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A MODEL FOR GENUINE EQUIVARIANT COMMUTATIVE

RING SPECTRA AWAY FROM THE GROUP ORDER

CHRISTIAN WIMMER

Abstract. We use geometric fixed points to describe the homotopy theory of
genuine equivariant commutative ring spectra after inverting the group order.
The main innovation is the use of the extra structure provided by the Hill-
Hopkins-Ravenel norms in the form of additional norm maps on geometric
fixed point diagrams, which turns out to be computationally managable.
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1. Introduction

While the stable homotopy category SH is of vast computational complexity, dra-
matic simplifications occur upon rationalizing it (i.e. restricting to spectra whose
homotopy groups are rational vector spaces) and the resulting category is equivalent
to graded Q-vector spaces (which can be thought of as a classification of rational
cohomology theories). It is structurally much simpler than what we started with,
but still retains interesting information. This is only amplified when considering
(the various versions of) G-equivariant stable homotopy theory for a finite group
G. The complexity of course increases with that of the group, but one can still
give rational algebraic models. Moreover, this can be done in a sufficiently mul-
tiplicative fashion yielding descriptions of rational A∞- and E∞-ring spectra in
terms of (commutative) differential graded algebras. In the following we consider
genuine equivariant stable homotopy theory, the version with the richest structure.
In terms of cohomology theories, this corresponds to RO(G)-graded theories on
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2 CHRISTIAN WIMMER

G-spaces. There are many ’levels of commutativity’ a ring G-spectrum can en-
joy and a genuine-commutative ring spectrum is the most sophisticated version in
that sense. Interest in genuine equivariant (ring-) spectra has been especially rein-
vigorated with their use in the solution of the Kervaire invariant one problem by
Hill-Hopkins-Ravenel [HHR16]. What has been missing so far is an algebraic model
for rational genuine commutative ring spectra and in this article we largely finish
the equivariant story (for finite groups) by giving one. In fact, we go somewhat
further by working relative to a family of finite subgroups of a fixed compact Lie
group G.

To put this into context, we briefly outline the classical situation in more de-
tail. Serre’s computation of rational homotopy groups shows that taking stable
homotopy groups induces an equivalence

SHQ
≃
−→ grVectQ

between the rational stable homotopy category and graded Q-vector spaces, which
is symmetric monoidal with respect to the smash product and the graded tensor
product. In particular, one also obtains an algebraic model for rational homotopy-
commutative ring spectra, namely graded-commutative Q-algebras.

To deal with more highly structured ring spectra, the comparison has to take
place on the level of homotopy theories (e.g. model categories or underlying ∞-
categories), even if one just wants to describe the homotopy category. The above
functor can be refined to a chain functor Sp → ChQ taking value in rational
chain complexes (coming with a natural equivalence H∗(CX) ∼= π∗(X)⊗Q). This
is straightforward to construct by either writing it down explicitely or invoking
the universal property of the ∞-category of spectra. With some more work one
also obtains a (homotopically) symmetric monoidal functor (unpublished work by
Schwede-Strickland or ∞-categorically using [Nik16]).

This yields an equivalence

Com(Sp)Q ≃ CDGAQ

between the rational homotopy theories of commutative ring spectra and commuta-
tive differential graded algebras (see [RS17] for a zig-zag of Quillen equivalences). A
more invariant statement (which now automatically follows from general principles
of symmetric monoidal∞-categories) is that there is a rational equivalence between
E∞-ring spectra and E∞-algebras. These are modelled by strict commutative al-
gebra objects on the pointset level (the former even integrally). We note that this
is no longer true in the equivariant setting, where genuine commutative rings (still
modelled by strict commutative algebra objects) encode more information than
E∞-rings.

Additively, the equivariant version (for a finite group G) of this story is similar,
although the bookkeeping becomes more involved. As the subgroup H ≤ G varies,
the collection of homotopy groups π∗X = {πH

∗ (X)} of a genuine G-spectrum form
a Mackey functor, that is the values are related by restriction, transfer, and con-
jugation maps satisfying certain relations. Like in the non-equivariant case, taking
homotopy groups yields a rational equivalence

SH(G)Q
≃
−→ grMF(G)Q

between the genuine equivariant stable homotopy category and graded Mackey
functors [GM95, Appendix A], but lifting this to a symmetric monoidal chain func-
tor is a more subtle task. Luckily, rational Mackey functors can be replaced up to
equivalence by a much simpler abelian category. The category splits as a product

MF(G)Q ≃
∏

(H≤G)

Q[WGH ] - mod
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of module categories over the Weyl groupsWGH , indexed by the conjugacy classes
of subgroups H (in fact, this is already true after inverting the group order). It is
a folklore result that this splitting admits a spectral lift

G - Sp
Φ
−→

∏

(H≤G)

S[WGH ] -mod

given by geometric fixed points, a nicely behaved version of taking fixed points in
equivariant stable homotopy theory. The G-geometric fixed points ΦG : G - Sp →
Sp are characterised up to equivalence by the following properties: They are lax
symmetric monoidal, commute with homotopy colimits and have the ’correct’ value
ΦG(Σ∞A) ≃ Σ∞AG on the suspension spectra of G-spaces. As the subgroup H
varies, the collection ofH-geometric fixed points can be assembled into a symmetric
monoidal functor as above. However, as we explain below this does not yield a
description of genuine-commutative ring spectra by simply passing to commutative
algebra objects.

Summary of results. Let G be a compact Lie group, F a family of finite subgroups
of G, and R ⊆ Q a ring such that the groups orders in F are invertible. Let OrbF
be the full (topological) subcategory of the orbit category spanned by the transitive
G-sets G/H for H ∈ F and Orb×F the subcategory with only isomorphisms. We

note that there is an equivalence Orb×F ≃
∐

(H∈F ) B(WGH), so that the product

of module categories above can be rewritten as a diagram category

Orb×F - Sp ≃
∏

(H∈F)

S[WGH ] -mod

indexed by the invertible orbit category. We prefer the ’coordinate-free’ description
because it allows for a more conceptual way to express the additional data needed
to encode commutative ring spectra. The first step in obtaining a more concrete
R-local model for these is the following additive result. Although not surprising
to the experts, it does not seem to have been recorded in the literature before in
this level of generality (working relative to an ambient compact Lie group and only
inverting the groups orders in the family) and making specific use of geometric fixed
points.

Theorem 1.1. Geometric fixed points induce a symmetric monoidal equivalence

(G - Sp)F ,R ≃ Orb×F - SpR

between the R-local homotopy theories of genuine equivariant F-spectra and OrbF -
diagrams in spectra.

As a corollary, by passing to commutative algebra objects on the level of ∞-
categories we obtain an equivalence

E∞(G - Sp)F ,R ≃ Orb×F -E∞(SpR)

between naive-commutative equivariant ring spectra (modelled by algebras over an
E∞-operad equipped with trivial G-action) and Orb×G-diagrams in non-equivariant
E∞-rings (modelled by commutative ring spectra on the pointset level), see [BGK19]
for a zig-zag of Quillen equivalences in the case where G is finite.

However, the functor Φ : (G - Sp)F ,R → Orb×F - SpR has no chance of ’restrict-
ing’ to an identification of genuine commutative ring spectra without equipping it
with additional structure. It might seem counterintuitive at first sight, but only
when viewed purely on the point-set level. Equivariantly, the symmetric monoidal
structure on the model for genuine G-spectra (i.e. equivariant orthogonal spectra)
encodes more homotopical information than the underlying ∞-categorical sym-
metric monoidal structure, namely the Hill-Hopkins-Ravenel norms. In terms of
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geometric fixed points of commutative ring spectra, this can be expressed in the
form of additional norm maps

NK
H : ΦHR→ ΦKR

for inclusions H ≤ K of finite subgroups of G. Working with a suitable point-set
level model for geometric fixed point spectra, we produce a functor

Φ : Com(G - Sp)F ,R → OrbF - Com(Sp)R

with values in diagrams indexed by the full orbit category, where the additional
projections G/H → G/K encode the norm maps.

Theorem 1.2. Geometric fixed points induce an equivalence

Com(G - Sp)F ,R ≃ OrbF - Com(Sp)R

between the R-local homotopy theories of genuine equivariant F-complete commu-
tative ring spectra and OrbF -diagrams in commutative ring spectra.

Remark 1.3. The algebraic precursor to this result is due to Strickland, who shows
that there is an equivalence between the categories of rational Tambara functors
and OrbG-diagrams in commutative Q-algebras ([Str12, 17.2]). This can now be
viewed as the π0-shadow of the topological statement.

In particular, for a finite group G we obtain an algebraic rational model:

Corollary 1.4. Geometric fixed points induce a rational equivalence

Com(G - Sp)Q ≃ OrbG - CDGAQ

with OrbG-diagrams in commutative differential graded algebras.

We briefly sketch the strategy employed to demonstrate Theorem 1.2. Once the
geometric fixed point functors are constructed, the relevant data can be displayed
in the following diagram

(G - Sp)F ,R Orb×F - SpR

Com(G - Sp)F ,R OrbF - Com(Sp)R,

Φ

P P◦ι!

Φ

U U

where the vertical pairs are free-forgetful adjunctions. These are monadic (in the
higher categorical sense), which is somewhat tedious to show from a technical point
of view. The square with the forgetful functors commutes (up to equivalence) essen-
tially by construction and the upper horizontal functor is an equivalence (Theorem
1.1). We wish to conclude that the lower horizontal arrow is also an equivalence.
While all categories and functors are already defined at the pointset level (i.e. the
∞-categories are presented by model categories and the functors are induced by
homotopical functors or Quillen functors), it is at this point that things work out
much cleaner in the higher categorical setting, because we can apply the ’monadic
comparison theorem’. This says that in this situation it will suffice to show that
geometric fixed points preserve free commutative ring spectra, i.e. the square with
the free functors commutes. This is the most non-formal input and amounts to a
computation of geometric fixed point of free ring ring spectra.
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Generalizations. Naive-commutative and genuine-commutative G-ring spectra lie
at opposite ends of a whole family of highly structured equivariant ring spectra.
The latter can also be described as algebras over G -E∞-operads, i.e. G-operads O
such that the n-ary operations O(n) ≃ EGΣn form a universal space for the family
of graph subgroups Γ ≤ G×Σn (the subgroups arising as the graph of a morphism

G ≥ H
α
→ Σn). Let G be a finite group. In [BH15] Blumberg and Hill introduce

a more general class of N∞-operads, which interpolate between E∞- and G -E∞-
operads. Algebras over an N∞-operad admit norm maps along certain subgroup
inclusions, which are called admissible. In the above extreme cases there are no
norm maps respectively norms along all subgroup inclusions. In light of Theorem
1.2 it is natural to expect an equivalence

AlgO(G - SpR) ≃ OrbG,O - Com(Sp)

with diagrams indexed by the subcategory of the orbit category with morphisms
corresponding to admissible subgroup inclusions (or rather subconjugacy classes).
However, it is more subtle to construct a comparison functor, which is being carried
out in ongoing work.

Acknowledgements. This article is a natural outgrowth and continuation of the work
in my dotoral thesis written under the supervison of Stefan Schwede. I would like
to thank him as well as Markus Hausmann, Thomas Nikolaus, Irakli Patchkoria,
and Emanuelle Dotto for helpful discussions.

2. Preliminaries

Let G be a compact Lie group. At the point-set level we will work in the category
G - Top (resp. the based version G - Top∗) of compactly generated, weak Hausdorff
spaces with continuous (based) G-action. The set of based G-equivariant homotopy
classes of maps between based G-spaces X , Y will be denoted by [X,Y ]G. We will
often encounter categorical constructions (e.g. coproducts) indexed by conjugacy
classes of subgroups (or morphisms), where the individual terms make explicit ref-
erence to representatives. In that case we will simply write

∐
(H≤G)X(H), meaning

that H runs over a complete set of representatives that has been implicitly chosen.
We recall that the Weyl group of a subgroup H ≤ G is the topological group

WGH = NGH/H , where NGH = {g ∈ G | Hg = H} is the normalizer of H in G.
There is a canonical isomorphism

WGH ∼= AutG(G/H), [g] 7→ (G/H
(−)·g−1

−−−−−→ G/H) (2.1)

to the automorphism group of the G-space G/H . In particular, WGH acts on
the H-fixed points of any G-space and for the homogenous space G/K there is a
decomposition of WGH-spaces

(G/K)H ≃
∐

(H′≤G),
H′∼GH

WGH/WKH (2.2)

where the right-hand side is indexed by the K-conjugacy classes of subgroups that
are G-conjugate to H . This is a slight abuse of notation, since the WKH are not
canonically embedded as subgroups of WGH . The map is classified by a choice
of elements g(H ′) ∈ G such that H ′ = Hg(H′), which also yields identifications
WKH

′ ∼=WgKH ≤WGH .
Let C be a category and I an (essentially small) indexing category. The functor

category Fun(I, C) of I-diagrams in C will also be denoted by CI or I - C (similarly in
the topologically enriched and higher categorical settings). In particular, we write
CBG for the category of G-objects in C, where G is a (topological) group. In the
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topologically enriched or higher categorical setting BG means the full classifying
space.

We will later work in the underlying∞-categories of model categories (e.g. equi-
variant orthogonal spectra), where the objects are essentially given by the objects of
the 1-category. To avoid confusion we will indicate in the notation that a categorical
construction is homotopy invariant. For example we write XhG for the homotopy
orbits, which is the∞-categorical quotient and would in general be denoted by X/G
for X a G-object in some ∞-category. Instead, we reserve this notation to refer to
the 1-categorical quotient (which of course might represent the correct homotopy
type).

2.1. Equivariant orthogonal spectra. We briefly review equivariant orthogonal
spectra [MM02], referring to [Sch18, Ch. 3] for a detailed textbook exposition. Let
O be the orthogonal indexing category, i.e. the topological category with objects the
finite dimensional inner product spaces and morphism spaces given by the Thom
spaces O(V,W ) of the orthogonal complement bundle

E(V,W ) = {(φ,w) ∈ L(V,W )×W | w ∈ φ(V )⊥}

over the space of linear isometric embeddings L(V,W ). The composition is induced
by the pairing

E(W,U)× E(V,W )→ E(V, U), ((ψ, u), (φ,w)) 7→ (ψ ◦ φ, ψ(w) + u).

Definition 2.3. Let G be a compact Lie group. The category of orthogonal G-
spectra G - SpO is the category of based continuous functors from O to based G-
spaces. As a diagram category, it is canonically tensored, cotensored, and enriched
over based G-spaces.

In particular, an orthogonal G-spectrum X comes with structure maps and ac-
tion maps

σX
V,W : X(V )∧SW → X(V ⊕W ), αX

V,W : L(V,W )+ ∧X(V )→ X(W )

induced by the inclusion SW ⊂ O(V, V ⊕ W ) respectively by the zero section
L(V,W )→ O(V,W ).

Remark 2.4. It also turns out that this data is actually sufficient to uniquely de-
scribe X , cf. [Sch18, 3.1.6].

In particular, the action maps restrict to an action of the orthogonal group
O(V ) on the value X(V ) that commutes with the G-action. If V is an orthognal
G-representation, we will always equip X(V ) with the resulting diagonal G-action.

2.1.1. Equivariant homotopy groups. The 0-th equivariant homotopy group of an
orthogonal G-spectrum is defined as the directed colimit

πG
0 (X) = colimV ⊂UG [S

V , X(V )]G

over the subrepresentations of a complete G-universe UG (i.e. the countable direct
sum of every G-representation embeds into UG), where the structure maps send a
representative f : SV → X(V ) for V ⊆W to the composite ([Sch18, 3.1.9])

SW ∼= SV ∧SV ⊥ f ∧ Id
−−−→ X(V )∧SV ⊥ σ

−→ X(V ⊕ V ⊥) ∼= X(W ).

We will mostly be interested in the homotopy groups at finite subgroups H ≤ G
where a countable sum UH = ⊕ρH of regular representations may be used. The
integer graded homotopy groups are obtained by looping or shifting the spectrum,
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where for an orthogonal G-spectrum X loops are applied levelwise to yield ΩX =
ΩX(−) and the shift is given by shX = X(R⊕−). For k ∈ Z we then set

πG
k (X) =

{
πG
0 Ω

kX, if k ≥ 0

πG
0 sh−kX, if k < 0

and call a map f : X → Y a π∗-isomorphism or stable equivalence if it induces
isomorphisms on πH

k (−) for all closed subgroups H ≤ G and k ∈ Z.

2.1.2. Products. The category of orthogonalG-spectra carries a symmetric monoidal
structure

−∧− : G - SpO ×G - SpO → G - SpO

with unit the sphere spectrum S. The smash product X ∧Y is determined up to
preferred isomorphism as the initial example of a bimorphism b : (X,Y ) → Z,
i.e. a collection of maps bV,W : X(V )∧ Y (Y ) → Z(V ⊕ W ) forming a natural
transformation of functors O×O→ O. See [Sch18, 3.5] for details.

Definition 2.5. We denote by Com(G - SpO) the category of commutative orthogo-
nal G-ring spectra, that is, the commutative monoid objects in orthogonalG-spectra
with respect to the smash product.

2.1.3. Model structures. The π∗-isomorphisms are part of a cofibrantly generated,

topological, stable, and monoidal model structure on G - SpO, the (positive) flat
model structure of [Sto11], where it is called the S-model structure. We will also
use the complete model structure of [HHR16], which is defined for finite groups and
has the same weak equivalences. Let

SymX =
∨

n≥0

SymnX =
∨

n≥0

X∧n/Σn

denote the symmetric algebra with respect to the smash product on orthogonal
spectra, so that Sym : SpO → G - Com(G - SpO) is the left adjoint of the forgeful
functor U . The model structures lift to commutative ring spectra such that weak
equivalences and fibrations are detected on underlying spectra [Sto11, Thm. 2.3.37],
[HHR16, B.130]. In other words, the above forms a Quillen adjunction.

Remark 2.6. In order to show this, one needs to know that the symmetric powers
Symn are homotopical on positively flat spectra. However, in the case of the flat
model structure there is a mistake going back to Mandell-May ([MM02, Lemma
III.8.4], also see the discussion in [HHR16, B.120]). It can be traced to [Sto11,
Lemma 2.3.34] and its proof where PnX is incorrectly identified with the ’naive’
homotopy orbits EΣm+ ∧Σm X∧m. Instead one has to use the ’genuine’ version,
whereEΣm is replaced by EGΣm, a universal space for the family of graph subgroups
of G × Σm (i.e. the graphs Γ(α) of homomorphisms α : H → Σm from a closed
subgroup of H ≤ G). The arguments of [Sto11] then go through to show that the
projection to the point induces an equivalence

EGΣn+ ∧Σn X
∧n ≃
−→ X∧n/Σn (2.7)

for positively flat X . The functor

EGΣn+ ∧Σn(−) : (G× Σm) - SpO → G - SpO

is homotopical with respect to the graph equivalences (πΓ
∗ -isomorphism for all graph

subgroups Γ) on (G × Σm)-spectra, in contrast to EΣn+ ∧Σn(−), which preserves
G-equivalences. So further homotopical analysis is required and one shows that
X∧m is homotopical on positively flat spectra X .

Alternatively, one can also set up the model structure by following the strategy
employed in [Sch18], where a global model structure on commutative ring spectra
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is established by verifying a symmetrizability condition on generating (acyclic) cofi-
brations. Another possibility is to extend the complete model structure to compact
Lie groups with equivalences the F -equivalences for a family F of finite subgroups,
which is all we will later need.

For finite groups G all of this can be safely ignored and we just use the complete
model structure in that case.

Since symmetric powers are left derivable in both model structures, an HHR-
cofibrant replacementXc → X of a pos. flat spectrumX induces a weak equivalence

(Xc)
∧n/Σn

≃
−→ X∧n/Σn.

2.1.4. Geometric fixed point spectra. We write ρG = R[G] for the regular repre-
sentation of a finite group G and equip it with the inner product such that the
elements of G form an orthonormal basis. The norm element NG =

∑
g∈G g spans

the canonical R-summand of G-fixed points (ρG)
G = R{NG}.

Definition 2.8. Let G be a finite group and X ∈ G - SpO an orthogonal G-
spectrum. The geometric fixed point spectrum ΦGX ∈ SpO is defined at an inner
product space V as

(ΦGX)(V ) = X(ρG ⊗ V )G,

where G acts diagonally with respect to the action on X and ρG. The action maps
are induced from those of X and the structure maps for inner product spaces V
and W are given by the composite

X(ρG ⊗ V )G ∧SW ∼= (X(ρG ⊗ V )∧SρG⊗W )G
σG

−→ X((ρG ⊗ V )⊕ (ρG ⊗W ))G

∼= X(ρG ⊗ (V ⊕W ))G,

where the first isomorphism uses the preferred identification (ρG)
G = R{NG} ∼= R.

If G is a compact Lie group and H ≤ G a finite subgroup, we will write ΦHX =
ΦH(resGH X) for the H-geometric fixed points of the restriction of the restriction to
the subgroup H . From the above definition we see that for based G-spaces A and
orthogonal G-spectra X there is a natural isomorphism

ΦG(A∧X) ∼= AG ∧ΦGX

and additionally for trivial G-spaces

ΦG(map(A,X)) ∼= map(A,ΦGX).

Moreover, cone sequence are preserved on the point-set level: If f : X → Y is a
map of orthogonal G-spectra, the canonical map C(ΦG(f)) ∼= ΦG(C(f)) from the
mapping cone of ΦG(f) : ΦG(x)→ ΦG(Y ) is an isomorphism.

Remark 2.9. We can also express the above definition in a more diagrammatic
fashion. Tensoring with the regular representation defines a topological functor

ρG ⊗− : O → OG

from the orthogonal indexing category to the subcategory of G-representations and
G-fixed morphism spaces (i.e. pairs of equivariant isometries and points lying in the
fixed points of the orthogonal complement). On morphisms the functor ρG ⊗ (−)
induces the map

O(V,W )→ OG(ρG ⊗ V, ρG ⊗W ) = (O(ρG ⊗ V, ρG ⊗W ))
G

sending [φ,w] to [ρG ⊗ φ,NG ⊗ w]. The geometric fixed points of an orthogonal
G-spectrum X : O→ G - Top∗ are then given by the composite in the upper row of
the diagram
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O OG Top∗,

O

ρG⊗−

∼=Id

XG

(−)G
ΦG

M

whereXG is the functor obtained by restricing to OG and taking fixed points at each
value. This also shows the relation to the construction discussed by Mandell-May
in [MM02, V.4], which is referred to as the monoidal geometric fixed point functor
and denoted ΦG

M in [HHR16, B.10]. It is defined as the (topological) left Kan
extension of XG along the functor (−)G : OG → O, V 7→ V G and the composition
with ρG ⊗ − is canonically isomorphic to the identity. The left Kan extension
comes with a natural transformation XG ⇒ ΦG

M ◦ (−)
G and so we obtain a natural

transformation (now with respect to the spectrum X)

ΦGX → ΦG
MX.

As explained in [HHR16, B.10.5], ΦG
MX has the correct homotopy type if X is

cofibrant in the complete model structure. In that case a comparison of homotopy
groups shows that the above map is a π∗-isomorphism. More precisely, one checks
that the zig-zag of equivalences in [HHR16, B.201] identifies the induced map with
the isomorphism of [Sch18, 3.3.8].

We now discuss the functoriality of the geometric fixed points as the group G
varies. Given a surjective homomorphism α : K ։ G, we define a K-equivariant
linear isometric embedding of regular representations in the other direction as

α! : α
∗ρG →֒ ρK , g 7→

1√
| kerα|

∑

k∈α−1(g)

k.

This allows us to construct a natural inflation map

α∗ : ΦGX −→ ΦK(α∗X) (2.10)

between geometric fixed points of a G-orthogonal spectrum X . At an inner product
space V the restriction along α is the composite

X(ρG ⊗ V )G = (α∗X)((α∗ρG)⊗ V )K
(α!⊗V )∗
−−−−−→ (α∗X)(ρK ⊗ V )K .

Now let β : L ։ K be another surjective group homomorphism. By inspection of
the formulas defining the embeddings of regular representations one sees that the
diagram

(αβ)∗ρG = β∗(α∗ρG) ρL

β∗ρK

(αβ)!

β∗α!
β!

commutes and it follows that the restriction maps are compatible with composition:

(α ◦ β)∗ = β∗ ◦ α∗ : ΦGX −→ ΦL((α ◦ β)∗X).

Let G be a compact Lie group and H ≤ G a finite subgroup. The conjugation
map associated with an element g ∈ G is the composition

g∗ : ΦHX
(cg)

∗

−−−→ ΦHg

((cg)
∗X)

(lX
g−1 )∗
−−−−−→ ΦHg

X, (2.11)

where we write Hg = g−1Hg for the conjugated subgroup and lXg−1 : (cg)
∗X → X

is the morphism given by left translation.
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Definition 2.12. Let Õrb
×

G,fin denote the topological category of finite subgroups
of G with exactly one morphism g : H → Hg for every element g ∈ G. It comes
with a functor

π : Õrb
×

G,fin → Orb×G,fin, H 7→ G/H

to the subcategory of the orbit category of G consisting of all isomorphisms.

Remark 2.13. A choice of representatives for the conjugacy classes of finite sub-
groups of G amounts to choosing a skeleton for Orb×G,fin and gives an equivalence

Orb×G,fin ≃
∐

(H≤G)

B(WGH)

of topological categories with a disjoint union of Weyl groups, using their identifi-
cation as automorphism groups (2.1).

The preceeding discussion can be summarized as follows:

Proposition 2.14. The conjugation maps endow the geometric fixed point con-
struction with the structure of a continuous functor

Φ : Õrb
×

G,fin ×G - SpO → SpO .

We now consider the homotopy groups of geometric fixed point spectra. Writing
out the colimit defining them gives an identification

π0Φ
GX = colimn≥0 πnX(ρG ⊗ Rn)G ∼= colimn≥0[S

(ρG⊗Rn)G , X(ρG ⊗ Rn)G]

∼= colimV⊂UG [S
V G

, X(V )G] = ΦG
0 X,

where the last isomorphism follows from the cofinality of the ρG ⊗ Rn among or-
thogonal G-representations and the equality on the right is the definition of the
geometric fixed point homotopy groups studied in [Sch18, 3.3]. These also admit
intrinsically defined inflation maps and by inspection the above isomorphism com-
mutes with them. Furthermore, there is a natural comparison map, the geometric
fixed point map

πG
0 X −→ ΦG

0 X (2.15)

that sends a representative f : SV → X(V ) to fG : SV G

→ X(V )G. As with
the equivariant homotopy groups, the definition of Φ0 is extended to all degrees by
looping or shifting.

Proposition 2.16. There is a natural isomorphism π∗(ΦX) ∼= Φ∗(X) of graded

Ho(Õrb
×

G,fin)-modules.

Proof. The above identification in degree 0 prolongs to positive degrees, since geo-
metric fixed point commute with looping. There is a natural comparison map

ΦG(shX)→ sh(ΦGX)

induced by the linear isometry (ρG ⊗ V ) ⊕ R →֒ ρG ⊗ (V ⊕ R) including R as
the G-fixed points. We need to show that it is a stable equivalence. There is a
commutative square

sh(ΦGX) ΦG(shX)

Σ(ΦGX) ΦG(ΣX)

λ
(ΦGX)

∼=

ΦG(λX )
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where for an orthogonalG-spectrum Y the map λY : ΣY → shY is defined levelwise
as the composite

S1 ∧ Y (V ) ∼= Y (V )∧S1 σ
−→ Y (V ⊕ R) ∼= Y (R⊕ V ).

The left vertical map is a stable equivalence ([Sch18, III.1.25]) and it follows that the
comparison map between shifted spectra is surjective on homotopy. In the following
we abbreviate notation and write k+ lρG for the representation Rk⊕ (Rl⊗ρG). To
see injectivity we start with an element [f : Sl+n → X(1 + nρG)

G] ∈ πlΦG(shX)
in the kernel and consider the diagram

Sl+n+1 X(1 + nρG)
G ∧S1 X(1 + nρG + 1)G X(1 + (n+ 1)ρG)

G

Sl+n+1 X(1 + nρG)
G ∧S1 X(1 + nρG + 1)G X((1 + n)ρG + 1)G

X((1 + n)ρG)
G ∧S1

f ∧S1

∼=

σ

∼= ∼= ∼=

f ∧S1
σ

The two vertical isomorphisms on the right side are induced by the isometry that
interchanges the outer R summands, the other two are given by a degree −1 map
in the right R coordinate. This makes the outer squares commute and the middle
square commute up to homotopy. The upper row is the stabilization of f and thus
represents the same class in the stable homotopy group. By further stabilizing if
necessary, we may assume that the composite

Sl+n → X(1 + nρG)
G → X((1 + n)ρG)

G

and hence the lower row in the diagram is null-homotopic, showing that [f ] vanishes.
�

Corollary 2.17 ([Sch18, 3.3.10, 3.3.5]). Let F be a family of finite subgroups of a
compact Lie group G. Geometric fixed points satisfy the following properties:

(i) A morphism f : X → Y of orthogonal G-spectra induces isomorphisms
πH
∗ (X)→ πH

∗ (X) for all H ∈ F if and only if it induces stable equivalences
ΦHX → ΦHY for all H ∈ F .

(ii) The homotopy groups π∗(ΦX) are Ho(Orb×G,fin)-modules, that is inner con-
jugations act trivially.

2.2. Monoidal structure and norm maps.

2.2.1. Lax monoidal structure. We now equip the geometric fixed points construc-
tion with the structure of a lax symmetric monoidal functor. We recall that the
smash product X ∧ Y of two orthogonal G-spectra X and Y comes with a universal
bimorphism ι : (X,Y ) → X ∧Y . Applying G-fixed points yields a new natural
bimorphism (ΦGX,ΦGX) −→ ΦG(X ∧Y ) defined at the inner product spaces V
and W by

X(ρG ⊗ V )G ∧Y (ρG ⊗W )G
ιG
−→ (X ∧Y )((ρG ⊗ V )⊕ (ρG ⊗W ))G

∼= (X ∧Y )(ρG ⊗ (V ⊕W ))G.

The lax monoidal structure map is the associated natural transformation

µφG
X,Y : (ΦGX)∧(ΦGX) −→ ΦG(X ∧ Y ). (2.18)

and the inclusion of fixed points SV ∼= S(ρG⊗V )G defines the unit map

ηφG : S→ ΦGS

in each level V .
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Proposition 2.19. The maps ηφ, µφ constructed above define a lax symmetric
monoidal structure on the geometric fixed point functor

Φ : G - SpO −→ Õrb
×

G,fin - Sp
O ,

where the diagram category Õrb
×

G,fin - Sp
O is equipped with the object-wise symmetric

monoidal structure.

In fact, geometric fixed points are monoidal up to homotopy.

Proposition 2.20. Let X and Y be cofibrant G-spectra in the complete model
structure. Then the composition

ΦG(X)c ∧Φ
G(Y )c → ΦG(X)∧ΦG(Y )

µ
−→ ΦG(X ∧Y )

is a π∗-isomorphism.

Proof. This follows from the corresponding statement for the monoidal geometric
fixed point functor [HHR16, B.199] and the observation that the comparison map
of Remark 2.9 is a lax monoidal transformation. �

2.2.2. Norm maps. We have seen that geometric fixed points are lax symmetric
monoidal and hence send commutative ring spectra to to commutative ring spectra.
But there is more structure available in the form of norm maps, which we will
construct in this section.

We begin by recalling the n-fold wreath product Σn ≀ G of a finite group G for
n ∈ N. This is the semi-direct product of the n-fold product G×n and the sym-
metric group Σn with respect to the right action of Σn by permuting the factors.
Concretely, elements are given by tuples (σ; g1, . . . , gn) ∈ Σn ×G

×n with multipli-
cation

(σ; g1, . . . , gn) · (τ ; k1, . . . , kn) = (σ ◦ τ ; gτ(1) · k1, . . . , gτ(n) · kn).

Wreath products naturally act from the left on coproducts of G-objects in any
category and in the case of G-sets this gives an identification

Σn ≀G
∼=
−→ AutG(G ⊔ . . . ⊔G)

as the group of right G-equivariant automorphisms.
Next we recall that the norm NG

HX of an H-spectrum X is the ’indexed smash
product’

∧
G/H X with induced G-action [HHR16, 2.2.3]. To be more precise, we

choose an (ordered) H-basis b = (g1, . . . , gm) of G, that is, a complete set of rep-
resentatives for the right H-cosets in G. This is the same as the choice of a right

H-equivariant isomorphism
∐m

i=1H
∼=
−→ G. As the H-automorphism group of ⊔H ,

the wreath product Σm ≀ H acts freely and transitively from the right on the set
of H-bases and this commutes with the G-action by left translation. So the above
choice of an H-basis determines a group homomorphism Ψb : G → Σm ≀ H such
that the square

∐m
i=1H G

∐m
i=1H G

(g1,...,gn)

Ψb(g) g·

(g1,...,gn)

commutes. In particular, Ψb only depends up to congjugacy on b. The norm is now
defined as the m-fold smash power

NG
HX = Ψ∗

b(X
∧m) (2.21)
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with G-action obtained by restriction along the homomorphism Ψb : G→ Σm ≀H .
The choice of coset representatives will usually be kept implicit in the notation.

We also recall that on commutative ring spectra, the norm functor

NG
H : Com(H - SpO) ⇄ Com(G - SpO) : resGH

is left adjoint to restriction with counit defined by multiplying together the smash-
factors.

Definition 2.22. Let H ≤ G be a subgroup inclusion of index m = (G : H). The
norm map is the natural transformation

NG
H : ΦHX −→ ΦG(NG

HX)

defined for an H-orthogonal spectrum X in level V as the composition

X(ρH ⊗ V )H −→ (X(ρH ⊗ V )∧m)Σm≀H −→ ((X∧m)((m · ρH)⊗ V ))Σm≀H

−→ ((Ψ∗
bX

∧m)(ρG ⊗ V ))G.

The first map is the diagonal inclusion into the m-fold smash product, the second
map is the iterated universal bimorphism

ιW,...,W : X(W )∧ · · · ∧X(W )→ (X∧m)(W ⊕ · · · ⊕W ),

and the last map is induced by the linear isometry m · ρH ∼= ρG obtained by
linearizing the choice of coset representative

∐m
i=1H

∼= G implicit in the definition
of the norm.

For a commutative G-orthogonal ring spectrum R, we define a norm map

NG
H : ΦHR→ ΦG(NG

H (resGH R))→ ΦGR.

as the composition with the counit of the the norm-restriction adjunction, which
does not depends of the choice of cosets.

Proposition 2.23. The norm maps satisfy the following relations, where the choice
of coset representatives on the left hand side determines the one on the right hand
side:

(1) They are transitive in subgroup inclusions. The equality

NG
K ◦N

K
H = NG

H

holds for all nested subgroup inclusions H ≤ K ≤ G.
(2) They commute with inflations. Let α : G։ K be a surjective group homo-

morphism and H ≤ K a subgroup. We set L = α−1(H), so that there is
the commutative square

G K

L H

α

α|L

≤ ≤

Then the equality

NG
L ◦ (α|L)

∗ = α∗ ◦NK
H

holds.

Proof. Although it is lengthy and involves many commutative diagrams, the proof
amounts to spelling out the definitions. We omit the details. �

Definition 2.24. Let G be a compact Lie group. We denote by ÕrbG,fin the
topological category with objects the finite subgroups of G and morphisms g :
H → K those elements of G such that Hg ≤ K. It comes with a functor

π : ÕrbG,fin → OrbG,fin, H 7→ G/H
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to the orbit category that sends a morphism g : H → K to

G/H
·g−1

−→ G/Hg → G/K.

Corollary 2.25. The geometric fixed points construction defines a functor

Φ : Com(G - SpO)→ ÕrbG,fin - Com(SpO),

where the subgroup inclusion H ≤ G encodes the associated norm map.

Proposition 2.26. Let G be a finite group. For a cofibrant orthogonal H-spectrum
X in the HHR-model structure, the norm map

NG
H : ΦHX

≃
−→ ΦG(NG

HX)

is a π∗-isomorphism.

Proof. This is [HHR16, B.209] combined with the identification at the end of Re-
mark 2.9. �

2.3. Review of ∞-categories. We will freely use the language of homotopical
algebra and of ∞-categories as developed in terms of quasicategories in [Lur09].
Here we just review a few notions and fix notation. The set of morphisms between
two objects x and y in the homotopy category Ho(C) of a quasicategory C will be
denoted by [x, y]C and we write MapC(x, y) for the corresponding mapping space.
Since we do not need the details of a specific model it will suffice to think about
this invariantly as a functor MapC(−,−) : Cop × C → S into the ∞-category of
spaces together with a natural identification π0 MapC(x, y)

∼= [x, y]C . Additionally,
for topological categories C there is a functorial identification

MapN∆C(x, y) ≃ MapC(x, y) (2.27)

of the mapping space of the homotopy coherent nerve N∆C (or topological nerve,
see [Lur09, 1.1.5]) with the strict mapping space in C. For two quasicategories C
and D, the functor ∞-category Fun(C,D) = HomsSet(C,D) is simply the internal
hom in simplicial sets. We recall that a colimit of a functor F : I → C is a universal
cocone on F , i.e. a functor F̄ : I⊲ → C extending F , where I⊲ = I ∗∆0 is the join
with ∆0. Following the usual abuse of notation we will simply write colimI F for
the value at the cone point and suppress the additional data from the notation. An
adjunction F : C ⇄ D : G will just consist of a pair of functors together with unit
and counit transformations satisfying the triangle equalities up to equivalence, c.f.
[Lur09, 5.2.2.8].

2.3.1. Kan extensions. Let f : C → D be a functor and M an ∞-category with
sufficiently many colimits, i.e. those appearing in the formulas below. Then the
restriction functor

f∗ : Fun(D,M)→ Fun(C,M)

admits a left adjoint f! given by left Kan extension [Lur09, 4.3.3.7]. It will later be
important that the pointwise formula also holds in the∞-categorical setting. More
precisely, the unit transformation η : Id→ f∗f! exhibits the value

(f!X)(d) ≃ colimC/d
X (2.28)

at an object d ∈ D as a colimit over the slice category C/d = C ×D D/d [Lur09,
4.3.2.2, 4.3.3.2]. We will also need the following technical fact:

Lemma 2.29. Let p : C → D be a cocartesian fibration of quasicategories. Then
the left Kan extension can be computed at an object d ∈ D as the colimit

(p!X)(d) ≃ colimp−1(d)X

over the fiber category p−1(d).
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Proof. Cocartesian fibrations are smooth [Lur09, 4.1.2.15] and hence pullback (in
simplicial sets) along them preserves cofinal functors [Lur09, 4.1.2.10]. This shows
that for every object d ∈ D the functor p−1(d) = C×D{d} → C×DD/d is cofinal. �

2.3.2. Stability. We recall that an ∞-category C is pointed if it has a zero object,
i.e. an object that is both initial and terminal. If morphisms in C admit cofibers,
the suspension functor Σ : C → C exists together with a natural equivalence

MapC(ΣX,Y ) ≃ ΩMapC(X,Y ),

which also uniquely determines it. Then C is called stable if it is pointed, admits
finite colimits, and the suspension functor is an equivalence [Lur18, 1.4.2.27]. A
functor between stable ∞-categories is exact if it preserves zero objects and com-
mutes with suspensions.

Lemma 2.30. Let F : C → D be an exact functor between stable ∞-categories.
Then F is an equivalence if and only if the induced functor Ho(F ) on homotopy
categories is an equivalence.

Proof. Let Ho(F ) be an equivalence. Then F is also essentially surjective (by
definition) and it remains to shows that it is fully faithful. For every functor F of
pointed ∞-categories we have a commutative diagram

πk MapC(x, y) πk MapD(Fx, Fy)

[
Σkx, y

] [
F (Σkx), Fy

] [
ΣkFx, Fy

]
∼= ∼=

in which the lower right map is induced by precomposition with Σk(Fx)→ F (Σkx).
It follows that the upper map is an isomorphism if F commutes with suspensions
and the induced functor Ho(F ) is fully faithful. If, in addition C and D are stable,
then the mapping spaces are H-spaces and MapC(x, y) → MapD(Fx, Fy) induces
isomorphisms on homotopy groups for all basepoints. �

The homotopy category Ho(C) of a stable∞-category is canonically triangulated
[Lur18, 1.1.2.14], with triangles represented by cofiber sequencs. An object C in
a triangulated category with arbitrary sums is called compact if it corepresents a
sum preserving functor [C,−]T : T → Ab and a set C of compact objects is a set of
compact generators if mapping out of C detects zero objects. We will make use of
the following well-known fact from stable morita theory, whose proof is a standard
localizing subcategory argument.

Proposition 2.31. Let F : C → D be an exact functor between stable ∞-categories
that admit all sums. Suppose that F takes a set of compact generators M to a set of
compact generators and that it is fully faithful when restricted to the full subcategory
spanned by all suspensions of objects in M . Then F is an equivalence.

2.3.3. Localization. Let C be a quasicategory and W a collection of morphisms
in C. The universal example of a functor C → D inverting W will be denoted
C → C[W−1]. It is uniquely determined up to equivalence by the condition that for
every ∞-category D the precomposition

Fun(C[W−1],D)→ Fun(C,D)

is fully faithful with essential image consisting of those functors that send the maps
in W to equivalences [Lur18, 1.3.4.1]. It follows from the universal property that,
given the top arrow F in the diagram
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C D

C[W−1] D[W ′−1]

F

F̃

such that F sends W to a distinguished class of morphisms W ′ in D, there exists
a unique functor on localizations together with a natural identification making the
square commute.

Lemma 2.32. Let F : C ⇄ D : G be an adjunction such that F and G preserve the
classes of morphisms W and W ′. Then the induced functors on localizations also
form an adjunction.

Proof. Precomposition with the localization functor γC induces and equivalence

Nat(Id, G̃F̃ )
≃
−→ Nat(γ, G̃F̃ γ) ≃ Nat(γ, γGF )

between the spaces of natural transformations and so there is a unique arrow η̃ :
Id → G̃F̃ corresponding to the composition γη with the unit of the adjunction on
the right hand side. Analogously one defines a natural transformation ξ̃ : F̃ G̃→ Id
and checks that the triangle equalities are satisfied up to equivalence. �

An important special case is given by Bousfield localizations, i.e. left adjoints L to
the inclusions of full subcategories C0 ⊆ C. Equivalently, an endofunctor L : C → C
together with a natural transformation η : Id → L yields a Bousfield localization
C → LC if and only if the two maps Lη, ηL : L → LL are equivalences [Lur09,
5.2.7.4]. We record some standard facts:

Proposition 2.33. Let L : C → C0 ⊆ C be a Bousfield localization.

(a) The localization functor L : C → C0 exhibits C0 as the ∞-category obtained
from C by inverting the L-equivalences.

(b) The∞-category C0 admits all colimits that exist in C and they are computed
by applying L to the colimit formed in C. It also admits all limits that exist
in C and they are created in C.

(c) Let C be stable and L : C → C an exact endofunctor. Then C0 is a stable
subcategory of C.

Proof. Part (a) is [Lur09, 5.2.7.12] and (b) follows formally as in the 1-categorical
setting from adjointness and the fact that the restriction of L to C0 is naturally
equivalent to the identity via the unit η : Id→ L.

If L is exact, then it follows that the suspension functor of C restricts to that of
C0, which is thus also an equivalence. This shows (c). �

Remark 2.34. There is also the dual notion of Bousfield colocalization where the
inclusion admits a right adjoint and the corresponding statements hold.

2.3.4. Underlying ∞-categories of model categories. We will mostly work with ∞-
categories that are presented by model categories.

Definition 2.35. Let M be a model category with weak equivalences W . The
underylying ∞-category ofM is the ∞-categorical localization (NM)[W−1] ofM
at the weak equivalences.

In order to gain computational control over this, we assume that M is a topo-
logical model category (e.g. orthogonal spectra) and that M admits functorial fac-
torizations. In that case the underlying ∞-category of M can be identified with
the homotopy coherent nerve N∆(M◦) of the full topological subcategory M◦ of
bifibrant (i.e. fibrant-cofibrant) objects. More precisely, the composition
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N(M)→ N(M◦)→ N∆(M
◦) (2.36)

of a bifibrant replacement functor with the comparison map to the coherent nerve
exhibits the N∆(M◦) as the∞-category obtained fromNM by invertingW [Lur18,
1.3.4.20, 1.3.4.16].

Model categories represent nicely behaved ∞-categories:

Proposition 2.37 ([Lur18, 1.3.4.22, 1.3.4.24, 1.3.4.23]). LetM be a combinatorial
model category.

(i) The underlying ∞-category of M admits all (small) limits and colimits.
(ii) Let X : I → M be a diagram in M indexed by a small category I and

α : colimi∈I Xi → m a map in M. Then α exhibits m as a homotopy
colimit of X if and only if

N(I)⊲ → N(M)→ N(M)[W−1]

is a colimit diagram in the underlying ∞-category of M. The analogous
statement for limits also holds.

(iii) The canonical functor

N(Fun(I,M))[W−1]
≃
−→ Fun(N(I), N(M)[W−1])

is an equivalence.

Remark 2.38. In [Lur18] Lurie works with the localization N(Mc)[W−1] of the
category M c of cofibrant objects. But this is equivalent to the localization of the
full categoryM (cf. [Lur18, 1.3.4.16]). An inverse to the inclusion is induced by a
fibrant replacement functor.

Remark 2.39. Let M be a topological model category as above (not necessarily
combinatorial). Then it is still true that the underlying ∞-category admits col-
imits. By [Lur09, 4.4.2.6], it is sufficient to show that coproducts and pushouts
exist. These are modeled by coproducts and homotopy pushouts on the pointset
level, which can be directly verified by inspection of mapping spaces. Part (ii) also
remains true for all other diagram shapes. This follows from [Lur09, 4.2.4.1] and
using functorial factorizations.

We also review how Quillen adjunctions induce a derived adjunction on underly-
ing ∞-categories, which is slightly more complicated then the situation in Lemma
2.32. Let F : M → N be a left Quillen functor. Then F is left derivable in the
sense that the dashed arrow in the square

NM NN

(NM)[W−1] (NN )[W−1]

F

γM γN

LF

exists together with a natural transformation exhibiting it as an absolute right Kan
extension of γN ◦ F along γM, i.e. for every functor p : (NN )[W−1] → C the
composite p ◦LF is a right Kan extension of p ◦ γN ◦F . Explicitely, LF is induced
by the composition F ◦ (−)c of F with a cofibrant replacement functor, cf. [NS18,
A.10]. Dually, a right Quillen functor G : N →M has a right derived functor RG,
which is an absolute left Kan extension.

Remark 2.40. Quillen bifunctorsM×M′ →M′′ can also be left derived by cofi-
brantly replacing in both factors. In particular, for a monoidal model categoryM
there is a derived product functor

⊗ : (NM)[W−1]× (NM)[W−1]→ (NM)[W−1].
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This can even be extended to a full symmetric monoidal structure on the underlying
∞-category ([Lur18, 4.1.7.6], [NS18, Thm. A.7]).

Now let F and G be adjoint to each other with unit η and counit ξ. The derived
unit transformation Id→ RG◦LF corresponds under the universal property of LF
to

γM
γM◦η
−−−−→ γM ◦G ◦ F → RG ◦ γN ◦ F,

where the last arrow is the natural transformation coming with RG. Similarly, the
derived counit LF ◦ RG→ Id corresponds under the universal property of RG to

LF ◦ γM ◦G→ γN ◦ F ◦G
γN ◦ξ
−−−→ γN .

It follows by inspection that the triangle identities are satisfied up to equivalence
and thus:

Proposition 2.41. Let (F,G) be a Quillen pair. The above natural transformations
yield a derived adjunction

LF : (NM)[W−1] ⇄ (NN )[W−1] : RG.

We conclude by recording the expected preservation of stability under passage
to underlying ∞-categories.

Proposition 2.42. Let M be a stable model category. Then the underlying ∞-
category of M is also stable.

Proof. We sketch the argument for a based topological model category such as
orthogonal spectra. Since M is pointed so is the underyling ∞-category, which
admits all colimits, in particular finite ones. The suspension-loops adjunction

S1 ∧− :M⇄M : Ω(−)

is a Quillen equivalence and induces an equivalence on the underlying ∞-category,
where the suspension functor is modelled by the strict one. �

3. The additive model for genuine G-spectra

LetG be a compact Lie group, F a family of closed (later always finite) subgroups
of G, and R ⊆ Q a subring. A morphism f : X → Y of orthogonal G-spectra is an
R-local F-equivalence if it induces an isomorphism (πH

∗ X) ⊗ R → (πH
∗ Y ) ⊗ R for

all H ∈ F and we denote the collection of these by WF ,R.

Definition 3.1. The ∞-category G - Sp of genuine G-spectra is the underlying∞-
category of orthogonal G-spectra, i.e. the localization at the π∗-isomorphisms. We
denote by

G - SpR,F = N(G - SpO)[(WF ,R)
−1] ≃ (G - Sp)[(WF ,R)

−1]

the ∞-category obtained by further inverting the R-local F -equivalences.

Remark 3.2. This should not to be confused with the ∞-category SpBG of naive
G-spectra, which is the ∞-category of G-objects in spectra. It is also modelled by
orthogonal G-spectra, but with respect to the underlying weak equivalences, i.e.
those maps which are π∗-isomorphisms of underlying non-equivariant spectra.

Let ⊗ denoted the derived smash product on genuine G-spectra, which is object-
wise given by X ⊗ Y ≃ Xc ∧Yc (cf. Remark 2.40). A map f is contained in WF ,R

if and only if
EF+ ⊗X ⊗ SR → EF+ ⊗ Y ⊗ SR

is a π∗-isomorphism, where EF is a universal space for the family F and SR a Moore
spectrum for the ring R coming with a map S→ SR that induces an isomorphism
(π∗S)⊗R ∼= π∗SR.
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Remark 3.3. This is a Moore spectrum in the sense that it is the image of an
ordinaryMoore spectrum under the left adjoint Sp→ G - Sp to the forgetful functor.
It can be constructed as a standard sequential colimit

SR ≃ colim(S
x1−→ S

x2−→ S
x3−→ · · · ),

where the sequence of xi ∈ N contains every prime that is invertible in R infinitely
often.

We note that G - SpR,F is a smashing Bousfield (co-)localization of G - Sp. An
orthogonal G-spectrum X is called an F-spectrum if the map EF+⊗X → X is an
equivalence. It is R-local if X → X⊗SR is an equivalence, that is π∗X

∼= (π∗X)⊗R.
The functors EF+ ⊗ − and − ⊗ SR, which commute with each other, are right-
respectively left adjoints to the inclusions of the full subcategories of F -spectra or
R-local spectra.

Proposition 3.4. The following holds for the ∞-category G - SpF ,R:

(i) The composition EF+⊗−⊗SR of Bousfield (co-)localization functors iden-
tifies G - SpR,F with the full subcategory of G - Sp spanned by the R-local
F-spectra. In particular, there is an identification

Map(G - Sp)F,R
(X,Y ) ≃ MapG - Sp(EF+ ⊗X,Y ⊗ SR)

of mapping spaces.
(ii) It is stable and admits all (small) limits and colimits.
(iii) The R-local homotopy groups

[Σ∞
+ (G/H), X ]G - SpF,R

∼= (πH
0 X)⊗R

are corepresented in the homotopy category by the suspension spectra of
transitive G-sets. In particular, {Σ∞

+ (G/H)}H∈F forms a set of compact
generators.

Proof. Part (i) follows Proposition 2.33.(a). As the underlying∞-category of a sta-
ble model category G - Sp is stable and bicomplete (Propositions 2.42 and 2.37) and
this also follows for the (exact) Bousfield (co-)localization G - SpF ,R (Proposition
2.33), showing (ii). For part (iii) we remark that corepresentability of homotopy
groups in G - Sp is well-known, but not well-documented in the literature. It suffices
to check on fibrant spectra in the projective model structure of [MM02] (the G-Ω
spectra) and in that case it follows by inspection. We observe that the projection
EF × G/H → G/H is a weak G-equivalence for H ∈ F . Hence Σ∞

+ (G/H) is an
F -spectrum and we obtain isomorphisms

[Σ∞
+ (G/H), X ]G - SpF,R

∼= [Σ∞
+ (G/H), X ⊗ SR]G - Sp

∼= (πH
0 X)⊗R.

These are sum-preserving functors in X and as H varies over the subgroups of F
they detect equivalences by definition, showing that the corepresenting objects form
a set of compact generators. �

3.1. The comparison functor. We now describe the passage of geometric fixed
points to a functor on underlying∞-categories. From now on F is a family of finite

subgroups and we denote by Õrb
×

F ⊂ Õrb
×

G,fin the full subcategory spanned by the

subgroups H ∈ F . Since ΦH is homotopical (Corollary 2.17), the equivalence

ΦH(EF+ ⊗X ⊗ SR) ≃ (EF+)
H ⊗ (ΦHX)⊗ (ΦHSR) ≃ (ΦHX)⊗ SR
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shows that the functor Φ : G - SpO → Functs(Õrb
×

F , Sp
O) sendsR-local F -equivalences

to levelwise R-local equivalences. Hence the composition with

N(Functs(Õrb
×

F , Sp
O))→ N∆(Fun

cts(Õrb
×

F , Sp
O))→ Fun(N∆Õrb

×

F , N∆ SpO)

→ Fun(N∆Õrb
×

F , (N∆ SpO)[W−1
R ])

factors over a unique functor G - SpF ,R → Õrb
×

F - SpR on localizations, where we
no longer distinguish between a topological category and its coherent nerve in the
notation for the indexing category.

Definition 3.5. The induced geometric fixed point functor on underlying∞-categories
is defined as the composition

Φ : G - SpF ,R → Õrb
×

F - SpR
π!−→ Orb×F - SpR,

where π! is the left Kan extension along the projection π : Õrb
×

F → Orb×F (see
Definition 2.24).

Proposition 3.6. Geometric fixed points induce an exact and sum-preserving func-
tor of stable ∞-categories such that the universal transformation η : Id → π∗ ◦ π!
makes the diagram of ∞-categories

G - SpR,F Orb×F - SpR

SpR

Φ

ΦH
evG/H

commute for all H ∈ F .

Proof. Lemma 4.4 also holds for the invertible orbit category and hence η factors
over an equivalence

(ΦHX)hH
≃
−→ (π!ΦX)(G/H).

For every R-local Y ∈ SpBH
R the projection Y → YhH induces an isomorphism

(π∗Y )/H
∼=
−→ π∗(YhH) since the order of H is invertible. We already know that

algebraically the H-action is trivial for Y = ΦHX (Corollary 2.17) and so the
projection is an equivalence in that case.

Exactness of Φ is detected pointwise and hence follows from exactness of the
functors ΦH , which in turn follows because they preserve cone sequences on the
pointset level.

�

Remark 3.7. The fact that the geometric fixed points a priori only yield Õrb
×

G,fin-
diagrams is a technical artifact of the pointset model and the use of left Kan exten-
sions is a way of correcting that ’defect’. This should be regarded as separate from
the later use of Kan extensions in Section 4.2, where they form a conceptual part of
the argument. The author is not aware of another lax monoidal construction that
is either homotopical or can be derived on commutative ring spectra.

3.2. The additive equivalence. We now assume that the group orders of ele-
ments in F are invertible in R. In order to show that the functor Φ from Definition
3.5 is an equivalence, we need the following computational input:

Lemma 3.8. For finite subgroups H and K of G there is a natural isomorphism

[Σ∞
+ (G/K)H , Y ]B(WGH) - SpR

∼=
⊕

(Ĥ≤K),Ĥ∼GH

(π0Y )WKĤ ,
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where the sum is indexed by K-conjugacy classes of subgroups of K that are conju-
gate to H in G.

Proof. We recall the decomposition formula (2.2)

(G/K)H ∼=
∐

(Ĥ≤K),Ĥ∼GH

WGH/WKĤ.

The statement then from follows from the general fact that the cosetG/H represents
H-homotopy fixed points in Fun(BG, Sp) and that for invertible group orders their
homotopy groups are obtained by taking algebraic fixed points:

[Σ∞
+ (G/H), X ]Fun(BG,Sp)

∼= [S, X ]Fun(BH,Sp)
∼= (π0X)H

�

Corollary 3.9. The geometric fixed points {Φ(Σ∞
+ (G/K))}K∈F form a set of com-

pact generators for Orb×F - SpR.

Proof. Under the equivalence (cf. Remark 2.13)
∏

(H∈F)

evG/H : Orb×F - SpR
≃
−→

∏

(H∈F)

B(WGH) - SpR

the diagram Φ(Σ∞
+ (G/K)) is mapped to (Σ∞

+ (G/K)H)(H∈F). By the previous

lemma, Σ∞
+ (G/K)H corepresents a sum-preserving functor that contains π0(−) as

a retract. Hence it is compact and a generator for B(WGH) - SpR. �

We now come to the main result of this section, describing R-local F -spectra in
terms of geometric fixed points.

Theorem 3.10. Let G be a compact Lie group, F a family of finite subgroups of
G and R ⊆ Q a ring such that the group orders of F are invertible in R. Then the
geometric fixed point functor Φ induces an equivalence of ∞-categories

G - SpF ,R ≃ Orb×F - SpR .

Proof. For every orthogonal G-spectrum X , the components of the induced map

Φ : [Σ∞
+ (G/K), X ]G - Sp −→ [Φ(Σ∞

+ (G/K)),ΦX ]Orb×
F - Sp

∼=
∏

(H≤G)

[Σ∞
+ (G/K)H ,ΦHX ]B(WGH) - Sp

can be identified via Lemma 3.8 with the geometric fixed point map (2.15)

πK
0 (X) −→

∏

(Ĥ≤K),Ĥ∼GH

(ΦĤ
0 X)WKĤ .

As H ∈ F runs over the G-conjugacy classes in F , the Ĥ hit every K-conjugacy
class of F exactly once. Hence the product of these maps is an isomorphism by
[Sch18, 3.4.28]. In particular, Φ is fully faithful on a set of compact generators and
by the corollary these are also mapped to a set of compact generators. Proposition
2.31 then implies that Φ is an equivalence. �

4. Commutative ring spectra

We recall from Section 2.1.3 that the category of commutative G-ring spec-
tra Com(G - SpO) admits a transferred model structure, that is weak equivalences

and fibrations are detected by the forgetful functor U : Com(G - SpO) → G - SpO.
The ∞-category of genuine commutative G-ring spectra Com(G - Sp) is the un-
derlying ∞-category and Com(G - Sp)F ,R denotes the localization at the R-local
F -equivalences.
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Remark 4.1. Inverting the F -equivalences on commutative ring spectra can no
longer be expressed via the right Bousfield localization functor EF+ ⊗ − because
there is no map Σ∞

+ EF → S of commutative ring spectra (unless F containes all
subgroups).

Instead, we use the F-completion F (EF+,−), which is a left Bousfield local-
ization functor. It restricts to an endofunctor of Com(G - Sp) since it is modeled
by a lax symmetric monoidal functor that is also right derivable on commutative
ring spectra (the model structure is topological). Commutative ring spectra can
still be R-localized because the Moore spectrum SR admits the structure of a com-
mutative ring spectrum, although this is a non-trivial fact (Proposition 4.7). Put
together, we observe that F (EF+,− ⊗ SR) is a Bousfield localization identifying
Com(G - Sp)R,F with the full subcategory of R-local F -complete commuative ring
spectra. In particular, it admits (small) colimits and limits, the latter of which are
preserved by the forgetful functor U : Com(G - Sp)R,F → G - SpR,F , which is a right
adjoint (Proposition 4.8).

4.1. The comparison functor. Analogously to the additive case, geometric fixed
points induce a functor

ΦCom : Com(G - Sp)F ,R −→ ÕrbF - Com(Sp)R
π!−→ OrbF - Com(Sp)R (4.2)

on underlying ∞-categories of commutative ring spectra, where π is the projection
from Definition 2.24. To see that this ’forgets’ to the functor of the previous section,
we need the following lemmata.

Lemma 4.3. Let K be a finite group and S ∈ Com(Sp)BK a commutative ring
spectrum with K-action that is trivial on π∗S. Then the projection map S → ShK

to the quotient in commutative rings is a Z[ 1
|K| ]-local equivalence.

Proof. Homotopy fixed points are computed in the underlying category of spectra
and so it follows by inspection that the canonical map

(ShK)tr → S

is an equivalence for Z[ 1
|K| ]-local S with trivial action on homotopy groups. We may

thus assume that S itself has trivial action and compute the functor corepresented
by ShK in the homotopy category as follows:

[ShK , T ]Com(Sp)
∼= [S, T ]Com(Sp)BK

∼= [S, T hK ]Com(Sp)
∼= [S, T ]Com(Sp).

This isomorphism is given by precomposition with the projection S → ShK , which
thus is an equivalence. �

Lemma 4.4. Let C be an ∞-category with sufficiently many colimits. The left Kan

extension of a diagram X : ÕrbF → C along the functor π : ÕrbF → OrbF can be
computed at G/H as the quotient

(π!X)(G/H) ≃ X(H)/H.

Proof. On the level of topological categories the functor π induces Serre-fibrations
on mapping spaces, since for each H ∈ F the induced map

ÕrbF (−, H)→ OrbF (π(−), G/H) ∼= ÕrbF (−, H)/H

exhibits the target as the quotient of a free H-action. This also shows that for

every morphism H → K in ÕrbF the square
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ÕrbF (K,L) ÕrbF(H,L)

OrbF (G/K,G/L) OrbF(G/H,G/L)

is a (homotopy) pullback and hence every morphism is cocartesian by [Lur09,
2.4.1.10]. By Lemma 2.29 the Kan extension can be computed pointwise as the
colimit over the fibers π−1(G/H) ≃ BH . �

Proposition 4.5. Geometric fixed points induce a functor ΦCom on commutative
ring spectra such that the square

G - SpF ,R Orb×F - SpR

Com(G - Sp)F ,R OrbF - Com(Sp)R

Φ

ΦCom

U U

commutes.

Proof. We consider the diagram

G - SpF ,R Õrb
×

F - SpR Orb×F - SpR

Com(G - Sp)F ,R ÕrbF - Com(Sp)R OrbF - Com(Sp)R

π!

U

π!

U U

in which the left square commutes strictly on the pointset level. Unit and counit
of the left Kan extension induce a natural transformation

π!U→ π!U(π
∗π!) = (π!π

∗)Uπ! → Uπ!

between the two composites in the right square, which is an equivalence by the
pointwise description of Kan extensions and Lemma 4.3. �

4.2. The multiplicative equivalence. In order to show that the comparison
functor ΦCom is an equivalence, we need to analyse the free-forgetful adjunctions.
Let P : G - Sp → Com(G - Sp) be the derived symmetric algebra functor, which
is left adjoint to the forgetful functor U. The underlying homotopy type of PX is
given by the sum of derived symmetric powers U(PX) ≃

⊕
m≥0 P

mX. For a positive
flat orthogonal G-spectrum X the projection map

EGΣm+ ∧Σm X∧m ≃
−→ X∧n/Σn

is a π∗-isomorphism and this yields an identification with the equivariant extended
powers

Pm ≃ EGΣm+ ∧Σm (−)⊗m.

Lemma 4.6. The functor P preserves R-local F-equivalences.

Proof. Since EGΣm+∧Σm (−) commutes with A⊗ (−) for Σn-trivial A, this follows

from the (G×Σm)-equivalences ∆ : EF
≃
−→ (EF)×m and SQ ≃ (SQ)

⊗m. The latter
is induced by the composition S ≃ S⊗m → (SQ)

⊗m, where the first identification
comes from the unit isomorphism on the pointset level. Alternatively, the statement
also follows from the computation in the proof of Proposition 4.15. �

Proposition 4.7. The Moore spectrum SR can be constructed as a commutative
G-ring spectrum.
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Proof. We implement the sketch of [HH14] in the ∞-category of genuine commuta-
tive G-rings. Let A = colimn∈NAn be the colimit (starting with A0 = S) over the
lower maps in the pushouts

P(Zn) P(∗) ≃ S

An An+1,

where Zn =
⊕

α S/l(α) is a sum of mod l Moore spectra indexed by the homotopy
classes of maps α : S/l(α)→ An such that l(α) is invertible in R. By construction,
for any mod l Moore spectrum such that l is invertible in R the induced map

[S/l, An]→ [S/l, An+1]

on homotopy classes is trivial. It follows that A is R-local, since sequential colimits
of commutative ring spectra are computed in the underlying category of spectra
(this follows from the corresponding pointset level statement because cofibrations
of commutative ring spectra are in particular h-cofibrations of underlying spectra).
By the previous lemma, the upper horizontal maps are R-equivalences. Since the
pushout in commutative ring spectra is given by the derived relative smash product
An+1 ≃ An ⊗P(Zn) S, the lower maps are also R-equivalences and hence so is the
composition S→ A ≃ SR. �

Proposition 4.8. The Quillen adjunction Sym : G - SpO ⇄ Com(G - SpO) : U
induces a monadic adjunction

P : G - SpF ,R ⇄ Com(G - Sp)F ,R : U

on underlying ∞-categories.

Proof. By the previous lemma the derived adjunction P : G - Sp ⇄ Com(G - Sp) : U
passes to an adjunction on localizations (cf. Lemma 2.32). It is monadic because U
detects equivalences (by definition) and preserves homotopy colimits of simplicial
objects (see the appendix). �

The left adjoint of the forgetful functor U : OrbF - Com(G - Sp)R → Orb×F - SpR
is given by the composition

Orb×F - SpR
ι!−→ OrbF - SpR

P
−→ OrbF - Com(Sp)R (4.9)

of left Kan extension along ι : Orb×F → OrbF with the objectwise free commutative
algebra functor.

Remark 4.10. The adjunction is also monadic because ι is essentially surjective and
colimits in diagram categories are computed pointwise.

We will need a more concrete description of the left adjoint:

Lemma 4.11. Let C be an ∞-category that admits sufficently many colimits and
X : Orb×F → C a functor.

(i) The left Kan extension ι!X : OrbF → C of X to the full F-orbit category
evaluated at G/K can be computed by the formula

(ι!X)(G/K) ≃
∐

(H≤K)

X(G/H)/WKH.

On the summand indexed by H the map is induced by the composition

X(G/H)
η
−→ (ι!X)(G/H)

trKH−−→ (ι!X)(G/K),

where η : X → ι∗ι!X is the universal transformation.
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(ii) Let C be symmetric monoidal and suppose that the product ⊗ preserves
coproducts in each variable. Then the free commutative algebra is described
by the following formula:

P((ι!X)(G/K)) ≃
∐

(α:K→Σm),
m≥0


 ⊗

[j]∈K\{1,...,m}

X(G/ StabK j)


 /C(α).

Here the identification is given on each summand by the product of the maps

X(G/ StabK j) −→ P((ι!X)(G/ StabK j))
P tr
−−→ P((ι!X)(G/K))

composed with the multiplication map.

Proof. We identify the slice category appearing in the pointwise formula for Kan
extensions (2.28) as follows:

Orb×F ×OrbF (OrbF )/(G/K) ≃
∐

(H∈F)

B(WGH)×OrbF (OrbF)/(G/K)

≃
∐

(H∈F)

colimB(WGH) OrbF (−, G/K)

≃
∐

(H∈F)

((G/K)H)hWGH

≃
∐

(H≤K)

B(WKH).

In the first step Orb×F is decomposed into a disjoint union of Weyl groups (Remark
2.13). The second equivalence uses that the left fibration (OrbF )/(G/K) → OrbF is
classified by the functor OrbF (−, G/K) and that the total space of a left fibration
is equivalent to the colimit of its classifying diagram in spaces [Lur09, 3.3.4.6]. The
last equivalence follows from the decomposition formula used in the proof of Lemma
3.8.

For part (ii) we recall the following distributivity formula for the free commuta-
tive algebra, which follows from its description PX ≃

∐
n≥0X

⊗n/Σn via symmetric

powers [Lur18, 3.1.3]. Let {Xi}i∈I be a collection of objects indexed by a finite set
I. Then there is canonical equivalence

P

(
∐

i∈I

Xi

)
≃
∐

α∈NI

(
⊗

i∈I

X⊗αi

i /Σαi

)

that is induced on the summands by the product of the maps Xi → PXi. We now
use the conjugacy classes of subgroups as the indexing set I and write Mα for the
finite K-set

Mα =
∐

(H≤K)

(K/H)⊔αH

associated with an I-tuple α and note that (2.1) yields an identification

AutK(Mα) ∼=
∏

(H≤K)

ΣαH ≀WKH
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of the automorphisms group of Mα. Applying the distributivity formula to part
(i), we obtain the following chain of equivalences:

P


 ∐

(H≤K)

X(G/H)/WKH


 ≃

∐

α∈NI


 ⊗

(H≤K)

X(G/H)⊗αH/(ΣαH ≀WKH)




≃
∐

α∈NI


 ⊗

Kj∈K\Mα

X(G/ StabK j)


 /AutK(Mα)

≃
∐

[M ]∈FinK


 ⊗

Kj∈K\M

X(G/ StabK j)


 /AutK(M)

≃
∐

(φ:K→Σm)
m≥0


 ⊗

Kj∈K\{1,...,m}

X(G/ StabK j)


 /C(φ).

The last three steps amount to reindexing and regrouping terms, using that the
map α 7→Mα is a bijection from NI to isomorphism classes of finite K-sets, which
in turn biject with conjugacy classes of homomorphismsK → Σm for allm ≥ 0. �

Remark 4.12. We have formulated the previous lemma in its natural generality,
using the intrinsic notion of symmetric monoidal ∞-categories. Ultimately, we
want to use it to identify the homotopy type of free commutative orthogonal ring
spectra. Since for cofibrant orthogonal spectra the map

EΣn+ ∧Σn X
∧n ≃
−→ X∧n/Σn

is an equivalence, the derived symmetric algebra functor agrees with symmetric
algebra in the symmetric monoidal structure on the underlying ∞-category.

We will also need the following well-known decomposition formula for the fixed
points of a quotient, which is often used in equivariant homotopy theory.

Lemma 4.13 (e.g. see [Sch18, B.17]). Let X be an (H ×Kop)-space such that the
right K-action is free. Then the projection X → X/K induces a homeomorphism

(X/K)H ∼=
∐

(α:H→K)

(α∗X)H/C(α)

between the H-fixed points of the quotient X/K and a disjoint union indexed by the
conjugacy classes of group homomorphisms.

Lemma 4.14. Let α : K → Σm be a transitive group homomorphism with stabilizer
H = StabK 1. There is a natural untwisting isomorphism

NK
H resKH X ∼= α∗X∧m

for orthogonal K-spectra X.

Proof. Let k1, . . . , km be the coset representatives chosen in the definition of the
norm with associated homomorphism Ψ : K → Σm ≀ H . As a homomorphism
to Σm ≀K, this is conjugate via (Id; k1, . . . , km) ∈ Σm ≀ K to the homomorphism
(ψ,∆K), where ψ = prΣm

◦Ψ is the Σm-component of Ψ and ∆K the diagonal
inclusion of K. This is in turn conjugate to α via the permutation i 7→ α(ki)(1) and
hence left translation with these elements yields the desired isomorphism Ψ∗X∧m ∼=
α∗X∧m. �
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Proposition 4.15. The natural transformation

(P ◦ ι!) ◦Φ
≃
−→ ΦCom ◦ P

adjoint to

Φ
Φη
−−→ Φ ◦ U ◦ P ≃ U ◦ ΦCom ◦ P

is an equivalence.

Proof. Let H ≤ G be a finite subgroup. The following pointset level computation
only depends on the H-homotopy type of X and hence we may assume that it is a
cofibrant H-spectrum in the HHR-model structure. We then obtain:

ΦH(EGΣm+ ∧Σm X∧m) ∼=
∨

(α:H→Σm)

(EGΣm)
Γ(α)
+ ∧C(α) Φ

H(α∗X∧m)

∼=
∨

(α:H→Σm)

EC(α)+ ∧C(α) Φ
H


 ∧

[j]∈H\{1,...,m}

NH
Stab jX




≃
∨

(α:H→Σm)

EC(α)+ ∧C(α)


 ∧

[j]∈H\{1,...,m}

ΦStab jX


 .

Since ΦH is defined pointwise via fixed points of spaces, the first isomorphism
follows from Lemma 4.13. In the second step, using Lemma 4.14, α∗X∧m is de-
composed into a product of norms whose geometric fixed points are then computed
using their multiplicative properties (Proposition 2.20 and 2.26). The result now
follows from Lemma 4.11. �

Theorem 4.16. Let G be a compact Lie group, F a family of finite subgroups of
G and R ⊆ Z a ring such that the group orders of F are invertible in R. Then the
geometric fixed point functor

ΦCom : Com(G - Sp)F ,R
≃
−→ OrbF - Com(Sp)R

is an equivalence.

Proof. We consider the diagram

G - SpF ,R Orb×F - SpR

Com(G - Sp)F ,R OrbF - Com(Sp)R

Φ

Pgen P◦ι!U U

of ∞-categories in which the square with the forgetful functors commutes. The
upper horizontal arrow is an equivalence (Theorem 3.10) and both adjunctions are
monadic (Proposition 4.8). By [Lur18, 4.7.3.16], it suffices in this situation to show
that the natural transformation

(P ◦ Lan)ΦX → ΦCom(PgenX)

is an equivalence and this is the content of Proposition 4.15. �

Remark 4.17. Similarly, a monadicity argument can also be used to show that the
canonical map

Com(SpR) = N(Com(SpO))[W−1
R ]

≃
−→ CAlg(SpR)

is an equivalence between the underlying ∞-category of commutative ring spectra
and commutative algebras in the symmetric monoidal∞-category of spectra. This
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is of course well-known, but the author does not know a reference in the literature
that directly applies to orthogonal spectra.

Appendix A. Homotopy colimits of simplicial objects

In this appendix we briefly explain the essential steps in showing that the for-
getful functor

U : Com(G - Sp)F ,R → G - SpF ,R

preserves colimits of simplicial objects. We first reduce to the case that G is finite
by noting that the restriction functors resGH to finite subgroups are left adjoints
that jointly detect equivalences. We may also assume R = Z, since the inclusion of
R-local spectra preserves colimits.

For technical reasons, we need to move to a simplicial setting on the pointset
level. Let G - SpΣsSet (G - SpΣTop) denote the category of G-symmetric spectra in
simplicial sets (topological spaces) endowed with the positiveG-flat model structure
[Hau17, Thm. 4.7] (with respect to a complete representation universe), which
also transfers to a model structure on commutative ring spectra. The forgetful
functorG - SpO → G - SpΣ

Top from orthogonal spectra is the right adjoint of a Quillen
equivalence [Hau17, Thm. 7.5].

Proposition A.1. Let G be a finite group. There is a zig-zag of Quillen equiva-
lences

Com(G - SpO) ≃Q Com(G - SpΣ
sSet)

between commutative orthogonal G-ring spectra and symmetric G-ring spectra of
simplicial sets.

Proof. The forgetful functor is lax symmetric monoidal and the induced oplax
monoidal structure on the left adjoint is actually an isomorphism. In particular,
this shows that the adjunction restricts to one between categories of commutative
ring spectra, which is automatically a Quillen pair because the model structures
are transferred. The right adjoint reflects weak equivalences and so it remains to
show that the counit is a weak equivalence on cofibrant ring spectra. In the flat
model structure the underlying spectra are (non-positively) cofibrant and in that
case we already know that the unit is an equivalence. We thus get a Quillen equiv-
alence with symmetric spectra in topological spaces. The adjoint pair geometric
realization and singular complex prolongs to a further equivalence with spectra in
simplicial sets. �

The theory of colimits in the underlying ∞-category of a simplicial model cat-
egory reduces to that of homotopy colimits [Lur09, 4.2.4] and so it will suffice to
show that the forgetful functor preserves these. The key technical advantage of
symmetric spectra in simplicial sets is that the geometric realization functor

| − | : Fun(∆op, G - SpΣ)→ G - SpΣ

is homotopical.

Proposition A.2. Let f : X → Y be an objectwise equivalence of simplicial sym-
metric G-spectra. Then its geometric realization |X | → |Y | is also an equivalence.

Proof. Non-equivariantly this is [Har10, 1.11]. The proof proceeds by inducting
along the skeletal filtrations and also works equivariantly, because homotopically
it only depends on the cone of a monomorphism being equivalent to the actual
quotient. In fact, they are level-homotopy equivalent. �
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In particular, this shows that the realization

|X | ≃ hocolim∆op X

of a simplicial object X in G - SpΣ always has the correct homotopy type, since we
can Reedy-cofibrantly replace without changing it (c.f. [Hir03]).

Proposition A.3. Let R be a simplicial object in commutative symmetric G-ring
spectra. Then its realization can be computed in underlying category of symmetric
G-spectra, that is, there is a natural isomorphism

U |R| ∼= |UR|.

Proof. This is mostly formal and a detailed proof of an analogous statement in the
topological setting is given in [Sch18, 2.1.7], also see [EKMM97]. We only recall
the outline of the argument here. Using that the smash product commutes with
colimits and simplicial tensors in each variable, one identifies the smash product

|X | ∧ |Y | ∼= |X∧̄Y |

of the realizations of two simplicial spectra X and Y as the realization of the
bisimplicial object (n,m) 7→ Xn∧̄Ym. This is in turn isomorphic to the realization
of the diagonal X ∧Y = ∆∗(X∧̄Y ), i.e. the level-wise smash product. Combined,
this yields Σn-equivariant isomorphisms |X |∧n ∼= |X∧n| and hence an identification

|PX | ∼= P|X | ∼= |UPX |

on free commutative algebras, where the realization on the left is performed in the
category of commutative ring spectra. The general case then follows by considering
the canonical coequalizer presentation

R← PR ⇔ P(PR)

of a commutative ring spectrum R. �

Corollary A.4. The forgetful functor preserves homotopy colimits of simplicial
objects.

Proof. The previous discussion yields equivalences

U(hocolim∆op R) ≃ U |R| ∼= |UR| ≃ hocolim∆op UR

for a Reedy cofibrant simplicial object in commutative ring spectra. �
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