c0-operads, and let £ — O be a
T-co-operad. Let A : C® — £® be an O-algebra map. Then the O-algebra map p1A of Theorem
2.35 will be referred to as the T -operadic left Kan extension of A.

Remark 2.37. [NS22, Remark 4.0.1] Definition 2.36 specializes to the theory of operadic left Kan
extensions of [Lur17, §3.1.2] when 7 = AY.

3 Normed rings

In defining the category of C,-normed rings, §1.1 guides how we axiomatize the information
contained in a Cp-Ec ring. We will see that this information is most naturally captured as the limit
of a diagram of co-categories (Definition 3.11). We then exhibit a formula for mapping spaces in
normed rings which will be used in the proof of our main theorem (in particular see Proposition
4.25). Finally, we close out this section by showing in Proposition 3.21 that the category of normed
Ec-rings is monadic over the category of ordinary [Ex-algebras.

3.1 Preliminaries
Construction 3.1. Consider the functor
|—‘: OCP — Fin,

Cp = (p)
Cp/Cp (1)

which takes the underlying set of a set-with-C,-action. Since Span(Fin) is 0-semiadditive, the

composite Oc, — Fin, C Span(Fin) induces Span ((’)E’p, fold, all) — Span(Fin) which restricts to
m:= — x| —|: Fin, x Oc, — Fin..

Denote the adjoint of m by m': Fin, — Fun(Oc,, Fin,). Given a symmetric monoidal co-category
q: C® — Fin,, the induced map

®
Fung;,, ((’)c,,,C@) := Fun (OCP’C®) X Fin, — Fin,
Fun (Ocp ,Fin, ) mt

is a cocartesian fibration of co-operads (cf. [Lurl7, Remark 2.1.3.4]). Since C* is symmetric monoidal,
given any morphism hi: X — Y in Oc, and any lift X of | X|, there is a g-cocartesian morphism /1
lifting |h|, so by [Lur09, Proposition 2.4.4.2] there is a functor

Fung;,, (OCP,C@)) — Fun (OCP,C) .

13



Restriction along m induces a functor which we also denote by
m(_y: EwAlg (C*) = Fun (Oc,, ExAlg(C%)) . (3.2)

Informally, m takes an Ec-algebra A to the O, -diagram m 4 : A®P — A,

Notation 3.3. The prime p is left implicit in the notation m 4 of Construction 3.1, and when A is
understood it may also be dropped from notation.

Remark 3.4. The parametrized norm map n,4: N (A®) — A is invariant with respect to the
Cp-action coming from A°. On the other hand, (A°)®? has a Cp-action via cyclic permutations
and 1 may also be regarded as a Cj-equivariant map. The reader is warned to remember the
distinction between these two Cp-actions; the following observations clarify how these actions
interact differently with the structure maps inherent to a Cp-Ec-algebra.

Notation 3.5. Let A € SpP and let ¢ € Cp be a generator. Write AP for the object in
EeAlg(SpP©r) with the diagonal action, i.e. the composite

Rom

EeAlg (Sp) 2% B Alg (Sp)P P A5 E,,Alg (Sp)PCr (3.6)

where m is (3.2), R is restriction along the inclusion BC, C OC,,/ and A* is restriction along the
diagonal A : BC, — BCp x BC,. Informally, we regard AP as being equipped with the Cp-action
where ¢ acts by 0(a1 ®@ -+ ®ap) = o(ay) ®0o(a1) @ -+ @o(ap_1). Write AZ'P for the object in
EeAlg(SpPCr) with the transposition action, i.e. the same definition as in (3.6) but with the map

{e} xid: BC, — BC, x BC, instead of A. Informally, we regard A®'P as being equipped with the
Cp-action where o actsby 0'(a1 ® - - ®ap) =ay ®a; ® - @ a, 1.

Observation 3.7. Let A € SpB©r.

(1) The shear endomorphism sh := idy ® 0 ® - - @ 0P~ ! of A®? € EAlg(Sp) promotes to an
equivalence A ®* A — A ®T A in E«Alg(Sp)BCr—in particular it is Cp-equivariant.

(2) Moreover, the Tate diagonal A — (A® P)r is equivariant with respect to the given Cp-action
on the source and the diagonal Cp-action on the target.

Definition 3.8. Let A € EcAlg (SpB CV). The Tate-valued norm is the E-ring map defined by the

composite

A tCp h A NECy utCr
vai A= <A®Tp) = <A® p) 2 AfC

where A is the Tate diagonal of Recollection 2.20 and sh is the shear equivalence of Observation 3.7.
In particular, it is Cj-equivariant with respect to the given action on A, the diagonal Cj-action on

(A®SP), and the trivial action on A'*». We regard v4 as a morphism Anc, = A%, or equivalently
as an object of Fun (Ocp, lEooAlg(Sp)> .
Remark 3.9. Informally, we think of the Tate-valued norm as being a ~ a7(a) - - - v*~1(a), which is

a ring homomorphism modulo transfers. Note that when A is equipped with the trivial C,-action,
this is simply the ordinary Tate-valued Frobenius (compare Definition IV.1.1 of [NS18]).
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3.2 Definition and properties

We introduce some notation for the indexing category.

Notation 3.10. Let K denote the co-categorical nerve of the 1-category

2
.

in which all triangles and squares commute.

Definition 3.11. Consider the diagram A: K — Cato, where K is as in Notation 3.10:

Fun (OC,,/ EoAlg (SpBCV> )

mo(—°) evey Ve, /Cp Fun (OCp’ EoAlg (SPCP) )

EsAlg(Sp) BCPXBCP X EcAlg(Sp) BCP EVCpEYCy/Cp

- T

EoAlg (spCv)BC” X EwAlg (Sp)

(3.12)
where m is the functor of (3.2). Observe that the right-hand trapezoid of (3.12) commutes essentially

EoAlg (SPC” ) NCP () xid

by definition, and the leftmost triangle commutes because (N Cr A)E ~ (A®)®P. We define the
category of normed C,-Es-rings to be the limit of the diagram

NEo,Alg (spcv) = lm . (3.13)

There is a canonical forgetful functor G': NEAlg (SpCV> — EwxAlg (SpCP> given by the
canonical projection to the lower left corner of the diagram (3.12).
Notation 3.14. Write p;: NEAlg (Spcp) — N (i) for the canonical projection functors.

We will often abuse notation and abbreviate an object of NE,Alg (SpCP) asapair (A, ny : N2A — A)
(suppressing the data of the equivalence 16 ~ m 4e).

Remark 3.15. Note that all categories in (3.12) are presentable and all functors are left adjoints
(Lemma 2.22), so by [Lur(09, Proposition 5.5.3.13] we may take the limit in either Prl or Cate.
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Proposition 3.16. The catecory NEeAle (Sp<r ) can be equivalently described as the limit of the diagram
| % 80Ty g\ opP q Y g

Fun (Oc,, ExAlg(Sp))
evy
miCp(—e)@p 5 (—°) evey eV Fun ((’)CP,Ar(lEooAlg(Sp)D
EAlg(Sp)5r x EoAlg(Sp) CVCp Vs

Ar (IEooAlg (SpBC?’)) x Ar (EoAlg (Sp))

C
EwAlg (Sp p) ((—)#CP —(—)CP)o (NP xid)

Proof. Follows from Corollary 2.18. O

Remark 3.17. Recall the description of a limit of co-categories given by Corollary 3.3.3.2 of [Lur09].
Combining this with the description of mapping spaces in Algy (SpCP) which is a consequence
of Corollary 2.18, we may equivalently characterize a normed [E-ring as the data of a [E-algebra

A in Sp©r plus the data of a factorization nﬁcp in EwAlg(Sp) and a 2-cell making the diagram

A A » APC2

Al J“ (3.18)
(A®Tp)tc” thPo(sh) ALCy

commute such that, considered as a morphism g : A — a, g is equivariant with respect to the given
Cp-action on the source and the trivial Cp-action on the target. Note that the composite of the left
arrow followed by the lower arrow in (3.18) is the Tate-valued norm of Definition 3.8.

When C; acts trivially on A°, it suffices to produce the 2-cell (3.18). More formally, given a

choice of multiplication map 1 : A®*P — A, by Corollary 2.18 we have an equivalence of fibers
% p y y q

i (=) A
flb{m} (homIEooAlg(SpCp)Bcp (NCP (Ae)/ A) — hom]EooAlgSpBCP xBCp ((Ae)® p, Ae>>

Ae A9Cp
h lA « | 4 h AS)' T AtCy
{(m'ry | MO, Algh <BCp 7 NOME_ AgBCy ’

(A®§P) g

~ fib

Observation 3.19 (Morphism spaces in normed algebras). Let s, t: K — [ A be objects in the
limit NE«Alg(Sp™), which we identify as spaces of coCartesian sections of [N — K where
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N: K — Catw is the diagram defining (3.12). Now by definition of a limit of co-categories, we may
write the space of morphisms from s to t in NE« as limg hompy) (s(k), (k).

Unravelling definitions, given a pair (A,n4: N?A — A), (B,ng: N B — B) in the limit of
(3.12), the morphism space Homyg,, ((A,1n4: N?A — A),(B,ng: N?B — B)) is computed as
the limit of the diagram

hom A B¢
{ 1
(A®A)CP (BoB)!CP
)EP— (=)
hom iA , LB X hom Apr ,Bf r
A A A LA
(A®p)pr (ng)tCP hom A BPCp AP By
a "la
(A@P)tcp Bth
hom( (A® A) tCp, (B® B) tc,, X hom (Atcp BtCP
/ ¢C ¢C
hom my Alg( Spcp hom fA , fA x hom I‘l A” fl A”
(A®P)ICr (BoP)ICp AfCr BICp
(3.20)

Proposition 3.21. The forgetful functor G': NE«Alg (Spcp) — EAlg (SpCP) of Definition 3.11 is
monadic.

Proof. The functor G’ is conservative by inspection.
Recall our notation p;: NE«Alg(Sp*) — N (i) for the canonical projection functors. Now

suppose given a simplicial object A: A°? — NE,Alg (SpCP) which is G’-split. Then in particular
po o A is a colimit diagram of Eco-algebras in Sp©?. Since the norm preserves all colimits of algebras

by Lemma 2.22, py o A ~ (N x id) o pg o A is a colimit diagram. By [Lur17, Corollary 5.1.2.3(2)]
applied to S = Oc,, p» © A is a colimit diagram. Now by Remark 3.15 and Proposition 5.1.2.2(2) of

loc. cit. applied to S = K, A is a colimit diagram in NE«Alg(Sp“”), and said colimit is preserved
by G'. Thus G’ is monadic by the Barr-Beck-Lurie theorem [Lurl7, Theorem 4.7.3.5]. O
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4 Comparing Cy-E and normed rings
In §4.1 we write down a functor from Cj-Ec-algebras to normed Cj-algebras. Our proof strategy
will be to show that the comparison functor of Corollary 4.7 exhibits both Cj-Ec-algebras and

normed [Eq-algebras as categories of algebras over the same monad on E,Alg (SpCP> , then appeal
to a variant of the Barr-Beck-Lurie theorem. In §4.2 we exhibit a formula for the free C)-Ec-algebra

on an E-algebra, then we show in §4.3 that it induces an equivalence.
41 A comparison functor

Since a normed [Ee-ring is a priori less data than a C,-[E«-algebra, it is most natural to define a
‘forgetful” functor from the latter to the former. In order to write down the functor, we need to
unpack the definition of a C-E-algebra.

Notation 4.1. Observe that Span (FméZ) is 0-semiadditive [BH21, Lemma C.3] and define Span(Finc, . )

to be the colimit of the functor V > Span (Fmé;/) [Lur09, Corollary 3.3.4.3]. Since 0-semiadditive

co-categories are closed under all colimits [Har20, Corollary 5.4], Span(Finc, ) is O-semiadditive.

Moreover, notice that there is an inclusion Finc, , C Span(Finc, ).
Leté: ] — @Cp,* be a diagram. Under the equivalence of [Har20, Theorem 4.1; BH21, Lemma

C.4] the diagram ¢ classifies a functor Span(J", fold, all) — Span(Finc,) which evidently restricts
to

ty: Fin, x ] — Finc, .. (4.2)

When | = AY and § is the inclusion of a single object T € mcp,*, we write (7.
Consider the diagrams «ay, a3: OCP — mcp’*

Cp=——=Cp——C/Cp c,f =—=¢,’ Y-,
l | H A
Cp/Cp==Cp/Cr==Cp/Cp Cp Cp Cp

resp., where C, acts on C;l P by permuting the terms of the disjoint union. The preceding discussion
shows that there are functors

ly; 1= — X a;: Fing x OC,, — Piincp,*. (4.3)

By a similar discussion to that of Construction 3.1, the 1) induce functors

1 CpEwAlg (Sp© ) — Fun (], EwAlg (Sp) ). (4.4)

Construction 4.5. Recall that the category of Cp-Ec-algebras C,ExAlg is given by sections of the

®
fibration (SECP) (Definition 2.32). By (4.4), restricting to certain subcategories of linc,,,* gives
functors:

(@) 711: CyExAlg (Spcl’) — EoAlg (SpCP) given by restriction along i1 of (4.2) for T = [C,/Cp = C,/Cyp].
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(b) 74: CyExAlg (Spcl’> — EAlg (SpCP) x EeoAlg (Spcf’ ) given by restriction along i1 X g
of (4.2) for T = [Cy - C,/Cpland S = [C,/Cp = Cp/Cp].

(¢) 75: ChEcAlg (SpCP) — EoAlg(Sp)Bor*BC x EoAlg(Sp)BCr given by restriction along
iT X tg of (4.2) for T = {C;'p v, Cp} and S = [C, = Cp], resp. Note that in the former case,

Cp acts by permuting the factors of C;I P~ Cp x Cp cyclically.
(d) 72: CpExAlg — Fun <Ocp/ ]EooAlg(SpCP)> given by restriction along 14, of (4.3).
(e) 713: CpExAlg — Fun (Ocp, ]EooAlg(SpBCP)) given by restriction along 14, of (4.3).
Proposition 4.6. The functors of Construction 4.5 are related in the following way:

(a) There is an equivalence m o y{ ~ 73.

(b) There is an equivalence evc, X eve,/c, © 73 ™~ 7s.
(c) There is an equivalence (((—)°)®? x (=)¢) oy =~ vs.
x2
(d) Thereis an equivalence (evcp x eve, /Cp) 0y 2~ 74 of functors CpEcAlg (SpCP) — EwAlg (SpCP) .
2
(e) There is an equivalence (NCV X id) 01 = 74 of functors CpEcAlg (SpCP) — EAlg (SpCP) "

(f) There is a commutative diagram

CpEAlg (Sp7 ) 7 Fun (Oc,, ExAlg (Sp))

Fun (Ocp, EoAlg(SpP©r ))

Corollary 4.7. There is a canonical functor
7: CpEwAlg (Sp%) — NEwAlg (Sp%) .
Proof. The functors of Construction 4.5 may be regarded as
71 CpEwAlg (Sp ) — N (i)
where NV : K — Caty is as in Definition 3.11 and Notation 3.10. Proposition 4.6 shows that the

functors y; commute with the structure maps in the diagram . By definition of a homotopy limit,
the «y; assemble to the desired functor 7. O
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Proof of Proposition 4.6.  (a) Consider the diagram T := O¢, x Al — Finc .

Cp/Cpf —Y—Cy/Cp
N AN
&' — H © 4.8)
—‘: Cp/Cp
"~ N

Co/Cy

Note that (1 0 71)¢ ~ m o (7{). Now notice that m o 7 is given by restriction along iy Cp/Cy

(i.e. the back face), while restriction along the front face implements 3. We may regard
7 (Notation 4.1) as a natural transformation g : (mo )¢ = 73 by (2.31). Since the
morphisms from the back face to the front face of (4.8) are inert, 8 is a natural equivalence.

(b) This is evident.
(c) Follows from (a) and (b).
(d) This is evident from the definitions of ay and 4.

(e) Consider the morphism w: Al — FiJC,,,*

Cp/Cp —— Cp =———0C,
H | /
Cp/Cp Cp/Cp Cp/Cp

Notice that w is inert and recall that morphisms of operads take inert morphisms to inert

®
morphisms. Because a morphism in (SpCP) factors canonically as a p-cocartesian morphism
and a fiberwise morphism, by definition of { (2.31) we see that restriction along , gives an
equivalence N (7$) ~ 71174.

(f) Now consider the diagram T := (’)Cp x Al — Fiincp/*

Cp Cp/Cp
i N
Cp x C, T) Cp o)
Cp/Cp =——|=——= C,/Cp
G L
CP CP

considered as an inert morphism (in fact, evi-cocartesian) from the back face a; (Notation 4.1)
to the front face.

20



Identifying the underlying set of C, with {0,1,...,p — 1}, notice that the shear equivalence
sh:{0,1,...,p—1} xCp = C, x Cp
(a,b) = (a+b,b)

which is equivariant with respect to the diagonal Cp-action on the target and the action
by C, on the second factor on the source. The shear map identifies ¢ with the fold map

u . . o
V:Cy L Cp, i.e. there is a commutative diagram

Cp xCp =g
T

7r27V
{0,1,...,p—1} x Cp

Thus we see that the shear map induces an equivalence tg =~ 14, >~ 3.

Now restriction along /1 (Notation 4.1) gives a natural transformation j

Fun (Oc,, ExAlg (Sp))

lay =72
/
C,EeAlg (spcv) / ‘(—)B

T
Fun (Oc,, ExAlg (Sp" ) )

Since the back-to-front arrows in (4.9) are inert, f is a natural equivalence. O

4.2 A parametrized monoidal envelope

To apply the Barr—Beck-Lurie theorem [Lurl7, Proposition 4.7.3.22], we will need to show that
7 of the free Cp-Ec-algebra on an Ec-algebra A computes the free normed algebra on A. A
general strategy for understanding free Cp-[Ec algebras is outlined in Remark 4.3.6 of [NS22]; we
introduce the ingredients first, then outline the strategy in Recollection 4.13. Then we apply the
aforementioned general strategy to exhibit a formula for the free C,-[Ec-algebra on an [E-algebra
A in Theorem 4.14.

Definition 4.10. [NS22, Definition 2.8.4 & Notation 2.8.3] Let O be a T -operad. let

Ar%gt<(9®) = Top XAr(Tnp) AraCt(O®)

where Ar““!(O®) is the T-full subcategory on the active morphisms.
Suppose given a fibration of T-operads p: C® — O%. The O-monoidal envelope of C® is

7 Enve, (€)% :=C% xpe ArF (O%) — 0%,

When O = FiinT,* we drop it from notation.
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Remark 4.11. More informally, an object of Env 7(C)® is a pair (¢, g: p(c) — 0) where ¢ € C?,
0 € 0%, ¢ is a fiberwise active arrow in O%. The forgetful map 7 takes this tuple to 0. By [NS22,
Remark 2.8.5], the underlying 7 -oco-category of Env 7(C)® is Enve 7(C) ~ Com7.

Jact’

Proposition 4.12. [NS22, Proposition 2.8.7] Let p : C¥ — O be a fibration of T -co-operads, and let
D® — O be a cocartesian fibration of T-co-operads. Let i : C¥ C Enveom,, (C )¥ denote the inclusion of
C® into its monoidal envelope. Then there is an adjunction

iy : Alg, 7(C,D) 7= Alg,, (Envp 7 (C)?,D) : i*
and iy has essential image the full subcategory of the right-hand side given by Fun%,T(Envo,T (€)%, D).

®
Recollection 4.13. Consider O = Finy ,, £ = (SQCZ) (Notation 3.10), and C = Com7~ (Example
2.28) in Theorem 2.35. Then there is an adjunction

F : ExAlg(Sp©?) 5 CEAlg(Sp©?) : G.

where G is from (2.34). By Remarks 2.8.5 & 4.3.6 of [NS22], the free C,-Ex-algebra F(A) on an
[E-algebra in Sp© is computed by the C,-left Kan extension of i A® : Envy (Com7=)® — S£C2
)®

along the structure map 7 : Envy (Comy=~)~ — Com?, where i) is from Proposition 4.12.

Theorem 4.14. Let A € ExAlg (Spcl’) (also see Lemma 4.30) and consider the adjunction F 4 G of
Recollection 4.13.

(1) The underlying Cp-spectrum of the free Cp-IEco algebra F(A) on A is given by (via the recollement of
Proposition 2.15)

Afpcp ® Ach
F(A) ~ lm@m (4.15)

A — AtCF’

where u is the unit, s : AP — AfCy is the structure map, and v is the twisted Tate-valued
Frobenius (Definition 3.8).

(2) There is a canonical Ees ring map n4: A — GF(A) given by id ,oc, ® (”Af,cp 180 Aicp) on
geometric fixed points and the identity on underlying.
Proof. By Recollection 4.13, the Cp-E«-algebra F(A) may be computed as the Cp-left Kan extension
®
of ifA®: Envy(Comy=)® — (Sjcz) along the structure map 7 : Envy(Comy=)® — Com?.
Denote x = [C,/C, = C,/Cp] € Com?. In particular, the Cp-spectrum underlying F(A) may

be computed as the Cp-left Kan extension of if A7 : (Com?i: e t) — Sp®¥ along the structure map
x act ), 728

Tly : (Com?i:,m) =~ Envy(Comy=)f — (Com?) =~ T°P.

X
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9 . . . .
LetI = (Comggr . Ct) L TP be shorthand for our indexing diagram and write Ic, and I¢,/c,

for the respective fibers (not parametrized fibers). We will write F |c, for the restriction of a diagram
F defined on I to Ic, .
By definition of a Cp-left Kan extension and Definition 5.2 of [Sha18], we seek a 7 °P-initial lift

Funop (I *Jop TOP,SECP)
B ] . (4.16)
ToP T Fun op (I,Sipcl’)

—~—

Informally, a lift F(A) of (4.16) is the data of
» a cocartesian section F(A): TP — Sjcp

» a morphism f from i;AY | c to the constant I, -indexed diagram at F(A)(Cp) in SpBCr

» a morphism « from 7, A | ¢, /¢, to the constant Ic /¢, -indexed diagram at F (A)(Cp/Cp) in
=1G/Cp
SpCP

» Choose a functor R: Ic,/c, = Ic, classified by the map C, — C,/Cp. Then we require the
data of an equivalence («)° ~ B o R of natural transformations.

Now notice that the diagram i;AY|c, is defined on (Com?z ) , which has a final object
X 1Lp ,act X, Cp

—~—

[Cy = Cp]. Thus for F(A)(Cy) to be an initial object of the C,-fiber of (4.16), we must have
F(A)° ~ A°. An initial object of the C,/Cp-fiber of (4.16) is equivalently an object F(A) : TP —
Sjcﬂ representing the functor

Sjcp — Spc

B homFunTop(I,Sjcp) (i AZ,q°B) .

By a similar argument to our earlier discussion of morphisms in categories of cocartesian sections
(Observation 3.19) and Proposition 2.15, the space of morphisms from the diagram ij Ay’ to g* B sits
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in a fiber sequence

. (@ASc,/cp)?P (3°Blc,c,) " F AR \Cp
fib homF (1 Ar(S £-pEp , PP %homF a1l s (1!A£\CP) F,q B|c
un(I|c, /c, Ar(Sp) ) un(I|c,.Sp
P A® tC tC
(llAg‘Cp/Cp) r q*B‘Cpp/Cp

|

P A® ~ P A®
homFunTop(l,SjCP) (1 AD,q*B) ~ homFun(l\cp/cp,ipC”) (zzAl |c,,/c,7,q*B|c,,/c,,>

Jer

I A® *
homFungcp (I\Cp,SlBCP> (ZIAg |Cprq B‘Cp)

. . . cA® ¥R\ ~o e pe
By the previous discussion, we have homFunBcp (I\cp,ip BCn) (i1AY|c, 9" B°) =~ hOmSpBCp (A¢,B°).

Thus we see that for I?CLX/) (Cp/Cp) to be an initial object of the C,/ Cp-fiber of (4.16), it suffices to
take F(A)?“ to be the colimit of the diagram

A2\ 9Cp | ®
(1LAD) 7" (Comfr:f“ft)xcp/cp — Sp.

By Lemma 4.18, the Cp-left Kan extension of ijAy along 7y : Env(Comy=), — (Comy), is
computed on C;, geometric fixed points by (4.15).

The existence of the unit 174 follows from monadicity (Proposition 4.29), and its exact form
follows from tracing through the definition of C,-left Kan extension. O

Warning 4.17. The G-oo-category of G-spectra SipG is not an example of the G-category of objects of
Construction 2.6. Thus many of the techniques to compute G-left Kan extensions of [Shal8] do not
apply to our proof of Theorem 4.14.

Lemma 4.18. Consider the fiber (Com3..) i,y /c, (Mot parametrized fiber) over Cy/ Cp of (Com%.)
The inclusion

act’

) ®
1: BCp U* — (ComTZ)act,cp/cp

of the full subcategory spanned by the object
CyUCy/Cp——Cp/Cp

| H

is cofinal.
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Proof. Since we consider the fiber over C,/C,, the target is always Cj, / Cp and we omit it throughout
the following proof. Observe that there is a pullback diagram of simplicial sets

z ®
BCp U ———— (Com7) 0 /e,

J Io
{(2),(1),{*,2}} ——— Sub
By Lemma 4.21 and [Lur(09, Proposition 4.1.2.15], Q is smooth. By Remark 4.1.2.10 of loc. cit. and
Lemma 4.20, ¢ is cofinal. O
Recollection 4.19. Recall the category Sub of [Lurl7, Definition 2.2.3.2] which was defined to have
(a) objects of Sub are triples ((n),S,T) where S, T C (n) suchthat SUT = (n) and SN T = (n).
(b) a morphism of Sub from ({n),S,T) to ((n’),S’, T') is a pointed map f : (n) — (n’) such that
f(S) €S and f(T) C T'.
The oo-category Sub is an co-operad by Proposition 2.2.3.5 of loc. cit. applied to C® = D® = Fin,.
Write 77 : Sub — Fin, for the structure map.
Lemma 4.20. Let A C Envg,, (Sub) denote the full subcategory on the object (a,w(a) — (1)) for
a = ((2),(1),{2,x}). Then the inclusion
t: A — Envgy, (Sub)
is cofinal.

Proof. We verify criterion (2) of [Lur09, Theorem 4.1.3.1]. Observe that for every object ((n),S, T) of
Sub, there is a unique morphism ((n),S,T) — ((2), (1), {2, *}) which sends alls € S\ {*} to 1 and
allt € T\ {x} to 2. O

Lemma 4.21. There is a functor Q: Comp= — Sub =~ Fin, B Fin. which takes a Cp-set T to its set of
P
Cp-orbits grouped by orbit type, ie. Q : Cp — ((1),(1),{}) and Q : C,/Cp — ((1),{x},(1)). The
functor Q is a coCartesian fibration classified by the functor
Sub — Cat

((n),S,T) — | |BCy | |*
S T

Construction 4.22. Let A € EoAlg(Sp™*). Given any (B,np: N’B — B) € NEwAlg <SpCP),
there is a canonical map

f : hom (A,B) — hom (YF(A), (B,ng: N°B — B)).

EeoAlg(SpP) NEoAlg(Sp©P)

By Observation 3.19 and Corollary 2.18, we may define f ‘componentwise.” Denote hom ;) (piF(A), pi(B))
by M; (Definition 3.11). We have

Afe, B
P
My = hom]EooAlg(SpCp) (F(A),B) ~ homg,alg (A, B) hom(A;éP ) hom l l

Atcp, Bth
= M(/) X pmit M(/)/

25



Take the identity on M|, and define hom o) (A, B) — M| to be the composite

EwAlg(Sp

C
7. hom (4,B) 25 hom NG A,NB) & M

Eoo Alg(Sp™Y EoAlg(Sp“) (

where g takes 1 : N A — N B to the outermost trapezoid in the commutative diagram

h
A¢ B
! bt
evapyic, (B @\ EC c
((A9)=P)Sr ———— ((B%)®F)"™r B#*r
pr
~
J/ hth
Ath Bth

where by definition ntBC” o~ mtBCf and the lower trapezoid is the Tate construction (—)!? on m of
(3.2) applied to h. Clearly f; and fy' lift canonically to a functor fo : homy, Alg(5p7) (A,B) — M.
Take fy : homg Alg(5p7) (A, B) — My to be the product N (—¢) x id. The map fy clearly lifts
to fo : homy Alg(SpC?) (A, B) — M, and is identified canonically with (N (—¢) x id) o fo. Since
F(A)® ~ A®, we may define f3 and f5 as m(_) and (—°)®2 x (—)¢, respectively.
The f; assemble to give the desired map.

4.3 Proof of main theorem

Equipped with an explicit description of the free Cy-IE«-algebra on an [E-algebra A in Cp-spectra
from the previous section, here we show that < of the free C,-[E-algebra on an Ec-algebra A
computes the free normed algebra on A using our description of mapping spaces in the category
of normed [Es-algebras. The main result then follows from an application of the Barr—Beck-Lurie
theorem.

Theorem 4.23. The functor v: C,EAlg (S ) — NE&Alg (Sp? ) of Corollary 4.7 is an equivalence.
p g (°pP & (°P Y q

Proof. Consider the diagram of forgetful functors

CpEAlg (Sp ) ! NE.Alg (Sp )

X % (4.24)

EAlg (Spcl’)

where G’ is from Definition 3.11 and G is (2.34). The diagram (4.24) evidently commutes.
The functor G is monadic by Proposition 4.29. The functor G’ is monadic by Proposition 3.21.

Now for any A € ExAlg (SpCZ) , the unit A — yF(A) of Theorem 4.14 induces an equivalence
F'(A) ~ yF(A) by Corollary 4.27. The result follows from [Lur17, Proposition 4.7.3.16]. O
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Proposition 4.25. Let A be an Ee-ring in Sp*¥ and let (B,ng: NB — B) be a normed Eoo-ring in
SpCP. Then precomposition with the Eco-map 514 : A — GF(A) of Theorem 4.14 induces an equivalence of
morphism spaces

Homyg,. (<7F(A),nF(A): NG yE(A) — fyF(A)) ) (B,nB: NGB — B))

Je

Homg_(G'vF(A),G'(B))

* 2
K

Homg_ (A, G'(B)).

(4.26)

where G' is the forgetful functor of Definition 3.11 and vy is the functor of Corollary 4.7. That is, 17(_y is a
unit for the functors (y o F, G') in the sense of [Lur09, Definition 5.2.2.7].

Corollary 4.27. The natural transformation _y exhibits y o F as a left adjoint to G'.
Proof. Follows from [Lur09, Proposition 5.2.2.8] and Proposition 4.25. O
Proof of Proposition 4.25. By Observation 3.19, the space of morphisms

Homyg,, ((F(A), npa): NS F(A) — F(A)), (B,ng: N°?B — B)) is computed by the limit of the
diagram

hom A B¢
1 {

(Aoap)th (B®p)th

_e\®p_y(_e ¢C
) ( ) hom A , B « hom A p®AhCP, B¥Cp
la 1a Isa®va A
(A2P)!Cr (Bop)'Cr hom A B AfCp BICp
a la

(Aw)tcp BiCp

horn (A®P)Cr (B2P) tCP x hom AtCP BtCP

/\

A9Cp ®Ath B¥Cp

hom c hom A, B x hom ,
e Alg(Sp7) a7 ] la 1A
(A®p)th (B®p)th Ath BICp

(4.28)
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where all morphisms are computed in either EAlg (SpB CP) or ArEcAlg (SpB Cr ) . Notice that

~ Anc, poCp
hom]EwAlg(Spcp) (F(A),B) = hom]EmAlg(SPcp) (4.8) hom(A?éP BIr) hom i"Ap’ 1a
’ ACr BICp

and moreover the composite

G/
homyg tg(F(A), B) =+ homy . cp) (F(A), B) = homy 1o c,) (4, B)

is equivalent to 7* o G'. Unravelling definitions, we see that given a point f € hom, Alg(sp) (A, B),
the fiber of * o G’ over f is given by the space of fillings of the below diagram to a commutative
diagram Oc, x (A1)*? — ExAlg(Sp):

A s B
ng
~. . ‘ ~ o
hC, » B
@p\tC
(A®PYICr e (BEP)(Cr
Vge
. y FC ~. e
At-p Bty

wherein all but the top and front face are given. This space is contractible by the adjunction
(=)™ Sp S Sp“r: (<),

Now by Construction 4.22, #* o G’ admits a right inverse f, hence it is surjective on connected
components. Thus the result follows. O

Proposition 4.29. The forgetful functor G : CyEExAlg (Spcl’> — ExAlg (SpCV> of (2.34) is monadic.

Proof. We consider the commuting triangle of forgetful functors

CEwAlg (Sp) —S— EwAlg (Sp™)

~

The upper horizontal arrow is given by restricting along the C, operadic inclusion Com?-: —
Com?ﬁ and applying the equivalence of Lemma 4.30. By [NS22, Corollary 5.1.5], the diagonal arrows
are monadic; in particular by the Barr-Beck-Lurie theorem the right diagonal arrow is conservative.
By [NS22, Theorem 4.3.4] applied to the morphism Com?.. < Com?/, the upper horizontal arrow
admits a left adjoint. Thus the result follows from [Lurl?7, Proposition 4.7.3.22.]. O
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Lemma 4.30. For the minimal indexing system Comq=~ (Example 2.28), we have a canonical identification
of Comy=~-algebras in (SECP) ’ with OE‘; -families of IEco-algebras in spectra, or equivalently Eo-algebras
in Sp.

Proof. Compare [NS22, Corollary 2.4.15] and [Lurl7, Example 2.1.3.5].

Let A : Com?—g — C% be a section of p : C® — Finy . Notice that A is a Comy~-algebra if and

only if A is T-right Kan extended from the full subcategory of Com?ﬁ2 spanned by coproducts of
[Cy/Cp = Cp/Cp). The result follows from [Lurl7, Proposition 4.3.2.15]. O

5 Applications & examples

51 Examples

The example which will be used in the author’s upcoming work on real (C;-equivariant) trace
theories is

Theorem 5.1. Let k be a discrete commutative ring. The constant Cy,-Mackey functor k on k uniquely
acquires the structure of a Cp-Beo-ring.

Proof. In view of Theorem 4.23, it suffices to show that k can be lifted to an object of Definition 3.11.
Note that the isotropy separation sequence for k is

kKSr —— k9

s

thp kth

The left vertical arrow is a connective cover; hence so is the right vertical arrow and k¥ = 150k!Cr.
Note that T50k!’ is an Ew-ring in spectra because the Tate construction and connective cover
are lax symmetric monoidal functors. By Theorem 4.23 and Remark 3.17, it suffices to exhibit a
commutative diagram

ny
k LN 1L

Tate diagonalJ{ J{,x .

(koP)'r 2 ki

The dotted arrow and 2-cell making the diagram commute exist up to contractible choice because
the inclusion of connective [Eq-algebra spectra into all E-algebra spectra admits a right adjoint
[Lurl?7, Proposition 7.1.3.13], and our assumption that k is connective. O

There is a natural class of equivariant Cp-spectra for which the data of (3.18) is no extra data at
all.

Recollection 5.2. The co-category Sp»"P°™! of Borel C,-spectra is the image of SpP» under the fully
faithful right adjoint to the ‘underlying’ spectrum functor of Proposition 2.15. Write Cp]EmAlgBOrEI (Spcl’)
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for the pullback

CplEooAlg (SPCP) SXCP SpCp,Borel'
P

In words, this is the category of C,-E-algebras whose underlying Cp-spectrum is Borel. A C)-
spectrum is Borel if and only if the structure map A?“» — A!Cr is an equivalence.

In view of the expected correspondence between the theories of Ne.-algebras of Blumberg-Hill
and the Cp-Ec-algebras of Nardin-Shah, we have the following analogue of [BH15, Theorem 6.26].

Proposition 5.3. Every Borel Eco-algebra in Cp-spectra admits an essentially unique structure of a CplEco-
algebra. More precisely, there is an equivalence of categories

EwAlg®™ ($p7) = C,EeAlg™™ (5p©)

with inverse the forgetful functor G (2.34).
This result may also be regarded as a special case of [Hil22, Proposition 3.3.6].

Proof. Let A € EooAlgBor <Spci“) . Then by Theorem 4.23, it suffices to produce a lift

AT A9G
lA lSA
(A=) T, 41y

which is functorial in A. By definition of Borel spectra, s4 is an equivalence, so the space of choices
of --» and a 2-cell making the diagram commute is contractible. O

Corollary 5.4. The real bordism spectrum MUR admits a unique refinement to Co-IEco-algebra.
Proof. Follows from [HKO01, Theorem 4.1(1)] and Proposition 5.3. O

Proposition 5.5. Let B € EAlg (Sp) be an E-algebra. Then N B admits a canonical structure of a
Cp-E-algebra. That is, there is a factorization

3 " NE«Alg (SPC”)
) - a J{G’
EeAlg (Sp) Y7 EwAlg (Spcl’)

Proof. Then by Theorem 4.23, it suffices to produce a dotted arrow and a commutative diagram
Oc, x Al = ExAlg (Sp)

B®P F .. B
Al lA
(B®p2)tcp mtCa <B®P)tcp

which is functorial in B. We can choose the dotted arrow to be mp and a commutative diagram to
be functorial in B because the Tate diagonal is functorial. O
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5.2 Real motivic invariants

Here, we briefly recall that algebras with C,-actions naturally give rise to motivic invariants valued
in genuine Cy-spectra. These real motivic invariants and their associated real trace theories provided
the impetus for this work.

We only provide brief sketches of the required constructions and definitions; readers who are
unfamiliar with the following notions should refer to sources cited below for details.

Recollection 5.6 (Real topological K-theory). [Ati66; Dug05] The space Z x BU has a Cy-action
coming from complex conjugation on the unitary group U, with Cp-fixed points Z x BO. Further-
more, there is a C-equivariant form of Bott periodicity Z x BU ~ ()°(Z x BU). Real K-theory
KUR is the associated Cp-spectrum (under the equivalence in [GM17, §3]).

By Appendix A (see discussion after Theorem A.5) of [LN14], KUR is an [E algebra in C,-
spectra.

Recollection 5.7 (Poincaré co-categories). There is an co-category Cath, of Poincaré co-categories
([Cal+20a, Definitions 1.2.7-8]) whose objects are pairs (C, ?) consisting of a small stable co-category
and a quadratic functor ¢ : C°? — Sp, and morphisms are given by duality-preserving exact
functors. Moreover, the co-category Cath, has a symmetric monoidal structure [Cal+20a, Theorem
5.2.7(iii)] lifting the Lurie tensor product on small stable co-categories.

Definition 5.8 (Real algebraic K-theory). Let A be a C-E-algebra. We may associate to A the
module with genuine involution (M = A®, N = A?%2, s, : A?C2 — A'C2) (Definition 3.2.2 of loc. cit.
To such a module with genuine involution there is an associated Poincaré co-category (Perf 4, 9i%)
([Cal+20a, Construction 3.2.5]). The real algebraic K-theory Kr (A) of A is the real algebraic K-theory

Kr(A) =~ GWBWYP (Perfye, 9°4) € Sp©2
in the sense of [Cal+20b, Definition 4.5.1].

Proposition 5.9. (1) The assignment A — (Perfae, 9°{t) of Definition 5.8 (compare examples from §3.2,
in particular Example 3.2.11 of [Cal+20a]) promotes to a symmetric monoidal functor

CEAlg (Spc2> — Catl,.

(2) The real algebraic K-theory of a C-Eco-algebra R canonically refines to an Eeo-algebra in Cy-spectra.

Proof. To prove (1), it suffices to observe that a morphism of Cp-Ec-algebras ¢: A — B induces a
canonical triple (J,, ¢) in the sense of Corollary 3.3.2 of [Cal+20a] (corresponding to a hermitian
functor (Perfae, ¥°t) — (Perfpe, 932 ) covering the induction ¢, : Mod e — Modpe). Furthermore,
the triple (4, 7, o) automatically satisfies the criterion of Lemma 3.3.3 & Definition 3.3.4 of loc.cit.,
hence the associated hermitian functor is in fact Poincaré.

To prove (2), it suffices to exhibit a composite functor C;EAlg (Spc2) — Catl, — Sp© which

is lax symmetric monoidal. The former functor is lax symmetric monoidal by (1). The latter functor
is that of [Cal+20b, Definition 4.5.1]. That it is lax symmetric monoidal will appear in [Cal+]. O

A ring R is said to satisfy the homotopy limit problem if its genuine symmetric real K-theory is a
Borel Cp-spectrum [Tho83; Cal+21, §3].
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Corollary 5.10. » Real topological K-theory KUR admits a unique refinement to a Cp-Eq ring spec-
trum.

» If A satisfies the homotopy limit problem, then Kg (A) admits a unique refinement to a Co-Eoo ring
spectrum.

Proof. By [Ati66] (also see [Rog08, proof of Proposition 5.3.1; Dug05, Corollary 7.6]), KUR is Borel.
Both results follow from Proposition 5.3. O

5.3 A relative enhancement

In this section we state a version of our main theorem relative to an arbitrary base Cj-Ec-algebra
A (Example 2.33). In order to make sense of a Cy-E-algebra over A, we require a C,-symmetric
monoidal structure on the category of A-modules. That this is possible is suggested by the following

Definition 5.11. Let A be a Cj-Eq-ring in SpCr. The (A-linear or relative) norm is the functor

MSP: Mod 4 — Mod 4 (Spcl’>

Cp
M — A®NQCP(A€) Ne}M

Note that the reasoning of Lemma 2.22 applies to show that N, S’” lifts to a colimit-preserving functor

ExAlg 4. — ExAlg,.

By Proposition A.9 (communicated by Jay Shah), we may regard the category of A-modules as a
Cp-symmetric monoidal co-category.

Definition 5.12. Let A be a C-Ec-algebra (Example 2.33). The co-category of C-[E-A-algebras is
Algmcp,* (EJCP,*/ (Mod 4) ®> =: CpEwAlg , (Definition 2.32). In other words, it is the category of
sections of Mod% — Finc . which take inert morphisms to inert morphisms.

There is moreover a relative notion of normed algebras over A.

Definition 5.13. Let A be a Cp-Ec-ring. We define the category NE«Alg 4 of normed Eco-A-algebras
to be the limit of the diagram

Fun (Oc,, ExAlg 4. )
(-

mo(—°) evC, Ve, /Cp Fun (Ocp, ]EooAlgA)
]EooAlg(Ae)@p X EcoAlg 4 evVe,RVCy /Cp
/ (—)e>< (_)e
ExAlg 4 NG o ]EooAlchp(Af) X EAlg 4
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where we have abbreviated ExAlg , = ExAlg , (Spcl’) / BooAlg peyop = BooAlg geyep <SpBCP XBCP) ,
etc.

There is a relative version of the main results of this paper.

Proposition 5.14. Let A be a Cp-Eco-ring. There is a canonical forgetful functor
r4: CpExAlg, — NEAlg ,
Proof. Proceeds as in proof of Corollary 4.7. O

Theorem 5.15. Let A be a Cp-Eco-ring. Then the canonical comparison functor y a of Proposition 5.14 is
an equivalence.

Proof. Proceeds as in proof of Theorem 4.23. O

A Modules over normed equivariant algebras

In this appendix, we show that the category of modules over a Cp-Ec-ring naturally acquires a
structure of a Cp-symmetric monoidal co-category in the sense of Nardin-Shah via a relative norm
(cf. Definition 5.11). The author would like to thank Jay Shah who communicated details of this
construction.

Fix x a regular cardinal and let IC denote the collection of x-small simplicial sets.

Recollection A.1. [Lurl?, Notation 4.8.3.5.] Write Alg, (Cate). It has objects given by monoidal
co-categories which are compatible with x-indexed colimits and whose morphisms are monoidal
functors F : C®¥ — D® whose preserve k-indexed colimits. Write U Algg, (Cate) — Cate, for the
forgetful functor which forgets the monoidal structure.

[Lurl?7, Definition 4.8.3.7.] There is an co-category Gatvolg(lC). Informally its objects are given by
pairs (C®, A) where C is a monoidal co-category and A is an algebra object of C. Morphisms from
(C®,A) to (D?, B) are given by monoidal functors F : C — D such that F(A) ~ B.

Similarly, there is an co-category Cat¥°d(K) whose objects are pairs (C¥, M) where C is a
monoidal co-category and M is an co-category left tensored over C. In particular, there is a forgetful
functor

Y: CatMod(K) — Cate

(C®, M) — M %2

[Lurl?7, Construction 4.8.3.24] There is a functor ® making the following diagram commute:

@:(C%,A)—(C®Modx (C))

Cati®(K) catMod (k)

N - (A3)

Algy (Cateo)

where the vertical arrows are the universal fibrations classifying families of [Ej-algebras in C and
modules over said algebras in C, respectively [Lurl7, Remarks 4.8.3.8. & 4.8.3.20.].
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Notation A.4. Hereafter, we drop «, K from notation.

®
Lemma A.5. Let A be a Cp-Eco-algebra object of (SECP ) , and recall the functor : Span(Finc,) —
Algy (Cat) of Recollection 2.30. Then A lifts to a cocartesian section Aof [T

Proof. Let T — C,/H be an object of Finc, .. There is a natural functor it := — x T: Fin, — Finc ..
Moreover, L) assembles to give the functor

¢: Fin, X mcp,* — mcp,*
(S,T— Cp/H)+—SxT—Cy/H

Consider the restriction (7 A of A along i7. We may further precompose (7 A with the structure
morphism Assoc® — Fin, where Assoc® is the [E; operad of [Lurl7, Definition 4.1.1.3]. Then
by the characterization of inert morphisms of Theorem 2.3.3 of [NS22], /7 A and by definition of
morphisms of operads (both parametrized and non-parametrized), :7A defines an associative
algebra object in {(T). Likewise /* A defines a Finc .-family of associative algebra objects, hence

the existence of A follows by the universal property characterizing Catas. O

Variant A.6. Let Ky denote the full subcategory of the arrow category Ar(Fin,) on those arrows
given by the inclusion of the basepoint {*} < S. There is a variant functor

by Ko x mcp,* — FiJC,,,*
{*}—=>S5T)— {*}—=>S)xT
which defines a A! x Finc, .-family of associative algebra objects.

Now consider the commutative diagram

[g M0 eadls @ eaMed Y, eqt,

Au Juu Jum

Finc, ., —— Algy (Cat) == Algy (Cat)

where A exists by Lemma A.5 and the center square is (A.3).

Definition A.7. Let A be a Cj-E-algebra in Cp-spectra. Recall the Grothendieck construction
[Lur09, Theorem 2.2.1.2]. Let Mod?; be the C,-symmetric monoidal co-category classified by the
morphism Y o @ o u} () o A. Let Mod 4 denote the corresponding underlying C,-co-category of
Mod?,.

Examples A.8. (1) When A = S°, we recover Mod 4 ~ Sjcl’.

(2) Suppose A is a Cp-Ee-ring. Then Mod, may be regarded as the Oc,-diagram of stable
oo-categories

Mod 4 (Spcl’) N Mod 4¢(Sp) -

()

O«
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The morphism [C, — C,/Cp] — [C,/Cp = Cp/Cp] in Finc, . classifies the relative norm NC
of Definition 5.11.

The previous discussion shows that

Proposition A.9. Let A be a Cp-Eco-algebra in Cy-spectra. Then the Cy-co-category of Definition A.7
naturally acquires a C,-symmetric monoidal structure in the sense of [NS22, Definition 2.2.1].

Remark A.10. By the proof of Lemma A.5, each At for T — C,/H an object of mcp,* is in fact an
Ec-algebra in {(T). Thus we write modules instead of left modules [Lur17, Corollary 4.5.1.6].

Construction A.11 (Parametrized base change). Since Finc, , is unital, the category of Cp-Eeo-
algebras in Cy-spectra has an initial object 1 [NS22, Definition 5.2.1 & Theorem 5.2.11, resp.] given
fiberwise by the sphere spectrum. As in Lemma A.5, 1 lifts to a coCartesian section 1 of [ .
Suppose A is a Cp-Eco-ring spectrum. Variant A.6 shows that the unit map #7: 1 — A induces a

natural transformation 7: 1 — A. Under the Grothendieck construction, the unstraightening of
Y o®ou;(g)(n) corresponds to a Cp-functor of Cp-co-categories which we denote by

— @g0 A: Sp — Mod 4.
Categories of modules behave in the expected way.

Proposition A.12. Let A be a Cp-Eco-algebra in Cp-spectra. Then the Cp-functor — Qg0 A: SECP —
Mod 4 participates in a Cp-adjunction which is fiberwise monadic.

Proof. Notice that essentially by definition, the C,-functor — ®go A preserves coCartesian arrows.
By (the dual to) [Lurl?7, Proposition 7.3.2.6], it suffices to check that — ®g0 A admits a fiberwise
right adjoint, which is classical. O

Remark A.13. The strategy outlined here generalizes straightforwardly to endow the G-co-category
of modules over a normed G-Ee-ring spectrum with the structure of a G-symmetric monoidal
structure for any finite group G.

Remark A.14. One expects a equivariant form of the Tannaka reconstruction theorem [Lurl7,
Propositions 7.1.2.6-7] by which a G-E-ring A can be recovered from its category of modules
endowed with its G-symmetric monoidal structure.
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