Corrections to "Intro. to Homological Algebra" by C. Weibel

Cambridge University Press, paperback version, 1995

p.2 line -12: d_{n-1} should be d_n

p.4 lines 5,6: V - E - 1 should be E - V + 1 (twice)

p.4 lines 7,8: all 5 occurrences of v_0 should be replaced by v_1 .

p.6, line 7 of Def. 1.2.1: "non-abelian" should be "non-additive"

p.8 diagram: the upper right entry should be $C_{p+1,q+1}$, not $C_{p+1,p+1}$.

p.12 line 1: $B \to C$ should be $B \xrightarrow{p} C$

p.12 line 9: "so is $\operatorname{coker}(f) \to \operatorname{coker}(g)$ " should be "so is $\operatorname{coker}(g) \to \operatorname{coker}(h)$ "

p.13 line -1: $Z_{n-1}(b)$ should be $Z_{n-1}(B)$

p.15 line 11: B(-1) should be B[-1]

p.18 line 3: Replace the sentence "Give an example..." with: "Conversely, if C and $H_*(C)$ are chain homotopy equivalent, show that C is split."

p.18 line 18: Replace i = 1, 2 with i = 0, 1

p.19 line -7: 'split complexes' should be 'exact complexes'

p.21 Ex.1.5.3: Add extra paragraph: If $f: B \to C$, $g: C \to D$ and $e: B \to C$ are chain maps, show that e and gf are chain homotopic if and only if there is a chain map $\gamma = (e, s, g)$ from cyl(f) to D. Note that e and g factor through γ .

p.24 line -7: ∂ should be α

p.26 line -10: { let} $C^{\infty}(U)$ be ... that C^{∞} is a sheaf...

p.27 line 7: the contour integral should be $\frac{1}{2\pi i} \oint f'(z) dz / f(z)$, not $\frac{1}{2\pi i} \oint f(z) dz$.

p.29 line 17: should read "[Freyd, p. 106], every small full abelian subcategory of \mathcal{L} is equivalent to a full abelian subcategory of the category R-mod of modules over the ring"

p.32 line 1: 2.6.3 should be 2.6.4

p.33 line -2: after "no projective objects" add "except 0."

p.34 line -14 (Ex. 2.2.1): Add this sentence before the hint: "Their brutal truncations $\sigma_{\geq 0}P$ form the projective objects in $\mathbf{Ch}_{\geq 0}$."

p.35 line 8: replace "chain map" by "quasi-isomorphism"

p.37 line 1: delete 'commutative'

p.38 Ex.2.2.4: the d' after 'i.e.' should be just d

p.40 line -8: the map F should be f

p.43 Ex. 2.3.8: $\mathcal{A}^{(I^{op})}$ should be $(\mathcal{A}^{op})^{(I^{op})}$

p.44 line 11: 'gf' should be 'gf' (math font)

p.44 line -9: $L_i(A)$ should be $L_iF(A)$

p.45 line 11: 'UF' should 'UF'

p.47 line 7: In the upper right entry of the matrix, the last term should be $F'\lambda$, not $F'\lambda'$

p.47 line -6: the m^{th} syzygy

p.49 line 1: $L_n(f)$ should be $L_nF(f)$

p.49 line -11 (Ex. 2.4.4): Replace "the mapping cone cone(A) of exercise 1.5.1" by the following text: " $\sigma_{\geq 0}$ cone(A)[1], where cone(A) is the mapping cone of exercise 1.5.1. If A has enough projectives, you may also use the projective objects in $\mathbf{Ch}_{\geq 0}(A)$, which are described in Ex. 2.2.1."

p.50 line -10: $\operatorname{Hom}_R(, B)$ -acyclic should be $\operatorname{Hom}_R(A,)$ -acyclic.

p.55 line -9 to -6: Replace paragraph with:

We say that \mathcal{A} satisfies axiom (AB4) if it is cocomplete and direct sums of monics are monic, i.e., homology commutes with direct sums. This is true for **Ab** and **mod**-R. (Homology does not commute with arbitrary

colimits; the derived functors of colim intervene via a spectral sequence.) Here are two consequences of axiom (AB4).

p.55 line -5: delete "cocomplete" and insert "satisfying (AB4)" before "has enough projectives"

p.56 line 13: (1) and (2) should be switched

p.57 lines 2,-10: a is the image ('a' should be 'a' twice)

p.57 line 4: $a_{jk} \in A_j$ should be $a_j \in A_j$

p.58 lines 6–7: Replace the text "If...and" with: Suppose that $\mathcal{A} = R$ -mod and $\mathcal{B} = Ab$ (or \mathcal{A} is any abelian category with enough projectives, and \mathcal{A} and \mathcal{B} satisfy axiom (AB5)). If"

p.58 line 9: F(A) should be $F(A_i)$

pp.60–61: several 2-symbol subscripts are missing the comma (e.g., C_{pq} means $C_{p,q}$).

p.61 line -7: $b_{\dots 1}$ should be $b_{\dots 1}$)

p.62 lines 8: Replace the sentence "Finally...acyclic." with: "Show that $Tot^{\oplus}(D)$ is not acyclic either."

p.63 lines 15-16: "double complexes" should be "Hom cochain complexes", and the display should read

 $\operatorname{Tot}\Pi_{\operatorname{Hom}_{\operatorname{Ab}}}(\operatorname{Tot}^{\oplus}(P\otimes_{R}Q),I)\cong\operatorname{Tot}\Pi_{\operatorname{Hom}_{R}}(P,\operatorname{Tot}\Pi_{\operatorname{Hom}_{\operatorname{Ab}}}(Q,I)).$

p.66 line 9: pB = 0 should be pb = 0.

p.67 line 5: Tor_* should be Tor_1

p.70 end of line -11: j = should be i =

p.73 line 7: Tor_m should be Tor_n

p.74 Exercise 3.3.1: $\cdots \cong \mathbb{Z}_{p^{\infty}}$ should be $\cdots \cong (\mathbb{Q}/\mathbb{Z}[1/p]) \times \hat{\mathbb{Q}}_p/\mathbb{Q}.$

p.74 Exercise 3.3.5: In the display, replace A/pA with A^*/pA^* and delete the final '= 0'. On the next line (line -1), 'A is divisible' should be 'A* is divisible, i.e., A is torsionfree'.

p.77 Proof of 3.4.1: ... applying $Ext^*(-, B)$ yields the exact sequence

$$\operatorname{Hom}(X, B) \to \operatorname{Hom}(B, B) \xrightarrow{o} \operatorname{Ext}^1(A, B)$$

so the identity map id_B lifts to a map $\sigma: X \to B$ when $\operatorname{Ext}^1(A, B) = 0$. As σ is a section of $B \to X, \dots$ p.77 lines 7–8: ... the class $\Theta(\xi) = \partial(\operatorname{id}_B) \dots \operatorname{id}_B$ lifts to $\operatorname{Hom}(X, B)$ iff ...

p.77 line 11: $\Theta: \xi \mapsto \partial(\mathrm{id}_B)$

p.79 line -6: " X_n and X''_n under B, and let Y_n be the...copy of B." should be " X_n and X'_n under B."

p.79 line -4 (display): Y_n should be X''_n

p.82 line 6: ... axiom (AB5*) (filtered limits are exact), the above proof can be modified to show ...

p.82 line 9: add sentence: Neeman has given examples of abelian categories with (AB4*) in which Lemma 3.5.3 and Corollary 3.5.4 both fail; see *Invent. Math.* 148 (2002), 397–420.

p.82 line -8: 'complete' should be 'complete and Hausdorff'

p.84 line -8: 1960 is correct; the paper was published in 1962.

p.85 line -4: Then $\operatorname{Tot}(C) = \operatorname{Tot}^{\Pi}(C)$ is ...

p.86 line 2: "nonzero columns." (not rows)

p.86 line 7: $d^{v}(a)$ should be $-d^{v}(a)$.

p.89 line 7: replace 'cohomology:' with 'homology (there is a similar formula for cohomology):'

p.89 line 8: $\} \otimes \{$ should be $\} \oplus \{$.

p.90 line 8: $\prod_{p+q=n-1}$ should be $\prod_{p+q=n-1}$

p.93 line -3: 'all $R\operatorname{\!-modules} B$ ' should be 'all $R\operatorname{\!-modules} A'$

p.95 line 17: 'the' (before $pd_R(P)$) should be 'then'

- p.96 line -11: replace 'integer m ' with ' $m \neq 0$ '
- p.97 line 14: Add sentence:

"If in addition R is finite-dimensional over a field then R is quasi-Frobenius $\Leftrightarrow R$ is Frobenius."

p.101 line -5: $n < \infty$ should be $d < \infty$

p.102 lines 3,4: $\leq 1 + n$ should be $\leq 1 + d$ twice

p.107 line -8: after $G(R) \leq id(R)$ insert ', and $id(R) = \dim(R)$ by 4.2.7'

p.113 line 13: the final $H_q(C)$ should be $H_{q-1}(C)$

p.122 line 9: -(r+1)/r should be -(r-1)/r

p.124 line 7: E_{0n}^{∞} is a quotient of E_{0n}^{a} and each E_{n0}^{∞} is a subobject of E_{n0}^{a} .

p.124 line -7: $0 \to E_{0n}^2 \to H_n \to E_{1,n-1}^2 \to 0.$

p.127 line 14 (**): $(-1)^{p_1}$ should be $(-1)^{p_1+q_1}$

p.127 line 16: replace "and (**) for every $r \ge a$. We shall" by "for every $r \ge a$. If the induced product on E^r satisfies (**) for all $r \ge a$, we shall"

p.131 lines 3–4: SO(1) should be SO(2) twice

p.131 line 7: Replace " $H_2(SO(3)) \cong \mathbb{Z}$, ...isomorphism." with " d^2 is an injection, and $H_2(SO(3)) = 0$."

p.132 line -3: $F_s H_n(C)$ should be $F_s C_n$

p.134 line 8: The filtration on the complex C' is bounded below, the one on $C'' \hdots$

p.135 line 5: although correct as stated, it would be more clear if it read $E_{pq}^r(F) \cong E_{2p+q,-p}^{r+1}(\tilde{F})$ and $E_{pq}^r(F) \cong E_{-q,p+2q}^{r-1}(\text{Dec}F)$ so that the substitution n = p + q is not needed. p.135 line 12: the superscripts r should be r + 1, viz.,

$$\cdots E_{p+r}^{r+1}(\operatorname{cone} f) \to E_p^{r+1}(B) \to E_p^{r+1}(C) \to E_p^{r+1}(\operatorname{cone} f) \to E_{p-r}^{r+1}(B) \cdots$$

p.135 line 18: Insert after d(c) = 0: "(This assumes that (AB5) holds in \mathcal{A} .)"

p.135 line -13: after 'exhaustive' add: "and that \mathcal{A} satisfies (AB5)."

p.135 line -4: replace text starting with E_{p0}^1 to read: E_{p0}^1 is $\bar{C}_p = C_p/(F_{p-1}C_p + d(F_pC_{p+1}); \bar{C}$ is the top quotient chain complex of C, and $d_{p0}^1 : E_{p0}^1 \to E_{p-1,0}^1$ is induced from $d: C_p \to C_{p-1}$.

p.136 lines 2–3: the sequence should read $0 \to F_{p-1}C \to C \to \overline{C} \to 0$

p.136 line -9,-8: let $F_{-p}C$ be $2^{p}C \ (p \ge 0)$.

p.136 line -7: "Each row" should be "Each column"

p.137 Cor. 5.5.6 should read: If the spectral sequence weakly converges, then the filtrations on $H_*(C)$ and $H_*(\widehat{C})$ have the same completions.

p.142 line 16: insert 'if it is regular' before ', and we have'

p.143 line 15: $H_q(A)$ should be $H_q(Q)$

p.145 line -10: insert 'with $\epsilon d^v=0$ before 'such that'

p.152 line 8: $\xrightarrow{\otimes_S R}$ should read $\xrightarrow{\otimes_R S}$.

p.154 line -2: $\mathcal{E} = \mathcal{E}^{a+1}$ and \mathcal{E}^r denotes the $(r-a-1)^{st}$ derived couple

p.154 line -1: $j^{(r)}$ has bidegree (1 - r, r - 1)

p.155 line 2: remove
$$\xrightarrow{i} D$$
 from diagram to read:
p.155 line 6: starting with E^{a+1}

$$E_{pq}^r \xrightarrow{k} D_{p-1,q}^r \xrightarrow{j^{(r)}} E_{p-r,q+r-1}^r.$$

p.155 line 6: starting with
$$E^{a+1}$$
.

p.158 line -7: $_\ell H_n + T_n$ should be $\ell H_n + T_n$

p.160 display on line -7: delete ' and a in A '

p.163 line -12: (3.2.29) should be (3.2.9)

p.168 line -7: NA = 0 should be Na = 0

p.168 line -1:
$$H_{1-n}(G; A)$$
 should be $H_{-1-n}(G; A)$

p.173 line -5: $(\sigma - 1)K$ should be $(\sigma - 1)L$

p.177 line 7: "given by $D_a = a^{-1}ga$ " should read "corresponding to $= a^{-1} - a$ "

p.177 line 13: If m is odd, every automorphism of D_m stabilizing C_m is inner.

p.179 line -13: all normalized n-cocyles and n-coboundaries

p.179 line -2: $\psi(1,g)=\psi(g,1)=0$ and

p.180 line +2: $\psi(1,g) = \psi(g,1) = 0$ and

p.185 fourth line of proof of Classification Theorem: $\beta(1)$ should be $\beta(1) = 1$

p.186 line -3: $b_h g$ should be $b_h h$.

p.184 lines 11–12: (1, g) should be (0, g), and (1, h) should be (0, h)

p.191 Cor. 6.7.9: ... of G on H induces an action of G/H on $H_*(H;\mathbb{Z})$ and $H^*(H;\mathbb{Z})$.

p.191 line -3: complex of (space missing)

p.193 line 19: delete ' $\beta \sigma = 0$ ' so it reads ' $(\sigma^2 = 0)$ '

p.193 lines -3, -8; and p.194 line 7: 'cocommutative' should be 'coassociative'

p.194 line 18 (6.7.16): delete 'normal' before 'subgroup'

p.194 line 21: Since $\{H_*(H; A)\}$ is a universal δ -functor of $A, tr \dots$

p.196 line -4: If H is in the center of G and A is a trivial G-module then G/H acts trivially ...

p.197 Example 6.8.5: The two occurrences of D_{2m} should read D_m (on the first and last lines).

p.201 line 11: f = f' should be $f_1 = f_2$

p.201 Exercise 6.9.2: If \dots and \dots are central extensions, and X is perfect, show \dots

p.203 lines 1–2: When \mathbb{F}_q is a finite field, and $(n,q) \neq (2,2), (2,3), (2,4), (2,9), (3,2), (3,4), (4,2)$, we know that $H_2(SL_n(\mathbb{F}_q);\mathbb{Z}) = 0$ [Suz, 2.9]. With these exceptions, it follows that

p.206 line 8: $H_q(S_n(X) \otimes_{\mathbb{Z}} A)$ should be $H_q(G; S_n(X) \otimes_{\mathbb{Z}} A)$

p.213 Exercise 6.11.11: ... Show that for $i \neq 0$:

$$H^{i}(G;\mathbb{Z}) = \begin{cases} \mathbb{Z}_{p^{\infty}} & i = 2\\ 0 & \text{else.} \end{cases}$$

p.213 line -13: $H^1(G;\mathbb{Z})$ is the group of continuous maps from G to Z' should be $H^1(G;A)$ is the group of continuous homomorphisms from G to A'

p.226: Line 3 of Exercise 7.3.5 should read: δ -functors (assuming that that k is a field, or that N is a projective k-module):

p.234 line 9: $m^{\mathfrak{h}}$ should be $M^{\mathfrak{h}}$

p.238 lines 4–7: Replace these two sentences (Show that...it suffices to show that $\dots = 0$.) by:

Conversely, suppose that $\mathfrak{g} = \mathfrak{f}/\mathfrak{r}$ for some free Lie algebra \mathfrak{f} with $\mathfrak{r} \subseteq [\mathfrak{f}, \mathfrak{f}]$, and \mathfrak{g} is free as a k-module. Show that if $H^2(\mathfrak{g}, M) = 0$ for all \mathfrak{g} -modules M then \mathfrak{g} is a free Lie algebra. *Hint:* It suffices to show that ...= 0.

p.255 line -8: $0 \le i_s \le \cdots \le i_1 \le m$ should be $0 \le i_s < \cdots < i_1 \le m$

p.256 line 8: identity (not identify)

p.257 line 15 (display): $\alpha_*(t)$ should be $\alpha_*(s)$

p.258 lines 1, 20 and -7: 'combinational' should be 'combinatorial'

p.261 lines -9,-8,-6: 'combinatorial' is misspelled three more times

p.262 line 14: [We] first use induction on $r < k \dots$

p.262 line 16: replace "If r = k we set $g_r = g$. If $r \neq k$ " by "For r < k"

p.262 line 18:
$$g_r = g(\sigma_r u)^{-1}$$

p.262 line 18: replace "The element $y = g_n$ " by "If k = n + 1, $y = g_n$. Then insert the text:

For $k \leq t \leq n+1$, we use downward induction on t, to construct $g_t \in G_{n+1}$ so that $\partial_i g_t = x_i$ if i < k or i > t; the element $y = g_k$ satisfies the Kan condition that $\partial_i y = x_i$ for $i \neq k$. Starting with $g_{n+1} = g_{k-1}$, we suppose g_{t+1} constructed and inductively set

$$z = \sigma_t \left[\partial_{t+1} (g_{t+1})^{-1} \cdot x_{t+1} \right]$$

Then $\partial_i z = 1$ if i < k or i > t + 1 and $\partial_{t+1} z = \partial_{t+1} g_{t+1}^{-1} \cdot x_{t+1}$. Setting $g_t = g_{t+1} \cdot z$, it follows that $\partial_i(g_t) = x_i$ if i < k or i > t. This completes the inductive step, and the proof.

p.262 line -13: 'egery n' should be 'every sufficiently large n'

p.262 line -6: $\partial_i(y)$ should be $\partial_i(y) = x_i$

p.264 lines 2–3: the two occurrences of S(X) should read S(|X|)

p.265 add to end of Exercise 8.3.3:

Extend exercise 8.2.5 to show that a homomorphism of simplicial groups $G \to G''$ is a Kan fibration if and only if the induced maps $N_n G \to N_n G''$ are onto for all n > 0. In this case there is also a long exact sequence, ending in $\pi_0(G'')$.

p.266 line 14: that $\sigma_i(x_i) \neq 0$, then $y = y - \sigma_i \partial_i y = \sum_{j>i} \sigma_j(x'_j)$. By induction, y = 0. Hence $D_n \cap N_n = 0$.

p.267 line 5: fix subscript on sum: $d\sigma_p(x) = \sum_{p+2}^n$

p.267 line 6:
$$d\sigma_p^2(x) + \sigma_p d\sigma_p(x) = \sum_{i=p+2}^{n+1} \dots + \sum_{i=p+2}^n$$

- p.267 line 7: $= (-1)^p \sigma_p(x).$
- p.267 line 8: Hence $\{s_n = (-1)^p \sigma^p\}$

p.268 line -3: ' $\{0, 1, ..., i - 1\}$ ' should be ' $\{0, 1, ..., i\}$ '

p.270 line -3: replace "[Dold]" with "[Dold, 1.8]"

p.273: the middle display should read

 $\operatorname{Hom}_{\mathbf{Ch}}(NA, C) \cong \operatorname{Hom}_{\mathcal{SA}}(A, K(C)).$

p.274 line -12: 'the zero map' should read 'projection onto a constant simplicial subobject.'

p.278 display on line 8: 1 should be subtracted from the subscripts: $\sigma_{\mu(n)-1}^{h} \cdots \sigma_{\mu(p+1)-1}^{h} \sigma_{\mu(p)-1}^{v} \cdots \sigma_{\mu(1)-1}^{v}$ p.280 lines 10–11: $\eta: 1_{\mathcal{C}} \to UF$ and ... $\varepsilon: FU \to 1_{\mathcal{B}}$. (switch \mathcal{B} and \mathcal{C})

p.283 line -2: $\bar{r}_i \bar{r}_{i+1}$ should be $\overline{r_i r_{i+1}}$

p.287 lines -5, -4: "is an exact sequence" should be "is a sequence" and "is also exact" should be "is exact" p.290 line before 8.7.9: Insert sentence: The proof of Theorem 3.4.3 goes through to prove that $\operatorname{Ext}_{R/k}^1(M, N)$ classifies equivalence classes of k-split extensions of M by N.

p.291 line -2: ... to $(R/I)^d$. If each $x_i R \subset R$ is k-split then:

p.294 line -8: If M is an R-module, ('a k' should be 'an R')

p.295 line -4 (display): $D^1(R, M)$ should be $D^1(R/k, M)$

p.296 8.8.6: "If k is a field" should be "If R is a field"

p.297, line -9: the sequence should read

$$\cdots \to D_{n+1}(R/K, M) \to D_n(K/k, M) \to D_n(R/k, M) \to D_n(R/K, M) \to D_{n-1}(K/k, M) \to \cdots$$

p.298 line 2 of 8.8.7: Commalg should be in roman font: Commalg

p.301 lines 4–5: the ranges should be "if $0 < i \le n$ " and "if i = n + 1" respectively.

p.304 Exercise 9.1.3: the variable n should m each time $(y_n, R^n, n, p < n)$; and x (on line 17) should be **x** p.307 line -1 should read:

As $\operatorname{Tor}_{1}^{R^{e}/k}(R^{e}, M) = 0$, the long exact relative Tor sequence (Lemma 8.7.8) yields

p.322: On line 1, insert "If $1/2 \in k$," before " $\Omega^*_{R/k}$ is the free graded-commutative" and (on line 4) add the sentence: In general, $\Omega^*_{R/k}$ is the free alternating *R*-algebra generated by $\Omega^1_{R/k}$.

p.325 line -6: $(-1)^n$ should be $(-1)^{\sigma}$

p.329 line 5: This display should read

$$\operatorname{trace}_n(x \otimes g^1 \otimes \cdots \otimes g^n) = \sum_{i_0, \dots, i_n=1}^m x_{i_0 i_1} \otimes g^1_{i_1 i_2} \otimes \cdots \otimes g^r_{i_r i_{r+1}} \otimes \cdots \otimes g^n_{i_n i_0}).$$

p.332 lines 12–13: replace with the display

trace
$$e_{\sigma 1,\sigma 2}(r_1) \otimes \cdots \otimes e_{\sigma n,\sigma 1}(r_n) = r_1 \otimes \cdots \otimes r_n$$
.

p.354 line -6: Add sentence: It also follows from the Connes-Karoubi theorem on noncommutative de Rham homology in C.R. Acad. Sci. Paris, t. 297 (1983), p. 381–384.

p.353 line 7: $u = c\epsilon_n$ " should read "... $u = c\epsilon_{n+1}$ "

p.353 line -7: the final term in the display should be $HC_{n-2}^{(i-1)}(R)$

p.359 Exercise 9.9.5: This is wrong; replace it with:

Exercise 9.9.5 (Grauert-Kerner) Consider the artinian algebra $R = k[x,y]/(\partial f/\partial x, \partial f/\partial y, x^5)$, where $f = x^4 + x^2y^3 + y^5$. Show that I = (x,y)R is nilpotent, and f is a nonzero element of $H^0_{dR}(R)$ which vanishes in $H^0_{dR}(R/I)$.

p.370 line -6: [ho-] "mopy" should be [ho-] "motopy" and b," should be b",

p.375 line 4: $u\delta = ig: B' \to B$ should be $T(u)\delta = ig: B' \to T(B)$

p.376 line 8: after 'naturality of the mapping cone construction' add "and the chain homotopy between gu and u'f."

p.376 line -10: diagram ... commutes up to chain homotopy.

p.381 line 6: '(left)' should be '(right)'

p.382 lines-6,-7 (10.3.8): the two occurrences of 'right' should be 'left'

p.383 line 7 (Corollary 10.3.10): after 'object' add ', and that S is saturated.' Add to the end of the proof the sentence: "So S contains maps $Y \xrightarrow{0} X \xrightarrow{0} Z$, and hence $X \xrightarrow{0} X$."

p.384 lines 9, 11: 'left' fraction should be 'right' fraction

p.384 line 13: Replacing 'right' by 'left'

p.385 line 1: \mathcal{B} is a small category and Ext(A, B) is a set for all $A \in \mathcal{A}, B \in \mathcal{B}$. Then show that...

p.386 lines 7–9: six occurrences of g should be v: ...there should be a $v: X \to Z$... f - g = uv. Embed v in an exact triangle (t, v, w) ... Since vt = 0, (f - g)t = uvt = 0, ...

p.386 lines 14–18: Replace the two sentences "Given us_1^{-1} : ... triangle in **K**" with: "The exact triangles in $S^{-1}\mathbf{K}$ are defined to be those triangles which are isomorphic, in the sense of (TR1), to the image under $\mathbf{K} \to S^{-1}\mathbf{K}$ of an exact triangle in **K**."

p.386 line 20: replace "straightforward but lengthy; one uses the fact" with "straightforward; one uses (TR3) and the fact that..."

p.387 line -12 (10.4.5): delete 'well-powered' (Gabber points out that this condition is superfluous).

p.388 lines 2–3: the '-dky' and '+dk' should be '+dky' and '-dk'

p.396 line 10: [Hart, II.5]

p.396 line 12: [Hart, exercise III.6.4] should be [HartRD, II.1.2]

p.400 line 8: the last two (A, B) should be $(A, T^n B)$

p.400 line -7: $\operatorname{Hom}(-, B)$ should be $\operatorname{Hom}(-, B)$

p.405 line -2: a natural homomorphism in $\mathbf{D}(R)$, which is an isomorphism if either each C_i is fin. gen. projective or else A is quasi-isomorphic to a bounded below chain complex of fin. gen. projective R-modules:

p.420 line 13: in exercise 6.11.3 (not 6.11.4)

p.426 line -5: 'section 7' should be 'section 6'

p.427 line -9: 'Chapter 3, section 7' should be 'Chapter 3, section 5'

p.427 line -1: $I \in I$ should be $i \in I$

p.428 line 16: $F_i \to F_i \to C$ should be $F_j \to F_i \to C$

p.429 line 15: 'Chapter 1' should read 'Chapter 2'

p.431 line 6: 'functions' should be 'functors.'

p.435 under 'AB4 axiom': add page 55

- p.439 add entry to Index under 'double chain complex':
 - Connes' \mathcal{B} . See Connes' double complex.
- p.444, under 'Lie group': [page] 158 should be 159

p.445, line -6: 'Øre' should be 'Ore'

p.448 column 2: lines 29-30 should only be singly indented ("— of" refers to spectral sequence)

References

[EM] Eilenberg, S., and Moore, J. "Limits and Spectral Sequences." Topology 1 (1961): 1–23.