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THE STRONG KERVAIRE INVARIANT PROBLEM IN

DIMENSION 62

ZHOULI XU

Abstract. Using a Toda bracket computation 〈θ4, 2, σ2〉 due to Daniel C.
Isaksen [12], we investigate the 45-stem more thoroughly. We prove that θ2

4
= 0

using a 4-fold Toda bracket. By [2], this implies that θ5 exists and there exists
a θ5 such that 2θ5 = 0. Based on θ2

4
= 0, we simplify significantly the 9-cell

complex construction in [1] to a 4-cell complex, which leads to another proof
that θ5 exists.

1. Introduction and main results

The Kervaire invariant problem is one of the most interesting problems that
relates geometric topology and stable homotopy theory. One way of formulating it,
due to Browder [5], is in terms of the classical Adams spectral sequence (ASS) at
the prime 2:

For each n, the element h2
n ∈ Ext2,2

n+1
−2 survives in the ASS.

If h2
n survives, we denote the corresponding detecting elements in homotopy by

θn ∈ π2n+1−2S
0 and we say that θn exists. The strong Kervaire invariant problem

for n is the following.

θn exists, and there exists a θn such that 2θn = 0.

It is well-known that the first three Kervaire invariant elements θ1, θ2 and θ3 can be
chosen to be η2, ν2 and σ2. And they all have order 2. Mahowald and Tangora [17]
showed that θ4 exists and 2θ4 = 0 by an ASS computation. In [1], Barratt, Jones
and Mahowald showed that θ5 exists by constructing a 9-cell complex and using
the Peterson-Stein formula. Recently, using equivariant homotopy technology, Hill,
Hopkins and Ravenel [10] in their marvelous paper showed that θn does not exist
for all n ≥ 7, which left the existence of θ6 as the only open case.

In [2], Barratt, Jones and Mahowald gave the following inductive approach to
the strong Kervaire invariant problem:

Theorem 1.1. Suppose that there exists an element θn such that 2θn = 0 and

θ2n = 0. Then there exists an element θn+1 with 2θn+1 = 0.

In this paper, we prove the following:

Theorem 1.2. θ24 = 0.

Since θ4 is unique and 2θ4 = 0, we have the following corollary:
1
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Corollary 1.3. θ5 exists and there exists a θ5 such that 2θ5 = 0.

Remark 1.4. In [19], R. J. Milgram claims to show that under the same condition
as in Theorem 1.1, one has θn+2 exists. If this were true, then we would have that
θ6 exists. However, Milgram’s argument fails because of a computational mistake
[8].

Remark 1.5. Note that if one can further prove that the same θ5 has the property
θ25 = 0, then Theorem 1.1 will imply the open case θ6 exists and that there exists
a θ6 such that 2θ6 = 0.

For the case θ5, Lin [16] shows that there exists a θ5 such that 2θ5 = 0 based on
a computation of the Toda bracket 〈θ4, 2, σ

2〉. Based on the same Toda bracket but
a different computational result, Kochman [13] also shows that θ24 = 0 and hence
that there exists a θ5 such that 2θ5 = 0. Recently, Isaksen [12] computed this Toda
bracket using more straightforward arguments. His result contradicts the results of
both Lin and Kochman. For more details about where Lin and Kochman’s argu-
ments fails, see Remark 3.4. Our proof uses Isaksen’s computation. Since Isaksen’s
computation of 〈θ4, 2, σ

2〉 gives a more complicated answer than the earlier claims,
we must study several other Toda brackets to prove θ24 = 0.

Knowing θ24 = 0, we give a second proof of the existence of θ5. In [1], Barratt,
Jones and Mahowald constructed a 9-cell complex X ′, and maps f ′ : S62 → X ′,
g′ : X ′ → S0, such that the composite g′ ◦ f ′ : S62 → S0 realizes a θ5. We simplify
this 9-cell complex X ′ into a 4-cell complex X , and construct maps f : S62 → X ,
g : X → S0 as indicated in the following cell diagram. We follow Barratt, Jones
and Mahowald’s notation of cell diagrams.

7654012362
2

//
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7654012331

2
⑤⑤
⑤⑤
⑤⑤
⑤⑤

7654012330
θ4

// '&%$ !"#0
Here each circle represents a cell. The number in each circle represents the

dimension of that cell. The middle 4 cells represent the cell structure of X , where
the three lines without arrow heads represent attaching maps of X . The map g
is an extension of θ4, and the map f is a co-extension of η ∨ 2. In other words,
if we restrict the map g on the bottom cell of X : g|S30 : S30 → S0, we have θ4.
If we pinch down the 31-skeleton of X : p : X → S61 ∨ S62, then the composite
p ◦ f : S62 → S61 ∨ S62 is η ∨ 2. For more details about cell diagrams, see [1].

Theorem 1.6. The composite of maps g ◦ f : S62 → S0 realizes a θ5.

Proof. We first show that we can form this cell diagram. For primary obstructions,
we have 2θ4 = 0 and θ24 = 0. For secondary obstructions, we have ηθ4 ∈ 〈2, θ4, 2〉
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and 0 ∈ 〈θ4, 2, θ4〉. The latter is shown in [1]. It is straightforward to check that
the following two facts are true: for i ≤ 4 the functional cohomology operations

Sq2
i

g : H0S0 −→ H2
i
−1X

are all zero, while Sq32g : H0S0 → H31X is nonzero; the functional cohomology

operation Sq32f is nonzero on Sq32g H0S0 = H31X . Note that all cohomology is

understood to have mod 2 coefficients. As used in [1], it follows from the Peterson-
Stein formula ([20],[22]) that the composite g ◦ f is detected by the secondary
cohomology operation φ5,5. Therefore g ◦ f realizes a θ5. �

We present the proof of Theorem 1.2 in Section 2. The proof uses several theo-
rems and lemmas whose proofs we postpone. We include Isaksen’s computation of
〈θ4, 2, σ

2〉 in Section 3 for completeness. In Section 4, we discuss two more Toda
brackets in the 45-stem, namely 〈θ4, 2, κ〉 and 〈θ4, 2, σ

2+κ〉. The proof of the main
theorem depends on the computation of the latter bracket. We give a modified 4-
fold Toda bracket for θ4 in Section 5. We complete our proof of the main theorem
by proving several lemmas in Section 6.

Acknowledgement: The author would like to thank Dan Isaksen for discussing
and sharing lots of his computations. The author would like to thank Dan Isaksen
and Peter May for careful reading of several drafts of this paper. The author would
also like to thank Bob Bruner for explaining the gap in Milgram’s result. This
paper is also just a tiny mark of our gratitude to Mark Mahowald for his tenacious
exploration of the stable stems and his generosity towards us. The author would like
to dedicate this paper to him, with special thanks for his inspiring weekly careful
instruction and his guidance the year before his untimely death.

2. The proof of the main theorem

We will use the following Toda brackets to prove Theorem 1.2.

Theorem 2.1. 〈θ4, 2, σ
2 + κ〉 contains 0 with indeterminacy {0, ρ15θ4}.

Theorem 2.2. θ4 = 〈2, σ2 + κ, 2σ, σ〉 with zero indeterminacy.

Lemma 2.3. σπ53 = 0.

Lemma 2.4. 〈ρ15θ4, 2σ, σ〉 = 0 with zero indeterminacy.

We postpone the proof of Theorem 2.1 to Section 4, the proof of Theorem 2.2 to
Section 5 and the proofs of Lemma 2.3 and 2.4 to Section 6. Now we present the
proof of Theorem 1.2.

Proof. Following Theorems 2.1 and 2.2, we have

θ24 = θ4〈2, σ
2 + κ, 2σ, σ〉

⊆ 〈〈θ4, 2, σ
2 + κ〉, 2σ, σ〉

= the union of 〈0, 2σ, σ〉 and 〈ρ15θ4, 2σ, σ〉

By Lemma 2.3 and Lemma 2.4 above, both brackets contain a single element
zero. Therefore, we have that θ24 = 0. �
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If a is a surviving cycle in ASS, we use {a} to denote the set of elements in the
homotopy group that are detected by a. For elements in the E∞-page of the ASS,
we include part of Isaksen’s chart [12].

22 23 24 25 26 27
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We do not include elements in filtration higher than 14. Those elements are
detected by the K(1)-local sphere, and are not relevant to our proof. Here we use
colored lines to denote nontrivial extensions. For example, the line between Pu
and e0r indicates that 2{e0r} is nontrivial and is detected by Pu. The 2, η and ν-
extensions are completely known in this range except for a possible 2-extension from
h0h3g2 to gn and a possible ν-extension from h2h5d0 to gn. We use dashed lines to
denote them. In fact, Isaksen [11] showed that these two possible extensions either
both occur or neither occur. But these extensions are irrelevant to our purpose.

3. A Toda bracket 〈θ4, 2, σ
2〉

The following theorem is due to Isaksen [11]. For completeness, we include the
proof.

Theorem 3.1. 〈θ4, 2, σ
2〉 contains an element of order 2 that can be detected by

h0h
3
4.

Remark 3.2. Before presenting the proof, we mention that the indeterminacy of
this Toda bracket is well-known. Namely, it is the set {0, ρ15θ4}, where ρ15 is
the generator of ImJ in π15, and is detected by h3

0h4. Furthermore, ρ15θ4 6= 0 is
detected by h2

0h5d0. This is shown by Tangora in [23].

Proof. In the Adams E3-page, we have 〈h
2
4, h0, h

2
3〉 = h2

4h4+h5h
2
3 = 0 in the Adams

filtration 3. Therefore, by the Moss Theorem [21], there is an element in 〈θ4, 2, σ
2〉

that is detected by some element of filtration at least 4. Since the nontrivial element
in the indeterminacy has filtration 7, any element in 〈θ4, 2, σ

2〉 has filtration at least
4. We have

2〈θ4, 2, σ
2〉 = 〈2, θ4, 2〉σ

2 = ηθ4σ
2 = 0.

Note that the indeterminacy of 〈2, θ4, 2〉σ
2 is 2σ2π31 = 0. Therefore, any element

in 〈θ4, 2, σ
2〉 has order 2.

Now consider the product ν4θ4.

ν4θ4 = 〈σ, ν, σ〉θ4 ⊆ 〈σ, ν, σθ4〉 ⊆ 〈σ, ν, {x}〉.

Here, since 2θ4 = 0, we can ignore the difference between ν4, which is by definition
〈ν, σ, 2σ〉, and 〈σ, ν, σ〉 = 7ν4. In the Adams E2-page, we have h2h5d0 = 〈h3, h2, x〉
with zero indeterminacy. In fact, this follows from

h2〈h3, h2, x〉 = 〈h2, h3, h2〉x = h2
3x = h2

2h5d0.

Therefore, ν4θ4 is contained in 〈σ, ν, {x}〉 ⊆ {h2h5d0}.
On the other side, ν4θ4 is contained in θ4〈2, σ

2, ν〉 = 〈θ4, 2, σ
2〉ν. For the inde-

terminacy, note that ρ15θ4ν = 0. Therefore, we actually have

ν4θ4 = 〈θ4, 2, σ
2〉ν.

Combining this with the fact that ν4θ4 is also contained in {h2h5d0}, we deduce
that there exists an element in 〈θ4, 2, σ

2〉 such that ν times it is detected by h2h5d0,
which has filtration 6. Therefore, 〈θ4, 2, σ

2〉 contains an element with filtration at
most 5. Furthermore, it cannot be detected by h1g2, which has filtration 5, since
otherwise the ν multiple won’t be detected by h2h5d0. Therefore, the statement of
the theorem is the only possibility left. �
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Remark 3.3. Another way to describe the statement of this theorem is the fol-
lowing:

〈θ4, 2, σ
2〉 contains an order 2 element of the form 2α+ β,

where α is detected by h2
3h5 and β is detected by h5d0. Note that the nontrivial

2-extension in the 45-stem means that there exist elements α and γ, which are
detected by h2

3h5 and h5d0 respectively, such that 4α = 2γ. Since γ has order 8,
one can choose β to be −γ = 7γ, so that 2α+ β has order 2.

Remark 3.4. In [16], Lin showed that this bracket contains 0. The step that rules
out the element Isaksen got is invalid. In [13], Kochman showed that this bracket
contains η{g2} or 0. His argument failed because essentially of the inconsistency of
the ν−extension on {h2h5d0} and the σ−extension on {h2

0g2}, which allowed him
to eliminate the right element. The inconsistency is discussed in [11].

4. More about the 45-stem

We first consider the Toda bracket 〈θ4, 2, κ〉 in π45.

Lemma 4.1. 〈θ4, 2, κ〉 contains an element of order 2 that can be detected by h0h
3
4.

Proof. The Adams differential d3(h0h4) = h0d0 implies that in the Adams E4-
page, 〈h2

4, h0, d0〉 = h0h
3
4 in the Adams filtration 4. Then by the Moss convergence

theorem [21], there is an element in 〈θ4, 2, κ〉 that is detected by h0h
3
4. From

2〈θ4, 2, κ〉 = 〈2, θ4, 2〉κ = ηθ4κ = 0,

we know that any element in 〈θ4, 2, κ〉 has order 2. The indeterminacy of 〈2, θ4, 2〉κ
is 2κπ31 = 0. Here we also used that κθ4 = 0, which is known for filtration reasons.
In fact, since d0h

2
4 = 0 in Ext6, κθ4 must be detected by an element of filtration at

least 7. However, in the 44-stem of the E∞-page, there are no elements of filtration
7 or higher. Therefore 〈θ4, 2, κ〉 contains an element of order 2 that can be detected
by h0h

3
4. �

Remark 4.2. The indeterminacy of this bracket is the same as that of 〈θ4, 2, σ
2〉,

i.e., {0, ρ15θ4}. In fact, π31 is generated by ηθ4, {n} and ρ31, where ρ31 is the
generator of ImJ in π31, and is detected by h10

0 h5. Since κθ4 = 0, ηκθ4 = 0. Again
for filtration reasons, κ{n} = 0 and κρ31 = 0. Therefore κπ31 = 0. This shows that
the indeterminacy of 〈θ4, 2, κ〉 is {0, ρ15θ4}.

Although both 〈θ4, 2, κ〉 and 〈θ4, 2, σ
2〉 contain an element of order 2 that can be

detected by h0h
3
4, we do not necessarily know if they have an element in common.

The following theorem confirms that they do.
Now we restate Theorem 2.1.

Theorem 4.3. 〈θ4, 2, σ
2 + κ〉 contains 0 with indeterminacy {0, ρ15θ4}.

We need the following lemma to prove the theorem.

Lemma 4.4. σ2π33 = 0.

Proof. We know that π33 is generated by ηη5, νθ4, η{q}, η
2ρ31 and {P 4h1}. Since

ησ2 = 0 and νσ2 = 0, we only need to show that {P 4h1}σ
2=0. In fact, we have

{P 4h1}σ
2 = ηρ39σ = 0

for filtration reasons. Here ρ39 is the generator of ImJ in π39, and is detected by
P 2h2

0i. Therefore, σ
2π33 = 0. �
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Now we present the proof of Theorem 4.3.

Proof. The indeterminacy is straightforward, as in Remark 4.2.
Since all elements in 〈θ4, 2, κ〉 and 〈θ4, 2, σ

2〉 have order 2 and can be detected
by h0h

3
4 in the Adams filtration 4, elements in 〈θ4, 2, σ

2 + κ〉 must be detected by
elements of filtration at least 5 and have order 2. To prove the theorem, we need
to rule out both {w} and η{g2}.

For {w}, by Lemma 4.4, we have that

η2〈θ4, 2, σ
2〉 = 〈η2, θ4, 2〉σ

2 ∈ π33σ
2 = 0.

Next we have that

η2〈θ4, 2, κ〉 = θ4〈2, κ, η
2〉.

In the Adams E4-page, we have that 〈h0, d0, h
2
1〉 = h0h4h

2
1 = 0 in the Adams

filtration 4. Then the Moss Theorem tells us that 〈2, κ, η2〉 might contain a non-
trivial element of higher filtration, namely a combination of νκ, η2ρ15 and {P 2h1}.
Note that we have that νκθ4 = 0 and by Lemma 6.1 we have that η2ρ15θ4 = 0. To
show that {P 2h1}θ4 = 0, we first show that {Ph1}θ4 = 0.

In fact, {Ph1}θ4 ∈ 〈η, 8σ, 2〉θ4 = η〈8σ, 2, θ4〉, which contains 0. This holds
since η〈8σ, 2, θ4〉 intersects η{h3

0h3h5}, which contains a single element zero. The
indeterminacy is ηπ8θ4 = 0. This gives that {Ph1}θ4 = 0. Then we have

{P 2h1}θ4 ∈ θ4〈{Ph1}, 2, 8σ〉 = 〈θ4, {Ph1}, 2〉8σ ⊆ π408σ = 0.

Therefore, no matter what 〈2, κ, η2〉 equals, we always have that

η2〈θ4, 2, κ〉 = 〈2, κ, η2〉θ4 contains 0.

The indeterminacy of η2〈θ4, 2, κ〉 is zero since η2θ4 = 0 and η2κ = 0. Then

η2〈θ4, 2, κ〉 = 0.

Therefore,

η2〈θ4, 2, σ
2 + κ〉 = 0.

Then the fact that η2{w} 6= 0 rules out {w}, since otherwise we would have that
η2〈θ4, 2, σ

2 + κ〉 = η2{w} 6= 0.

For η{g2}, first note that ση{g2} 6= 0 is detected by h1h3g2. We have that

〈θ4, 2, κ〉σ = θ4〈2, κ, σ〉 ⊆ θ4π22 = 0.

In fact, π22 is generated by νσ and η2κ. We have that η2κθ4 = 0 and νσθ4 = 0
for filtration reasons. As a remark, we can actually prove that 〈2, κ, σ〉 = νσ by
studying the cofiber of 2, but we don’t need this fact here.

On the other side, as explained in Remark 3.3, 〈θ4, 2, σ
2〉 contains 2α+β. There-

fore,

〈θ4, 2, σ
2〉σ contains 2ασ + βσ.

We have that 2ασ ∈ 2π52 = 0. In the Adams E3-page, we compute directly that
〈h0, h

2
4, d0〉 = h5d0. Then Moss’s Theorem shows that 〈2, θ4, κ〉 contains an element

that equals to β plus possibly higher filtration terms. Note that σ{w} = 0 by using
tmf. In fact, if σ{w} 6= 0, the only possibility is that σ{w} is detected by {e0m}.
This implies that ησ{w} = κ{u} because of the two nontrivial η-extensions. Since
both η{w} and κ{u} are detected by tmf and σ = 0 in π∗tmf , mapping this relation
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into tmf gives a contradiction. Besides, from tmf, we know that {d0l} detects κ{q},
then the contradiction also follows from κσ = 0. See [4],[9] for example.

Then we have that

βσ ∈ 〈2, θ4, κ〉σ = 2〈θ4, κ, σ〉 ⊆ 2π52 = 0.

Therefore, 〈θ4, 2, σ
2〉σ contains 2ασ + βσ = 0. Note that ρ15θ4σ ∈ θ4π22 = 0, the

indeterminacy is hence zero. Then we have that

〈θ4, 2, σ
2〉σ = 0.

Therefore,

〈θ4, 2, σ
2 + κ〉σ = 0.

Combined with the fact that η{g2}σ 6= 0, this rules out η{g2}.

This completes the proof.
�

Remark 4.5. σ2 + κ is another element in π14 that deserves to be called θ3.

Remark 4.6. We can actually show that the bracket 〈2, θ4, η
2〉 contains ηη5 + νθ4

with indeterminacy {0, η2ρ31}.

5. A modified 4-fold Toda bracket for θ4

We have the following well-known 4-fold Toda brackets for θ4. See [3],[13],[14]
for example.

θ4 = 〈2, σ2, 2, σ2〉

= 〈2, σ2, σ2, 2〉

= 〈2σ, σ, 2σ, σ〉

= 〈2, σ2, 2σ, σ〉

All of them have zero indeterminacy. This is partially discussed in [3],[13],[14].
For completeness, we include a proof here.

Lemma 5.1. All four Toda brackets above have zero indeterminacy.

Proof. In general, suppose a 4-fold Toda bracket 〈α1, α2, α3, α4〉 is defined, where
αi ∈ πni

. Then its indeterminacy is contained in the union of three types of 3-fold
Toda brackets:

〈α1, α2, πn3+n4+1〉, 〈α1, πn2+n3+1, α4〉 and 〈πn1+n2+1, α3, α4〉.

In our case, the indeterminacy for all of them is contained in the union of the
following eight brackets:

〈π15, 2, σ
2〉, 〈2, π15, σ

2〉, 〈2, σ2, π15〉, 〈2, π29, 2〉,

〈π15, 2σ, σ〉, 〈2σ, π15, σ〉, 〈2σ, σ, π15〉, 〈2, π22, σ〉.

We will show that they are all zero. Note that π30
∼= Z/2 and is generated by θ4,

which is indecomposable. So for each of them, we only need to show that it does
not contain θ4. They all follow for filtration reasons.
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For 〈π15, 2, σ
2〉, 〈2, σ2, π15〉, 〈π15, 2σ, σ〉 and 〈2σ, σ, π15〉, the correspondingMassey

products are all well-defined on the Adams E3-page. Since π15 is generated by el-
ements of filtration at least 4, the Massey products all take values in filtration at
least 5. Therefore, by the Moss Theorem, all of them are all zero.

For 〈2, π15, σ
2〉 and 〈2σ, π15, σ〉, the corresponding Massey products are all well-

defined on the Adams E2-page. Since π15 is generated by elements of filtration at
least 4, the Massey products all take values in filtration at least 6. Therefore, by
the Moss Theorem, all of them are all zero.

For 〈2, π22, σ〉, there are essentially two Toda brackets to check: 〈2, νσ, σ〉 and
〈2, η2κ, σ〉, where νσ is detected by h2c1. Both brackets have zero indeterminacy.
We have that

〈2, νσ, σ〉 = 〈2, σ, νσ〉 = 〈2, σ, 0〉 = 0,

and that
〈2, η2κ, σ〉 = 〈2, η2, κσ〉 = 〈2, η2, 0〉 = 0.

Here we used the fact that 2σ = 0 and κσ = 0.
At last, 〈2, π29, 2〉 = 0, since π29 = 0. This completes the proof. �

Now we prove a modified 4-fold Toda bracket based on the last one. Again, note
that π30

∼= Z/2 and is generated by θ4.

Theorem 5.2. θ4 = 〈2, σ2 + κ, 2σ, σ〉 with zero indeterminacy.

Proof. We have 〈σ2 + κ, 2σ, σ〉 ⊆ π29 = 0. And

〈2, σ2 + κ, 2σ〉 ⊇ 〈2, σ2 + κ, 2〉σ ∋ η(σ2 + κ)σ = 0.

The indeterminacy of the bracket 〈2, σ2 + κ, 2σ〉 is 2π22 + 2σπ15 = 0, and we have
〈2, σ2 + κ, 2σ〉 = 0. Therefore, this 4-fold Toda bracket is strictly defined, and the
indeterminacy is

〈2, σ2 + κ, π15〉+ 〈2, π22, σ〉+ 〈π15, 2σ, σ〉.

Note that 〈2, σ2+κ, π15〉 = 0 for filtration reasons as in the proof of Lemma 5.1. The
other two parts of the indeterminacy follow from the indeterminacy of 〈2, σ2, 2σ, σ〉,
which we know is zero. Then the theorem follows from the next lemma and the
fact that θ4 = 〈2, σ2, 2σ, σ〉. �

Lemma 5.3. 〈2, κ, 2σ, σ〉 = 0 with zero indeterminacy.

Proof. Again, 〈κ, 2σ, σ〉 ⊆ π29 = 0. And

〈2, κ, 2σ〉 ⊇ 〈2, κ, 2〉σ ∋ ηκσ = 0.

The indeterminacy of 〈2, κ, 2σ〉 is zero. Therefore, this 4-fold Toda bracket is strictly
defined. Again, 〈2, κ, π15〉 = 0 for filtration reasons. And the other two parts of the
indeterminacy are zero, which follows from the indeterminacy of 〈2, σ2, 2σ, σ〉.

To see this bracket contains zero, we multiply by ν.

〈2, κ, 2σ, σ〉ν ⊆ 〈2, κ, 〈2σ, σ, ν〉〉 = 〈2, κ, ν4〉.

Since in the Adams E4-page 〈h0, d0, h2h4〉 = 0 in the Adams filtration 4, there is an
element in 〈2, κ, ν4〉 that is detected by an element in filtration strictly higher than
4. The indeterminacy of this bracket is 2π33 + ν4π15 = ν4π15, which also contains
elements in filtration strictly higher than 4. On the other side, νθ4 is detected by
p in Ext4. Therefore 〈2, κ, ν4〉 does not contain νθ4. Then the lemma follows from
the fact that π30

∼= Z/2 and is generated by θ4. �
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Remark 5.4. We can show directly that 〈2, κ, ν4〉 = 0 with zero indeterminacy.

6. A few proofs

We first prove Lemma 2.3 which states that σπ53 = 0.

Proof. As shown in [11], π53
∼= Z/2⊕Z/2⊕Z/2⊕Z/2. One set of generators can be

chosen to be elements in ν{h5c1}, ν{C}, ǫ{h2
3h5} and κ{u} respectively. Note that

x′ detects ǫ{h2
3h5}. Then the lemma follows from νσ = 0, ǫσ = 0 and κσ = 0. �

The following lemma is shown by Tangora in [23]. We first sketch his proof, then
give a more direct proof.

Lemma 6.1. ρ15θ4 = 2σ{h2
0h3h5}.

Proof. Tangora first showed that ρ15θ4 6= 0 and is detected by h2
0h5d0. We have

ρ15θ4 = ρ15〈σ, 2σ, σ, 2σ〉 = 〈ρ15, σ, 2σ, σ〉2σ.

Then the only possibility is that 〈ρ15, σ, 2σ, σ〉 is detected by h2
0h3h5.

We present another proof. In the Adams E3-page, we have 〈h3, h0h3, h
3
0〉 = h3

0h4.
Therefore, ρ15 is contained in 〈σ, 2σ, 8〉. Then we have

ρ15θ4 = 〈σ, 2σ, 8〉θ4

= σ〈2σ, 8, θ4〉

= σ〈8σ, 2, θ4〉

= σ{h3
0h3h5}

= 2σ{h2
0h3h5}.

For the first equation, 〈σ, 2σ, 8〉θ4 has no indeterminacy, hence the equality. For the
last equation, the difference between {h3

0h3h5} and 2{h2
0h3h5} contains elements of

higher filtration, namely ησθ4 in this case. The equality holds since ησ2θ4 = 0. �

Now we prove Lemma 2.4 which states that 〈ρ15θ4, 2σ, σ〉 = 0 with zero indeter-
minacy.

Proof. The indeterminacy is ρ15θ4π15 + σπ53 = ρ15θ4π15. π15 is generated by ηκ
and ρ15. We have ρ215 = 0 and κθ4 = 0 both for filtration reasons. Therefore the
indeterminacy is equal to ρ15θ4π15 = 0.

By Lemma 6.1, 〈ρ15θ4, 2σ, σ〉 = 〈2σ{h2
0h3h5}, 2σ, σ〉 contains σ〈2{h

2
0h3h5}, 2σ, σ〉.

Note that 〈2{h2
0h3h5}, 2σ, σ〉 ⊆ π53 and σπ53 = 0. This completes the proof. �
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