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Abstract. Let SU (n) be the n-th special unitary group, SO (n) be the w-th special orthogonal
group, and SU (n) /SO (n) be the homogenous space. Let SU be the infinite special unitary
group, SO be the infinite special orthogonal group, and SU/ SO be the homogenous space. By
Bott-periodicity, the loop of SU /SO, Ü(SU/SO), is homotopy-equivalent to BÖ which is the
classifying space of the infinite orthogonal group. Hence we have a map

h:Q(SU(n)/SO(n)) -> BÖ,

which is induced by looping the natural inclusion map. Furthermore by Lemma 7 in [6] the
above natural inclusion map is (n — 2)-equivalence. This suggests us that we can compute the
Brown-Peterson homology ofü(SU(ri)/SO («)), BP+ (SU (n) /SO («)), completely by knowing
BP+BO.

In [5] the first author gave a complete answer of the Brown-Peterson homology of the
classifying space BÖ, BP^ BÖ. He computed BP^ BÖ by using the 2-primary Adams spectral
sequence. With the same techniques, we can also use the Adams spectral sequence to compute
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The paper is organized äs follows: In § l we recall the Brown-Peterson homology of
the classifying space BÖ [5] and state the main results of this paper. In § 2 we compute
the Adams £2-term for BP^Ü(SU(n)/SO(n)). In § 3 we prove the Adams spectral
sequence for BP^ (SU(ri)/SO («)) collapses from £2-term, solve the group extension
Problem of this spectral sequence, and prove the main theorem.
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l Statement of results

Throughout the paper homology will always have //2-coefficients, and for any
homology theory h^( ), we will denote by K^( ) the reduced homology.

Recall that H^(BO) = Z/2[A19 62, 63, ...], where |6{| = i, and the generators bt
come from the usual inclusion mapg:&P°°-> BÖ. Furthermore, there is
a well-known inclusion map (generating complex)

g: RPn~l -> Q(SU(n)/SO(n))

such that

where 1^1 = i, ft£ comes from RP\ ! < / < « — !, and

: //,, (a(SU(n)/SO(n))) ->

is injective.
Let BP be the 2-primary Brown-Peterson spectrum. The basic references of

Brown-Peterson homology are [2] and [4]. We now recall some results of the
Brown-Peterson theory. The coefficient ring is

Since BP is a ring spectrum with complex orientation, we have

where Xe ÄP2CP°° is the first Conner-Floyd class.
BP^CP™ is a free Ä^-module on the generator ßt which is dual to X* (/ > 0).
The induced map, 2*, from the fibration,

CP°°,

defines 2*(JT) = [2](^) = £ = 0 0 ̂  +1, which is called 2-series and
«o = 2.

The reduced Brown-Peterson homology of ÄP°°, SP^RP™, is generated by

ZjeSP^RP" j>0 ,

subject to the relations
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We still use 2i and zj s the Images of 2i and Zj under the maps f+ : Αξ, CP°°
-» P*£O and g^.BP^RP™ -> Αζ,ΒΟ respectively, where /: CP°° -* 50 and
g: AP00 -> B are the virtual Hopf bundles of degree 0 respectively. Then we recall
the result of [5] :

There is an 5^-algebras isomorphism

where ZQ = l, degz,· = 2j — l for j > l, deg/?2i = 4i for i > l, and / is the ideal
generated by

Σ «i^-i f o r j > l .
i = 0

We now state the main results of this paper.

Theorem 1.1. Under the loop map

h: (SU(n)/SO(n)) -+ B ,

BP^ (SU(n)/SO(n)) is embedded in BP^BO, that is,

(1) for n = 2m,

) * BP2i, ZjJ, < i < m - , < < m,

z0 = l, |zy| = 2j — l, | j82i| = 4i, a«rf / w the ideal generated by

j-i
Σ flfczj-k = °' 1<7<^-1 ,

(2) for n = 2m + l,

i&a/ generated by

j
Σ

Remark. Since ^(Ω(5ί/(η)/5Ο(η))) = Z/2[i> lsi>2, ...,^-J, the top generator
6Λ_! induces a generator z, if n is even or 2i if n is odd in BPH-iQ(SU(n)ISO(ri)).
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The idea to prove the main theorem is to use the Adams spectral sequence. We rely
on the same techniques äs the first author's work of BP^ BÖ in [5] to compute the
Adams Ü^-term for BP^fl(SU(n)/SO(ri)). Also with the aid of the loop map

h:ü(SU(n)/SO(n)) -^ BÖ,

we could prove this Adams spectral sequence collapses from E2 term and solve the
group extension problem in this Adams spectral sequence.

2 The Adams E2-term for BP^il(SU(n)ISO(n))

be the mod 2 dual Steenrod algebra, that is^ = Z/2[^1? 2, 3, ...], where <^
is the Milnor's generator and | £t-| = 2* — 1. The coproduct is given by

Recall the 2-primary Adams spectral sequence,

where Z(2) is the integers localized at prime 2. By a well-known change-of-ring
isomorphism [1], we can replace

Ext3;*(Z/2,/f#(BPAjr)) with Extf'* (Z/2, #*(*)),

where £is the exterior algebra of the mod 2 dual Steenrod algebra. Thus the desired
Adams spectral sequence which we will use is

> BP+X.

Recall that |{f| = 21 - 1 and that

ExtI'*(Z/2, Z/2)

where bideg(wf) » (l, 1^1). We will denote this ring by R.
Recall that H^(Ü(SU(n)/SO(n))) « Z/2[A15*2, ...,^-J, where the generators

bt come from the generating complex g: RPn~l -+ ü(SU(n)/SO(n)). Hence by the
results of Switzer [3], the comodule structure of H^(Sl(SU(n)/SO(n))) over the
mod 2 dual Steenrod algebra is
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where ξ = 1 + ξ1 + ξ2 + ξ3 + ~·.
In order to compute the Adams ^-term for BP^il(SU(n)/SO(n)) we must

understand the comodule structure of H^(Q(SU(n)/SO(n))) over the exterior
algebra in advance. We have the exact same lemma s Lemma 2.1 of the first author's
paper in [5].

Lemma 2.1. With the notation s above, the comodule structure of
H^(£l(SU(ri)ISO(ri))) over the exterior algebra E is

_1) = 1(χ)έ27·_1, l <2y -1<W-1,
Δ (i?) = 1®6,2, 1 < / < « - 1 ,

and A(62k) = l ® 6 2 k - f - Σ ίι® *2*-2i+i» l < 2 f c < n - l .
2<2 '<2fc

Theorem 2.2. 7« iAe Adams spectral sequence for BP^£i(SU(ri)/SO(n))> the Adams
E 2- 1 er m is

(1) /0r n = 2m

where ^i and 2j-i are representedby b\{ andb2j-i in the cobar complex respectively ,
and J is the ideal generated by

^2j= Σ w k ® 2j-2fc+i, l < j < m - l .
2<2k<2;

(2) / r « = 2m + l

52*'* s ̂  ® Z/2[ i„ de^.J/7, l < / < m - l, l <y < m,

where ά2ί and 2j-i are representedby b2i andb2j-\ in the cobar complex respectively,
and J is the ideal generated by

Q2j= Σ wfe® 2</-2k+1, l<j<m.

We will only prove this theorem for the case w = 2m, and the proof for the case
n = 2m + l is similar.

To prove Theorem 2.2, we will rely on the same techniques s the paper of BP+ B .
The idea is to filter the cobar complex and to compute the desired Ext group by using
the associated spectral sequence.

Let C be the cobar complex, that is, Ck = ®kE® H^( (SU(2m)/SO(2m)y)9
where E is the argumentation ideal of the exterior algebra E, and ®kE is the k-fold
tensor product of E (k > 0).
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Let

be the subalgebra of H^( (SU(2m)/SO(2mJ)).
No w we want to define a decreasing multiplicative filtration {F1} on C. We do

this by setting

^0 = 0, and F°C* = (X)k£<8).D

and by defining the filtration degree of each b2i (l < / ' < m — 1) to be — 1. Then by
using Lemma 2.1, one can easily check the following

(1) d(F~pCk) £ F~pCk+l, dis the differential in C, and

(2) F~pCk (g) F~qCl -+ F~p-qCk+l, Ck®Cl-> Ck+l is the external cup product.

So we have a spectral sequence of algebras

where F~pC/F~p+1Cis the quotient complex, and the d± differential is the composite

£[-*>'« = H~p+q(F~pC/F~p+1C) Λ H~p+q+ *(F~p+iC)

Since in the above filtration we filter away the coaction of £",

=

that is,

£*'* = R ® H^(Sl(SU(2m)/SO(2m))).

The proof of Theorem 2.2 now follows from the next result.

Theorem 2.3. The filtration spectral sequence indicated above collapses from E2-term
and

E$>* ^R®Z/2 L ̂ .-J/J, l < i < m - l, l <j < m ,

J w generated by

2j= Σ w k ® & 2
2^2^2j

Lemma 2.4. Lei J? = JR® D ® Ζ/2[Α|>64» •••,&L-2] wAfcA is α subalgebra of
R ® Ht(fl(SU(2m)/SO(2m))). Let
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Q2j= Σ

and for 2 < s <m, let /(5-ΐ) be the ideal of R gener ated by ρ2/·, l <y < s — 1. Then
£2(s+o w HO/ α zm? divisor in R/J(s-i}for t >Q, s + t <m — l a« f (h(s+t) w woi #*
J(S-i)f°r t>Q, s + t <m — \, that is, if lQ2(s+t) w #* Λ$-ι>^ /e Λ, iAew leJ(s-i}for
t > 0, 5 + i <m- l .

Proof. This lemma is exact the same s Lemma 2.4 of [5] except some restrictions on
the degree.

Proof of Theorem 2.3. Let

and

which are the subcomplexes of ^-term. There are short exact sequences

where Pj+i/Pj is the quotient complex.
We will prove by induction on j that

&i ..., 6L-2]/^, l <y < m - l .

From Lemma 2.1, it is obvious that H^(P0) = P0. So we can Start the induction.
The short exact sequence indicated above induces a long exact sequence

Claim: The boundary homomorphism is multiplication by
Note that the typical element of Pj+i/Pj is χ (g) b2j+2, where xePj. Suppose

y e H^(Pj+i/Pj) is represented by χ (χ) ft2j+2 in the quotient complex Pk+i/Pk. Since

we have

But χ ® fc2j+2 must be a cycle in the quotient complex, so dv(x ® b2j+2) = 0 in
Pj+i/Pj, that is, rfi(jc® b2j+2) e P j . However b2j+2iPp so rft(x) = 0, that is,
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Now by Lemma 2.4, d is injective. Hence the long exact sequence

implies that

is surjective. Then by the first isomorphism theorem,

where <ρ2α+ΐ)) *s the ideal generated by ρ2( /+ΐ)· This completes the inducitve step.
Since the filtration spectral sequence is a spectral sequence of algebras, to prove the

filtration spectral sequence collapses from £2-tenn, we only have to prove that £2/
and b2j-i are permanent cycles in the JE^-term °f iis filtration spectral sequence.
Furthermore since this filtration spectral sequence converges to the Adams JE2-term
for BP^Sl(SU(2m)ISO (2m)) and by Lemma 2.1 we do know that de2i and α27·_ι2 are in
the Adams J?2-tenn which are detected by b\{ and b2j-i. So 6^ and b2j--i are
permanent cycles in this filtration spectral sequence. This completes the proof.

3 The group extension problem in the Adams spectral sequence for

Recall Theorem 2.2 and Lemma 3.3 of [5].
The Adams spectral sequence for BP^BO collapses from £2-term and

E}·* = £*'* = R ® Z/2[aL a^.J/7,

where a2f and α2ί_! are represented by b\t and £2l--i respectively, and Jis the ideal
generated by

}= Σ
2^2^2j

ω*®α2./-2*+1·

Theorem 3.1. The Adams spectral sequence for BP^il(SU(n)/SO(n)) collapses from
E2-term.

Proof. The loop map

h: Cl(SU(n)/SO(n)) -* (SU/SO) ^ B

induces a homomorphistn of the Adams spectral sequences, it is clear that, at the
£2-level, A#( ii) = «li an<i h*( 2j-i) = <*2j--i· It follows that h^ is injective at the
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E2-tevel. Together with the fact that the Adams spectral sequence for BP^BO
collapses, this forces the Adams spectral sequence for BP^ (SU(n)/SO(nJ) to
collapse. This completes the proof.

Let L be a commutative ring identity, and M, N be any L-modules. Suppose M,
N have decreasing filtrations respectively, that is,

M = M° 2 M1 3 M2 => ...
and N = N° => N1 => N2 => ....

Let E°(M) denote the associated graded module ®?=0Μ*/Μ*+ι.

Lemma 3.5. Assumethat (*}Γ=οΜι = 0. Theni/φ: M -+ Nisafilteredhomomorphism
with Ε°(φ) injective, φ is injective.

Proof. This is just Lemma 3.4 of [5]. This completes the proof.

Now since Cl((SU(n)/SO(n)) is an /f-space, BP^ (SU(n)/SO(n)) is an ^-algebra.
However Q(SU(n)/SO(nJ) is not a commutative //-space, for example, when n = 2,
SU(2)/SO(2) s ̂ S3/^1 = ^2, so we don't even know whether BP^fl(SU(n)/SO (n))
is a commutative ring or not. Now since B is a commutative /f-space, BP^BO is
a commutative ^-algebra. The following result implies that BP^ Ω (SU (n) /SO (n)) is
a commutative ^-algebra.

Corollary 3.6. The induced homomorphism

w injective.

Proof. From the proof Theorem 3. l , we know that E° (h^) is injective. By Lemma 3.5,
this corollary follows immediately.

Proof of Theorem 1.2. By Corollary 3.6, the induced homomorphism

h+\BP+Q(SU(lm)ISO(2m)) -* BP^BO

is injective. So BP+&(SU(2m)/SO(2mJ) is embedded in BP^l 2i
l < i < w - l, l <7 < m. Thus

where l ^ i < m — l, l <y < m. l < i < m — 1. This completes the proof for « = 2m.
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The same argument holds for n = 2m -f l. This completes the proof.
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