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We provide conditions on a monoidal model category M so that the category 
of commutative monoids in M inherits a model structure from M in which a 
map is a weak equivalence or fibration if and only if it is so in M. We then 
investigate properties of cofibrations of commutative monoids, rectification between 
E∞-algebras and commutative monoids, the relationship between commutative 
monoids and monoidal Bousfield localization functors, when the category of 
commutative monoids can be made left proper, and functoriality of the passage 
from a commutative monoid R to the category of commutative R-algebras. In 
the final section we provide numerous examples of model categories satisfying our 
hypotheses.
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1. Introduction

In recent years, the importance of monoidal model categories has been demonstrated by a number of 
striking results related to structured (equivariant) ring spectra, cf. [13,28,22,35,53]. Commutative monoids 
played a key role in many of these applications, and it became important to have a model structure on objects 
with commutative structure, compatibly with the monoidal model structure on the underlying category M.

The non-commutative case was treated in [46], where the authors introduced the monoid axiom. They 
prove that if M satisfies the monoid axiom then the category of monoids in M inherits a model structure 
from M with weak equivalences (resp. fibrations) maps that are weak equivalences (resp. fibrations) in M. 
They then verify that the monoid axiom holds for all examples of interest.

In this paper we will take a similar approach and introduce the commutative monoid axiom, which 
guarantees us that commutative monoids in M inherit a model structure. In [46], the authors refer to the 
commutative situation as “intrinsically more complicated” and indeed there are several known cases where 
commutative monoids cannot inherit a model structure in the way above, e.g. commutative differential 
graded algebras over a field of nonzero characteristic, Γ-spaces, and non-positive model structures on sym-
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metric or orthogonal spectra (due to an example of Gaunce Lewis in [30]). Side-stepping Lewis’s example 
required the introduction of positive variants on diagram spectra in [35], and the convenient model struc-
ture on symmetric spectra introduced in [49] (nowadays referred to as the positive flat model structure). 
We discuss these examples in Section 5.

One way to get around these obstacles is to work with E∞-algebras everywhere and never ask for 
strict commutativity. It is much easier to place a model structure on E∞-algebras because E∞ operads 
are Σ-cofibrant, while Com is not. We feel it is important to also be able to treat the strict commutative 
case, because outside of categories of structured ring spectra one does not know that there is a Quillen 
equivalence between E∞-algebras and strictly commutative monoids (because Com is not Σ-cofibrant, one 
cannot use the general rectification results in [5]). The crucial hypothesis which allows such a Quillen equiv-
alence in the case of structured ring spectra is that for all cofibrant X, the map (EΣn)+∧Σn

X∧n →X∧n/Σn

is a weak equivalence. It is important to note that this hypothesis is not necessary for strictly commutative 
monoids to inherit a model structure (in particular, it fails for simplicial sets). This hypothesis appears 
to be more related to the rectification question than to the question of existence of model structures. We 
address the point further in Section 4.2.

Due to the difficulties associated with passing model structures to categories of commutative monoids, 
several important papers have folded the existence of a model structure on commutative monoids into their 
hypotheses. This is done in Assumption 1.1.0.4 in [53] and in Hypothesis 5.5 in [48], among other places. 
The results in Section 3 provide checkable conditions on M so that those hypotheses are satisfied.

We remark that a different axiom on M which guarantees commutative monoids inherit a model structure 
has appeared as Proposition 4.3.21 in [31]. However, it is pointed out in [33] that this work contains some 
errors and as written does not apply to the positive model structure on symmetric spectra. Furthermore, 
we will demonstrate that it does not apply to topological spaces, though it does apply to chain complexes 
over a field of characteristic zero. Our commutative monoid axiom is more general, and does apply in these 
situations.

After a review of model category preliminaries in Section 2, we will proceed to state the commutative 
monoid axiom and prove our main result in Section 3, highlighting differences from the situation of [31] as 
we go. We additionally discuss when a cofibration of commutative monoids forgets to a cofibration in M, 
and we introduce the strong commutative monoid axiom to guarantee this occurs. Following [46], we place 
the details of the proofs of these main results in Appendix B and we also prove in Appendix A that it 
is sufficient to check the strong commutative monoid axiom on the generating (trivial) cofibrations. Using 
this, we collect examples in Section 5. We include additional results regarding functoriality of the passage 
from R to commutative R-algebras, regarding rectification between Com and E∞, regarding the interplay 
between the strong commutative monoid axiom and Bousfield localization, and regarding left properness for 
the category of commutative monoids in Section 4. Finally, we conclude with a discussion in Appendix C
of what can be said for operads other than Com. An extension of the ideas in this paper to the setting of 
colored operads may be found in [57]. A different approach to transferring model structures to algebras over 
colored operads (more suitable for right Bousfield localization), may be found in [58].

2. Preliminaries

We assume the reader is familiar with basic facts about model categories. Excellent introductions to the 
subject can be found in [12,26], or [23]. Throughout the paper we will assume M is a cofibrantly generated 
model category, i.e. there is a set I of cofibrations and a set J of trivial cofibrations which permit the small 
object argument (with respect to some cardinal κ), and a map is a (trivial) fibration if and only if it satisfies 
the right lifting property with respect to all maps in J (resp. I).

A morphism f is a relative I-cell complex if f is a transfinite composition of pushouts of elements of I, 
i.e. a transfinite composition of morphisms fα ∶ Xα → Xα+1 where each fα is obtained as the pushout of a 
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map gα ∶ Cα → Dα in I along a map Cα → Xα. Let I-cell denote the class of relative I-cell complexes, let 
I-cof denote the class of morphisms that are retracts of relative I-cell complexes, and let I-inj denote the 
class of morphisms that have the right lifting property with respect to I.

In order to run the small object argument, we will assume the domains K of the maps in I (and J) are 
κ-small relative to I-cell (resp. J-cell), i.e. given a regular cardinal λ ≥ κ, any λ-sequence X0 → X1 → . . .

formed of maps Xβ → Xβ+1 in I-cell, then the map of sets colimβ<λM(K, Xβ) →M(K, colimβ<λXβ) is a 
bijection. An object is small if there is some κ for which it is κ-small. See Chapter 10 of [23] for a more 
thorough treatment of this material. For any object X we have a cofibrant replacement QX → X and a 
fibrant replacement X → RX.

A monoidal model category is a model category M that is also a closed symmetric monoidal category 
with product ⊗ and unit S ∈ M. The closed assumption guarantees that X ⊗ − is a left adjoint (hence 
preserves colimits), and this is needed so that X ⊗ − can be a left Quillen functor when X is cofibrant. In 
order to ensure that the monoidal structure interacts nicely with the model structure (e.g. to guarantee it 
passes to a monoidal structure on the homotopy category Ho(M) whose unit is given by S) we must assume 
two conditions:

(1) Unit Axiom: For any cofibrant X, the map QS ⊗X → S ⊗X ≅X is a weak equivalence.
(2) Pushout Product Axiom: Given any cofibrations f ∶ X0 → X1 and g ∶ Y0 → Y1, the map f ◻ g ∶

X0 ⊗ Y1∐X0⊗Y0 X1 ⊗ Y0 →X1 ⊗ Y1 is a cofibration. Furthermore, if either f or g is trivial then f ◻ g is 
trivial.

If these hypotheses are satisfied then M is called a monoidal model category. Note that the pushout 
product axiom forces ⊗ to be a Quillen bifunctor. Furthermore, it is sufficient to check the pushout product 
axiom on the generating maps I and J , by Lemma 3.5 in [46]. Lastly, it is worth remarking that none of 
our proofs require the unit axiom, so our results remain valid if one uses the definition of monoidal model 
category from [46], which does not require the unit axiom.

We turn now to the problem of placing model structures on categories of algebras. Let P be an operad 
valued in M. For this discussion it will be fine to think of P as Ass or Com. For a general discussion of 
operads see [5]. A P-algebra is an object X of M with an action of P encoded by maps P(n) ⊗A⊗n → A for 
all n ≥ 0 satisfying Σn-equivariance, associativity, and unit conditions. Let P-alg denote the category whose 
objects are P-algebras and whose morphisms are P-algebra homomorphisms (i.e. respect the P-action).

Let P ∶ M → P-alg be the free P-algebra functor and let U ∶ P-alg→M be the forgetful functor. Then 
(P, U) is an adjoint pair. When P is Ass, the free monoid functor X ↦ S∐X∐X⊗2∐ . . . has been known 
to topologists for years as the James construction. When P is Com, the free commutative monoid functor 
Sym ∶X ↦ S∐X∐X⊗2/Σ2∐ . . . is sometimes called the SP∞ functor, or the Dold–Thom functor.

In order for there to be a model structure on P-alg which is compatible with the model structure on M, 
it must be the model structure which is transferred across the pair (P, U) so that (P, U) forms a Quillen 
pair. In particular, a weak equivalence or fibration of P-algebras will be a map which is a weak equivalence 
or fibration in M. If such a model structure on P-alg exists, we say it is inherited from M. Proving the 
existence of this model structure comes down to Lemma 2.3 in [46]:

Lemma 2.1. Suppose M is cofibrantly generated and T is a monad which commutes with filtered colimits. 
If the domains of T (I) and T (J) are small relative to T (I)-cell and T (J)-cell respectively and

(1) T (J)-cell ⊂ W , or
(2) All objects are fibrant and every T -algebra has a path object (factoring the diagonal δ ∶X →X ×X into 

≃↪↠)
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then T -alg inherits a cofibrantly generated model structure with fibrations and weak equivalences created by 
the forgetful functor to M.

When the conditions of this lemma are satisfied, P-alg inherits a cofibantly generated model structure 
in which P (I) and P (J) are the generating (trivial) cofibrations. The case P = Ass was treated in [46]
and checking the first condition of the lemma led to the introduction of the following axiom on a model 
category:

Definition 2.2. Given a class of maps C in M, let C ⊗M denote the class of maps f ⊗ idX where f ∈ C
and X ∈ M. A model category is said to satisfy the monoid axiom if every map in (Trivial-Cofibrations 
⊗M)-cell is a weak equivalence.

Let A be any monoid and let R be any commutative monoid. In [46] and the follow-up paper [25], 
it is proven that if M satisfies the monoid axiom and if the domains of I (resp. J) are small relative 
to (M ⊗ I)-cell (resp. (M ⊗ J)-cell), then the categories of (left or right) A-modules and of R-algebras 
inherit model structures from M. We will require the same smallness hypothesis in Section 3. It is satisfied 
automatically if M is a combinatorial model category.

In [46] it is proven that it is sufficient to check the monoid axiom on the generating trivial cofibrations 
and that many model categories of interest satisfy the monoid axiom. We will conduct a similar program 
for the strong commutative monoid axiom in Section 5 and in Appendix A.

3. A model structure on commutative monoids

We are now ready to prove the commutative analog of the work summarized above. We first introduce 
the commutative analog to the monoid axiom.

Definition 3.1. A monoidal model category M is said to satisfy the commutative monoid axiom if whenever h
is a trivial cofibration in M then h◻n/Σn is a trivial cofibration in M for all n > 0.

Under this hypothesis, we state our main theorem:

Theorem 3.2. Let M be a cofibrantly generated monoidal model category satisfying the commutative monoid 
axiom and the monoid axiom, and assume that the domains of the generating maps I (resp. J) are small 
relative to (I ⊗M)-cell (resp. (J ⊗M)-cell). Let R be a commutative monoid in M, and assume Sym
commutes with filtered colimits. Then the category CAlg(R) of commutative R-algebras is a cofibrantly 
generated model category in which a map is a weak equivalence or fibration if and only if it is so in M. In 
particular, when R = S this gives a model structure on commutative monoids in M.

It is clear from this description of CAlg(R) that if M is combinatorial then CAlg(R) is combinatorial 
(see [4], 2.3). Furthermore, if M is simplicial then CAlg(R) is simplicial: it is cotensored over simplicial sets 
and the cotensor commutes with the forgetful functor (i.e. for X in M and K a simplicial set, U(XK) ≅
U(X)K , since XK inherits its commutative monoid structure from X), the functor X ↦ XK has a left 
adjoint for all X and K by the adjoint functor theorem, and this left adjoint provides the tensoring of M
over simplicial sets. So CAlg(R) is a simplicial category. To see that it is a simplicial model category, use 
that (trivial) fibrations are created in M and use the pullback formulation of the SM7 axiom.

As the generating (trivial) cofibrations of CAlg(R) are of the form R ⊗ Sym(I) (resp. R ⊗ Sym(J)), 
these are cofibrant in CAlg(R) if the generating (trivial) cofibrations of M are cofibrant and if M satisfies 
the commutative monoid axiom. Hence, the property that the domains of the generating cofibrations are 
cofibrant (sometimes called tractability) also passes from M to CAlg(R).
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Proof sketch. We will focus first on the case where R is the monoidal unit S, and discuss general R at the 
end. As commutative S-algebras are simply commutative monoids, we denote the category of commutative 
monoids CMon(M) rather than CAlg(S). We will verify condition (1) of Lemma 2.1 for the monad coming 
from the (Sym, U) adjunction between M and CMon(M). Note that just as in Lemma 2.3 of [46], limits in 
CMon(M) are created in M and colimits in CMon(M) exist because U preserves filtered colimits. Thus, 
CMon(M) is bicomplete. Let J denote the generating trivial cofibrations of M. We must prove that maps 
in Sym(J)-cell are weak equivalences. Given a trivial cofibration h ∶ K → L in M, we form the following 
pushout square in CMon(M):

Sym(K)

⇘

Sym(L)

X P

We must prove that the bottom map is in the class (Trivial-Cofibrations ⊗M)-cell, so that the monoid axiom 
implies that transfinite compositions of such maps are weak equivalences in M (hence weak equivalences of 
commutative monoids).

Of course, in CMon(M), the pushout is simply the tensor product, so P ≅ X ⊗Sym(K) Sym(L), but we 
will not make use of this fact. Following [46], we construct a filtration of the map of commutative monoids 
X → P as a composition Pn → Pn+1 of maps formed by pushout diagrams in M. Doing so requires the 
decomposition of Sym(K) = ∐n Symn(K) where Symn(K) =K⊗n/Σn.

Thinking of P as formal products of elements from X and from L with relations in K leads to a con-
sideration of n-dimensional cubes to build products of length n from the letters X, K, L. Because the map 
Sym(K) →X is adjoint to a map K →X, we will in fact only need to consider n-dimensional cubes whose 
vertices are length n words in the letters K and L. Formally, for any subset D of [n] = {1, 2, . . . , n} we 
obtain a vertex C1 ⊗ ⋅ ⋅ ⋅ ⊗ Cn with Ci = K if i ∉ D and Cj = L if j ∈ D. The punctured cube is the cube 
with the vertex L⊗n removed. The map h◻n is the induced map from the colimit Qn of the punctured cube 
to L⊗n.

There is an action of Σn on the cube which permutes the letters in the words (equivalently, which 
permutes the vertices in the cube in a way coherent with respect to the edges of the cube). Explicitly, 
the action is defined as follows. Any σ ∈ Σn sends the vertex defined above to the vertex corresponding to 
σ(D) ⊂ [n] using the action of Σ∣D∣ on the X’s and Σn−∣D∣ on the Y ’s. This action yields a Σn-action on 
h◻n ∶ Qn → L⊗n, and in a moment we will pass to Σn-coinvariants.

We now show how to obtain Pn (which in this analogy is to be thought of as formal products of length n) 
from the cubes we have just described. The steps in the filtration of X → P are formed by pushouts of the 
maps idX ⊗ h◻n/Σn:

X ⊗Qn/Σn

⇘

X ⊗L⊗n/Σn

Pn−1 Pn

The proof that the Pn provide a filtration of X → P is delayed until Appendix B. Assuming the com-
mutative monoid axiom, the maps h◻n/Σn are trivial cofibrations. Thus, the map X → P is a transfinite 
composite of pushouts of maps in M ⊗{trivial cofibrations}. Hence, by the monoid axiom, X → P is a weak 
equivalence. Similarly, for any transfinite composition f of pushouts of maps of the form Sym(K) → Sym(L), 
we may realize f as a transfinite composition of maps X → P of the form above. As a transfinite composition 
of transfinite compositions is still a transfinite composition, the monoid axiom applies again and proves f
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is a weak equivalence. Lemma 2.1 now applies to produce the required model structure on commutative 
monoids.

To handle the case of commutative R-algebras, note that there is an equivalence of categories between 
CAlg(R) and (R ↓ CMon(M)), the category of commutative monoids under R. So we may apply the remark 
after Proposition 1.1.8 of [26] to conclude that this is a model category with cofibrations, fibrations, and 
weak equivalences inherited from CMon(M). Note that this is a different approach from the one provided 
in [46] because we do not pass through R-modules en route to commutative R-algebras. That CAlg(R) is 
cofibrantly generated follows from [24], where it is also shown that the generating cofibrations are given 
by the set IR of maps in (R ↓ CMon(M)) where the map in CMon(M) is in I. Under the equivalence of 
categories between CAlg(R) and (R ↓ CMon(M)), such maps are sent to maps in R ⊗ Sym(I). We can 
similarly identify the generating trivial cofibrations as R⊗ Sym(J). ◻

Remark 3.3. Notice that the proof in fact requires less than the full strength of the hypotheses. Rather than 
assuming the commutative monoid axiom and the monoid axiom separately, we could have assumed that 
transfinite compositions of pushouts of maps in {M ⊗h◻n/Σn ∣ h is a trivial cofibration} are contained in the 
weak equivalences. We will refer to this property as the weak commutative monoid axiom. Certain model 
categories discussed in Section 5 only satisfy this axiom and not the commutative monoid axiom. However, 
for reasons which will become clear in Corollary 3.8 we have chosen the commutative monoid axiom as the 
appropriate axiom for our applications.

The full proof in Appendix B will in fact prove more than just the theorem. It will also prove the 
commutative analog to Lemma 6.2 of [46], from which one can deduce the proposition below regarding 
when cofibrations of commutative monoids forget to cofibrations in M. It is well-known to experts that 
obtaining the correct behavior of cofibrations under the forgetful functor is subtle in the commutative 
setting. Indeed, this was the motivation behind the convenient model structures introduced in [49] and [51]. 
In order to guarantee the desired behavior we must strengthen the commutative monoid axiom.

Definition 3.4. A monoidal model category M is said to satisfy the strong commutative monoid axiom if 
whenever h is a (trivial) cofibration in M then h◻n/Σn is a (trivial) cofibration in M for all n > 0. In 
particular, we are now assuming that cofibrations are closed under the operation (−)◻n/Σn.

Proposition 3.5. Suppose M satisfies the strong commutative monoid axiom. Then for any commutative 
monoid R, a cofibration in CAlg(R) with source cofibrant in M is a cofibration in M.

Corollary 3.6. Suppose M satisfies the strong commutative monoid axiom and that S is cofibrant in M. 
Then any cofibrant commutative monoid is cofibrant in M. If in addition R is cofibrant in M then any 
cofibrant commutative R-algebra is cofibrant in M.

See Appendix B for the proof of this proposition.

Corollary 3.7. Assume S is cofibrant in M and that M satisfies the strong commutative monoid axiom. If f
is a cofibration between cofibrant objects then Sym(f) is a cofibration in M. In particular, if X is cofibrant 
in M then Sym(X) is cofibrant in M.

Proof. Because the model structure on CMon(M) is transferred from that of M, the functor Sym(−) is left 
Quillen, and hence preserves cofibrations. So Sym(f) is a cofibration of commutative monoids because f is 
a cofibration in M. If the source K of f is cofibrant then the source of Sym(f) is a cofibrant commutative 
monoid, by applying Sym(−) to the cofibration ∅ ↪K. By Corollary 3.6, the source of Sym(f) is cofibrant 
in M. By Proposition 3.5, Sym(f) is a cofibration in M. ◻
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Recall that the point of positive model structures on diagram spectra (e.g. symmetric spectra or orthogo-
nal spectra) is to break the cofibrancy of S and so avoid Lewis’s obstruction [30] to having a model structure 
on commutative ring spectra. Thus, these corollaries do not apply to positive model categories of spectra. 
In [49], a variant on the positive model structure is introduced in which cofibrant commutative ring spectra 
are cofibrant as spectra. This model structure was known in that paper as the convenient model structure, 
and later as the positive flat model structure. We do not know how to obtain this ‘convenient’ property for 
general model categories. We suspect it has something to do with forcing the cofibrations to contain the 
monomorphisms.

The proof of Theorem 3.2 makes clear precisely where the monoid axiom is being used, and hence why 
the smallness hypotheses are needed. If M does not satisfy the monoid axiom, then we can make this step 
work by assuming X is a cofibrant commutative monoid (note that R does not need to be cofibrant). In 
this case, [25] and [50] make it clear that a semi-model structure can be obtained. The following corollary 
is needed for [56], and the notion of a semi-model category is defined directly afterwards. The proof of this 
corollary is delayed until after Proposition 3.10.

Corollary 3.8. Let M be a cofibrantly generated monoidal model category satisfying the commutative monoid 
axiom, and assume that the domains of the generating maps I (resp. J) are small relative to (I ⊗M)-cell 
(resp. (J ⊗M)-cell). Then for any commutative monoid R, the category of commutative R-algebras is a 
cofibrantly generated semi-model category in which a map is a weak equivalence or fibration if and only if it 
is so in M.

A semi-model category satisfies all the axioms of a model category except that the lifting of trivial 
cofibrations against fibrations is only true for trivial cofibrations with cofibrant domains, and only maps f
with cofibrant domain are guaranteed to factor into a trivial cofibration followed by a fibration. In particular, 
if all objects are cofibrant then a semi-model structure is the same as a model structure. Formally, we define 
([50], Definition 1):

Definition 3.9. A semi-model category is a bicomplete category D, an adjunction F ∶ M ⇆ D ∶ U where M
is a model category, and subcategories of weak equivalences, fibrations, and cofibrations in D satisfying the 
following axioms:

(1) U preserves fibrations and trivial fibrations.
(2) D satisfies the two out of three axiom and the retract axiom.
(3) Every map in D can be functorially factored into a cofibration followed by a trivial fibration. Every 

map in D whose domain is cofibrant in D can be functorially factored into a trivial cofibration followed 
by a fibration.

(4) Cofibrations in D have the left lifting property with respect to trivial fibrations. Trivial cofibrations in 
D whose domain is cofibrant in D have the left lifting property with respect to fibrations.

(5) The initial object in D is cofibrant in D.
(6) Fibrations and trivial fibrations are closed under pullback.

D is said to be cofibrantly generated if there are sets of morphisms I ′ and J ′ in D such that I ′-inj is the 
class of trivial fibrations and J ′-inj the class of fibrations in D, if the domains of I ′ are small relative to 
I ′-cell, and if the domains of J ′ are small relative to maps in J ′-cell with cofibrant domain.

Spitzweck [50] referred to this as a J-semi model category. It has more structure than the semi-model 
categories of [15] (which Spitzweck called (I, J)-semi model categories), but less structure than a J-semi 
model category over M (where cofibrancy in D is weakened to cofibrancy in M). Semi-model structures as 
defined above often arises in practice, as the following proposition demonstrates:
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Proposition 3.10. Let M be a cofibrantly generated monoidal model category, T a monad in M such that T
commutes with filtered colimits, and suppose:

(a) The initial T -algebra is cofibrant, i.e. has the left lifting property against trivial fibrations of T -algebras.
(b) The domains of the generating maps TI (resp. TJ) are small relative to TI-cell (resp. maps in TJ-cell 

with cofibrant domain).
(c) Every map in TJ-cell whose domain is cofibrant as a T -algebra is a weak equivalence in M.

Then T -alg inherits a cofibrantly generated semi-model structure from M where weak equivalences and 
fibrations are created and reflected by U ∶ T -alg→M, and where cofibrations are defined by lifting.

Proof. We check Definition 3.9 item by item. T -alg is complete because limits are computed in M. T -alg is 
cocomplete because T commutes with filtered colimits, just as in Lemma 2.3 of [46]. U preserves fibrations 
and trivial fibrations by the definition of these classes. The two out of three axiom and the retract axiom 
for weak equivalences and fibrations follows from the same axioms in M. The retract axiom for cofibrations 
follows because TI-cof is closed under retracts. We thus have (1)–(2) of Definition 3.9.

By assumption (b), we can use the small object argument to factor any map f as p ○ i or as p′ ○ i′, where i

is in TI-cell, i′ is in TJ-cell, p is in TI-inj, and p′ is in TJ-inj. By adjointness (as in Lemma 2.3 of [46]), p is 
a trivial fibration, p′ is a fibration, and i and i′ are cofibrations. The p ○ i factorization is half of (3). If f
has cofibrant domain then (c) implies i′ is a weak equivalence, hence a trivial cofibration, completing (3).

For the first half of (4), note that cofibrations lift against trivial fibrations by definition. Let f be a 
trivial cofibration with cofibrant domain. Factor f = p′ ○ i′ into an element of TJ-cell (just shown to be a 
weak equivalence) followed by a fibration. By the two out of three axiom, p′ is a trivial fibration, so f lifts 
against p′, so f is a retract of i′ by the retract argument. It follows that f has the left lifting property with 
respect to fibrations, completing (4).

Lastly, (5) holds by (a) and (6) holds because limits are computed in M, where fibrations and trivial 
fibrations are preserved under pullback. ◻

This proposition is related to Theorem 2 in [50], but has fewer conditions and produces a semi-model 
category rather than a semi-model category over M. We are now ready to prove the Corollary:

Proof of Corollary 3.8. We use Proposition 3.10, where T is Sym. First, (a) is true because the initial object 
is S = Sym(∅), and so is cofibrant in CMon(M) by adjointness, since ∅ is cofibrant in M. Next, (b) is true 
by the smallness assumption together with the filtration of Sym given in the proof of Theorem 3.2. We are 
therefore reduced to checking (c). We begin with the case where R = S, so that we are building a semi-model 
structure on CMon(M). The proof of Theorem 3.2 does not use the monoid axiom until we have already 
proven that the pushout of commutative monoids

Sym(K) Sym(L)

X P

can be factored into X = P0 → P1 → ⋅ ⋅ ⋅ → P where each Pn−1 → Pn is a pushout of X ⊗ f◻n/Σn. By the 
commutative monoid axiom, f◻n/Σn is a trivial cofibration. Without the monoid axiom it is not clear how 
to proceed unless X is cofibrant. Every map in TJ-cell whose domain is cofibrant is a transfinite composition 
of maps of the form X → P above, where X is cofibrant, so we may assume X is cofibrant when verifying 
Proposition 3.10(c). In this case, the map X⊗f◻n/Σn has the form (∅ ↪X) ◻f◻n/Σn and hence is a trivial 
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cofibration by the pushout product axiom. Thus, the pushout Pn−1 → Pn must also be a trivial cofibration, 
and the composite X → P is a composite of trivial cofibrations and hence a trivial cofibration.

For the case of a general commutative monoid R, observe that CAlg(R) = R ↓ CMon(M). For under-
categories, one usually defines a map f ∶ X → Y (i.e. a commutative triangle under R) to be a cofibration, 
fibration, or weak equivalence precisely when f is a cofibration, fibration, or weak equivalence in CMon(M). 
The semi-model structure we seek on CAlg(R) has the same weak equivalences and fibrations (hence the 
same cofibrations) as these three classes of maps. Theorem 2.7 of [24] demonstrates that these classes can 
be transferred from CMon(M) along the adjunction R ⊗ − ∶ CMon(M) ⇆ CAlg(R) ∶ U . Since the semi-
model structure on CMon(M) is itself transferred from M, this means the semi-model structure we seek 
on CAlg(R) can be viewed as being transferred along the adjunction R⊗ Sym(−) ∶ M ⇆ CAlg(R) ∶ U .

In order to check that this transfer defines a semi-model structure, we use Proposition 3.10 with T =
R ⊗ Sym(−). Hypothesis (a) is true by adjunction, because the initial object R is T (∅) and ∅ is cofibrant 
in M. Note that this does not require R to be cofibrant in M, only in CAlg(R). Hypothesis (b) is true 
by our smallness assumption and the filtration above. Hypothesis (c) is true by an argument analogous 
to the R = S case above, but now where everything in sight is viewed in R ↓ CMon(M). Namely, we 
use Proposition 2.4 in [24] to see that the pushout of X ← R ⊗ Sym(K) → R ⊗ Sym(L) in CAlg(R) is 
simply P . We analyze this pushout in the case where X is cofibrant in CMon(M) (equivalently, R → X

is cofibrant in CAlg(R)), we write the filtration maps Pn−1 → Pn as pushouts of trivial cofibrations, and 
we conclude that X → P is a trivial cofibration. Since the maps in TJ-cell whose domains are cofibrant 
are transfinite compositions of such maps X → P , we conclude (c) holds and hence that CAlg(R) has a 
transferred semi-model structure. ◻

Observe that if one wishes to obtain on CAlg(R) a semi-model structure over M in the terminology of 
[50] then one must also assume that S and R are cofibrant so that the initial object in CAlg(R) forgets to 
a cofibrant object in M. Note that the proof given here is fundamentally different from Theorem 3.3 in [25]
(which required R to be cofibrant), because we do not pass through the category of R-modules, and so we 
do not need to prove R-mod is a monoidal model category.

As the filtration given in Appendix B is related to Harper’s filtration for general operads from [20], we 
pause for a moment to compare these two approaches.

Remark 3.11. Harper’s general machinery describes the map Pn−1 → Pn as a pushout

ComX[n] ⊗Σn
Qn

⇘

ComX[n] ⊗Σn
L⊗n

Pn−1 Pn

where ComX is the enveloping operad. One may use Proposition 7.6 in [20] to write ComX[n] = X with 
the trivial Σn action. Thus, Pn−1 → Pn can be written as the pushout of X⊗f◻n/Σn and Harper’s filtration 
makes it clear that the commutative monoid axiom is precisely the right hypothesis.

In a similar way, AssX[n] =X⊗n+1 ⋅Σn, i.e. the coproduct of n! copies of X⊗n+1 with the free Σn action. 
So in that case the (− ⋅Σn) ⊗Σn

(−) provides a cancellation and Harper’s filtration reduces to a pushout of 
X⊗n+1 ⊗ f◻n. We see immediately why the monoid axiom is necessary.

Finally, one could realize commutative R-algebras as algebras over the operad ComR and in this case 
Harper’s filtration would be a pushout of a map of the form (ComR)A[n] ⊗Σn

f◻n where A is a commutative 
R-algebra. In this case, the formula in Proposition 7.6 yields (ComR)A[n] = R⊗A and so the maps Pn−1 → Pn

are pushouts of (R⊗A) ⊗f◻n/Σn. In this way we see that in the presence of the commutative monoid axiom 
but in the absence of the monoid axiom we need both R and A to be cofibrant in order to ensure that this map 
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is a trivial cofibration, i.e. to obtain on CAlg(R) a semi-model structure over M. This is the commutative 
analog of Theorem 3.3 in [25], in which cofibrancy of R was required to achieve a semi-model structure on 
R-algebras. There the formula (AssR)A[n] = R ⊗ A ⋅ Σn means that the relevant pushout takes the form 
R⊗A ⊗f◻n and this makes clear why both R and A must be cofibrant in the absence of the monoid axiom.

We conclude this section with a remark comparing our approach and results with the approach outlined 
by Lurie in [31], in which he proved:

Theorem 3.12. Let M be a left proper, combinatorial, tractable, monoidal model category satisfying the 
monoid axiom and with a cofibrant unit. Assume further that

(*) If h is a cofibration then h◻n is a cofibration in the projective model structure on MΣn for all n. Such 
maps h are called power cofibrations.

Then CMon(M) has a model category structure with weak equivalences and fibrations inherited from M.

The difference between this result and Theorem 3.2 is that in Theorem 3.2 we do not require M to be left 
proper, we do not require the unit to be cofibrant, we do not require the model structure to be tractable, 
we weaken combinatoriality to a much lesser smallness hypothesis, and we weaken (*) to the commutative 
monoid axiom. We have also discussed how to remove the monoid axiom. Note that Lurie also assumes M
is simplicial, but never uses this assumption. The assumption that the unit is cofibrant is part of what Lurie 
requires of a monoidal model category. However, the unit is not cofibrant in the positive and positive flat 
model structures on categories of spectra. For this reason, Theorem 3.12 cannot apply to such examples as 
stated, but elements of the proof have been made to apply to the positive flat stable model structure in [38].

We refer to condition (*) as Lurie’s hypothesis. It implies the strong commutative monoid axiom as 
shown in Lemma 4.3.28 of [31]. The key observation is that (−)/Σn ∶ MΣn → M is the left adjoint of a 
Quillen pair where the right adjoint is the constant diagram functor (i.e. endows an object with the trivial 
Σn action). Thus, if (*) is satisfied and we apply this map to the projective cofibration f◻n we obtain 
the strong commutative monoid axiom. However, (*) assumes strictly more than the strong commutative 
monoid axiom, as evidenced in Section 5 where we show that simplicial sets and topological spaces satisfy 
the latter but not the former.

Note that Lurie’s Proposition 4.3.21 is slightly more general than what we’ve stated above in that it 
only requires that there is some combinatorial model structure MV on the relative category M, and that 
MV has cofibrations V generated by cofibrations between cofibrant objects and satisfying (*). In this case 
M is said to be freely powered by V . We could also do our work in that level of generality, but choose not 
to because it seems unnatural to place a hypothesis on a model category which references the existence of 
some other model category. The point is that this extra generality does not buy us anything because M
and MV will be Quillen equivalent by Lurie’s Remark 4.3.20.

Lurie does not prove that it is sufficient to check hypothesis (*) on the generating (trivial) cofibrations, 
but this has been done in [38].

4. Additional results

4.1. Functoriality and homotopy invariance

We turn now to the question of whether or not the passage from R to CAlg(R) is functorial and has 
good homotopy theoretic properties. Following [46], we provide a condition so that the homotopy theory 
of commutative R-algebras only depends on the weak equivalence type of R. Recall that a monoidal model 
category M is said to satisfy the property that cofibrant objects are flat if for all cofibrant X and all weak 
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equivalences f , the map X ⊗ f is a weak equivalence. This property can be viewed as a global version of 
the unit axiom (which is the same statement restricted to the cofibrant replacement map f ∶ QS → S).

Theorem 4.1. Suppose M satisfies the conditions of Theorem 3.2. Then:

(1) The passage from R to CAlg(R) is functorial: given a ring homomorphism f ∶ R → T , restriction and 
extension of scalars provides a Quillen adjunction between CAlg(R) and CAlg(T ).

(2) Suppose that cofibrant objects are flat in CAlg(R), i.e. for any cofibrant commutative R-algebra N , 
the functor N ⊗R − preserves weak equivalences of commutative R-algebras. Let f ∶ R → T be a weak 
equivalence of commutative monoids. Then f induces a Quillen equivalence CAlg(R) ≃ CAlg(T ).

Proof. Let f ∶ R → T be a ring homomorphism.

(1) The map f makes T into an R-module, and provides the extension of scalars functor from CAlg(R)
to CAlg(T ), i.e. N ≅ R ⊗R N → T ⊗R N . Because weak equivalences and fibrations are defined in the 
underlying category, the right adjoint restriction functor preserves (trivial) fibrations. So they form a 
Quillen pair and the extension functor preserves (trivial) cofibrations.

(2) To check that extension and restriction form a Quillen equivalence in this case, we use Corollary 1.3.16(c) 
of [26]. First, note that restriction reflects weak equivalences between fibrant objects because the weak 
equivalences and fibrations in these two categories are the same. Next, suppose N is a cofibrant com-
mutative R-algebra. The map N ≅ R ⊗R N → T ⊗R N is a weak equivalence because cofibrant objects 
are flat. Thus, restriction and extension of scalars form a Quillen equivalence. ◻

An alternative approach for (2) which avoids the need for cofibrant R-modules to be flat is suggested by 
Theorem 2.4 of [25] in the non-commutative case. The cost is a collection of cofibrancy hypotheses on the 
objects in question. Via Remark 3.11 we may view the generating cofibrations of CAlg(R) as R ⊗ Sym(I)
where I is the set of generating cofibrations for M.

Theorem 4.2. Suppose M has a cofibrant unit, satisfies the strong commutative monoid axiom, and that the 
domains of the generating cofibrations are cofibrant. Suppose R and T are commutative monoids which are 
cofibrant in M and suppose f ∶ R → T is a weak equivalence. Then extension and restriction of scalars is a 
Quillen equivalence between CAlg(R) and CAlg(T ).

Proof. We follow the model of Hovey’s proof in [25]. All that must be shown is that for all cofibrant 
R-modules M , M → M ⊗R T is a weak equivalence. Because M is cofibrant we may write M = colimMα

where M0 = 0 and Mα →Mα+1 is a pushout of a map in R ⊗ Sym(I). For concreteness we will let K → L

denote the map in I which is used in this pushout.
We show by transfinite induction that Mα →Mα ⊗R T is a weak equivalence for all α. The base case is 

trivial because M0 = 0. For the successor case, apply the left adjoint − ⊗R T to the pushout square defining 
Mα → Mα+1 and the result will again be a pushout square. There is also a map from the former pushout 
square to the latter, induced by the adjunction. We will apply the Cube Lemma (Lemma 5.2.6 in [26]) to 
the resulting cube.

R⊗ Sym(K) R⊗ Sym(L) T ⊗ Sym(K) T ⊗ Sym(L)

Mα Mα+1 Mα ⊗R T Mα+1 ⊗R T
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Here we have canceled R⊗R (−) terms in the right-hand square. Because M has the commutative monoid 
axiom and a cofibrant unit, the cofibrancy of K and L implies the cofibrancy of Sym(K) and Sym(L) in M, 
by Corollary 3.6. Thus, by Lemma 1.1.12 in [26], smashing with these objects preserves weak equivalences 
between cofibrant objects, so when we apply this to the weak equivalence R → T , we see that the maps 
⊗ Sym(K) → T ⊗Sym(K) and R⊗Sym(L) → T ⊗Sym(L) above are weak equivalences. Similarly, the map 
Sym(K) → Sym(L) is a cofibration and so because R and T are cofibrant the horizontal maps across the 
top are cofibrations (and hence the bottom horizontals as well, because they are pushouts of cofibrations).

Because all maps Mα →Mα+1 are cofibrations and because M0 is cofibrant, all Mα are cofibrant. Because 
extension of scalars is left Quillen, the objects in the second square are cofibrant. The inductive hypothesis 
tells us that the map on the lower left corner is a weak equivalence. The Cube Lemma then guarantees us 
that the map on the lower right corner is a weak equivalence.

For the limit ordinal case, assume that Mα →Mα⊗R T is a weak equivalence for all α < λ. Then we have 
a map of sequences

M0 M1 . . . Mα . . .

M0 ⊗R T M1 ⊗R T . . . Mα ⊗R T . . .

where all vertical maps are weak equivalences and all horizontal maps are cofibrations of cofibrant objects. 
So Proposition 18.4.1 in [23] proves the colimit map Mλ →Mλ ⊗R T is a weak equivalence as well. ◻

Hovey provides a counterexample which demonstrates that for non-cofibrant R and T , and without the 
hypothesis that cofibrant R-modules are flat, it is not true that R ≃ T induces a Quillen equivalence of 
categories of modules.

We do not know whether or not Hovey’s example can be generalized to the case of algebras rather than 
modules. We do know that the spaces considered in Hovey’s example cannot provide such a counterexample 
for the question of Quillen equivalence between CAlg(R) and CAlg(T ), because commutative monoids in 
Top are generalized Eilenberg–Mac Lane spaces (as discussed in Example 4.4).

The author does not know whether or not it is possible to prove homotopy invariance of CAlg(R)
without the hypothesis that cofibrant objects are flat and without having to assume the objects R and T
are cofibrant. Note that Corollary 2.4 of [7] does not apply here because the operads Com, ComR, and 
ComT are not Σ-cofibrant.

Remark 4.3. The results in this section also hold in the absence of the monoid axiom. By Corollary 3.8, 
categories of commutative algebras form semi-model categories and the output of the theorem is a Quillen 
equivalence of semi-model categories. To see this one need only note that the monoid axiom is not used in 
the proof, and that the semi-model category analog of 1.3.16 in [26] can be found in Section 12.1.8 of [15].

4.2. Rectification

We turn next to the question of rectification. As discussed in [50], categories of algebras over cofibrant 
operads inherit model structures whenever the monoid axiom is satisfied. Thus, E∞-algebras in M will 
always inherit a model structure in our set-up. There is a weak equivalence φ ∶ E∞ → Com, so it is natural 
to ask whether or not the pair (φ∗, φ!) forms a Quillen equivalence between E∞-algebras and Com-algebras. 
If there is, then rectification is said to occur.

Observe that rectification does not come for free, even for very nice model categories M, as the following 
counterexample demonstrates:
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Example 4.4. Let M be simplicial sets or topological spaces. We will see in the next section that M satisfies 
the strong commutative monoid axiom. The monoid axiom and requisite smallness were verified in [46] for 
simplicial sets, in [25] for compactly generated spaces, and in [54] for k-spaces. Thus, commutative monoids 
inherit a model structure.

For topological spaces the path connected commutative monoids are weakly equivalent to generalized 
Eilenberg–Mac Lane spaces, i.e. products of Eilenberg–Mac Lane spaces.

The existence of spaces like QS = Ω∞Σ∞S0, which has an E∞-algebra structure but is not a generalized 
Eilenberg–Mac Lane space, demonstrates that rectification between E∞ and Com fails for spaces.

The rectification results of [7] are phrased so as to apply for very general model categories M, including 
simplicial sets. However, these results do not apply to the example above because Com is not a Σ-cofibrant 
operad. If M satisfies Harper’s hypothesis that all symmetric sequences are projectively cofibrant (e.g. if 
M = Ch(k) for k a Q-algebra), then Com is Σ-cofibrant and so rectification holds.

The key property possessed by good monoidal categories of spectra is

(**) For all cofibrant X, the map (EΣn)+ ∧Σn
X∧n →X∧n/Σn is a weak equivalence.

This property is certainly related to the commutative monoid axiom, and it is often used to verify the 
commutative monoid axiom for positive model structures on symmetric and orthogonal spectra. However, 
the example above demonstrates that this property is not necessary for strictly commutative monoids to 
inherit a model structure, and that it cannot be deduced from the commutative monoid axiom. We now 
record the correct analogue of this property (**) in general model categories. We will assume M is a D-model 
category in the sense of Definition 4.2.18 in [26], and this allows operads valued in D to act in M.

Definition 4.5. Let M be a monoidal model category which is a D-model category. View the unit S of D as 
an object in DΣn with the trivial Σn action. Let q ∶ QΣn

S → S be cofibrant replacement in the projective 
model structure on DΣn . Then M is said to satisfy the rectification axiom with respect to operads valued 
in D if for all cofibrant X in M, the natural map QΣn

S ⊗Σn
X⊗n →X⊗n/Σn is a weak equivalence.

A similar property to the rectification axiom, requiring certain homotopy orbits to be weakly equivalent 
to orbits, appears in the axiomatization of good model structures of spectra given by [16]. However, in [16], 
this condition is equivalent to the condition that all simplicial operads are admissible, and as we have seen 
that will not be true for general model categories.

The key consequence of the rectification axiom is that rectification will occur between commutative 
monoids and algebras over a cofibrant replacement QCom of the Com operad (see Theorem 4.6 below). An 
example of such rectification is the Quillen equivalence between commutative ring spectra and E∞-algebras 
in good monoidal model categories of spectra, where QCom can be taken to be the Fulton-Macpherson 
operad. In general, we work in the setting of D-model categories where D is a monoidal model category 
(see [26], 4.2.6). A D-operad O has O(n) an object in D for all n. These D-operads have algebras in M, just 
as simplicial operads have algebras in categories of spectra. There is a semi-model structure on the category 
of D-operads transferred from the projective model structure on symmetric sequences in D ([15], 12.2.A). We 
define QCom to be a cofibrant replacement of Com in this semi-model structure. This semi-model structure 
is often a full model structure if D satisfies stronger conditions ([5] Theorem 3.1), but a semi-model structure 
suffices for our needs.

Theorem 4.6. Suppose that all the following hold:

(1) D is a monoidal model category whose unit is cofibrant,
(2) M is a monoidal D-model category satisfying the strong commutative monoid axiom and the monoid 

axiom,
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(3) The domains of the generating cofibrations of M are cofibrant and satisfy the requisite smallness hy-
potheses so that Com-alg and QCom-alg may inherit transferred model structures,

(4) Either that the unit S of M is cofibrant, or that M is the positive (flat) model structure on symmetric 
or orthogonal spectra, and

(5) M satisfies the rectification axiom.

Then the cofibrant replacement morphism φ ∶ QCom → Com induces a Quillen equivalence between Com-alg 
and QCom-alg.

Condition (4) above guarantees that cofibrations of commutative monoids with cofibrant source forget to 
cofibrations in M (by Proposition 3.5 in the former case and Proposition 4.1 in [49] in the latter). Similarly, 
QCom-algebras with cofibrant source forget to cofibrations in M. For the setting where S is cofibrant, this 
follows from Theorem 12.1.4 in [15] and Proposition 4.3 in [5]. For the setting of spectra, we will prove this 
as part of Corollary 4.8 below.

We will see that this theorem implies rectification results for positive (flat) monoidal categories of spectra 
(where D is simplicial sets or topological spaces) and for chain complexes. The case of G-equivariant spectra 
(where D is G-equivariant spaces) is more subtle. In that setting, the model structure on G-operads (Theo-
rem 3.1 in [5], Theorem 12.2.A in [15]) is the wrong model structure to correctly encode the mixing of group 
actions between G and the operad symmetric group actions. As a consequence, QCom is not an N∞-operad 
in the sense of [8], and the rectification axiom is not satisfied. However, in current joint work with Javier 
Gutiérrez, the author shows that there is another model structure on G-operads in which the cofibrant 
replacement of Com is a cofibrant N∞-operad and in which rectification occurs. The rectification axiom 
for that setting states that for all cofibrant G-spectra X, the natural map (EGΣn)+ ∧Σn

X∧n → X∧n/Σn

is a weak equivalence of G-spectra, where EGΣn is the total space of the universal G-equivariant principal 
Σn-bundle. We refer to the existence of this weak equivalence for all cofibrant X as the equivariant analogue 
of the rectification axiom.

Before proving the theorem above, we record a lemma regarding the behavior of weak equivalences under 
coproduct.

Lemma 4.7. Arbitrary weak equivalences between cofibrant objects are closed under coproduct.

Proof. Suppose {fα ∶ Aα → Bα}α∈S is a set of weak equivalences between cofibrant objects. Form the 
model category ∏α∈SM with weak equivalences, cofibrations, and fibrations defined from M. Consider 
the functor F from this model category to M which takes (Aα) to ∐α∈S Aα. This functor takes trivial 
cofibrations between cofibrant objects to trivial cofibrations, since the coproduct of any collection of trivial 
cofibrations in M is a trivial cofibration. Hence, by Ken Brown’s lemma (Lemma 1.1.12 in [26]) this functor 
takes weak equivalences between cofibrant objects to weak equivalences. The map (fα) in ∏α∈SM is a weak 
equivalence between cofibrant objects, so ∐fα is a weak equivalence in M. ◻

Proof of Theorem 4.6. First, the restriction functor φ∗ preserves limits and so is a right adjoint, as can be 
seen from Theorem 12.5.A in [15]. The left adjoint is denoted by φ!. Next, φ∗ commutes with the forgetful 
functor to M and so preserves (trivial) fibrations of algebras since these are created in M. Thus, φ∗ is a 
right Quillen functor.

To show that this Quillen pair is a Quillen equivalence, we will use that φ∗ reflects weak equivalences. This 
reduces us to proving that for all cofibrant X in QCom-alg, the adjunction unit map η ∶X → φ∗φ!(X) is a 
weak equivalence. We carry this out first for the case where X has the form QCom(A) for some cofibrant A. 
In this case, φ∗φ!(X) = Sym(A) and the map η ∶ QCom(A) → Sym(A) is induced by φ. This map η is a 
coproduct of maps of the form ηn ∶ QCom(n) ⊗Σn

A⊗n → A⊗n/Σn. Since QCom is a cofibrant replacement 
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for Com, it is in particular a Σ-cofibrant replacement by Proposition 4.3 in [5] applied to the category of 
operads in D (this is where we need the hypothesis that the unit of D is cofibrant) and so QCom(n) ≅ QΣn

S. 
Thus, ηn is a weak equivalence for all n by the rectification axiom.

Because QΣn
S is Σn-cofibrant and A⊗n is cofibrant in M, the domain of ηn is a cofibrant object in M

(using Lemma 2.5.2 in [6]). The codomain of ηn is cofibrant by the commutative monoid axiom on M. Thus, 
Lemma 4.7 implies η is a weak equivalence as required.

Since every cofibrant object in QCom-alg is a retract of a cellular object, it suffices to prove that ηX ∶
X → φ∗φ!X is a weak equivalence for cellular X, i.e. those built as transfinite compositions of pushouts of 
generating cofibrations of QCom-alg. Thus, X ≅ colimXα, where each map iα ∶ Xα → Xα+1 in the chain is 
a pushout

∐DQCom(Ad) ∐DQCom(Bd)

Xα

iα
Xα+1

where all maps id ∶ Ad → Bd are generating cofibrations. The proof that ηX is a weak equivalence proceeds 
by transfinite induction. For the base case, X = S is the initial QCom-algebra and ηX is an isomorphism. 
The successor ordinal case is the most subtle, even in the original proof of rectification for weak equiva-
lences between Σ-cofibrant operads (Proposition 5.7 of [5]). What must be shown is that ηXα+1 is a weak 
equivalence whenever ηXα

is a weak equivalence. Doing so requires an analysis of a cellular QCom-algebra 
extension, which requires a filtration argument analogous to Proposition B.2, but for QCom-algebras instead 
of Com-algebras. Carrying out the filtration argument here would take us too far afield, but the argument 
may be found in [59], where Theorem 4.2.1 gives the desired result, taking the adjoint pair (L, R) to be the 
identity.

For the sake of being self-contained, we sketch the argument from [59] for the case of φ ∶ QCom → Com. 
First, we use the filtration from [20], which makes use of the enveloping operad QComXα

(see Remark 3.11) 
to filter the map Xα →Xα+1 into a transfinite composition of pushouts taken in M. This transfinite compo-
sition is then compared, level by level, to the analogous filtration of φ!Xα → φ!Xα+1 that uses Comφ!(Xα). 
The main idea for the comparison is to use Proposition 4.1.1 of [59], which gives a weak equivalence of 
symmetric sequences QComXα

→ Comφ!(Xα). We then induct along the comparison of filtrations, and use 
the cube lemma in M at each step of the induction to prove the filtrations are levelwise weakly equivalent 
in M. The use of the cube lemma explains why, in Theorem 4.6, we require the domains of the generating 
cofibrations in M to be cofibrant, and why we require cofibrant QCom-algebras and cofibrant Com-algebras 
to forget to cofibrant objects in M (this is a consequence of condition (4)). The induction proves that the 
underlying map of ηXα+1 is a weak equivalence in M, hence ηXα+1 is a weak equivalence of QCom-algebras.

For the limit ordinal case, assume ηγ is a weak equivalence between cofibrant objects for all γ < β. We 
have a map of sequences

S X1 . . . Xγ . . .

φ∗φ!S φ∗φ!X1 . . . φ∗φ!Xγ . . .

All vertical maps are weak equivalences and all horizontal maps are cofibrations between cofibrant objects 
(resp. injections in the case of spectra). Thus, ηβ is a weak equivalence by Proposition 17.9.1 in [23]. This 
completes our proof that (φ!, φ∗) is a Quillen equivalence. ◻



D. White / Journal of Pure and Applied Algebra 221 (2017) 3124–3168 3139
Corollary 4.8. Let M be the positive flat stable model structure on symmetric spectra or orthogonal spectra. 
Let O be an E∞-operad. Then O-alg is Quillen equivalent to Com-alg.

Let M be orthogonal spectra with the positive flat stable model structure. Let O be an E∞-operad. Then 
O-alg is Quillen equivalent to Com-alg.

Proof. For symmetric spectra D = sSet and for orthogonal spectra D = Top. In each case, the unit of D
is cofibrant. Each of these categories of spectra has domains of the generating cofibrations cofibrant, since 
generating cofibrations are obtained from sSet and Top, where they are maps from spheres into disks. Each 
of these model categories of spectra satisfies the strong commutative monoid axiom, as will be shown in 
Section 5 below. Each satisfies the monoid axiom, as has been shown in [49] and [51], among other places. 
Each has domains of the generating cofibrations satisfying the requisite smallness hypotheses from (3) in 
Theorem 4.6. For symmetric spectra this is because all objects are small. For orthogonal spectra this is 
because the domains are small relative to inclusions and both morphisms of the form I ⊗M and of the 
form QCom(I) are closed inclusions (hence transfinite compositions of pushouts of such maps are closed 
inclusions, see [54]).

Finally, each of these model categories has been shown to satisfy the rectification axiom in existing results 
in the literature. For the case of symmetric spectra this appears in [49]. For orthogonal spectra, this is in [35]. 
Thus, QCom-alg is Quillen equivalent to Com-alg. Since the unit of D is cofibrant, QCom is a Σ-cofibrant 
operad weakly equivalent to Com, hence weakly equivalent to O. Since both O and QCom are Σ-cofibrant, 
it follows from [15] (Theorem 12.5.A) that O-algebras are Quillen equivalent to QCom-algebras, hence to 
Com-algebras. ◻

An analogous result is true for equivariant orthogonal spectra, but its proof would take us too far afield. 
It will be proven in a forthcoming paper with Javier Gutiérrez. The equivariant analogue of the rectification 
axiom (mentioned above Lemma 4.7) is proven to hold in [22], while rectification with a cofibrant N∞-operad 
is proven in the appendix of [8].

Corollary 4.9. Let M be the positive stable model structure on symmetric spectra or orthogonal spectra. Let 
O be an E∞-operad. Then O-alg is Quillen equivalent to Com-alg.

Let M be orthogonal spectra with the positive stable model structure. Let O be an E∞-operad. Then O-alg 
is Quillen equivalent to Com-alg.

Proof. For these examples commutative monoids inherit a model structure, but the strong commutative 
monoid axiom does not hold. A cofibration of commutative monoids whose domain is cofibrant in M only 
forgets to a positive flat cofibration in M and not a positive cofibration. However, the only place in the 
proof of Theorem 4.6 that we used the strong commutative monoid axiom was the step in which we applied 
the cube lemma. If we apply the cube lemma in the positive flat stable model structure then we prove that 
X → φ∗φ!X is a weak equivalence in the positive flat stable model structure. Thankfully, such maps are 
precisely the stable equivalences, so X → φ∗φ!X is a weak equivalence in the positive (non-flat) stable model 
structure as well.

The rest of the hypotheses of Theorem 4.6 are satisfied, as can be seen in [35] and [22]. The rectification 
axiom in the positive (non-flat) stable model structure is implied by the rectification axiom in the positive 
flat stable model structure, since the weak equivalences agree and every positive cofibrant X is positive flat 
cofibrant. So the corollary now follows from the proof of Theorem 4.6 using the argument of the preceding 
paragraph to prove that X → φ∗φ!X is a weak equivalence. ◻

Corollary 4.10. Let k be a field of characteristic zero. Then the category of commutative differential graded 
algebras over k is Quillen equivalent to the category of E∞-algebras.
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Proof. The model category M = Ch(k) satisfies the strong commutative monoid axiom, as will be shown 
in Section 5 below. It satisfies the monoid axiom (see [46]), has domains of the generating cofibrations 
cofibrant, and has all objects small (see [26]), and satisfies the rectification axiom (see [40]). ◻

We pause now to record a proposition about the interplay between the rectification axiom and the 
commutative monoid axiom which we shall use in Section 5.

Proposition 4.11. Suppose M is a monoidal model category satisfying the rectification axiom. Then Symn(−)
takes trivial cofibrations between cofibrant objects to weak equivalences.

Proof. Let f ∶ A → B be a trivial cofibration between cofibrant objects. Note that f⊗n ∶ A⊗n → B⊗n is a 
trivial cofibration in M because it is the composite A⊗n → A⊗n−1 ⊗B → A⊗n−2 ⊗B⊗2 → ⋅ ⋅ ⋅ → B⊗n. This 
follows by iteratively applying the fact that A ⊗ − and B ⊗ − are left Quillen functors. Furthermore, this 
map has an obvious Σn-action.

Because QΣn
S is projectively Σn-cofibrant, the map ∅ → QΣn

S is a cofibration in the projective model 
structure on MΣn . Thus, by Lemma 2.5.2 in [6], the pushout product of ∅ → QΣn

S and f⊗n is a trivial 
cofibration in the projective model structure on MΣn . When we pass to Σn-coinvariants we obtain a trivial 
cofibration in M, because (−)/Σn is left Quillen. The resulting map is A⊗n ⊗Σn

QΣn
S → B⊗n ⊗Σn

QΣn
S.

Consider the following commutative square, where the bottom horizontal map is Symn(f), the top 
horizontal map is the map we have just described, and the vertical maps are induced by QΣn

S → S and by 
passage to Σn-coinvariants:

QΣn
⊗Σn

A⊗n QΣn
⊗Σn

B⊗n

A⊗m/Σm B⊗m/Σm

We have shown the top vertical map is a weak equivalence. The vertical maps are weak equivalences 
by the rectification axiom. Thus, the bottom horizontal map is a weak equivalence by the two-out-of-three 
property. ◻

In situations arising from topology, where M is spectra and D is spaces, the map QΣn
S → S is the 

cofibrant replacement of the point and so is EΣn → ∗ in the unpointed setting and (EΣn)+ → S0 in the 
pointed setting. This proposition is used in Section 5 to make sure that a particular Bousfield localization 
respects the commutative monoid axiom.

We have not undertaken a general study of when rectification between Com and E∞ holds. The interested 
reader is encouraged to consult [18,43,37,59] for more information about rectification for general model 
categories.

4.3. Relationship to Bousfield localization

We now record a few facts regarding the relationship between the model category axioms we have dis-
cussed and (left) Bousfield localization. These results are proven in the author’s thesis [55], and have 
appeared in the companion paper [56]. Taken together, the following three results give a list of checkable 
conditions on a model category M and a set of maps C so that the Bousfield localization LC(M) of M with 
respect to C satisfies the necessary hypotheses of Theorem 3.2, i.e. so that one may obtain a model structure 
on the category of commutative monoids in LC(M). It is proven in [55] that these properties imply that 
commutative R-algebras are preserved by LC . Throughout we assume that the maps in C are cofibrations 
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between cofibrant objects. If they are not, then this can be arranged without loss of generality by taking 
cofibrant replacements of the maps in C and applying the factorization axiom to obtain cofibrations between 
cofibrant objects.

Theorem 4.12. Let M be a left proper, monoidal model category where cofibrant objects are flat and such 
that the domains of the generating cofibrations are cofibrant. Let C be a set of maps such that the Bousfield 
localization LC(M) exists. Then LC(M) has cofibrant objects flat and satisfies the pushout product axiom 
if and only if for all domains and codomains K of the generating cofibrations, maps in C ⊗ idK are C-local 
equivalences.

Furthermore, without the hypothesis on the domains of the generating cofibrations, we have:
LC(M) has cofibrant objects flat and satisfies the pushout product axiom if and only if for all cofibrant K, 

maps in C ⊗ idK are C-local equivalences.

Note in particular that under these hypotheses LC(M) also satisfies the unit axiom. In light of this 
characterization, we refer to Bousfield localizations satisfying the hypotheses of the theorem as monoidal 
Bousfield localizations. We turn next to the strong commutative monoid axiom, for which we have two 
preservation results with differing hypotheses.

Theorem 4.13. Suppose M is a simplicial model category satisfying the strong commutative monoid axiom. 
Suppose that for all n ∈ N and f ∈ C, Symn(f) is a C-local equivalence. Then LC(M) satisfies the strong 
commutative monoid axiom.

Theorem 4.14. Assume M is a monoidal model category satisfying the strong commutative monoid axiom 
and in which the domains of the generating cofibrations are cofibrant. Suppose that LC(M) is a monoidal 
Bousfield localization with generating trivial cofibrations JC. If Symn(f) is a C-local equivalence for all n ∈ N
and for all f ∈ JC, then LC(M) satisfies the strong commutative monoid axiom.

Because the results in [56] are general enough to hold only in the presence of a semi-model structure 
on commutative monoids, it is enough for localization to preserve the pushout product axiom and the 
commutative monoid axiom. However, we also have a result regarding preservation of the monoid axiom 
which we record here for the reader’s convenience. First we must introduce a new definition, taken from [2]:

Definition 4.15. A map f ∶X → Y is called an h-cofibration if the functor f! ∶X/M → Y /M given by cobase 
change along f preserves weak equivalences. Formally, this means that in any diagram as below, in which 
both squares are pushout squares and w is weak equivalence, then w′ is also a weak equivalence:

X

f

A
w

B

Y A′
w′

B′

M is said to be h-monoidal if for each (trivial) cofibration f and each object Z, f ⊗ Z is a (trivial) 
h-cofibration.

If M is left proper, then an equivalent characterization of an h-cofibration is as a map f such that every 
pushout along f is a homotopy pushout (this version of the definition above was independently discovered 
in [55]). In [2], h-monoidality is verified for the model categories of topological spaces, simplicial sets, chain 
complexes over a field (with the projective model structure), symmetric spectra (with the stable projective 
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model structure), and several other model categories not considered in this paper. More examples can be 
found in [56].

With this definition in hand, it is proven in Proposition 2.5 of [2] that if M is h-monoidal and the weak 
equivalences in (M ⊗ I)-cell are closed under transfinite composition, then M satisfies the monoid axiom. 
We strengthen this result by replacing the third condition with the hypothesis that the (co)domains of I
are finite relative to the class of h-cofibrations (here finite means small relative to all limit ordinals, as 
in Section 7.4 of [26]). Because this is a statement phrased entirely in terms of I, it is preserved by any 
Bousfield localization LC . We therefore are able to prove:

Theorem 4.16. Suppose M is an h-monoidal model category such that the (co)domains of I are finite relative 
to the h-cofibrations, the domains of the generating cofibrations are cofibrant, and cofibrant objects are flat. 
Then for any monoidal Bousfield localization LC , the model category LC(M) satisfies the monoid axiom.

4.4. Left properness

In [2] conditions are provided so that if M is left proper then the transferred model structure on algebras 
over a certain type of monad T is left proper. A standard condition in [2], that subsumes the smallness 
hypothesis in Theorem 3.2, is that M is compactly generated, i.e. all objects are small relative to (M ⊗I)-cell 
and the weak equivalences are closed under filtered colimits along morphisms in (M ⊗ I)-cell (i.e. the class 
of weak equivalences is perfect with respect to (M ⊗ I)-cell). Unfortunately, the meaning of compactly 
generated and of h-cofibration in this paper and in [2] is totally unrelated to the meaning in [13]. The 
approach in [13], via the Cofibration Hypothesis, is meant to avoid the need for the monoid axiom, but does 
not yield left proper model structures on categories of algebras.

Theorem 3.1 in [2] proves that the model structure on monoids constructed in [46] is left proper if M
is compactly generated and if the weak equivalences in M are closed under ⊗ (this condition is referred to 
as M being strongly h-monoidal). Following this proof method, we can prove that our model structure on 
commutative monoids is left proper under the weaker hypothesis that M is only h-monoidal (in the sense 
of Definition 4.15). However, because we still need certain monoidal products of weak equivalences to be 
weak equivalences, we replace the strong h-monoidality by the assumptions that cofibrant objects are flat 
in M and that the domains of the generating cofibrations are cofibrant, as in the previous section.

Theorem 4.17. Let M be a compactly generated h-monoidal model category satisfying the strong commutative 
monoid axiom and the monoid axiom. Assume the domains of the generating cofibrations in M are cofibrant 
and that cofibrant objects are flat. Let R be a commutative monoid in M. Then the category CAlg(R) inherits 
a left proper transferred model structure from M. In particular, when R = S this gives a left proper model 
structure on commutative monoids in M.

Proof. As usual we can reduce to proving the case R = S, since CAlg(R) = R ↓ CMon(M) and an 
under-category is left proper if when we forget to CMon(M) the result is left proper. The hypotheses of the 
theorem subsume those of Theorem 3.2, so we may assume CMon(M) admits a transferred model structure. 
Note also that M is left proper, since h-monoidality implies left properness. Following Theorem 2.14 in [2], 
what must be shown is that for any cofibration u ∶K → L in M and for any weak equivalence f ∶ A → B in 
CMon(M) with a map α ∶ K → U(A), the map A[u, α] → B[u, fα] defined by the following diagram is a 
weak equivalence:
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Sym(K)

Sym(u)

Sym(α)

⇘

Sym(U(A))

⇘

A
f

⇘

B

Sym(L) Sym(P ) A[u,α] B[u, fα]

Here P is the pushout of L ← K → U(A) in M, the left-hand square is obtained by applying Sym to this 
pushout, and the map Sym(U(A)) → A is the structure map of the monad Sym. The notation A[u, α] and 
B[u, fα] are defined by the pushout diagrams above.

In order to prove that A[u, α] → B[u, fα] is a weak equivalence we observe as in Theorem 2.14 of [2]
that the filtration on each component induces a filtration of the map

A[u](0) A[u](1) . . . colimnA[u](n) U(A[u,α])

B[u](0) B[u](1) . . . colimnB[u](n) U(B[u, fα])

We have changed notation, but the filtration across the top line is precisely the filtration denoted by 
P0 → P1 → . . . in Theorem 3.2 for the diagram A ← Sym(K) → Sym(L), and the filtration across the 
bottom is the corresponding filtration for B. In particular, the horizontal maps across the top are pushouts 
of maps of the form A ⊗ u◻n/Σn and the horizontal maps across the bottom are pushouts of maps of the 
form B ⊗ u◻n/Σn. The strong commutative monoid axiom guarantees us that u◻n/Σn is a cofibration, and 
h-monoidality tells us that the horizontal maps are in the class (M ⊗I)-cell. Since M is compactly generated, 
any filtered colimit of weak equivalences along such maps is a weak equivalence, so we are reduced to proving 
the vertical maps are weak equivalences. This will be accomplished by induction, using the fact that the 
vertical maps may be realized inductively as colimits of the following cubes:

A⊗Qn/Σn A⊗L⊗n/Σn

A[u](n−1) A[u](n)

B ⊗Qn/Σn B ⊗L⊗n/Σn

B[u](n−1) B[u](n)

Since f is a weak equivalence in CMon(M), it is a weak equivalence in M, so A[u](0) → B[u](0) is simply 
the weak equivalence f . By induction we may assume A[u](n−1) → B[u](n−1) is a weak equivalence. We must 
now prove that the other vertical maps are weak equivalences. This is where we use our hypotheses on M. 
Our assumption on the domains of the generating cofibrations implies K and L are cofibrant, and hence 
that the maps inside the cube defining Qn are cofibrations (hence h-cofibrations because M is left proper). 
Since passage to Σn-coinvariants commutes with pushout, and because M satisfies the commutative monoid 
axiom, Qn/Σn and L⊗n/Σn are cofibrant. A detailed proof of this claim is given in Lemma A.3. Because 
cofibrant objects are flat, the vertical maps f ⊗Qn/Σn and f ⊗L⊗n/Σn are weak equivalences.

The strong commutative monoid axiom and h-monoidality of M imply that A ⊗u◻n/Σn and B⊗u◻n/Σn

are h-cofibrations. The characterization of h-cofibrations in a left proper model category (given after
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Definition 4.15 above) implies that both the top and bottom squares of the cube above are homotopy 
pushout squares. As in the proof of Theorem 3.1 in [2] this implies that the back square in the cube above 
is a homotopy pushout square, and so the front one is too. Finally, this implies that A[u](n) → B[u](n) is 
a weak equivalence, completing our induction and the proof that CMon(M) is left proper. ◻

As in the proof of Theorem 3.1 in [2], the proof above also has a relative version when M fails to be 
h-monoidal.

Theorem 4.18. Let M be a compactly generated monoidal model category satisfying the strong commutative 
monoid axiom and the monoid axiom. Let R be a commutative monoid in M. Then the category CAlg(R)
inherits a relatively left proper transferred model structure from M.

Here relatively left proper means that the pushout by a cofibration in CAlg(R) of any weak equivalence 
f ∶ A → B where U(A) and U(B) are cofibrant in M is again a weak equivalence.

Proof. The hypotheses of the theorem still imply that CMon(M) inherits a model structure. The proof 
proceeds precisely as above, but now one may assume U(A) and U(B) are cofibrant in M, and that u
has a cofibrant domain (this is why we do not need a tractability hypothesis on M). So maps of the form 
A ⊗ u◻n/Σn and B ⊗ u◻n/Σn are cofibrations. Furthermore, all objects of the cube above are cofibrant and 
we no longer need the hypothesis that cofibrant objects are flat in order to conclude that the vertical maps 
are weak equivalences. We simply use Ken Brown’s lemma, since − ⊗ Z will preserve weak equivalences 
between cofibrant objects for any cofibrant Z (e.g. Z = Qn/Σn or Z = L⊗n/Σn). Finally, the Cube Lemma 
(Lemma 5.2.6 in [26]) completes the induction and implies A[u](n) → B[u](n) is a weak equivalence. ◻

4.5. Lifting Quillen equivalences

We turn now to the question of when a monoidal Quillen equivalence F ∶ M → N , between model cate-
gories satisfying the commutative monoid axiom, induces a Quillen equivalence of categories of commutative 
monoids.

Theorem 4.19. Suppose M and N satisfy the commutative monoid axiom. Suppose F ∶ M → N is left 
Quillen equivalence and a strong symmetric monoidal functor. Let T be a commutative monoid which is 
cofibrant in M and such that cofibrant commutative T -algebras forget to cofibrant objects in M. Then F (T )
is a commutative monoid in N and the functor F̃ ∶ CAlg(T ) → CAlg(F (T )), induced by F , is a left Quillen 
equivalence.

Note that the hypothesis about cofibrant commutative T -algebras forgetting to cofibrant objects in M
can be arranged either by assuming the strong commutative monoid axiom and that the unit S of M is 
cofibrant (in which case the hypothesis holds by Corollary 3.6), or by working in the setting where M is a 
positive flat model structure on a monoidal category of spectra (in which case the hypothesis was proved 
to hold in [49]).

Proof. First, we lift the functor F to a functor of commutative T -algebras. Let S denote the unit of M and 
let SN denote the unit of N . For any commutative T -algebra M , FM is a commutative FT -algebra with 
structure maps FT ⊗FM ≅ F (T ⊗M) → FM , FM ⊗FM ≅ F (M ⊗M) → FM , and SN ⊗FM ≅ FS⊗FM ≅
F (S ⊗M) → FM inherited from M . For commutativity of FM we use that F is symmetric monoidal.

Let η ∶ X → UFX and ε ∶ FUX → X be the unit and counit of the adjunction (F, U). We now show 
that U lifts to a functor of commutative monoids. For any commutative FT -algebra N , UN is a T -module 
with structure map T ⊗UN → UFT ⊗UN → U(FT ⊗N) → UN where the first map is η⊗1 and the second 
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map is adjoint to F (UFT ⊗ UN) → FUFT ⊗ FUN → FT ⊗N , the composite of a natural isomorphism 
with ε ⊗ ε. Similarly, UN is a commutative T -algebra with structure maps UN ⊗UN → U(N ⊗N) → U(N)
where the first map is adjoint to F (UN ⊗ UN) ≅ FUN ⊗ FUN → N ⊗ N again using ε ⊗ ε. Lastly, the 
unit SN ≅ FS → N is adjoint to S → UN . It is easy to verify that F and U remain adjoint as functors of 
commutative monoids.

Since U preserves fibrations and trivial fibrations of commutative monoids (since it does so as a functor 
N →M), it is a right Quillen functor. To prove that (F, U) forms a Quillen equivalence, we must prove that 
for any cofibrant commutative T -algebra X, the natural map X → URTFX is a weak equivalence, where RT

is a fibrant replacement functor in the category of commutative FT -algebras. Let R be a fibrant replacement 
functor in N . Then there is a weak equivalence RFX → RTFX because RTFX is fibrant in N and weakly 
equivalent to FX. This is a weak equivalence between fibrant objects in N , so URFX → URTFX is a weak 
equivalence in M. Since X is a cofibrant commutative T -algebra, our hypothesis guarantees X is cofibrant 
in M. It follows that X → URFX is a weak equivalence (since (F, U) is a Quillen equivalence), hence that 
X → URTFX is a weak equivalence in M. ◻

Note that because we only needed X → URFX to be a weak equivalence to finish our proof above, it also 
works in positive (non-flat) model structures on monoidal categories of spectra, since it is sufficient that X
be positive flat cofibrant rather than positive cofibrant.

Remark 4.20. The proof above is based on Theorems 2.7 and 3.6 in [25]. However, the Dold–Kan equivalence 
is not strongly symmetric monoidal (see page 2 of [47]). One could attempt to generalize the Theorem above 
in the way that [47] generalized [25], and work with weak monoidal Quillen pairs, following Theorem 3.12 
of [47], but this would not solve the fact that the Dold–Kan equivalence is not symmetric.

5. Examples

In this section we verify the strong commutative monoid axiom for the model categories of chain complexes 
over a field of characteristic zero, for simplicial sets, for topological spaces, and for positive flat model 
structures on various categories of spectra. We also discuss precisely what is true for positive (non-flat) 
model structures of spectra. Throughout this section we make use the following lemma, which is proven in 
Appendix A.

Lemma 5.1. Suppose M is a cofibrantly generated monoidal model category and that for all f ∈ I (resp. J) 
we know that f◻n/Σn is a (trivial) cofibration. Then the strong commutative monoid axiom holds for M.

5.1. Commutative differential graded algebras in characteristic zero

Consider a field k and M = V ect(k). Then M satisfies the strong commutative monoid axiom if and only 
if char(k) = 0. Because MΣn ≅ k[Σn] −mod, the projective model structure is nicely behaved (i.e. matches 
the injective model structure) exactly when k[Σn] is semisimple, i.e. exactly when k has characteristic 
zero. Indeed, such M satisfies the stronger condition required in Theorem 3.12. This example generalizes 
to pertain to Ch(R) whenever R is a commutative Q-algebra.

The commutative monoid axiom fails over F2 because F2 is not projective over F2[Σ2] (because now 
Maschke’s Theorem does not hold) and so the cokernel of f◻n does not have a free Σn action, and this will 
be an obstruction to f◻n/Σn being a cofibration.

That CDGA(k) cannot inherit a model structure for char(k) = p > 0 has been known for many years. 
The fundamental problem is that Sym(−) does not preserve weak equivalences between cofibrant objects 
and so cannot be a left Quillen functor. This is because for example Symp(D(k)) will not be acyclic even 
though the disk D(k) is acyclic.
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5.2. Spaces

Theorem 5.2. The category of simplicial sets (both pointed and unpointed) satisfies the strong commutative 
monoid axiom but does not satisfy Lurie’s axiom or the rectification axiom.

Proof. To see that the rectification axiom fails, consider X = Δ[0]. Then the rectification axiom is asking 
BΣn to be contractible. To see that Lurie’s axiom fails, consider f◻2 where f ∶ S0 → D1. This map is 
not a Σ2-cofibration because the action on the cofiber of f◻2 is not free. However, to show that we get 
a cofibration after passing to Σ2 coinvariants is easy, because the map is a monomorphism. Furthermore, 
this line of reasoning generalizes to show that f◻n/Σn is a cofibration whenever f is a generating (trivial) 
cofibration. To check that it’s also a weak equivalence if f is a generating trivial cofibration, we use the 
following theorem of Casacuberta [9]:

Theorem 5.3. If f is any map of simplicial sets, then Sym(−) preserves f -equivalences.

Obviously, this proves much more than we needed, and in fact we use the proof of this theorem in [56] to 
see that any monoidal Bousfield localization of sSet∗ also satisfies the strong commutative monoid axiom. 
The key point in the proof of this theorem is due to an observation of Farjoun [14] which says that for any 
X, Symn(X) can be written as a homotopy colimit of a free diagram formed by the orbits of Σn where 
each quotient Σn/H is sent to the fixed-point subspace (Xn)H . It is then not too much work to see that 
Symn(−) preserves weak equivalences (and more generally f -equivalences), as is proven in [9]. We then use 
Lemma A.3 to see that f◻n/Σn is a weak equivalence whenever f is a trivial cofibration, completing our 
proof that the strong commutative monoid axiom holds. ◻

Observe that the counterexample displaying the failure of Lurie’s axiom and the rectification axiom also 
applies to Top, sSetG, and TopG. Also, [9] only states Theorem 5.3 in the setting of pointed spaces, but it 
is true for unpointed spaces as well. This follows from Lemma A.3 and the main result of [3].

Theorem 5.4. The category of compactly generated topological spaces satisfies the strong commutative monoid 
axiom.

Proof. In Top, cofibrations and monomorphisms no longer coincide, but the strong commutative monoid 
axiom still holds. This may be verified by either checking it directly on the generating maps Sn−1 →Dn and 
Dn → Dn × [0, 1] (a valuable exercise), or by transporting the strong commutative monoid axiom on sSet
to Top via the geometric realization functor. From [25] we see that Top satisfies the necessary smallness 
hypotheses, so Theorem 3.2 applies. ◻

In case the reader is interested in checking the commutative monoid axiom on Top directly, we remark 
that the interpretation of Farjoun’s work in [9] makes clear that the only property of simplicial sets being 
used in the argument is that the fixed point subspaces of actions of subgroups of Σk on Xk are homeomorphic 
to spaces Xn for some n ≤ k. So one could apply Farjoun’s work just as well in Top as in sSet. Indeed, 
Farjoun’s work provides a way to “free up” any diagram category and view the colimit of a diagram as 
the homotopy colimit of a different diagram (indexed by the so-called orbit category). In this way good 
homotopical properties can be achieved in a great deal of generality. The fact that the same argument 
works in both Top and sSet leads us to make the following conjecture.

Conjecture 5.5. Suppose that M is a concretizable Cartesian closed model category in which cofibrations are 
closed under the operation (−)◻n/Σn. Then the strong commutative monoid axiom holds in M.
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We now turn to equivariant spaces.

Theorem 5.6. Let G be a finite group. Then sSetG and TopG satisfy the strong commutative monoid axiom.

Proof. We begin with sSetG. Note that just as for sSet, cofibrations are monomorphisms. Thus, the same 
proof as for sSet applies. In particular, when applying Farjoun’s trick on (Xn)H where H < Σn, we simply 
use the fact that the G action and the Σn action commute.

To handle the situation of TopG we may again transfer the strong commutative monoid axiom via 
geometric realization. Here we really need G to be a finite group. For any simplicial group G, a G action on 
X ∈ sSet is taken to an action of ∣G∣ on ∣X ∣ by geometric realization. If G is finite then G = Sing∣G∣ acts on 
Sing∣X ∣ and we can prove sSetG is Quillen equivalent to Top∣G∣. However, for non-finite G we do not know 
that every subgroup K of the topological group ∣G∣ is realized as some ∣H ∣ for H < G, so there may be fewer 
weak equivalences in Top∣G∣ than in sSetG. Indeed, the referee for this paper pointed out that G = BZ is an 
example of such behavior: ∣BZ∣ has uncountably many subgroups, but BZ does not. ◻

5.3. Symmetric spectra

The obstruction noticed by Gaunce Lewis and discussed in [30] guarantees that commutative monoids 
in the usual model structure on symmetric spectra cannot inherit a model structure, because the unit is 
cofibrant and because the fibrant replacement functor is symmetric monoidal. This second property cannot 
be changed, but there are model structures on symmetric spectra in which the unit is not cofibrant. The 
positive model structure was introduced in [28] and [35] and this model structure breaks the cofibrancy of 
the sphere by insisting that cofibrations be isomorphisms in level 0 (though in other levels they are the same 
as the usual cofibrations of symmetric spectra). In [49], Shipley found a more convenient model structure 
which is now called the positive flat model structure. In this model structure the cofibrations are enlarged 
to contain the monomorphisms, and then the condition in level 0 is applied. The result is a model structure 
in which commutative ring spectra inherit a model structure and in which cofibrations of commutative ring 
spectra forget to cofibrations of spectra.

Note that in [31], Lurie’s axiom is claimed to hold for positive flat symmetric spectra. This is an error, as 
acknowledged in [33]. Indeed, the example given in Proposition 4.2 of [49] demonstrates this failure conclu-
sively, for both the positive and the positive flat model structures. We will now show that the commutative 
monoid axiom holds for positive flat (stable) symmetric spectra, and a slight weakening holds for positive 
(stable) symmetric spectra.

5.3.1. Positive flat stable model structure
Theorem 5.7. The strong commutative monoid axiom holds for the positive flat stable model structure on 
symmetric spectra.

Proof. By Lemma 5.1, it’s sufficient to check the strong commutative monoid axiom on the generating 
(trivial) cofibrations. Such maps are cofibrations between cofibrant objects, so Lemma 8.3.2(1) of [57] im-
plies that for any generating trivial cofibration g and any generating cofibration f , the maps g◻n/Σn and 
f◻n/Σn are monomorphisms for all n. Similarly, Lemma 8.3.2(2) of [57] implies that Symn(g) is a weak 
equivalence for all n. These two results are special cases of Proposition 4.28∗(b) and Proposition 4.29∗(a) 
in [19] (corrigendum). In the notation of [57], B should be taken to be the monoidal unit S with the trivial 
Σn-action.

Together with the observations above, Lemma A.3 (applied in the injective model structure on symmetric 
spectra), implies that g◻n/Σn is a weak equivalence. We are therefore reduced to proving that g◻n/Σn and 
f◻n/Σn are cofibrations rather than only monomorphisms. In light of Lemma 5.1, it suffices to do so 
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for generating cofibrations f , as the result will then hold for all cofibrations. Thankfully, this has been 
painstakingly checked by Pereira in Theorems 1.6 and 1.7 of [39]. Pereira introduces the S Σ-Inj G-Proj 
model structure on the category (SpΣ)G of G objects in symmetric spectra, for any finite group G. We 
need the case where G = Σn, and we note that S-model structures are the same as flat model structures. 
Theorem 1.6 of [39] implies that f◻n is a cofibration in this new model structure. It can be deduced from 
the proof of Theorem 1.7 in Section 4 of [39] that the functor (−)/Σn from the S Σ-Inj Σn-Proj model 
structure to the positive flat model structure preserves cofibrations (this is the point of the projectivity: 
to free up the Σn-action). It follows that (−)◻n/Σn preserves positive flat cofibrations, and hence that the 
strong commutative monoid axiom is satisfied. ◻

We remark that this theorem together with Lewis’s example demonstrate that the commutative monoid 
axiom need not be preserved by monoidal Quillen equivalences, since the positive flat stable model structure 
is monoidally Quillen equivalent to the canonical stable model structure. This can be seen via Proposition 2.8 
in [49], together with the fact that stable cofibrations are contained in flat cofibrations (Lemma 2.3 in [49]) 
and the fact that the two model structures have the same weak equivalences. We do not know of a similar 
example which would demonstrate that the monoid axiom need not be preserved by monoidal Quillen 
equivalence.

5.3.2. Positive stable model structure
Shipley proves in [49] that positive symmetric spectra do not satisfy the property that cofibrations 

of commutative monoids forget to cofibrations of symmetric spectra. Thus, this model structure cannot 
satisfy the strong commutative monoid axiom. However, Proposition 4.2 in [49] proves that a cofibration of 
commutative R-algebras forgets to a positive R-cofibration (and hence to an R-cofibration) even though it 
is not a positive cofibration in the sense of [35]. This suggests the following result:

Proposition 5.8. Let f be a (trivial) cofibration in the positive stable model structure. Then f◻n/Σn is a 
(trivial) cofibration in the positive flat stable model structure. Furthermore, commutative monoids inherit a 
model structure in the positive stable model structure.

Proof. The proof is identical to the proof that the positive flat stable model structure satisfies the strong 
commutative monoid axiom. This is because positive cofibrations form a subclass of positive flat cofibrations. 
For the statement regarding trivial cofibrations, the same logic used above holds, because it is a Bousfield 
localization with respect to the same class of maps, and the weak equivalences of both the positive stable 
and positive flat stable model structures are the same. In particular, this observation proves that the positive 
(stable) model structures satisfy the weak form of the commutative monoid axiom discussed in Remark 3.3, 
so commutative monoids inherit a model structure. ◻

Shipley provides a counterexample which demonstrates that Sym(F1S
1) is not positively cofibrant (only 

positively flat cofibrant) because the space in level two, [(F1S
1)∧2/Σ2]2 = (S1∧S1)/Σ2, is not Σ2-free. Thus, 

Proposition 3.5 cannot hold as stated. However, for the same reasons as in the proof above (namely, the 
containment of positive cofibrations in positive flat cofibrations) we can obtain the following weakened form 
of Proposition 3.5.

Proposition 5.9. Let M be the positive stable model structure on symmetric spectra, and let CAlg(R) be 
the model structure passed from M to the category of commutative R-algebras (where R is a commutative 
monoid in M). Suppose f is a cofibration in CAlg(R) whose source is cofibrant in M. Then f forgets to a 
cofibration in the positive flat stable model structure.
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5.4. General diagram spectra

In [35], a general theory of diagram spectra is introduced which unifies the theories of S-modules, sym-
metric spectra, orthogonal spectra, Γ-spaces, and W -spaces. For the first, homotopy-coherence is built into 
the smash product, so commutative monoids immediately inherit a model structure and there is rectifi-
cation between Com-alg and E∞-alg. For the next two, positive model structures are introduced which 
allow strictly commutative monoids to inherit model structures. The rectification axiom is then proved and 
rectification is deduced as a result.

Theorem 5.10. The positive flat stable model structure on (equivariant) orthogonal spectra satisfies the strong 
commutative monoid axiom and (the equivariant analogue of) the rectification axiom. The positive stable 
model structure satisfies the weak commutative monoid axiom, Proposition 5.8, and Proposition 5.9.

Proof. For the positive flat stable model structure on (equivariant) orthogonal spectra, proceed as in the 
proof of Theorem 5.7, but using (equivariant) topological spaces rather than simplicial sets. The rectification 
axiom is proven in [35] (and in [8] for the equivariant case). For the positive stable model structure proceed 
as in Proposition 5.8 and Proposition 5.9. ◻

We turn now to W -spaces and Γ-spaces. Recall that W is the category of based spaces homeomorphic to 
finite CW-complexes, Γ is the category of finite based sets, and D-spaces are functors from D to Top (where 
D is either W or Γ). The indexing category for Γ-spaces is a subset of W . First, Lewis’s counterexample [30]
still applies to rule non-positive model structures out from consideration. This is discussed in the context 
of Γ-spaces in Remark 2.6 of [45]. The author has not been able to find a place where this is written down 
for W -spaces, but it is clear that the same counterexample applies for W -spaces. We must work in positive 
model structures on W -spaces and Γ-spaces. Such positive model structures are introduced in Section 14 
of [35], where their monoidal properties are also discussed.

Analogously to the setting of symmetric and orthogonal spectra, one can define positive flat model struc-
tures (also known as convenient model structures) on Γ-spaces and W -spaces. For instance, one can carry 
out the program of [49] for Γ-spaces (e.g. following the work in [42] and making use of the relationship 
between Γ-spaces and symmetric spectra as explored in [44]) to obtain the necessary mixed model structure 
on spaces. From there it is purely formal to construct the appropriate levelwise model structure on dia-
grams, e.g. using Theorem 6.5 in [35]. The weak equivalences are the level equivalences and the generating 
cofibrations for W -spaces take the form FW I = {Fd(i) ∣ d ∈ skelW, i ∈ I} where Fd(−) is W (d, −) ∶W → Top. 
The indexing category for Γ-spaces is a subset of W , so an analogous construction works for the generating 
cofibrations of Γ-spaces.

Passage from the levelwise structure to the positive flat model structure is again formal, and is accom-
plished by truncating the levelwise cofibrations to force levelwise cofibrations to be isomorphisms in degree 0. 
Finally, passage to the positive flat stable model structure may be accomplished via Bousfield localization, 
just as in Section 8 of [35].

Theorem 5.11. The positive flat model structures on W -spaces and Γ-spaces satisfy the strong commutative 
monoid axiom. The positive model structure on W -spaces and Γ-spaces satisfies the weak commutative 
monoid axiom. So commutative monoids inherit model structures in both settings.

The verification of the strong commutative monoid axiom proceeds precisely as for the positive flat model 
structure on symmetric spectra. In particular, one can reduce the verification to a verification in spaces. We 
leave the details to the reader. The difficulty comes in the part of the proof when one attempts to pass the 
commutative monoid axiom to the stable model structure, and that is why the adjective stable is not in the 
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statement of the theorem. In particular, the difficulty is that the rectification axiom is not known to hold 
for D-spaces (where D is either W or Γ). Indeed, we can show that the rectification axiom cannot hold.

First, if the rectification axiom held, then the proof that the strong commutative monoid axiom holds 
for positive flat stable symmetric spectra (i.e. via Theorem 4.13) would prove that D-spaces satisfy the 
commutative monoid axiom. Secondly, because of the rectification axiom the rest of the work in [35] and 
[49] would prove that commutative D-rings were Quillen equivalent to E∞-algebras and this would contradict 
the main theorem of Tyler Lawson’s paper [29].

Lawson produces an E∞-algebra in Γ-spaces which cannot be strictified to a commutative Γ-ring. Together 
with the monoidal functor from Γ-spaces to W -spaces (developed in [35]), this same counterexample proves 
that not all E∞-algebras in W -spaces can be strictified to commutative W -rings.

5.5. Diagram categories

We now investigate conditions on a model category M and on a small indexing category D so that the 
commutative monoid axiom holds for MD.

5.5.1. Injective model structures
The case of injective model structures on diagrams is particularly easy, since weak equivalences and 

cofibrations are defined in M. By 5.2, the category of simplicial sets satisfies the commutative monoid 
axiom. This property will be inherited by the category of simplicial presheaves with the injective model 
structure. In particular, we have

Proposition 5.12. Suppose M is a monoidal model category which satisfies the commutative monoid axiom. 
Suppose D is a small category such that the injective model structure on MD exists. Then the injective 
model structure with the levelwise monoidal structure satisfies the commutative monoid axiom.

Proof. Suppose f ∶ X → Y is a cofibration in MD so that each fd is a cofibration in M. Colimits in MD

are computed componentwise, so the domain Qn of f◻n has the property that (Qn)d is the domain of 
(fd)◻n. Furthermore, the same is true of Qn/Σn and of Y ⊗n/Σn for the same reason. Since M satisfies the 
commutative monoid axiom, each (fd)◻n/Σn is a cofibration in M. Thus, f◻n/Σn is a levelwise cofibration, 
i.e. a cofibration in MD. The case of a trivial cofibration f is similar, since injective weak equivalences are 
also defined levelwise. ◻

In a related vein, we make the following conjecture.

Conjecture 5.13. Any excellent model category in the sense of [32], Definition A.3.2.16, will satisfy the 
commutative monoid axiom.

The results in 5.2, together with the main results of [56] imply that any left Bousfield localization of 
simplicial sets will satisfy the commutative monoid axiom. A similar statement is true for the injective 
model structure on simplicial presheaves, but one must be more careful that the pushout product axiom is 
preserved by the localization (i.e. not all Bousfield localizations are monoidal in the sense of [56]). In recent 
joint work with Michael Batanin, we have shown that all monoidal Bousfield localizations of simplicial 
presheaves satisfy the hypotheses of Theorem 4.13 and as a result the model structures considered by Rezk 
in [41] will satisfy the commutative monoid axiom.
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5.5.2. Projective model structure
The projective model structure is more subtle than the injective model structure, because one has less 

control over the projective cofibrations. For this reason, we begin with a simple case, but one which we 
expect to have important applications in the future.

Recall from [27] that for any monoidal model category M, the diagram category Arr(M) ∶= M●→●

may be endowed with a monoidal model structure in which weak equivalences and fibrations are defined 
componentwise and in which the monoidal product is the pushout product f ◻ g. Hovey proved that if M
is cofibrantly generated and satisfies the monoid axiom then the same is true of Arr(M).

When M is the category of symmetric spectra, monoids are Smith ideals, named after Jeff Smith to 
whom this definition is due. The main results in [27] together with the model structure on monoids from 
[46] allow for a model category of Smith ideals. Smith envisioned using ideals to extend many results in 
commutative algebra to the world of ring spectra. A necessary step in carrying out this program is having 
a good homotopy theory for commutative ideals. This is accomplished by the following result.

Theorem 5.14. Suppose M is a cofibrantly generated monoidal model category. Then the projective model 
structure on Arr(M) with monoidal structure given by the pushout product satisfies the commutative monoid 
axiom. If M satisfies the (strong) commutative monoid axiom then so does Arr(M).

Proof. By Appendix A it is sufficient to check the commutative monoid axiom and the strong commutative 
monoid axiom on generating (trivial) cofibrations. Recall that the model structure on Arr(M) is transferred 
from M● ● =M ×M. Let D be the walking arrow category ● → ●. The generating cofibrations for Arr(M)
are F (I ′) and F (J ′) where I ′ and J ′ are generators for MDdisc = ∏d∈DM and F is the functor

F (X) = ∐
α∈Ob(D)

Fα
Xα

=∐
α

Xα ⊗ Fα
∗ i.e. F (X)β =∐

α
∐

D(α,β)

Xα

For simplicity we will remain in the case of the generating trivial cofibrations. The proof for generating 
cofibrations is identical. A typical element of J ′ is either (0, j) or (j, 0) where j ∶ A → A′ is a generating 
trivial cofibration for M. The generating trivial cofibrations of Arr(M) are given by applying the functor 
F to such generating morphisms. The resulting squares (read as morphisms from left to right) are

∅ ∅ A A′

A A′ A A′

where the left-hand square is φ ∶= F (j, 0) and the right hand square is ψ ∶= F (0, j). We must analyze 
φ◻2n/Σn and ψ◻2n/Σn, where ◻2 denotes the pushout product taken in the monoidal category Arr(M)
where the monoidal product on arrows is given by the Day convolution product (i.e. by the usual pushout 
product ◻). For simplicity we will focus on the case n = 2, so we are analyzing (φ ◻2 φ)/Σ2 and (ψ◻2ψ)/Σ2. 
We can draw φ ◻2 φ and ψ ◻2 ψ as

∅ Id ∅ A′ ⊗A∐A⊗AA⊗A′
j◻j

A′ ⊗A′

A′ ⊗A ∐
A⊗A

A⊗A′
j◻j

A′ ⊗A′ A′ ⊗A ∐
A⊗A

A⊗A′
j◻j

A′ ⊗A′

In order to show that a square is a trivial cofibration in Arr(M) one must show that both horizontal maps 
in the square are trivial cofibrations in M and that the pushout corner map is a trivial cofibration in M.
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For (φ ◻2 φ)/Σ2 the top horizontal map is Id∅ and so is a trivial cofibration. The bottom horizontal map 
and the pushout corner map are both (j ◻ j)/Σ2 and this is a trivial cofibration because we assumed the 
commutative monoid axiom on M (or the strong commutative monoid axiom for the case of cofibrations). 
Thus, (φ ◻2 φ)/Σ2 is a trivial cofibration in Arr(M).

For (ψ◻2 ψ)/Σ2 both the top and bottom horizontal maps are (j◻ j)/Σ2 and we have seen this map is a 
trivial cofibration. The pushout corner map is IdA′⊗A′/Σ2 = IdA′⊗A′/Σ2 and so is a trivial cofibration in M
because it’s an isomorphism. Thus, (ψ ◻2 ψ)/Σ2 is a trivial cofibration in Arr(M) and so Arr(M) satisfies 
the n = 2 case of the commutative monoid axiom.

Before tackling the case of general n, we record the general formula for

γ ◻2 δ ∶ f ◻ k ∐
f◻h

g ◻ h→ g ◻ k

where γ ∶ f → g, δ ∶ h → k, f ∶ A → A′, g ∶ B → B′, h ∶X →X ′, and k ∶ Y → Y ′. Visualize γ ◻2 δ as going from 
left to right:

(A⊗ Y ′ ∐
A⊗Y

A′ ⊗ Y )∐A⊗X′ ∐
A⊗X

A′⊗X(B′ ⊗X ∐
B⊗X

B ⊗X ′) B ⊗ Y ′ ∐
B⊗Y

B′ ⊗ Y

A′ ⊗ Y ′ ∐
A′⊗X′

B′ ⊗X ′ B′ ⊗ Y ′

For the case of general n, observe that φ◻2(n) is again a square with ∅ across the top row, but now the 
bottom horizontal map is j◻n. This can be seen inductively, since φ◻2(n) = φ◻2(n−1) ◻2 φ and the formula 
above tells us the effect of applying − ◻2 φ. We are lucky here since φ takes such a simple form. For ψ the 
situation is slightly more complicated, but because both vertical maps in ψ are identities the same will be 
true of ψ◻2(n). A straight-forward induction demonstrates that the horizontal maps in ψ◻2(n) are both j◻n. 
The same sort of analysis as in the n = 2 case demonstrates that ψ◻2(n)/Σn and φ◻2(n)/Σn are trivial 
cofibrations in Arr(M) because j◻n/Σn and identity maps are both trivial cofibrations in Arr(M). ◻

As a consequence, the category of commutative Smith ideals inherits a model structure as soon as M
satisfies the commutative monoid axiom. Using the results in Subsections 5.3.1 and 5.3.2 we obtain the 
following:

Corollary 5.15. Suppose M is the positive flat (stable) model structure on symmetric spectra or orthogonal 
spectra. Then commutative Smith ideals inherit a model structure because M satisfies the strong commutative 
monoid axiom. Furthermore, a cofibrant commutative Smith ideal forgets to a cofibrant object of Arr(M).

Corollary 5.16. Suppose M is the positive (stable) model structure on symmetric spectra or orthogonal 
spectra. Then commutative Smith ideals inherit a model structure because M satisfies the commutative 
monoid axiom. Furthermore, a cofibrant commutative Smith ideal forgets to a positive flat cofibrant object 
of Arr(M).

In fact, we can use the method in the theorem above to prove something more general. First note that the 
commutative monoid axiom can be transferred across certain types of adjunctions. In the following, assume 
F is a nonunital strongly symmetric monoidal functor in the sense of [52]. This simply means F satisfies all 
the hypotheses of a strong symmetric monoidal functor except F need not satisfy the hypotheses involving 
the unit. So F (n1 ⊗n2) ≅ F (n1) ⊗F (n2) and there are diagrams encoding associativity and commutativity 
for F , but F need not preserve the unit.
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Lemma 5.17. Suppose N is a cofibrantly generated model category satisfying the (strong) commutative 
monoid axiom, that F ∶ N → A is a left adjoint functor along which a model structure is transferred to A, 
and that F is a nonunital strongly symmetric monoidal functor. Then A satisfies the (strong) commutative 
monoid axiom.

Proof. As in the proof of the theorem above, it suffices to check that for every generating (trivial) cofibration 
F (f) of A, (F (f))◻n/Σn is again a (trivial) cofibration. Because F preserves the monoidal product and is 
left Quillen, F commutes with the operation (−)◻n, so (F (f))◻n/Σn = F (f◻n)/Σn = F (f◻n/Σn) again using 
that F is a left adjoint. Since f is a generating (trivial) cofibration of N , this map has the form F (g) where 
g is a (trivial) cofibration of N . Hence, F (g) is a (trivial) cofibration of A because F is left Quillen. ◻

Let D be a general diagram category. The projective model structure on MD is transferred from MDdisc =
∏d∈DM along the functor F whose formula is given in the theorem above. If MDdisc

is given the objectwise 
product then this functor F does not preserve binary products in general. In the case Arr(M) one can 
endow MDdisc

with the monoidal structure (X1, Y1) ◻d (X2, Y2) = (X1Y2∐X1Y1∐X2Y1, Y1Y2) which is 
cooked up to match the Day convolution product on Arr(M), but then the functor from M to MDdisc

may 
not be monoidal. In the following, we transfer the model structure from M rather than from MDdisc

.
Recall that for every d ∈ D there are right adjoints evd ∶ MD

proj → M whose left adjoints are given by 
Fd ∶ X ↦ D(d, −) ⋅X = ∐D(d,−)X. The model structure on MD may be transferred directly from M via 
the product of these left adjoints (Lemma 4.3 in [11]), so it is valuable to know when they are strongly 
symmetric monoidal.

Theorem 5.18. Suppose (M, S, ⊗) is a cofibrantly generated symmetric monoidal model category satisfying 
the (strong) commutative monoid axiom. Suppose (D, I, ⊛) is a small symmetric monoidal category in which 
the monoidal product is idempotent, i.e. there are natural isomorphisms d ⊛ d ≅ d for all d ∈ D and they 
induce isomorphisms D(d ⊛ d, −) ≅ D(d, −). Then the projective model structure on MD exists and the Day 
convolution product ○ makes it into a cofibrantly generated symmetric monoidal model category satisfying 
the (strong) commutative monoid axiom.

Proof. The existence of a cofibrantly generated model structure on MD is an old result, which may be 
found as Theorem 11.6.1 in [23]. For the fact that the Day convolution product makes MD into a symmetric 
monoidal model category we refer to Theorem 4.1 in [2]. For the commutative monoid axiom we must show 
that the left adjoints Fd preserve binary monoidal products. We must show that Fd(A ⊗B) ≅ Fd(A) ○Fd(B). 
By definition of the Day convolution product, the latter can be realized as the following coend, which we 
re-write using the Yoneda lemma

x,y∈D

∫ (D(d, x) ⋅A) ⊗ (D(d, y) ⋅B) ⋅ D(x⊛ y,−)

=
x,y

∫ (D(d, x) × D(d, y) × D(x⊛ y,−)) ⋅A⊗B

= D(d⊛ d,−) ⋅A⊗B

Our hypothesis on D guarantees that D(d ⊛ d, −) ⋅A ⊗B = D(d, −) ⋅A ⊗B as required. ◻

Observe that the hypothesis that Fd is strongly symmetric monoidal would have been too strong, since 
the only d for which Fd preserves the monoidal unit is d = I the unit of D. Observe also that the proof 
above shows Fa(A) ⊗ Fb(B) = Fa⊛b(A ⊗B).
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In fact, Theorem 4.1 in [2] proves that MD is a symmetric monoidal model category with respect to the 
Day convolution product in a more general setting than that stated above. If one is willing to assume M is 
compactly generated then one can generalize to the case of a small M-enriched category D:

Corollary 5.19. Suppose (M, S, ⊗) is a compactly generated symmetric monoidal model category satisfying 
the (strong) commutative monoid axiom. Suppose (D, I, ⊛) is a small M-enriched symmetric monoidal 
category in which the monoidal product is idempotent as above. Suppose one of the following three conditions 
holds:

(1) all hom-objects of D are coproducts of copies of the unit of M (this case recovers the classical projective 
model structure),

(2) all hom-objects of D are cofibrant in M, or
(3) the monoid axiom holds in M.

Then the projective model structure on MD exists and the Day convolution product ○ makes it into a 
cofibrantly generated symmetric monoidal model category satisfying the (strong) commutative monoid axiom.

We omit the proof since it is identical to the theorem above, except that we rely on Theorem 4.1 in [2]
for the existence of the transferred model structure on MD as well as for the fact that it forms a monoidal 
model structure.

We also have a result in case MD is endowed with the objectwise monoidal product (F ⊗ G)(d) =
F (d) ⊗G(d). In this case we may not rely on Theorem 4.1 in [2] and so we will focus attention again on a 
discrete indexing category D.

Corollary 5.20. Suppose D is a small poset with finite coproducts and (M, S, ⊗) is a cofibrantly generated 
symmetric monoidal model category satisfying the (strong) commutative monoid axiom. Then the projec-
tive model structure on MD with the objectwise monoidal product ⊗ is a cofibrantly generated symmetric 
monoidal model category satisfying the commutative monoid axiom.

Proof. That the projective model structure exists is again described in Theorem 11.6.1 of [23]. That it 
satisfies the pushout product axiom can be found in Lemma 3.8 of [60], because we have assumed D has 
finite coproducts. We must now verify that Fd(A ⊗ B) ≅ Fd(A) ⊗ Fd(B) for all d ∈ D. The latter is now 
(D(d, −) × D(d, −)) ⋅ A ⊗ B. It is an easy exercise to verify that for any poset D, this is isomorphic to 
D(d, −) ⋅A ⊗B as required. ◻

Relating the situations of the above two results we have the following

Proposition 5.21. If D is a Cartesian closed small category then the Day convolution product agrees with 
the objectwise product on MDop

.

Proof. Let X, Y ∶ Dop →M. Let × denote the Cartesian product on D and on MDop

. We use the Cartesian 
assumption in (*) below and we use the closed hypothesis for the next equality after (*):

(X ○ Y )β =
γ,δ∈D

∫ ∐
D(β,γ×δ)

Xγ ⊗ Yδ

∗= ∫ ∐
β→γ

β→δ

Xγ ⊗ Yδ =
γ

∫ ∐
β→γ

Xγ ⊗
δ

∫ ∐
β→δ

Yδ =Xβ ⊗ Yβ = (X × Y )β

The last non-trivial equality is the Yoneda lemma. ◻
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5.5.3. Reedy model structures
We have focused on the projective model structure, but for directed categories analogous statements hold 

for the Reedy model structure, since it coincides with the projective model structure. In order to make the 
Reedy structure into a monoidal model category we require two results of Barwick [1]. In the following, 
assume D is a Reedy category and M is a monoidal model category.

Proposition 5.22 (Barwick’s Corollary 4.17). Suppose (D, I, ⊛) is monoidal and ⊛ ∶ D × D → D defines a 
right fibration of Reedy categories, i.e. if for any model category N , the induced adjunction ND ⇆ND×D is 
a Quillen adjunction. Then MD with the Reedy model structure and the Day convolution product satisfies 
the pushout product axiom.

Proposition 5.23 (Barwick’s Theorem 4.18). Suppose D is left fibrant, i.e. for any model category N the 
Reedy functor N → ∗ where ∗ is the terminal Reedy category induces an adjunction ND ⇆ N ∗ which is a 
Quillen adjunction. Suppose that every morphism in the inverse category associated to D is an epimorphism. 
Then the objectwise monoidal product endows the Reedy model category MD with the structure of a monoidal 
model category.

From these, together with our results on projective model structures and the fact that Reedy model 
structures coincide with projective model structures whenever D is a directed category we have:

Corollary 5.24. Suppose (D, I, ⊛) is a small directed monoidal category, that ⊛ ∶ D × D → D defines a right 
fibration of Reedy categories, and that d ⊛d ≅ d for all d ∈ D. Suppose M is a cofibrantly generated monoidal 
model category satisfying the (strong) commutative monoid axiom. Then MD with the Reedy model structure 
and the Day convolution product satisfies the (strong) commutative monoid axiom.

Corollary 5.25. Suppose D is a small directed poset with finite coproducts and is left fibrant as a Reedy 
category. Suppose M satisfies the (strong) commutative monoid axiom. Then the Reedy model structure on 
MD with the objectwise monoidal product satisfies the (strong) commutative monoid axiom.

In the second corollary we were able to remove Barwick’s condition about epimorphisms because our 
category D has a trivial inverse category.

5.6. Other examples

There are several other examples which we have not investigated and which we would be curious to learn 
more about. We list them here:

• Stable module categories.
• Comodules over a Hopf algebroid.
• The model for spectra consisting of simplicial functors, in the style of [34].

We have not addressed positive model structures on motivic symmetric spectra. We understand that 
these examples are central to the work of [37], which will appear soon.
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Appendix A. Sufficiency of commutative monoid axiom on generators

We prove that if the strong commutative monoid axiom holds for the generating (trivial) cofibrations I
and J then it holds for all (trivial) cofibrations.

Lemma A.1. Suppose M is a cofibrantly generated monoidal model category and that for all f ∈ I (resp. J) 
we know that f◻n/Σn is a (trivial) cofibration. Then the strong commutative monoid axiom holds for M.

We will prove that the class of maps satisfying the condition in the strong commutative monoid axiom 
is closed under retracts, pushouts, and transfinite compositions. The first two are easy, but the third will 
require an induction. So we must introduce some new notation, following [20]. Let f ∶ X → Y and consider 
the n-dimensional cube in which each vertex is a word of length n on the letters X and Y .

Recall the action of Σn on the diagram which defines Qn. The vertices of the cube correspond to subsets D
of [n] = {1, 2, . . . , n} where a vertex C1 ⊗ ⋅ ⋅ ⋅ ⊗Cn has Ci =X if i ∉D and Cj = Y if j ∈D. Any σ ∈ Σn sends 
the vertex so defined to the vertex corresponding to σ(D) ⊂ [n] using the action of Σ∣D∣ on the X’s and 
Σn−∣D∣ on the Y ’s. Clearly, this action descends to an action on the colimit Qn.

For inductive purposes, we will need to consider subdiagrams whose vertices consist of words with ≤ q

copies of the letter Y . This subdiagram consists of all vertices of distance ≤ q from the initial vertex X⊗n. 
We denote the colimit of this subdiagram by Qn

q , to match the notation of [20]. The superscript n refers to 
the fact that this is a subdiagram of the n-dimensional cube, so in particular each vertex is a word on n
letters. In particular, Qn

0 =X⊗n, Qn
n = Y ⊗n, and Qn

n−1 is the domain of f◻n, which we have formerly denoted 
by Qn. For the purposes of this proof we will now write it as Qn

n−1(f) (or Qn
n−1 if the context is clear).

The induction will make use of the maps of colimits Qn
q−1 → Qn

q which are induced by inclusion of 
subdiagram. The Σn action on the cube clearly preserves the size of the subset D ⊂ [n] and so it restricts 
to an action of Σn on each Qn

q . Because this action is a restriction of the Σn-action on the full cube, the 
map of colimits Qn

q−1 → Qn
q is automatically Σn-equivariant. Indeed, the map of colimits Qn

q−1 → Qn
q can be 

realized by the following pushout:

Σn ⋅Σn−q×Σq
X⊗(n−q) ⊗Qq

q−1

⇘

Qn
q−1

Σn ⋅Σn−q×Σq
X⊗(n−q) ⊗ Y ⊗q Qn

q

(1)

where the left vertical map is induced by f◻q (see Section 7 of [20] and Remark 4.15 of [19] for a toy case). 
To explain the notation Σn ⋅Σn−q×Σq

(−), first note that for any set G and any object A, G ⋅A = ∐g∈GA. When 
G = Σn this object inherits a Σn action by permuting the An! objects in the coproduct. When we write 
Σn ⋅Σk×Σq

(−) we are quotienting out by the Σk ×Σq action on this object in MΣn . The result is a coproduct 
with n!/(k!q!) terms because the order of the k! terms to the left of the product (and of the q! terms to 
the right) do not matter. In particular, applying Σn ⋅Σk×Σq

(−) has the effect of equivariantly building in 
additional layers of the cube. With this notation in hand we proceed to the proof.

Proof. Let P denote the class of cofibrations f for which f◻n/Σn is also a cofibration. Let P ′ denote the 
same for trivial cofibrations. We must prove that if I ⊂P then all cofibrations are in P (and the same for 
J ⊂P ′). We will do so by proving the classes P and P ′ are closed under retracts, pushouts, and transfinite 
compositions.
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The simplest to verify is closure under retracts, which follows from the fact that (−)◻n/Σn is a functor 
on Arr(M) so if f is a retract of g (with g ∈ P or P ′) then f◻n/Σn is a retract of g◻n/Σn and hence a 
(trivial) cofibration.

We next consider closure under pushouts. Suppose f ∶X → Y is a pushout of g ∶ A → B and g ∈P or P ′. 
Then we have a Σn-equivariant pushout diagram

Qn(g)

⇘

B⊗n

Qn(f) Y ⊗n

by Proposition 6.13 in [19]. When we pass to Σn-coinvariants we see that f◻n/Σn is a pushout of g◻n/Σn, 
e.g. by commuting colimits. Indeed, for any X ∈MΣn , X⊗Σn

f◻n is a pushout of X⊗Σn
g◻n. So if the latter 

is assumed to be a (trivial) cofibration because g ∈P or P ′ then the former will be as well.
Composition is harder, so we begin with the case of two maps f ∶X → Y and g ∶ Y → Z in P or P ′. We 

will prove that Qn
n−1(gf)/Σn → Z⊗n/Σn is a (trivial) cofibration. First note that this map factors through 

Qn
n−1(g)/Σn and the hypothesis on g guarantees that Qn

n−1(g)/Σn → Z⊗n/Σn is a (trivial) cofibration. So 
we must only prove that Qn

n−1(gf)/Σn → Qn
n−1(g)/Σn is a (trivial) cofibration.

We proceed by realizing both colimit diagrams as subdiagrams of the same diagram, which is a 
n-dimensional cube featuring 3n vertices which are words of length n in the letters X, Y , and Z. For-
mally, this cube is an element of the rectangular diagram category Fun((0 → 1 → 2)×n, M), and every time 
we write subdiagram we mean with respect to this cube with 3n vertices. The domain Qn

n−1(gf) of the map 
we care about is the colimit of the X −Z subdiagram, i.e. the punctured cube formed from vertices which 
are words in X and Z, where all maps are compositions gf . The codomain Qn

n−1(g) of the map we care 
about is the colimit of the Y −Z subdiagram, i.e. the punctured cube formed from vertices which are words 
in Y and Z. So we must again introduce new notation to build this map one step at a time.

The induction will proceed by moving through the rectangle by adding a single Σn-orbit at a time. So 
we will need to consider Σn-equivariant subdiagrams of the rectangle which contain the X − Z punctured 
cube and which contain a new vertex e (and hence its entire Σn-orbit).

In order to build this new vertex into the colimit we will also need to consider the subdiagram of the 
X − Y − Z box which maps to e (but which does not include e itself). This is collection of vertices sitting 
under e (i.e. of distance strictly less than e from the initial vertex). As with e, we wish to consider the 
Σn-orbit of this subdiagram, which is equivalently described as all vertices sitting under any vertex in the 
orbit of e. Now that we have a picture of the subdiagram in mind, we denote the colimit of this subdiagram 
by Qe. By construction there is an induced Σn-equivariant map Qe → e.

We are now ready to consider the diagrams formed when we adjoin the Qe-diagram with the X − Z

punctured cube. Let Q[0]nn−1 = Qn
n−1(gf) denote the colimit of the X−Z punctured cube. Let Q[1]nn−1 denote 

the colimit of the subdiagram containing the X −Z punctured cube, the orbit of the vertex e = Y ⊗Z⊗(n−1), 
and the vertices in the Qe subdiagram. Continue inductively, by adding e = Y ⊗q⊗Z⊗(n−q) and vertices below 
it to the Q[q−1]nn−1-diagram to get the Q[q]nn−1-diagram. This process terminates with the whole X −Y −Z
punctured cube whose 3n − 1 vertices contain all words in X, Y, Z except the word Z⊗n. The colimit of this 
diagram is denoted Q[n]nn−1. A cofinality argument shows that this colimit is equal to Qn

n−1(g), because all 
factors of X which appear are mapped to a factor of Y in the subdiagram and so do not affect the colimit.

The induction will proceed along the maps Q[q − 1]nn−1 → Q[q]nn−1 induced by containments of subdia-
grams. This induction can be thought of as stepping through shells in the cube of increasing distance from 
the initial vertex X⊗n until the information from the entire diagram has been built into the colimit.
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Because each step Q[q−1]nn−1 → Q[q]nn−1 builds in the information of one new vertex (and its orbit under 
the Σn action on the cube), we may apply Proposition A.4 from [38] with e = Y ⊗q ⊗ Z⊗(n−q) to write the 
following pushout diagram:

Σn ⋅Σq×Σn−q
Qe

⇘

Q[q − 1]nn−1

Σn ⋅Σq×Σn−q
Y ⊗q ⊗Z⊗(n−q) Q[q]nn−1

(2)

The left vertical map is induced by Qe → Y ⊗q ⊗ Z⊗(n−q) and this is in turn induced by f◻q ◻ g◻(n−q)

because

Qe ≅ Y ⊗q ⊗Qn−q
n−q−1(g) ∐

Qq
q−1(f)⊗Q

n−q
n−q−1(g)

Qq
q−1(f) ⊗Z⊗(n−q) (3)

To see that the diagram defining Qe decomposes into a gluing of the diagrams defining Qq
q−1(f) ⊗Zn−q and 

Y q ⊗Qn−q
n−q−1(g) along the diagram defining Qq

q−1(f) ⊗Qn−q
n−q−1(g), note that every X in the Qe diagram gets 

mapped to a Y in the Qe diagram and so does not affect the colimit. This is the reason why we insisted 
upon including the vertices under e in our construction of the diagram defining Qe. Furthermore, every Z in 
the Qe diagram is the image of some Y and so we may apply a cofinality argument to realize that any map 
out of the diagram for the left-hand side of (3) must factor through the right-hand side, which completes 
the proof of (3).

Now pass to Σn-coinvariants in Equation (2). Verifying that the left vertical map is a cofibration reduces 
to verifying that f◻q/Σq ◻ g◻(n−q)/Σn−q is a cofibration. This in turn follows from the inductive hypothesis 
on f and g. Thus all the maps Q[q]nn−1/Σn → Q[q + 1]nn−1/Σn are pushouts of cofibrations and hence are 
cofibrations themselves. Hence, their composite Qn

n−1(gf)/Σn → Qn
n−1(g)/Σn is a cofibration. This completes 

the proof that the classes P and P ′ are closed under composition.
Finally, we cover the case of transfinite composition. First note that the proof for the composition of two 

maps proves that the vertical maps and the induced pushout corner map in the following square become 
cofibrations after passing to Σn-coinvariants, by the general machinery of adding a new vertex e containing 
only Y s and Zs:

Qn
t−1(f) Qn

t−1(gf)

Qn
t (f) Qn

t (gf)

Indeed, the same is true of the diagram

Qn
n−1(f) Qn

n−1(gf)

Y ⊗n Z⊗n

This is the analogous result to Corollary A.7 in [38], which begins with power cofibrations and concludes 
that the diagram represents a projective cofibration in Arr(MΣn). Recall, e.g. from Definition 2.1 in [10]
that a square is a projective cofibration if and only if the vertical maps and the pushout corner map are 
cofibrations. In our situation we pass to Σn-coinvariants on the diagram level and in that way achieve a 
projective cofibration in Arr(M).
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Now let X0
f0→X1

f1→X2
f2→ . . . be a λ-sequence in which each fα ∈P. Let f∞ ∶X0 →Xλ be the composite. 

To prove that f◻n∞ /Σn is a cofibration, we realize this map as the colimit of a particular diagram. Because 
colimits commute we can pass to Σn-coinvariants in the diagram and we will see that the colimit of the 
resulting diagram (which will be f◻n∞ /Σn) will be a cofibration. First we realize the domain of f◻n∞ /Σn as a 
colimit along the sequence Qn

n−1(f0) → Qn
n−1(f1f0) → Qn

n−1(f2f1f0) → . . .Qn
n−1(f∞). Next, we realize f◻n∞

as the far right-hand map in

Qn
n−1(f0) Qn

n−1(f1f0) Qn
n−1(f2f1f0) . . . Qn

n−1(f∞)

X⊗n0 X⊗n1 X⊗n2 . . . X⊗nλ

(4)

As in the case for two-fold composition, we pass to Σn-coinvariants in this diagram and realize that the 
resulting diagram is a projective cofibration in the category of λ-sequences Mλ because all vertical maps 
and all pushout corner maps are cofibrations. The colimit of such a diagram must be a cofibration, because 
colimit is a left Quillen functor from Mλ → M. This proves that f◻n∞ /Σn is a (trivial) cofibration as 
desired. ◻

Remark A.2. The author is indebted to Luis Pereira for many helpful conversations as this proof was worked 
out. The author’s original proof proceeded by constructing a lift to prove that Qn

n−1(gf)/Σn → Qn
n−1(g)/Σn

has the left lifting property with respect to all (trivial) fibrations. This proof comes down to constructing 
an equivariant lift at the level of the cube diagrams, and it appears something similar has been done by [17], 
though we find the proof presented here conceptually simpler. In [38], Pereira uses a similar proof to prove 
that it is sufficient to check Jacob Lurie’s axiom on the generating (trivial) cofibrations, at least in the case 
when the domain X of f is cofibrant. Pereira in fact proves something more general about the intermediate 
maps Q[q − 1] → Q[q]. The proof presented here avoids the need for X to be cofibrant, even in Pereira’s 
situation of working with Lurie’s axiom rather than the strong commutative monoid axiom.

We conclude this appendix by recording a result related to the proof above which is used in Section 4.4
and in the companion paper [56]:

Lemma A.3. Assume that for every g ∈ I, g◻n/Σn is a cofibration. Suppose f ∶X → Y is a trivial cofibration 
between cofibrant objects and f◻n/Σn is a cofibration for all n. Then f◻n/Σn is a trivial cofibration for all 
n if and only if Symn(f) is a trivial cofibration for all n.

Proof. We have seen above that if all maps g in I (resp. J) have the property that g◻n/Σn is a (trivial) 
cofibration, then the same holds for all (trivial) cofibrations g. Thus, the hypothesis implies that the class 
of cofibrations is closed under the operation (−)◻n/Σn.

Recall the construction of the Σn-equivariant maps Qn
q−1 → Qn

q from our proof above:

Σn ⋅Σn−q×Σq
X⊗(n−q) ⊗Qq

q−1

⇘

Qn
q−1

Σn ⋅Σn−q×Σq
X⊗(n−q) ⊗ Y ⊗q Qn

q

(5)

Observe that the pushout diagram above remains a pushout diagram if we apply (−)/Σn to all objects and 
morphisms in the diagram, because (−)/Σn is a left adjoint and so commutes with colimits. We obtain the 
diagram
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Symn−q(X) ⊗Qq
q−1/Σq

⇘

Qn
q−1/Σn

Symn−q(X) ⊗ Symq(Y ) Qn
q /Σn

(6)

We have assumed X is cofibrant, so Symk(X) is cofibrant for all k by the hypothesis of the lemma applied 
to the cofibration g ∶ ∅ → Symk(X). Thus, the left vertical map above is a trivial cofibration as soon as f◻q

is a trivial cofibration, by the pushout product axiom.
We are now ready to prove the forwards direction in the lemma. Fix n and realize Symn(f) as a composite 

of maps Qn
q−1/Σn → Qn

q /Σn as above, where Qn
0 =X⊗n and Qn

n = Y ⊗n. Assume f◻q is a trivial cofibration for 
all q and deduce that each Qn

q−1/Σn → Qn
q /Σn is a trivial cofibration, because trivial cofibrations are closed 

under pushout. Furthermore, because trivial cofibrations are closed under composite, this proves Symn(f)
is a trivial cofibration.

To prove the converse, assume that Symk(f) is a trivial cofibration for all k. We will prove f◻n/Σn is 
a trivial cofibration for all n by induction. For n = 1 the map is f , which we have assumed to be a trivial 
cofibration. Now assume f◻i/Σi is a trivial cofibration for all i < n. As in the proof of Lemma 5.1 we may 
again prove f◻n/Σn is a trivial cofibration via the filtration in diagram (6). By our inductive hypothesis, 
we know that for all i < n, Qn

i−1/Σn → Qn
i /Σn is a trivial cofibration. We therefore have a composite:

Symn(X) = Qn
0 /Σn → Qn

1 /Σn → ⋅ ⋅ ⋅ → Qn
n−1/Σn → Qn

n/Σn = Symn(Y )

in which each map except the last is a trivial cofibration. However, we have assumed Symn(X) → Symn(Y )
is a trivial cofibration, so by the two out of three property the map Qn

n−1/Σn → Qn
n/Σn is in fact a weak 

equivalence. This map is f◻n/Σn, and is a cofibration by hypothesis, so it is a trivial cofibration. This 
completes the induction. ◻

Appendix B. Proof of main theorem

As described in Section 3, it is sufficient to prove the statements of Theorem 3.2 and Proposition 3.5
for the case R = S of commutative monoids in M. Before proceeding to the proof, we fix some notation. 
Given a map g ∶K → L one can form g◻n ∶ Qn → L⊗n. This map is a (trivial) cofibration if g is such, by the 
pushout product axiom. The domain and codomain both have an action of Σn. Modding out by this action 
gives a map which is denoted by f◻n/Σn ∶ Qn/Σn → Symn(L) = L⊗n/Σn.

The proofs of Theorem 3.2 and Proposition 3.5 follow the proof in [46] that Mon(M) has a model 
structure inherited from M. Because that proof is based on the general theory of monads (cf. Lemma 2.3) it 
will go through verbatim if Lemma 6.2 in [46] can be generalized to describe pushouts in CMon(M) rather 
than in Mon(M). We state the analogue to Lemma 6.2:

Lemma B.1.

(1) If M satisfies the commutative monoid axiom then in the category CMon(M), Sym(J)-cell is contained 
in the collection of maps of the form (idZ ⊗ J)-cell in M. If in addition M satisfies the monoid axiom 
then these maps are weak equivalences in M and hence in CMon(M).

(2) If M satisfies the strong commutative monoid axiom then maps in Sym(I) − cell with cofibrant domain 
(in M) are cofibrations in M.

As in [46], the proof of this proposition requires a careful analysis of the filtration on pushouts in the 
category of commutative monoids. In particular, we must prove the following.
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Proposition B.2. Given any map h ∶K → L in M, consider the commutative monoid homomorphism X → P

formed by the following pushout in CMon(M)

Sym(K)

⇘

Sym(L)

X P

This map X → P factors as X = P0 → P1 → ⋅ ⋅ ⋅ → P , where each Pn−1 → Pn is defined by the following 
pushout in M

X ⊗Qn/Σn

⇘

X ⊗ Symn(L)

Pn−1 Pn

Here Qn = Qn
n−1 denotes the colimit of the n-dimensional punctured cube discussed in Appendix A.

This filtration is analogous to the one given in [46], and makes use of the decomposition Sym(−) =
⊕ Symn(−). The map g ∶ K → X needed for the construction of Pn−1 → Pn is adjoint to the map 
Sym(K) → X. Note that this description of Pn is significantly simpler than the one found in [46] be-
cause commutativity means one need not consider words with X’s, K’s, and L’s interspersed. Rather, all 
the X’s can be shuffled to the left and multiplied at the beginning of the process, rather than at the end as 
is done in [46]. It is for this reason that Theorem 4.17 only requires the hypothesis that M be h-monoidal 
rather than strongly h-monoidal as is required for monoids. If we were to keep our notation in line with 
the notation in [46] then what we call Qn would be denoted Qn, but we will avoid this unnecessary shift in 
notation, because we will have no need for colimits of cubes formed from words in the letters X, K, L.

Once we prove this proposition, we will restrict attention to the case when h = j is a trivial cofibration to 
prove the first statement in Lemma B.1 and we will restrict to when h = i is a cofibration and X is cofibrant 
for the second statement. This is done at the end of the section.

Proof of Proposition B.2. We begin by describing the left vertical map in the diagram which defines the 
maps Pn−1 → Pn. This will be done inductively. Because X ⊗ − commutes with colimits (since it’s a left-
adjoint), the map X ⊗Qn/Σn → Pn−1 may be defined componentwise on the vertices of the cube defining 
X ⊗Qn.

For the n = 1 case the map X ⊗K → X ⊗X → X = P0 is g followed by μX ∶ X ⊗X → X. Let D be 
a proper subset of [n] = {1, . . . , n} and define W (D) = C1 ⊗ ⋅ ⋅ ⋅ ⊗ Cn where Ci = K if i /∈ D and Ci = L

if i ∈ D. These are the vertices of the cube defining Qn. Given a vertex X ⊗W (D) define a map by first 
applying g to all factors of K (call this map g∗), then shuffling all the factors of X so obtained to the left 
by a permutation σD, then multiplying these factors together. This map takes X ⊗W (D) to X ⊗L⊗∣D∣ and 
hence to X ⊗ Sym∣D∣(L) by passing to Σn-coinvariants. Induction then gives a map to P∣D∣ and hence to 
Pn−1 because D was a proper subset of [n].

The map above is well-defined (i.e. respects the Σn action on the cube defining X ⊗ Qn) because a 
permutation σ which takes W (D) to a different vertex W (T ) for some T of the same size as D yields the 
following commutative diagram:
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X ⊗W (D)

1⊗σ

X⊗(n−∣D∣) ⊗L⊗∣D∣ X ⊗L⊗∣D∣

X ⊗L⊗∣D∣/Σn

X ⊗W (T ) X⊗(n−∣D∣) ⊗L⊗∣D∣ X ⊗L⊗∣D∣

The left square commutes because the top left horizontal map is σD ○g∗ and the bottom left horizontal map 
is σT ○ g∗, so the dotted arrow can be defined as σ∣D on the ∣D∣ factors of L and as σ∣[n]−D on the n − ∣D∣
factors of X (using the fact that X is commutative). Thus, both ways of going around are simply doing 
g∗, σ, and the shuffling of X’s to the left. The right pentagon commutes because X is commutative (so the 
order of factors doesn’t matter) and because passage to Σ-coinvariants means the order of factors of L does 
not matter either.

These maps from vertices assemble to a map from X ⊗Qn → Pn−1 because taking i /∈D and defining the 
map from X ⊗W (D ∪ {i}) → Pn−1 as above gives a diagram, which we will show commutes:

X ⊗W (D) X ⊗L⊗∣D∣ P∣D∣

X ⊗W (D ∪ {i}) X ⊗L⊗(∣D∣+1) P∣D∣+1

The upper left horizontal map is μX ○σD ○g∗ so we may factor it as X⊗W (D) →X⊗(n−∣D∣−1)⊗K⊗L⊗∣D∣ →
X ⊗ L⊗∣D∣ where K is the ith factor of the original W (D). Since this factor becomes an L in the bottom 
row we have the following diagram:

X ⊗W (D) X ⊗K ⊗L⊗∣D∣ P∣D∣

X ⊗W (D ∪ {i}) X ⊗L⊗(∣D∣+1) P∣D∣+1

The difference between the two ways of going around the left-hand square is the order of factors in the L
component (the order in the X component doesn’t matter). Thus, this square will commute upon passage 
to P∣D∣+1 because of passage to Σ∣D∣+1-coinvariants. Recall that P∣D∣+1 is a pushout of X ⊗Q∣D∣+1, which is 
itself a pushout of vertices X ⊗W (R). Because a pushout of a pushout is again a pushout, the right-hand 
square commutes by the basic property of pushouts.

This completes the inductive definition of Pn. Setting P to be the colimit of the Pn (taken in M) 
completes the analysis. Note that in [46] the pushout is the free product of T (L) and X over T (K) for the 
free monoid functor T , whereas in the commutative setting P is the (conceptually simpler) tensor product 
Sym(L) ⊗Sym(K)X. In an analogous way to the versions of these statements in [46] we now prove

(1) P is naturally a commutative monoid.
(2) X → P is a map of commutative monoids.
(3) P has the universal property of the pushout in the category of commutative monoids.

As in [46] the unit for P is the map S →X → P and the multiplication on P is defined from compatible 
maps Pn ⊗ Pm → Pn+m by passage to the colimit. These maps are defined inductively using the following 
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pushout diagram (which is simply the product of the two pushout diagrams defining Pn and Pm), where for 
spacing reasons we let Q̃n denote Qn/Σn and let L̃n denote L⊗n/Σn:

(X ⊗ Q̃n) ⊗ (X ⊗ L̃m)∐(X⊗Q̃n)⊗(X⊗Q̃m)
(X ⊗ L̃n) ⊗ (X ⊗ Q̃m) (X ⊗ L̃n) ⊗ (X ⊗ L̃m)

(Pn−1 ⊗ Pm)∐(Pn−1⊗Pm−1)(Pn ⊗ Pm−1) Pn ⊗ Pm

This is a pushout square by Lemma 4.1 in [36]. The lower left corner has a map to Pn+m by induction. The 
upper right corner is mapped there by shuffling the middle X to the left-hand side, multiplying the two 
factors of X, passing to Σn+m-coinvariants, and using the definition of Pn+m. To show P is a commutative 
monoid one must verify the following diagrams:

S ⊗ P P ⊗ P P ⊗ P ⊗ P

1⊗μ

μ⊗1
P ⊗ P P ⊗ P

τ
P ⊗ P

P P ⊗ P P P

The leftmost diagram commutes because the left-hand factor of P is P0, coming from a map S →X, and so 
if we replace the other factors of P by Pm we see that this diagram commutes before passage to colimits. 
In particular, the diagram defining the map P0 ⊗ Pm → Pm collapses in the following way. The upper left 
corner is X ⊗X ⊗L⊗m/Σm∐X⊗X⊗Qm/Σm

X ⊗X ⊗Qm/Σm = X ⊗X ⊗L⊗m/Σm because X ⊗Q0 = X. The 
upper right corner is also X ⊗X ⊗ L⊗m/Σm because X ⊗ L⊗0 = X. Thus, the upper horizontal map is the 
identity. Similarly the bottom horizontal map is the identity on P0⊗Pm. Recalling that the P0 comes from 
a map S →X where S is the monoidal unit we may write

P0 ⊗ Pm = (P0 ⊗ Pm−1) ∐
S⊗X⊗Qm/Σm

(S ⊗X ⊗L⊗m/Σm) = Pm−1 ∐
X⊗Qm/Σm

(X ⊗L⊗m/Σm) = Pm

Where P0 ⊗ Pm−1 = Pm−1 by induction, and the other factors of S disappear because S is the unit for X. 
This proves the commutativity of the leftmost diagram.

The middle diagram also commutes on the level of individual Pi. In particular, the two ways of getting 
from Pn ⊗ Pm ⊗ Pk to Pn+m+k (i.e. via Pn+m ⊗ Pk and via Pn ⊗ Pm+k) are the same. The key observation 
to show this is that all maps in the diagram are of the form (Pushout ⊗ Identity), and the pushout of a 
pushout is a pushout. Thus, both ways of going around are pushouts, and the universal property of pushouts 
shows that they must be isomorphic.

The rightmost diagram also commutes on the level of individual Pi, i.e. Pn ⊗ Pm → Pn+m is the same as 
Pn ⊗ Pm → Pm ⊗ Pn → Pm+n. To see this, look at the diagram defining μP and consider what happens if 
the n factors and m factors are swapped. This causes no harm to the upper right corner because the map 
from (X ⊗L⊗m/Σm) ⊗(X ⊗L⊗n/Σn) requires passage to Σm+n-coinvariants, so changing the order of the L

factors has no effect on μP . Similarly there is no harm to the lower left corner because of induction. The 
upper left corner is hardest, but either way of going around to Pm+n will render the swapping of factors 
meaningless. One way around requires passage to Σm+n-coinvariants and the other way goes to Pi ⊗ Pj

factors for i, j < n, m and so will hold by induction. This completes the proof of statement (1).
To verify that the map X → P is a map of commutative monoids one must only verify that it’s a map of 

monoids and that the two monoids in question are commutative. This means verifying the commutativity 
of the following diagrams:
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X ⊗X X S X

P ⊗ P P P

The map P ⊗ P → P is induced by passage to colimits of the multiplication Pn ⊗ Pm → Pn+m and so by 
definition the obvious diagram with Pn ⊗ Pm, Pn+m, P ⊗ P , and P commutes for all n, m. The point is 
that defining P ⊗P → P requires one to go to Pn ⊗Pm, so the commutativity is tautological. In particular, 
it commutes for n = m = 0 and this proves the left-hand diagram above commutes, since X = P0. The 
right-hand diagram commutes by definition of the map S → P as coming from X. This completes the proof 
of statement (2).

To prove that P satisfies the universal property of pushouts in the category of commutative monoids 
requires one to define a map P → M which completes the following diagram, where M is a commutative 
monoid, X →M is monoidal, and L →M is a map in M. The reason one works with K and L rather than 
Sym(K) and Sym(L) is that the data of a map of commutative monoids Sym(K) →M is the same as that 
of a map from K to M , by the free-forgetful adjunction.

K L

X P

M

The existence of maps K →X →M and L →M defines maps from X ⊗W (D) →M for all D and all n. 
Commutativity of the outer diagram forces the maps X ⊗W (D) →M to be compatible, i.e. commutativity 
of the square diagram featuring X ⊗W (D), X ⊗W (D ∪ {i}), M , and M . This is because the left-vertical 
map in that diagram is K → L and the right vertical map is K → X → M (which is easy to see when 
thinking of commutativity of the outer diagram above as defining a word in M). Furthermore, these maps 
respect the Σn action on the cube defining Qn because M is commutative. Thus, by induction on n we may 
define a map Pn →M because the diagram featuring X ⊗Qn/Σn, X ⊗L⊗n/Σn, Pn−1, and M commutes. In 
this diagram we use induction to define the map Pn−1 →M and we using the fact that M is commutative 
to define the map X ⊗L⊗n/Σn →M .

Commutativity of this diagram is due to the fact that X ⊗W (D) →M factors through X ⊗ L⊗∣D∣/Σ∣D∣
and hence through Pn−1 via P∣D∣. The unique maps Pn →M assemble to a unique map P →M .

Commutativity of the triangle featuring X, P , and M follows by definition of P as a colimit and of X
as P0. Commutativity of the other triangle follows because it holds with Pn substituted for P , for all n. 
This is because commutativity holds in the triangle which defines the map Pn →M for all n, so it holds in 
the (first) L factor of X ⊗ L⊗n/Σn, i.e. L → M is the same as L → Pn → M for all n. This completes the 
proof of statement (3) and hence of the proposition. ◻

We move now to homotopy theoretic considerations, and use the proposition to prove Lemma B.1.

Proof. To prove statement (1), recall that the commutative monoid axiom tells us that if h is a trivial 
cofibration then h◻n/Σn is a trivial cofibration for all n > 0.

So suppose h = j ∶ K ≃↪ L. Because j is a trivial cofibration, the map j◻n/Σn ∶ Qn/Σn → Symn(L) is a 
trivial cofibration. Thus, the map X ⊗ j◻n/Σn is of the form required by the monoid axiom. This means 
transfinite compositions of pushouts of such maps are weak equivalences, so in particular X → P is a weak 
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equivalence in M and hence in CMon(M). Any map in Sym(J)-cell is a transfinite composite of pushouts 
of maps in Sym(J). We have seen that all such pushouts are of the form required by the monoid axiom, 
and a transfinite composite of a transfinite composite is still a transfinite composite, so the monoid axiom 
applied again proves that Sym(J)-cell is contained in the weak equivalences. This completes the proof of (1).

For (2), suppose h = i ∶ K ↪ L and suppose X is cofibrant in M. By the strong commutative monoid 
axiom, the maps i◻n/Σn are cofibrations for all n, so X ⊗ i◻n/Σn are cofibrations for all n. Since pushouts 
of cofibrations are again cofibrations, the maps Pn−1 → Pn are cofibrations for all i. Because P0 = X is 
cofibrant, this means all the Pk are cofibrant and also X → P is a cofibration (so P is cofibrant) because 
transfinite compositions of cofibrations are again cofibrations (see Proposition 10.3.4 in [23]). Every map in 
Sym(I)-cell which has cofibrant domain is a transfinite composite of pushouts of maps of the form above, 
and so is in particular again a cofibration in M. ◻

Appendix C. Operadic generalization

In the proof above, we make use of a particular filtration on the map X → P . We could also have followed 
[31] and filtered the map Sym(f) as

Sym(K) = B0 → B1 → ⋅ ⋅ ⋅ → Sym(L)

where each Bn is a Sym(K)-module. This makes it clear that the map X → P is a map of X-modules, and 
thus makes it easier to check that P is in fact a monoid. However, this filtration requires special knowledge 
of Com, namely that it is generated by Com(2)-swaps (i.e. functions of arity two) so that Com-algebras 
can be multiplied with themselves. The author chose the approach presented here because it allows for an 
easy generalization to operads.

The commutative monoid axiom has a natural generalization to an arbitrary operad P . Recall that 
cofibrancy may be defined for P -algebras via a lifting property, even if the category of P -algebras is not a 
model category.

Definition C.1. Let P be an operad. A monoidal model category M is said to satisfy the P -algebra axiom
if for all cofibrant P -algebras A and for all n ≥ 0, PA(n) ⊗Σn

(−)◻n preserves trivial cofibrations (where PA

is the enveloping operad).

Theorem C.2. Let P be an operad (always assumed symmetric) and suppose M is a combinatorial model cat-
egory satisfying the P -algebra axiom. Then the category P -alg(M) inherits a semi-model structure from M.

Proof. As usual, this semi-model structure will be transferred along the free-forgetful adjunction (P, U)
via Lemma 2.1. Because M is combinatorial, the smallness hypotheses of Lemma 2.1 are automatically 
satisfied. Let j ∶ K → L be a trivial cofibration in M and consider the pushout of P (j) along a P -algebra 
homomorphism P (K) → A. Denote the resulting map γ ∶ A → B. Factor this map as in the Section 7.3 of 
[20], recalled in Remark 3.11. So γ is a transfinite composite of pushouts of maps of the form PA(n) ⊗Σn

j◻n. 
By hypothesis all such maps are trivial cofibrations, so γ is a trivial cofibration. As in Corollary 3.8, this 
completes the proof. ◻

While the P -algebra axiom gives a minimal condition on M so that P -algebras inherit a semi-model 
structure, it is not clear that this condition can be checked in practice because of the presence of PA in 
the hypotheses. However, we can generalize the commutative monoid axiom to find a new family of axioms 
on M which do not make reference to PA. This line of reasoning has been used in [50] (where conditions 
are given so that Σ-cofibrant operads are admissible) and in [20] (where conditions are given so that all 
operads are admissible).
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These two examples demonstrate that in order for the category of P -algebras to inherit a semi-model 
structure, a cofibrancy hypothesis on either M or P will be needed. The following result will unify all 
previous results on admissibility into a single framework and provide new results for levelwise cofibrant 
operads (especially useful for En-operads in Top), where the cofibrancy hypotheses are evenly distributed 
between the operad and the model category.

Theorem C.3. Let M be a combinatorial monoidal model category. Let f run through the class of (trivial) 
cofibrations. Consider the following hypothesis, where X is an object with a Σn-action that runs through 
some class of objects K:

Hypothesis: X ⊗Σn
f◻n is a (trivial) cofibration for all X ∈ K.

In each row of the following table, placing this hypothesis on M for the class of objects K listed in the left 
column gives a semi-model structure on P -algebras for all P satisfying the hypotheses in the right column.

Hypothesis on M Class of operad
K = {Σn-projectively cofibrant objects} (Σ−)Cofibrant

K = {objects cofibrant in M} Levelwise cofibrant
K = {objects in MΣn} Arbitrary

The hypotheses going down the left column are increasing in strength, while the hypotheses in the right 
column are decreasing. The last row says that if M is combinatorial, monoidal, satisfies the monoid axiom, 
and has the property that ∀X ∈ MΣn , X ⊗Σn

f◻n is a (trivial) cofibration, then all operads are admissible. 
This generalizes the main theorem from [20], which states that if all symmetric sequences in M are pro-
jectively cofibrant then all operads are admissible. Similarly, the first row recovers a theorem of Spitzweck 
from [50], since it follows from the pushout product axiom that for any Σn-projectively cofibrant X, the 
map X ⊗Σn

f◻n is a trivial cofibration. The row regarding levelwise cofibrant operads is new.

Proof. The proof proceeds as in Remark 3.11, but using PA(n) rather than ComA(n). The hypothesis in 
the theorem guarantees this procedure will work as soon as PA(n) is known to be in the class of objects 
considered in the left-hand column. For the bottom row this condition is automatic. For the top row one 
may use Proposition 5.17 in [21]. For the middle row, we must show PA(n) is cofibrant in M if P is levelwise 
cofibrant and A is a cofibrant P -algebra. The proof in Proposition 5.17 (and Proposition 5.44a, on which it 
relies) in [21] goes through mutatis mutandis. ◻

The author is still working to reduce the hypotheses on M so that combinatoriality is not required. 
This will come down to better understanding what the free P -algebra functor does to the domains of 
the generating trivial cofibrations. The interested reader may fill in an appropriately weakened smallness 
hypothesis on the domains. The author, together with Donald Yau, has worked out in [57] a generalization 
to this theorem in the setting of colored operads. This involves generalizing the filtration of Remark 3.11 to 
the colored setting.

These hypotheses on M are not too difficult to check. For example, the one for levelwise cofibrant operads 
holds for sSet, even though the hypothesis in the bottom row does not hold for sSet. The bottom row holds 
for Ch(k) for k a field of characteristic 0 and for the positive flat model structure on symmetric spectra (by 
arguments analogous to those found in Section 5 above).

To get from a semi-model structure to a full model structure we would need to add a new hypothesis 
on M. By way of analogy, note that to do this for cofibrant operads or for Com, the monoid axiom was 
needed. This is because the filtration by PA is simpler in these cases. In general, we need a hypothesis 
similar to the monoid axiom but which takes the Σn action into account.
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Definition C.4. Let Qt
Σn

be the class of maps in MΣn which are trivial cofibrations in M. We say M satisfies 
the Σn-equivariant monoid axiom if transfinite compositions of pushouts of maps of the form (Qt

Σn
) ⊗Σn

X

are contained in the weak equivalences for all X ∈MΣn .

It is clear from the filtration argument given in Section 7.3 in [20] that this hypothesis will imply the 
semi-model structures are actually model structures. However, this hypothesis is in fact so strong that it 
alone proves all operads are admissible, regardless of the hypotheses in Theorem C.3. We summarize:

Corollary C.5. Suppose M is a combinatorial monoidal model category satisfying the Σn-equivariant monoid 
axiom. Then for any operad P , algebras over P inherit a model structure from M.

A simpler hypothesis to check, which also works to improve a semi-model structure to a model structure, 
is the hypothesis that all objects are cofibrant. Combined with our earlier observation about sSet this 
implies all levelwise cofibrant operads (hence all operads) are admissible when M = sSet.
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