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MONOIDAL BOUSFIELD LOCALIZATIONS AND ALGEBRAS OVER OPERADS

DAVID WHITE

Abstract. We give conditions on a monoidal model categoryM and on a set of maps C so that the Bousfield localization ofM with

respect to C preserves the structure of algebras over various operads. This problem was motivated by an example that demonstrates

that, for the model category of equivariant spectra, preservation does not come for free, even for cofibrant operads. We discuss this

example in detail and provide a general theorem regarding when localization preserves P-algebra structure for an arbitrary operad P.

We characterize the localizations that respect monoidal structure and prove that all such localizations preserve algebras over cofi-

brant operads. As a special case we recover numerous classical theorems about preservation of algebraic structure under localization,

in the context of spaces, spectra, chain complexes, and equivariant spectra. We also provide several new results in these settings, and

we sharpen a recent result of Hill and Hopkins regarding preservation for equivariant spectra. To demonstrate our preservation result

for non-cofibrant operads, we work out when localization preserves commutative monoids and the commutative monoid axiom, and

again numerous examples are provided. Finally, we provide conditions so that localization preserves the monoid axiom.

1. Introduction

Bousfield localization is a powerful tool in homotopical algebra, with classical applications to homology localization for

spaces and spectra [Bou75], to cellularization and nullification [Far96], and to p-localization and completion [Bou79].

Hirschhorn generalized the machinery of Bousfield localization to the setting of model categories [Hir03], inverting any

class of morphisms generated by a set. This general framework has seen tremendous application: it allows for the passage

from levelwise model structures to stable model structures [HSS00], it is used to set up motivic homotopy theory [Hov01],

and it allows for the study of combinatorial model categories via simplicial presheaves [Lur09] (Appendix A.2). The inter-

play between left Bousfield localization and monoidal structure has often proven fruitful, e.g. to put an E∞-algebra structure

on connective K-theory [EKMM97], for homotopy theoretic computations involving generalized Eilenberg-Maclane spaces

[Bou97, CRT16, Far96], and, recently, to create an equivariant spectrum with a certain periodicity that is used to resolve

the Kervaire invariant one problem [HHR16]. In this paper, we further the study of the interplay between left Bousfield lo-

calization and monoidal model categories, we provide conditions so that left Bousfield localization preserves algebras over

operads (and several important model categorical axioms), and we apply our results to numerous classical and new examples

of interest.

Structured ring spectra have had numerous applications in stable homotopy theory [EKMM97, HSS00, MMSS01]. Nowadays,

structured ring spectra are often thought of as algebras over operads acting in any of the monoidal model categories for

spectra. It is therefore natural to ask the extent to which Bousfield localization preserves such algebraic structure. For

Bousfield localizations at homology isomorphisms this question is answered in [EKMM97] and [MMSS01]. The case for

spaces is subtle and is addressed in [Bou97], [CRT16], and [Far96]. More general Bousfield localizations are considered in

[CGMV10].

The preservation question may also be asked in the context of equivariant and motivic spectra, and it turns out the answer is

far more subtle. In Example 5.13, we discuss an example of a naturally occurring Bousfield localization of equivariant spectra

that preserves the type of algebraic structure considered in [EKMM97] but fails to preserve the equivariant commutativity

needed for the landmark results in [HHR16]. We generalize this example in 5.14.

In order to understand this and related examples, we find conditions on a model categoryM and on a class of maps C so that

the left Bousfield localization LC with respect to C preserves the structure of algebras over various operads. After a review of

the pertinent terminology in Section 2 we give our general preservation result in Section 3, which we state here for the reader’s

convenience.

Theorem A. LetM be a monoidal model category and C a class of morphisms such that the Bousfield localization LC(M)

exists and is a monoidal model category. Let P be an operad valued inM. If the subcategories of P-algebras inM and in

LC(M) inherit transferred semi-model structures fromM and LC(M) (with weak equivalences and fibrations defined via the

forgetful functor) then LC preserves P-algebras.

In Section 4 we characterize when LC(M) is a monoidal model category, proving the following theorem.
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Theorem B. SupposeM is a cofibrantly generated monoidal model category in which cofibrant objects are flat. Then LC is

a monoidal Bousfield localization if and only if every map of the form f ⊗ idK , where f is in C and K is cofibrant, is a C-local

equivalence. If the domains of the generating cofibrations I are cofibrant, it suffices to consider K in the set of domains and

codomains of the morphisms in I.

In Section 5, we apply Theorem A to numerous model categories of interest, obtaining preservation results for Σ-cofibrant

operads such as A∞ and E∞ in model categories of spaces, spectra, chain complexes, and equivariant spectra. We recover

several classical preservation results, and prove several new preservation results. A lattice of equivariant operads is presented,

that interpolate between non-equivariant E∞-algebra structure and equivariant E∞-algebra structure. We apply our results

to determine which localizations preserve the type of algebraic structure encoded by these operads. This new collection of

operads is different from the N∞-operads of [BH15] (that interpolate between equivariant E∞-algebra structure and genuine

commutative structure), and a common generalization of both types of operads is discussed in [GW13]. Example 5.13 demon-

strates that it is possible to preserve equivariant E∞-algebra structure, but fail to preserve genuine commutative structure. This

motivates the latter half of the paper.

In Section 6, we turn to preservation of structure over non-cofibrant operads, specifically, preservation of commutative

monoids. For categories of spectra the phenomenon known as rectification means that preservation of strict commutativ-

ity is equivalent to preservation of E∞-structure, but for general model categories (including equivariant spectra) there can

be Bousfield localizations that preserve the latter type of structure and not the former. In the companion paper [Whi14a] we

introduced a condition on a monoidal model category called the commutative monoid axiom, that guarantees that the category

of commutative monoids inherits a model structure. We build on this work in Section 6 by providing conditions on the maps

in C so that Bousfield localization preserves the commutative monoid axiom, proving the following theorem.

Theorem C. AssumeM is a cofibrantly generated monoidal model category satisfying the strong commutative monoid axiom

and with domains of the generating cofibrations cofibrant. Suppose that LC(M) is a monoidal Bousfield localization with

generating trivial cofibrations JC. Then LC(M) satisfies the strong commutative monoid axiom if and only if Symn( f ) is a

C-local equivalence for all n ∈ N and for all f ∈ JC. This occurs if and only if Sym(−) preserves C-local equivalences

between cofibrant objects.

In Section 7, we apply Theorems A and C to obtain preservation results for commutative monoids in spaces, spectra, chain

complexes, and equivariant spectra. We recover classical preservation results, and several new preservation results, including

Theorem 7.9, which sharpens and generalizes the main theorem of [HH13]. Finally, in Section 8 we provide conditions so

that LC(M) satisfies the monoid axiom when M does, proving the following theorem (see Section 8 for definitions of the

unfamiliar terms, from [BB17]).

Theorem D. Suppose M is a cofibrantly generated, left proper, h-monoidal model category such that the (co)domains of

I are cofibrant and are finite relative to the h-cofibrations and cofibrant objects are flat. Then for any monoidal Bousfield

localization LC, the model category LC(M) satisfies the monoid axiom.

Because Theorem A only requires transferred semi-model structures, Theorem D is not required for preservation, but is re-

quired in order to have a comprehensive study of the relationship between left Bousfield localization and monoidal structure,

as the monoid axiom is often required for purposes other than transferring model structures. As always, we provide appli-

cations of Theorem D to the examples of interest in this paper: spectra, spaces, chain complexes, and equivariant spectra.

Roughly half of this paper consists of applications to these examples. In the setting of Theorem D, this requires some new

results, including a verification that the commonly studied model structures on symmetric spectra are h-monoidal, and the

introduction of new model structures on equivariant spectra that are combinatorial and h-monoidal.

Acknowledgments. The author would like to gratefully acknowledge the support and guidance of his advisor Mark Hovey

as this work was completed. The author is also indebted to Mike Hill, Carles Casacuberta, Justin Noel, and Clemens Berger

for numerous helpful conversations. The author thanks Clark Barwick for catching an error in an early version of this work,

Martin Franklin for suggesting applications of this work to simplicial sets, and Boris Chorny for suggesting a simplification in

the proof of Theorem 8.9. This draft was improved by comments from Javier Gutiérrez, Brooke Shipley, and Cary Malkiewich.

This paper also possesses a User’s Guide [Whi15], where the interested reader can learn more, created as part of the User’s

Guide Project presented in [MMWWY15].
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2. Preliminaries

We assume the reader is familiar with basic facts about model categories. Excellent introductions to the subject can be found

in [DS95], [Hir03], and [Hov99]. Throughout the paper we will assumeM is a cofibrantly generated model category, with

generating cofibrations I and generating trivial cofibrations J.

Let I-cell denote the class of transfinite compositions of pushouts of maps in I, and let I-cof denote retracts of such. In order

to run the small object argument, we will assume the domains K of the maps in I (and J) are κ-small relative to I-cell (resp.

J-cell), i.e. given a regular cardinal λ ≥ κ and any λ-sequence X0 → X1 → . . . formed of maps Xβ → Xβ+1 in I-cell, then

the map of sets colimβ<λM(K, Xβ) → M(K, colimβ<λ Xβ) is a bijection. An object is small if there is some κ for which it

is κ-small. See Chapter 10 of [Hir03] for a more thorough treatment of this material. For any object X we have a cofibrant

replacement QX → X and a fibrant replacement X → RX.

We will at times also need the hypothesis that M possesses sets of generating (trivial) cofibrations I and J with domains

(hence codomains) cofibrant. This hypothesis is satisfied by all model categories of interest in this paper, but does not come

for free, even for combinatorial model categoriesM. An example, due to Carlos Simpson, is discussed in Remark 4.16. A

method for finding sets I and J with cofibrant domains is given in Lemma 4.13.

Our model categoryM will be a monoidal category with product ⊗ and unit S ∈ M. This meansM satisfies the following

two axioms.

(1) Unit Axiom: For any cofibrant X, the map QS ⊗ X → S ⊗ X � X is a weak equivalence.

(2) Pushout Product Axiom: Given any f : X0 → X1 and g : Y0 → Y1 cofibrations, f�g : X0⊗Y1

∐
X0⊗Y0

X1⊗Y0 → X1⊗Y1

is a cofibration. Furthermore, if either f or g is trivial then f � g is trivial.

Note that the pushout product axiom is equivalent to the statement that −⊗− is a Quillen bifunctor. Furthermore, it is sufficient

to check the pushout product axiom on the generating maps I and J, by Proposition 4.2.5 of [Hov99]. When we needM to

be a simplicial model category, we require the SM7 axiom, which is analogous to the pushout product axiom. We refer the

reader to Definition 4.2.18 in [Hov99] for details.

We will at times also need to assume that cofibrant objects are flat inM, i.e. that whenever X is cofibrant and f is a weak

equivalence then f ⊗ X is a weak equivalence. When a monoidal model category satisfies this condition, it is called a tensor

model category in [FI07] (Section 12). Finally, we remind the reader of the monoid axiom of Definition 3.3 in [SS00].

Given a class of maps C inM, let C ⊗M denote the class of maps f ⊗ idX where f ∈ C and X ∈ M. A model category is said

to satisfy the monoid axiom if every map in (Trivial-Cofibrations ⊗M)-cell is a weak equivalence.

We will be discussing preservation of algebraic structure as encoded by an operad. Let P be an operad valued in M (for a

general discussion of the interplay between operads and homotopy theory see [BM03]). Let P-alg(M) denote the category

whose objects are P-algebras in M (i.e. admit an action of P) and whose morphisms are P-algebra homomorphisms (i.e.

respect the P-action). The free P-algebra functor fromM to P-alg(M) is left adjoint to the forgetful functor. We will say that

P-alg(M) inherits a model structure fromM if the model structure is transferred across this adjunction, i.e. if a P-algebra

homomorphism is a weak equivalence (resp. fibration) if and only if it is so inM. In Section 4 of [BM03], an operad P is said

to be admissible if P-alg(M) inherits a model structure in this way.

Finally, we remind the reader about the process of Bousfield localization as discussed in [Hir03]. This is a general machine

that starts with a (nice) model category M and a set of morphisms C and produces a new model structure LC(M) on the

same category in which maps in C are now weak equivalences. Furthermore, this is done in a universal way, introducing

the smallest number of new weak equivalences as possible. When we say Bousfield localization we will always mean left

Bousfield localization. So the cofibrations in LC(M) will be the same as the cofibrations inM.

Bousfield localization proceeds by first constructing the fibrant objects of LC(M) and then constructing the weak equivalences.

In both cases this is done via simplicial mapping spaces map(−,−). IfM is a simplicial or topological model category then

one can use the hom-object in sS et or Top. Otherwise a framing is required to construct the simplicial mapping space. We

refer the reader to [Hov99] or [Hir03] for details on this process.

An object N is said to be C-local if it is fibrant in M and if for all g : X → Y in C, map(g,N) : map(Y,N) → map(X,N)

is a weak equivalence in sS et. These objects are precisely the fibrant objects in LC(M). A map f : A → B is a C-local

equivalence if for all N as above, map( f ,N) : map(B,N) → map(A,N) is a weak equivalence. These maps are precisely the

weak equivalences in LC(M).
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It is often more convenient to work with left Bousfield localizations that invert a set of cofibrations (i.e. with left derived

Bousfield localization). This can always be guaranteed in the following way. For any map f let Q f denote the cofibrant

replacement and let f̃ denote the left factor in the cofibration-trivial fibration factorization of Q f . Then f̃ is a cofibration

between cofibrant objects and we may define C̃ = { f̃ | f ∈ C}. Localization with respect to C̃ yields the same result as

localization with respect to C, so our assumption that the maps in C are cofibrations between cofibrant objects loses no

generality. We thus make the following convention.

Convention 2.1. Throughout this paper we assume C is a set of cofibrations between cofibrant objects, and that the model

category LC(M) exists.

The existence of LC(M) can be guaranteed by assumingM is left proper and either combinatorial (as discussed in [Bar10])

or cellular (as discussed in [Hir03]). A model category is left proper if pushouts of weak equivalences along cofibrations are

again weak equivalences. We will make this a standing hypothesis onM. However, as we have not needed the cellularity

or combinatoriality assumptions for our work, outside of the existence of LC(M), we have decided not to assume them. In

this way if a Bousfield localization is known to exist for some reason other than the theory in [Hir03] then our results will be

applicable.

3. General Preservation Result

In this section we provide a general result regarding when Bousfield localization preserves P-algebras. We must first provide

a precise definition for this concept. Throughout this section, letM be a monoidal model category and let C be a class of maps

inM such that Bousfield localization LC(M) is a also monoidal model category. On the model category level the functor LC is

the identity. So when we write LC as a functor we shall mean the composition of derived functors Ho(M) → Ho(LC(M)) →

Ho(M), i.e. E → LC(E) is the unit map of the adjunction Ho(M) ⇆ Ho(LC(M)). In particular, for any E in M, LC(E)

is weakly equivalent to RCQE where RC is a choice of fibrant replacement in LC(M) and Q is a cofibrant replacement in

M.

Let P be an operad valued in M. Because the objects of LC(M) are the same as the objects of M, P is also valued in

LC(M). Thus, we may consider P-algebras in both categories and these classes of objects agree (because the P-algebra action

is independent of the model structure). We denote the categories of P-algebras by P-alg(M) and P-alg(LC(M)). These are

identical as categories, but in a moment they will receive different model structures.

Definition 3.1. Assume thatM and LC(M) are monoidal model categories. Then LC is said to preserve P-algebras if

(1) When E is a P-algebra there is some P-algebra Ẽ that is weakly equivalent inM to LC(E).

(2) In addition, when E is a cofibrant P-algebra, then there is a choice of Ẽ in P-alg(M) with U(Ẽ) local inM, there is a

P-algebra homomorphism rE : E → Ẽ that lifts the localization map lE : E → LC(E) up to homotopy, and there is a

weak equivalence βE : LC(U(E))→ U(Ẽ) such that βE ◦ lUE � UrE in Ho(M).

The notion of preservation was also considered in [CGMV10], but only for cofibrant E. Recall that when we say P-alg(M)

inherits a model structure from M we mean that this model structure is transferred by the free-forgetful adjunction. In

particular, a map of P-algebras f is a weak equivalence (resp. fibration) if and only if f is a weak equivalence (resp. fibration)

inM.

Theorem 3.2. Let M be a monoidal model category such that the Bousfield localization LC(M) exists and is a monoidal

model category. Let P be an operad valued inM. If the categories of P-algebras inM and in LC(M) inherit model structures

fromM and LC(M) then LC preserves P-algebras.

Proof. Let RC denote fibrant replacement in LC(M), let RC,P denote fibrant replacement in P-alg(LC(M)), and let QP denote

cofibrant replacement in P-alg(M). We will prove the first form of preservation and our method of proof will allow us to

deduce the second form of preservation in the special case where E is a cofibrant P-algebra.

Let E be a P-algebra, and define Ẽ = RC,PQP(E). Because Q is the left derived functor of the identity adjunction between

M and LC(M), and RC is the right derived functor of the identity, we know that LC(E) ≃ RCQ(E). We must therefore show

RCQ(E) ≃ RC,PQP(E).
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The map QPE → E is a trivial fibration in P-alg(M), hence in M. The map QE → E is also a weak equivalence in M.

Consider the following lifting diagram inM:

∅ //
� _

��

QPE

≃

����
QE //

<<

E

(1)

The lifting axiom gives the map QE → QPE and it is necessarily a weak equivalence inM by the 2 out of 3 property.

Since QPE is a P-algebra inM it must also be a P-algebra in LC(M), since the monoidal structure of the two categories is the

same. We may therefore construct a lift:

QPE� _

��

// RC,PQPE

����
RCQPE //

99

∗

(2)

In this diagram the left vertical map is a weak equivalence in LC(M) and the top horizontal map is a weak equivalence

in P-alg(LC(M)). Because the model category P-alg(LC(M)) inherits weak equivalences from LC(M), this map is a weak

equivalence in LC(M). Therefore, by the 2 out of 3 property, the lift is a weak equivalence in LC(M). We make use of this

map as the horizontal map in the lower right corner of the diagram below.

The top horizontal map QE → QPE in the following diagram is the first map we constructed, which was proven to be

a weak equivalence in M. The square in the diagram below is then obtained by applying RC to that map. In particular,

RCQE → RCQPE is a weak equivalence in LC(M):

QE //

��

QPE

��
RCQE // RCQPE // RC,PQPE

(3)

We have shown that both of the bottom horizontal maps are weak equivalences in LC(M). Thus, by the 2 out of 3 property,

their composite RCQE → RC,PQPE is a weak equivalence in LC(M). All the objects in the bottom row are fibrant in LC(M),

so these C-local equivalences are actually weak equivalences inM.

As E was a P-algebra and QP and RC,P are endofunctors on categories of P-algebras, it is clear that RC,PQPE is a P-algebra.

We have just shown that LC(E) is weakly equivalent to this P-algebra, so we are done.

We turn now to the case where E is assumed to be a cofibrant P-algebra. We have seen that there is anM-weak equivalence

RCQE → RC,PQPE, and above we took RC,PQPE inM as our representative for LC(E) in Ho(M). Because E is a cofibrant P-

algebra, there are weak equivalences E ⇆ QP(E) in P-alg(LC(M)). This is because all cofibrant replacements of a given object

are weakly equivalent, e.g. by diagram (1). So passage to QP(E) is unnecessary when E is cofibrant, and we take Ẽ = RC,PE

as our representative for LC(E). Observe that U(Ẽ) is local because the model structure on P-algebras is transferred. The

P-algebra morphism rE : E → Ẽ is just the fibrant replacement map RC,P, and lifts the localization map E → LC(E) in

Ho(M). The comparison βE is the following lift in LC(M):

UE� _

≃C

��

// UẼ

����
LC(UE) //

βE

;;

∗

(4)

The two out of three property guarantees that βE is a weak equivalence (again using that the model structure on P-algebras is

transferred), and the diagram above demonstrates that βE ◦ lUE � UrE in Ho(M). �

This theorem alone would not be a satisfactory answer to the question of when LC preserves P-algebras, because there is

no clear way to check the hypotheses. For this reason, in the coming sections we will discuss conditions on M and P so

that P-algebras inherit model structures, and then we will discuss which localizations LC preserve these conditions (so that

P-alg(LC(M)) inherits a model structure from LC(M)). One such condition on M is the monoid axiom. In Section 8, we
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discuss which localizations LC preserve the monoid axiom. However, it will turn out that the monoid axiom is not necessary

in order for our preservation results to apply. This is because the work in [Hov98] and [Spi01] produces semi-model structures

on P-algebras and these will be enough for our proof above to go through.

Observe that in the proof above we only used formal properties of fibrant and cofibrant replacement functors, and the fact

that the model structures on P-algebras were inherited fromM and LC(M). So it should not come as a surprise to experts

that the same proof works when P-algebras only form semi-model categories. For completeness, we remind the reader of the

definition of a semi-model category. The motivating example is whenD is obtained fromM via the general transfer principle

for transferring a model structure across an adjunction (see Lemma 2.3 in [SS00] or Theorem 12.1.4 in [Fre09]) when not all

the conditions needed to get a full model structure are satisfied.

In particular, the reader should imagine that weak equivalences and fibrations in D are maps that forget to weak equivalences

and fibrations inM, and that the generating (trivial) cofibrations ofD are maps of the form F(I) and F(J) where F :M→D

is the free algebra functor and I and J are the generating (trivial) cofibrations ofM. The following is Definition 1 from [Spi01]

and Definition 12.1.1 in [Fre09]. Cofibrant should be taken to mean cofibrant inD.

Definition 3.3. A semi-model category is a bicomplete category D, an adjunction F : M ⇆ D : U where M is a model

category, and subcategories of weak equivalences, fibrations, and cofibrations inD satisfying the following axioms:

(1) U preserves fibrations and trivial fibrations.

(2) D satisfies the two out of three axiom and the retract axiom.

(3) Cofibrations in D have the left lifting property with respect to trivial fibrations. Trivial cofibrations in D whose

domain is cofibrant have the left lifting property with respect to fibrations.

(4) Every map inD can be functorially factored into a cofibration followed by a trivial fibration. Every map inD whose

domain is cofibrant can be functorially factored into a trivial cofibration followed by a fibration.

(5) The initial object inD is cofibrant.

(6) Fibrations and trivial fibrations are closed under pullback.

D is said to be cofibrantly generated if there are sets of morphisms I′ and J′ in D such that I′-inj is the class of trivial

fibrations and J′-inj the class of fibrations in D, if the domains of I′ are small relative to I′-cell, and if the domains of J′ are

small relative to maps in J′-cell whose domain becomes cofibrant inM.

Note that the only difference between a semi-model structure and a model structure is that one of the lifting properties and

one of the factorization properties requires the domain of the map in question to be cofibrant. Because fibrant and cofibrant

replacements are constructed via factorization, (4) implies that every object has a cofibrant replacement and that objects with

cofibrant domain have fibrant replacements. So one could construct a fibrant replacement functor that first does cofibrant

replacement and then does fibrant replacement. These functors behave as they would in the presence of a full model struc-

ture.

We are now prepared to state our preservation result in the presence of only a semi-model structure on P-algebras. Again,

when we say P-algebras inherit a semi-model structure we mean with weak equivalences and fibrations reflected and preserved

by the forgetful functor.

Corollary 3.4. Let M be a monoidal model category such that the Bousfield localization LC(M) exists and is a monoidal

model category. Let P be an operad valued inM. If the subcategories of P-algebras inM and in LC(M) inherit semi-model

structures fromM and LC(M) then LC preserves P-algebras.

Proof. The proof proceeds exactly as the proof of Theorem 3.2. We highlight where care must be taken in the presence of

semi-model categories. As remarked above, the cofibrant replacement QP in the semi-model category P-alg(M) exists and

the cofibrant replacement map QPE → E is a weak equivalence in P-alg(M), hence inM, because the semi-model structure

is transferred. Diagram (1) is a lifting diagram inM, so still yields a weak equivalence QE → QPE.

Next, the fibrant replacement RCQPE is a replacement in the model category LC(M). The fibrant replacement QPE →

RC,PQPE is a fibrant replacement in the semi-model category P-alg(LC(M)), and exists because the domain of QPE → ∗ is

cofibrant in P-alg(LC(M)). The resulting object RC,PQPE is fibrant in P-alg(LC(M)) hence in LC(M), since the semi-model

structure is transferred. The lift in (2) is a lift in LC(M), and again by the two out of three property in LC(M) the diagonal
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map is a C-local equivalence:

QPE� _

��

// RC,PQPE

����
RCQPE //

99

∗

Next, the map RCQE → RCQPE in (3) is fibrant replacement in the model category LC(M), and so the argument that RCQE →

RCQPE is a C-local equivalence remains unchanged.

QE //

��

QPE

��
RCQE // RCQPE // RC,PQPE

The composite across the bottom RCQE → RC,PQPE is a weak equivalence between fibrant objects in LC(M) and so is a weak

equivalence inM, as in the proof of the theorem.

Finally, for the case of E cofibrant in the semi-model category P-alg(M), note that the localization map E → LC(E) is again

fibrant replacement E → RC,PE in P-alg(LC(M)). This exists because the domain is cofibrant by assumption. By construction,

this map is a P-algebra morphism, as desired. The lift defining β in (4) occurs in LC(M), and the rest of the proof only uses

that weak equivalences and fibrations in P-alg(LC(M)) forget to weak equivalences and fibrations in LC(M).

�

Remark 3.5. Corollary 3.4 has been generalized to algebras over colored operads in [WY15], and to right Bousfield localiza-

tion in [WY15b]. It has been applied to localizations of Smith ideals in [WY17].

4. Monoidal Bousfield Localizations

In both Theorem 3.2 and Corollary 3.4 we assumed that LC(M) is a monoidal model category. In this section we provide

conditions onM and C so that this occurs. First, we provide an example demonstrating that the pushout product axiom can

fail for LC(M), even if it holds forM.

Example 4.1. It is not true that every Bousfield localization of a monoidal model category is a monoidal model category. Let

R = F2[Σ3]. An R module is simply an F2 vector space with an action of the symmetric group Σ3. Because R is a Frobenius

ring, we may pass from R-mod to the stable module category S tMod(R) by identifying any two morphisms whose difference

factors through a projective module.

Section 2.2 of [Hov99] introduces a model categoryM of R-modules whose homotopy category is S tMod(R). Furthermore,

a series of propositions in Section 2.2 demonstrate that M is a finitely generated, combinatorial, stable model category in

which all objects are cofibrant (hence,M is also left proper). Proposition 4.2.15 of [Hov99] proves that for R = F2[Σ3], this

model category is a monoidal model category because R is a Hopf algebra over F2. The monoidal product of two R-modules

is M ⊗F2
N where R acts via its diagonal R→ R ⊗F2

R.

We now check that cofibrant objects are flat in M. By the pushout product axiom, X ⊗ − is left Quillen. Since all objects

are cofibrant, all weak equivalences are weak equivalences between cofibrant objects. So Ken Brown’s lemma implies X ⊗ −

preserves weak equivalences.

Let f : 0 → F2, where the codomain has the trivial Σ3 action. We’ll show that the Bousfield localization with respect to

f cannot be a monoidal Bousfield localization. First observe that being f -locally trivial is equivalent to having no Σ3-fixed

points, and this is equivalent to failing to admit Σ3-equivariant maps from F2 (the non-identity element would need to be taken

to a Σ3-fixed point because the Σ3-action on F2 is trivial).

If the pushout product axiom held in L f (M) then the pushout product of two f -locally trivial cofibrations g, h would have

to be f -locally trivial. We will now demonstrate an f -locally trivial object N for which N ⊗F2
N is not f -locally trivial, so

(∅→ N) � (∅→ N) is not a trivial cofibration in L f (M).

Define N � F2 ⊕ F2 where the element (12) sends a = (1, 0) to b = (0, 1) and the element (123) sends a to b and b to

c = a + b. The reader can check that (12)(123) acts the same as (123)2(12), so that this is a well-defined Σ3-action. This

object N is f -locally trivial. It does not admit any maps from F2 because it has no Σ3-fixed points. However, N ⊗F2
N is not
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f -locally trivial because N⊗F2
N does admit any map from F2 taking the non-identity element of F2 to the Σ3-invariant element

a ⊗ a + b ⊗ b + c ⊗ c. Thus, L f (M) is not a monoidal model category.

In order to get around examples such as the above we must place hypotheses on the maps C that we are inverting. A similar

program was conducted in [CGMV10], where localizations of stable model categories were assumed to commute with sus-

pension. Similarly, a condition on a stable localization to ensure that it is additionally monoidal was given in Definition 5.2

of [BR14] and the same condition appeared in Theorem 4.46 of [Bar10]. This condition states that C � I is contained in the

C-local equivalences.

Remark 4.2. The counterexample above fails to satisfy the condition that C � I is contained in the C-local equivalences. If

this condition were satisfied then I would be contained in the f -local equivalences and this would imply all cofibrant objects

(hence all objects) are f -locally trivial. But 0→ N ⊗F2
N is not f -locally trivial. Thus, this counterexample has no bearing on

the work of [BR14] or [Bar10].

Remark 4.3. The counterexample demonstrates a general principle that we now highlight. In any G-equivariant world, there

are multiple spheres due to the different group actions. In the example above, one can suspend by representations of Σn, i.e.

copies of F2 on which Σn acts. The 1-point compactification of such an object is a sphere S n on which Σn acts. A localization

that kills a representation sphere should not be expected to respect the monoidal structure, because not all acyclic cofibrant

objects can be built from one of the representation spheres alone. In particular, N ⊗ N will not be in the smallest thick

subcategory generated by F2. The point is that the homotopy categories of stable model categories in an equivariant context

are not monogenic axiomatic stable homotopy categories in the sense of [HPS97].

Note that this example also demonstrates that the monoid axiom can fail on LC(M). The author does not know an example of

a model category satisfying the pushout product axiom but failing the monoid axiom.

In our applications we will need to know that LC(M) satisfies the pushout product axiom, the unit axiom, and the axiom that

cofibrant objects are flat. We therefore give a name to such localizations, and then we characterize them. The reader is advised

to keep Convention 2.1 in mind.

Definition 4.4. A Bousfield localization LC is said to be a monoidal Bousfield localization if LC(M) satisfies the pushout

product axiom, the unit axiom, and the axiom that cofibrant objects are flat.

Theorem 4.5. Suppose thatM is a cofibrantly generated monoidal model category in which cofibrant objects are flat and the

domains of the generating cofibrations are cofibrant. Let I denote the generating cofibrations ofM. Then LC is a monoidal

Bousfield localization if and only if every map of the form f ⊗ idK , where f is in C and K is a domain or codomain of a map

in I, is a C-local equivalence.

Theorem 4.6. SupposeM is a cofibrantly generated monoidal model category in which cofibrant objects are flat. Then LC is

a monoidal Bousfield localization if and only if every map of the form f ⊗ idK , where f is in C and K is cofibrant, is a C-local

equivalence.

Note that the condition C � I ⊂ C-local equivalences, from [BR14, Bar10], implies the condition from these theorems. In

fact, one can prove it is equivalent to LC(M) being a monoidal model category, because C can be taken to be a set of C-local

trivial cofibrations. However, the condition stated in the theorems above is easier to check. We shall prove Theorem 4.5

in Subsection 4.1 and we shall prove Theorem 4.6 in Subsection 4.2. These theorems demonstrate precisely what must be

done if one wishes to invert a given set of morphisms C and ensure that the resulting model structure is a monoidal model

structure.

Definition 4.7. SupposeM is left proper, is either cellular or combinatorial, and that the domains of the generating cofibra-

tions are cofibrant. The smallest monoidal Bousfield localization which inverts a given set of morphisms C is the Bousfield

localization with respect to the set C′ = {C ⊗ idK} where K runs through the domains and codomains of the generating

cofibrations I.

This notion has already been used in [HW13]. The reason for the hypothesis on the domains of the generating cofibrations

is to ensure that C′ is a set. Requiring left properness and either cellularity or combinatoriality ensures that LC′ exists. The

smallest Bousfield localization has a universal property, that we now highlight.

Proposition 4.8. Suppose C′ is the smallest monoidal Bousfield localization inverting C, and let j : M → LC′(M) be the

left Quillen functor realizing the localization. Suppose N is a monoidal model category with cofibrant objects flat. Suppose

F :M→ N is a monoidal left Quillen functor such that LF takes the images of C in Ho(M) to isomorphisms in Ho(N). Then

there is a unique monoidal left Quillen functor δ : LC′M→ N such that δ j = F.
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Proof. Suppose F :M→ N is a monoidal left Quillen functor, thatN has cofibrant objects flat, and that LF takes the images

of C in Ho(M) to isomorphisms in Ho(N). Then F also takes the images of maps in C′ to isomorphisms in Ho(N), because

for any f ∈ C and any cofibrant K, F( f ⊗ K) � F( f ) ⊗ F(K) is a weak equivalence in N . This is because F(K) is cofibrant in

N (as F is left Quillen), cofibrant objects are flat in N , and F( f ) is a weak equivalence in N by hypothesis.

The universal property of the localization LC′ then provides a unique left Quillen functor δ : LC′M → N that is the same

as F on objects and morphisms (Theorem 3.3.18 and Theorem 3.3.19 in [Hir03]). In particular, δ is a monoidal functor and

δq = Fq : F(QS ) → F(S ) is a weak equivalence in N because the cofibrant replacement QS → S is the same in LC′ (M) as

inM. So δ is a unique monoidal left Quillen functor as required, and the commutativity δ j = F follows immediately from the

definition of δ. �

4.1. Proof of Theorem 4.5. In this section we will prove Theorem 4.5. We first prove that under the hypotheses of Theorem

4.5, cofibrant objects are flat in LC(M).

Proposition 4.9. Let M be a cofibrantly generated monoidal model category in which cofibrant objects are flat and the

domains of the generating cofibrations are cofibrant. Let I denote the generating cofibrations ofM. Suppose that every map

of the form f ⊗ idK , where f is in C and K is a domain or codomain of a map in I, is a C-local equivalence. Then cofibrant

objects are flat in LC(M).

Proof. We must prove that the class of maps {g ⊗ X | g is a C-local equivalence and X is a cofibrant object} is contained in

the C-local equivalences. Let X be a cofibrant object in LC(M) (equivalently, inM). Let g : A → B be a C-local equivalence.

To prove − ⊗ X preserves C-local equivalences, it suffices to show that it takes LC(M) trivial cofibrations between cofibrant

objects to weak equivalences. This is because we can always do cofibrant replacement on g to get Qg : QA→ QB. While Qg

need not be a cofibration in general, we can always factor it into QA →֒ Z
≃
։ QB. By abuse of notation we will continue to

use the symbol QB to denote Z, and we will rename the cofibration QA→ Z as Qg since Z is cofibrant and maps via a trivial

fibration to B. Smashing with X gives:

QA ⊗ X //

��

QB ⊗ X

��
A ⊗ X // B ⊗ X

If we prove that Qg ⊗ X is a C-local equivalence, then g ⊗ X must also be by the two out of three property, since the vertical

maps are weak equivalences inM due to X being cofibrant and cofibrant objects being flat in M. So we may assume that g

is an LC(M) trivial cofibration between cofibrant objects. Since X is built as a transfinite composition of pushouts of maps in

I, we proceed by transfinite induction. For the rest of the proof, let K,K1, and K2 denote domains/codomains of maps in I.

These objects are cofibrant inM by hypothesis, so they are also cofibrant in LC(M).

For the base case X = K we appeal to Theorem 3.3.18 in [Hir03]. The composition F = id ◦ K ⊗ − : M → M → LC(M)

is left Quillen because K is cofibrant. F takes maps in C to weak equivalences by hypothesis. So Theorem 3.3.18 implies F

induces a left Quillen functor K ⊗ − : LC(M) → LC(M). Thus, K ⊗ − takes C-local equivalences between cofibrant objects

to C-local equivalences and in particular takes Qg to a C-local equivalence. Note that this is the key place in this proof where

we use the hypothesis that LC is a monoidal Bousfield localization. This theorem is the primary tool when one wishes to get

from a statement about C to a statement about all C-local equivalences.

For the successor case, suppose Xα is built from K as above and is flat in LC(M). Suppose Xα+1 is built from Xα and a map in

I via a pushout diagram:

K1
� � i //

�� u

K2

��
Xα // Xα+1

We smash this diagram with g : A→ B and note that smashing a pushout square with an object yields a pushout square.
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A ⊗ K1
A⊗i //

��

g⊗K1

%%❏
❏❏

❏❏
❏❏

❏❏
A ⊗ K2

g⊗K2

&&▼▼
▼▼

▼▼
▼▼

▼▼

��

B ⊗ K1
//

��

B ⊗ K2

��

A ⊗ Xα
B⊗i //

g⊗Xα %%❏
❏❏

❏❏
❏❏

❏❏
A ⊗ Xα+1

g⊗Xα+1

&&▼▼
▼▼

▼▼
▼▼

▼▼

B ⊗ Xα // B ⊗ Xα+1

Because g is a cofibration of cofibrant objects, A and B are cofibrant. Because pushouts of cofibrations are cofibrations,

Xα →֒ Xα+1 for all α. Because X0 is cofibrant, Xα is cofibrant for all α. So all objects above are cofibrant. Furthermore,

g ⊗ Ki = g � (0 →֒ Ki). Thus, by the Pushout Product axiom onM and the fact that cofibrations inM match those in LC(M),

these maps are cofibrations.

Finally, the maps g ⊗ Ki are weak equivalences in LC(M) by the base case above, while g ⊗ Xα is a weak equivalence in

LC(M) by the inductive hypothesis. Thus, by Dan Kan’s Cube Lemma (Lemma 5.2.6 in [Hov99]), the map g⊗Xα+1 is a weak

equivalence in LC(M).

For the limit case, suppose we are given a cofibrant object X = colimα<β Xα where each Xα is cofibrant and flat in LC(M).

Because each Xα is cofibrant, g ⊗ Xα = g � (0 →֒ Xα) is still a cofibration. By the inductive hypothesis, each g ⊗ Xα is

also a C-local equivalence, hence a trivial cofibration in LC(M). Since trivial cofibrations are always closed under transfinite

composition, g ⊗ X = g ⊗ colim Xα = colim(g ⊗ Xα) is also a trivial cofibration in LC(M). �

We now pause for a moment to extract the key point in the proof above, where we applied the universal property of Bousfield

localization. This is a reformulation Theorem 3.3.18 in [Hir03] that we will need below.

Lemma 4.10. A left Quillen functor F :M→M induces a left Quillen functor LCF : LC(M)→ LC(M) if and only if for all

f ∈ C, F( f ) is C-local equivalence.

We turn now to the unit axiom.

Proposition 4.11. IfM satisfies the unit axiom then any Bousfield localization LC(M) satisfies the unit axiom. If cofibrant

objects are flat in M then the map QS ⊗ Y → Y, induced by cofibrant replacement QS → S , is a weak equivalence for

all Y, not just cofibrant Y. Furthermore, for any weak equivalence f : K → L between cofibrant objects, f ⊗ Y is a weak

equivalence.

Proof. Since LC(M) has the same cofibrations as M, it must also have the same trivial fibrations. Thus, it has the same

cofibrant replacement functor and the same cofibrant objects. Thus, the unit axiom on LC(M) follows directly from the unit

axiom onM, because a weak equivalence inM is in particular a C-local equivalence.

We now assume cofibrant objects are flat and that Y is an object ofM. Consider the following diagram:

QS ⊗ QY //

��

QY

��
QS ⊗ Y // Y

The top map is a weak equivalence by the unit axiom for the cofibrant object QY. The left vertical map is a weak equivalence

because cofibrant objects are flat and QS is cofibrant. The right vertical is a weak equivalence by definition of QY. Thus, the

bottom arrow is a weak equivalence by the two out of three property.

For the final statement we again apply cofibrant replacement to Y and we get

K ⊗ QY //

��

L ⊗ QY

��
K ⊗ Y // L ⊗ Y
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Again the top horizontal map and the vertical maps are weak equivalences because cofibrant objects are flat (for the first use

that QX is cofibrant, for the second use that K and L are cofibrant). �

We turn now to proving Theorem 4.5. As mentioned in the proof of Proposition 4.9, if h and g are LC(M)-cofibrations then

they areM-cofibrations and so h � g is a cofibration inM (hence in LC(M)) by the pushout product axiom onM. To verify

the rest of the pushout product axiom on LC(M) we must prove that if h is a trivial cofibration in LC(M) and g is a cofibration

in LC(M) then h � g is a weak equivalence in LC(M).

Proposition 4.12. Let M be a cofibrantly generated monoidal model category in which cofibrant objects are flat and the

domains of the generating cofibrations are cofibrant. Let I denote the generating cofibrations ofM. Suppose that every map

of the form f ⊗ idK , where f is in C and K is a domain or codomain of a map in I, is a C-local equivalence. Then LC(M)

satisfies the pushout product axiom.

Proof. We have already remarked that the cofibration part of the pushout product axiom on LC(M) follows from the pushout

product axiom on M, since the two model categories have the same cofibrations. By Proposition 4.2.5 of [Hov99] it is

sufficient to check the pushout product axiom on generating (trivial) cofibrations. So suppose h : X → Y is an LC(M) trivial

cofibration and g : K → L is a generating cofibration in LC(M) (equivalently, inM). Then we must show h � g is an LC(M)

trivial cofibration

By hypothesis onM, K and L are cofibrant. Because h is a cofibration, K⊗h and L⊗h are cofibrations by the pushout product

axiom onM (because K ⊗ h = (∅ →֒ K) � h). By Proposition 4.9, cofibrant objects are flat in LC(M). So K ⊗ h and L ⊗ h are

also weak equivalences. In particular, K ⊗ − and L ⊗ − are left Quillen functors. Consider the following diagram:

K ⊗ X

u

� � ≃ //

��

K ⊗ Y

��

��

L ⊗ X
≃ //

≃ //

(K ⊗ Y)
∐

K⊗X(L ⊗ X)

h�g

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

L ⊗ Y

The map L ⊗ X → (K ⊗ Y)
∐

K⊗X(L ⊗ X) is a trivial cofibration because it is the pushout of a trivial cofibration. Thus, by

the two out of three property for the lower triangle, h � g is a weak equivalence. Since we already knew it was a cofibration

(because it is so inM), this means it is a trivial cofibration. �

We are now ready to complete the proof of Theorem 4.5.

Proof of Theorem 4.5. We begin with the forwards direction. Suppose LC(M) satisfies the pushout product axiom and has

cofibrant objects flat. Let f be any map in C. Note that in particular, f is a C-local equivalence. Because cofibrant objects

are flat, the map f ⊗ K is a C-local equivalence for any cofibrant K. So the collection C ⊗ K is contained in the C-local

equivalences, where K runs through the class of cofibrant objects, i.e. LC is a monoidal Bousfield localization.

For the converse, we apply our three previous propositions. That cofibrant objects are flat in LC(M) is the content of Proposi-

tion 4.9. The unit axiom on LC(M) follows from Proposition 4.11 applied to LC(M). That the pushout product axiom holds

on LC(M) is Proposition 4.12. �

4.2. Proof of Theorem 4.6. We will now prove Theorem 4.6, following the outline above. The proof that cofibrant objects

are flat in LC(M) will proceed just as it did in Proposition 4.9. Proposition 4.11 again implies the unit axiom in LC(M).

Deducing the pushout product axiom on LC(M) will be more complicated without the assumption on the domains of I. For

this reason, we need the following lemma. First, let I′ be obtained from the generating cofibrations I by applying any cofibrant

replacement Q to all i ∈ I and then taking the left factor in the cofibration-trivial fibration factorization of Qi. So I′ consists

of cofibrations between cofibrant objects.

Lemma 4.13. SupposeM is a left proper model category cofibrantly generated by sets I and J in which the domains of maps

in J are small relative to I-cell. Then the sets I′ ∪ J and J cofibrantly generateM.
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Proof. We verify the conditions given in Definition 11.1.2 of [Hir03]. We have not changed J, so the fibrations are still

precisely the maps satisfying the right lifting property with respect to J and the maps in J still permit the small object

argument because the domains are small relative to J-cell.

Any map that has the right lifting property with respect to all maps in I is a trivial fibration, so will in particular have the right

lifting property with respect to all cofibrations, hence with respect to maps in I′∪ J. Conversely, suppose p has the right lifting

property with respect to all maps in I′ ∪ J. We are faced with the following lifting problem:

A′ //

i′

��

A //

i

��

X

p

��
B′ // B // Y

Because p has lifting with respect to I′ ∪ J, it has the right lifting property with respect to J. This guarantees us that p is a

fibration. Now becauseM is left proper, Proposition 13.2.1 in [Hir03] applies to solve the lifting diagram above. In particular,

because p has the right lifting property with respect to I′, p must have the right lifting property with respect to I. Thus, p is a

trivial fibration as desired.

We now turn to smallness. Any domain of a map in J is small relative to J-cell, but in general this would not imply smallness

relative to I-cell. We have assumed the domains of maps in J are small relative to I-cell, so they are small relative to (J∪I′)-cell

because J ∪ I′ is contained in I-cell.

Any domain of a map in I′ is of the form QA for A a domain of a map in I. We will show QA is small relative to I-cell. As

J ∪ I′ is contained in I-cell this will show QA is small relative to J ∪ I′. Consider the construction of QA as the left factor in

QA

≃

    ❆
❆❆

❆❆
❆❆

❆

∅
.
�

>>⑥⑥⑥⑥⑥⑥⑥⑥
// A

The map ∅ → QA is in I-cell, so QA is a colimit of cells (let us say κA many), each of which is κ-small where κ is the regular

cardinal associated to I by Proposition 11.2.5 of [Hir03]. So for any λ greater than the cofinality of max(κ, κA), a map from

QA to a λ-filtered colimit of maps in I-cell must factor through some stage of the colimit because all the cells making up QA

will factor in this way. One can find a uniform λ for all objects QA by an appeal to Lemma 10.4.6 of [Hir03].

�

Remark 4.14. In a combinatorial model category no smallness hypothesis needs to be made because all objects are small.

In a cellular model category, the assumption that the domains of J are small relative to cofibrations is included. As these

hypotheses are standard when working with left Bousfield localization, we shall say no more about the additional smallness

hypothesis placed on J above.

Corollary 4.15. SupposeM is a left proper model category cofibrantly generated by sets I and J in which the domains of

maps in J are small relative to I-cell and are cofibrant. Then there exist a set of generating cofibrations I′ with cofibrant

domains.

Remark 4.16. Note that this corollary does not say that any left proper, cofibrantly generated model category has generating

sets I and J with cofibrant domains. There is an example due to Carlos Simpson (found on page 199 of [Sim12]) of a left

proper, combinatorial model category that has no such sets I and J. In this example the cofibrations and trivial cofibrations

are the same, so cannot be leveraged against one another in the way we have done above.

We are now prepared to prove Theorem 4.6.

Proof of Theorem 4.6. First, if LC is a monoidal Bousfield localization then every map of the form f ⊗ idK , where f ∈ C and

K is cofibrant, is a C-local equivalence. This is because f is a C-local equivalence and cofibrant objects are flat in LC(M). We

turn now to the converse.

Assume every map of the form f ⊗ idK , where f ∈ C and K is cofibrant, is a C-local equivalence. Then cofibrant objects are flat

in LC(M). To see this, let X be cofibrant and define F(−) = X⊗−. Then Lemma 4.10 implies F is left Quillen when viewed as

a functor from LC(M) to LC(M). So F takes C-local equivalences between cofibrant objects to C-local equivalences. By the

reduction at the beginning of the proof of Proposition 4.9, this implies F takes all C-local equivalences to C-local equivalences.
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Next, the unit axiom on LC(M) follows from the unit axiom onM, by Proposition 4.11. Finally, we must prove the pushout

product axiom holds on LC(M). As in the proof of Proposition 4.12, Proposition 4.2.5 of [Hov99] reduces the problem to

checking the pushout product axiom on a set of generating (trivial) cofibrations. We apply Lemma 4.13 toM and check the

pushout product axiom with respect to this set of generating maps.

As in the case of Theorem 4.5, let h : X → Y be a trivial cofibration in LC(M) and let g : K → L be a generating cofibration.

By the lemma, the map g is either a cofibration between cofibrant objects or a trivial cofibration inM. If the former, then the

proof of Proposition 4.12 goes through verbatim and proves that h � g is an LC(M)-trivial cofibration, since cofibrant objects

are flat in LC(M). If the latter, then because g is a trivial cofibration in M and h is a cofibration in M we may apply the

pushout product axiom onM to see that h � g is a trivial cofibration inM (hence in LC(M) too). This completes the proof of

the pushout product axiom on LC(M). �

Remark 4.17. The use of the lemma demonstrates that this proposition proves something slightly more general. Namely, if

M is cofibrantly generated, left proper, has cofibrant objects flat, and the class of cofibrations is closed under pushout product

thenM satisfies the pushout product axiom.

Additionally, one could also prove the forwards direction in the theorem using only that LC(M) satisfies the pushout product

axiom. For any cofibrant K we have a cofibration φK : ∅ →֒ K. Note that for any f ∈ C, f ⊗ K = f � φK ⊂ C-local

equivalences, because f is a trivial cofibration in LC(M).

We record this remark because in the future we hope to better understand the connection between monoidal Bousfield local-

izations and the closed localizations that appeared in [CGMV10], and this remark may be useful.

5. Preservation of algebras over Σ-cofibrant operads

In this section we will provide several applications of the results in the previous section. We remind the reader that for operads

valued inM, a map of operads A→ B is said to be a trivial fibration if An → Bn is a trivial fibration inM for all n. An operad

P is said to be cofibrant if the map from the initial operad into P has the left lifting property in the category of operads with

respect to all trivial fibrations of operads. An operad P is said to be Σ-cofibrant if it has this left lifting property only in the

category of symmetric sequences. The E∞-operads considered in [May72] are Σ-cofibrant precisely because the nth space is

assumed to be an EΣn space.

We begin with a theorem due to Markus Spitzweck, proven as Theorem 5 in [Spi01] and as Theorem A.8 in [GRSØ12],

that makes it clear that the hypotheses of Corollary 3.4 are satisfied when LC is a monoidal Bousfield localization and P is a

cofibrant operad.

Theorem 5.1. Suppose P is a Σ-cofibrant operad andM is a monoidal model category. Then P-alg is a semi-model category.

This theorem, applied to bothM and LC(M) (if the localization is monoidal), endows the categories of P-algebras inM and

LC(M) with inherited semi-model structures. By Corollary 3.4, monoidal Bousfield localizations preserve algebras over Σ-

cofibrant operads. In particular, monoidal localizations preserve A∞ and E∞-algebras inM, since these algebras are encoded

by A∞ and E∞-operads P that are Σ-cofibrant (and weakly equivalent to Ass and Com respectively in the category Coll(M)).

When M is a category of spectra we are free to work with operads valued in spaces because the Σ∞ functor will take a

(Σ-cofibrant) space-valued operad to a (Σ-cofibrant) spectrum-valued operad with the same algebras.

5.1. Spaces and Spectra. We now provide examples demonstrating the power of Theorem 3.2. For topological spaces the

situation is especially nice. We will always work in the context of pointed spaces, with the Quillen model structure.

Proposition 5.2. LetM be the model category of (pointed) simplicial sets or k-spaces. Every Bousfield localization ofM is

a monoidal Bousfield localization.

Proof. For a review of the monoidal model structures on spaces and simplicial sets see Chapter 4 of [Hov99]. Both are cellular,

left proper, monoidal model categories with cofibrant objects flat and the domains of the generating cofibrations cofibrant.

ForM = sS et we can simply rely on Theorem 4.1.1 of [Hir03], which guarantees that LC(M) is a simplicial model category.

The pushout product axiom is equivalent to the SM7 axiom for sS et, so this proves LC(M) is a monoidal model category and

hence that LC is monoidal. There is also an elementary proof of this fact, obtained from the proof below by replacing F(−,−)

everywhere by map(−,−).

We turn now toM = Top. By definition, any Bousfield localization LC will be a monoidal Bousfield localization as soon as

we show C∧ S n
+ is contained in the C-local equivalences (the codomains of the generating cofibrations are contractible, so do
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not matter). As remarked in the discussion below Definition 4.1 in [HW13], for topological model categories Bousfield local-

ization with respect to a set of cofibrations can be defined using topological mapping spaces rather than simplicial mapping

spaces (at least when all maps in C are cofibrations). Let F(X, Y) denote the space of based maps X → Y.

We will make use of Proposition 3.2 in [Hov01], a version of which states that because Top is left proper and cofibrantly

generated, a map f is a weak local equivalence if and only if F(T, f ) is a weak equivalence of topological spaces for all T in

the (co)domains of the generating cofibrations I in Top.

Now consider the following equivalent statements, where T runs through the domains and codomains of generating cofibra-

tions.

f is a C-local equivalence

iff F( f , Z) is a weak equivalence for all C-local Z

iff F(T, F( f , Z)) is a weak equivalence for all C-local Z and all T (by Prop. 3.2)

iff F(T ∧ f , Z) is a weak equivalence for all C-local Z (by adjointness)

iff T ∧ f is a C-local equivalence

This proves that the class of C-local equivalences is closed under smashing with a domain or codomain of a generating

cofibration, so LC is a monoidal Bousfield localization.

�

The reader may wonder whether all Bousfield localizations preserve algebras over cofibrant operads in general model cate-

goriesM, i.e. whether all Bousfield localizations are monoidal. This is false, as demonstrated by the following example, from

Section 6 in [CGMV10].

Example 5.3. Let M be symmetric spectra, orthogonal spectra, or S-modules. Recall that in topological spaces, the nth

Postnikov section functor Pn is the Bousfield localization L f corresponding to the map Σ f where f : S n → ∗. Applying

Σ∞ gives a map of spectra and we again denote by Pn the Bousfield localization with respect to this map. The Bousfield

localization P−1 onM does not preserve A∞-algebras. If R is a non-connective A∞-algebra then the unit map ν : S → P−1R

is null because π0(P−1R) = 0. Thus, P−1R cannot admit a ring spectrum structure (not even up to homotopy) because

S ∧ P−1R → P−1R ∧ P−1R → P−1R is not a homotopy equivalence as it would have to be for P−1R to be a homotopy ring. It

follows that the model category P−1M fails the pushout product axiom, because if P−1M satisfied the pushout product axiom,

then A∞-algebras in P−1M would inherit a transferred semi-model structure, by Theorem 5.1, and Corollary 3.4 would imply

that P−1 preserves A∞-algebras.

In [CGMV10], examples of the sort above are prohibited by assuming that L-equivalences are closed under the monoidal

product. It is then shown in Theorem 6.5 that for symmetric spectra this property is implied if the localization is stable, i.e.

L ◦ Σ ≃ Σ ◦ L. We now compare our requirement that LC be a monoidal Bousfield localization to existing results regarding

preservation of monoidal structure.

Proposition 5.4. LetM be a stable model category. Then every monoidal Bousfield localization is stable. In a monogenic

setting such as spectra, every stable localization is monoidal.

This is clear, since suspending is the same as smashing with the suspension of the unit sphere. The Postnikov section is clearly

not stable, and indeed the counterexample above hinges on the fact that the section has truncated the spectrum by making

trivial the degree in which the unit must live. Stable localizations preserve cofiber sequences, but P−1 does not. Under the

hypothesis that localization respects the monoidal product, Theorem 6.1 of [CGMV10] proves that cofibrant algebras over

a cofibrant colored operad valued in sS et∗ or Top∗ are preserved. Theorem 3.2 recovers this result in the case of operads,

and improves on it by extending the class of operads so that they do not need to be valued in sS et∗ or Top∗, by discussing

preservation of non-cofibrant algebras, by weakening the cofibrancy required of the operad to Σ-cofibrancy (using Theorem

5.1 above), and by potentially weakening the hypothesis on the localization. A different generalization of [CGMV10] has

been given in [GRSØ12].

Proposition 5.5. Every Bousfield localization for which the local equivalences are closed under ⊗ is a monoidal Bousfield

localization, but the converse fails.

Proof. To see why this fact is true, consider the maps idK as L-equivalences when testing whether or not idK ⊗ C is a C-local

equivalence. To see that the converse fails, take C to be the generating trivial cofibrations of any cofibrantly generated model

category in which the weak equivalences are not closed under ⊗. �
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Thus, our hypothesis on a monoidal Bousfield localization is strictly weaker than requiring L-equivalences to be closed under

⊗. Theorems 4.5 and 4.6 demonstrate that the hypothesis that C⊗ idK is contained in the C-local equivalences is best-possible,

since it LC is a monoidal Bousfield localization if and only if this property holds, and without the pushout product axiom on

LC(M) the question of preservation of algebras under localization is not even well-posed. Note that cofibrant objects are flat

for symmetric spectra by 5.3.10 in [HSS00].

Remark 5.6. In light of the Postnikov Section example, the argument of Proposition 5.2 must break down for spectra. The

precise place where the argument fails is the passage through map(T,map( f , Z)). In spectra, this expression has no meaning,

because T is a spectrum but map( f , Z) is a space. So the argument of Proposition 5.2 relies precisely on the fact thatM = sS et

(orM = Top in the topological case), so that the SM7 axiom forM is precisely the same as the pushout product axiom.

Theorem 3.2 and Theorem 5.1 combine to prove that any monoidal Bousfield localization of spectra preserves A∞ and E∞-

algebras. In particular, A∞ and E∞-algebras are preserved by stable Bousfield localizations such as LE where E is a homology

theory. So our results recover Theorems VIII.2.1 and VIII.2.2 of [EKMM97].

5.2. Equivariant Spectra. In order to specialize Corollary 3.4 to the case of equivariant spectra, where G is a compact

Lie group, we must first understand the generating cofibrations. For TopG, the (co)domains of maps in I take the form

((G/H) × S n−1)+ and ((G/H) × Dn)+ for H a closed subgroup of G, by Definition 1.1 in [MM02]. For G-spectra, we first

need a new piece of notation. For any finite dimensional orthogonal G-representation W there is an evaluation functor EvW :

S G → TopG. This functor has a left adjoint FW (see Proposition 3.1 in [HW13] for more details). The (co)domains of maps

in I take the form FW ((G/H)+ ∧ S n−1
+ ) and FW ((G/H)+ ∧ Dn

+) by Definition 1.11 in [MM02], where W runs through some

fixed G-universe U. The latter are contractible, and so smashing with them does not make a difference. Observe that the

domains of the generating cofibrations are cofibrant. Left Bousfield localization yields the stable model structure, which we

denote S G. That S G is a monoidal model category with cofibrant objects flat is verified in Proposition III.7.3 of [MM02],

and may also be deduced from Corollary 4.4 in [HW13]. We could also work with the positive stable model structure S G
+ ,

which has the same weak equivalences as S G, but cofibrations defined by functors FW where WG , 0. The proof that these

model structures are left proper and cellular can be found in the appendix of [GW13]. ForM = S G or S G
+ , our preservation

result (Corollary 3.4 together with Theorem 4.5) becomes:

Theorem 5.7. Let G be a compact Lie group. In S G (resp. S G
+ ), a Bousfield localizations LC is monoidal if and only if

C ∧ FW ((G/H)+ ∧ S n−1
+ ) is a C-local equivalence for all closed subgroups H of G, for all W in the universe (resp. all W such

that WG , 0), and for all n (resp. n > 0). Furthermore, such localizations preserve P-algebra structure for any Σ-cofibrant P,

including any equivariant E∞-operad P.

Here a G-operad P is called equivariant E∞ if it is Σ-free, the spaces P(n) are G-CW complexes, and P(n)H ≃ ∗ for all closed

subgroups H of G. These operads are Σ-cofibrant with respect to the model structure on G-operads transferred from the model

structure on G-collections
∏
n≥0

(TopG)Σn where a morphism f = ( fn) is a weak equivalence (resp. fibration) if f H
n is a weak

equivalence (resp. fibration) in Top for every closed subgroup H of G and every n. Note that these operads do not encode

genuine equivariant commutativity. To do that, subgroups of G × Σn would need to be considered. In particular, there is not

a Quillen equivalence between algebras over an E∞-operad and commutative equivariant ring spectra. The N∞-operads of

[BH15] were introduced to encode genuine commutativity in a homotopy coherent way (relative to a choice of a collection of

families of subgroups of G × Σn for n ≥ 0) and were constructed in [GW13] as cofibrant replacements of the operad Com in

various model structures on the category of G-operads, corresponding to the choice of a collection of families of subgroups of

G × Σn.

Ignoring suspensions, Theorem 5.7 demonstrates that monoidal Bousfield localizations are precisely the ones for which LC
respects smashing with (G/H)+ for all subgroups H. In this light, Theorem 5.7 can be seen as a generalization of Proposition

5.4, saying that if LC respects stabilization with respect to all the objects FW((G/H)+ ∧ S n−1
+ then LC is monoidal. We think of

these monoidal localizations as the ones that can ‘see’ the information of all subgroups. A natural question is: what if LC can

only ‘see’ the information of some subgroups H? To answer this question, we must consider the following model structures,

from in Theorem 6.3 in [MM02] (on spectra either the stable or positive stable model structure can be used):

Definition 5.8. Let F be a family of closed subgroups of G, i.e. a non-empty set of subgroups closed under conjugation and

taking subgroups. Then the F -fixed point model structure on pointed G-spaces is a cofibrantly generated model structure in

which a map f is a weak equivalence (resp. fibration) if and only if f H is a weak equivalence (resp. fibration) in Top for all

H ∈ F . We will denote this model structure by TopF . The generating (trivial) cofibrations are (G/H × g)+, where g is a

generating (trivial) cofibration of topological spaces, and H ∈ F .
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The corresponding cofibrantly generated model structure on G-spectra will be denoted S F . Again, weak equivalences (resp.

fibrations) are maps f such that f H is a weak equivalence (resp. fibration) of orthogonal spectra for all H ∈ F . The generating

(trivial) cofibrations are FW((G/H)+ ∧ g) as H runs through F , g runs through the generating (trivial) cofibrations of spaces,

and W runs through some G-universeU.

With the generating cofibrations in hand, Theorem 4.5 implies that monoidal Bousfield localizations in S F are characterized

by the property that C ∧ (G/H)+ is a C-local equivalence for all H ∈ F (again, ignoring suspensions). One can also define

F -fixed point semi-model structures OperF on the category of G-operads by applying the general machinery of Theorem

12.2.A in [Fre09]. Indeed, [GW13] demonstrates how to define full model structures on these categories of operads, for even

more general families of subgroups.

Definition 5.9. Let EF
∞ be the cofibrant replacement for the operad Com in the F -fixed point semi-model structure on G-

operads.

These operads form a lattice (ordered by family inclusion) interpolating between non-equivariant E∞ (corresponding to the

family F = {e}) and equivariant E∞ (corresponding to the family F = {All} and denoted EG
∞). An EF

∞ -algebra X has

a multiplicative structure on resH(X) (compatible with the transfers) for every H ∈ F . However, NG
H

(resH(X)) need not

have a multiplicative structure. These operads EF
∞ have been generalized and further studied in [GW13], which includes a

comparison between these operads and the N∞-operads of [BH15], results about transferred model structures, and rectification

results. For now we will focus on how EF
∞ -algebra structure interacts with Bousfield localization. First, observe that both

OperF and S F are TopF -model structures (in the sense of Definition 4.2.18 in [Hov99]) and the cofibrancy of EF
∞ is

relative to the F -model structure. Thus, from a model category theoretic standpoint, EF
∞ -algebras are best viewed in S F .

The following two theorems also have formulations for the positive stable model structure, in analogy with Theorem 5.7, that

we leave to the reader.

Theorem 5.10. LetM = S G and let F be a family of closed subgroups of G. Assume FW ((G/H)+ ∧ S n−1
+ ) ∧ C is contained

in the C-local equivalences for all H ∈ F , for all n, and for all W in the universe. Then LC preserves EF
∞ -structure.

Localizations of the form above are F -monoidal but not necessarily G-monoidal. For this reason, when X ∈ EG
∞-alg, LC(X)

has EF
∞ -algebra structure but may not have EG

∞-algebra structure. More generally, we have the following result, encoding the

fact that if we work in S K rather than S G, then localizations are compatible with both K and F . Because there are now

two families involved, the localization will preserve algebraic structure corresponding to the meet of these two families in the

lattice of families.

Theorem 5.11. Let M be the K -fixed point model structure on G-spectra and let K ′ be a subfamily of K . Assume

FW ((G/H)+∧S n−1
+ )∧C is contained in the C-local equivalences for all H ∈ K ′, for all n, and for all W in the universe. Then

LC takes any EF
∞ -algebra to an EF∩K ′

∞ -algebra.

Proof. In order to apply Corollary 3.4, first forget to the model structure S F∩K ′

and observe that any EF
∞ -algebra is sent to

a EF∩K ′

∞ -algebra. The hypothesis on LC guarantees that LC is a monoidal Bousfield localization with respect to the F ∩K ′

model structure, and so EF∩K ′

∞ is preserved. �

Remark 5.12. It is easy to produce examples of localizations LC that reduce EF
∞ -algebra structure to EF

′

∞ -algebra structure

for any families F ′ ( F of closed subgroups of G, by generalizing the Postnikov section 5.3. For every closed subgroup

H ∈ F \ F ′, consider a truncation of the spectrum FW ((G/H)+ ∧ S n−1
+ ). Localizing with respect to the wedge of these

truncation maps will take EF
∞ -algebras to EF ′

∞ -algebras, by Theorem 5.11.

Together, Theorem 5.11 and Remark 5.12 resolve the preservation question for operads in the lattice EF
∞ . As expected,

preservation of lesser algebraic structure comes down to requiring a less stringent condition on the Bousfield localization.

The least stringent condition is for F = {e} and recovers the notion of a stable localization (i.e. one which is monoidal on

the category of spectra after forgetting the G-action). However, because none of the operads EF
∞ rectify with respect to the

Com operad, we do not have preservation results for commutative equivariant ring spectra. For the remainder of the section,

we discuss localizations that preserve EF
∞ -algebra structure but fail to preserve commutative structure. We begin with the

example that motivated this paper, which the author learned from a talk given by Mike Hill at Oberwolfach (the proceedings

can be found in [HH11]). A similar example appeared in [McC96]. Before presenting this motivating example, we must

introduce some new notation.

We have already seen that, given a G-space X and a closed subgroup H, one may restrict the G action to H and obtain an

H-space denoted resH(X). This association is functorial and lifts to a functor resH : S G → S H . This restriction functor has
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a left adjoint G+ ∧H (−), the induction functor. We refer the reader to Section 2.2.4 of [HHR16] for more details. If one shifts

focus to commutative monoids CommG in S G (equivalently to genuine E∞-algebras) then there is again a restriction functor

resH : CommG → CommH and it again has a left adjoint functor NG
H

(−) called the norm. This functor is discussed in Section

2.3.2 of [HHR16]. We are now prepared to present the example from [HH11], which will be generalized in Example 5.14

below.

Example 5.13. There are localizations that destroy genuine commutative structure but that preserve equivariant E∞-algebra

structure. For this example, let G be a (non-trivial) finite group. Consider the reduced real regular representation ρ obtained

by taking the quotient of the real regular representation ρ by the trivial representation. We write ρG = ρG − 1 where 1 means

the trivial representation R[e]. Taking the one-point compactification of this representation yields a representation sphere S ρ.

There is a natural inclusion aρ : S 0 → S ρ induced by the inclusion of the trivial representation into ρ. Consider the spectrum

E = S[a−1
ρ

] obtained from the unit S (certainly a commutative algebra in S G) by localization with respect to aρ. We will show

that this spectrum cannot be commutative.

First, for any proper H < G, the restriction ρG |H is [G : H]ρH , so ρG |H = [G : H]ρH + ([G : H]1 − 1). Let k = [G : H] − 1.

Observe that resHS ρG = (S ρH )#[G:H] ∧ S k. It follows that resH(E) is contractible, because k > 0.

If E were a commutative equivariant ring spectrum, then the counit of the norm-restriction adjunction would provide a ring

homomorphism NG
H

resH(E)→ E. But the domain is contractible for every proper subgroup H because resH(E) is contractible.

This cannot be a ring map unless E to be contractible, and we know E is not contractible, because its G-fixed points are not

contractible.

Justin Noel has pointed out that the localization in Example 5.13 is smashing, hence monoidal (this is clear from the reformu-

lation in Example 5.14, but was not clear to the author from the formulation above). It follows that the localization preserves

E∞-algebra structure, by Theorem 5.7, and hence takes commutative monoids to E∞-algebras. Because any such H will lead

to a failure of L(S) = E to be commutative, Example 5.13 is in some sense maximally bad. We now leverage this observation

to generalize Example 5.13.

Recall from Definition 5.7 of [GW13] that an F -N∞-operad P is a generalization of an N∞-operad, where P-algebras have

multiplicative norms for all H ∈ F . The formulation of Example 5.14 matches the presentation from [HH11] for the case

when G is finite, F is the family of all subgroups of G, and P the family of proper subgroups.

Example 5.14. Let G be a compact Lie group and F a family of closed subgroups of G. If X is an algebra over an F − N∞-

operad then there is a localization L sending X to an EF
∞ -algebra. Consider the cofiber sequence EP+ → S 0 → ẼP for any

family P properly contained in F . Recall the fixed-point property of the space EP (discussed very nicely in Section 7 of

[Sch15]) and deduce:

(EP+)H ≃


∗+ = S 0 if H ∈P

∅+ = ∗ if H <P

For all H, the H-fixed points of S 0 are S 0, so that the cofiber obtained by mapping this space into S 0 satisfies the following

fixed-point property

(ẼP)H ≃


∗ if H ∈P

S 0 if H <P

Now apply Σ∞+ to the map S 0 → ẼP . If G is a finite group, and F is the family of all subgroups of G, then the resulting

map S → E is the same localization map considered in Example 5.13 (see Section 7 of [Sch15]). Returning to the general

case, note that E is not contractible because EP+ is not homotopy equivalent to S 0 (since P is properly contained in F ),

though resH(EP+) is homotopy equivalent to resH(S 0) for any H ∈P . In this formulation it is clear that the map S → E is

a nullification that kills all maps out of the induced cells G+ ∧H (H/K)+ � (G/H)+ for all H ∈P .

This localization is monoidal with respect to the F -model structure, so E is still an EF
∞ -algebra by Theorem 5.11. When G

is finite, Example 5.14 makes it clear that the localization is simply killing a homotopy element (namely: the Euler class aρ
discussed in Section 2.6.3 of [HHR16]). The presentation in Example 5.14 has several benefits of its own: it generalizes to

compact Lie groups G, it demonstrates that a smaller localization than Example 5.13 is needed to destroy F − N∞-algebra

structure rather than N∞-algebra structure, and it shows how localization can reduce one’s place in the lattice of F − N∞-

algebras without reducing it all the way down to EF
∞ . To see this, observe that the localization E can still admit some

multiplicative norms, for subgroups H ∈ F \P . Hence, E can still be a K − N∞-algebra if the family K only intersects P

in the trivial subgroup (using the fact that S is an N∞-algebra for all choices of families of subgroups). Examples such as that

of II.2.3 [LMSM86] can be used for this purpose.
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Motivated by Example 5.14, we devote the next two sections to determining when a left Bousfield localization must preserve

commutative structure. We will see that the key compatibility condition required is that the maps in C respect the free

commutative monoid functor. In the case of equivariant spectra, this will imply that C respects the multiplicative norm

functors.

6. Bousfield Localization and CommutativeMonoids

In this section we turn to the interplay between monoidal Bousfield localizations and commutative monoids, i.e. algebras over

the (non-cofibrant) operad Com. In [Whi14a], the following theory is developed as Definition 3.1, Theorem 3.2, and Corollary

3.8.

Definition 6.1. A monoidal model categoryM is said to satisfy the commutative monoid axiom if whenever h is a trivial

cofibration inM then h�n/Σn is a trivial cofibration inM for all n > 0.

If, in addition, the class of cofibrations is closed under the operation (−)�n/Σn thenM is said to satisfy the strong commutative

monoid axiom.

Theorem 6.2. Let M be a cofibrantly generated monoidal model category satisfying the commutative monoid axiom and

the monoid axiom, and assume that the domains of the generating maps I (resp. J) are small relative to (I ⊗M)-cell (resp.

(J ⊗M)-cell). Let R be a commutative monoid inM. Then the category CAlg(R) of commutative R-algebras is a cofibrantly

generated model category in which a map is a weak equivalence or fibration if and only if it is so inM. In particular, when

R = S this gives a model structure on commutative monoids inM.

Corollary 6.3. Let M be a cofibrantly generated monoidal model category satisfying the commutative monoid axiom, and

assume that the domains of the generating maps I (resp. J) are small relative to (I ⊗M)-cell (resp. (J ⊗M)-cell). Then for

any commutative monoid R, the category of commutative R-algebras is a cofibrantly generated semi-model category in which

a map is a weak equivalence or fibration if and only if it is so inM.

While these results only make use of the commutative monoid axiom, in practice we usually desire the strong commuta-

tive monoid axiom so that in the category of commutative R-algebras cofibrations with cofibrant domains forget to cofibra-

tions inM. This is discussed further in [Whi14a] and numerous examples of model categories satisfying these axioms are

given.

In order to apply the corollary above to verify the hypotheses of Corollary 3.4 we must give conditions on the maps C so

that ifM satisfies the commutative monoid axiom then so does LC(M). As for the pushout product axiom, our method will

be to apply Lemma 4.10, which is just the universal property of Bousfield localization. However, (−)�n/Σn is not a functor

on M, but rather on Arr(M). The following lemma lets us instead work with the functor Symn : M → M defined by

Symn(X) = X⊗n/Σn. This lemma is proved in Appendix A of [Whi14a].

Lemma 6.4. Assume that for every g ∈ I, g�n/Σn is a cofibration. Suppose f is a trivial cofibration between cofibrant objects

and f �n/Σn is a cofibration for all n. Then f �n/Σn is a trivial cofibration for all n if and only if Symn( f ) is a trivial cofibration

for all n.

With this lemma in hand, we are ready to prove the main result of this section, regarding preservation of the commutative

monoid axiom by Bousfield localization.

Theorem 6.5. Assume M is a cofibrantly generated monoidal model category satisfying the strong commutative monoid

axiom and with domains of the generating cofibrations cofibrant. Suppose that LC(M) is a monoidal Bousfield localization

with generating trivial cofibrations JC. If Symn( f ) is a C-local equivalence for all n ∈ N and for all f ∈ JC, then LC(M)

satisfies the strong commutative monoid axiom.

Remark 6.6. The condition of Theorem 6.5,that Symn( f ) is a C-local equivalence for all n ∈ N and for all f ∈ JC, is equivalent

to the condition that Sym(−) preservesC-local equivalences between cofibrant objects. The latter condition implies the former

because Symn( f ) is a retract of Sym( f ), and the maps in JC may be assumed to have cofibrant domains, as shown in Theorem

6.5. That the former implies the latter follows from Theorem 5.6 of [BW16], which shows that the existence of a transferred

semi-model structure on commutative monoids in LC(M) implies Sym(−) preserves C-local equivalences between cofibrant

objects. This result, together with Theorem 6.5, implies that both conditions are equivalent to existence of a transferred semi-

model structure on commutative monoids in LC(M). Furthermore, the existence of this semi-model structure is equivalent

to LC(M) satisfying the strong commutative monoid axiom, since the existence of the semi-model structure implies Sym(−)

preserves C-local equivalences, which implies the strong commutative monoid axiom by Theorem 6.5. We have refrained

from stating Theorem 6.5 as an ‘if and only if’ to match the discussion in [BW16] where the converse was first noticed.



MONOIDAL BOUSFIELD LOCALIZATIONS AND ALGEBRAS OVER OPERADS 19

We turn now to the proof of Theorem 6.5, and to several related results. All of these results are meant to find the easiest

possible condition to check on C so that LC(M) satisfies the commutative monoid axiom. Theorem 6.5 reduces the problem

from having to check the class of all C-local equivalences to only having to check the set JC (which, unfortunately, is often

mysterious in practice). It is tempting to try to prove Theorem 6.5 using Lemma 4.10, as we did in Theorem 4.5, since this

would reduce the problem to checking the set J ∪ C (which is much less mysterious than JC). However, Symn is not a left

adjoint. One could attempt to get around this by applying Lemma 4.10 with the functor Sym : M → CMon(M), but this

would require the existence of a model structure on CMon(M) in which the weak equivalences are C-local equivalences. As

this is what we’re trying to prove by obtaining the commutative monoid axiom on LC(M), this approach is doomed to fail.

Instead, we opt for a more technical argument, following the techniques of [Whi14a].

Proof of Theorem 6.5. It is proven in Appendix A of [Whi14a] that if (−)�n/Σn takes generating (trivial) cofibrations to (trivial)

cofibrations, then it takes all (trivial) cofibrations to (trivial) cofibrations. The generating cofibrations of LC(M) are the same

as those inM andM satisfies the strong commutative monoid axiom, so the class of cofibrations of LC(M) is closed under

the operation (−)�n/Σn.

Suppose, for every generating trivial cofibration f : X → Y of LC(M), that Symn( f ) is a C-local equivalence. Because the

domains of the generating cofibrations inM are cofibrant, the same is true in LC(M) (see Proposition 4.3 in [Hov04]), so we

may assume f has cofibrant domain and codomain. In particular, the proof of Lemma 6.4 implies Symn( f ) is a cofibration,

because f �k/Σk is a cofibration for all k and the domain X of f is cofibrant.

By hypothesis, Symn( f ) is a trivial cofibration of LC(M) for all n. We are therefore in the situation of Lemma 6.4 and may

conclude that f �n/Σn is a trivial cofibration for all n. We now apply the result from Appendix A of [Whi14a] to conclude that

all trivial cofibrations of LC(M) are closed under the operation (−)�n/Σn. �

If we know more aboutM in the statement of Theorem 6.5, then we can in fact get a sharper condition regarding the generating

trivial cofibrations JC. One way to better understand the trivial cofibrations in LC(M) is via the theory of framings. Definition

4.2.1 of [Hir03] defines the full class of horns on C to be the class

Λ(C) = { f̃ � in | f ∈ C, n ≥ 0}

where in : ∂∆[n] → ∆[n] and f̃ : Ã → B̃ is a Reedy cofibration between cosimplicial resolutions. In the case where C is a

set andM is cofibrantly generated, Definition 4.2.2 of [Hir03] defines an augmented set of C-horns to be Λ(C) = Λ(C) ∪ J.

Finally, 4.2.5 of [Hir03] defines a set Λ̃(C) to be a set of relative I-cell complexes with cofibrant domains obtained from Λ(C)

via cofibrant replacement. Note that, according to the erratum to [Hir03], we do not know that the domains of maps in Λ̃(C)

are cofibrant, but we do know that they are small relative to I.

We now advertise the surprising and powerful Theorem 3.11 in [BR14]. This result states that ifM is proper and stable, if the

C-local objects are closed under Σ (such LC are called stable), and if C consists of cofibrations between cofibrant objects then

JC is J ∪ Λ(C). The last hypothesis is a standing assumption for this paper. The key input to Theorem 3.11 is the observation

that for suchM, a map is a C-fibration if and only if its fiber is C-fibrant.

Corollary 6.7. SupposeM is a stable, proper, simplicial model category satisfying the strong commutative monoid axiom.

Suppose that LC is a stable and monoidal Bousfield localization such that for all n ∈ N and f ∈ C, Symn( f ) is a C-local

equivalence. Then LC(M) satisfies the strong commutative monoid axiom.

Proof. By Theorem 6.5 we must only check that Symn takes maps in JC = J ∪ Λ(C) to C-local equivalences. By the

commutative monoid axiom onM, maps in J are taken to weak equivalences, so we must only consider maps in Λ(C).

The reason for the hypothesis thatM is simplicial is Remark 5.2.10 in [Hov99], which states that the functor Ãm = A ⊗ ∆[m]

is a cosimplicial resolution of A (at least, when A is cofibrant). We further observe that the model structure on LC(M) is

independent of the choice of cosimplicial resolution. Thus, we may take our map in Λ(C) to be of the form ( f ⊗ ∆[m]) � in
where f : A→ B is in C.
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The map ( f ⊗ ∆[m]) � in can be realized as the corner map in the diagram

A ⊗ ∆[m] ⊗ ∂∆[n]+ //

�� u

B ⊗ ∆[m] ⊗ ∂∆[n]+

��

��

A ⊗ ∆[m] ⊗ ∆[n]+ //

..

dom(( f ⊗ ∆[m]) � in)

( f⊗∆[m])�in

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚

B ⊗ ∆[m] ⊗ ∆[n]+

If we can prove that (g ⊗ K)�n/Σn is a C-local trivial cofibration for any C-local trivial cofibration g between cofibrant objects

then we can apply the same reasoning from the proof of Proposition 4.12 to deduce that the corner map becomes a C-local

trivial cofibration after applying (−)�n/Σn. This reasoning goes by proving that after applying (−)�n/Σn the lower curved map

and the top horizontal map are C-local trivial cofibrations, so the bottom horizontal map is as well (because it is a pushout),

and hence the corner map is a weak equivalence by the two out of three property. This reasoning works because whenever f

is a pushout of g then f �n/Σn is a pushout of g�n/Σn as shown in Appendix A of [Whi14a].

Because g ⊗ K is a C-local trivial cofibration between cofibrant objects, we may apply Lemma 6.4 to reduce the final step

to checking that if Symn(g) is a C-local trivial cofibration for all n then so is Symn(g ⊗ K). This is proven as Lemma 27 in

[GG13]. �

When the hypotheses of stability and properness are dropped one can no longer easily write down the set JC. However,

Theorem 4.1.1 (and its proof, notably 4.3.1) in [Hir03] demonstrate that the class of maps X → LC(X) are contained in Λ̃(C)-

cell. Given a C-local trivial cofibration g : X1 → X2 between cofibrant objects, applying fibrant replacement LC results in

a map LC(g), that is a weak equivalence between cofibrant objects. An appeal to Ken Brown’s lemma on the functor Symn

and to the two out of three property reduces the verification that (−)�n/Σn takes g to a C-local equivalence to verifying that

(−)�n/Σn takes Xi → LC(Xi) to C-local equivalences.

Since such maps are in Λ̃(C)-cell, by Appendix A of [Whi14a] one must only show that maps in Λ̃(C) are taken to C-local

equivalences by (−)�n/Σn (that they are taken to cofibrations is immediate by the strong commutative monoid axiom onM).

This observation leads to the following result, which we have recently learned was independently discovered as Theorem 28

in version 3 of the preprint [GG13].

Theorem 6.8. SupposeM is a cofibrantly generated, simplicial model category satisfying the strong commutative monoid

axiom and with domains of the generating cofibrations cofibrant. Suppose that for all n ∈ N and f ∈ C, Symn( f ) is a C-local

equivalence. Then LC(M) satisfies the strong commutative monoid axiom.

As the proof of this Theorem appears in [GG13], we will content ourselves with the sketch of the proof given above and we

refer the interested reader to [GG13] for details. With a careful analysis of Λ̃(C) the author believes one could remove the

need forM to be simplicial. However, lacking equations of the sort found in Remark 5.2.10 of [Hov99], he does not know

how to proceed.

Remark 6.9. The commutative monoid axiom has a natural generalization to an arbitrary operad P. The proof of Proposition

7.6 in [Har10] demonstrates a precise hypothesis onM so that P-algebras inherit a model structure, namely that for all A ∈ P-

alg and for all n, PA[n]⊗Σn
(−)�n preserves trivial cofibrations (where PA is the enveloping operad). If these hypotheses are only

satisfied for cofibrant A then P-alg inherits a semi-model structure. We hope in the future to study the types of localizations

that preserve these axioms, so that Corollary 3.4 may be applied to deduce preservation results for arbitrary operads P. We

conjecture that the correct condition on a localization is that for all f ∈ C, for all A ∈ P-alg, and for all n, then PA[n] ⊗Σn
f �n

is contained in the C-local equivalences. Assuming a P-algebra analogue of Lemma 6.4, the proof of Corollary 6.7 will go

through, if we assume PA[n] ⊗Σn
f �n is contained in the C-local equivalences, for all f of the form g ⊗ K where g ∈ C and K

is a simplicial set.

Remark 6.10. Theorem 6.5 also has a converse, that the author discovered in joint work with Michael Batanin [BW16]

(Theorem 5.6 and Example 5.9). For nicely behaved model categories, including all examples considered in this paper, the

following are equivalent:

(1) LC preserves P-algebras,

(2) P-alg(LC(M)) admits a transferred semi-model structure from LC(M),

(3) LC lifts to a localization of P-algebras (inverting the maps P(C)),
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(4) U preserves local equivalences,

and any of these statements implies P(−) preserves C-local equivalences between cofibrant objects. A dual result, for the

situation of right Bousfield localization, appears in [WY16b]. It follows that, for any of the situations from Theorem 6.5, 6.7,

or 6.8, LC preserves commutative monoids if and only if Sym(−) preserves C-local equivalences between cofibrant objects.

Note that the condition that the objects be cofibrant is no obstacle, in any model category satisfying the strong commutative

monoid axiom, since C can be taken to be a set of cofibrations between cofibrant objects, and Symn(X) is cofibrant whenever

X is cofibrant, if the commutative monoid axiom is satisfied. This follows from the filtration on Symn(∅) → Symn(X) from

Lemma A.3 of [Whi14a]. Although the positive stable model structure only satisfies the (weak) commutative monoid axiom,

one can use the positive flat stable model structure to prove all statements needed for the positive stable model structure, as

demonstrated in [Whi14a].

7. Preservation of CommutativeMonoids

We turn now to the question of preservation under Bousfield localization of commutative monoids. We will be applying

Theorem 6.5 and Corollary 3.4 for this purpose in a moment, but we first remark on a simpler case where the hypotheses of

Theorem 6.5 are not necessary.

7.1. Spectra. Preservation of commutative monoids by monoidal Bousfield localizations is easy in certain categories of

spectra, because of the property that for all cofibrant X inM, the map (EΣn)+ ∧Σn
X∧n → X∧n/Σn is a weak equivalence. This

property was first noticed in [EKMM97], and we will now discuss it more generally.

Recall that two operads O and P are said to satisfy rectification if P-alg and O-alg are Quillen equivalent model categories. In

[Whi14a], we introduced the rectification axiom, which states that if QΣn
S → S is cofibrant replacement for S inMΣn then for

all cofibrant X inM, the map QΣn
S ⊗Σn

X⊗n → X⊗n/Σn is a weak equivalence (this is the natural generalization of the property

from [EKMM97] mentioned above, and was further generalized in [WY16a]). Observe that this property automatically holds

on LC(M) if it holds onM, because the cofibrant objects are the same and the weak equivalences are contained in the C-local

equivalences. We now prove that in the presence of the rectification axiom, preservation results for commutative monoids are

particularly nice.

Theorem 7.1. Let QCom denote a Σ-cofibrant replacement of Com inM. LetM be a monoidal model category satisfying

the conditions of Theorem 4.6 of [Whi14a], so that the rectification axiom implies that QCom and Com rectify. Let LC be a

monoidal Bousfield localization. Then LC preserves commutative monoids. In particular:

• For positive (flat) symmetric spectra, positive (flat) orthogonal spectra, or S-modules, QCom is E∞ and any monoidal

Bousfield localization preserves strict commutative ring spectra.

• For positive (flat) G-equivariant orthogonal spectra, QCom is EG
∞ and any monoidal Bousfield localization preserves

strict commutative equivariant ring spectra.

Proof. Let E be a commutative monoid, so in particular E is a QCom algebra via the map QCom → Com. Because QCom is

Σ-cofibrant, QCom-algebras in bothM and LC(M) inherit semi-model structures, so Corollary 3.4 implies LC(E) is weakly

equivalent to some QCom-algebra EQ. The rectification axiom in LC(M) now implies EQ is weakly equivalent to a commuta-

tive monoid Ê. �

Currently, this result is only known to apply to the categories of spectra listed in the statement of the theorem. We conjectured

in [Whi14a] that the rectification axiom implies rectification between QCom and Com for generalM. If this conjecture is

proven then the theorem will apply to allM satisfying the rectification axiom. Even if the conjecture is false, the following

proposition demonstrates that whenM satisfies the rectification axiom then the conditions of Theorem 6.5 are satisfied and so

any monoidal localization preserves commutative monoids.

Proposition 7.2. Suppose N is a monoidal model category satisfying the rectification axiom. Then Symn(−) takes trivial

cofibrations between cofibrant objects to weak equivalences.

In particular, if LC(M) is a monoidal Bousfield localization andM satisfies the rectification axiom, then LC preserves com-

mutative monoids.

Proof. The first part is proven as Proposition 4.6 in [Whi14a], and we refer the reader there for a proof. For the second part,

we apply the first part with N = LC(M), using our observation that the rectification axiom holds on LC(M) whenever it holds

onM. Thus, Symn : LC(M)→ LC(M) takes C-local trivial cofibrations between cofibrant objects to C-local equivalences. In
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particular, the hypotheses of Theorem 6.5 are satisfied and we may deduce from Corollary 3.4 that LC preserves commutative

monoids. �

7.2. Spaces. We turn our attention now to simplicial sets and topological spaces. Rectification is known to fail (see Example

4.4 in [Whi14a]), so even though all localizations are monoidal we may not apply the result above. For spaces the path

connected commutative monoids are weakly equivalent to generalized Eilenberg-Mac Lane spaces, i.e. products of Eilenberg-

Mac Lane spaces. Preservation of commutative monoids has been proven for pointed CW complexes as Theorem 1.4 in

[CRT16].

Theorem 7.3. LetM be the category of pointed CW complexes. Let C be any set of maps. Then Sym(−) preserves C-local

equivalences and LC sends GEMs to GEMs.

As a special case of this theorem, we recover classical results of Bousfield, e.g. parts of Theorem 5.1 and Lemma 9.8 from

[Bou97]. The proof of Theorem 7.3 is based on work of Dror Farjoun, Chapter 4 of [Far96], in the setting ofM = sS et. That

work is generalized in [Whi14a] to hold for the category of k-spaces. So we may extend the theorem above to k-spaces as

well. Observe that the theorem above implies both sS et and k-spaces satisfy the conditions of Theorem 6.5 because Symn is

a retract of Sym.

Theorem 7.4. LetM be either simplicial sets or k-spaces. Then every Bousfield localization preserves GEMs.

Thus, we have extended the result above and Theorem 4.B.4 in [Far96] to a wider class of topological spaces than spaces

having the homotopy type of a CW complex.

7.3. Chain Complexes. When k is a field of characteristic zero, there are model structures on Ch(k)≥0 (resp. Ch(k)) where

the weak equivalences are quasi-isomorphisms, the fibrations are degreewise surjections, and the cofibrations are the degree-

wise split monomorphisms. All operads are Σ-cofibrant, hence all operad-algebras are preserved by any monoidal Bousfield

localization. That cofibrant objects are flat is an easy exercise, using the observation that, for every cofibrant A, the map

A ⊗ QX → A ⊗ X induced by cofibrant replacement (i.e. projective resolution) is a quasi-isomorphism.

Proposition 7.5. Let k be a field of characteristic zero. The only Bousfield localizations of Ch(k)≥0 are truncations.

Proof. Over any PID, the homotopy type is determined by H∗, so this means adding weak equivalences is equivalent to killing

some object. Thus, all localizations are nullifications. All objects are wedges of spheres, and killing k2 in degree n is the same

as killing k in degree n. Thus, the localization is completely determined by the lowest dimension in which the first nullification

occurs. The localization is therefore equivalent to 0→ V where V is the sphere on k in that dimension. �

Corollary 7.6. All Bousfield localizations of Ch(k)≥0 are monoidal and hence preserve algebras over any operad P.

Remark 7.7. For unbounded chain complexes, truncations need not preserve algebraic structure. For example, if f : S −2 →

D−3 gets inverted then just as with the Postnikov Section, an algebra will be taken to an object with no unit.

Quillen proved in Proposition 2.1 of Appendix B of [Qui69] that bounded chain complexes over a field of characteristic zero

satisfies the commutative monoid axiom. The proof that all quasi-isomorphisms are closed under Symn goes via cofiber and

the 5-lemma on homology groups. The key observation is that Symn(−) preserves group isomorphisms. The same proof

demonstrates that Symn preserves C-local equivalences for all LC as above. Hence, all Bousfield localizations of Ch(k)≥0

preserve commutative differential graded algebras. Of course, this can also be seen directly from the description of LC as a

truncation.

7.4. Equivariant Spectra. We conclude this section by returning to our motivating example, Example 5.13. Throughout

this section, G is a finite group, since otherwise we do not know how to transfer a semi-model structure to commutative

equivariant ring spectra. Note that when it was discovered, Example 5.13 represented a potential gap in the proof of the

Kervaire Invariant One Theorem (because the spectrum Ω = D−1 MU (4) needed to be commutative for the computations in

[HHR16]). Thankfully, the following theorem from [HH13] demonstrates that Ω was indeed commutative.

Theorem 7.8. Let G be a finite group. Let L be a localization of equivariant spectra. If for all L-acyclics Z and for all

subgroups H, NG
H

Z is L-acyclic, then for all commutative G-ring spectra R, L(R) is a commutative G-ring spectrum.
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The hypothesis in this theorem is designed so that the proof in [EKMM97] regarding preservation of E∞-structure under

localization (i.e. via the skeletal filtration) may go through. We now specialize our preservation result to the context of G-

spectra, by combining Theorem 3.2, Theorem 6.8, and Remark 6.10. Recall from Proposition 5.4 that monoidal localizations

are stable. In order to have a transferred semi-model structure on commutative monoids, we need to work with either the

positive stable model structure on G-spectra (of Theorem 14.2 of [MMSS01]), the positive flat stable model structure (of

Theorem 2.3.27 of [Sto11]), or the positive complete stable model structure (of Proposition B.4.1 of [HHR16]). The proof

that these model structures are left proper and cellular can be found in the appendix of [GW13].

Theorem 7.9. LetM denote any of the positive model structure on G-spectra discussed above. Suppose LC is a monoidal left

Bousfield localization. Then the following are equivalent:

(1) LC preserves commutative equivariant ring spectra,

(2) Symn(−) preserves local equivalences between cofibrant objects, for all n,

(3) Symn(−) takes maps in C to local equivalences, and

(4) Symn(−) preserves L-acyclicity for all n.

That preservation of L-acyclics is the same as preservation of L-local equivalences as can be seen via the rectification axiom

and the property that cofibrant objects are flat, but it is easier to observe that this equivalence holds for any stable localization

in any stable model category (because consideration of cofibers allows one to reduce to the study of nullifications). In [HH13],

several equivalent conditions are given in order for a localization to preserve commutative structure. Condition (4) above is

equivalent to the condition that, for all L-acyclics Z and for all subgroups H, NG
H

Z is L-acyclic. Hence, Theorem 7.9 sharpens

Theorem 7.8 to make it an ‘if and only if’ result.

Another equivalent formulation states that preservation occurs whenever the functors (EGΣn)+ ∧Σn
(−)∧n preserve L-acyclicity.

This condition can be verified via the skeletal filtration of EGΣn into a homotopy colimit of Σn-free G × Σn sets T of the

form (G × Σn)/Γ where Γ is the graph of a subgroup. This formulation of what is required for L to preserve commutativity

is at the heart of the arguments in [HHR16] and [BH15] and allows for the preservation machinery to be extended to N∞-

operads in [GW13]. The condition is analogous to the non-equivariant condition that functors (EΣn)+ ∧Σn
(−)∧n preserve

L-acyclicity.

The Appendix to [BH15] proves that, for any complete N∞-operad P whose spaces have the homotopy type of G × Σn-CW

complexes, then P-algebras are Quillen equivalent to commutative monoids. Hence, Theorem 7.1 implies the same conditions

from Theorem 7.9 are equivalent to preservation of P-algebras for any (hence all) complete N∞-operad P whose spaces have

the homotopy type of G×Σn-CW complexes. Preservation results for non-complete N∞-operads and for F −N∞-operads can

be found in Section 7 of [GW13].

8. Bousfield localization and the monoid axiom

Recall that the monoid axiom is required to transfer a full model structure to the category of monoids in a monoidal model

category [SS00]. However, Theorem 5.1 demonstrates that there is a transferred semi-model structure even if the monoid

axiom is not satisfied. It follows from Corollary 3.4, that our preservation results do not require LC(M) to satisfy the monoid

axiom. However, the monoid axiom is an important part of the study of monoidal model categories, with many applications

beyond the ability to transfer a model structure to monoids, and in this section we provide a result that guarantees it holds on

LC(M).

We remark that Proposition 3.8 of [Bar09] proves that LC(M) inherits the monoid axiom fromM if LC takes a special form

similar to localization at a homology theory. In contrast, our result will place no hypothesis on the maps in C at all, beyond

our standing hypothesis that these maps are cofibrations. We additionally remark that the preprint [PS15] has independently

considered the question of when Bousfield localization preserves the monoid axiom, towards the goal of rectification results

in general categories of spectra.

In order to understand when Bousfield localization will preserve the monoid axiom we must introduce a definition, taken from

[BB17]. Note that this is a different usage of the term h-cofibration than the usage in [EKMM97] where it means ‘Hurewicz

cofibration.’ The meaning here is for ‘homotopical cofibration’ for reasons which will become clear.

Definition 8.1. A map f : X → Y is called an h-cofibration if the functor f! : X/M→ Y/M given by cobase change along f

preserves weak equivalences. Formally, this means that in any diagram as below, in which both squares are pushout squares
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and w is weak equivalence, then w′ is also a weak equivalence:

X //

f

��

A
w //

��

B

��
Y // A′

w′
// B′

It is clear that any trivial cofibration is an h-cofibration, by the two out of three property. If M is left proper then any

cofibration is an h-cofibration (because A → A′ is automatically a cofibration if f is). In fact, the converse holds as well, and

is proven in Lemma 1.2 of [BB17]. Lemma 1.3 proves that h-cofibrations are closed under composition, pushout, and finite

coproduct.

Now letM be left proper. An equivalent characterization of an h-cofibration is as a map f such that every pushout along f

is a homotopy pushout (this the version of the definition above was independently discovered in [Whi14b]). Proposition 1.5

in [BB17] proves that f is an h-cofibration if and only if there is a factorization of f into a cofibration followed by a cofiber

equivalence w : W → Y, i.e. for any map g : W → K the right-hand vertical map in the following pushout diagram is a weak

equivalence:

W //

w

�� u

K

��
X // T

We will make use of these various properties of h-cofibrations in this section. The purpose for introducing h-cofibrations is

to make the following definition, which should be thought of as saying that the cofibrations inM behave like inclusions of

closed neighborhood deformation retracts of topological spaces.

Definition 8.2. M is said to be h-monoidal if for each (trivial) cofibration f and each object Z, f ⊗Z is a (trivial) h-cofibration.

We will find conditions so that Bousfield localization preserves h-monoidality, and we will then use this to deduce when Bous-

field localization preserves the monoid axiom. In [BB17], h-monoidality is verified for the model categories of topological

spaces, simplicial sets, chain complexes over a field (with the projective model structure), symmetric spectra (with the stable

projective model structure), and several other model categories not considered in this paper. We now verify h-monoidality

for the remaining model structures of interest in this paper. We remind the reader that an injective model structure has weak

equivalences and cofibrations defined levelwise, and fibrations defined by the right lifting property.

Proposition 8.3. The following eight model structures on symmetric spectra are h-monoidal (4 stable and 4 unstable model

structures):

(1) The levelwise projective (stable) model structure (of Theorem 5.1.2 in [HSS00], see also Proposition 1.14 of [BB17]).

(2) The positive (stable) model structure (of Theorem 14.1 and 14.2 in [MMSS01]).

(3) The flat (stable) model structure (of Proposition 2.2 and Theorem 2.4 in [Shi04], there called the S -model structure).

(4) The positive flat (stable) model structure (obtained by redefining the cofibrations from the model structure above to

be isomorphisms in level 0, see Proposition 3.1 in [Shi04]).

Proof. We appeal to Proposition 1.9 in [BB17], and make use of the injective (or injective stable for (5)-(8)) model structure

on symmetric spectra, introduced in Definition 5.1.1 (resp. after Definition 5.3.6) of [HSS00]. The references above prove

that all eight of the model structures above are monoidal and that both injective model structures are left proper (e.g. because

all objects are cofibrant). The final condition in Proposition 1.9 is that for any (trivial) cofibration f and any object X, the

map f ⊗ X is a (trivial) cofibration in the corresponding injective model structure. The cofibration part of this is Proposition

4.15(i) in version 3 of Stefan Schwede’s book project [Sch12], since for all eight of the model structures above the cofibrations

are contained in the flat cofibrations and for any X the map ∅ → X is an injective (a.k.a. levelwise) cofibration. The trivial

cofibration part is Proposition 4.15(iv) in [Sch12], which includes statements for both levelwise and stable weak equivalences.

�

We turn now to orthogonal and equivariant orthogonal spectra. We first need a lemma regarding the existence of injective

model structures. Recall that ∆-generated spaces are a locally presentable category of topological spaces that admits a com-

binatorial model structure [Dug03, FR08]. Let S pO
∆

denote orthogonal spectra built on ∆-generated spaces, i.e. where each
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space in the spectrum is a ∆-generated space. Let G be a compact Lie group and let GS pO
∆

denote G-equivariant orthogonal

spectra built on ∆-generated spaces.

Lemma 8.4. The following model structures exist and are left proper and combinatorial: the levelwise injective model

structure on S pO
∆

, the stable injective model structure on S pO
∆

, the levelwise injective model structure on GS pO
∆

, and the

stable injective model structure on GS pO
∆

.

Proof. Left properness will be inherited from ∆-generated spaces, where it is verified just as for topological spaces [Dug03].

For the existence of these model structures, we proceed as in Theorem 5.1.2 and Lemma 5.1.4 of [HSS00]. Verification of

lifting and factorization make use of a set C (resp. tC) containing a map from each isomorphism class of (trivial) cofibrations

i : X → Y where Y is a countable spectrum. The use of Zorn’s Lemma in Lemma 5.1.4 and the requisite countability from

Lemmas 5.1.6 and 5.1.7 hold in this setting because of our decision to work with ∆-generated spaces. The rest of Lemma

5.1.4 goes through mutatis mutandis, using properties of topological fibrations and using Lemma 12.2 in [MMSS01] when

checking that injective cofibrations are closed under smashing with an arbitrary object.

The sets C and tC serve as generating (trivial) cofibrations. Together with the fact that a category of spectra built on a locally

presentable category is again locally presentable, this proves the model structures are combinatorial. The stable injective

structures are obtained by Bousfield localization in the usual way, which exists because the levelwise structures are left proper

and combinatorial. �

Proposition 8.5. Let G be a compact Lie group and fix a universe U, that we take to mean a G-universe when working

equivariantly. Assume all spectra are built on ∆-generated spaces. The following eight model structures (4 stable and 4

unstable) are h-monoidal:

(1) The levelwise projective (stable) model structure on G-equivariant orthogonal spectra (of Theorem III.2.4 and III.4.2

in [MM02]).

(2) The positive (stable) model structure on G-equivariant orthogonal spectra (of Theorem III.2.10 and III.5.3 in [MM02]).

(3) The flat (stable) model structure on G-equivariant orthogonal spectra (of Theorem 2.3.13 of in [Sto11]).

(4) The positive flat (stable) model structure on G-equivariant orthogonal spectra (obtained by redefining the cofibrations

from the model structure above to be isomorphisms in level 0, of Theorem 2.3.27 in [Sto11]).

Taking G to be the trivial group yields eight model structures on orthogonal spectra, that this proposition proves are h-

monoidal. They are the levelwise projective (stable) model structure (of Theorem 6.5 and Theorem 9.2 in [MMSS01]), the

positive (stable) model structure on orthogonal spectra (of Theorem 14.1 and 14.2 in [MMSS01]), the flat (stable) model

structure on orthogonal spectra (of Proposition 1.3.5 and 2.3.27 in [Sto11]), and the positive flat (stable) model structure on

orthogonal spectra (of Proposition 1.3.10 and Theorem 2.3.27 in [Sto11]).

Proof of Proposition 8.5. The proof proceeds just as it does for Proposition 8.3, i.e. by comparison to the injective (stable)

model structures in each of these settings. For the statement that for any cofibration f and any object X, the map f ⊗ X is a

cofibration in the corresponding injective model structure, we appeal to Lemma 12.2 of [MMSS01] (which works equally well

in the equivariant context). Finally, we turn to the statement that for any trivial cofibration f and any object X, the map f ⊗ X

is a weak equivalence in the corresponding injective model structure. For the levelwise model structures above this property is

inherited from spaces, e.g. by Lemma 12.2 in [MMSS01]. For the stable model structures we appeal to the monoid axiom on

all of the model structures in the theorem and to the fact that projective (stable) equivalences are the same as injective (stable)

equivalences. The monoid axiom has been verified in [Sto11] for all these model structures by Theorems 1.2.54 and 1.2.57

(both originally proven in [MMSS01]), 1.3.10, 2.2.46 and 2.2.50 (both originally from [MM02]), and 2.3.27. �

We return now to the question of the monoid axiom. It is proven in Proposition 2.5 of [BB17] that if M is left proper, h-

monoidal, and the weak equivalences in (M⊗ I)-cell are closed under transfinite composition, thenM satisfies the monoid

axiom. We will use this to find conditions onM so that LC(M) satisfies the monoid axiom. First, we improve Proposition 2.5

from [BB17] by replacing the third condition with the hypothesis that the (co)domains of I are finite relative to the class of

h-cofibrations (in the sense of Section 7.4 of [Hov99]).

Proposition 8.6. SupposeM is cofibrantly generated, left proper, h-monoidal, and the (co)domains of I are finite relative to

the class of h-cofibrations. ThenM satisfies the monoid axiom.
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Proof. We follow the proof of Proposition 2.5 in [BB17]. Consider the class { f ⊗ Z | Z ∈ M, f ∈ J}. AsM is h-monoidal,

this is a class of trivial h-cofibrations. By Lemma 1.3 in [BB17], h-cofibrations are closed under pushout. By Lemma 1.6 in

[BB17], becauseM is left proper, trivial h-cofibrations are closed under pushouts (e.g. because weak equivalences are closed

under homotopy pushout). In order to prove { f ⊗ Z | Z ∈ M, f ∈ J}-cell is contained in the weak equivalences ofM we must

only prove that transfinite compositions of trivial h-cofibrations are weak equivalences.

Consider a λ-sequence A0 → A1 → · · · → Aλ of trivial h-cofibrations. Let jβ denote the map Aβ → Aβ+1 in this λ-sequence.

As in Proposition 17.9.4 of [Hir03] we may construct a diagram

A′
0

//

q0

��

A′
1

//

q1

��

. . .

��

// A′
β

qβ

��

// . . .

A0
// A1

// . . . // Aβ // . . .

in which each A′
β

is cofibrant, all the maps A′
β
→ Aβ are trivial fibrations, and all the maps A′

β
→ A′

β+1
are trivial cofibrations.

Construction of this diagram proceeds by applying the cofibration-trivial fibration factorization iteratively to every composition

jβ ◦ qβ : A′
β
→ Aβ → Aβ+1 in order to construct A′

β+1
. As jβ and qβ are both weak equivalences, so is their composite and so

the cofibration A′
β
→ A′

β+1
produced by the cofibration-trivial fibration factorization is a weak equivalence by the two out of

three property.

We now show that the map qλ : A′λ → Aλ is a weak equivalence, following the approach of Lemma 7.4.1 in [Hov99]. Consider

the lifting problem

X //
� _

f

��

A′λ

qλ
����

Y // Aλ

Where f is in the set I of generating cofibrations. Because the domains and codomains of maps in I are finitely presented we

know that the map X → A′
λ

factors through some finite stage A′n. Similarly, Y → Aλ factors through some finite stage Am. Let

k = max(n,m). The map A′
k
→ Ak is a trivial fibration so there is a lift g : Y → A′

k
. Define h : Y → A′λ as the composite with

A′
k
→ A′

λ
.

X //
� _

f

��

A′
k

//

��

A′λ

qλ

��
Y //

g
??�������

h

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
Ak

// Aλ

Both triangles in the left-hand square commute by definition of lift. The triangle featuring g and h commutes because it is a

composition. So the triangle featuring f and h commutes. The right-hand square commutes by construction of A′λ and Aλ, so

the trapezoid containing g and qλ commutes. Thus, the triangle featuring h and qλ commutes.

The existence of this lift h for all f ∈ I proves that A′λ → Aλ is a trivial fibration. Now consider that transfinite compositions

of trivial cofibrations are always trivial cofibrations, so A′
0
→ A′

λ
is a weak equivalence. Furthermore, the vertical maps

q0 : A′0 → A0 and qλ : A′λ → Aλ are trivial fibrations. So by the two out of three property, the map A0 → Aλ is a weak

equivalence as required. �

It is shown in [BB17] that the compactness hypothesis of the proposition is satisfied for topological spaces, simplicial sets,

equivariant and motivic spaces, and chain complexes. Similarly, it holds for all our categories of structured spectra because

the sphere spectrum is ℵ0-compact as a spectrum. Lastly, it holds for all the stable analogues of these structures because the

compactness hypothesis is automatically preserved by any Bousfield localization (the set of generating cofibrations of LC(M)

is simply I again).

Remark 8.7. The proof above only uses the fact that the maps jβ were h-cofibrations in order to factor Y → Aλ through some

finite stage. So if the (co)domains of I are finite relative to the class of weak equivalences then the proof above demonstrates

that weak equivalences are preserved under transfinite composition. This property was already known classically for sS et and

Ch(k), but fails for LBP(S ), the localization of symmetric spectra with respect to the spectrum BP, as discussed in Chapter 7

of [Hov99].
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Proposition 8.8. SupposeM a cofibrantly generated, left proper, h-monoidal, and that the (co)domains of I are cofibrant and

are finite relative to the class of h-cofibrations. Suppose cofibrant objects are flat. Let LC be a monoidal Bousfield localization.

Then LC(M) is h-monoidal.

Proof. Suppose f : A → B is a cofibration in LC(M) and Z is any object of LC(M). We must show f ⊗ Z is an h-cofibration

in LC(M). Because LC(M) is left proper, Proposition 1.5 in [BB17] reduces us to proving that there is a factorization of f ⊗ Z

into a cofibration followed by a cofiber equivalence w : X → B ⊗ Z, i.e. for any map g : X → K the right-hand vertical map

in the following pushout diagram is a C-local equivalence:

X //

w

�� u

K

��
B ⊗ Z // T

Because f is a cofibration in M, the h-monoidality of M guarantees us that f ⊗ Z is an h-cofibration in M. Apply the

cofibration-trivial fibration factorization in M. Note that this is also a cofibration-trivial fibration factorization of f ⊗ Z in

LC(M) because cofibrations and trivial fibrations in the two model categories agree. The resulting w : X → B ⊗ Z is a

trivial fibration in either model structure. BecauseM is left proper we know that the map w is a cofiber equivalence in M

by Proposition 1.5 in [BB17] applied to the h-cofibration f ⊗ Z. So in any pushout diagram as above the map K → T is a

weak equivalence in M, hence in LC(M). Thus, w is a cofiber equivalence in LC(M) and its existence proves f ⊗ Z is an

h-cofibration in LC(M).

Now suppose f were a trivial cofibration in LC(M) to start. We must show that f ⊗ Z is a C-local equivalence. We do this first

in the case where f is a generating trivial cofibration. By hypothesis, A and B are cofibrant. Apply cofibrant replacement to Z:

A ⊗ QZ //

��

B ⊗ QZ

��
A ⊗ Z // B ⊗ Z

The fact that cofibrant objects are flat in LC(M) implies the vertical maps are C-local equivalences (because A and B are

cofibrant) and that the top horizontal map is a C-local equivalence (because QZ is cofibrant). By the two out of three property

the bottom horizontal map is a C-local equivalence.

By Lemma 1.3 in [BB17], the class of h-cofibrations is closed under cobase change and retracts. By Lemma 1.6, the class

of trivial h-cofibrations is closed under cobase change (because LC(M) is left proper). Weak equivalences are always closed

under retract. Finally, by Proposition 8.6 the class of trivial h-cofibrations is closed under transfinite composition by our

compactness hypothesis onM (equivalently, on LC(M)). So for a general f in the trivial cofibrations of LC(M), realize f as

a retract of g ∈ JC-cell, so that g ⊗ Z is a transfinite composite of pushouts of maps of the form j ⊗ Z for j ∈ JC. We have just

proven that all j ⊗ Z are trivial h-cofibrations and closure properties imply g ⊗ Z and hence f ⊗ Z are trivial h-cofibrations as

well.

�

Theorem 8.9. SupposeM is a cofibrantly generated, left proper, h-monoidal model category such that the (co)domains of

I are cofibrant and are finite relative to the h-cofibrations and cofibrant objects are flat. Then for any monoidal Bousfield

localization LC, the model category LC(M) satisfies the monoid axiom.

Proof. Apply Proposition 8.6 to the category LC(M). By Proposition 8.8, LC(M) is h-monoidal. It is left proper because

M is left proper. To verify the monoid axiom, consider a λ-sequence of maps that are pushouts of maps in { f ⊗ Z | f is

a trivial cofibration in LC(M)}. Such maps are h-cofibrations inM becauseM is h-monoidal, f is a cofibration inM, and

h-cofibrations are closed under pushout. Thus, the hypothesis that the (co)domains of I are finite relative to the h-cofibrations

inM is sufficient to construct the lift in Proposition 8.6 and to prove the transfinite composition part of the proof of the monoid

axiom. �
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