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Abstract. Let V finite dimensional Z2-representation which is the sum of the

sign plus a trivial representation. We describe the homotopy type of the space
of equivariant loops (ΩV ΣV X)Z2 , where ΩV ΣV X denotes the space of maps

SV → ΣV X = X ∧SV and X is a Z2-space with a fixed base point. The main

result was suggested by the analysis of both, the James’ construction J(X)
and J.P. May’s construction CnX, under the appropriate Z2-action.

1. Introduction

Let X be a Z2-space and V a real n-dimensional representation of Z2, which
is the sum of one copy of the sign representation ζ and the (n − 1)-dimensional
trivial representation. The purpose of this article is to describe the homotopy
type of the space of equivariant loops (ΩV ΣVX)Z2 , as defined below. The case
n = 1 has been partially analyzed by S. Rybicki in [Ryb92], where he introduced
an equivariant version of the James construction and proved that there is a weak
homotopy equivalence J(X)Z2 ' (ΩV ΣVX)Z2 . We show here that the fixed point
set J(X)Z2 admits an easy description, namely in section 2 we prove that there is
homeomorphism J(X)Z2 ∼= J(X) × XZ2 . Consequently, there is weak homotopy
equivalence

(1.1) (ΩV ΣVX)Z2 ' (ΩΣX)×XZ2

A generalisation of Rybicki’s approximation theorem for n ≥ 2 will be given in
section 3. This requires the use J.P. May’s little-cubes construction CnX to replace
J(X). With the appropriate Z2-action on CnX, the corresponding is

Theorem 1.1. Let X be a Z2-space which is Z2-connected. Then there is a
weak homotopy equivalence

αZ2
n : (CnX)Z2 −→ (ΩV ΣVX)Z2
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By further analysis of the model, one observes that there is a a homotopy equiv-
alence: (CnX)Z2 ' (CnX)×Cn−1(XZ2) which immediately implies an equivalence
of the corresponding function spaces, in the case when X is Z2-connected. However,
it is possible to see that the splitting actually takes place at the level of function
spaces. Thus in section 4 we prove that there is a weak homotopy equivalence

(1.2) (ΩV ΣVX)Z2 ' (ΩnΣnX)× Ωn−1Σn−1(XZ2).

We point out here that both equivalences (1.1) and (1.2) are particular cases of
a more general result proven by Hauschild, see [Haus] Korollar 3.6. Their proofs
are rather elementary and they are included here for completeness.

Notation. All our spaces will be in T , the category of based, compactly gen-
erated, weak Hausdorff spaces and based maps. Mapping spaces are always to be
given the compactly generated topology associated to the compact-open topology.

By a Z2-space X we will understand a Z2-space X whose based point ∗ is Z2-
fixed. Base points are required to be non-degenerate in the sense that (X, {∗}) is a
Z2-equivariant NDR-pair. A Z2-space X is said to be Z2-connected if X and XZ2

are path-connected.

For a G-representation V , let SV denote its one-point compactification, where
G acts trivially at the point at infinity. For a G-space X we write ΣVX = X ∧ SV
and ΩVX = Map(SV , X). Given two G-spaces X and Y , the space of continuous
based maps Map(X,Y ) is also acted upon G by conjugation. The fixed point set
Map(X,Y )G is the space of G-equivariant maps.

2. The one-dimensional case

Let X be a Z2-space and V = ζ the real one-dimensional sign representation of
Z2. An equivalent way to describe ΩVX is the following. Let ΓVX to be the space
of all continuous maps γ : [−1, 1] → X and consider the subspace of equivariant
paths

(ΓVX)Z2 = { γ ∈ ΓVX | γ(−s) = τ · γ(s) ∀s }.

Thus, if γ ∈ (ΓVX)Z2 then γ(0) ∈ XZ2 . Now, for s ∈ [−1, 1] let evs : (ΓX)Z2 → X
be the evaluation map sending γ to γ(s). One observes the following basic results.

Lemma 2.1. For a Z2 space X,
(a) The evaluation map ev0 : (ΓVX)Z2 → XZ2 is a homotopy equivalence.

Moreover, XZ2 is a deformation retract of (ΓVX)Z2 .

(b) The map ev1 : (ΓVX)Z2 → X is a fibration. The fibre over ∗ is the
subspace of maps γ ∈ (ΓVX)Z2 which satisfy γ(−1) = γ(1) = ∗ , and it
is homotopy equivalent to (ΩVX)Z2 .
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Remember that for a pointed space X, the James’ construction J(X) is defined
to be the free topological monoid with basis X. This is, J(X) = lim−→ Jk(X), where
Jk(X) = Xk/∼ . Here ∼ is the equivalence relation generated by

(x1, . . . , xj−1, ∗, xj+1, . . . , xk) ∼ (x1, . . . , xj−1, xj+1, ∗, xj+2, . . . , xk)

and the inclusion Jk(X) ↪→ Jk+1(X) is given by [x1, . . . , xk] 7−→ [x1, . . . , xk, ∗].
In the case when X is also a Z2-space, there is a natural extension of the Z2-
action to J(X), see [Ryb92]. Namely, let τ denote the generator of Z2 and set
τ · [x1, . . . , xk] = [τxk, . . . , τx1].

Then, the main theorem in [Ryb92] can be stated as follows

Theorem 2.2. Let X be a path-connected Z2-space and V as above. Then the
James’ map λ : J(X) → ΩV ΣVX is Z2-equivariant. Moreover, its restriction to
the fixed point set λZ2 : J(X)Z2 → (ΩV ΣVX)Z2 is a weak homotopy equivalence.

In the rest of the section we identify the homotopy type of (ΩV ΣVX)Z2 . For this
purpose, the fixed point set J(X)Z2 is easily described next. First, the following
Lemma is immediate:

Lemma 2.3. For a Z2-space X and w ∈ J(X):
(a) If w = [x1, . . . , x2k] ∈ J2k(X) − J2k−1(X), then w ∈ J(X)Z2 if and only

if xi = τx2k−i+1 for i = 1, . . . , k,

(b) If w = [x1, . . . , x2k+1] ∈ J2k+1(X)−J2k(X), then w ∈ J(X)Z2 if and only
if xi = τx2k−i+2 for i = 1, . . . , k and xk+1 ∈ XZ2 .

As a consequence, we have the following result:

Theorem 2.4. There is a homeomorphism ϕ : J(X)×XZ2 −→ J(X)Z2 .

Proof. The intersections J2k(X) ∩ J(X)Z2 and J2k+1(X) ∩ J(X)Z2 will be
denoted by J2k(X)Z2 and J2k+1(X)Z2 respectively. We define the map ϕ by the
following formula

ϕ([x1, . . . , xk] , y) = [x1, . . . xk, y, τxk, . . . , τx1]

Clearly ϕ is continuous and it is a bijection by the above remarks. We construct
a continuous inverse as follows: For a fixed k, let πk :X2k+1 → J2k+1(X) be the
canonical projection and Wk = π−1

k J2k+1(X)Z2 . Notice that J2k+1(X)Z2 is closed
in J2k+1(X) and therefore π′k := πk |Wk

is also a quotient map.
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Now, for i = 1, . . . , 2k + 1, let Vi ⊂ X2k+1 be the subspace consisting of all
(2k + 1)-tuples (z1, . . . , z2k+1) such that:

(1) zi ∈ XZ2 ,

(2) (z1, . . . , zi−1, ẑi , zi+1, . . . , z2k+1) = (x1, . . . xk, τxk, . . . , τx1) for some
x1, . . . , xk ∈ X , and

(3) [z1, . . . , z2k+1] = [x1, . . . xk, zi, τxk, . . . , τx1] in J2k+1(X) .

Then Vi is a closed subspace of X2k+1 and Wk =
⋃2k+1
i=1 Vi. Now, define a map

θk : Vi → Jk(X) ×XZ2 by θk(z1, . . . , z2k+1) = ( [x1, . . . xk] , zi ). Then θk agrees
on all intersections Vi1∩ . . .∩Vi` and thus, it defines a map θk : Wk → Jk(X)×XZ2

which is constant on the fibers of πk and so it passes to the quotient,

X2k+1

πk

��

Wk
? _oo

θk //

π′
k

��

Jk(X)×XZ2

J2k+1(X) J2k+1(X)Z2? _oo

ψk

77

Finally, the maps ψk are compatible with the filtration. That is, for every k ≥ 1
the following diagram commutes:

J2k+1(X)Z2
� _

��

ψk // Jk(X)×XZ2
� _

��

J2k+3(X)Z2
ψk+1

// Jk+1(X)×XZ2

This defines a continuous map ψ : J(X)Z2 −→ J(X) × XZ2 which is the
desired inverse.

�

Corollary 2.5. For a path-connected Z2-space X, there is a weak homotopy
equivalence (ΩV ΣVX)Z2 ' (ΩV ΣVX)×XZ2 .
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3. The Z2-action on CnX and the approximation map

We begin by recalling the definition of the space of little n-cubes. Let us denote by
J the open interval (−1, 1) ⊂ R.

Definition 3.1. A little n-cube c, is an orientation preserving affine embedding
c : Jn → Jn of the form c = f1 × · · · × fn, where each fi : J → J is a map of the
form fi(t) = ait+ bi whith ai > 0, −1 ≤ bi − ai and bi + ai ≤ 1.

The space of k little n-cubes, Cn(k), is the space of ordered k-tuples of little n-cubes
whose images are mutually disjoint.

Definition 3.2. Let X be a space in T . We define

CnX = (
∐
k≥0

Cn(k)×Σk
Xk)/ ≈

where ≈ is the equivalence relation generated by

[〈c1, . . . , ck〉;x1, . . . , xk] ≈ [〈c1, . . . , ck−1〉;x1, . . . , xk−1]

if and only if xk = ∗, the base point.

The most important property of Cn(X) to be used in this work is stated in the
following theorem. The reader is referred to [May72] for the proof.

Theorem 3.3. For n ≥ 1 and X path-connected, there is a functorial weak
homotopy equivalence

αn : Cn(X) −→ ΩnΣnX.

The map αn is defined as follows: Identify Sn with the quotient of [−1, 1]n by its
boundary. Then, for every [c ; x] = [ 〈c1, . . . , ck〉 ; x1, . . . , xk] ∈ Cn(k)×Σk

Xk ,
let αn([c ; x]) be the map Sn → X ∧ Sn given by:

[v] 7−→

{
xi ∧ [c−1

i (v)] if vi ∈ im(ci)
∗ otherwise

Remark 3.4. In [May72], Cn(k) was defined using [0, 1] instead of (−1, 1).
This definition is equivalent to ours, but the later is more useful when handling
Z2-actions on Jn ∼= Rn.

For n ≥ 2 consider the Z2-representation V = (n − 1) ⊕ ζ which is the direct
sum of one copy of the real one dimensional sign representation plus a copy of the
trivial n− 1 dimensional representation. Identifying V with Rn, the action is given
by reflection through a fixed hyperplane, say τ(v1, . . . , vn) = (v1, . . . , vn−1,−vn).
The fixed-point set in this case is the hyperplane H = {v ∈ V | vn = 0} ∼= Rn−1.
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This induces the diagonal Z2-action on the configuration space F (V, k) and also on
the space of little cubes Cn(k), such that the natural map

Cn(k) −→ F (V, k)(3.1)

〈c1, . . . , ck〉 7−→ (c1(0), . . . , ck(0))

is Z2-equivariant homotopy equivalence. Namely if c ∈ Cn(1), write c = c′ × c′′

where c′ ∈ Cn−1(1), c′′ ∈ C1(1), with c′′(t) = Rt + b. Set τc = c′ × (τc′′) where
(τc′′)(t) = Rt − b = −[R(−t) + b]. We can now extend the action to Cn(k) in the
natural way:

τ〈c1, . . . , ck〉 = 〈τc1, . . . , τck〉.
Then Z2 acts diagonally on Cn(k)×Xk and this action is Σk-equivariant, so it

passes to the quotient Cn(k)×Σk
Xk. Also, since ∗ ∈ XZ2 , the action is compatible

with the base point relation and thus, it induces an action on CnX. Thus, the
following result is now clear:

Theorem 3.5. For a path connected Z2-space X, the weak homotopy equiva-
lence given in Theorem 3.3 αn : CnX → ΩV ΣVX is Z2-equivariant with respect
to the actions described above.

The fixed point set (CnX)Z2 admits the following simple description: A point
ξ ∈ CnX is in (CnX)Z2 if and only if by the use of permutations and the base point
relation, it can be written in the form: ξ = [ 〈c, τc, d〉, x, τx, y ] where: c ∈ Cn(i),
x ∈ (X − ∗)i, d ∈ Cn(j)Z2 , y ∈ (XZ2 − ∗)j and 〈c, τc, d, 〉 ∈ Cn(2i + j) for some
i, j ≥ 0.

A complete analysis of the fixed point set (CnX)Z2 was carried out in [Xi97],
using orbit configuration spaces and led us to prove the following:

Theorem 3.6. For a path-connected Z2-spaces X, there is a weak equivalence

αZ2
n : (CnX)Z2 −→ (ΩV ΣVX)Z2

Also, we obtained a product splitting

(CnX)Z2 ' (CnX)× Cn−1(XZ2)
which implied in turn a weak homotopy equivalence between the corresponding
function spaces:

(3.2) (ΩV ΣVX)Z2 ' (ΩnΣnX)× Ωn−1Σn−1(XZ2).

This last splitting will proven in section 4.

Remark 3.7. It was actually during the write up of [Xi97] that the author
came across the splitting (3.2) for the first time. Fortunately, an easier and less
combinatorial proof is available now. Thus, to prove (3.2), we will work directly at
the level of function spaces, rather than going trough the methods of [Xi97].



EQUIVARIANT LOOP SPACES 7

4. A product splitting for (ΩV ΣVX)Z2

Let V = (n − 1) ⊕ ζ be and n-dimensional Z2-representation with a one-
dimensional non-trivial summand, as in the introduction. The we have

Theorem 4.1. For n ≥ 2 and every Z2-space X which Z2-connected, there is
a weak homotpy equivalence:

(ΩV ΣVX)Z2 ' (ΩnΣnX)× Ωn−1Σn−1(XZ2)

Proof. Let G = Z2 and set m = n− 1. Notice that the inclusion of the fixed
point set S0 = (Sζ)G into Sζ yields an equivariant cofibre sequence

S0 −→ Sζ −→ G+ ∧ S1

Smashing with with Sm and applying the functor Map(−,Σm⊕ζX) one obtains an
equivariant fibration

Map(G+ ∧ Sm+1,Σm⊕ζX) −→ Ωm⊕ζΣm⊕ζX
ξ−→ ΩmΣm⊕ζX

Passing to fixed points, one obtains the non-equivariant fibration

Map(G+ ∧ Sm+1,Σm⊕ζX)G −→ (Ωm⊕ζΣm⊕ζX)G
ξG

−−→ (ΩmΣm⊕ζX)G

Observe that:

(1) Change of groups gives a standard homeomorphism (See [May96]):

θ : Ωm+1Σm+1X
∼=−−−→Map(G+ ∧ Sm+1,Σm⊕ζX)G

(2) Since the sphere Sm in ΩmΣm⊕ζX = Map(Sm,Σm⊕ζX) has the trivial G-
action, the fixed point set in this case is easily seen to be homeomorphic to
ΩmΣm(XG). In fact, the (Σζ ,Ωζ) -adjunction together with the inclusion
XG ⊂ X gives a G-map

η : ΩmΣm(XG) −→ Ωm⊕ζΣm⊕ζX

Composing this map with the map with the map ξ : Ωm⊕ζΣm⊕ζX −→
(ΩmΣm⊕ζ)G and passing to fixed points gives a homeomorphism

γ : ΩmΣm(XG)
∼=−−−→ (ΩmΣm⊕ζX)G
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Finally, there is a map

φ : ΩmΣm(XG)× Ωm+1Σm+1X −→ (Ωm⊕ζΣm⊕ζX)G

such that the top square in the diagram

Ωm+1Σm+1X

ι2

��

θ
∼=

// Map(G+ ∧ Sm+1,Σm⊕ζX)G

��

ΩmΣm(XG)× Ωm+1Σm+1X

π1

��

φ
// (Ωm⊕ζΣm⊕ζX)G

��

ΩmΣm(XG)
γ

∼=
// (ΩmΣm⊕ζX)G

commutes up to homotopy and the bottom square commutes on the nose. Here ι2
and π1 are the obvious inclusions into, and projection out of the product. Since
both columns are fibrations and the top and bottom horizontal maps are homeomor-
phisms, it follows that the middle horizontal map is a weak homotopy equivalence.

To define φ, identify Sζ with the unit circle in the complex plane carrying
the conjugation G-action. Identifying the three complex roots of unity to a point,
gives a G-map ρ : Sζ → Sζ ∨ (G+ ∧ S1). Here, the Sζ is the image of the arc
{eiθ | 2π

3 ≤ θ ≤ 4π
3 } under the quotient map, and the two circles in G+ ∧ S1 come

from the two arcs of the unit circle between 1 and the two nontrivial cube roots of
1. If σ ∈ ΩmΣm(XG) and ω ∈ Ωm+1Σm+1X, then φ(σ, ω) is the composite:

Sm⊕ζ
Σmρ−−−−→ Sm⊕ζ ∨ (G+ ∧ Sm+1)

(σ̃,ω̃)−−−−→ Σm⊕ζX

in which σ̃ is the composite

Sm⊕ζ
Σζσ−−−→ Σm⊕ζ(XG) ⊂ Σm⊕ζX

and ω̃ is the map

G+ ∧ Sm+1 −→ Σm⊕ζX

which is the the image of ω under θ. With this definition of φ is easy to see that the
bottom square of the diagram above commutes, and that the top square commutes
up to homotopy. �
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