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A SPLITTING THEOREM FOR CERTAIN COHOMOLOGY THEORIES 
, 

ASSOCIATED TO BP (-) 

Urs WUrgler 

Let P(n)*(-) be Brown-Peterson cohomology modulo I 
n and put B(n)*(-) = P(n)*(-)[1/vn] . In this note we con- 

struct a canonical multiplicative and idempotent operation 
~n in a suitable completion ~(n)*(-) of B(n)*(-) which has 
the property that its image is canonically isomorphic to 
the n-th Morava K-theory K(n)*(-). In particular, the ring 
theory K(n)*(-) is contained as a direct summand in the 
theory B(n)*(-). A similar result is not true before com- 
pleting. Because the completion map B(n)*(-) ~ B(n)*(-) 
is injective, the above splitting theorem contains also 
information about B(n)*(-). The proof of the theorem de- 
pends on a result about the behaviour of formal groups of 
finite height over complete graded rp-algebras. 

I. Introduction and results 

Let BP denote the Brown-Peterson spectrum associated 

to the prime p (see [2][3][11]). Recall that BP, ~ Z(p)[Vl, 

v2,...] where I vil= 2(pi-1). The v i are always supposed to 

be Hazewinkel generators [4]. There is a sequence of ass- 

ociative (and commutative if p > 2) ring spectra (see [ 5] 

[16][18]) BP ~ P(1) ~ P(2) ~ .-. with the property that 

P(n),~ BP,/I n ~ Fp[Vn,Vn+1,... ] where In= (P,Vl,V2,...) C 

BP, is the n-th invariant prime ideal of BP, [6][5]. The 
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2 WUERGLER 

P(n)'s may be viewed as BP-theory with coefficients in 

BP,/I n and provide a convenient way for describing the 

structure of BP,(-). 

2 
If we localize P(n),(-) with respect to Tn= {1,Vn,Vn~ 

...} C P(n), we get a new multiplicative homology theory 

B(n),(-) = TnIp(n),(-) which may be represented by the te- 

lescope spectrum B(n) = lim(Z2i(1-pn)p(n),0 n ) where O n 

corresponds to multiplication by v . The B(n)'s record a 
n 

great deal of the periodicity structure of BP. In this pa- 

per we are interested in the relation of the theories 

B(n)*(-) and suitable completions of them to the Morava K- 

theories K(n)*(-) (see [5][15] for a definition and some 

basic properties). K(n)*(-) is represented by a ring spec- 

trum K(n), there is a canonical morphism of ring spectra 

B(n) ~ K(n) and K(n), ~p[Vn,Vnl]._ The following the- An: 

orem has been proved in [15]. 

1.I.THEOREM. Suppose p >2. There is a natural equivalence 

~X: B(n),(X) ~ B(n),(K(n)) [] K(n),(X) 
K(n) ,K(n) 

of multiplicative homology theories with values in the 

abelian category of B(n),B(n)-comodules. 

REMARKS: (I) In 1.1., K(n),(-) is viewed in the usual sense 

as a left K(n),K(n)-comodUle. The right K(n),K(n)-coaction 

map of B(n),K(n) is obtained by composing its left B(n),( 

B(n))-coaction map with id@A n, see [15] for details. D 

denotes the cotensor product over K(n),K(n). 

(2) Theoretically, 1.1. contains a description of the B(n)* 

-algebra B(n)*(X) in terms of the K(n)*-algebra K(n)*(X). 

We know from [15],lemma 3.14. (or see [9], 2.4.)that 

there is an isomorphism of B(n),-modules and right K(n),( 

K (n)) -comodules 

1.2. 8: B(n),K(n) ~ B(n), ~ K(n),K(n) 
K(n), 

Together with 1.1. this implies that there is an equivalen- 

ce of B(n),- module valued homology theories 

94 



WUERGLER 3 

1.3. B(n),(X) ~ B(n), ~ K(n),(X) 
K(n), 

and similarly for cohomology. This suggests the question 

if there exists a natural isomorphism of the form 1.3. of 

multiplicative theories. Unfortunately, the answer is no. 

The reason may be found in the theory of formal groups: 

Both B(n)*(-) and K(n)*(-) are canonically complex-orien- 

ted So if there would exist a multiplicative transfor- 

mation ~: K(n)*(-) ~ B(n)*(-), the formal groups U,FK(n) 

and FB(n) had to be isomorphic over B(n)*. But this is not 

the case (see remark 2.12.). The aim of this paper is to 

show that the situation changes if B(n)*(-) is suitably 

completed. Before we can state what we have in mind we 

must describe a result on formal groups. 

By a formal group over a commutative ring A we always 

mean a one-dlmensional commutative formal group law F(x,y) 

6A~x,y~. In our context, A will be graded and F(x,y) is 

assumed to be a homo@eneous power series of degree -2 (ho- 

mological grading) resp. 2 (cohomological grading) where 

x and y have degree -2 resp. 2. What grading we use will 

(hopefully) be clear from the context. Similarly, homomor- 

phisms f: F ~ G of formal groups are homogeneous power se- 

ries of degree -2 resp. 2. All isomorphisms are supposed 

to be strict. For details on formal groups we refer the 

reader to [4]. 

Let Jn be the (homogeneous) ideal (Vn+l,Vn+2,...) of 

~p[ -I . . is a graded maximal ideal B(n)* ~ Vn'Vn 'Vn+1'" "] Jn 

of B(n)* in the sense that B(n)*/J n ~ K(n)* is a graded 

field (i.e. all non-zero elements are invertible). In fact, 

B(n)* is a graded local ring in an obvious sense. Put 

1.4. B(n)* = lim B(n)*/J~ ~Wp[Vn,vnl]|vn+1,Vn+2,...] . 

Thus, B(n)* is a complete Hausdorff graded local ring with 

(graded) residue field K(n)*. The completion map Cn: B(n)* 

B(n)* is clearly injective. The formal groups FB(n)and 
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4 WUERGLER 

both extend to B(n)*. FK(n) 

1.5. THEOREM. There exists one and only one isomorphism 

~n: FB(n) ~ FK(n) over B(n)* such that #n(X) ~ x mod Jn" 

It should be noted that whereas FB(n) is a very com- 

licated formal group, FK(n) is rather easy to describe 

[ 4][ 13][ 15] . Put 

fn(X ) = Z I ai x pin -iVn . e~[Vn,vnl]~x ~ 
i~0 p 

= ( in I . = - 
where a i p - )/(pn-1) Then FA(x,y) fn1(fn(X)+fn(y)) 

= F' mod p. is a formal group over ~(p)[Vn,Vnl] and FK(n) n 

Thus FK(n) is just the reduction mod p of the graded ver- 

sion of a Lubin-Tate formal group over Z(p). In particular, 

n 
1.6. [p] (x) = v .x p 

FK (n) n 

Theorem 1.5. and a slight generalisation of it will 

be proved in section 2. The proof is inspired by Hazewin- 

kel's proof [4] of a well known theorem of Lazard which 

states that over a separably closed field of positive 

characteristic, formal groups of equal height are isomor- 

phic. 

Let W (resp. Wf) be the category of CW-complexes 

(resp. finite CW-complexes). Using 1.3. one sees that for 

any B(n),-module A, there is a natural equivalence 

1.7. HomB(n),(B(n),(X),A ) ~ HOmK(n),(K(n),(X),A) 

Because K(n), is a graded field any K(n),-module is free, 

so the right ter m of 1.7. is an additive cohomology theory 

over W. It follows in particular that the functor 

1 . 8 .  WIX 
m 

B(n)*(X) := Hom_,, (B(n),X,B(n)*) 
~n;, 

is an additive and multiplicatlve cohomology theory over 

and thus representable by a ring spectrum B(n). Note 

that for X a finite complex, 
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WUERGLER 5 

1.9. B(n)*(X) ~ B(n)*(X) ~ B(n)* 
B(n)* 

as a B(n)*-algebra. If X is an arbitrary complex, {X } the 

set of all finite subcomplexes of X, 1.8. implies that 

1.10. B(n)*(X) --~ lim~ (B(n)*(X) | B(n)) 
B (n) * 

REMARK: It should be observed, that 1.3. does not depend 

on theorem 1.1. See [17],6.19. for a different proof which 

also includes the case p=2. 

Note that the obvious multiplicative completion map 

Cn: B(n)*(X) ~ B(n)*(X) is in~ective (for all X). Let B(n)* 

(-) be e-oriented by Un= Cn(eB(n) (Q)). Then F~(n) is just 

the extension of FB(n) to B(n)*. Let ~n(X) be the isomor- 

phism of theorem 1.5.. 

1.11 .  THEOREM. Suppose p>2. There is a unique multiplic a- 

tive and stable operation of degree 0 

: B(n)*(-) ~ B(n)*(-) 
n 

such that fn(Un ) = ~n (un) " fin is idempotent and a~rees 

on the coefficient rin@ with the composition 

B(n)* ~ B(n)*/~ n ~ K(n)* C B(n)*. 

Moreover, there is a canonical isomorphism 
* * * 

im{fln:B(n) (X)~ B(n) (X)} ~ K(n) (X) 

I .I 2. COROLLARY. There are canonical isomorphism s of mul- 

tiplicative cohomology theories over Wf 

B(n)*(X) --= B(n)* Q K(n)*(X) 
K(n)* 

K(n)*(X) =-- K(n)* • B(n)*(X) . 
B(n)* 

REMARK. The second isomorphism in 1 .12 .  is just a version 

of the Conner-Floyd theorem mod I n and does not depend on 
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6 WUERGLER 

theorem 1.11.(see [5][15]). Both isomorphisms of 1.12.may 

be extended to W (see 1.10.) and similar equivalences hold 

for homology. 

From 1.11. it follows that there is a commutative 

diagram of ring spectra and morphisms of ring spectra 

B(n) .C~ , B(n) 

~ S" = idK(n) 1 .13. , ~n. ln 

K(n) 

and corollary 1.12. is an immediate consequence of the 

existence of the maps z and in, using the comparison the- 
n 

orem for cohomology theories. 

Theorem 1.11. is our main result. It gives some new 

information concerning the question how the Morava K- 

theories are related to BP*(-)and, if one likes, a new 

definition of K(n)*(-). The proof of 1.11. will be given 

in section 3 . Section 4 contains some consequences of 

1.11. and additional remarks and section 2 is devoted to 

the proof of theorem 1.5. 

2. On formal groups of finite height .over Pp-algebras 

Let F be a formal group over the gradedIF -algebra 
P 

A . Recall (see for example [4]) that the height of F, 

ht(F), is defined as follows: ht(F) = ~ if [p]F(X)= 0 and 

ht(F) = n if pn is the highest power of p such that [p]F(X) 

= f(xP n) for some f(x) EA~x] . Every formal group over an 

F -algebra has a well-defined height. If ht(F) = n, 
P 

n 
2.1. [p]F(X ) E a.x p mod(degree pn+1) , a ~ 0. 

DEFINITION: F is of strict height n, if a is a unit of A. 

We denote the formal group of a complex-oriented ring 

theory E*(-) by FE(X,y). As is well known (see [11][4][3]) 

FBp is universal for p-typical formal groups over Z(p)- 
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WUERGLER 7 

algebras. From the relation (see [14]) 

zFBPvi, xpi 
2.2. [PIFBp(x) 

i>0 
(mod p) 

one immediatly sees that Fp(n) is universal for p-typical 

formal groups of height > n and that FB(n) is universal 

for p-typical formal groups of strict height n over F - 
P 

algebras. 

Now let us consider a p-typical formal group F of 

strict height n over the graded F -algebra A, withclassify- 
P 

ing ring homomorphism f: B(n), ~ A. f gives A the structure 

of a B(n),-algebra. The composition f: K(n),C B(n), ~ A 

defines a new formal group F = f,FK(n) over A which has 

the property that 
n 

2.3. [p]~(x) = ax p 

if [p]F(X) is as in 2.1.. 

DEFINITION. In the situation above, we define the F-comple- 

tion AF of A as the B(n)*-algebra AF = A @fB(n)*. A is 

called F-complete, if the obvious completion homomorphism 

A ~ AF is an isomorphism. CF: 

2.4. THEOREM. Let F be a p-typical formal group of strict 

height n over the graded ~ -algebra A . There exists a ca- 
P 

nonical isomorphism 

~F: (CF)*F ~ (CF)*F 

over the F-completion ~ of A. 

Proof: 2.4. is an obvious consequence of theorem 1.5. 

using the universality of FB(n). 

REMARKS. (I) Because over an F -algebra, every formal group 
P 

is canonically isomorphic to a p-typical one [3][4] the 

assumtion that F has to be p-typical is not essential. 

(2)2.4. should be compared with the fact that any formal 
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8 WUERGLER 

group over a torsion free ring A is isomorphic to the 

additive formal group x + y over A ~ ~ . 

For the proof of 1.5.(and also for the next section) 

we need some preparation. Recall that a groupold is a small 

category in which every morphism is an isomorphism. Let k 

be a commutative ring, Al~k the category of k-algebras. 

By a groupoidscheme over k we mean a representable functor 

G: Al~k ~ GrQugoids from Al~k to the category of group- 

oids. Here representable simply means that the two set- 

valued functors A ~ o~G(A)) and A ~ mor(G(A)) are re- 

presentable. For all A we have morphisms (natural in A) 

mA! (C,A) ~ HomAIgk (B ,A) ~ oh G(A) 2.5. mot G(A) ~ Ho ~k 

which are induced by the maps source, target and identity 

of the category G(A). 2.5. gives rise to k-algebra homo- 

morphisms nL,nR: B ~ C and c: C ~ B. Furthermore, the 

composition of morphisms in G(A) is represented by a map 

~: C ~ C%C and all-these data together make (B,C) into a 

Hopf algebroid (see [9][10]). 

-algebra A consider the set TI (A) of trip- For any ~p 
n 

les (F,G,#) where F,G are p-typical formal groups of height 

m>n over A and ~: G ~ F is an isomorphism. TI (A) is a 
n 

groupoid in an obvious sense and we get a functor 

Tin(-): Alg~ ~ Grougoids 
P 

TI (-) is just the height > n analog of Landwebez's func- 
n 

tor TI(t) of [8] and we put TI0(A):= TI(A) = {(F,G,~)} , 

~: G ~ F an isomorphism between arbitrary p-typlcal formal 

groups over the Z(p)-algebra A. 

2.6. THEOREM. Tin(-) is a @roupoidscheme over Fp (resp. 

�9 (p) if n = 0) which is represented by the Hopf al~ebroid 

(BP,/In,BP,(BP)/In). 

Stated more explicitly we see in particular that if 

100 



WUERGLER 9 

(F,G,~) E TI (A), there exist unique ring homomorphisms 
n 

f: BP,/I n ~ A and g: ~p[tl,t2,...] ~ A with the following 

properties. Consider the diagram 

qL _~ ,- 
2.7. BP,/I n )BP,(BP)/I n BP,/I n ~ ~p[tl,t 2 .]f~g A 

qR 

Then F is represented by (f~g)~ G by (f~g)oq R and 
i 

= ~ F g(ti)xP r 
i>0 

Proof of 2.6.: For n = 0, this is just a reformulation of 

the combination of theorem I and theorem 2 of [ 8]. The 

assertion for n > 0 is a consequence of the case n = 0, 

because the ideal I is invariant. 
n 

We will need the following lemma: 

2.8. LEMMA. Let b 6 JnC B(n), be a homogeneous element and 

i an arbitrary natural number. Then the equation 

i n 
2.9. b - v p x + v x p = o 

n n 

C B (n) has a (homogeneous) solution in Jn * 

Proof: Define z = zJ=~z, e ~n c B(n), recursively by z I = 
i 3=I ] 

v n b, z .= v 1-P z pn . We show that z is a solution of 
j+l n j 

2.9.. Because we are working mod p, one sees that for all 

r > 1, Z 3=~ z. is a solution of the equation 
] =r ] 

i i n 
(a) v p z - v p x + v x p = o 

n r n n 

iff  ]:L1zj solves 
i i n 

(b) v p . - v p x + v x P = o 
n Zr+] n n 

i rn 
But vP n Zr+1 -- 0 mod JP n by the definition of z, so 

rn 
x = o solves (b) over B(n),/J~ . Using the above ob- 

servation, one sees that l ~ j =  l j = r  z j  s o l v e s  2 . 9 .  o v e r  t h e  
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10 WUERGLER 

_ rn -- = jk = limk ring B(n),/J~ Because B(n), l~m k B(n),/ n -- 

B(n),/J~ and the construction is compatible with the red- 

uction maps, the result follows. 

We are now ready for the 

Proof of theorem 1.5.: (A) Existence of an isomorphism 

~n: FB(n) ~ FK(n) over B(n),. For k > o we will inducti- 

vely construct a sequence of formal groups F k and isomor- 

phisms ~k: Fk ~ Fk+1 over B(n), such that F 0 = FB(n) and 

the following conditions are satisfied: 

(i) k ~k(X) ~ x mod (deg pk) 

(ii) k Let fk: BP*/In ~ B(n), be the classifying homomor- 

phism of F k. Then fk(Vn) = Vn, fk(Vn+1) = fk(Vn+2) 

..... fk(vn+k) = 0 and fk(vn+k+1) eJ n 

Assuming this proved for the moment, an isomorphism ~n 

is obtained as follows. From (i) k we see that the sequen- 

ce of compositions 

(m) _ 
- ~m-1 ~ "''~ F0 ~ Fm 

converges (in the power series topology) to some power 

series ~n(X) 6B(n),~xB If we put 

F = ~nFB (n) ( (x) , (y)) , 

~n: FB(n) ~ F~ is by definition an isomorphism. From the 

definition of ~n(X) and condition (ii) k one sees that the 

classifying map f~ of F~ is given by f~(Vn+ i) = v n if i=0 

and 0 otherwise. This shows that F~ = FK(n). 

To construct the F k and ~k we proceed as follows. 

Suppose m > 0 and assume inductively that a formal group 

F m which satisfi@s condition (ii) m has been constructed 

(remember F 0 = FB(n)). Consider the equation 

m+1 n 
2.10. fm(Vn+m+1 ) - vPn x + Vn xp = 0 

Because fm(Vn+m+1)E Jn by our hypothesis, it follows from 

. . C B(n),. We lemma 2.8 that 2.10 has a solution am+1 q Jn 
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WUERGLER 11 

define a homomorphism gm+1: ~p[ t1't2''''] ~ B(n), of ~p- 

algebras by gm+1(tm+1) = am+ I and g(t i) = 0 if i ~ m+1. 

Then we put 

fm+1 := (fm Q gm+l)~ BP*/In * B(n), 

F m+1 
~m(X) := (x + m am+IXP }-I 

Fm+1 := (fm+l),FBP/i n 

is an isomQr- From theorem 2.6. we see that Om: Fm Fm+1 

phism. Clearly, ~m(X) ~ x mod (degree pm+l), so to finish 

the induction it suffices to show that fm+1 has the proper- 

ty (ii)m+ 1 . Because fm(Vn) = v n and ~R(Vn) = v n one has 

fm+l (Vn) = Vn" Now recall the relation ([ 12] ) 

i n 
- v p t i + Vnt ~ mod An+ i 2.11. NR(Vn+ i) ~ Vn+ i n 

where An+ i denotes the ideal (Vn+1,...,Vn+i_l,tl,...,ti_1) 

of BP,(BP)/I n. From the relation 2.11., the fact that fm 

satisfies the condition (ii) m and the definition of gm+l 

it follows that fm+1(Vn+1) = ... = fm+1(Vn+m+1) = 0. 

Because both Vn+m+ 2 and am+l= g(tm+ 1) lie in Jn' 2.11. 

also implies fm+1 (Vn+m+2)6 Jn" This ends the induction 

and the existence proof for ~n" 

(B) Uniqueness of #n" Clearly, the reduction mod Jn 

of FB(n) is just FK(n). The uniqueness statement of theo- 

rem 1.5. is proved if we can show that the homomorphism 

of abelian groups induced by reduction mod n 

(FK (n) 'FK (n)) e: Hom ~(n),(FK(n),FB(n)) HOmK(n) * 

is injective. Suppose f: FK(n) ~ FB(n) is a homomorphism 

such that ~(f) = 0. Then f(x)e ~r~x~ for some r ~ I. Now 

f(FK(X,y) )= FB(f(x),f(y))= f(x)+f(y)+ ~ aijf(x) if(y)J 
i, j ;~ l  

so  
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12 WUERGLER 

n 
f([P]FK(X)) -- f(vnxP ) -- 0 mod ~r+ln 

which implies that f(x) -- 0 mod ~r+1 . By induction one 
n 

that f(x)6 J~x~ for all r, so the coefficients of f sees 

lie in N ~r but this is 0 because B(n), is Hausdorff. 
r n 

This ends the proof of theorem 1.5.. 

2.12.REMARK. The formal groups FK(n) and FB(n) are not 

isomorphic over B(n),. This may be seen as follows. Suppose 

~: FK(n) ~ FB(n) is an isomorphism over B(n),. This means 

(see theorem 2.6.) that there exists a ring homomomorphism 

g: ~p[tl,t2,...] ~ B(n), such that ~= (id~g)onR: B(n), 

B(n), represents FK(n). In particular, ~(Vn+ I) = 0. Using 

2.11. this leads to 

n 

~(Vn+l )= Vn+ 1- v~g(tl)+ Vng(tl )p = 0. 

But this is impossible, because otherwise one would get 

an algebraic dependence between polynomial generators of 

B(n), which is seen by inspecting B(n) 2(p_1). 

3. Proof of theorem 1.11. 

From the definition of the spectrum B(n) given in 

the introduction we know that 

B(n).(X) ~- B(n).(X) ~ B(n). 
B(n), 

From [15] , lemma 2.5. and the mod I version ([9][16] etc) 
n 

of Landweber's exact functor theorem [ 7] we see that 

3 . 1 .  B(n),B(n) ~ B(n), ~ P(n),P(n) ~ B(n), 
P(n), P(n), 

as a Hopf algebroid. Clearly, B(n),(-) takes values in the 

category of B(n),B(n)-comodules ([I]). Moreover, maps of 

ring spectra B(n) ~ B(n) (of degree 0) are in 1-1-corres- 
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WUERGLER 1 3 

pondence with morphisms of B(n),-algebras B(n),B(n)~B(n),. 

Using 3.1. we see that 

H~(n) ,_al~(B(n) ,B(n) ,B(n) ,) ~ H~ (n) ,-al~ (P(n) *P (n) ,B(n) ,) . 

From [1612.13. we know that 

3.2. P(n),P(n) ~ BP*BP/Inp(n),~ A(a0'''''an-1) 

as an algebra where degree ai= 2pi-1. Moreover, BP,(BP)/I n 

is a sub-Hopf-algebroid of P(n),P(n).Because B(n) Odd= 0 

it follows from 3.1. and the isomorphism above that maps 

of ring spectra B(n) ~ B(n) are in l-l-correspondence with 

homomorphisms of P(n),-algebras 

BP,(BP)/I n --~ P(n).[tl,t2,...] ~ B(n), 

Let #n: FB(n) ~ FK(n) be the canonical isomorphism of 

theorem 1.5. and put 

~n1(X) = zFB(n)cixP i 
i>0 

If g: Fp[tl,t2,...] ~ B(n), denotes the ring homomorphism 

defined by g(ti)= c i we denote bY ~n the map of ring 

spectra B(n)~B(n) which corresponds to id~g: BP,BP/In~B(n) , 

Then ~n(Un) = ~n(Un) by definition and ~n is obviously 

uniquely determined by this condition.From theorem 2.6. 

and the definition of g we see that on the coefficients, 

~n is just the composition B(n)*~ B(n)*/~n=-- K(n)*C B(n)*. 

Next, we must show that ~2= ~ . ~2 is represented by the 
n n n 

composition 

e: BP,BP/i n ~ BP,BP/I n @ BP,BP/I n ~ B(n), 
BP,/I n 

where 8 = (id~g).(id~g).Observe that ~OnR(X)= IG)nR(X).So 

it follows from theorem 2.6. and the definition of g that 

represents an isomorphism of formal groups FK(n) ~ FB(n). 

Because ~(ti)E ~n for i>0, the uniqueness statement of 

theorem 1.5. implies that ~= (id@g), so ~2 = n n" 

105 



14 WUERGLER 

From the properties of fl proved till now we see that 
n 

im{~n:B(n)*(X) ~ B(n)*(X)} is a multiplicative and complex- 

oriented cohomology theory with coefficient ring isomor- 

phic to K(n) and formal group FK(n). But this implies 

(see [15],I.8.) that there is a canonical isomorphism 

im{fln:B(n)*(X) ~ B(n)*(X)} --= K(n)*(X) 

of complex-oriented ring theories. This completes the 

proof of theorem 1.11.. 

4. Miscellaneous remarks and applications 

4.1. We will first describe how theorem I .11. leads 

to a simple model for the Hopf algebroid B(n),B(n)(p>2). 

Let us write Z for the Hopf algebra K(n),K(n) whose 
n 

structure maps we denote by eK,~K and c K. We consider 

(B(n),,B(n), Q Z Q B(n),) as a Hopf algebroid with 
K(n), nK(n),~ 

structure maps qL,qR,Cn,en and ~n given by ~L(U)= u~1, 

~R(U)= I~)I~)u, ~n(U~XG~V)= U.eK(X)-v, ~n(U~X~V)= VQCK(X)~u 

and ~n the composition 

~n: B(n), ~ Z ~D B(n),~ B(n), Q Z ~D Z e B(n), 
K (n) ,nK (n), K(n) ,nK (n) ,nK (n) , 

(B(n), ~ Z ~ B(n),)_ ~ (B(n), ~ Z ~ B(n),) 
K(n) ,nK(n), B(n), K (n) ,nK(n), 

From theorem 1.11. we know that there is a canonical map 

of ring spectra I : K(n) ~ B(n). 
n 

4.1 .I .PROPOSITION. There is an isomo~ab/sm of Hopf al~ebroids 

@: B(n) , @ Z @ B(n), ~ B(n).B(n) 
nK (n) K (n), , 

where @(u~x~v) = u-(InAln),(x).v. 
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Proof: Apply [15], lemma 2.5.. 

4.2. It is possible to give a functorial interpre- 

tation of the isomorphism 4.1.1.from the point of view of 

formal groups, at least if one neglects the exterior parts 

of the Hopf algebroids considered. Set Fn=B(n),B(n)/(ao,. 

..,an_l) and An = K(n)*K(n)/(ao'''''an- 1). For anyIFp-al- 

gebra A consider the groupoid TIn(A) of triples (F,G,~) 

where F and G are p-typical formal groups of strict height 

n over A and ~ is an isomorphism c,G ~ c,F over the ring 

B(n),QfAQuB(n) , (c: A ~ ~G denotes the obvious map FAG := 
and f,g are the classifying homomorphisms of F resp. G). 

Using theorem 2.6. it is easy to see that Tin(-) is a 

groupoidscheme represented by the Hopf algebroid F . From 
n 

theorem 2.4. we see that every isomorphism ~:c,G ~ c,F 

may be written in the form (with a slight abuse of notation) 

e ~F I % 
C,G ~- FK(n)~ FK(n) ~ c,F 

where 0 is an automorphism of FK(n). Because as a Hopf 

algebra, A n ~ K(n), Q BP,BP ~ K(n),, one sees using 2.6 
BP, BP, 

that for every K(n),-algebra A, AUtA(F~(n)) ~ HOmK(n),_alg 

(An,A) where F~(n) is the formal group over A induced 

from FK(n) via K(n), ~ A. So one gets a natural isomor- 

phism of groupoid-valued functors 

HOmrings(B(n) , ~ A Q B(n),,A)~ T-~n(A) 
K(n),nK(n), 

and it follows that F n ~ B(n), Q A n Q B(n), as Hopf 
K(n), K(n), 

algebroids. This may be used to give a simple proof of 

Morava's "structure theorem for cobordism comodules" (see 

[10] for a treatment of these questions in a somewhat dif- 

ferent context). 

4.3. There is a B(n),(-)-analog of theorem 1.1., i.e. 

there is an equivalence of multiplicative homology theo- 
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m 

ries with values in the category of B(n),B(n)-comodules 

4.3.1. ~X: B(n),(X) ~ B(n),(K(n)) ~ K(n),(X) 
K (n) ,K (n) 

The proof goes as in [15]. The fact that one has a mor- 

phism of ring spectra I :K(n) ~ B(n) implies that there 
n 

is an isomorphism of rings,(B(n),,K(n),)-bimodules and 

right-K(n),K(n)-comodules 

4.3.2. 0: B(n),(K(n)) --~ B(n), Q K(n),K(n) 
K(n), 

whose inverse is given by u~x~ U-(InAid),(X) (see[15], 

2.5. and 2.6.) . (note that the isomorphism 1.2. for 

B(n) instead of B(n) is not multiplicative) .4.3.2. may be 

used to give an explicit description of IX:K(n),(X) 
n 

B(n),(X) . Let i: K(n),~ B(n), be the inclusion and de- 

note by A X the coaction map of K(n), (X). The image of the 

(0-1~id) o (i~id@id) o AX: map e= K(n),(X) ~ B(n),K(n)@ K(n),X 
K (n). 

is contained in B(n),(K(n)) [] K(n),(X) and one obtains 
K (n) ,K (n) 

X -I 
In(X)= ~X ~X (x)" 

4~4 ,. It is possible to generalise slightly the isomor- 

phism of corollary 1.12.. Let E*(-) be a multiplicative 

cohomology theory with coefficient ring E* of characteris- 

tic p>2, C-oriented by UE E2(CP~). Because E* is an F - 

algebra, there is a canonical change of orientation, Pu ~= 

~(u), such that the formal group F associated to u ~ is 

p-typical ([11][3][4]). Now assume that F is of strict 

height n . Using the notations of section 2 we define 

E~(-) : =  E*(-)%.E~ 

4.4.I.PROPOSITION. --*(-)E F is a cohomolo~y theory over Wf 

and there is a natural and multiplicatlye isomorphism 

XE: K(n) (-)%(n),E; ~ E;(-) 

ove; wf such that XE(uK~)= ~F(U ~) where ~F is as in 2.4. 
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If EI-2pk=0 for k= 0,I,...,n-1, XE is uniquely determined 

by this condition. 

Proof: From [16], proposition 6.8., we see that there is a 

multiplicative transformation p: P(n)*(-) ~ E*(-) such 

that p(uP) = u ~ , unique if E 1-2pk= 0 for k = 0,1,...,n-I. 

Because F is of strict height n it follows from the mod 

I version of Landweber's exact functor theorem that p 
n 

extends uniquely to a multiplicative equivalence 

B(n)*(-)Q~(n),E*~ ~ E*(-) which, after tensoring with 

B(n) *, leads to an isomorphism B(n) *~(n)*E-; ~ EF(-~which 
we call ~n" The isomorphism in: g(n)*~Vln),K(n)*(-).. 

B(n)~(-) of corollary 1.12. has the property ?n(1~uK)= 

~n(U B) and, using again the universal property of P(n)* (-) 

one sees that it is the only such isomorphism. Then 

XE = PnOln is the desired multiplicative equivalence. 

4.4.2.EXAMPLE. Let MU (-,F) be complex cobordism theory 
~2 

with coefficients Fp, uq MU (CP~,Fp) the usual orientation 

class and F the p-typical formal group associated to u ~. 

* (S 0 ,Fp) Recall that MU Fp[ x I ,x 2, ...] . The polynomial i 
generators x i may be chosen such that [ p] ~(T)= ZFx . T p 

- i>0 pZ-1 
(see [3] , w and 2.2.). Let G denote the multiplicative 

summand in the Adams splitting [1] of K*(-,Z(p)) . Then 

([15],I.9.) G(-,Fp)~ K(1)*(-) and from 4.4.1. we see that 

there is a canonical multiplicative isomorphism 

• G* CX,Fp  Vp [ vl ,Vli ] ̂ (X,Fp)[ 1--xp_1 ] 

--* -I ][xi I i~pk_1]|x l where A= MUF(S0,Fp)[ I/Xp_ I] --~ Fp[Xp_ 1,xp_ I j 

j=pk-1 ,k>l ~ . 

4.5. In all topological parts of this paper we assu- 

med that p>2. For p= 2, the products in B(n),(-) and 

K(n),(-) are not commutative (this is a non-trivial fact~) 

and the description of B(n),B(n)resp. K(n),K(n) is not so 

easy as in the case p odd. However, using a slightly 
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different method, it is possible to prove a version of 

theorem 1.11. also in the case p= 2. We will perhaps come 

back to this and related questions concerning products in 

the case p=2 somewhere else. 
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