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THE MONOCHROMATIC STABLE HOPF INVARIANT

GUOZHEN WANG

Abstract. In this paper we will compute the effect of the James-
Hopf map after applying the Bousfield-Kuhn functor on Morava
E-theory, and then compute the monochromatic Hopf invariant of
the β family using this cohomological information.

1. Introduction

We will study the unstable homotopy of odd spheres from the chro-
matic point of view. The chromatic zero case is simple: the rational
homotopy of odd spheres are the same as the stable one. So the inter-
esting problem begins with chromatic height one.

The chromatic one component in the stable homotopy groups are
the image of J . The behavior of these elements are studied in [17],
[6] and [18]. In particular, it was shown by Mahowald and Thompson
that, at an odd prime p, the v1-inverted EHP sequence has a quite
regular pattern. In this case when v1 is inverted, there is an isomor-
phism from EHP spectral sequence to the Atiyah-Hirzebruch spectral
sequence for the stable homotopy groups of BΣp, the classifying space
of the symmetric group on p objects. Furthermore, using the K(1)-
local isomorphism of the sphere spectrum and Σ∞BΣp, we can identify
the Atiyah-Hirzebruch spectral sequence with the p-Bockstein spectral
sequence of the K(1)-local sphere, whose structure is well-known.

This paper is the first one in a series to understand the pattern of
the EHP sequence at chromatic height two. In general, we have the
Goodwillie tower of the identity functor extending the comparison of
the unstable spheres and stable structure of BΣp in the K(1)-local
case. It was proved by Arone and Mahowald that at finite chromatic
height the Goodwillie tower becomes finite. In particular, if we look
at chromatic height two, the tower has only three layers. So it is
reasonable to have a complete understanding of the whole tower, which
can be viewed as a three term sequence of spectra.

This paper is concerned with understanding the first map in the se-
quence, which is the K(2)-localized James-Hopf map. We will describe
its effect on E2-cohomology, which will give information on the homo-
topy groups via Adams-Novikov spectral sequence. As an application
of the formula, we will compute the second monochromatic stable Hopf
invariant of the β family. From the computations of Bendersky and oth-
ers, it was suggested that the Hopf invariant of βi/j,k should be βi−j/k.
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In this paper, we will show that, when a β element does desuspend as
expected, then the stable Hopf invariant is as suggested; otherwise its
stable Hopf invariant has chromatic height at least three.

1.1. Backgrounds and notations.

1.1.1. Morava E-theory and monochromatic layers. Fix a prime p. K(n)
denotes the Morava K-theory of height n. En denotes the Morava
E-theory, with homotopy group Zp[[u1, . . . , un−1]][u

±]. We have vi =

uiu
pi−1 for i = 1, . . . , n− 1, and vn = up

n−1. We will denote by Fn the
formal group associated to En, and +Fn

will mean the multiplication
according to the formal group law Fn.

Let LK(n) be the localization functor with respect to Morava K-
theory. We denote the functor of taking the nth monochromatic layer
by Mn, which makes the following sequence a distinguished triangle:
MnX → LK(n)X → LK(n−1)LK(n)X .

The functors Mn and LK(n) factors through each other. We have
Mn = MnLK(n) and LK(n) = LK(n)Mn. The Morava E-theory of
monochromatic layers of the sphere is computed in [19]. We have

En∗MnS = En∗/(p
∞, . . . , v∞n−1)

Hence we have

En∗MnM(p) = En∗/(p, v
∞
1 , . . . , v

∞
n−1)

for the Moore spectrum M(p), and in general

En∗MnV (k) = En∗/(p, . . . , vk, v
∞
k+1, . . . , v

∞
n−1)

for the Smith-Toda complex V (k).

1.1.2. Periodic unstable homotopy and Bousfield-Kuhn functor. We are
concerned with unstable periodic homotopy in this paper. For any
spaces X and W with base point, we denote by πi(X ;W ) to be the
homotopy group of Map∗(W,X), the mapping space from W to X
preserving the base point. Suppose W is a finite CW complex of type
n, which means that K(h)∗W = 0 for h < n and K(n)∗W is nontrivial.
Then by the Hopkins-Smith periodicity theorem, for some suspension
of W there is a vn-self map, i.e. there is a map

vtn : ΣN+t|vn|W → ΣNW

for certain t and N , which induce multiplication by vtn in K(n)∗W .
This map induces the multiplication by vtn map on πi(X ;W ) for i large
enough.

Definition 1.1. The vn-periodic homotopy groups of X with coef-
ficients W is defined to be (vtn)

−1π∗(X ;W ). We will denote it by
v−1
n π∗(X ;W ).
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Note that, since vtn has positive degree, lower dimensional items do
not affect the result of inverting vn. One can see that this notion only
depends on (functorially) the suspension spectrum of W when X is
fixed.

Now we let
W0 →W1 → · · ·

to be a system of type n spectra with colimit S/(p∞, . . . , v∞n−1) with the
top cell in dimension 0. Then we can form an inverse system of groups

v−1
n π∗(X ;W0)← v−1

n π∗(X ;W1)← · · ·

Definition 1.2. The vn-periodic homotopy groups of X are defined to
be the inverse limit lim v−1

n π∗(X ;Wi). We denote it by v−1
n π∗(X).

One can show that this notion depends only on X .
The Bousfield-Kuhn functor enables one to investigate the periodic

homotopy groups using stable homotopy theory. We will give a brief
summary of its properties. See [14] for details.

Let W be a type n complex. The vn-self map induces a map

Map∗(Σ
NW,X)→Map∗(Σ

N+t|vn|W,X) = Ωt|vn|Map∗(Σ
NW,X)

Using this map, we form the pre-spectrum withMap∗(Σ
NW,X) sitting

in every place which are congruent to −N mod t|vn|, and the structure
maps as above.

Definition 1.3. Define ΦWn X, the Bousfield-Kuhn functor with coeffi-
cient W to be the associated spectrum.

One can show that this functor only depends on the suspension spec-
trum of W . As before we can take a system W0 → W1 → . . . of type
n spectra tending to S/(p∞, . . . , v∞n−1).

Definition 1.4. Define the Bousfield-Kuhn functor ΦnX to be the in-
verse limit limΦWi

n X.

One can see that we have π∗ΦnX = v−1
n π∗(X), when the lim1 terms

vanish, which holds for spheres.
We have variants of the Bousfield-Kuhn functor.

Definition 1.5. Define the K(n)-local Bousfield-Kuhn functor ΦK(n)

to be LK(n)Φn. Define the monochromatic Bousfield-Kuhn functor ΦMn

to be MnΦn.

From the definition, we have ΦK(n)Ω
∞Y = LK(n)Y for any spectrum

Y .

1.1.3. Monochromatic Hopf invariants. We will investigate the Hopf
invariant in this paper. The Hopf invariant is one of the three maps
in the EHP sequence. See Section 1.5 of [20] for details of the EHP
sequence.
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In general, the Hopf invariant is defined for any space X to be the
adjoint of the map ΣΩΣX → ΣX∧p, which is the projection map using
Snaith splitting ΣΩΣX = ∨iΣX

∧i, introduced in [23].
We will study its stable analogue, which is the James-Hopf map

jh : Ω∞Σ∞X → Ω∞(Σ∞X∧p)hΣp

defined to be the adjoint of the projection map

Σ∞Ω∞Σ∞X → (Σ∞X∧p)hΣp

using the Snaith splitting of Σ∞Ω∞Σ∞X .
We will only look at the case when X is a sphere. When specialized

to the case X = S0, we have the James-Hopf map

jh : Ω∞Σ∞S0 → Ω∞Σ∞BΣp+

It is well-known that Σ∞BΣp+ can be realized as a CW spectrum
with cells in dimensions 0, 2(p − 1) − 1, 2(p − 1), 4(p − 1) − 1, 4(p −
1), . . . . We will denote by Pk to be the quotient spectrum obtained
from it by collapsing the first k cells. Then the James-Hopf map for
Sk becomes Ω∞+kΣ∞Sk → Ω∞Pk, and the suspension map on the left
side is compatible with the quotient map on the right side. Note that
P1 = Σ∞BΣp.

The skeletal filtration on P1 gives an Atiyah-Hirzebruch type spectral
sequence:

⊕π∗(S)⇒ π∗(P1)

So any element in π∗(P1) has a representative in the E1-term of this
spectral sequence. Starting with an element in π∗(S), the James-Hopf
map sends it into an element in π∗(P1). We will call the representative
in the E1-term of the AHSS of the image to be the stable Hopf invariant.
In other words, for any ξ ∈ π∗(S), there is an largest k when the
image of jh∗(ξ) under the map P1 → Pk is non-zero. Then the map
jh∗(ξ) : Σ

|ξ|S → Pk can be lifted to a map Σ|ξ|S → ΣskS → Pk, where
the last map is the inclusion of the bottom cell. Then the stable Hopf
invariant of ξ is the homotopy class represented by the first map. Using
the compatibility of the suspension and the filtration on P1, one can
see that the stable Hopf invariant gives a lower bound on the sphere
of origin for stable elements, and when the lower bound is achieved it
detects the Hopf invariant.

This paper is concerned with the monochromatic stable Hopf invari-
ant. We will apply the Bousfield-Kuhn functor ΦMn

to the James-Hopf
map jh : Ω∞S→ Ω∞P1 to get the monochromatic James-Hopf map

ΦMn
jh :MnS→MnP1

We know MnP1 is the direct limit of its skeleton, so we have the
monochromatic analogue of the AHSS computing the monochromatic
homotopy groups:

⊕π∗(MnS)⇒ π∗(MnP1)
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So taking the representative in the E1-term of the image under the
monochromatic James-Hopf map gives the monochromatic stable Hopf
invariant. Hence we have the diagram

π∗MnS → π∗MnP1

⇓ ↓
π∗MnΣ

skS → π∗MnPk

with the upper arrow the James-Hopf map, the lower arrow the inclu-
sion of the bottom cell, and the lifting problem for the left arrow gives
the monochromatic Hopf invariant.

1.1.4. Morava E-theory of some classifying spaces. We will need the
Morava E-theory of BΣp, the classifying space of the symmetric group.
The details of the computations can be found in [24].

Recall that, using the fibration BZ/p → CP∞ p
−→ CP∞ we can

identify E∗
nBZ/p with En[ξ]/[p](ξ), with [p](ξ) the p-series of the formal

group associated to En.
The p-Sylow subgroup of Σp is the subgroup Z/p generated by the

cyclic permutation. Its Weyl group can be identified with F×
p , which is

a cyclic group of order p− 1. The restriction map E∗
nBΣp → E∗

nBZ/p
lands in the invariants of F×

p . It turns out that we have the isomor-

phism E∗
nBΣp = (E∗

nBZ/p)F
×
p . The generator ξ lies in cohomolog-

ical degree 2, and has weight 1 for the action of F×
p . So we have

E∗
nBΣp = E∗

n[x]/xq(x), where x = ξp−1 and q(ξp−1) = [p](ξ)
ξ

. Conse-

quently E∗
nP1 = xE∗

n[x]/q(x).

1.1.5. Other conventions. We will study several E∞ and co-E∞ algebras
and coalgebras in this paper. To make the notion easier, we will work
in the category of S-modules in the sense of [5]. By E∞ and co-E∞ we
will simply mean commutative and co-commutative respectively in the
category of S-modules. We will denote the free E∞-algebra generated
by a spectrum X by E∞(X). The free commutative algebra generated
by X will be denoted S(X), and it will be equivalent to E∞(X) in the
model of spectra we will use.

We will introduce the (homotopy) category of weakly graded spectra.
The objects are sequences of spectra (Xi)i∈Z. For morphisms, let X =
(Xi) and Y = (Yi) be two objects in the category. Then a map can
be identified with a matrix (fij) for fij : Xi → Yj. Then this map is a
morphism of weakly graded spectra, if for fixed i there are only finitely
many j with fij nontrivial, and for fixed j, there are only finitely many
i with fij nontrivial.

We will use D for Spanier-Whitehead dual. For a graded spectrum
(Xi)i∈Z, we introduce the restricted Spanier-Whitehead dual functor,
denoted by D′, to be the direct sum of the Spanier-Whitehead dual
of its homogeneous pieces, i.e. the sequence (Yi)i∈Z with Yi = DX−i.
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One sees that the functor D′ can be defined on the category of weakly
graded spectra.

We also introduce the (homotopy) category of weak infinite loop
spaces. The objects are labeled by pointed connected spaces. For
any two objects labeled by X and Y , a morphism is a (homotopy
class of) pointed map from Ω∞Σ∞X to Ω∞Σ∞Y such that the adjoint
Σ∞Ω∞X → Σ∞Y has only finitely many (homotopically) nontrivial
components when the domain is decomposed using the Snaith splitting.
There is a functor to the category of spaces by taking X into Ω∞Σ∞X ,
and the composition of this functor with infinite suspension lands in
the category of weakly graded spectra.

The symbols
∏

and
∐

will always mean the categorical product and
coproduct respectively.

1.2. Statement of the main results. We will be mainly concerned
with the James-Hopf map for S1 after applying the Bousfield-Kuhn
functor, i.e.

jh : LK(n)S→ LK(n)Σ
∞BΣp

First we will compute the effect of the James-Hopf map on the En-
cohomology.

Theorem 1.1. The map on En-cohomology induced by the James-Hopf
map jh is as follows: Let x1, x2, . . . , xpn−1+···+p+1 be the roots (over
some extension of E∗

n) of the polynomial q(x) (which is defined in Sec-
tion 1.1.4). Then for any polynomial f(x) in x(E∗

n[x]/q(x)), we have
jh∗(f(x)) equals

1

p

∑

i

f(xi)

up to a factor which is a unit.

Remark 1.1. The previous map is essentially the map tr
p
, with tr the

trace map for the finite extension E∗
n → E∗

n[x]/q(x). Since the constant
term in q(x) is divisible by p, we always get integral results.

Remark 1.2. There is the dual description in [22]. It is comparable
with the previous one if we relate them by the Weil pairing. We will
explain this relation in detail later.

Recall that Σ∞BΣp can be realized as a CW spectrum with cells
in dimensions 2(p − 1) − 1, 2(p − 1), 4(p − 1) − 1, 4(p − 1), . . . . We
define an increasing filtration where the kth filtration constitutes the
cells of dimension up to 2k(p − 1). This amounts to a filtration on
Σ∞BΣp, such that the kth sub-quotient is the suspended Moore spec-
trum Σk|v1|−1M(p). Using this filtration we get an Atiyah-Hirzebruch
type spectral sequence

πtΣ
k|vi|−1En∗MnM(p)⇒ πt+k|vi|−1(En∗MnΣ

∞BΣp)
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We will describe the cohomological Hopf invariant of the β-family by

looking at the element detecting jh∗(
vk2
pivj1

) in the AHSS forMnΣ
∞BΣp.

Theorem 1.2. Let p be odd prime. Let
vk2

pi+1vj1
, with pi|j, be an element

in the E2-homology of the 2nd monochromatic layer of S. Then its

image under jh∗ lies in the (pj + i + 1)st filtration, detected by
vk−j
2

vi+1
1

in AHSS as an element in the E2-homology of the 2nd monochromatic
layer of the corresponding sub-quotient, which is a suspended Moore
spectrum.

To get the homotopical Hopf invariant, we need to deal with ANSS
differentials. However, in the case of p ≥ 5, there are no ANSS dif-
ferentials, so that we get the monochromatic Hopf invariants of the
β-family, which fits the computations of Bendersky and others:

Theorem 1.3. For p ≥ 5, the 2nd monochromatic stable Hopf invariant
of βk/j,i is βk−j/i supported on the top cell of the (pj+ i)th sub-quotient
Moore spectrum.

1.3. Outline of the proof. Our goal is to compute the effect of the
Bousfield-Kuhn functor on the James-Hopf map. We will use the TAQ
interpretation of the Bousfield-Kuhn functor introduced in [1] to com-
pute the Bousfield-Kuhn functor.

Let X be a space. Then the Snaith splitting says that the sus-
pension spectrum of Ω∞Σ∞X is the free E∞ spectrum generated by
the suspension spectrum of X . The diagonal map on Ω∞Σ∞X gives
a co-E∞ coproduct on Σ∞Ω∞Σ∞X . Then from the formulas in [13]
we find that this coproduct induces an E∞ product on its restricted
Spanier-Whitehead dual D′Σ∞Ω∞Σ∞X . From [7] we know that the
norm map gives a K(n)-local equivalence of homotopy orbits and ho-
motopy invariants, together with the formula of the coproduct in [13],
we conclude that D′Σ∞Ω∞Σ∞X is K(n)-locally equivalent to the E∞
spectrum generated by DΣ∞X . However, the natural gradings are not
preserved under this equivalence. From [1] we know that the Bousfield-
Kuhn functor on Ω∞Σ∞X can be identified with taking the dual of the
indecomposables in D′Σ∞Ω∞Σ∞X , which means taking the first ho-
mogeneous piece under the grading induced from E∞DX . Howerver,
the usual way of describing the cohomology of Ω∞Σ∞X , including the
formula for the James-Hopf map on cohomology in [16], is using the
grading induced by the Snaith splitting. So the problem of computing
the monochromatic stable Hopf invariant on cohomology reduces to
understand the relations of these two gradings so that we can use the
formula in [16].

We will show that the comparison can be described using the product
on DΣ∞X and the norm map, which would lead to the formula in
Theorem 1.1.
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In order to compute the monochromatic Hopf invariant using Theo-
rem 1.1, we will try to compute the leading term of the power sum of the
roots of the p-series. The leading terms of the p-series is v2ξ

p2+v1ξ
p+p.

Using the Newton identity, the power sum of its roots would be a sum

of terms of the form k(s+t−1)!
s!t!

psvt1 with k = (p + 1)s + pt. Naively we
would expect the leading term should have no powers of p introduced
from the coefficient, which leads to the formula in Theorem 1.2. We
will show that this naive consideration does give the correct leading
term.

With the cohomological computations in hand, Theorem 1.3 follows
once we observe that there are no obstruction for large primes.

1.4. Organization of the paper. In Section 2, we will discuss the
structure of the suspension spectrum of Ω∞Σ∞X , as an E∞ and co-E∞
bi-algebra, in detail. We will finally arrive at Theorem 2.5, which says
that the James-Hopf map, after applying the Bousfield-Kuhn functor,
is essentially the composition of the inverse of the norm map and the
multiplication map for DX .

Then in Section 3, we will discuss the norm map, give a formula for
the quadratic form it induces on homology, and prove Theorem 1.1.

With the formula, we will do the computations in Section 4 for the
homological monochromatic Hopf invariant for the β family, proving
Theorem 1.2.

We will compare our formula with the modular isogeny complex
using the Weil pairing in Section 5.

In Section 6, we will show that for p ≥ 5, there are no obstructions
preventing these homological computations to imply homotopical ones,
proving Theorem 1.3.

In the last Section 7, we will give a remark on how to get the actual
Hopf invariant from the monochromatic information. The main point
is that we can construct an unstable chromatic tower. The convergence
issue of this tower is left open.

1.5. Acknowledgments. The author would like to thank Mark Behrens,
Zhen Huan and Haynes Miller for discussions and suggestions. Espe-
cially Mark Behrens, who has review the paper and pointed out many
places which can be improved.

2. The behavior of the James-Hopf map on cohomology

We will describe a method to determine the map on cohomology
induced by the James-Hopf map after applying the Bousfield-Kuhn
functor.

First recall that by Snaith splitting, Σ∞Ω∞Σ∞X ∼=
∐∞

i=1(Σ
∞X)∧ihΣi

for any connected pointed space X , and the equivalence is induced from
the map Σ∞X → Σ∞(Ω∞Σ∞X)+ by extending it into an E∞ map. See
[12] for details.
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Fix a prime p. The Jame-Hopf map

jh : Ω∞Σ∞X → Ω∞(Σ∞X)∧phΣp

is the adjoint of the projection map

Σ∞Ω∞Σ∞X → (Σ∞X)∧phΣp

By definition the infinite suspension of the James-Hopf map lands in the
category of weakly graded spectra (see section 1.1.5 for the definition).
We will study the effect of the Bousfield-Kuhn functor on this map,

ΦK(n)jh : LK(n)Σ
∞X → LK(n)(Σ

∞X)∧phΣp

By results of [1], we can identify ΦK(n)X with

TAQLK(n)S
(LK(n)DΣ∞Ω∞Σ∞X+)

the topological André-Quillen cohomology of the K(n)-local E∞ spec-
trum LK(n)DΣ∞Ω∞Σ∞X+ where the multiplication is induced from
the diagonal on Ω∞Σ∞X .

In order to apply the theorem, we need to understand the E∞ struc-
ture on DΣ∞Ω∞Σ∞X+ induced from the diagonal map on Ω∞Σ∞X .
The diagonal map is determined by [13]. Essentially, the diagonal
map on the component Σ∞X in the Snaith splitting is the sum of two
maps: the primitive part X → (S ∧X)

∐
(X ∧ S), and the other part

X → X ∧X coming from the diagonal map on X .
We will work at a slightly more general setting. To simplify the

argument, we will work in the category of S-modules in the rest of this
section, so that we have a symmetric monoidal smash product, and for
cofibrant X , the action of Σk on X∧k is free. We will also work in the
K(n)-local category, and K(n)-localization will be applied implicitly
when necessary.

Let X be a cocommutative S-coalgebra with structure map ψX :
X → X ∧X . Suppose that X is cofibrant and E∗

n(X) is free of finite
rank over E∗

n. Hence in the K(n)-local category, X is dualizible by [11].
We can construct the free commutative S-algebra S(X) = ⊕kX

∧k/Σk
generated by X . We have a cocommutative S-coalgebra structure on
S(X) defined by extending the composition of the following map

X
1∧id+id∧1+ψX
−−−−−−−−−→ (S ∧X)⊕ (X ∧ S)⊕ (X ∧X)→ S(X) ∧ S(X)

into a map of commutative S-algebras. (The last map is the inclusion
of summand (S∧X)⊕(X∧S)⊕(X∧X)→ ⊕i,j(X

∧i)∧(X∧j)/Σi×Σj .)
Note that in this case, we have a natural decreasing filtration on

S(X) defined by the powers of X , which is preserved by the coproduct
defined above. Taking the restricted Spanier-Whitehead dual, we have
the spectrum D′S(X) = ⊕kD(X∧k/Σk), which is K(n)-locally equiva-
lent to ⊕k((DX)∧k)Σk because X is K(n)-locally dualizibile. The co-
product above induces a commutative S-algebra structure on D′S(X),
since the formula for the product is a finite sum on each summand.
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Moreover, the product preserves the increasing filtration defined by
the powers of DX .

If we take the graded pieces of the S-algebraD′S(X), we get a graded
commutative S-algebra, and the following lemma is straightforward:

Lemma 2.1. Suppose we have the graded commutative S-algebra struc-
ture over D′S(X) defined by the coproduct induced from

X
1∧id+id∧1
−−−−−−→ (S ∧X)⊕ (X ∧ S)→ S(X) ∧ S(X)

by extending it into an S-algebra map. Then the restriction of the iter-
ated product map (D′S(X))∧k/Σk → D′S(X) to the summandDX∧k/Σk
is the norm map to the summand (DX∧k)Σk :

DX∧k/Σk → (DX∧k)Σk → D′S(X)

Corollary 2.2. In the K(n)-local category, the inclusion of DX in
D′S(X) induces an equivalence of the free commutative S-algebra gen-
erated by DX, into D′S(X).

Proof. It is enough to check the graded pieces, since the induced map
S(DX)→ D′S(X) preserves the natural filtrations.

If we look at the corresponding graded commutative S-algebra for
D′S(X), we find that the product is as the one in the lemma. Then
the lemma shows that the induced map S(DX)→ D′S(X) is the norm
map on each homogeneous component. Then the corollary follows. �

Using this corollary, we can identify the topological André-Quillen
cohomolgoy of D′S(X) with DX .

Lemma 2.3. Suppose further that X is the suspension spectrum of a
space Y with coproduct induced form the diagonal map. Then the effect
of the Bousfield-Kuhn functor on the James-Hopf map for Y is the dual
of the composite

(DX∧p)Σp → D′S(X)
φ
←− S(DX)→ DX

where the map φ is the K(n)-equivalence in corollary 2.2, and the last
map is the projection.

Proof. Behrens and Rezk constructed in Section 6 of [1] a natural trans-
formation

TAQ(DΣ∞Z+)→ DΦnZ

Now when Z takes the form Ω∞Σ∞Y , we have a natural transformation
TAQ(D′Σ∞Z+) → TAQ(DΣ∞Z+) when we regard Z as an object in
the category of weak infinite loop spaces labeled by Y . The composi-
tion gives a natural transformation TAQ(D′Σ∞Z+)→ DΦnZ from the
category of weak infinite loop spaces to the category of spectra. Now
it is easy to see that, the following natural transformation

TAQ(D′Σ∞Ω∞Σ∞Y+)→ DΦnΩ
∞Σ∞Y



THE MONOCHROMATIC STABLE HOPF INVARIANT 11

is an equivalence since both sides can be identified with DΣ∞Y . So we
conclude that the natural transformation TAQ(D′Σ∞Z+)→ DΦnZ is
an equivalence. The lemma follows from the previous corollary using
this TAQ description of the Bousfield-Kuhn functor on weak infinite
loop spaces. �

Now we will investigate the maps

ji : (DX
∧i)Σi → D′S(X)

φ
←− S(DX)→ DX

for i ≤ p. Of course j1 is the identity map, and what we want to do is
to find how the direct summand in S(DX) transport to D′S(X).

Lemma 2.4. For i < p, the map ji factors through the multiplication
map DX∧i → DX. In fact, for all i, the composition of ji with the
transfer map DX∧i → (DX∧i)Σi is a multiple of the multiplication
map.

Proof. We will show this by induction. The case for i = 1 is clear. So
we will assume that we have the lemma for all jt for t < i.

Now to investigate ji, we will first find the image of DX∧i/Σi under
φ, which goes to zero under projection. By [13], the restriction of φ to
DX∧i/Σi is the sum of the maps

φI : DX
∧i/Σi → (DX∧|I|)Σ|I|

where I ranges over all partitions of i, into |I| parts. (This corresponds
to the special case of a covering by i copies of 1’s in the notation of
[13].) The maps φI are described as follows. Let ΣI ⊂ Σi be the
subgroup of permutations which preserve the (unordered) partition I.
For example, Σ(p) = Σ(1,...,1) = Σi. So if I has im components with m
elements, then we have DX∧i/ΣI = ∧m(DX

∧m/Σm)
∧im/Σim . Then φI

is defined to be the composition

DX∧i/Σi → DX∧i/ΣI = ∧m(DX
∧m/Σm)

∧im/Σim →

∧mDX
∧im/Σim → DX∧|I|/Σ|I| → (DX∧|I|)Σ|I|

Here the first map is the transfer, the second induced from the mul-
tiplication defined by ψ, the third map is the restriction, and the last
map is the norm map.

Now we have the equation
∑

I j|I| ◦ φI = 0. We compose this equa-
tion with the restriction map DX∧i → DX∧i/Σi. Then the summand
with |I| = (1, . . . , 1) becomes the composition of ji with the transfer
map, since the composition of the norm map with the restriction is the
transfer map. For the other summands, we find that the composition
of the restriction map with the map

DX∧i/Σi → DX∧i/ΣI = ∧m(DX
∧m/Σm)

∧im/Σim →

∧mDX
∧im/Σim → DX∧|I|/Σ|I|



12 GUOZHEN WANG

is the sum of maps

DX∧i g
−→ ∧mDX

∧im → DX∧|I| → DX∧|I|/Σ|I|

where the first map rearranges the order of factors according to g for
g running through Σi/Σ|I|. The second map is the multiplication map,
and the last map is the restriction map. So the composition of the map
j|I| ◦ φI with the transfer map DX∧i → (DX∧i)Σi becomes the sum of
compositions

DX∧i → DX∧|I| → (DX∧|I|)ΣI
j|I|
−−→ DX

where the first map is the multiplication map of type I described above,
and the second map is the transfer. The sum is over the set Σi/ΣI of
ways to do the multiplication.

So by induction, we proved that the composition of ji with the re-
striction DX∧i → (DX∧i)Σi is a multiple of the multiplication map.
(In fact, we know the coefficient is the alternating sum of ways to do the
multiplication, but we do not need this formula.) Now in case i < p,
the restriction map is projection to a direct summand, so we can find
a section, and the lemma is proved.

�

The case i = p is a bit subtle, since then the restriction map is no
longer a projection. This is why it is the interesting James-Hopf map.
We have the following description:

Theorem 2.5. The map jp is the sum of two maps. The first map is
the negative of the map (DX∧p)Σp ← DX∧p/Σp → DX where the first
map is the norm map and the second the multiplication map defined
by the map ψ. The other map factors through the multiplication map
DX∧p → DX.

Proof. We follow the arguments of the previous lemma. We still have
the equation

∑
I j|I| ◦ φI = 0. Now in this case, the summand corre-

sponding to I = (1, . . . , 1) is the composition of ji with the norm map,
and the summand corresponding to I = (p) is the multiplication map.
So these give the map (DX∧p)Σp ← DX∧p/Σp → DX .

For the other summands, we note that ΣI is a proper subgroup for
I 6= (1, . . . , 1), (p). Then the restriction map DX∧p → DX∧p/ΣI ad-
mits a section. As before, we find that the composition

DX∧p → DX∧p/ΣI → DX∧|I|/Σ|I|

is the composition

DX∧p → DX∧|I| → DX∧|I|/Σ|I|

The only difference is that we no longer need the permutation of factors.
The same argument shows that all such summands j|I| ◦ φI with |I| 6=
(1, . . . , 1), (p) factors through the multiplication map DX∧p → DX .
This completes the proof �
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Remark 2.1. We do not know how to describe the map factoring the
second map through the multiplication map. In ordinary cohomology,
it look like the restriction map. However, in the case we are interested
in, i.e. for X = S2n+1, the multiplication map is homotopically zero
nonequivariantly, so in this case the second map has no contributions.

3. Determination of the cohomological James-Hopf map

We will show that theorem 2.5 determines the effect of the James-
Hopf map on En-cohomology for odd spheres.

We need to understand the map

(DX∧p)hΣp ← (DX∧p)hΣp
→ DX

First we look at the case when X is the sphere spectrum. In this
case, the multiplication map ShΣp

→ S is simply the restriction map
along the homomorphism Σp → ∗ to the trivial group.

To understand the norm map, we will use the following description.
For any Y with an action by a finite group G, the identity map is
G-equivariant, so we have a canonical element idG ∈ π0Hom(Y, Y )hG,
where Hom(Y, Y ) is the inner Hom, and G acts on it by conjugation.
The following lemma is a consequence of discussions in the appendix
of [1]:

Lemma 3.1. The class of the norm map YhG → Y hG in π0 of the
spectrum Hom(YhG, Y

hG) = Hom(Y, Y )h(G×G), is the transfer of idG
along the diagonal homomorphism G→ G×G.

Now specialize to the case of S. The map idG is simply the restric-
tion map S→ ShG along the map G→ ∗. Now if G is abelien, G is the
pull back of the diagram G× G → G ← ∗, where the first map sends
(g1, g2) to g

−1
2 g1. In this case, the projection formula says the composi-

tion of restriction and transfer equals the composition of transfer and

restriction: S
tr
−→ ShG

res
−→ Sh(G×G).

If H is a subgroup of G, we consider the composition

S
res
−→ S

hG tr
−→ S

h(G×G) res
−→ S

h(H×H)

of the restriction, transfer and restriction map. Using the double coset
formula, the composition of the latter two maps is the sum of maps
ShG → Sh(H∩Hg) → Sh(H×H), where the sum is over g ∈ G/H , and the
first map is restriction, the second map is the transfer along the map
H∩Hg → H×H whose first component is the inclusion and the second
component is conjugation by g.

Now we take G = Z/p. In this case, G is abelien. So we will look

at the composition of S
tr
−→ ShG

res
−→ Sh(G×G) of transfer and restriction.

After taking En-homlogy, we can identify En∗(S
hG) = E∗

n[[ξ]]/[p](ξ)
with the ring of functions on the finite flat algebraic group of order p
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points in the formal group Fn associated with En. The transfer map
E∗
n(S)→ E∗

n(ShG) has the following formula:

Lemma 3.2. The transfer of 1 ∈ E∗
n(S) is the element

[p](ξ)

ξ
∈ E∗

n(ShG) = E∗
n[[ξ]]/[p](ξ)

Proof. See page 588 in [9]. �

We know that the addition on Z/p correspond to the multiplication
of the formal group law. So the restriction map along

G×G→ G

gives the map on cohomology sending the element

f(ξ) ∈ E∗
n(ShG) = E∗

n[[ξ]]/[p](ξ)

to the element

f(ξ −Fn
η) ∈ E∗

n(Sh(G×G)) = E∗
n[[ξ, η]]/([p](ξ), [p](η))

Hence the class of the norm map has Hurewicz image

[p](ξ −Fn
η)

ξ −Fn
η
∈ E∗

n(Sh(G×G))

Now we take some embedding E∗
n → K into some algebraically closed

field of characteristic zero. Then over K, the subgroup of order p
points becomes the constant group G × Spec(K). Then the algebra
of functions becomes the algebra of functions on the discrete group G

with values in K. Then the element [p](x)
x

is p times the characteristic
function on the unit, since its multiplication with x is zero and have
value p when x = 0. Hence over K the Hurewicz image of the norm
map is p times the characteristic function on the diagonal of G×G.

Now we look at the case when G = Σp, which we are interested in.
In this case, we take the subgroup H = Z/p ∈ G. Then the Weyl group
of H in G is F×

p . Recall from 1.1.4 that E∗
n(ShG) can be identified with

F×
p -invariant elements in E∗

n(ShH) under the restriction map.
We have shown how to compute the map

S→ S
hG → S

h(G×G) → S
h(H×H)

using the double coset formula. There are two case of H∩Hg according
to whether g is contained in the normalizer of H or not. The first case
gives the p − 1 components S → Sh(H×H) → Sh(H×H) indexed by
elements g in the Weyl group of H , where the first map is the class of
the norm map of H , and the second map has id on the first component,
and conjugation by g on the second component. The other components

are (p−1)!−(p−1)
p

times the transfer map S → Sh(H×H). Hence over K,
the Hurewicz image of the norm map is the function on H ×H which
has value p at any pair (P,Q) ∈ H×H if they are both not the unit and
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Q is a multiple of P , and value zero otherwise unless (P,Q) = (0, 0) in
which case we have the value p!.

We can take a basis of the En cohomology of ShG over K to be the
characteristic functions of the classes of H under the action of F×

p . Call
them f0, . . . , fq, where f0 is the characteristic function on 0 ∈ H . Then
the Hurewicz image of the norm map is the element

p!f0 ⊗ f0 + pf1 ⊗ f1 ⊗ f1 + · · ·+ pfq ⊗ fq

Hence the nondegenerate quadratic form on E∗
n(ShG) defined by the

norm map has the formula

< f, g >=
1

p!
f(0)g(0) +

1

p(p− 1)

∑

P∈H\{0}

f(P )g(P )

over K. Note that this formula also makes sense over E∗
n.

Since the restriction map ShG → S sends 1 to 1 in cohomology, we
arrive at the conclusion that the map ShG ← ShG → S has the effect
on homology sending any element f ∈ E∗

n(ShG) to the element

< f, 1 >=
1

p!
f(0) +

1

p(p− 1)

∑

P∈H\{0}

f(P )

Now we look at the case of Sk. In that case, we have a commutative
diagram

(1)
Sk ∧ ShΣp

→ Sk ∧ ShΣp ← Σ∞Sk

↓ ↓ ↓
(Σ∞Skp)hΣp

→ (Σ∞Skp)hΣp ← Σ∞Sk

Here the vertical maps are induced from the diagonal map on Sk. Note
that the rows are the dual of the maps we have just studied, since the
dual of the norm map is still the norm map of the dual.

The first vertical map is the quotient P0 → Pk. We observe that
on En-cohomology, this map is the inclusion of the ideal generated by
(ξp−1)m if k = 2m−1 is odd. So we get the same formula on cohmology
of the second row under this identification.

As we have observed, for odd spheres, the diagonal map is non-
equivariantly homotopic to zero, so the other nasty terms disappear.
Hence we prove Theorem 1.1.

4. The monochromatic homological Hopf invariant

In this section, we will compute the monochromatic homological
Hopf invariant, i.e. the behavior of the James-Hopf map on the co-
homology of the second monochromatic layer:

jh∗ : E2∗ΦM2QS
0 → E2∗ΦM2QBΣp
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We will start with a general En. Recall that En∗ is the complete
local ring (in the graded sense) Zp[[u1, . . . , un−1]][u

±] with maximal
ideal I = (p, . . . , un−1). Let

M = En∗/(p
∞, . . . , v∞n−1)

Following [8], we know that, as a graded ring, En∗ is Gorenstein andM
is the dualizing module for the functor Extn(−, En∗) in the category
of graded En∗ modules.

Recall that En∗MnS = M [−n], where M [−n] means the module
M with a shift in grading. In general, we have MnX = lim

−→
Wk ∧ X ,

where Wk is a system of type n complexes of the form S/(pi0, . . . , v
in−1

n−1 )
with the numbers i0, . . . , in−1 tending to infinity. When E∗

nX is finitely
generated, En∗Wk ∧ X are all finite length En∗ modules. Since En∗
is a Gorenstein grade ring, the functor Exts(−, En∗), restricted to the
category of finite length En∗ modules, is zero for s 6= n and equals
Hom(−,M) when s = n. Hence by the universal coefficient theorem,
E∗
nWk ∧X = Hom(En∗Wk ∧X,M)[n]. Taking the limit, we conclude

E∗
nX = Hom(En∗MnX,M)[n]

, since the lim
←−

1 term vanishes when we assume E∗
nX is finitely gener-

ated. Dually, we have

En∗MnX = Hom(E∗
nX,M)[−n]

In the case of P1 = Σ∞BΣp, we have the following description. Recall
that E∗

nP1 is the F×
p -invariants of the ideal generated by ξ in the ring

E∗
n[[ξ]]/[p](ξ). Since we are working with a p-typical formal group law,

the polynomial [p](ξ) equals ξq(ξp−1) for some polynomial

q(y) = p+ q1y + q2y
2 + . . .

So we have:

Lemma 4.1. E∗
nP1 is generated by the elements y, y2, . . . , subject to

the relation pyi + q1y
i+1 + · · · = 0, for i ≥ 1.

The filtration defined by the maps

P1 → P3 → P5 → . . .

corresponds to the decreasing filtration defined by the powers of y in co-
homology. Dually, we have the corresponding increasing dual filtration
on En∗MnP1 = Hom(E∗

nP1,M)[n].
Then the monochromatic homological Hopf invariant problem is to

find, for any element µ of E2∗M2S, the lowest filtration where jh∗(µ)
lies, and its image to the corresponding sub-quotient.

The duality between homology and cohomology gives a perfect pair-
ing E∗

nX ⊗ En∗MnX [n] → M . Using this pairing, we can state the



THE MONOCHROMATIC STABLE HOPF INVARIANT 17

Hopf invariant problem dually: for any element

1

pi0vi11 . . . v
in−1

n−1

∈M

find the largest number k for which

<
1

pi0vi11 . . . v
in−1

n−1

, jh∗(yk) > 6= 0

and find the value of the pairing.

Remark 4.1. Here we only study the problem of pairing with mono-
mials. This suffices to detect the Hopf invariant of the β family. In
fact, we can give a natural partial ordering on the monomials defined by
divisibility relations. In the monochromatic expression for the β family
elements, there is always a unique leading term under this partial or-
dering, and one can easily see that the non-vanishing of pairings with
any element in cohomolgy is determined only by the leading term.

So we need to understand the elements jh∗(yk). From Theorem 1.1,
this amounts to compute the sum of the powers of the roots of the power
series q(y). We will use Weierstrass preparation theorem to transform
it into a polynomial and use Newton’s identities.

From now on we will work with chromatic level two. So we will set
n = 2. In the remainder of this section, we will also assume p to be an
odd prime. The case p = 2 will not be discussed in this section.

To begin with, recall that

[p](x) = px+F2 v1x
p +F2 v2x

p2

with the Araki generators. Let h(x) = (px + v1x
p) +F2 v2x

p2 . Then it
is easy to see that h(x) ≡ [p](x) mod (pv1).

Because we are working with a p-typical formal group law, and since
p is odd, we have [−1](x) = −x. Hence the Weierstrass factor of

h(x) is px + v1x
p + v2x

p2 , since they have the same roots. From the
uniqueness of Weierstrass preparation theorem, we conclude that this
is the Weierstrass factor for [p](x) modulo (pv1).

Hence we find that the Weisstrass factor

q0(y) = yp+1 + c1y
p + · · ·+ cp+1

for q(y) has the property that, cp+1 is p times a unit, and cp is v1 times
a unit, and the other ci’s are divisible by pv1.

Our goal is to find the power sums of the roots of q0(y).
Let ei be the elementary symmetric polynomials of the roots of q0(y).

Then ei = ±ci.
The following lemma is a well known consequence of Newton’s iden-

tity:
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Lemma 4.2. We have the following formula:

sk =
∑ k(

∑
i ri − 1)!∏
i ri!

∏

i

(−ei)
ri

where sk denotes the sum of kth powers, and the sum in the right hand
side is over numbers ri with

∑
i iri = k.

To address the question of pairing with 1
ps+1vt1

, we will first study the

pairing on the individual terms.

Lemma 4.3. For fixed s, t, among all the terms

1

p

k(
∑

i ri − 1)!∏
i ri!

∏

i

crii

with k =
∑
iri, (recall that the factor 1

p
comes from the formula of the

James-Hopf map), which have nontrivial pairing with 1
ps+1vt1

, the one

with k =
∑

i iri largest, has the following property: whenever i < p, we
have ri = 0.

Proof. Suppose the contrary, we will construct a new term as follows.
If some ri0 6= 0 with i0 < p. Set l = p or p+ 1. Then we construct the
new term with r′l = rl + ri0, r

′
i0
= 0 and the other r′i = ri for i 6= i0, l.

Then 1
p

(
∑

i ri−1)!
∏

i ri!

∏
i c
ri
i is divisible by 1

p

(
∑

i r
′
i−1)!

∏
i r

′
i!

∏
i c
r′i
i , and k

′ > k. So

if k′ is divisible by no larger powers of p than k do, then we are done.
Note that we have two choices of l. We will show that at least

one choice has the desired property. Let k1 and k2 be the number∑
i ir

′
i for the choice l = p and l = p + 1 respectively. Then we find

k1 − k = (p− i0)ri0, and k2 − k1 = ri0 . Thus the following easy lemma
completes the proof. �

Lemma 4.4. Let a, b, c be integers. Suppose vp(b−a) ≥ vp(c−b), where
vp is the p-adic valuation. Then we cannot have both vp(b) > vp(a) and
vp(c) > vp(a).

Recall we want to compute terms of the form

<
1

pi+1vj1
,
1

p
sk >

where sk is the power sum of the roots of f(y). We will study the
pairing with terms in the previous lemma, i.e.

1

p

k(s+ t− 1)!

s!t!
psvt1

which contributes to sk with k = (p+ 1)s+ pt.
For the study of β family at odd primes, we will only consider the

case when j is divisible by pi.
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For the pairing to be nontrivial, we must have t ≤ j − 1. We also

need to consider divisibility for p. Since k(s+t−1)!
s!t!

is always an integer,
a necessary condition for the pairing to be nontrivial is s ≤ i+ 1.

When i = 0, then s ≤ 1, and it is not hard to find that (s, t) = (1, j−
1) is the unique choice for the largest m, and in this case k = pj + 1
is not divisible by p. Hence we conclude that jh∗(

1

pvj1
) lies in filtration

pj+1, and its image in the corresponding subquotient is 1
v1

up to units.
Now we will assume i ≥ 1. Then j is divisible by p. We also note

that s ≤ pi in this case.
First we need a lemma on binomial coefficients:

Lemma 4.5. The largest power of p dividing s!
r!(s−r)!

does not exceed
log s
log p

.

Proof. That largest power is ([ s
p
]− [ r

p
]− [ s−r

p
])+([ s

p2
]− [ r

p2
]− [ s−r

p2
])+ . . . ,

and each term is at most 1. �

Now we will study which terms of the form 1
p
k(s+t−1)!

s!t!
psvt1 has non-

trivial pairing with 1

pi+1vj1
.

There are two cases to consider. First assume that s+ t > j. In that

case, we observe that (j−1)!
t!(j−1−t)!

is a p-adic unit, since

j − 1− t < s+ t− 1− t = s− 1 < pi

and j is divisible by pi. The remaining factors give

1

p

kj(j + 1) . . . (s+ t− 1)

(j − t) . . . (s− 1)s
psvt1

Since t < j, s ≤ pi, we have s + t− 1 − j < pi. Since pi divides j, the
factor (j+1) . . . (s+ t− 1) has the same p-valuation as (s+ t− j− 1)!.

By the lemma, (s−2)!
(j−t−1)!(s+t−j−1)!

has p-valuation at most log(s−2)
log p

, (we

understand this number to be 0 when s = 2). We also note that at
most one of s and s− 1 is divisible by p. Hence the p-valuation of

1

p

j(j + 1) . . . (s+ t− 1)

(j − t) . . . (s− 1)s
ps

is at least −1 + i− log(s−2)
log p

− log s
log p

+ s. So we need

s ≤ 1 +
log s(s− 2)

log p

for this term have nontrivial pairing with 1

pi+1vj1
. So the only choices

are p = 2 and s = 2, 4. But in those cases, it is not hard to find that k
has extra factors of 2 and we actually get zero pairing.

Hence the case s + t > j is completely excluded, and we must have
s + t ≤ j. Since s ≤ i + 1, the largest possible k is obtained from
the choice s = i + 1, and t = j − i − 1. Then k = pj + i + 1. Then
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k
s
and (s+t−1)!

(s−1)!t!
are both p-adic units, and the term is the unique one

with nontrivial pairing with 1

pi+1vj1
and largest k. One checks that the

pairing is 1
pvi+1

1

up to a unit.

This proves Theorem 1.2, when one traces the degree to get the
actual powers of v2.

5. Comparison with the modular isogeny complex

Behrens and Rezk give another description of the En-homology of
the unstable spheres using the modular isogeny complex. See [1] and
[22] for details. We will show that this description is compatible with
our formula in the special case of chromatic height two.

First note that we are computing using cohomology and the modular
isogeny complex is in terms of homology. So we need the self-duality
of LK(n)Σ

∞BΣp+ to do the comparison.

Let R = E∗
n[x]/q(x). Recall ξq(ξp−1) = [p](ξ). Then there is the

trace map tr : R → E∗
n. We define a pairing <,>: R × xR → E∗

n by

the formula < λ, µ >= tr(λµ)
p

. One can see that this is a perfect pairing

since < xi, x
pn−1
p−1

−i > is a unit and < xi, xj > lies in the maximal ideal
when i+j < pn−1

p−1
. Using this pairing, we can identify En

∧
∗LK(n)Pi with

x1−iR, where x1−iR denotes the sub-R-module of R[x−1] generated by
x1−i. Then the dual of the effect of the James-Hopf map on cohomology
becomes simply the inclusion of the unit E∗

n → R→ x1−iR, which give
the formula for the homological James-Hopf map.

This is different from the modular isogeny complex, for we use the
right unit instead of the left unit in that case. However, in the special
case of n = 2, we have an automorphism on R, which represents the
operation of transforming the pair (G, H) into (G/H,G[p]/H), where
G is a deformation of a height 2 formal group and H is an order p
subgroup of G, and G[p] denotes of subgroup of elements of exponent
p, which has order p2. This automorphism swaps the left and right unit,
so we find in this case our result agrees with the computations in [22].
In fact, the pairing we use, after modified by the above automorphism,
is the well-known Weil pairing of elliptic curves.

6. The monochromatic stable Hopf invariant for

β-families

The previous section computes the behavior of the James-Hopf map
on second monochromatic homology. Then we have the corresponding
map on ANSS. In this section we will show that for p ≥ 5, there are
no obstructions to get a homotopical conclusion.

Recall that on the second monochromatic layer of the sphere, the

βk/j,i is represented by an expression with leading term
vk2
pivj1

on the zero
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line of the E2-term of the ANSS. Theorem 1.2 shows that the image of

this term in ANSS lies in filtration pj + i, and represented by
vk−j
2

vi1
in

the AHSS for the E2 term of ANSS for P1 = Σ∞BΣp.
So there are two possibilities. One is that the James-Hopf map

sends βk/j,i to the element represented by
vk−j
2

vi1
in filtration pj + i, and

in this case we conclude that the K(2)-local stable Hopf invariant of
βk/j,i is βk−j/i. The other possibility is that the James-Hopf map sends
βk/j,i to something with larger filtration. In that case, since on E2-

term of ANSS, the image of
vk−j
2

vi1
on the corresponding subquotient is

zero because it lies in a lower filtration, we conclude that the image of
βk/j,i under the James-Hopf map must be represented by terms with
homological filtration at least one in ANSS. The following lemma shows
that the latter does not happen if p ≥ 5.

Lemma 6.1. Let p ≥ 5. In dimension 2(p−1)k−1, the E2-term of the
ANSS for M2P1 vanishes, and in dimension 2(p−1)k−2, the terms in
the E2-term of ANSS all lie in homological degree 0, with AHSS name
va2
vb1

for certain choices of a, b.

Proof. We will use AHSS to compute the E2 term of the ANSS for
M2P1.

Since there is a filtration on P1, with subquotients Σ2(p−1)m−1M(p),
(with M(p) the Moore complex), the E1-term of the AHSS are the
E2-term of the monochromatic layer of the Moore complex.

We will use the data for the Moore complex in [2]. First we start
with the Smith-Toda complex V (1). We find that the only terms in
dimensions equivalent to 0, 1 modulo 2(p − 1) in the E2-term of the
ANSS for M2V (1) are the terms va2 . Hence, using the fact that |v1| =
2(p − 1), we conclude that on dimensions equivalent to −1, 0 modulo
2(p−1), the only terms in the E2-term of the ANSS ofM2V (0) are the

terms
va2
vb1
. Hence in the E1-term of the AHSS for the E2-term of ANSS

of M2P1, the only terms in the relevant dimensions are as claimed. �

So we find that, when p ≥ 5, there are no obstructions coming
from higher ANSS differentials, because the β family lies in dimen-
sions equivalent to −2 modulo 2(p − 1), and there are no terms with
higher homological filtration in the ANSS of M2P1. Hence Theorem
1.3 follows from Theorem 1.2.

Remark 6.1. In fact, for p ≥ 5, the ANSS for LK(2)P1 collapses
at the E2-term. So all the AHSS differentials come from ANSS d1-
differentials, which are algebraic.
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7. Passage to the actual Hopf invariant

We have given a method to understand the monochromatic Hopf
invariant. The natural question is, how can we get information on the
actual Hopf invariant. Here is an example:

Example 7.1. We have shown that, for p ≥ 5, the monochromatic
Hopf invariant of β1 is β0, which is represented by 1

pv1
. This element

lies on the (p + 1)-st Moore complex. We know that it is killed in the

chromatic spectral sequence by the element
v−1
1

p
in chromatic height 1.

From [18], this supports an AHSS differential to h0
p

on the (p − 1)-st
Moore complex. So we conclude that the actual stable Hopf invariant
of β1 is α1, which is well-known.

So we see that we can combine our knowledge on the chromatic
spectral sequence to understand the actual Hopf invariant. However,
in order for this kind of argument to work, we still need an unstable
analogue of the chromatic spectral sequence.

We can begin the unstable analogue as follows. Start with a topo-
logical space X . (Localize it at p first.) We invert p to get a map
X → p−1X . We take N0 to be the fiber of this map. Then we invert v1
to get N0 → Ω∞Φ1N0. Then we take N1 to be its fiber. And then we
invert v2 on N1, and so on. This is precisely the same procedure for the
stable case if we start with an infinite loop space. The K(n)-local ver-
sion is completely analogues: we just replace the functor Φn by ΦM(n).
When the stable chromatic tower converges, we could conclude that we
can recover the actual stable Hopf invariant using the monochromatic
information.

However, even with such an unstable chromatic spectral sequence,
there are still ambiguities. This comes from the fact that the filtrations
in the chromatic spectral sequence and the Atiyah-Hirzebruch spectral
sequence are different. So there is possibility that the same element
might have different choice among its terms as the leading term. The
effect is that, the above calculated candidate is either the actual Hopf
invariant, or the actual one has a higher chromatic height, living on a
higher cell. So we only have a lower bound on the sphere of origin. In
favorable cases, we have constructions to achieve the lower bound, and
then we can say the Hopf invariant is the computed value.

Example 7.2. Let p ≥ 5. We know that β1 can be desuspended to
S2p−1. We suspend it to the sphere S2p+3. This is in the p-primary
stable range. It is not hard to see that we can extend it to a map V (1)→
S2p+3 in which V (1) is a desuspension of the Smith-Toda complex with
bottom cell in dimension 2p2 + 1, and the restriction of the map to
the bottom cell is β1. Since this is already in the stable range, the
map v2 desuspends, so we can construct maps vk2 : Σk|v2|V (1)→ V (1).
Composing the maps β1 and vk2 , we conclude that βk desuspends to
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S2p+3 and the stable Hopf invariant is βk−1, for k ≥ 2. This agrees
with [4].

Note that how the above arguments fail for lower spheres. In the case
of S2p−1, 2β1 is not zero. This element, with Hopf invariant α2, is killed
in the EHP sequence by the element id on S2p. In the case of S2p+1,
the Toda bracket < α1, 2, β1 > does not vanish, with Hopf invariant α1.
This element is killed in the EHP sequence by the element id on S2p+2.
Similarly on S2p+2, we have the Toda bracket < 2, α1, 2, β1 > not zero
with Hopf invariant 2. So in either cases, the element β1 cannot be
extended to V (1).
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