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A SPLITTING THEOREM FOR CERTAIN COHOMOLOGY THEORIES

*
ASSOCIATED TO BP (-)

Urs Wiirgler

Let P(n)*(-) be Brown-Peterson cohomology modulo I
and put B(n)*(-) = P(n)*(=)[1/vn] . In this note we con-"
struct a canonical multiplicative and idempotent operation
fin in a suitable completion B{(n)*(-) of B(n)*(~) which hasg
the property that its image is canonically isomorphic to
the n-th Morava K-theory K(n)*(-). In particular, the ring
theory K(n)*(-) is contained as a direct summand in the
theory B(n)*(-). A similar result is not true before com-
pleting. Because the completion map B(n)*(-) - B(n)*(-)
is injective, the above splitting theorem contains also
information about B{(n)*(-). The proof of the theorem de-
pends on a result about the behaviour of formal groups of
finite height over complete graded tp-algebras.

1. Introduction and results

Let BP denote the Brown-Peterson spectrum associated
to the prime p (see [2][31[11]). Recall that Bp, = l(p)[v1,
v2,...] where Ivi|= 2(pi—1). The v, are always supposed to
be Hazewinkel generators [ 4] . There is a sequence of ass-
ociative (and commutative if p > 2) ring spectra (see [ 5]
[161[18]) BP - P(1) -» P(2) » --+ with the property that
P(n) .= BP*/In 2P v ,v 1.....] where In= (p,v1,v2,...) c

p n’ n+
BP, is the n-th invariant prime ideal of BP, [6]1[5]. The
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2 WUERGLER

P(n)'s may be viewed as BP-theory with coefficients in
BP*/In and provide a convenient way for describing the
structure of BP,(-).

If we localize P(n), (-) with respect to Tn= {1,vn,v§,
...} € P(n), we get a new multiplicative homology theory
B(n) (=) = T
lescope spectrum B(n) = 1{?(2

P(n) ,(-) which may be represented by the te-
21(1-pn)P(n),On) where ©_
corresponds to multiplication by v The B(n)'s record a
great deal of the periodicity structure of BP. In this pa-
per we are interested in the relation of the theories
B(n)*(-) and suitable completions of them to the Morava K-
theories K(n)*(~) (see [5][15] for a definition and some
basic properties). K(n)*(-) is represented by a ring spec-
trum XK(n), there is a canonical morphism of ring spectra
Ap? B(m) » K(n) and K(n), =F | v .v.']. The following the-

orem has been proved in [15].

1.1.THEQOREM. Suppose p >2. There is a natural equivalence

et B(),(X) > B(),(Km) O  K(n), (X
K(n) ;K(n)

of multiplicative homology theories with values in the

abelian category of B(n) ,B(n)-comodules.

REMARKS: (1) In 1.1., K(n),(-) is viewed in the usual sense
as a left K(n) K(n)~comodule. The right K(n) K(n)-coaction
map of B(n) K(n) is obtained by composing its left B(n),(
B(n) ) -coaction map with id@ﬂn, see [ 15] for details. 0O
denotes the cotensor product over K(mn) , K(n).

(2) Theoretically, 1.1. contains a description of the B(n)*
-algebra B(n)*(X) in terms of the K(n)*-algebra K(n)*(X).

We know from {15] ,lemma 3.14. (or see [9], 2.4.)that
there is an isomorphism of B(n),-modules and right K(n) ,(
K(n))-comodules
1.2, ©: B(n) K(n) = B(n), @ K(n),K(n) .

K(n),
Together with 1.1. this implies that there is an equivalen-

ce of B(n),~ module valued homology theories
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WUERGLER 3

1.3. B(n),(X) = B(n), ® K(n),(X)
K(n),

and similarly for cohomology. This suggests the question
if there exists a natural isomorphism of the form 1.3. of
multiplicative theories. Unfortunately, the answer is no.

The reason may be found in the theory of formal groups:

Both B(n)*(-) and K(n)*(-) are canonically complex-orien-
ted . So if there would exist a multiplicative transfor-
mation a: K(n)*(-) = B(n)*(-), the formal groups ao,F
and F

B (n) had to be isomorphic over B(n)*. But this ?én;ot
the case (see remark 2.12.). The aim of this paper is to
show that the situation changes if B(n)*(~-) is suitably
completed. Before we can state what we have in mind we

must describe a result on formal groups.

By a formal group over a commutative ring A we always
mean a one-~dimensional commutative formal group law F(x,y)
€Al x,yl. In our context, A will be graded and F(x,y) is
assumed to be a homogeneous power series of degree -2 (ho-
mological grading) resp. 2 (cohomological grading) where
x and y have degree -2 resp. 2. What grading we use will
(hopefully) be clear from the context. Similarly, homomor-
phisms f: F = G of formal groups are homogeneous power se-
ries of degree -2 resp. 2. All isomorphisms are supposed
to be strict. For details on formal groups we refer the

reader to [4].

Let Jn be the (homogeneous) ideal (vn+1,vn+2,...) of

1. Jn is a graded maximal ideal

-1
* o
B(n) Eb[vn,vn Vopqreee
of B(n)* in the sense that B(n)*/Jn = K(n)* is a graded
field (i.e. all non-zero elements are invertible). In fact,

B(n)* is a graded local ring in an obvious sense. Put

1.

= * = r -1
1.4. B(n) 1%m B(n)*/Jn =3 Fp[vn,vn ][vn+1,vn+2,...

Thus, B(n)* is a complete Hausdorff graded local ring with
(graded) residue field K(n)*. The completion map c,t B{n)*

- B(n)* is clearly injective. The formal groups F and

B(n)
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4 WUERGLER

F both extend to B(n)*.

K(n)

1.5. THEOREM. There exists one and only one isomorphism

- =y * 5 - °
¢n. FB(n) - FK(n) over B(n)* such that ¢n(x) x mod Jn.

It should be noted that whereas F is a very com-

B(n)
licated formal group, FK(n) is rather easy to describe
[41013]1[15] . Put

1 ai in
fn(x) = T = iVn  xP GQ[V ,v ]ﬂxﬂ
i20 p

where a;= (p -1)/(pn—1). Then F (x,y)= f (fn(x)+fn(y))
is a formal group over Z(p)[vn,vn 1 and FK(n)= Fﬁ mod p.
Thus FK(n) is just the reduction mod p of the graded ver-
sion of a Lubin-Tate formal group over z(p).Zﬁlpartkmlar,

pn
1.6. [p]F (x) = vt X .

K(n)

Theorem 1.5. and a slight generalisation of it will
be proved in section 2. The proof is inspired by Hazewin-
kel's proof [ 4] of a well known theorem of Lazard which
states that over a separably closed field of positive
characteristic, formal groups of equal height are isomor-
phic.

Let W (resp. ﬂf) be the category of CW-complexes
(resp. finite CW-complexes). Using 1.3. one sees that for

any B(n)_,-module A, there is a natural equivalence

1.7. Hom ), (B(n) ,(X),A) = Hom,, (K(n) , (X) ,A) .

B(n R{n),

Becausé’K(h)* is a graded field any K(n),-module is free,
so the right term of 1.7. is an additive cohomology theory
over W. It follows in particular that the functor

1.8. Wax & B(n)*(X):= Homy . (B(n) X, B(n)*)
*

is an additive and multiplicative cohomology theory over
W and thus representable by a ring spectrum B(n). Note
that for X a finite complex,
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WUERGLER 5

1.9. B(n)*(X) = B(n)*(X) ® B(n)*
B(n)*

as a B(n)*-algebra. If X is an arbitrary complex, {Xa} the
set of all finite subcomplexes of X, 1.8. implies that

1.10. B(n)*(X) = lim (B(n)*(X.) © B(n)) .
- a
o B(n)*

REMARK: It should be observed, that 1.3. does not depend
on theorem 1.1. See [17],6.19. for a different proof which

also includes the case p=2.

Note that the obvious multiplicative completion map
c,t B(n)*(X) = B(n)*(X) is injective (for all X). Let B(n)*
B{n) (n)). Then F=
n ' B(n)
to B(n)*. Let ¢n(x) be the isomor-

(-) be €-oriented by u = cn(e is just

the extension of F
B(n)
phism of theorem 1.5..

1.11. THEOREM. Suppose p>2. There is a unique multiplica-

tive and stable operation of degree 0

9 B(n)*(-) - B(n)*(-)

such that Qn(un) = ¢n(un) . Qn is idempotent and agrees

on the coefficient ring with the composition

B(n)* - E(n)*/‘jn > RK(n)* C B(n)*.

Moreover, there is a canonical isomorphism

— * — * *
im{Qn:B(n) (X} - B(n) (X)} = K(n) (X)

1.12. COROLLARY. There are canonical isomorphisms of mul-

tiplicative cohomology theories over W

£

B(n)*(X) = B(n)* © K(n)*(X)
K(n)*

K(n)*(X) = K(n)*_ @ B(n)*(X) .
B(n)*

REMARK. The second isomorphism in 1.12. is just a version
of the Conner-~Floyd theorem mod In and does not depend on
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6 WUERGLER

theorem 1.11.(see [51(15]). Both isomorphisms of 1.12.may
be extended to W (see 1.10.) and similar equivalences hold
for homology.

From 1.11. it follows that there is a commutative

diagram of ring spectra and morphisms of ring spectra

_ n _
B(n)——— , B(n)
1.13. .

R /:‘ * "n"'n T 1)

K(n)

and corollary 1.12. is an immediate consequence of the
existence of the maps L and 1 using the comparison the-
orem for cochomology theories.

Theorem 1.11. is our main result. It gives some new
information concerning the question how the Morava K-
theories are related to BP*{-)and, if one likes, a new
definition of K(n)*(-). The proof of 1.11. will be given
in section 3 . Section 4 contains some consequences of
1.11. and additional remarks and section 2 is devoted to

the proof of theorem 1.5.

2. On formal groups of finite height over Ep—algebras

Let F be a formal group over the gradedIFp—algebra
A . Recall (see for example [4]) that the height of F,
ht(F), is defined as follows: ht(F) = o if [p]F(x)= 0 and
ht(F) = n if p  is the highest power of p such that [p]F(x)
= f(xPn) for some f(x) €alx] . Every formal group over an
Fp—algebra has a well-defined height. If ht(F) = n,

n

2.1. [p]F(x) = a.xP mod (degree pn+1) , a# 0.

DEFINITION: F is of strict height n, if a is a unit of A.

We denote the formal group of a complex-oriented ring
theory E*(~) by FE(x,y). As is well known (see [111[4}[3])

P is universal for p-typical formal groups over z(

Fg p) "
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WUERGLER 7

algebras. From the relation (see [14])

FBP i
2.2. [p]F (x) = 2 vi-xp {(mod p)
BP i>0
one immediatly sees that FP(n) is universal for p-typical

formal groups of height 2 n and that F is universal

B(n)
for p-typical formal groups of strict height n over Fp-

algebras.

Now let us consider a p-typical formal group F of
strict height n over the graded Fp-algebra A, with classify-
ing ring homomorphism f£: B{(n) , * A. £ gives A the structure
of a B(n)_,-algebra. The composition £: K(n) ,C B(n), £4 A

defines a new formal group F = K(n) over A which has
the property that

n
2.3, [p];(X) = axP

if [p]F(x) is as in 2.1..

DEFINITION. In the situation above, we define the F-comple-
tion KF of A as the E(n)*-algebra KF = A @Eﬁ(n)*. A is
called F-complete, if the obvious completion homomorphism

cp: A > KF is an isomorphism.

2.4. THEOREM. Let F be a p-typical formal group of strict
height n over the graded Fp-algebra A . There exists a ca-

nonical isomorphism

Ot (Cp) oF - (CF)*F
over the F-completion XF of A.

Proof: 2.4. is an obvious consequence of theorem 1.5.

using the universality of FB(n)'

REMARKS. (1) Because over an Fp-algebra, every formal group
is canonically isomorphic to a p-typical one [ 3}[ 4] the
assumtion that F has to be p-typical is not essential.
(2)2.4. should be compared with the fact that any formal
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8 WUERGLER

group over a torsion free ring A is isomorphic to the

additive formal group x + y over A ©® Q .

For the proof of 1.5.(and also for the next section)
we need some preparation. Recall that a groupoid is a small
category in which every morphism is an isomorphism. Let k
be a commutative ring, élik the category of k-algebras.

By a groupoidscheme over k we mean a representable functor
G: élgk - Groupoids from élﬂk to the category of group-
oids. Here representable simply means that the two set-
valued functors A = ob(G(A)) and A w» mor(G(A)) are re-

presentable. For all A we have morphisms (natural in A)

-
2 o
2.5. mor G(A) = HomAl (C,n) 2 HomAl (B,A) = ob G(A)

k k
which are induced by the maps source, target and identity
of the category G(A). 2.5. gives rise to k-algebra homo-

morphisms : B> C and €: C » B. Furthermore, the

Ny N
L R
composition of morphisms in G(A) is represented by a map
PY: C = C€%C and all- these data together make (B,C} into a

Hopf algebroid (see [9][10]).

For anyin-algebra A consider the set TIn(A) of trip-
les (F,G,¢) where F,G are p~typical formal groups of height
m?n over A and ¢: G - F is an isomorphism. TIn(A) is a
groupoid in an obvious sense and we get a functor

TIn(-): Alg o - Groupoids .
TIn(—) is just the height =2 n analog of Landweber's func-
tor TI(=) of [8] and we put TI,(a):= TI(A) = {(F,G,$)} ,

¢: G - F an isomorphism between arbitrary p-typical formal

f

groups over the z(p

)-algebra A.

2.65. THEOREM. TIn(-) is a groupoidscheme over Fp (resp.

z(p) if n = 0) which is represented by the Hopf algebroid
(BP,/T_,BP,(BP)/I ).

Btated more explicitly we see in particular that if
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WUERGLER 9

(F,G,9) € TIn(A), there exist unique ring homomorphisms
f: BP*/In - A and g: Fp[t1,t2,...] - A with the following

properties. Consider the diagram

n
L feg

2.7. Bp*/1n==§=:sp*(ap)/1n =BP/I OF [t,ty,..17>" A
R

Then F is represented by (fﬁg)’nL, G by (f€§)°nR and
i
p(0) = =¥ gre )P,
i>0

Proof of 2.6.: For n = 0, this is just a reformulation of
the combination of theorem 1 and theorem 2 of [8]. The

assertion for n > 0 is a consequence of the case n = 0,

because the ideal In is invariant.

We will need the following lemma:

2.8. LEMMA. Let b € EnC B(n), be a homogeneous element and
i an arbitrary natural number. Then the equation

i n
2.9. b-vP x+vxP = o
n n

has a (homogeneous) solution in En C B(n),

Proof: Define z = Eg::éj € EnC B(n), recursively by z, =
i
v P p, = vI"P ,P® e show that z is a solution of

n 23417 VY
2.9.. Because we are working mod p, one sees that for all

r=1, Eg:: z. is a solution of the equation

3
i i n

(a) vP oz - vP X + v ¥ =0

n r n n
iff 27 1
i j=r+1zj solves

i i n
(b) vP 2 -vWx+vxP =0 .

n “r+1 n n
pi _ _prn
But vn zr+1 = 0 mod Jn bi the definition of 2z, so
_ _aIn

x = o solves (b) over B(n)*/Jg . Using the above ob-

r

servation, one sees that 23:1

zj solves 2.9. over the
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10 WUERGLER

rn

= =p = ot k .
iing Bﬁi)*/Jn . Because B(n), = lim B(n),/J = 1lim
B(n)*/Jn and the construction is compatible with the red-

uction maps, the result follows.

We are now ready for the
Proof of theorem 1.5.: (A) Existence of an isomorphism

% Famy ~ Fr(n)

vely construct a sequence of formal groups Fk and isomor-

over B(n),. For k > o we will inducti-

phisms wk: Fk - Fk+1 over B(n), such that FO = FB(n) and
the following conditions are satisfied:
. = k

(1)) ¥, (x) = x mod (deg p")

(ii)k Let fk: BP*/In - E(n)* be the classifying homomor-
phism of Fk' Then fk(vn) = v fk(vn+l) = fk(vn+2)
= el = = [

fk(vn+k) 0 and fk(vn+k+1) In

Assuming this proved for the moment, an isomorphism ¢n
is obtained as follows. From (i)k we see that the sequen-
ce of compositions

(m)

¢ = wm—f ...owoz FO - Fm

converges (in the power series topology) to some power

series ¢ (x) €B(n) ,Ix] . If we put
Fpy = 0 Fp(ny (00 () /00" (1)),

%n* Fa(n)

definition of ¢n(x) and condition (ii)k one sees that the

- F_, is by definition an isomorphism. From the

classifying map £ of F_ is given by £f_ (v ) = v_ if i=0

n+i n
and 0 otherwise. This shows that F_ = F .
L K(n)

To construct the Fk and wk we proceed as follows.
Supposeé m = 0 and assume inductively that a formal group

Fo which satisfies condition (ii)m has been constructed

(remember FO = FB(n))' Consider the egquation
m+1 n

2.10. £ ( -vP o x+vxP =0 .
n n

v
m n+m+1)

Because fm(v )E En by our hypothesis, it follows from

€ JnC B(n),. We

n+m+1

lemma 2.8. that 2.10. has a solution a1
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WUERGLER 11

define a homomorphism It ::Fp[t1,t2,...] > E(n)* onFp_

1

algebras by gm+1(tm+1) = a1 and g(ti) = 0 if 1 # m+1.
Then we put
fm+1 i= (fm® gm+1)°nR: BP*/In - B(n),
Fo m+1 -1
wm(x) = {x + a ¥ }
Fm+1:= (fm+1)*FBP/In

From theorem 2.6. we see that wm: Fm - Fm is an isomor-

+1
phism., Clearly, wm(x) = x mod (degree p™1), so to finish
the induction it suffices to show that fm+1 has the proper-

ty (ii)m+1. Because fm(vn) = v_ and nR(vn) = v one has

n

fm+1(vn) = V- Now recall the relation ([12])
Pi Pn
2.11. nR(Vn+i) =viei - Vn ti + vnti mod An+i
where An+i denotes the ideal (vn+1""’vn+i-1't1""'ti—1)

of BP*(BP)/In. From the relation 2.11., the fact that fm
satisfies the condition (ii)m and the definition of I
it follows that fm+1(vn+1) = ... = fm+1(vn+m+l) = 0.
Because both v and A= g(t ) lie in Jn, 2.11.
also implies f__ (v )E En' This ends the induction

+1
n+m+2 1
m+1 " n+m+2

and the existence proof for ¢n.

(B) Uniqueness of ¢n. Clearly, the reduction mod En
£ FB(n) is just FK(n)

rem 1.5, is proved if we can show that the homomorphism

o . The uniqueness statement of theo-

of abelian groups induced by reduction mod En

oz Hom gy Frin) *Fa(n)) > H%(n), Fx(n) "Tr(n)’

is injective. Suppose £: F is a homomorphism

K(n) ~ FB(n)
such that o(f) = 0. Then f(x)€ Jnﬁxﬂ for some r 2 1. Now

£(F, (x,y) )= F(£(x),E(y))= E(X)+E(y)+ = a, .f(x)ie(y)]
K B 1,92 13

1o
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12 WUERGLER

n

f£(v xP ) = 0 moa F°*
n n

f([p]F (x))
K

which implies that f(x) = 0 mod 3i+1. By induction one

sees that f(x)€ Eiﬂxﬁ for all r, so the coefficients of f
lie in ﬁr3; but this is 0 because B(n), is Hausdorff.

This ends the proof of theorem 1.5..

2.12.REMARK. The formal groups FK(n) and FB(n) are not
isomorphic over B(n),. This may be seen as follows. Suppose

- F is an isomorphism over B(n),. This means

Y Frn) ~ Fe(n)
(see theorem 2.6.) that there exists a ring homomomorphism
g::Fp[t1,t2,...] - B(n), such that o= (id®g)on

B(n), represents F

r: B, ~
K(n)* In particular, a(vn+1) = 0. Using

2.11. this leads to

n
_ P P _
a( vng(t1)+ vng(t1) 0.

)= v

Vat+ n+1

But this is impossible, because otherwise one would get
an algebraic dependence between polynomial generators of

B(n), which is seen by inspecting B(n)z(p_1).

3. Proof of theorem 1.11.

From the definition of the spectrum B(n) given in
the introduction we know that

B(n),(X) = B(n),(X) © B(n),
B(n)*

From [15], lemma 2.5. and the mod In version ([ 9]1[16] etc)
of Landweber's exact functor theorem [ 7]1we see that

3.1. B(n) B(n) = B(n), © P(n),P(n) © B(n),
P(n), P(n),

as a Hopf algebroid. Clearly, ﬁ(n)*(-) takes values in the
category of E(n)*g(n)-comodules ( [1]1). Moreover, maps of

ring spectra B(n) - B(n) (of degree 0) are in 1-1-corres-
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WUERGLER 13

pondence with morphisms of E(n)*-algebras §(n)*§(n)a§(n)*.

Using 3.1. we see that

Hang(n) *-g_lg(B(n}*B(n) ,B(n),) EHm‘P(n) ,-alg (P(n) P(n),B(n),) .

From [ 16]12.13. we know that

3.2. P(n) P(n) = BP*BP/In 1] A(ao,...,an_1)
P(n),
as an algebra where degree ai= 2pi—1. Moreover, BP*(BP)/In
odd

is a sub-Hopf-algebroid of P(n),P(n).Because B(n) =

it follows from 3.1. and the isomorphism above that maps
of ring spectra B(n) — B(n) are in 1-1-correspondence with
homomorphisms of P(n),~algebras

BP,(BP)/I_ = P(n),[t,,t,,...] > B(n), .
Let ¢n: FB(n) - FK(n) be the canonical isomorphism of
theorem 1.5. and put
F i
-1 - B(n) , _p
L (x) = Z c,x .

i>0
If g: Fp[t1,t2,...] -> E(n)* denotes the ring homomorphism
defined by g(ti)= cy we denote by Qn the map of ring
spectra B(n)->B(n) which corresponds to id®g: BP*BP/In»B(n)*
Then Qn(un) = ¢n(un) by definition and Qn is obviously
uniquely determined by this condition.From theorem 2.6.
and the definition of g we see that on the coefficients,
@ is just the compositiog E(n)*»zﬁ(n)*/snz K(n)*C B{(n)*,
Next, we must show that Qn= Qn. Qn is represented by the
composition

B =
a: BP,BP/I_ ¥ BP,BP/I_® BP,BP/I -~ B(n),

BP,/I
where B= (id®g).(id®g) .Observe that wonR(x)= 1€mR(x).So
it follows from theorem 2.6. and the definition of g that
a represents an isomorphism of formal groups FK(n) - FB(n)'
Because a(ti)E En for 1>0, the uniquenesszstatement of
theorem 1.5. implies that o= (1d®g), so Qn = Qn.
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14 WUERGLER

From the properties of Qn proved till now we see that
im{Qn:E(n)*(X) > B(n)*(X)} is a multiplicative and complex-
oriented cohomology theory with coefficient ring isomor-
K(n) " But this implies

{see [ 15] ,1.8.) that there is a canonical isomorphism

phic to K(n)* and formal group F
im{Q_:B(n)*(X) - B(n)*(X)} = K(n)*(X)

of complex-oriented ring theories. This completes the

proof of theorem 1.11..

4. Miscellaneous remarks and applications

4.1. We will first describe how theorem 1.11. leads
to a simple model for the Hopf algebroid E(n)*ﬁ(n)(p>2).
Let us write I for the Hopf algébra K(n) , K(n) whose

structure maps we denote by ¢ and Cg* We considerxr

K'wK

(B{n),.B(n), © E ©® B(n),) as a Hopf algebroid with
K{n} , K(n)* -

structure maps Ny, MprChrey and wn given by ﬁL(u)= ue1 o1,

'ﬁ'R(u)= 1N, E‘n(u®x®v)= u-eK(x)-v, 'E:'n(u&)x@v): v@cK(x)Qu
and wn the composition

v: B, ® £ @B(n),» Bn,® I ©3 © Bn),
K(n), K(n), K(n) , K(n), K(n)*

.= (B(n), © T ® B(n),)_® (B(n), ® £ © B(n),)
K(n),"K(n), B(n), K(n), K(n),

From theorem 1.11. we know that there is a canonical map
of ring spectra 1_: K(n) - B(n).

4.1.1.PROPOSITION. There is an iscmorphism of Hopf algebroids

¢: B(n), ® X © B(n), » B(n),B(n)
K(n), "K(n),

where ¢ {(u®x®v) = u-(1nA1n)*(x)'v.

106
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Proof: Apply [15], lemma 2.5..

4.2. It is possible to give a functorial interpre-
tation of the isomorphism 4.1.1.from the point of view of
formal groups, at least if one neglects the exterior parts
of the Hopf algebroids considered. Set Fn=§(n)*§(n)/(ao,.

..,an_1) and An= K(n)*K(n)/(ao,...,an ). For anyIFp—al—

-1
gebra A consider the groupoid Tfn(A) of triples (F,G,¢)

where F and G are p-typical formal groups of strict height
n over A and ¢ is an isomorphism ¢,G - c,F over the ring
FAei= E(n)*QfAﬁgﬁ(n)* (c: A » A, denotes the obvious map
and f£,g are the classifying homomorphisms of F resp. G).
Using theorem 2.6. it is easy to éee that Tfn(—) is a
groupoidscheme represented by the Hopf algebroid Fn. From
theorem 2.4. we see that every isomorphism ¢:¢,G - c,F

may be written in the form (with a slight abuse of notation)
-1
¢ ¢
G 0 F
€48 > Fy(my® Fr(n) = GF

where @ is an automorphism of FK(n)' Because as a Hopf

algebra, A = K(n), © BP,BP ® K(n),, one sees using 2.6,

BP BP

* *

K

(An,A) where Fﬁ(n) is the formal group over A induced

from FK(n) via K(n), » A. So one gets a natural isomor-

phism of groupoid-valued functors

- t o
that for every K(n)_,-algebra A, AutA(F (n)) HomK(n)*-alg

Hom (B(n), ® A_©® B(n),,A)=™ TI_(A)
rings *K(n)*nK(n)* * n

and it follows that I'_ =B(n), ® A_ © B(n), as Hopf
n n
K(n), K(n),

algebroids. This may be used to give a simple proof of
Morava's "structure theorem for cobordism comodules" (see
[10] for a treatment of these questions in a somewhat dif-
ferent context).

4.3. There is a §(n)*(—)—analog of theorem 1.1., i.e.
there is an equivalence of multiplicative homology theo-
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ries with values in the category of E(n)*ﬁ(n)—comodules

4.3.1. s B(n),(X) 5 B(n),(K(n)) 0O K(n),(X)
K(n) K(n)

The proof goes as in [15] . The fact that one has a mor-
phism of ring spectra 1n:K(n) - B(n) implies that there
is an isomorphism of rings,(E(n)*,K(n)*)-bimodules and

right-K(n) ,K(n)-comodules

4.3.2. 0: B(n),(K(n)) = B(n), ® K(n),K(n)

K(n),
whose inverse is given by u®x » u-(1nAid)*(x) (see[ 15],
2.5. and 2.6.). (note that the isomorphism 1.2. for
B(n) instead of B(n) is not multiplicative).4.3.2. may be
used to give an explicit description of 1§:K(n)*(x) -
B(n),(X) . Let i: K(n),» B(n), be the inclusion and de-
note by A the coaction map of K(n),(X). The image of the

map a= ( e toid)e (1@1d@1d)° Ay: K(n), (X) > B(n) K(n)® K(n) X
K(n),

is contained in B(n),(K(n)) O K(n),(X) and one obtains
-1 K(n) ,K(n)

X
1n(x)— wx

ax(x).

4.4. It is possible to generalise slightly the isomor-
phism of corollary 1.12.. Let E*(-) be a multiplicative
cohomology theory with coefficient ring E* of characteris-
tic p>2, C-oriented by uE E (CP_) . Because E* is an Fp-
algebra, there is a canonical change of orientation, u€=
£(u), such that the formal group F associated to uE is
p-typical ([111[3][4]). Now assume that F is of strict
height n . Using the notations of section 2 we define

EX(-):= E*(-)@,,EX .

4.4.1.PROPOSITION. E;(-) is a cohomology theory over W
and there is a natural and multiplicative isomorphism

f

x:K(n)()

E E* + E (=)

K(n)*'F

over W, such that XE(uKGH)= ¢F(u€) where ¢, is as in 2.4.
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-2pk
E1 2p

If =0 for k= 0,1,...,n-1, Xg is uniquely determined
by this condition.

Proof: From [ 16] , proposition 6.8., we see that there is a
multiplicative transformation p: P(n)*(-~) - E*(-) such
that p(uP)= uE , unique if 1311-2p =0 for k= 0,1,...,n-1.
Because F is of strict height n it follows from the mod
In version of Landweber's exact functor theorem that p

extends uniquely to a multiplicative equivalence

B(n)*(-)® (n)*E 5 E*(-) which, after tensoring with
B(n)*, leads to an isomorphism B(n) QF( )*E - E (- )which
we call Bn' The isomorphism Tn: B(n) *@ (n )*K(n)*( ) -

E(n)*( -) of corollary 1.12. has the property 1 (1€M )=
¢ (u ) and, using again the universal property of P(n)*(-)
one sees that it is the only such isomorphism. Then

Xg= Bh°?n is the desired multiplicative equivalence.

4.4.2.EXAMPLE. Let MU*(-,FP) be complex cobordism theory
with coefficients Fp, u€ MU2(CPu,Fp) the usual orientation
class and F the p-~typical formal group associated to ug.
Recall that MU*(SO,FP)E Fp[x1,x2,...] . The polynomial

(1= Fy . ™
i>0 p~ =1
(see [3] , §6 and 2.2.). Let G denote the multiplicative

summand in the Adams splitting [1] of K*(-,z(p)). Then
(151 ,1.9.) G(-,Fp)ﬁ K{1)*(-) and from 4.4.1. we see that

there is a canonical multiplicative isomorphism

i
generators x, may be chosen such that [ pl

X2 G (X,JF )@ 1]1\ Zﬁﬁ;(x,i‘ )[—-1—1
1 *p-1
) &4
where A= MUF(S ,Fp)[1/xp_1] = Fp[x Hx Ii#p —1][x|

j=pk—1,k>1].

[v

p1'x-

4.5. In all topological parts of this paper we assu-
med that p>2. For p= 2, the products in E(n)*(-) and
K(n),(-) are not commutative (this is a non-trivial fact!)
and the description of B(n),B(n)resp. K(n),K(n) is not so
easy as in the case p odd. However, using a slightly
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different method, it is possible to prove a version of

theorem 1.11. also in the case p= 2. We will perhaps come

back to this and related questions concerning products in

the case p=2 somewhere else.
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