GENERALIZED HOMOLOGY THEORIES(})

BY
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1. Introduction. It is well known that the cohomology groups H*(X ; II) of
a polyhedron X with coefficients in the abelian group II can be characterized
as the group of homotopy classes of maps of X into the Eilenberg-MacLane
space K(II, ). Moreover, the cohomology theory with coefficients in II can
be described in this way; the existence of the coboundary homomorphism of
the cohomology sequence of a pair is due to the fact that there are natural
maps of the suspension SK(II, #) into K(II, n+1) for every »; in other words,
the spaces K(II, ) are the components of a spectrum(?). In fact, if E= {E,.} is
a spectrum, then the groups

H™X; E) = {X, E}_, = lim [S*X, En]

are generalized cohomology groups of X, in the sense that they satisfy the
Eilenberg-Steenrod axioms [8], except for the dimension axiom. These gen-
eralized cohomology groups are beginning to play a more important role in
algebraic topology; for example, they may well furnish the correct setting in
which to study cohomology operations of higher order. Moreover, E. H.
Brown [4] has shown that, under a countability restriction on the coefficient
groups, every generalized cohomology theory can be obtained in this way.

One may ask whether there is a corresponding situation for homology
theory. The integral homology groups of a space X can be described by the
Dold-Thom theorem [6], as the homotopy groups of the infinite symmetric
product of X. However, the duality between homology and cohomology is
not apparent from this description, nor is it clear how to generalize it. Exam-
ples of generalized homology theories are known; for instance, the stable
homotopy groups. Like the homology and cohomology groups, the stable
homotopy and cohomotopy groups satisfy Alexander duality [26]. Given a
cohomology theory, one might then define the corresponding homology
groups as the cohomology groups of the complement of X in a sphere in which
X is imbedded. While this definition is perfectly satisfactory, it is awkward
to work with because of the many choices involved. For practical as well as
for aesthetic reasons, an intrinsic definition is to be preferred.

A rewording of the definition of the generalized cohomology groups de-
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fined above suggests a possible definition of the corresponding homology
groups. Given a space X and a spectrum E, the function spaces F(X, E,) of
maps of X into E, themselves form a spectrum F(X, E), and we have

H*(X; E) = w_.(F(X, E)).

The mapping functor F plays a role in topology analogous to that played by
Hom in group theory. We seek an analogue of the tensor product; this is
provided by the reduced join /\;in fact, the reduced join and mapping func-
tors are adjoint functors in the sense of Kan [13] because of the well-known
relation

F(XN\Y,2)=FX,F(Y,2),

valid for well-behaved spaces. Now if X is a space and E a spectrum, then
EAX is again a spectrum and we define the generalized homology groups

Hn(X7 E) = 7rn(E/\ X)‘

We prove that the generalized homology groups satisfy the Eilenberg-Steen-
rod axioms, except for the dimension axiom. With an appropriate notion of
pairing of spectra, we can define cup- and cap-products. Using these we then
prove an Alexander duality theorem. Moreover, we characterize the class of
manifolds satisfying Poincaré duality for arbitrary spectra; it includes the
II-manifolds of J. H. C. Whitehead [35] and of Milnor [19].

The results of this paper were announced in [32].

§2 is devoted to general preliminaries, and §3 to homology and homotopy
properties of the reduced join. Most of the results of these sections are well-
known. §4 is devoted to properties of spectra. In §5 the generalized homology
theories are introduced and the Eilenberg-Steenrod axioms proved. §6 is
devoted to setting up the machinery of products, and in §7 the duality theo-
rems are proved. In §8 we make use of Brown’s theorem to prove the analo-
gous result for homology theories.

2. Preliminaries. Let W, be the category of spaces with base-point having
the homotopy type of a CW-complex. More precisely, an object of W, is a
space X with base-point x,, such that there exists a CW-complex K with
base-point k, and a homotopy equivalence of the pairs (X, {xo,}) and
(X, {ko}); and a map of ‘W is a continuous, base-point preserving map.

Let W be the category of spaces (without distinguished base-point) hav-
ing the homotopy type of a CW-complex. Let P be a fixed space consisting
of exactly one point po. If X&W, let X+ be the topological sum of X and P;
then (X, po) is an object of Wo. If X, YEW and f: X—Y, then f has a unique
extension f+: X+— Y+ such that f+(p,) = po, and f* is a map in W,. The cor-
respondences X— X+, f—f* define a functor +: W—W,. Evidently we may
regard W as a subcategory of W,.

In what follows, we shall use the terms “space” and “map” to refer to
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1962] GENERALIZED HOMOLOGY THEORIES 229

objects and maps of W,; the terms “free space” and “free map” will refer to
objects and maps of W.

Let » be a positive integer. By “m-ad” we shall mean an #-ad
(X; Xy, « + +, Xa1; %0) having the same homotopy type as some CW-zn-ad
(K; Ky, - -+, Kn; ko). A 2-ad is also called a pair. We say that 4 is a sub-
space of X if and only if (X; 4; xo) is a pair. The #-ads form a category Wj.
Similarly we define the category W* of free n-ads.

The category W» was introduced by Milnor [18].

If (X, A) is a pair, let X/A be the space obtained from X by collapsing 4
to a point, the base-point of X/A. Then X/A is a space, called the quotient

space of X by A.

Let X3, - - -, X, be spaces with base-points 19, - * -, xno. Let X = [[2, X
be the cartesian product of the X;, with base-point xo= (x19, * * * , o). Let T
be the set of all points (x1, + + - , %s) such that x;=x,, and let T(X}, - : -, X,)

= UL, T:. It follows from [18, Proposition 3] that the (# + 1)-ad
(X; T, - - -, Ta; xo) belongs to Wg. The n-fold reduced join of the X is the
space Al Xi=X\A - - - AXa=X/T(Xy, - - -, Xa); let Axi=ma A\ - - - Axa
be the image of (x1, - - -, xa) in AX,. If fi: X;— Y, are maps (i=1, - - -, n)
and f= [If;, then f(T(Xy, - - -, Xa))CT(Yy, - - -, Ya); hence f induces a
map Afi=fiN « - - Afa: AX;—AY,. Clearly, if fi~xf! (i=1, .-, n) then
Afi~Af!. Thus the n-fold reduced join is a covariant functor which pre-
serves homotopy.

If X and Y are spaces, their sum is the space XV Y =T(X, ¥);if f: X—>X’,
g: Y—Y’, then the restriction of fXgto XVVYisamapfVg: XVY-X'VY’;
and f~4', g~~g' imply f\V/g=~f"\/g'. Thus the sum is also a covariant functor
preserving homotopy.

The sum is evidently commutative and associative and the n-fold reduced
join symmetric in its arguments (up to natural homeomorphism). However,
associative laws for the n-fold reduced join do not always hold.

Let X, - - -, X» be CW-complexes. Then X = HX; is a closure-finite
complex, but may fail to have the weak topology [35]. Let w(X) =X, reto-
pologized with the weak topology; i.e., a subset A of X is closed in w(X) if
and only if, for every compact set C of X, ANC is closed in X. Then w(X)
is a CW-complex, and the identity map 1: w(X)—X is continuous.

LEMMA (2.1). The identity map 1: (w(X), x0)—(X, x0) is a homotopy equiv-
alence.

Proof. Let xy=(x11, - - * , xn1) be a point of X. Then the map which sends
the point x€ X, into the point yE€X such that y;=xu (15k), yi=x, is a
continuous map

‘ig: (Xk, xn) - (X, x,)

and also a continuous map
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i (X, 2) = (w(X), x1).

It is well known that if 2> 1, the induced homomorphisms

ik wil( X, k1) — ﬂ'«(X, x1),

1',:}: (X, %21) = mi(w(X), %1)
form injective direct sum representations of the groups m;(X, x1), m:(w(X), 1) ;
while the obvious modification of the above statement holds for 7=0, 1.
Since 1 0 4y =4, it follows that 1: w(X)—X is a singular homotopy equiva-
lence. We have already observed that X €W,; it follows from [18, Lemma 1]
that 1 is a homotopy equivalence.

If ¢ is any subset of { -, n} , let X, be the set of all points x& X such
that x;=x; for all 7. Let X/, be the corresponding subspace of w(X). Then
X, is naturally homeomorphic with H;e, X,;, and it is clear that X/ is
homeomorphic with w( ng, X,). Since X, N\X,=X,n,, X NX] =X'n,, it
follows from Lemma (2.1) by induction on # that, if T/ is the subspace cor-
responding to T, then

COROLLARY (2.2). The identity map

l(w(x)rTl,) Ct T,.';xo)—‘)(X; Tl, ] T,.;xo)
is a homotopy equivalence.

Let T'(X,, - - -, X,)=U, T/, and let

WXLA - A Xn) = w(X)/T' (X, - -+, Xn).
Then
COROLLARY (2.3). The map
wWXai A AXD)=2 XA A X,
induced by 1: w(X)—X is a homotopy equivalence.

We now show that the n-fold reduced join satisfies associativity laws up
to homotopy type. Any desired associative law can be obtained by iteration
from (2.4) below.

Let X; be spaces (not necessarily CW-complexes) for :=1, - - -, n. Let
{o1, - - -, 0,} be a decomposition of {1, - - -, #} into disjoint subsets, and
let Y;,=/\.-e,, X;. Then there is a natural map

p: A X,'—) A Yk
tm=1 k=1

such that, if x;€X; (i=1, - - -, n), and if yx=Ae,, xi, then
p(Ax) = Ay
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1962] GENERALIZED HOMOLOGY THEORIES 231

p is one-to-one, continuous, and onto, but need not be a homeomorphism.
However, we have

(2.4). The map p: AX;—AY, is a homotopy equivalence.

Proof. Since the k-fold reduced join functors preserve homotopy, we may
assume that the X; are CW-complexes. The map p induces a map

' wh X) - wh w(¥y)

which is one-to-one, continuous, and onto, and is an isomorphism of com-
plexes. Since both spaces are CW-complexes, p’ is a homeomorphism. The
diagram

w(A X;) -’i w( A w(¥y)

1] i1
Ax, LAy,

is commutative, and the identity map w(AX;)—AX; is a homotopy equiva-
lence, by (2.3). The identity map w(Aw(Y:))—A Y, is the composite

the first map is a homotopy equivalence, by (2.3); the second is a reduced
join of maps which are again homotopy equivalences. Hence p is a homotopy
equivalence.

The case n=3 of (2.4) was proved by Puppe [23, Satz 18].

We also note

(2.5). If all but one of the spaces [[reo, Xx is compact then p is a homeo-
morphism.

This follows easily by several applications of [34, Lemma 4].

Let (X, A) be a pair and suppose that A4 is closed in X. Let ¢: A CX.
Then, for any space Y,

(2.6). The map iN1: ANY—>XNY is an imbedding, and its image is a
closed subspace of X \Y.

Under these conditions, we may consider A A\ Y as a closed subspace of
XAY.

Suppose further that p: X—X/A is the identification map. Then

2.7). If X is compact, then pA\1: X NY—(X/A)N\Y sends ANY into
the base-point and induces a homeomorphism of X NY/ANY with (X/A)NY.

Let X, ¥, Z be spaces, and let 4;: X—XV/ Y, 73: Y=X\/Y be the natural
injections. Then HA1: XAZ—>(XVY)AZ and 2A1: YAZ-(XVYINZ
induce a map

bh(XANZ)V(YNZ)->(XVY)ANZ.

(2.8). The spaces (XNZ)N(YNZ) and (XN Y)N\Z are homeomorphic
under h.
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If Y is a space, X a compact space, it follows from [18, Theorem 3] that
the space F(X, Y) of all maps of X into ¥, with the compact-open topology,
is a space in Wy; the base-point of F(X, Y) is the constant map of X into
the base-point of Y. If f: X'—>X, g: Y—Y’, the correspondence h—go ko f
isa map F(f, g): F(X, Y)>F(X', Y');and if f~f', g~~¢’ then F(f, g)~F(f, ¢').
Clearly Fis a functor: &oXWo—W,, where X, is the full subcategory of com-
pact spaces in Wo; F is covariant in its second argument and contravariant
in its first.

If fEF(XNAY, Z), let fEF(X, F(Y, Z)) be the map defined by

@) @) = flz A y).

It follows easily from standard work on the topology of function spaces (cf.
[10; 12]) that

(2.9). The correspondence f—f is a homeomorphism of F(X \Y, Z) with
F(X, F(Y, Z)).

If fEF(X, V), x€X, let eo(f, x) =f(x). It follows from (2.9) that e, is
continuous; since ¢y maps F(X, Y)V X into y,, we have

(2.10). There is a continuous map e: F(X, YYNX—Y such that e(f/\x)
=f(x) for all fEF(X, V), xEX.

The map e is called the evaluation map.

Let I be the free unit interval, and let T be the unit interval with base-
point 0. Let 7'=S° be the subspace {0, 1} of T, and let S=S'=T/7. The
cone over X is the space TX =TAX, and the suspension of X is the space
SX =SANAX. The loop-space of X is the space QX = F(S, X). These operations
are evidently covariant functors: Wo—W,..

It follows from (2.4), (2.5), and commutativity of the reduced join that

(2.11). The spaces SX \Y and X \SY have the same homotopy type; if X
or Y is compact, they are homeomorphic.

Furthermore, we have

(2.12). If X is a compact space, then the spaces F(SX, V), F(X, QY), and
QF(X, Y) are naturally homeomorphic.

(2.13). S°AX is naturally homeomorphic with X.

Let [X, Y] be the set of homotopy classes of maps of X into ¥;if f: X— Y,
let [f] be the homotopy class of f. Then [ , ] is a functor on WX W, to the
category of sets with base-points. If f: X’—X and g: Y—-Y’, let

A= 1:[x v]-[x, 7],
g =[1,¢]: [X, Y] - [X, V'];
then
[/, 8] = ftogs = grofh.

(2.14). If X and Y are compact, then [X \Y, Z] and [X, F(Y, Z)] are in
natural one-to-one correspondence.
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If X is compact, the sets [SX, Y] and [X, QY] have natural group struc-
tures, and

(2.15). The groups [SX, Y] and [X, QY] are isomorphic.

(2.16). The two natural group structures on [SX, QY] are identical and
abelian.

(2.17). If n=2, the groups [S*X, Y] and [X, QY] are abelian.

(2.18). If f: X'—>X, g: Y-V are maps, then

SHE: [Sx, Y] - [SX, Y],
g [SX, Y] — [SX, Y],
ft: [x, ev] - [x, e¥],

(29)s: [X, oY] - [X, V']

are homomorphisms.

Since the reduced join functor preserves homotopy, so does the suspension
functor. Hence the correspondence f—Sf induces a map Si: [X, Y]
—[SX, SY].

(2.19). The map Si: [SX, Y]—=[S2X, SY] is a homomorphism.

Similarly the loop functor induces a map : [X, Y]—[2X, QY], and

(2.20). The map Q: [X, QY] —[QX, QY] is a homomorphism.

3. Homology and homotopy of the reduced join. If (X, 4) is a pair, G an
abelian group, let H,(X, 4; G), H*(X, A; G) be the singular homology and
cohomology groups of (X, 4) with coefficients in G. If X is a space with base-
point xo, let H,(X; G), A*(X; G) be the singular groups of the pair (X, {xo}).

Let (X, A) be a pair, and let p: X—X/A4 be the identification map. Then
p induces homomorphisms

px: Ho(X, 4;G) — H.(X/4;0),
p*: HN(X/4; G) — HY(X, 4;6),
and we have
(3.1). The above homomorphisms px, p* are isomorphisms.
In fact, let f: (X, 4)— (K, L) be a homotopy equivalence, and let g: (K, L)
—(X, A) be a homotopy inverse of f. Then f, g induce maps f: X/A—K/L,

g: K/L—X/A, and it is easily verified that f is a homotopy equivalence with
homotopy inverse g. The diagram

2.(X, 4;6) %5 B.(K, L;6)

Low . 1 px

2,x/4;6) 5 B.(k/L; 6)

is commutative. It is well known that ps: H.(K, L; G) ~ H,(K/L; G). Since
f« and fx are isomorphisms, (3.1) follows for homology. The proof for co-
homology is similar.,
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Let (X, 4) be a pair and suppose 4 is a closed subset of X. By (2.6) and
(2.13) we may regard X and T4 as subspaces of TX. Moreover, X\UTA/TA
is naturally homeomorphic with X/A4. Let p’': X\UTA—X/A be the com-
position of this homeomorphism with the collapsing map of X\UTA4 into
X\UTA/TA. Furthermore, X\UTA/X is naturally homeomorphic with SA4.
Let p": X\UTA—SA be the composition of this homeomorphism with the
collapsing map. Clearly ¢’ is a homotopy equivalence. If g: X/4A—X\UTA is
any homotopy inverse of p’, the map p” 0 ¢q: X/A—SA will be called a
canonical map.

Let C(X) be the normalized singular chain-complex of the space X, and
let C(X) be the factor complex C(X)/C({xo}). If (X, Xo)isa pairand Ya
space, the Eilenberg-Zilber map [9] is a chain map ¢ of C(X)®C(Y)
into C(X XY); and { maps C(X) ® C({yo}) + C(X,) ® C(Y) into
C(X X {50} UXoX ¥). Assume that X, is closed in X. Then the identification
map of XXV into XA\ Y sends the pair (C(XXY), C(XX {yo}UXox Y))
into (C(XAN\Y), C(Xo/A\Y)). The composite map induces in turn a chain map

C(X)/C(Xo) ® C(¥Y) = C(X A\ ¥)/C(Xo A Y),
and hence, for any pairing 4 @ B—C of coefficient groups, a homomorphism
A: Hy(X, Xo; A) ® H((YV; B) > Hy o X A Y, Xo A ¥;C),

called the homology cross-product. If wEH (X, Xo; A), vEH,(Y; B), let
#/\v be the image of # ®v under this map. Suppose 4 = Z, the additive group
of integers, B=C, and the pairing is the natural one. Let :€H,(T, T'; Z) be
the homology class of the identity map of T into itself, regarded as a singular
simplex, the vertices of T being taken in the order 0, 1; and let s&€ H,(S; Z)
be the image of ¢ under the identification map T—S. Then the A-products
with 7 and s are homomorphisms

i\: H(Y; B) = Hei(TY, V; B),
ox = s/\: H(Y; B) — H,1(SY; B).
It follows from the Kiinneth Theorem that 7/\ and o« are isomorphisms; o4 is
called the homology suspension.

Let 1€ H((S°; Z) be the image of 5 under the boundary homomorphism
of (T, S%. The name is justified by the fact that, if «€ H,(V; B) then

INu=uE H(S* N\ Y;B) = A(Y; B)

under the identilication Se/A\ Y with V. It follows that
(3.2). If uEH,(Y; B), and if 3x: Hyr(TY, Y; B)—H,(Y; B) is the bound-
ary operator of the homology sequence of the pair (TY, Y), then

0+x(i /\ u) = u.
LeMMA (3.3). If h: X/A—SA is a canonical map, the diagram
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Ox .
Hon(X, 4) > H.(4)

1 ps L ox
ﬁn+l(X/A) ;’ §n+1(SA)

is anli-commulative.

H,(4)« Hayr(4', A)——>I?n+1(SA)
WA
,.+1(X aH—2 Hn+l(X 4) > Hop i (X', X)
?* 12

,.+x(X/A)<-——H»+1 X' ')«-———th(X)
FIGURE 1

Proof. Let X'=X\UTA4, A’=TA. Consider the diagram (Figure 1) in
which all the homomorphisms are induced by inclusion maps, except that
0%, 01, and 9, are the boundary operators of the homology sequences of the
appropriate pairs, p« and p; are induced by the identification map X—X/A4,
and p{’ and p4’ by the identification 4’—SA4. The upper right and lower left
corners are commutative; since 4’ is contractible, d; and 7, are isomorphisms,
and the remainder of the diagram satisfies the hypotheses of the “hexagon
lemma” [8, 1.15.1]. Hence

1,005'00x = — is01i7lol;.

Since the triad (X’; 4’, X) is proper, /i and /; are isomorphisms. Now py
=p; o1, and therefore gx =171 0 ps~1; also p«’ =p{' 0 7,. Hence
heo pu = pi’ 0d20iT 0 pi~ 10 ps = pi' 0d0iT 0]
= —${"0L00d7'00x = — pi’' 0970 .
It remains to show that p;’ 00871 =04%.
Let u€ H,(A4). Then, by (3.2),
32(1: /\ u) = u,
and therefore 97!(u) =1 Au. Clearly pJ’' (i Au)=s/\u; hence p;’'09d:'1=0c4.
This completes the proof.

Consider the maps p: SAXAY-SAXAY), p': SAXAY-(SAX)NY
of (2.5); they are homotopy equivalences, and therefore the composition

ﬁ#’ (o) ﬁt_l: Hn-i-l(S(X AN Y), C) - n+l(SX NY; C)
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isan isomorphism for any group C. Hence thehomomorphism ¢1: H,(X A Y;C)
—>H, 1(SXAY; C) defined by
oL = px O pi'oox
is an isomorphism. Similarly, the map p": SAX AY—-X A(SAY) defined by
PIENZNY) =2 NCEAY)

is a homotopy equivalence. Hence the homomorphism™ ¢z: H,(XAY; C)
- H, 1 (XASY; C) defined by

oR = ?1:”0?*-100'*

is an isomorphism. Clearly
(3.4). If u€Hy(X; A), vEHR,(Y; B), then

or(u N\ v) = oxte N\ v,
or(u A\ v) = (—1)?u N\ oa.
The cohomology cross-product is a natural pairing
A: Br(X; A) @ H(Y; B) > B+ (X A\ ¥;C),

defined in terms of a pairing A ® B—C. Let s*€ H!(S; Z) be the element such
that the Kronecker index (s*, s)=1. Then

s*A: H(Y; B) — H+'(SY; B)
is an isomorphism; let
o*: H+\(SY; B) — H«(Y; B)

be the inverse of s* A.
The homomorphisms

or: AMI(SX A ¥;C) - B X A\ ¥; C),
ox: B™(X A\ SY;C) - BNX A ¥;C)
are defined analogously to o1, o, and we have
(3.5). If u€H?(SX; A), vEH(Y; B), then
oL@ A1) = o4 A

and if uC H?*(X; A), vEH(SY; B), then

a;(u Av) = (=1)ru N\ o

Suppose now that Y is a finite CW-complex. Let Y7 be the p-skeleton of
Yif =0, Y7={yo} if p<0; and Cp(Y)=H,(¥?, Y7!). The “filtration” of
Y by the subspaces Y7 induces a “filtration” of X AY by the subspaces
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X AYr; the latter “filtration” in turn gives rise to a bigraded exact couple
[17]; cf. also [31]. Let { Er} be the associated spectral sequence. The follow-
ing facts are immediate consequences of the corresponding facts for the
spectral sequence of the fibration X X Y—Y:
(1) The N\-product is an isomorphism
B(X) 8 Cy(Y) = Eypq;

(2) under the above isomorphism, the boundary operator d':E, —E, ,,
corresponds to (—1)*(1 ®9), where 3: C,(Y)—Cp1(Y) is the boundary operator
of the reduced chain complex of Y;

3) E:.a =~ Hy(Y; ﬁq(X));

(4) dr: Er—Er is trivial for r=2;

(5) there is a filtration

ﬁn(X/\ Y) =Jp D DJeDJu=0
of H, (X \Y) such that
) 2 ~ ~
Jo/Tp1 = Eppn—p = Epnp = Hp(Y; Hap(X)).

Moreover, the spectral sequence from E? on is natural, and the filtration of (S) is
natural,

Suppose moreover that H,(X) =0 for 0<i<r. Then J,=J,_,; hence
(3.6). There is a natural projection

m H(X N\ Y)—> H,_(V; B,(X)).

The naturality of (3.6) will be used in §5.
We now consider the behavior of (3.6) under suspension. The suspension
homomorphism a4: H,(X) — H,;1(SX) induces a homomorphism

oxe: oo o(¥V; B(X)) > Hao(V; Hpn(SX)).
Consider the diagram
Hu(X A Y) 5 B (¥; B(X)
3.7 loc 1 oax
Hos(SX A ¥) 5 Boo(¥; Hoia(SX)).

(3.8). The diagram (3.7) is commutative.

Proof. Let (D, E) be the exact couple for X A\ Y, ('D,’E) that for SX AY
=S(XAY). Then the homomorphism o1 maps D into 'D and E into 'E, and
it is easily verified that the pair of homomorphisms (¢, ¥) defined by

¢ = (—1)?*%L: Dyg— "Dy gy,
Y= (=171 Epg— 'Epon

is a map of couples of degree (0, 1). (Note that ¢y, is not a map of couples; the
diagram
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Ep.q > Dﬁ.q—l

lO’L lG’L

Epe+1— Dp,q

is anticommutative.) Moreover, the map 0: H(X AY)—>H(SX AY) defined
by

0= (—Dro: B(XAY)> H. (SXAY)

sends J, into 'J,, and induces homomorphisms 6, of the successive quotients
such that the diagram

o/ Tt = Egnmsp
(3.9) 6, ly
T o/ Tp1— ' Egnpia
in which the horizontal arrows represent the isomorphisms of (5) above, is

commutative.
Consider the diagram

B,(X) ® Coe(¥) = En_y,r
(3.10) (Do @ 1] 2
HH.](SX) ® C‘n—r( Y)— ’E:—r,r+l

in which the horizontal arrows represent the isomorphisms of (1) above, given
by the A-product. This diagram is clearly commutative; under either route,
an element # ®c is mapped into (—1)"owu /A\c. Passage to homology in (3.10)
gives the commutative diagram

Hﬁ—r(y; gr(X)) — E:—r.r
(3.11) (=Drowx | 12
B, (V; B41(SX)) = 'Enypin.

Commutativity of (3.9) and (3.11) and the definition of 8, show that (3.7) is
commutative.

(3.8) settles the behavior of 7 under suspension of X. We now consider its
behavior under suspension of Y. Consider the diagram

B (XA D)D B (¥; B (X))
(3.12) loz 1 (=)o
HBoirs(X ASY) S B pin(SY; B(X)).

(3.13). The diagram (3.12) is commutative.
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Proof. Let (D, E) be the couple for X \Y, (D, 'E) that for X ASY. Note
that SY? is the (p+1)-skeleton of SY. Define ¢, ¢, 0, as in the proof of (3.8),
to be (—1)"gg, where 7 is the total degree. Then (¢, ¥) is a map of couples,
and the diagram corresponding to (3.9) is commutative. The commutative
diagram corresponding to (3.10) is

B,(X) ® Coce(¥) = "Enr.s
(3.14) (=D"1®a¥) ¥
B,(X) ® Cosss(SY) > 'Enrir.

The commutativity of (3.12) now follows as before, passing to homology from

3.14).
( LZzt snE H.(S*; Z) be defined inductively by
so = as'(s),
§1 =35,
Snil = O#Sa.

The Hurewicz map 7: ma(X) = [S", X]— H.(X) is defined by
2([f]) = falsa).

It is a homomorphism for n 2 1. Clearly 5: 7,— H, is a natural transformation

of functors.
(3.15). The homotopy and homology suspensions correspond under n; i.e.,

the diagram
2(X) 3 £0ia(SX)
In In
B (X) D Bayy(SX)

is commutative,
For if f: S»—X, then
1Ss[fD) = 1A Af) = (1L A e(sasrr)
= (1 /\f)*(s Nsn) =5 /\ fuSn
= ox(fesa) = am([f]).

We now consider the homotopy groups.
(3.16). If X is (p—1)-connected and Y is (¢—1)-connected, then X \Y is

(p+g—1)-connected. Moreover, if p+g>1,
T XN Y) = ﬁ,,(X) ® H,(Y).

Proof. We may assume that X and ¥ are CW-complexes, and that X 7!
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= {xo}, Yel= { yo}. By Corollary (2.3), the natural map of w(XAY) into
XAY is a homotopy equivalence. Hence it suffices to prove (3.16) for
w(XAY). But w(XAY) is a CW-complex whose (p+g—1)-skeleton is a
single point; hence X A Y is (p 4+ ¢ — 1)-connected. The calculation of
T+ X A\ Y) follows from the Kiinneth and Hurewicz theorems.

There is also a /\-product in homotopy. Let f: S*—X, g: S*—>Y; then
fAg: SPAS*—=XAY. It is known (cf. [1]) that the correspondence (f, g)
—fAg induces a homomorphism

N:mp(X) ® 7(Y) = (X A Y).
We have the homotopy analogue of (3.5); if
SL:m(XAY)> 1 SXAY),
Se:m(SAY) > m(X ASY),

are defined by analogy with o, oz, then
(317, If uEmy(X), vE®(Y), then

SL(“ A1) = Ssu v,
Se(u N\ 1) = (—=1)Pu /\ Sav.

We also have
(3.18). The homology and homotopy /\-products correspond under the
Hurewicz map, t.e., the diagram

25(X) ® 7o V) L mpraX A V)
In®n A In
ﬁv(X) ® ﬁ,(Y)—-—rﬁ,H(X N Y).

1s commulative.
4. Spectra(?). A spectrum E is a sequence(*) { E.|nE€Z} of spaces together
with a sequence of maps

€ SE, — Eqp1.
If E, E’ are spectra, a map f: E—E' is a sequence of maps
fat En— EJ
such that the diagrams
SEn 3 Eny
Sfa l " lfn-n
SEL S Epa

(®) By a sequence we shall always mean a function on all the integers. .
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are homotopy-commutative. Two maps f, f' are homotopic if and only if, for
each #n, f,~f, . Clearly, the spectra form a category 8.

REMARK 1. A spectrum can equally well be described by specifying the
spaces E, and maps &,: E,—QE,.,. We say that E is an Q-spectrum if and
only if every map &,: E,—QE,,, is a homotopy equivalence.

REMARK 2. If E,, €,: SE,—E 1 (or &é: E,—QE,,1) are defined for n =n,,
we can specify a spectrum by defining E, inductively for n <n, by

En = QEn+ly
é: E, C QEqqa.

ExaMPLE 1. Let S* be the n-sphere, and let ¢,: SS*—S"+! be the identity
map. Then S= {S", o,.} is a spectrum, called the spectrum of spheres.

ExAMPLE 2. Let II be an abelian group, and let K(II, #) be an Eilenberg-
MacLane complex of type (II, n). Let 4,..€ H**(K(II, n+1); II) be the
fundamental class. Let k,: SK(II, )—K(II, n+1) be a map such that

Kn*(in+l) = 0'*—1(7:") € H"-H(SK(H) "‘); H))

Let K(II) be the spectrum so defined; K(II) is called an Eilenberg-MacLane
spectrum.

ExaMPLE 3. Let U be the infinite unitary group [3]. There is a canonical
homotopy equivalence [28]

f:U— Q.

Let E,=Uifnisodd, E,=QU if nis even. If nis odd, let v,: SU—-QU be the
map correspoding to f. If n is even, let v,: QU—QU be the identity map. The
resulting spectrum U is called the unitary spectrum.

ExAMPLE 4. Let E be a spectrum, X a compact space. Let E; =E,AX,
and define ¢/ : SE,/ —E,/;, to be the map

e N\ 1 ,
SEn, =S/\En, =S/\En/\X'——)En+l/\X: En+l-

Let EAX be the spectrum so defined.

ExaMPLE 5. Let E be a spectrum, X a compact space. Let EJ =X AE,,
and define ¢, : SE,—E./;; to be the map

SE! = SAXAEam X AS A Eno2% X A Buu,

where the map SAXAE,—XASAE, interchanges the first and second
factors. Let X AE be the resulting spectrum. In particular, let SE=SAE;
SE is called the suspension of E.

Note that the maps x A\e—eAx of X AE, into E,AX defines a map of
X NAE into ENX.

EXAMPLE 6. Let E be a spectrum, X a compact space. Let F,=F(X; E,).
Define ¢,: SF,— Fpy as follows: if fEF,, sES, xEX, then
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$a(s AN () = eals A f(2));
¢» is continuous, since the corresponding map
(AN N x— eals A f(2))

is the composition of €, with the map

1
s AFA D ¢ A S,

where e is the evaluation map, and e is continuous by (2.10). Then {F,., ¢}
is a spectrum F(X, E).

In particular, if E is a spectrum, QE=F(S, E) is a spectrum, the loop-
spectrum of E.

By (2.12) there is a natural homeomorphism

Wi F(SX, E) — QF(X, Ey).
A calculation shows that the ¥, define an isomorphism
¢: F(SX, E) —» QF (X, E)

of spectra.

The spectrum E is said to be convergent if and only if there is an integer
N such that Eyy; is i-connected for all 20. Note that the spectra S and
K(II) are convergent, but U is not.

LEMMA (4.1). Let E be a spectrum, N an integer. Then there exists a spec-
trum E’ and a map f: E'—E such that

(1) E! =E; and fi: E! CE,; for all i< N;

(2) Ejyqis (5—1)-connected for all 1=0;

(3) fit: m;(El) ~7;(EJ) for all iZN+1, j=i—N.

Proof. If = N+1, let E{ be the path-component of the base-point in E;.
Since SEy is 0-connected, ey maps SEy into E{},. Since SE® is 0-connected,
e; maps SE? into E®, for all {=N+1. Then the E® (=N+1) and the
E; (i£N), together with the maps ¢; or €| E{®, form a spectrum E®, which
is mapped into E by the inclusion maps. Clearly it suffices to prove the theo-
rem for E®; i.e., we may assume that E; is 0-connected for 1= N+1.

We now construct E{ as an (t— N —1)-connected fibre space over E; by
the method of [5; 29]. Let i=N+1, and let E¥ be a space containing E;
such that

(1) (E¥, E,) is a relative CW-complex [30];

(2) the inclusion map induces isomorphisms

wi(E;) = m;i(EY) jsi—N-1);
3 mi(E¥) =0 (G=i—-N).
It follows that
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mi(E¥ E;) =0 (jSi—N),
r;(E¥, E)) = mi—1(E) Gjzi—N+1).

Let E! be the space of paths in Ef which start at the base-point and end in
E;, and let f;: E] —E; be the end-point map. Then m;(E!) =7j;.(E¥, E;);
hence E/ is (¢— N —1)-connected. Consider the composition of ¢;: SE;—E;
with the inclusion map E;.—E}.. Since (SE¥, SE;) is a relative CW-
complex, obstruction theory applies [7; 30]; the obstructions to extending the
above map lie in the groups

HAYSEY, SE;; mi(EX.)) ~ HI(E?, Ei; mi(EX)).

Since (E¥, E,) is (1— N)-connected, the cohomology groups of (E¥, E;) with
any coefficients vanish if jS:—N. If j2:— N+1, then 7;(E},) =0. Hence
there exists an extension €*: SE¥—E}, of the above map, and another ob-
struction argument shows that the homotopy class of € rel. SE; is uniquely
determined. Let F; be the space of paths in SE¥ which start at the base-point
and end in SE;. Composition with ¢* is a map &;: F;—E/,. Define k;: SE! > F;
by

kit N\ u)(s) =t /\ u(s) (WEElLLtES,sE ).
Finally, let ¢/ =¢ o k;: SE/ —E/,.. Clearly the diagrams

'
€
SEa{ g Ei’+1

Sfil L fin
SE; = Ei

€

are commutative.

To complete the definition of E’, it remains to define a map ey: SEnx
—E},;. Let K be a CW-complex, f: SEyv—K a homotopy equivalence,
g: K—SEy a homotopy inverse of f. The homotopy groups of E},, vanish in
all dimensions; hence the fibre of fy11: Ej4, has vanishing homotopy groups.
Therefore the map ey 0 g: K—SEy can be lifted to a map k: K—E},, such
that frraoh=eyog. Let ey=h o f: SEy—En41; then

fN+10 eN' =f1v+10h0f= eNogofﬁ'eN.
REMARK. It follows from the results of [18] that all the spaces constructed
in the proof have the homotopy type of CW-complexes.
Let E be a spectrum, n an integer (not necessarily 20). Let €: Tnx(Ex)
—Tasi+1(Ers1) be the composite

€xf
(4.2 Tnsk(Er) = 101 SED) = Fngarr(Ere),

whenever n2 —k. Then the groups 7. x(E:), together with the homomor-
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phisms €, form a direct system. The nth homotopy group m.(E) is defined to
be the direct limit of this system. If f: E—E’ is a map of spectra then the dia-

grams
* (3% ]
Ttk (Er) = Taprs1(SEx) — Taprs1(Eitr)
L fut LS, st

* (7% ]
‘l'n+k(Ek' ) b 1l'n+k+1(SEk' ) d ﬂ'n+k+1(Ek'+1)

are commutative; hence the fi# induce a homorphism fs: w,(E)—m,.(E').

For example,

(1) wa(S) is the stable homotopy group of the n-stem;

(2) wo(K(I)) =II, 7, (K(II)) =0 for n5=0;

(3) ma(U)=0 (n 0odd), 7.(U) =Z (n even).

Consider the spectrum SE of Example 5 above, and the groups 7,,1(SE).
The suspension homomorphism Ss: T4i(Ei) =7 nik41(SE;) map the groups of
the direct system for w,(E) into those for 7,,1(SE); however, they do not de-
fine a map of the direct systems. For consider the diagram

Tntk(Er) = Ttr+1(SEx) i Tatks1(Ers1)
1S« / 1 S«
Tatir1(SE) 5 Tatir2(S?Er) “ Totkt2(SEis1)
in which the top row is (4.2) and the bottom is (4.2) for the spectrum SE.

Let f: S***—E, represent aEmax(E:). Then the element o’ = Sye#S«(c) is
represented by the map f': S*+*+2—>SE, ,, defined by

F@NtAs) =t el f(s) eSS 1, €9),
while the element o’ =€;4S+Ss() is represented by f”/, where
f"(h VAN ZWAN S) = N\ eIc(tl /\f(S)).

The map HhAtaAs—taA\t1/As of S++¥+2 into itself has degree —1. Hence
a’'=—ao.

It follows that the maps (—1)%S«: 7Tn1k(Er) 2T nik4+1(SE;) define a homo-
morphism of the direct system for r,(E) into that for m,,1(SE) and therefore
define a homomorphism

Sk: T"(E) d ‘l’,.+1(SE).
THEOREM (4.3). For any spectrum E, Sy is an isomorphism.

Proof. Let a&Kernel Sy, and let o Em,(Ex) be a representative of a.
Then, for some /=0, the image of S« in Tuyrt141(SEr41) is zero. Replacing
o' by its image in Tpix41(Exs1), Wwe may assume that Sea’ =0.

Suppose that E is convergent. Choose N so that Ey,; is i-connected for
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all £=0. We may assume that k>n-+2N+1. Then E; is (k— N)-connected,
and n+k<2k—2N—1=2(k—N)—1; hence Si: Tpsr(Er) >Tns41(SE;) is an
isomorphism [2] and therefore o/ =0. Hence a=0.

In the general case, by Lemma (4.1), we can choose a spectrum E’ and
map f: E'—E such that E! =E,, f;: E! CE; for 1<k and Eiy; is (—1)-con-
nected for 2=1. Then o represents an element a*Cr,(E') and fila*)=a.
Since S« =0, it follows that Sx(a*) =0. Since E’ is convergent, a*=0. Hence
a=0 and therefore Si is a monomorphism.

The proof that Sk is an epimorphism is similar; it is first proved for con-
vergent spectra, and therefore arbitrary spectra by means of Lemma (4.1).

The correspondence [S*+*, QE, ] = [Sr++1, E,] of (2.15) is an isomorphism
Wit Tnpik (QEL) = Tosr41(Er). Let ¢p: SQE,—QE; 41 be the maps of the spectrum
QE (see Example 6, above). Then the diagrams

b

ik (QE:) ﬂ Tntkt1(QEr41)
l W b l Wk+1
Tas1(ER) 5 Tasrra(Burs)
are anti-commulative. Hence the isomorphisms
(= D*wr: mo12(QEr) — Toirs1(Ersr)
induce an isomorphism
@: T(QE) = 7,41(E).
Let E be a spectrum. The suspension in homology is an isomorphism
ox: Bopi(Ee) = Hurii1(SER);

the groups H,.:(E;) form a direct system under the composite homomor-
phisms € 0 04: Huyk(Er)— Hnir11(Eryr). The nth homology group of E is the
direct limit

En(E) = likm §u+k(Ek)

of this direct system. Let 7: 7nx(Ex)— Hnyx(E:) be the Hurewicz homomor-
phism. Then the diagram

* €xf
Ttk(Er) = Taprs1(SE) — moprr1(Ery)
I In I
~ Ox .. €k~
Huix(Ex) = Haii11(SEx) = Hopey1(Eitr)
is commutative by (3.15) and naturality. Hence 7 induces a homomorphism

n: m(E) = H,(E)
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of the direct limits.

D. M. Kan (unpublished) has proved a Hurewicz theorem for spectra in
the semi-simplicial setting. Since we do not need the Hurewicz theorem in
what follows except in a special case, we content ourselves with the trivial
observation that

(4.4). For any abelian group 11,

n: mo(K(I)) =~ Ho(K(ID)).

Just as in the case of the homotopy suspension, the homomorphisms
0x: Huyx(Ex)— Hpp211(SEr) do not induce a homomorphism of H,(E) into
H.,1(SE); the diagram

. ox - &
H, i (Er) Ay n+k+1(SEr) =8 wrkt+1(Err1)

l Tx l Ox
Hoi41(SEr) = Buiri2(S*Er) = Hosii2o(SErsr)
e Ld

O%x k

is anti-commutative (because the map €/ involves the “twisting map” { At
—ts Al of S2=SAS into itself, and this map sends s/\s into —s/\s). Hence
a homomorphism

(4.5) é4: H,(E) — H,,,(SE)
is defined by the homomorphisms
(=Drow: Hupi(Er) = Harrr1(SE).

Clearly, in view of the definition of Sy and (3.15), we have
(4.6). The homomorphisms Sy and 6« correspond under the Hurewicz map;
i.e., the diagram

ma(E) & Tt 1(SE)
In In
gn(E) - §n+l(SE)
Gx

is commultative.

5. Generalized homology theories. Let @ be the category whose objects
are finite free CW-complexes and whose maps are arbitrary continuous free
maps. Let ® be the category whose objects are finite CW-complexes with
base-vertex and whose maps are all base-point preserving maps. Let @2 be
the category of pairs in @®; i.e., the okjects of ®? are pairs (X, 4), where X is
a free CW-complex and 4 is a subcomplex of X, and whose maps are all
continuous maps of pairs. Let @ be the category of abelian groups and homo-
morphisms.
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The suspension operation is a covariant functor S: ®,—@®,. Let T: @2— @2
be the covariant functor defined by

T(X, A) = (4, &) for any (X, 4) € @2,
T(f) = f| (4, &): (4, &) — (B, &) for any map f:(X, 4)—(¥, B) in @2.
A generalized homology theory © on @ is a sequence of covariant functors
H,.??—> Q,
together with a sequence of natural transformations
On: H,— HpyoT

satisfying the following conditions:

(1) If fo, LE®* are homotopic maps, then H.(fo) = Ha(f1) for all n.

(2) If (X; A, B) s a triad in @ such that X =A\UB, and if k: (4, ANB)
C(X, B), then

H.(k): H.(4, AN B) ~ H (X, B)

for all n.

(3) If (X, A)E6?, and if i: (4, B) C(X, &), j: (X, &) C(X, A), then the
homology sequence

9n1(X, n
© o Hap(X, A)——L(—-——)>H(A g)— 26 — H.(X, ) — 249, H.(X, 4)

KA 4 B

of (X, A) is exact.

In other words, a generalized homology theory satisfies the Eilenberg-
Steenrod axioms [8], except for the dimension axiom.

A generalized homology theory § on @ is a sequence of covariant functors

H,: ®— Q,
together with a sequence of natural transformations
on: Hy— Hyp10S

satisfying the following conditions:
(1) If fo, LE @0 are homotopic maps, then H,(fo) = H.(f1).
(2) If XE @y, then

oa(X): Hi(X) = Hoii(SX).

3) If (X, A) isa pair in @, 1: ACX, and if p: X—X /A is the identifica-
tion map, then the sequence

H n
.y 2, g0 2B, g x /)

s exact.
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Suppose 9 is a generalized homology theory on ®. If (X, x¢) € ®,, then
(X, {xo})EO”; let

Hu(X, x)) = Hu(X, {x0}).
If f: (X, x0)—(Y, o) is a map in ®, we may regard f as a map in ®?; let
Ho(f) = H(f): Bu(X, {20}) = Hu(¥, { ¥o}).
If (X, %) E®y, define g,(X): Hn.(X)— H,31(SX) to be the composition
—Hapa(p) 097,
where
0: Hui(TX, X) > Ha(X, {20})

is the boundary operator of the homology sequence of the triple (TX, X, {xo H
(as in ordinary homology theory the homology sequence of a triple in @ is
exact, and Ho(TX, {x0})=0 for all ¢; cf. [8, I, 8.1, 10.2, 11.8] and note that
the dimension axiom is not used), and where p: (TX, X)—(SX, x,) is the
identification map.

The standard argument (cf. [6] or [14]) shows that the $ = { H., 0a} so
defined is a generalized homology theory on ®,, and that the correspondence
$—& is a one-to-one correspondence between generalized homologies on @
and on ®. The inverse correspondence can be described as follows. Let § be
a generalized homology theory on ®,. Then if (X, 4)E®?, let

H,(X, 4) = ﬁn(X/A)

To define 0.(X, 4): H.(X, A)—H,_1(4, &), let h: X/A—SA be a canonical
map as in §3, and let 3,(X, 4) be minus the composite

a.(h) on-1(4)7?

H.(X, A) = Hi(X/A4) —— H.(S4) H, \(4) = H.r (4,9).
Let E={E,, €.} be a spectrum. For any X € ®,, let

H.(X; E) = m(E N\ X).
If f: X—> Y is a map in ®, then the maps 1 Af: EELAX—E:A\Y are the com-
ponents of a map

INffENX—EANAY;
let

B.(f; E) = QA Af)i:m(EN X) > 7(ENY).

Clearly H,( ; E) is a covariant functor. .
Let XE®,. Then 0,(X; E): H,(X; E)>H,41(SX; E) is defined to be the
composition
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H.(X; E)

S f 3
=1 EAX) D1 SAEAX) S ra(EAS A X) = Bi(SX; E),

where f: SAEAX—EASAX is induced by the map s/A\eAx—e/A\sAx of
SAE:NX into Ex ASAX (note that f is an isomorphism of spectra because
of (2.5) and the remark after Example 5 of §4). Clearly a.( ; E) is a natural
transformation.

Note that

(5.1). 0.(X; E) s induced by the homomorphisms

(-l)kSR: 1l'n+k(Ek N\ X) - 7l'n+k+1(Ek A\ SX).
Let $(E) be the pair of sequences { H.( ; E), oa( ; E)}.

THEOREM (5.2). For any spectrum E, §(E) is a generalized homology theory
on @,.

Proof. If f, f: X—Y are homotopic maps, then, for every &, ~(1 AN+
= (} AS)#: k(B AX) > ni(Ex A\ Y). Hence (1A f)s=(1N\f)4,i.e., Hu(f;E)
=H.(f'; E).

By Theorem (4.3), S¢ is an isomorphism; hence ¢.(X; E) is an isomor-
phism.

Let (X, A) be a pair in @, let s: ACX, and let p: X—>X/A be the
identification map. For each &, we have the commutative diagram

1 ] 1 j
Task(Er N\ A4) (_‘/\—1): Ttk (Ex N\ _X) -(“"/}i)t Taik(Be A\ X, Ex N\ A)

(5.3 AN D) AN
Tk (Ex N\ (X/ 4))
in which the top line is exact. (We have identified ExAX/E, A4 with
ExN\(X/A) by (2.7).)
Suppose that E is convergent and choose N so that Ey,; is i-connected
for all i>0; we may assume n+N =2. By (3.16), Eny;AX and Exy;/A\A are
i-connected, and therefore (En;i/A\X, En;i/\A) is i-connected. Let A*

=T(EnsiNA), X*=(Ensi NX)UIT(Enyi/\NA). By the Blakers-Massey triad
theorem [21, Theorem 3.4], the triad

(X*; A*, Enii \ X)

is (2i+1)-connected, at least if ¢=2. Then the inclusion map induces iso-
morphisms

Tj(EN.H /\ X, EN+:‘ /\ A) = WJ(X*) A*)
for j=24. It follows that
(5.9 (1 A ) 7i(Ensi N\ X, Engi N\ A) = 7(Enyi N\ (X/4))
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for j<2i.

Suppose that k=n+42N. Then E; is (k— N)-connected and (k—N)
=n+N=2; hence n+k=<2(k—N). Thus (5.4) holds with i=k—N, j=n+k.
Thus, in the diagram (5.3),

Kernel (1 A\ p)¢ = Image (1 A 4)¢

for k sufficiently large. Since the direct limit of exact sequences is exact
[8, VIII, 5.4], the sequence
(I Ao (1A p)#
(5.5)  m(EAA) m(E N\ X) AEAR i m(E N (X/A4))
is exact, provided that the spectrum E is convergent.

Let E be an arbitrary spectrum, and let a&Ker(1 Ap)s. Choose a repre-
sentative & €.+ (Er AX) of a; increasing k if necessary, we may assume

o' &€ Ker (1 N\ P)I: 1r,.+k(Ek AN X) - 7|'n+k(Ek A\ (X/A))

By Lemma (4.1), there is a convergent spectrum E’ and a map f: E'—>E such
that E! = E,, fi: El CE, for 1 £k Then o represents an element
a*Cm.(E' AX) such that fi(a*)=«a; and (1/\p)#a*)=0. Since E’ is con-
vergent, the sequence (5.5) for E’ is exact; hence there is an element
BET.(E' AA4) such that (1 A\2)#(8) =a*. Then (1/\2)#(fsB) =a. Hence, for any
E, Ker(1 Ap)#ClIm(1 A7)+ Since the opposite inclusion is trivial, the exact-
ness of (5.5) is established for any arbitrary spectrum E, and the proof of
Theorem (5.2) is complete.

Let P be a free space consisting of just one point. If § is a generalized
homology theory on @®, the coefficient groups of § are the groups H.(P). If §
is a generalized homology theory on ®,, the coefficient groups of § are the
groups H,(S%). Since P+ is naturally homeomorphic with S°, the coefficient
groups of corresponding theories are naturally isomorphic.

Let E be a spectrum. Then EAS® can be identified with E. Hence

(5.6). The coefficient groups of S(E) (or of (E)) are the homotopy groups
of E; specifically H,(P; E) = H.(S°; E) ~w.(E).

CoROLLARY (5.7)(4). If I 4s an abelian group, then H(K(IL)) is the (unique)
homology theory on ® with coefficients in II.

We now make explicit the isomorphism of Corollary (5.7). Let
(5.8) m: Hon(K(, k) A\ X) — Ha(X; B(K(W, k)

be the projections of (3.6). By (3.8) and naturality, the diagrams

Hos R ) A X) - B SK@L ) A X) EA T k(@ k 4+ 1) A X)

o im _ Amen Lmn
Ha(x; Bk, £)) —— HaO B (SK(T, £)) B B (R(, &+ 1))

(%) A weaker version of this result was proved by the author in [31].
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are commutative (e is the coefficient group homomorphism induced by
&s: Bia(SK(, k))—Hi (KT, B41))), and therefore define a homomor-
phism

=: H(K(I) A\ X) — Bu(X; Hy(K(I)) =~ H.(X;10).
of the direct limits. Composition of = with the Hurewicz map
n: 7 (K(I) A X) — H (K@) A X)
is a homomorphism
pa(X): Hu(X; K(I)) — Ha(X; 10).

Clearly pa is a natural transformation of functors. Because of (3.13) and (5.1),
the diagram

.00 kam) X, .00 m

oa(X; K(I)) | Los

Horr(SX; K@) ——— Hoa(SX; 1O
* m) o ex )

is commutative. Hence p is a map of homology theories.
THEOREM (5.9). The natural transformation
p: S(R(W) — $(1)
s an isomorphism.

Proof. By the uniqueness theorem of Eilenberg-Steenrod [8, III, 10.1],
suitably modified in accordance with the fact that we are dealing with a
homology theory on @, it suffices to prove that

po(S%): Ho(S%; K(ID)) =~ Ho(S°; 1),

i.e., that the composite

ro(R(I) A S%) > Ho(R() A S0 5 Hy(s0; TT)
mo(K () ——— Ho(K()

is an isomorphism. But n is an isomorphism, by (4.4), and (5.8) is an isomor-
phism for every k; hence p is an isomorphism.

A generalized cohomology theory ©* on @ is a sequence of contravariant
functors

Hr: 02— Q@
together with a sequence of natural transformations
": H*'o T — H*
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satisfying axioms analogous to those for a generalized homology theory. Sim-
ilarly, a generalized cohomology theory ©* on ® is a sequence of contra-
variant functors

H: 00— @
and a sequence of natural transformations
on: Htlo S — A»
satisfying the appropriate axioms. The two kinds of theories are again in
one-to-one correspondence $*—H* via:
H(X, 4) = BNX/4), H"X, %) = (X, {%});
(X, A) = — H»(h) 0 a*(4),
where h: X/A—SA is canonical;
o"(X) = — 510 H™(p),
where 8: H*(X, {xo})—H"+'(TX, X) is the coboundary operator of the
cohomology sequence of (TX, X, {x0}), and p: (TX, X)—(SX, {x0}) is the

identification map.
Let E be a spectrum, X E®,. Let

H™(X; E) = =_.(F(X, E)).
If f: X—Y is a map, then the maps F(f, 1): F(Y, Ex)—>F(X, E.) are easily
verified to define a map f': F(Y, E)—>F(X, E). Let
B™(f) = fs: =_o(F(Y, E)) = 7_n(F(X, E)).

Clearly A» is a contravariant functor.
Let X €®,. Define ¢7(X): A+ (SX; E)—H"(X; E) to be the composition

rors(FSX, B)) % n s(OF (X, B)) S r_o(F(X, B))

where {: F(SX, E)—QF(X, E) is the isomorphism given in §4, Example 6,
and o is the isomorphism of §4. Clearly ¢* is a natural isomorphism.

We omit the proofs of the following statements, which are analogous to
(5.2), (5.6), and (5.7).

(5.10). For any spectrum E, $*(E) = { A~ a”} is a generalized cohomology
theory on ®,.

(5.11). The coefficient groups of $*(E) (and of $*(E)) are given by

H"(P; E) ~ H*(S°; E) = 7_,(E).

(5.12). If I1 is an abelian group, then H*(K(II)) is the (unique) cohomology
theory on ® with coefficients in II.
Of course, (5.12) is well known.
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We now give an alternative description of the generalized cohomology
groups which will be useful in subsequent calculations. We have

A*(X; E) = =_.(F(X, E)) = li:n Ti—n(F(X, Ex)) = lim wy(F(X, Eg1n)).

Now
7((F(X, Eqin)) = [S% F(X, Ega)] = [X N\ S Egrn] = [S9X, Egua),
so that
H"(X; E) = liqm [SeX, E,pn)].

Thus an element of H,(X; E) is represented by a map of S2X into E,,,. One
can verify that the homomorphism [S1X, E . ]—[S9*'X, E 4ns1] which cor-
responds to the homomorphism 7 (F(X, E44n)) =T e41(F(X, Eg4ns1)) of the
direct system for 1r_,.(F(X E)) is the composition

(SO, Eyya] 2 [S1X, SEgra] 225 [, Eqpusal;
i.e., if f: S<X—E,., represents < H*(X; E), then so does €g4n 0 Sf: STHLX
—E g4ns1. Moreover, if g: Y—X is a map, then A*(g; E)(a) is represented by
f08%: S9V—Ey,. Finally, if f: S4(SX)—Eay 411 represents a€ H*+\(SX; E),
then f represents (— 1)”+10"(X E) (a)EH"(X E).

As the notation suggests, A, and H" are really functors of two variables.
For example, let X be a fixed space € ®y and let g: E—F be a map of spectra;
then the maps gr A\l: EEAX—F; AX are the components of a map g/A1:
ENX—FAX, and thereby induce a homomorphism

H.X;8): H.(X; E) - H.(X; F).
The reader may verify that

(5.13). If f: X—>Y is a map in @ and g: E—F is a map of spectra, then the
diagram

. H.(X;8) _

€H(f;E)|  _ LB.(f; F)
~ H.(Y;8)
B.(V; E)—/—5 H,(YV; F)

is commulative.
(5.14). If g: E—F is a map of spectra, then the diagram

A.(X;E) X8 g)—> H.(X; F)

ou(X; E) | L on(X; F)

~ Hn+l(SX;g) ~
Ho1(SX; E) ——— Hai(SX; F)
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1s commutative.

Similar results hold for cohomology. But we shall not pursue this subject
further.

In what follows, if E is a spectrum, $(E) and $*(E) will be the generalized
homology and cohomology theories on ® which correspond to the ones we
have defined on ®,. We shall make the customary abbreviations: e.g., f« for
H.(f; E), 9 for 3.(X, 4), etc.

REMARK. Homology and cohomology theories are really defined on the
suspension category $®,. We have preferred to work in ®, (or ®) since the
axioms are normally formulated there.

(5.15). If XE®o and X is acyclic (over the integers), then, for any spectrum
E, H(X; E)y=H«X; E)=0.

For SX is simply connected and therefore contractible; hence H,,1(SX; E)
= H+1(SX; E) =0 for all q. Since o4 and o* are isomorphisms, the conclusion
follows.

COROLLARY (5.16). If X, ¥, and f: X—Y are in ®, and if fu: H(X; Z)
=~ A ,(Y; Z) for all q, then, for any spectrum E, fo: H (X ; E) ~ H,(Y; E).

6. Products. In ordinary homology theory, a pairing 4 ® B—C of coeffi-
cient groups gives rise to various products. If one studies these products,
one sees that they can be described in terms of a family of mappings
fr.a: K(4, p)ANK(B, ¢)—K(C, p+q). A study of the relationships between
the maps fp,, and the spectral maps suggests a notion of pairing of two arbi-
trary spectra to a third. In this section we define the notion of pairing and
study the resulting products.

More specifically, suppose that A, B, and C are spectra, and that {: (A4, B)
—C s a pairing. The pairing f gives rise to pairings fa: 7,(A) @7 ¢(B) =7 pyo(C)
of their homotopy groups. Now homology and cohomology groups of a space
X are homotopy groups of certain spectra associated with X; accordingly,
we shall associate with f four pairings of such associated spectra. Thus we
obtain four types of products; these are “external” products, analogous to the
cross- and slant-products in ordinary homology theory. “Internal” products
are then constructed by the Lefschetz method [15] (cf. also Steenrod’s ac-
count of Lefschetz’ work in [11]) with the aid of a diagonal map.

Let A, B, C be spectra, and let f,,.: A, ABy;—Cpy 4 be a double sequence
of maps. Consider the diagram (Figure 2) in which the maps A, u are defined
by

MsA(@ADB) = (s ANa) \b,
ks A (@AD) =aA(sNb).

Because of (2.5) we may identify S(4, AB,) with SAA4,/B,; it follows that
N and u are continuous. The maps o’ and §’ are defined to make the two left-
hand triangles commutative; and a,, Bq, ¥p+q are the maps of the spectra
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An+l /\ Bq

Sfr.a Yrt+q

S(4, N\ By) —— SCpiq — Cp+q+l

H J 4 %1

4, A\ B,
TG, N Bt

FI1GURE 2

A, B, C. The three maps fp11,4 0 @, Yp+q © Sfp.a, fo.e+1 © B’ represent elements
0', 0, 0" of the group [S(4,AB,), Cpses1]. We say that the f, ., form a pairing
f: (A, B)—C of A with B to C, if and only if, for each (p, q),

(6.2) 8 =0=(—1)".

ExAMPLE 1. Let A% (=1, 2, 3) be abelian groups, and let A’=K(A4%). Let
h: A'®@ A*—A? be a pairing. Let ;& H?(A}; A*) be the fundamental classes.
Let 5, \igE H?+4(4} \A2; A%) be the A-product of 4 and 42 defined by the
pairing k. Let f, : A;JANA2>A43,, be the map such that fy, (i, ) =i Ad.
Then the maps f,,, define a pairing f: (4!, A2)—A3,

EXAMPLE 2. Let E be a spectrum, and let S be the spectrum of spheres.
Let f,,4: SPAE,—E,,, be the composite

'p—1 'p—2
Squ._e.“_,Sp—xEﬁl f_i‘, . —-)SE,,H_I—GL?_L) Epiq.

Again the f, , are the components of a pairing f: (S, E)—E; we call { the
natural pairing.

Let f},: E,AS*—E,;, be a map representing (—1)?¢ times the element
of the group [E;ASY, E,,,] represented by the map

B, NS - S AE L5 B,

where {: (S, E)—E is the natural pairing (if ¢=0, the set [E, AS9, Epy,] may
fail to have a group structure, but (—1)?2=1; thus the homotopy class of
fpqis uniquely defined for all p, g). Then the f}, define a pairing {': (E, S)—E,
which is also called the natural pairing. (Note that, if E=S, the two natural
pairings coincide, up to homotopy.)

Let f: (A, B)—C be a pairing. Define

Jeat Tpra(4r) ® mor1(Bi) = mprarrrt(Crra)
by
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fea(u ® v) = fiu(u A\ v),
where 4 AvEmptg14+1(4x AB)) is the homotopy A-product of §3. Then

Frasa( ® B1) = furnrs( N\ BuSs)
= (fe.10 (1 A\ B2))#(u N\ Swv)
= (= 1)""*(fi,1:108")(Sz(% A\ 2)) by (3.17)
= (—=1)?(va+10 Sfe,)¥(S1(% /\ v)) by (6.2)
= (=) mrafo.tb( A 9)
= () nn(fia(u ® 1).
Similarly,
fz:+1,z(a:u ® ) = 7:+1(f::,z(u ® v)).

Therefore the homomorphisms

(= 1)7Ye 1t 7pia(42) ® Ter1(B1) = Tprerrs1(Cisd)

commute with the homomorphisms of the direct systems for m,(A), 7 (B),
7p+¢(C) and therefore define a pairing

f*: Wp(A) ® Wq(B) - Wp+q(C)-

For example, let {: (S, A)—A, {': (A, S)—A be the natural pairings, and
let iEmy(S) be the element represented by the identity map S°—.S° Then itis
clear that

(6.3). If vE®W(A), then §«(1Qv) =v=1{4 (v®1).

Let X, YE®,, and let {: (A, B)—C be a pairing of spectra. By (2.9), (2.5),
and (2.10), the operation of forming the /\-product of maps is a map

F(Xa Ap) N F(Y, Bq) —-FXANY, A, N\ Bq);
composing this map with
fod: FX N\NY, A, \ B) > F(X \'Y, Cpyy),
we obtain a map
foui F(X, 45) A F(Y, B) = F(X A\ Y, Cpro).
LEmMMA (6.4). The maps f,, define a pairing
i': (F(X, 4), F(Y, B)) > F(X \ Y, O).

Proof. We must prove that the diagram analogous to (6.1) satisfies the
relations analogous to (6.2); i.e., we must compare the three routes from

S(F(X, A)NF(Y, By)) into F(XA\Y, Cpyq41) suggested by (6.1). Let sES,
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fEF(X, A,), gEF(Y, B,). Then the upper route sends s A(fAg) into the
map hi: X AY—Cpyep1 defined by

Iz A y) = forro(an(s A\ f(2) A g();
the middle route sends it to the map & defined by

R(x N\ 3) = Yprals A (f(2) A g(9)));

the bottom to the map k; given by

ha(x N y) = fp.ar1(f(®) A Bo(s A 8(9)))-

Let j: S—S be a map of degree (—1)?, and let Hy: S(A4, AB)) AI—Cpiqn1
be a map (which exists because of the second of the relations (6.2)) such that

Hy(u N\ 0) = fp1,4(8' (),
Hy((s \ (@ AN B) A1) = Ypia(i(s) N fo.a(a N\ D)).
Define
Hy: S(F(X, A)) A F(Y, B)) N1 F(X A\ Y, Cpiqr)
as follows; if s€S, fEF(X, 4,), gEF(Y, By, t€l, x€X, y€Y, then
(6.5)  Hx((s AU ) A Ay) = Ha((s A (fx) A fO))) A D).

Evidently H,, if continuous, is the desired homotopy. By (2.9), H, is con-
tinuous if the right side of (6.5) depends continuously on the point
(GAGTAD) A N (xAy). Since X, Y, I, S are compact Hausdorff spaces, it
follows from three applications of Lemma 4 of [34] that

(A FX, 4) NF(Y, BN ANDNXANY)
is an identification space of
S X F(X, Ap)) X F(Y,B) XIXXXY.

Hence, it suffices to prove that the right side of (6.5) is a continuous function
of the six variables (s, f, g, ¢, x, ¥). By (2.10), the evaluation maps (f, x) —f(x)
and (g, y)—g(y) are continuous. Since H, is continuous, the result follows.
The proof of the first relation of (6.2) is similar,
We now define three further sets of maps

foai (Ag AX A V) AF(X, B) = Cpg A ¥,
fort (Ap AX)A (BAAY) > Cre AXA Y,
fort FEX A Y, 4,) A (By A ¥) = F(X, Cpi)

as follows.
First, let F,=F(X, B,), and consider the map
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A ANXAYAF> AgAFNANXAY >4, AN FNXNANY

1 1 », 1
_/\_e/l”AP/\Bq/\ Y - (4, \ B) A Y_f—q_/\—)cﬁq/\ Y

in which the first map permutes cyclically the last three factors, the second

and fourth are the natural maps, and e: F;,AX—B, is the evaluation map.

Leth: (A, AXAY)AF—A,NX AY /\F,be a homotopy inverse of the natu-

ral identification. The composition of the above map with % is the map f2,.
Next, consider the map

AGANXABANY > A, ABLAXAY > (A, ABJAXAY

», 1
%cﬁ,/\m\y

where the first map interchanges the second and third factors and the second
is the natural map. Let A': (A,AX)ABAY)2A,ANXAB;AY be a
homotopy inverse of the natural identification. Then f3, is the composition
of the above map with &',

Finally, consider the map

F(X N\ YyAp)/\Bq/\ Y- (FXANY, Ap)/\Bq)/\ Y
—FXANY, ApbANB)NANY—-SF(Y,FX,A, NB)) \Y

F(1
iF(X, Ap/\ BQ)M)) F(X7 CP'HI)’

where the first map is the natural identification, the second is induced by
the map fAb—g, where g(x) =f(x) Ab, the third is induced by the homeo-
morphism of (2.9), composed with the map induced by the “twist” X AV
—YAX, and e is the evaluation map. As before, let A"": F(XA\Y, 4,)
ABANY)F(XANY, A,) AB,/A\Y be a homotopy inverse of the natural
map. Then f}, is the composition of 2"’ and the above map.

LEMMA (6.6). The maps fi, (=2, 3, 4) define pairings
22 (ANXANY,F(X,B) -CAY,
P:(ANX,BAY)2>CAXANY,
f: (F(X A\ Y, A), B A\ ¥) > F(X, C).
The pairings {# give rise, in turn, to pairings
N: B?(X; A) @ H(Y; B) = Hr+(X \ Y; C),
\: B.(X A ¥; 4) ® BY(X; B) - Huo(¥; C),
At Hy(X; A) ® Hy(Y;B) = Hypo(X \ V5 C),
/: BMX A\ Y; A) ® B(Y; B) > B(X; C),

which are analogous to the four standard external products in the usual
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homology theory. Specifically, if u€ H?(X; A) =7_,(F(X, A)), v€ H(Y; B)
=w_,(F(Y, B)), then

uAv=fsu®1) Erp (F(X A Y,C)=B"XA V;C).
If s€H(XNY; A)=m.(AANXNY), wEHY(X; B)=7_o(F(X; B)), then

2w = fa(z ® ©) € mao(C A ¥) = H,_o(V; C).
If s:€8,(X; A)=m,(AAX), wEH(Y; B)=m,(BAY), then

AW = sz ® ) E Tpo(CA XA Y) = B o(X A\ ¥;0).

Finally, if a€CH(XAY; A)=7_.(F(XN\Y, A)), s€H(Y; B)=n,BAY),
then
/2= fa(u ® 2) € T o(F(X, C)) = B (X; ).

We now describe these products in terms of representative maps. First,
let g: S*X—A 44, h: S'Y—By; represent uC H?(X; A), v€ H(Y; B). Then
it follows from the discussion of §5 and the relevant definitions that # Av is
(—1)?tt+b times the element represented by the map

SHXAY)=SFASIANXAYSSFAXASAY

Nk at+l
g——) Apr N\ Bﬁl‘f_‘H—i’ Cotatktls

(6.7)

where the first map interchanges the second and third factors.
Let g:S*"* A, AXAY, h:S'X—B,.; represent zCH, (XAY; A),
wE H4(X; B). Then 2\w is (—1)*@+) times the element represented by the

map
g N1
6.9 Srhtl = SHEASIZ S L AXAYAS S AASAXAY
) 1AEAL et A1
INRAL A B AT I AL o AT,

where the second map permutes cyclically the last three factors.
Letg: S**—A, AX, h: Se+'—B; A\ Yrepresent & H,(X ; A), wE H,(Y; B).
Then zAw is (—1)?! times the element represented by the map

h
SP+q+k+l=Sﬁk/\sq'l-l.&)Ak/\X/\B‘/\ Y__)Ah/\Bl/\X/\ Y

6.7
(6.7a) AaAl

CGuNXAY,

where the second map interchanges the second and third factors.

Finally, let g: S*(X A Y) > Ay and h: St — B; A Y represent
uCHXN\Y; A), s€ H,(Y; B); then u/3is (—1)" times the element repre-
sented by the map
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Sk+¢+l/\X=Sl¢/\Sq+l/\X' lAh/\l

SEANBINYANAX

1 ek,
S AXATABELL A A B o

(6.8a)

where the second map interchanges the second and fourth factors.
It is clear that: _ _
6.9). If p: X—>X', ¢: Y-Y', uc H»(X'; A), vEHY(Y'; B), then
(6 A¥)*(u N\ v) = ¢*u N\ Y*v € Br+(X A ¥; C).
(6.10). If ¢: X'—X,¢: YoV, :€H (X' \Y; A), wEHY(X; B), then
(6 A\ ¥)x2)\w = ¥x(s\¢*v) € H.(¥’; C).
(6.93). If : X—>X',¢: Y-V, s€H,(X; A), wEH(Y; B), then
(D AWz A w) = dsz N\ ¥aw € Hppo(X A\ ¥; C).
(6.10a). If ¢: X'—X, ¢: Y=YV, u€H(XAY'; A), s€H,(Y; B), then
(6 A ¥)*u)/z = ¢*(u/¥x3) € H4(X'; C).

We next consider the behavior of the above products under suspension.
Let

o1: HMSX A\ Y; E)— B*(X A\ ¥; E),

on: H"(X \SY; E)— H(X \ V; E),
or: H(X N\ Y; E) - H,..,(SX A\ V; E),
OR: g,.(X VAN Y, E) d Hn+1(X AN SY; E)

be the homomorphisms induced by the suspension operations in cohomology
and homology, defined in the same way as the corresponding operations of §3.
(6.11). If uc H*(SX; A), vE A«(Y; B), then

cuAv=or(u A1) € HVY(X A V;C).

Proof. Let g: S*(SX)—A 4k, h: S'Y—B,,; represent %, v. Then g: S¥H1X
—A 4k represents (—1)Poc*u. By (6.7), a representative of (—1)?(+Dy Ay is
the composite of two maps; the map SHHHIAXAY into SSASXAS'AY
which sends the point sAtAS AL AXNAYESFASASTIASAXAY into
(A Nx) AEAS' Ay), followed by the map fyik,q+10 (g/\k). From the de-
scription of o* given in §5, the same map represents (— 1)P+etr(atDg}(u Av).
On the other hand, a representative of (—1)?(—1)@—Dtg*y Ay is again
the composite of two maps; the first is the map of SFHHIAX A Y into S¥H1X
AS'Y which sends sAtAS' AL Ax Ay into (s ALAX) A AY AY), and the
second is fpix,¢+10 (g/AR). The map

SANINSNEDSAUNENS
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of Sk+i+1 into itself has degree (—1)% Hence o*u Av and of(x/Av) differ only

in the sign
(—1)HPtE-D@HDrtatp(etd) = 1,

By similar arguments, we have
(6.12). If uE H?(X; A), vEHY(SY; B), then
uNov=(—1)ron( A1) € B+e1(X A\ ¥; ).

(6.13). If s€ H(XN\Y; A), w€ HY(SX; B), then

N\o*w = (—1)"o13\w € H,_...(¥; C).
(6.14). If s€ H. (X NY; A), wE HY(X; B), then

ox(3\w) = ors\w € H,_11(SY; C).
(6.11a). If s€ A, (X; A), wEH(Y; B), then
o2 A w=0o1(z \w) € Hppots(SX A\ 7; C).
(6.12a). If s€ H,(X; A), wEH,(Y; B), then
2N\ axw = (—1)?0r(z A\ w) € Hpperri(X A SY; C).

(6.13a). If uc H*(X N\SY; A), s H,(Y; B), then

u/oxz = (—1)opu/z € B1(X; C).
(6.14a). If u€ H*(SXA\Y; A), 3€H,(Y; B), then

o (u/2) = aru/zs € H—1(X; C).

As a special case of the \-product, we have the Kronecker index, defined
as follows. The \-product defines a pairing

ﬁn(X NS’ A) ® ﬁq(X; B) — gn—c(so; C) = my(C).
Identifying X with X AS° as in (2.13), we obtain a pairing
H.(X; A) ® BY(X; B) = m,_4(C).

If ucH,.(X; A), Ww €EHY(X; B), let (u, ') be the image of #®u«’ under the
above map. Evidently:
(6.10b). If ¢: X'—X, uE H,.(X'; A), w €EHY(X; B), then

(4’*”) “’> = (u’ ¢*u,) € 7"n—qz(C)-
(6.13b). If u€ H,(X; A), W' €H«(SX; B), then
(u, o*u’) = (—1)ost, #') € mn41(C).

Suppose, in particular, that X =5°; then H,(X; A)=m.(A), HY(X; B)
=m_o(B), and it is clear that, with these identifications, (%, #')=fx(¥ Q@u’).
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We now define the “internal” products. It will be more convenient to
phrase the definitions in terms of the “non-reduced” theory. Let (X; X, X3)
be a triad in ®. Then the diagonal map A: X—»X A X, followed by the A-
product of the natural projections m1: X—X/X,, m2: X—X /X, sends X, UX,
into the base-point, and thereby induces the map

A: X/X,U X, > X/ X1 N\ X/X..
If f: (A, B)—C is a pairing of spectra, u€H?(X, X1; A), v€HY(X, X.; B), let
uv v=A8%u /1) € H*(X, X, U X,; C).
Similarly, if s€H,(X, X,\UX,; A), w€H (X, X,; B), let
N w = Av\w € H,_ (X, Xs; C).

Let ¢: (X; X1, X5)—(Y; Yh, Y2) be a map of triads. Then ¢ induces maps
¢i: X/X;—Y/Y;and ¢12: X/ X1\ UX,—Y/V,UY, Moreover, the diagram

A
X/X1U Xz_)X/X1/\X/X2
| 12 L1 A &2
Y/YIU YQT Y/Yl/\ Y/Yz

is commutative. Hence it follows from (6.9) and (6.10) that
(6.15). If uc H?(Y, Y1; A) and vEHYY, Y,; B), then

*(u v v) = ¢*u v ¢*v € Hrt(X, X, U X,; C).
(6.16). If s€EH,.(X, X,\\UX,; A) and vEHY(Y, Y1; B), then
éx2 N v = ¢u(z N ¢*1) € Hayo(Y, ¥2; C).
We now apply (6.11)-(6.14) to obtain formulas for the behavior of the
cup- and cap-products under boundary and coboundary operators. We first
‘prove a lemma. Let (X, 4) be a pair in ®, and let \: X/4—>X\UT4 be a
homotopy inverse of the natural map p1: X\UTA—X/A. Let p.: X\UTA
—S4 be the natural map. Let h=p,0\: X/A—SA4, so that k is a canonical
map. Let : ACX, and let A: X/4A—>X/ANX,A: A—A \A be the diagonal
maps. Let ¢y, ¢2: X/A—S4 AX be the maps defined by
¢ = (h AN 1) o Z:

1
(6.17) ¢2=(1A5)oSAokh

(we are identifying SA AX and S(4 AX) under the natural equivalence).

Then
LEMMA (6.18). The maps ¢1 and ¢2 are homotopic.
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Proof. Since p; is a homotopy equivalence, it suffices to prove that
¢10 p1 and ¢; 0 p; are homotopic. Define d: X\UTA—->(XUTA)AX by

d(x) = x A\
dt Na) =t N\ ai).
The diagram

XUTA-Lb(XUTA)/\X
PN\ 1

N AL SANX
hNA1

X/A——X/ANX

is homotopy-commutative; in fact, the square is strictly commutative, and
(BADe(@r AL =(hop) N1 = (p2odrop) Al=ps A1

since N is a homotopy inverse of ;. Thus we have shown that ¢,0 p; is
homotopic to (p2/\1) o d.
On the other hand,

$20p1=(1A4)oSAohopi~(1 Ai)oSAop:

and one verifies immediately that the latter map is equal to (p./\1) o d.
Let 7: S(ANA)—ANSA be the map which sends s/A(ea/\a’) into
aA(sAa'), and let &’: X/A—X N\X/A be the diagonal map.

LeEMMA (6.18a). The maps ¢1, ¢2: X/A—X NSA defined by
¢r=_1Ahok,
¢p2=(GA1Nor0(SA)ok
are homotopic.

(6.19). Let (X, X1) be a pair in @, i: X, CX, and let u€HP(X,; A),

vEHY(X; B). Then
3(u v i*) = du v v € H*(X, X,; C).

Proof. Consider the diagram (Figure 3; for brevity we have omitted the
names of the coefficient spectra). The diagram is commutative, by (6.9),
(6.11), naturality of ¢*, and finally (6.18), which is used to prove commutativ-
ity of the lower right hand corner (we have again taken the liberty of identi-

fying SX1 A X, with S(X1AX)1)). The image of #®v by the route which goes
along the top and down the right-hand side is —&(#\vi*v); its image under
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o - .
H(x) @ Be(X) 25, pr(x,) @ Hex)—L o Brter(x, A x,)—A-»Hr?-l(xo
*®1 31 o* = o'z‘, o*

B2(SX) ® H«(X)&E»(sx,) ® H«(x,)—/\—.»IZM(SX, A x,)—(‘LA)l Hre(sX,)

AN A
ot ¥ Hoto(SX, A X)
A D? o
Be(x/X) @ BeX)—2> s Brie(X/X, A X) ar N

Fi1Gure 3

the route which goes down the left-hand side and then along the bottom is
—duvy. By commutativity, they are equal.

Similarly, using (6.18a) instead of (6.18), we have

(6.20). Let (X, X,) be a pair in @, 1: XoCX, and let u€H?(X; A),
vEHY(X,; B). Then

(*u v v) = (—1)Pu v v € HrH(X, X2; C).

The analogous results for the cap-product are proved similarly.
(6.21). Let (X, X1) be a pair in @, i: X, CX, and let z€H,. (X, X,; A),
wEHYX,; B). Then

ix(@2 N w) = (=) N dw € Haga(X; O).

(6.22). Let (X, X,) be a pair in @, 1: X,CX, and let zEH,.(X, X,; A),
wEHYX; B). Then

I(zNw) =9z i*w € Ho g 1(Xs; C).

Steenrod [27] has given systems of axioms which characterize cup- and
cap-products in ordinary homology theory; full details were to have appeared
in vol. 2 of [8]. Suppose A, B, Care Eilenberg-MacLane spectra, and the pair-
ing (A, B)—C is that induced, as in Example 1, above, by a pairing of the
coefficient groups 4 ® B—C. Then (6.19), (6.20), and (6.15) become (3.2),
(3.3) and (3.4) of [27]. For the cap-product, (6.21), (6.22), and (6.16) become
(3.7), (3.8), and (3.9) of [27], except for sign; however, if we change the
definition of the cap-product given above by inserting the sign (—1)"¢t¢, our
signs agree with Steenrod’s. Hence

THEOREM (6.23). If A, B, C are Eilenberg-MacLane spectra and f: (A, B)
—C s induced by a pairing A @ B—C of their coefficient groups, then, under the
isomorphisms of (5.7) and (5.12), the cup-product defined above reduces to the
usual cup-product, while the cap-product defined above reduces to (— 1)+ times
the usual cap-product.
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It should be noted that the definition of the ordinary cap-product is not
absolutely standard; for example, Whitney's original definition [36] differs
from ours by the sign (—1)*, where % is the binomial coefficient Cgy1,s.

We now define a second kind of cup- and cap-product. These products will
be used in §7.

Let K be a finite simplicial complex, and let K’ be the first barycentric
subdivision of K. Let L be a subcomplex of K. The supplement [2] L* of L in
K is the subcomplex of K’ consisting of all simplexes, none of whose vertices
are in L', There is a natural imbedding of K into the join of L and L*; the
point xEK is mapped into the point (1—£)y+¢z of the join if and only if x
lies on the line-segment yz and divides it in the ratio ¢: 1 —¢; we shall identify
K with its image in the join. Let

NLD) ={(1-)y+uEK|t=1/2},
NI* = {(1 — Oy + tz| t = 1/2};
then N(L) is a closed neighborhood of L and N(L*) is a closed neighborhood
of L*, K= N(L)\UN(L*). Moreover,

L is a deformation retract of N(L),
L* is a deformation retract of N(L*),
N(L*) is a deformation retract of K—L.

Let M be a subcomplex of L. Then N(M) CN(L), M*DL*, and N(M*)
DN(L*). Hence K is the union of the three sets N(M), N(L*), and
N(LYNN(M*). Moreover, LNM* is the supplement of M in L. Hence we
can define a map A’: K—»N(L)/N(M) AN(M*)/N(L*), called the reduced
diagonal map, by

, w(x) N\ 7' (x) (x € N(L) N N(M¥)),
Alx) = { .
* (xe NM)\Y N(LY),

where m: N(L)->N(L)/N(M), «': N(M*)>N(M*)/N(L*) are the natural
maps, and * is the base-point. Combining A’ with the A- and slant-product
pairings, we define cup- and cap-product pairings

H»(N(L), N(M); A) ® HY(N(M*), N(L*); B) = H**(K; C),
H.(K; A) ® H(N(L), N(M); B) — H.o(N(M*), N(L*); C)

for any pairing f: (4, B)—C of spectra. Specifically, if u© H?(N(L), N(M); A),
vEHY(N(M*), N(L*); B), 2zEH,.(K; A), wcHY(N(L), N(M); B), let

u v = A*u A\v),
2N w = AJ2\w.

Since the inclusions (L, M) C(N(L), N(M)) and (M*, L*) C(N(M*), N(L*))
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are homotopy equivalences, we may regard these products as pairings
H*(L, M; A) ® H(M*, L*; B) — H»(K; C),
H.(K; A) ® H(L, M; B) = H,_,(M*, L*; C).
Note that, if K=L and M=, these products agree with the earlier ones.
We now prove three lemmas which will establish properties of the cap-

product useful in §7. The first two are easily verified; we prove only the third
in detail.

LEMMA (6.25). Let LiD Ly D L; be subcomplexes of K. Let
612 N(L2)/N(Ls) = N(L1)/N(Ls),
i*: N(L&)/N(L¥) — N(L#)/N(L?)
be the maps induced by the appropriate inclusions. Then the diagram

’

K - s N(L)/N(L) A N(LE)/N(L?)
Al a1l
N(L)/N() A RED/NELE) 17z NE)/NED ANELD/NLD)

(6.24)

is commutative.
LEMMA (6.26). Let LiDL:DL; be subcomplexes of K, and let
i2: N(L)/N(Ls) — N(L,)/N(L),
id: N(L¥)/N(L#¥) — N(L¥)/N(L¥)
be the maps induced by the appropriate inclusions. Then the diagram

’

K - s N(L)/N(L) A N(LE)/N(L?)
Al lia A1
N(L)/NED A NED/NL - N)/NE) A NELD/NLS)

is commutative.
LeMMA (6.27). Let LD L, be subcomplexes of K. Let
k: N(L,)/N(Ls) — SN(L,),
k': K/N(L¥) - SN(L$)
be canonical maps, and let w{: N(L¥)—N(Ls)/N(L¥) be the identification

map. Then the diagram (Figure 4) in which T interchanges the first and second
factors, is homotopy-commutative.
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K —2  va) AR 2E vy Asvad
1 1 A Shs
A N(L) AS A N(LE)/NL#
|
l T
N(L)/N(L) A NL/NLE) e +§ AN(L) ANIY)/NLY)
FIGURE 4

Proof. It suffices to prove that this is so for particular canonical maps,
which we now construct. We first describe a homotopy

Q: K X I— K\U T(N(Ls))

of the inclusion map which shrinks N(Lj;) to the vertex of its cone. Let
x=(1—8)y+iz with yEL,, s€LS¥; if 0<t<1, let £=1/2y+1/22. Then

1-9)Ax= ' (0 =£¢t51/2),
@—-1—-5)ANz% (1/2=st=(s+2)/9),
O® ) =14~ it sy + (- 5/ (+2/4s1t53/8),
(I+s—t—st)y+(st+t—9)s @B/4=st=1).

Note that the points of Ly* are stationary. Let Q; be the end-value of the
homotopy, so that Qi: (K, N(L:))—(K\JT(N(Ls)),»). The induced map
Qf{:K/N(L;)>K\JT(N(L,)) is a homotopy inverse of p: K\JT(N(L,))
—K/N(L;), and therefore the composition of Qf with the projection
pa: KUT(N(L;))—>SN(L,) is a canonical map ko. Explicitly, if r: K—K/N(L,)
and p: T—S are the identifications, then

* ift=1/2,0rt = 3/4,
batrta) = { .

pat—2) N\ x if1/2 <t < 3/4
Note that, since L;DL., the above deformation leaves N(L;) in N(L:)
UTN(L,). Hence k=ko| N(L,)/N(L,) is also canonical.

A similar construction, with the roles of L; and L interchanged, shows

that a canonical map &': K/N(L#)—SN(L$) is given by
. ifts1/4,0ort 2 1/2,
P4 —1) A= if1/4 2t 1/2,
where n': K—K/N(L3) is the identification map.

Now consider the two maps ¢1, ¢2: K—SN(Ly) AN(L#)/N(L{¥) which are
to be proved homotopic. If x©€N(L;), then

¥ = {
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* (t<1/4,0rt21/2),
P(‘H—l)/\x/\r{(:i) (1/4§t§1/2);

if x€EN(LF), then ¢s(x) =4« and t=1/2; hence (6.28) holds for all xEK.
Similarly, if xEN(L,)NN(L),

* t=1/2,0rt = 3/4),
pdt — 2) Nz A\ 7 (x) (1/2 2t = 3/4);

if xEN(L,), then ¢u(x)=x and t=1/2; if x€EN(L#), then ¢s(x) =4+ and
w1 (x) =x; hence (6.29) likewise holds for all x€K.
Define ¢: K—SN(L,) AN(L#)/N (L) by

6.28) i) = {

6.29)  éula) = {

* (¢t S 1/4,0r¢t = 3/4),
¢(x) = {p(2t — 1/2) A{(5/4 — D)y + (¢ — 1/9)3}
Axi{(3/4 =y + ¢+ 1/4)z} (1/4 St < 3/4).
The homotopy ® defined by
* (t=1/4,0rt 2 (s+ 3)/4(s + 1)),

P = DG+ 1/ A {1 =14+ (1 = /4y + ¢ = (1 — $)/4)3)
AT{1/2 = ¢ = /90 = 9y + (1/2+ ¢ = 1/H(1 = 5))2}
(1/4st= s+ 3)/4(s+ 1),
deforms ¢ into ¢;. A similar homotopy deforms ¢ into ¢..
The basic properties of the cap-product needed in §7 can now be estab-
lished. Let Ly DLsDL;s be subcomplexes of K. Let {: (A, B)—C be a pairing

of spectra, and let 2&E H,.(K; A). We consider the cap-product as a pairing
of the form (6.24). Consider the diagram

B(x,5) =

o o,
8
ce s Ho(Ly, L) —2 B(Ly, L) — 2 YLy, L) ——— HY(Ly, L) — - - -
(6.30) lam o lsm i lsm lsm
R d Hu-q(Lt*) Ll‘) _’_' HH(L: ) Ll‘) —l_’ HH(L:: LZ*) — Hﬂ-(—l(L2‘) Ll*) L

in which the upper row is the cohomology sequence of the triple (Ly, L,, Lj)
with respect to B, while the lower row is the homology sequence of the triple
(L&, L, L¥) with respect to C.

THEOREM (6.31). The two left-hand squares of the diagram (6.30) are com-
mutalive; the third is commutative up to the sign (—1)"+1,

Proof. Let wE He(N(Ly), N(Ly); B). Then
2N ifw = AdA\idw = (52 A\ 1)2Ad 5\w by (6.10),
iox (2 N W) = o (A¥ 2\w) = (1 A\ i{)sAd 2\ by (6.10);

the equality of these elements follows from Lemma (6.26).
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The commutativity of the middle square follows by a similar argument
from Lemma (6.25).
The third square breaks up into two parts:

. )
H(Ly, L) ——— Ho(Ls) —— HY(Ly, Ly)

(6.32) lan ., lzn lan
Ho (L2, L) 25 Ho (K, L) —— Huga(Li, L)
where j: N(L;)—>N(Ly)/N(Ls) and j': N(L¥)/N(L¥)—K/N(L¥) are induced
by inclusion maps. The left-hand square in (6.32) is the left-hand square in
the diagram analogous to (6.30) for the triple (L., Ls, &) and is therefore
commutative. The right-hand square in (6.32) is the right-hand square in
the diagram analogous to (6.30) for the triple (L, Ly, &). Hence we may
assume L;= . Let w€HY(N(L:); B). Then
—z3Ndw = z N k¥ lw = A \k*e*w
= (k A 1)s0d \o* 0 by (6.10)
= (=1)™17 (k A Dadd 2\w by (6.13)

where k is a canonical map as in Lemma (6.27). Also

—3(z N w) = — 0(As2\w) = Taxo—ex(Anz\w)
= w0 (1 A B)sdis\w) by (6.10)
= mia(or (1 A\ &)x0s2\w) by (6.14)
= (1 A 7d)sor (1 A )l 2\w by (6.10)

= o2 (1 A Std)s(1 A ¥)eld 2\w
= oz (1 A Sr)a(1 A E)eAd 2\

By Lemma (6.27), we have
Az N w) = (-1 N dw,

CoRrOLLARY (6.33). If Ly, My, Ly, M, are subcomplexes of K such that
L13M1UL2, MlanDMz, and 'l:f 1: (Lz, Mz)C(Ll, Mx), ‘i': (Ml*, Lf‘)
C(M%, LY), then the diagram

,i*

H"(Ll, Ml) —_— H“(Lz, Mz)
lan | Lan
1.
Ho_o(M¥, L¥) —— H,_(M#, L)

is commutalive.
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For ¢ can be decomposed as the composite (Ls, M3) C (L1, M) C(Ly, M)
and the diagram is the composite of two diagrams, each of which is com-
mutative, by Theorem (6.31).

7. Duality theorems. Our objective in this section is to prove duality
theorems of Poincaré and Alexander type. The Alexander duality theorem is
found to hold for subcomplexes of a sphere, without restriction on the spec-
trum involved. On the other hand, the Poincaré duality requires some hypoth-
eses on the manifold or on the spectra; the class of manifolds for which Poin-
caré duality holds for arbitrary spectra is characterized; it properly contains
the class of II-manifolds.

Throughout this section we fix a spectrum A, together with a pairing
f: (A, A)>A and a map g: S—A. Let §: (S, 4)—A, §': (A, S)—A be the
natural pairings. Let 4,Em(S) be the element represented by the identity
map S°—.S°, and let ¢ = g#(1,) Emo(A). We assume

(7.1). The diagram

Al 1N
S?P A\ A, "g'l"_"Ap AN Aq‘—'ﬁ—Ap N\ Sq
hy.q fra h;.q
Apiq

is commutalive.

It follows easily that

(7.2). If uEmo(A), then x(1Qu) =fa(u®1) =u.

Examples of such spectra are S, U, and K(4), where 4 is a ring with
unit.

A spectrum B, together with a pairing g: (4, B)— B, will be called an
A-module if and only if the diagrams

S? \ By ———— A N\ By

\/

are commutative, f= {k,,,} being the natural pairing (S, B)— B.

As before, we have easily

(7.3). If uEmy(B), then g+(:Qu) =u.

Note that every spectrum may be considered as an S-module. If 4 is a
ring with unit and B is a left A-module, then K(B) is a K(4)-module.

REMARK. We may assume that S is a subspectrum of K(Z). If Bis a
spectrum, one may ask whether the natural pairing (S, B) can be extended
to a pairing (K(Z), B)— B; if this is so, then B is a K(Z)-module. Suppose
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Bis a K(Z)-module which is a convergent Q-spectrum; then, if % is sufficiently
large and / is fixed, the homomorphism

Hoi1i(Bi; 2) = wasnst(K(Z, k) N\ B) LLIN Tarki1(Bir) = mapi(B1),

is a left inverse of the Hurewicz homomorphism 9: 7y 1(Bi)— Hayi(Bi; Z). It
follows from an argument due to Moore [22, Theorem 3.29] that the k-
invariants of B; vanish; hence B is essentially a product of Eilenberg-Mac-
Lane spectra.

By n-manifold we shall mean a compact connected triangulated space K
which is a homology #-manifold in the sense that K has the same local ho-
mology groups, at each point, as an n-sphere. Let K be an #-manifold.

By the Hopf theorem, H*(K; S) ~ H*(K; Z); let 2 EH"(K; S) be & gen-
erator, and let 2’ = H"(K, §)(z¢) EH"(K; A).

We say that K is A-orientable if and only if there is a class zEH.(K; A)
such that

(2, 2') = i € mo(A).
Such a class z is called a fundamental class.

THEOREM (7.4). Let K be an A-orientable n-manifold and let zEH,.(K; A)
be a fundamental class. Let L and M be subcomplexes of K such that LD M.
Then, for any A-module B,

(7.5) ZN: HY(L, M;B) = H,—(M*, L*; B) for all g.

Proof. The proof proceeds in four steps. In the first, we show that (7.5)
holds when L is a vertex and M= . In the second, we prove (7.5) when L
is a simplex of K with boundary M. We then show that (7.5) holds when
(L, M) is replaced by (L,, L,-1), L, being the union of M with the p-skeleton
of L. The general result is then achieved by a standard kind of spectral se-
quence argument.

Step 1. Suppose that L is a vertex, M =. Then M*=K, and L* is the
complement of the barycentric star of L. It follows that K/L*, and therefore
also K/N(L¥*), is a homology n-sphere. The constant map k: N(L)—L is a
homotopy equivalence; composing A’: K—»N(L) AK/N(L*) with AA1, we
obtain a map A”: K—LAK/N(L*) homotopically equivalent to A’. Now
LAK/N(L*) can be identified with K/N(L*); under this identification, A"
becomes the identification map p: K—K/N(L¥*).

Since K is a manifold, K/N(L¥*) is a homology n-sphere, and it follows
that, for any spectrum C,

B(K/N(L*); €) = Hy(S"; C) = He-n(S% C) = men(C).

We proceed to make this isomorphism explicit.
Let j: S—=K(Z) be the natural map. Then the diagram
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Av(K/N(L%); ) 3> B(K/N(L¥); 2)

el
B K; §) —2— Bv(K; 2)

is commutative and, bz the Hopf theorem, both homomorphisms ji are iso-
morphisms. Since p*: H*(K/N(L*); Z)—H"(K; Z) is an epimorphism, so is
p*: H(K/N(L*); S)—H"(K; S). Choose a class z{ € A*(K/N(L*); S) such
that p*(z{) =2/ .

Let h: K/N(L*)—S" be a representative of z{. Then it is clear that
he: H(K/N(L*); Z) =~ Hy(S"; Z) for all . By (5.16),

he: H(K/N(L*); C) = Hy(S"; )

for all ¢ and for every spectrum C.

The iterated suspension o™: H,_,(S°; C)—H,(S*; C) is an isomorphism
for all ¢, C. Hence

¢ = 0i" 0 hy: Hy(K/N(L*); C) = H,_n(S°% C) = ma(C).

Consider the diagram

H.(L \ K/N(L*); A) ® H(L; B) l» H,_(K/N(L*); B)
)
H.(K/N(L*); A ® HY(L; B) ¢
@1 | !
10(A) ® m_o(B) ; > 7—q(B).

(The unlabelled arrow is induced by the natural identification LAK/N(L*)
=K/N(L*).) We claim that this diagram is commutative. In fact, the dia-
gram can be enlarged to the diagram (Figure 5). Using (6.10) and (6.14),
we see that the upper parts of the diagram are all commutative, and it
suffices to verify that the lower region is commutative. But this is immediate,
from the definitions of the slant product and gs.

This being so, it remains to verify that ¢(ps(2))= 4. For then, if
w €HY(L, B), we have

o(z N U) = ¢(Ax"2\U') = gu(d(ps2) ® W)
=+t Qu) =%,

and therefore 2z~ is an isomorphism with inverse +¢.

Now ¢(px(2)) =0%"hap«(3), and
1= (Z, Z') = <Z, g*(zol)> = <z7 g*P*zl' >'
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B (k/N(1%; 4) © Ho(L; B — (L AK/N(); 4) © He(L; B) ~ Hy ((K/N(2); B)

x®1 AARx®1 hx
I?»(S"; A) @ He(L; B) ¢#—— ): 44 AS*; A) @ He(L; B)—\-»ﬁ,,_,(s»; B)
o ®1 or®1 o
\

Hy(s%; A) ® Hy(L; By e—— Hy(L A S 4) ® HY(L; B)———— H_;(5%; B)

%0(A) ® 74(B) ———————— x(B)
53
FIGURE §

Let 2{ =h*'(z{ ) E H*(S*; S); thus
i = (s, §ap*W*2i ) = (2, p*I* a2t ) = (hapas, xzi)

by (6.10a) and the analogue of (5.13) for cohomology. Now 2; generates the
infinite cyclic group H»(S*; S) and therefore zy =o*"z{ generates H(S?; S)
=1o(S); thus z5 = +4,. Hence

i = 1 (hapsz, §x0* o) = L (hxpsz, * "gyio)
=+ <¢'*_”h*P*z, 7’) = & (¢(I’*(z)), t)
by (6.13a) and the analogue of (5.14) for cohomology. But clearly

(6(p+(2)), 5) = Tx(8(p(2)) ® ©) = ¢(px(2))

by (7.2). This completes Step 1.

Step 2. We next prove, by induction on p, that (7.5) holds whenever L
is a p-simplex of K and M =1L. We have already proved the case p=0. As-
sume that (7.5) holds for all simplexes of dimension less than p, and let E
be a p-simplex. Choose a (p—1)-face F of E and let F’ be the union of the
remaining (p—1)-faces, so that E=FUF', F=FNF. It follows(®) that
E*=F*NF'* F*=F*UF'* Let k:(F, F)C(E, F) and k:(F'* E¥
C (F*, F*) be the inclusions. The diagram

%

) k .
HYE, E; B) «—— H"Y(E, F'; B) — H«\(F,F;B)
—sn | ) Lan , Lan
H,_(E*, E*; B) —— H,_g41(F"*, E*; B)—— Hy_q4:(F*, F*; B)

is commutative, by Theorem (6.31) and Corollary (6.33). Now 4 is an iso-
morphism, since F’ is a deformation retract of E, and k*, ky are isomorphisms

(%) It is easily verified that if L, M are any subcomplexes of K, then (L\J M)*=L*"\ M*
and (LN M)*=L*U M*.
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by the excision axiom. The right-hand 2" is an isomorphism by induction
hypothesis. Therefore, it suffices to prove that 8 is an isomorphism, i.e., that
Hy(F'*, E*; B)=0 for all k. It suffices in turn, by (5.15), to prove that
F'*/E* is acyclic (over the integers). Now F'*=E*UD(F), where D(F) is
the dual cell of F; and E*ND(F) is the closure of the complement of D(E)
in the boundary D(F) of D(F). But D(F) and D(E) are acyclic, and D(F) is a
combinatorial manifold which is a homology sphere; by the Alexander dual-
ity theorem, E¥MD(F) is acyclic. Hence D(F)/E*N\D(F)=F'*/E* is acyclic.

Step 3. Let L, M be subcomplexes of K such that LOM. Let E,, - - - , E,
be the p-simplexes of L — M ; then

» =LtV U E,
(7.6) EiNL,,=E, =
E;NE; C Ly if 4 # j.
Hence
L¥=LX,N N E¥
(7.7) EXULr, =Er,
EXUEDO L}, if 1 # 4.
Let ji: (Es, E;)C(L,, L, 1), and let j!:(LX., LX) C(E¥*, E¥). Since (7.6)

holds, it follows from the direct sum theorem [8, III, 2.3c] that the homo-
morphisms

j*: HY(Ly, Lys; B) — HY(E;, Es; B)

form a projective representation of H%(L,, L,_; B) as a direct sum. (Observe
that the proof of the direct sum theorem does not use the dimension axiom.)
A similar argument shows that the homomorphisms

Jixt Huo(L¥ s, L¥; B) — H,_(E¥, E¥; B)

form a projective representation of H,_o(L,%1, LY¥; B) as a direct sum. By
Corollary (6.33), the diagrams

y %
HY(L,, Ly-; B) > He(E;, E:; B)
lam , lan

Haeo(Lits, L B) 2% H,_o(E?, EF; B)

are commutative, and the truth of (7.5) for the pair (L,, L,—1) now follows
from Step 2.
Step 4. We can now prove (7.5) in general. We have

L=L,DLsaD---DLiDL,=M,
M*=L-1*DL0*D"'DL:=L*’
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while L,=L if p>n, L,=M if p<0, L}¥=L*if p>n, L¥=M* (p <0). The
above filtrations give rise to two bigraded exact couples

€ = (D, E; i, j, 8), *C = (*D, *E; *i, %, 9),
where
Dre = Hvto(L, L, ,; B), *Dra = H, , (LX, L*; B),
Er¢ = H**(L,, Lys; B), *Er? = Hyp oLy, Ly*; B)

while the sequences

1 ] 8
«o— Drtlel Dp.q...]_) Era—y Drtla_5 ..
*,i *j F]
co—¥Drptle-l L, *¥Dpa_"y ¥Fra 3 ¥Dptla ...

are the cohomology and homology exact sequences of the triples (L, L,, L,_1)
and (L%, L}, L*) respectively. Let §,, *€, be the (r—1)st derived couples,
and let d,, *d, be their derived operators.

Note that Dra=*Dr.e=0 if p >n, while E»¢=*E?.¢=0 if p <0 or p >n.
It follows by standard arguments (cf. [31, §4]) that EP*=E?%¢ and *E?*
=*E?¢ provided that r=2max(p+1, n—p+1). Moreover, let J?:¢ be the
image of the injection

Br+(L, L,; B) — H**(L, M; B)
and let *J7-? be the image of the injection
H, ,o(L}ry, L*; B) > H. , (M*, L*; B).

Then

Dr = Hr(L’ M; B) = Jo.r D Jl,r—l D e D Jn.r—n D Jn+l,r—n—l = 0,

*Dr.o - H’._'(M*’ L*; B) — *Jo,r D *Jl,r—l D « e e D *Jn,r—n D *Jn+1,r—n—l
=0,

and

E:.q ~ Jp.q/Jﬁl.q—l’ *E:.q ~ *Jp.q/*

Thus the spectral sequences associated with the couples €, *€ converge in a
strong sense.
Define ¢: D—*D, y: E—*E, by
¢(W) = (— 1) (n+1) (P+q)z N w (w e DP:C)’
¢(w) = (—1) (""’1)(?‘*‘4)5 N w (w e EP'CI);

it follows from Theorem (6.31) that (¢, ¥) is a map of € into *G.
By Step 3 of the proof, y: E?.¢—*E?.? is an isomorphism, It follows that

1,g-1
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Y,: EP® = *EM for all r, and therefore that y,: E%? = *E%°,

The map ¢: D7%—*D0 maps J?? into *J?'¢ and the induced homomor-
phism of Jr.¢/Jrtle—Linto *Jr.e/* Jr+l.a-ligy . Hence it follows by an induc-
tive argument, starting with ¢: Jrtlrn—lo¥ Jadlr—n—1 that ¢: Dr0
=H"(L, M; B) ~H,_,(M*, L*, B)=*Dr% This completes the proof.

COROLLARY (7.8) (POINCARE DUALITY THEOREM). If K is an A-orientable
n-manifold, and :E H,(K; A) is a fundamental class, then, for any A-module B,

zN: H(K; B) =~ H,_,(K; B).

Suppose now that A = S. Let f: S— K(Z) be the natural map. If
2E€H,(K; S) is a fundamental class, so that (z, 2’ ) =4,Em(S), then

(i) = fx(3, 7') = (fuz, fud) = (faz, 50 ) € m(K(2)) = Z,

and since fx(%o) is a generator and the Kronecker index reduces to the usual
one, we see that K is orientable and fxz is a fundamental class with integer
coefficients. Hence the homomorphism

fsy: H,(K;S) > H,(K; Z)

is an epimorphism. Conversely, if K is orientable and f4 is an epimorphism,
it is easy to see that K is S-orientable,

Let xo be a base-point in K. Then H,(K; S) is the nth stable homotopy
group Z,(K), and it follows easily that K is S-orientable if and only if the
Hurewicz homomorphism Z,(K)—H,(K) is an epimorphism. Suppose that
K is differentiable; then a recent result of Milnor and Spanier [20] shows that
K is S-orientable if and only if its stable normal bundle is fibre-homotopically
trivial. It follows that every II-manifold in the sense of Milnor [19] is S-
orientable. Clearly every II-manifold in the sense of J. H. C. Whitehead [33]
is S-orientable.

If K is S-orientable, we have seen that Poincaré duality holds for arbi-
trary spectra. Moreover, once a fundamental class has been chosen, the
duality is natural (for maps of spectra), i.e., if h: B—C is a map of spectra,
then

hy(z N u) = 3N ha(u)

for all uEHYK; B).
Conversely, we have
(7.9). If K satisfies Poincaré duality naturally, i.c., if there exist natural
isomorphisms
Pq: Hq(K, ) = Hn—q(K; )

over the category of spectra, then K is S-orientable.
Proof. The diagram
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H(K;S) ﬂ» H.(K;S)

fx fx
w2 " E, 5k, 2)

is commutative. To show that f«: H.(K; S)—H,.(K; Z) is an epimorphism,
it suffices to show that fix: HY(K; S)—H*K; Z) is an epimorphism. Let P
be a point, g: K—P. Then the diagram

xo(S) = H(P; S) Et H(K; S)
L fx o L £
no(K(Z)) = H'(P;Z) = H'(K; Z)

is commutative. But fi: mo(S) =7(K(Z)) and g*: HY(P; Z) =H'(K; Z).
Hence fy 0 g*: mo(S) = H(K; Z) and it follows that fyx is an epimorphism.
Another consequence of Theorem (7.4) is

CoROLLARY (7.10). If K is a proper, nonempty subpolyhedron of S* and if
K'CS*—K isan (n—1)-dual(®) of K, and x,, xJ are base-points of K, K', then

H(K;B) =~ H, 1(K'; B)
for any spectrum B.

Proof. We can find a triangulation of (S*, K) so fine that K’ is contained
in the supplement K* of K in S" relative to this triangulation. If ¢: K' CK*,
then

ix: Hu(K') =~ Hu(K*)
for all &; it follows by (5.16) that
ix: Hy(K'; B) =~ Hi(K*; B)
for any B. By Theorem (7.4), with K replaced by S* (note that S* is S-
orientable)
HY(K, %o; B) =~ Hao({0}*, K*; B)
=~ H, . 1(K*, z; B)

where xg is a base-point of K*.

We conclude with a remark which was suggested to us by J. H. C. White-

head. It is known(?) that the Hurewicz map Z,(X)—H,(X) is a @-isomor-
phism [24], where @ is the class of torsion groups. Hence if K is an arbitrary

(%) n-dual in the sense of [26].
(7) A proof of this fact can be found in the mimeographed notes Lectures on characteristic
classes by John Milnor (Princeton, 1957), p. 108, Lemma 9.
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orientable manifold and if 2EH,(K; S) does not belong to the kernel of
fs, the entire proof of Theorem (7.4) can be reworded in terms of @-isomor-
phisms and we have

(7.11). If K is a compact connected orientable triangulable n-manifold, then
there is a class s€ H,(K; S) such that

z": H(K; B) = H,—(K; B)

is an isomorphism modulo the class of torsion groups.
8. Brown’s theorem. In this section we outline a proof of the following
theorem.

THEQREM 8.1. Let § be a homology theory on ®, and suppose that the
groups H,(S) are all countable. Then there is an Q-spectrum E and a natural
isomorphism _ ~

T: 9(E) = 9.
Moreover, E is unique in the sense that, if E' is an Q-spectrum and
T': $(E) ~ §
is @ natural isomorphism then there is a map
f: E>E
such that each fq: Eq—E] is a homotopy equivalence.

This theorem is the analogue of one proved by E. H. Brown [4] for co-
homology theories. The proof consists of constructing a cohomology theory
©*, using the duality theory developed by Spanier in [25]. Brown’s theorem
then provides a natural isomorphism T*: §*(E) ~§*. Using duality and the
slant-product of §6, we then construct T': $(E)—. We assume familiarity
with Spanier’s paper. (Caution: Spanier defines SX as X AS, rather than
SAX, but this does not affect the arguments.)

Let XE®, and let u: Y AX—S* be a duality map [25, §5]. Let T',(x)
=H, (V). If w': Y AX—>S™ is also a duality map then there is a unique
S-map a€{Y, Y'}._. such that, if % is sufficiently large and f: StV
—Sk+n—mY’ is a representative of a, then the diagram

SFY N\ X
Stu
f/\ 1 . Sn+k

P
| / Skt+n—my,’

Sk+n-myl /\ X

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1962] GENERALIZED HOMOLOGY THEORIES 279

is homotopy-commutative ([25, (5.11)]; if k=m —n = 0, then
a = D,, Stu){1} € {StY, Y’} = {Y, V'},, and if k<O, then
a=D.(S*u, u){1 }). Define y(u, «'): T'(u)—>T'(«’) to be the homomorphism
ox: B o(Y)—> Huo(Y’) induced by a. (Note: as is the composition

k m—n—Fk
H n—q( Y) 'l’ n—q+k(Sk Y) A n—q+k (SH'"_" YI) 2——’ ﬁ m—q( Y,) )

Then it is easy to verify that
v(u, u) = identity,
v, u") o v(u, ') = y(u, u")

for any three duality maps %, ', »'’. Thus the groups I';,(#) and homomor-
phisms v (x, #') form a transitive system in the sense of [8, p. 17]; accordingly
we may define H¢(X) to be the unique group associated with this transitive
system.
Let f: X—X’ be a map in ®,. Choose duality maps

u: ¥ ANX -8,

w: V' N\ X — S,
If aE{X, X’} is the S-class of f, let B=D.(u, u’)aE{ Y, Y}. It is easily
verified, using [25, (6.3)] that the homomorphism

He(f): H(X') — HY(X)

corresponding to Bx: Hn_o(¥Y")—H,_(Y) is independent of the choices of the
duality maps, and that H¢: ®— @ is a contravariant functor. Since 8 depends
only on the S-class of f, the homotopy axiom is satisfied.

Let XE®,, and let u: Y AX—S" be a duality map. Then the map

Su
YFASAX-DSSAYANX— S,
in which the first map interchanges the first two factors, is a duality map
v: ¥V A SX — S+,

It follows from [25, (6.2)] that the homomorphism of A(X) into He+!(SX)
induced by the identity map of T'g(#) = H,_o(¥) =T ¢41(v) induces an isomor-
phism 6,: A¢(X) =~ Be+1(SX). If w': Y’ AX—S™ is another duality map, then

b = (—1)"4,.

Therefore the isomorphism (—1)"0, is independent of u. Let o*: He+1(SX)
~ H9(X) be the inverse of this isomorphism. Clearly o* is a natural trans-
formation.

Finally, if (X, 4) is a pair in @, then the exactness of the sequence
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e(x/ 4) 2P, gy 20

follows from [25, (6.10) ].

We have thus defined a cohomology theory §*={ H9, ¢*} on @, Evi-
dently H9(S%) ~ H_,(S%; hence these groups are all countable. By Brown’s
theorem [4, Theorem I1] there is an Q-spectrum E and a natural isomorphism

T*: $*(E) ~ H*.
We now construct a natural transformation
T: $(E) — .

Let X& ®o, and let u: Y AX—S" be a duality map. Let s be the natural gen-
erator of H*(S*; S) and let x =u*(s)E A*(Y A\ X; S). By means of the natural
pairing (S, E)—E, the slant product by x is a homomorphism

x/: H(X; E) — H(Y; E).

 Ha(4)

Brown's mapping is an isomorphism
T*: A~9(V; E) — H(V).
Using the duality map #’: X A Y—S* which is the transpose of %, we obtain
an isomorphism
Hr=(V) = H(X).
The composite of the above homomorphisms is a homomorphism

T.: H(X; E) — H/(X).

The following facts are easily verified, using the properties of the
/-product given in §6 and the results of [25]:

(1) Tsu=(—=1)"T,: H(X; E)—H (X).

2) If uy: Yy AX—>S" is a duality map and f: Y—Y; is a map such that
the diagram

YANX
U
fA1 Sn
e
+
Y'"AX

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1962] GENERALIZED HOMOLOGY THEORIES 281

is commutative, then T,=T,,: H(X; E)—H(X).
(3) If u: YiAX1—S" is a duality map and f: X—X,, g: ¥1—> Y are maps
such that the diagram
1
riaxEtl v A x
INSF lu
rhAXi— 8§
%

is commutative, then the diagram

~ Te .
H,(X; E) — Hy(X)

fel L
H/(X,; E) - B, (X))

Uy

is also commutative.
(4) Let v: Y ASX—S"t! be the duality map used in the definition of o*.
Then the diagram

. T,
H(X; E) — H,(X)
0’*1, ,Lcr*
H,.1(SX; E) - Hy1(SX)

comunutes except for the sign (—1)"*1.
It follows from (1) and (2) that the homomorphism

T = (—1)%aT,: ﬁq(X; E) — gq(X)

is independent of the duality map #; from (3) that T is a natural transforma-
tion of functors, and from (4) that T commutes with suspension. Hence
T: .§(E)—>.§ is a natural transformation of homology theories.

It remains to prove that T is an isomorphism. If X =S5° we may choose
Y=35°and u: S°AS°—S? to be the obvious homeomorphism; then x/ is the
identity map of H,(S°; E) =m,(E) = H-9(S°; E). Hence T: H,(S°; E) =~ H (5.
The fact that T is an isomorphism on ®, now follows by standard methods.

Finally, suppose that T': ‘§(E)——>.§, T': $(E)>$ are natural isomor-
phisms. Then T-'o T": $(E')—H(E) is a natural isomorphism. We can then
turn the above proof “inside out” to construct a natural isomorphism of
$*(E’) with $*(E). Application of Brown’s theorem then proves the unique-
ness.

COROLLARY (8.2). Let X, YE®,, and let u: Y AX—>S" be a duality map.
Then, for any spectrum E,
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w*s/: B(X; E) ~ H*(Y; E).

Thus we have again proved the Alexander duality theorem, in the more
general form suggested by [25]. It is likely that a theorem, similar to (7.4),
containing both Alexander and Poincaré duality, could be proved in a similar
way. We prefer the present version of (7.4) because the version of Poincaré
duality given there is parallel to the usual one in the sense that the isomor-
phism is given by a cap-product. On the other hand, (8.2) has the advantage
of being more general than (7.11), as well as being parallel to the standard
version of Alexander duality. For these reasons, as well as because we obtain
(8.2) “free of charge” from the proof of Theorem (8.1), we have included
both versions of Alexander duality.

REMARK. It would be desirable to have a proof of Theorem 8.1 which does
not depend on Brown's theorem. It is not known whether the countability
hypothesis is necessary for Brown’s theorem. It is not inconceivable that a
direct proof of Theorem 8.1 without the countability hypothesis could be
found. If so, the above procedure could be reversed to prove Brown'’s theo-
rem without the countability hypothesis.
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