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This paper represents a first step in applying localization techniques to the compu-

tation of the algebraic K-theory of spaces, and in particular to the task of reducing

that computation to the computation of the algebraic K-theory of rings.

In order not to obscure the essential points by great generality we shall re-

strict ourselves to the special case of the space A(*) , the algebraic K-theory of

a point. What we would like to do is to reduce the computation of A(*) to that

of K(Z) , the algebraic K-theory of the ring of integers, and in particular to com-

pute fibre( A(*) K(Z) ) , the homotopy fibre of the natural map.

That task is not easy. For, as will be explained in an appendix, it follows

from the Lichtenbaum-Quillen conjecture (which is regarded as rather respectable

among experts in the algebraic K-theory of rings) that fibre( A(*) K(Z)) must

in some way or other account for all of that formidable object, the cokernel of J

Here is an outline of what is done in this paper. The space A(*) may be con-

structed according to a certain recipe out of the category of pointed spaces of

finite (homotopy) type; alternatively one could use spectra of finite type for the

purpose (these matters are explained in section I below). The recipe is fairly

general and can be applied in the same way to other categories of spaces or spectra.

In particular if p is a prime, the recipe can be applied to the category of p-Iocal

spectra of finite type.

Let us denote the result of this construction by A(*,p) .

the ring of integers localized at p. There is a natural map

Let denote

A(*,p) K(Z(p))

and we shall show that its homotopy fibre may be identified to the p-local part of

fibre( A(*) K(Z) ). In this sense the task of computing the latter has been

broken up into its p-Iocal parts now.
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In contradistinction to what one might expect by analogy with the algebraic

K-theory of the ring Z , it is possible here to continue fracturing by localization

methods. This is where the chPomatic fiZtration comes in (there is one such for

each prime p). By definition, the chromatic filtration is a particular sequence

of localization functors in stable homotopy. The characteristic feature of these

localization functors, as opposed to localization functors in general, is that they

may be defined in terms of acycZic spaaes of finite type (these matters are explained

in section 2 below). The existence of the sequence is still conjectural beyond the

first few terms; the relevant conjectures are due to Bousfield and Ravenel.

As will be explained (in section 3) the existence of the chromatic filtration

implies the existence of a locaZization tower (whose maps are induced by localization

functors)

The bottom term A(*,p,O) turns out to be the same (up to homotopy) as K(Q) , the

algebraic K-theory of the ring of rational numbers; the next term A(*,p,l) is in

some sense the algebraic K-theory of the non-connective J (image-of-J-theory at

the prime p). The layers of the tower (the homotopy fibres of the maps of conse-

cutive terms) represent the contributions of what in Ravenel's terminology are the

monochromatie phenomena in stable homotopy theory.

There is a second tower associated to the chromatic filtration, an integraZ

(or connective) analogue of the former tower,

A(*,p) = A(*,p,oo) •.• ---+ A(*,p,2) --+A(*,p,l) --+A(*,p,O)

The bottom term A(*,p,O) here is K(Z(» , the algebraic K-theory of the ring of
p

p-Iocal integers, and the next term A(*,p,l) is the algebraic K-theory of the con-

nective J. The construction of the spaces A(*,p,n) is very much like that of

the algebraic K-theory of rings in the framework of the plus construction. This

means that a certain amount of explicit computation is possible in low degrees.

There does not however seem to exist a direct description of the layers in the

tower. This suggests to try reducing to the former tower in order to obtain infor-

mation about the layers.

There is a natural transformation A(*,p,n) A(*,p,n) • Modulo certain tech-

nical assumptions we can give an explicit description of the fibre, by localization

methods again. For n = 0 the map is the natural map K(Z(p» K(Q) • and in that

case our description of the fibre reduces to a case of Quillen's localization theo-

rem.

It is a pleasure to acknowledge that discussions with Marcel Bokstedt have been

helpful in the preparation of this paper.
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I. Review of algebraic K-theory.

We recall the definition of A(*) from the category viewpoint [14], [S ], [16].

Let C be the category of pointed spaces of finite type, that is, pointed spaces

having the homotopy type of a finite CW complex (as a technical point, C is not a

'small' category, but we can replace it by one). Then A(*) is defined as the loop

space of the CW complex

the geometric realization of the bisimplicial set

is the set of commutative diagrams in C ,

>-----+ •.• lo--+yl
O,n

w S Cmn

in which the horizontal arrows >---+ denote cOfibrations, and the vertical arrows

denote (weak) homotopy equivalences.

The face and degeneracy maps in the vertical direction are given by omission

and reduplication of data. This may conveniently be summarized by saying that the

bisimplicial set arises as the nerve of a simplicial category; namely of [n] wSnC

the category of the diagrams

* = YO 0 >-----+ YO 1 >-----+ YO 2 >-----., , ,

and their weak homotopy equivalences.
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The face structure in the horizontal direction is slightly more complicated.

All but one of the face maps are still given by omission of data, but the face map

numbered ° involves a quotient space construction. It takes the above object to

* = Y1,1 -Y1,2 >--7 ... --Y1,n where Y1,k YO,k / YO,I

(As a technical point, quotient spaces are only well defined up to canonical isomor-

phism. This need not concern us very much, however. One just rearranges the con-

struction a little by including the choices of quotients Y.. = YO ./Y
O'

in the
1- ,J ,J,1-

data of the diagrams, cf. [14], [16]).

The construction is formal in the sense that it uses little knowledge about the

category C Indeed, the only thing required (apart from the technical point con-

cerning the existence of an object in C which is both initial and terminal) is the

fact that there are singled out two particular kinds of morphisms which are called

cofibrations and weak equivalences, respectively, and which have suitable properties

(e.g. cofibrations have quotients, and the weak equivalences satisfy a gluing lemma).

This suggests defining the notion of a category with cofibrations and weak

equivalences. This is a category C equipped with subcategories co(C) and w(C) ,

and the data are subject to a short list of plausible axioms (which will not be re-

peated here, cf. [14], [16]). The definition of the simplicial category [n] wSnC

(or wS.C , for short) now carries over word for word. We think of this simplicial

category (or rather of the loop space of its geometric realization) as the algebraic

K-theory of the category C or better, to be precise, as the K-theory of C with

respect to the chosen notions of cofibration and weak equivalence.

In practice it turns out that the notion of cofibration is usually fixed once

and for all. That is, it just doesn't occur in practice that some category C is

considered as a category with cofibrations in more than one way. In particular, for

the spaces and spectra in the present paper the term cofibration will always have

its usual meaning. By contrast, it is not at all pathological nor even exceptional

that some category C is considered as a category with weak equivalences in more

than one way. For example if E is a spectrum, and C the category of pointed

spaces (resp. of spectra) then the notion of E-equivalence is a perfectly acceptable

notion of weak equivalence in C. In fact, the interplay between different notions

of weak equivalence arising in this way is one of the things that localization

theory is going to be about.

It may be appropriate to say a word about the ever recurring finite type condi-

tion. One could take it as one of the facts of life that in connection with alge-

braic K-theory there is always some finiteness condition around, be it explicit or

implicit. But one can also give a simple explanation: in the absense of a finite-

ness condition algebraic K-theory just isn't interesting and therefore is not consi-

dered. For as soon as, say, infinite sums are allowed in the category C one can
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go through a version of the Eilenberg swindle. Namely if the endofunctor F(A)

A v A v .•. is defined then one certainly has an isomorphism Id v F F. On

the other hand the sum in C induces a composition law on Iws.cl making it an in

finite loop space in the manner of Segal [10] and in particular therefore a group

like Hspace (cf. [16] for details). In the homotopy Id v F F one can then

cancel F to conclude that the identity map on Iws.cl is nullhomotopic.

There is one general computation that is easy to do. This is the determination

of KO' the class group, in terms of generators and relations. By definition this

group is or what is the same thing, the fundamental group of the CW com

plex Iws.cl There is a well known recipe on how to compute the fundamental group

of a reduced CW complex in terms of the cells of dimension I and 2. Applying the

recipe in the case at hand one obtains that the class group is the abelian group ge

nerated by the objects A E C , and subject to two kinds of defining relations,

[AO] = [AI] if there is a weak equivalence AO ::. AI, and

In particular, in the case of the pointed spaces of finite type and their weak homo

topy equivalences one obtains the group Z , and the integer represented by

a space is just its (reduced) Euler characteristic. Other cases will be considered

later.

To conclude this review we shall outline an argument now to justify the fact

that the space A(*) may not only be defined in terms of pointed spaces of finite

type but also in terms of spectra of finite type. We will need to know about

general results for this.

A functor between categories with cofibrations and weak equivalences, say

F: C C' , is called exact if it preserves all the relevant structure. In that

case it induces a map wS.F: wS.C wS.C' .

A weak equivatence between exact functors C C' is a natural transformation

F F' so that for every A E C the map F(A) F'(A) is a weak equivalence in

C' . Not very surprisingly there results a homotopy between wS.F and wS.F' in

this case. For example the cone functor on the category of pointed spaces is exact,

so it induces a selfmap on A(*) , and it is weakly equivalent to the trivial map,

so the selfmap is nullhomotopic.

A cofibration sequence of exact functors C C' is a sequence of natural

transformations FI F F" ,or F' >+F *F" as we shall write, having the pro

perty that for every A E C the map FI(A) F(A) is a cofibration in CI , and

F(A) F"(A) represents the associated quotient map. A basic technical tool about

the construction C H wS.C is the additivity theorem. One of several equivalent

formulations says if F' >+F *F" is a cofibration sequence of exact functors
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then there exists a homotopy between wS.F and the sum of the maps wS.F' and

wS.F" •

To come back to the situation at hand, there is a cofibration sequence of exact

functors on the category of pointed spaces,

identity >---+ cone suspension

In view of the additivity theorem therefore the self-map Id v L of A(*) is null-

homotopic, thus the suspension represents a homotopy inverse for the additive H-space

structure on A(*)

A(*) to itself.

In particular the suspension induces a homotopy equivalence of

Now C wS.C is compatible with direct limits, so we obtain that (up to homo-

topy) A(*) is also definable in terms of the category with cofibrations and weak

equivalences C say,

where each C is the category of pointed spaces of finite type, and C .... Cn n n+\
is the suspension map. C is a category of spectra containing the full subcategory

of the finite spectra but it is somewhat smaller than C , say, the category of

spectra of finite (homotopy) type. We will therefore want to know that the inclu-

sion wS.C .... wS.C is a homotopy equivalence. While this is certainly plausible it

is not self-evident, and an argument is required. The argument is provided by the

following useful criterion whose applicability in the present situation is straight-

forward to check.

The criterion gives a sufficient condition for an exact functor F: C .... D to

induce a homotopy equivalence wS.C .... wS.D. We refer to it as the approximation

theorem. The idea behind is that the homotopy type of wS.C should only depend on

the 'homotopy theory underlying C' (whatever that may be). The approximation the-

orem makes this precise in the form of three axioms [16l. The first axiom says,

roughly, that the general setup should be as in homotopy theory (in particular this

rules out some fancy notions of weak equivalence and asks that mapping cylinder con-

structions should be available). The second axiom says if A .... A' is a map in C

then if F(A) .... F(A') is a weak equivalence in D it follows that A .... A' is a

weak equivalence in C (the converse is implied by the exactness of F, of course).

The third axiom finally insists that objects of D are 'homotopy equivalent' to ob-

jects coming from C , and morphisms too; the precise formulation is that given

objects A E C and BED, and a map f: F(A) .... B in D , then there exist a

cofibration g: A .... A' in C and a weak equivalence h: F(A') .... B in D so that

the resulting triangle commutes, i.e. f = hF(g) .
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2. Review of localization.

The main references are to papers by Adams [ I l , Bousfield [ 2], and Ravenel

[ 8].

Let E be a spectrum. A spectrum X is called E-aayaZia if the E-homology

groups E*X = 'JT*(EAX) are trivial. Likewise a map X' .... X" is called an E-equiva-

Zenae if it induces an isomorphism E*X' .... E*X" A spectrum Y is said to be

E-ZoaaZ if it does not admit any non-trivial map from an E-acyclic spectrum; an

equivalent condition is that for every E-equivalence X' .... X" the induced map of

sets of homotopy classes [Xli, y] .... [X', y] is an isomorphism.

By an E-ZoaaZization of a spectrum X is meant any E-Iocal spectrum Y toge-

ther with an E-equivalence X .... Y It follows from the definitions that the E-Io-

calization is unique up to (weak) homotopy equivalence under X. Bousfield has

shown that it always exists, in fact that there exists an E-ZoaaZization LE
[ 2].

There is a correspondence between localization functors and aayaZiaity types.

For on the one hand the E-Iocalization depends only on the class of the E-acyclic

spectra: if E' and E" happen to have the same acyclic spectra then their associ-

ated localization functors are the same, by definition. And on the other hand the

E-acyclic spectra may be recovered from the localization functor L
E

as the 'pre-

image of zero'; that is, the E-acyclic spectra are precisely the ones whose E-Ioca-

lization is trivial (up to homotopy). The correspondence allows us to formulate a

finite type condition on the localization functor L
E

in terms of the associated

acyclicity type. The condition is simply that CI(L
E)

, the class of the E-acyclic

spectra, is in some sense generated by finite spectra.

To make this precise let US say that a class of spectra is if it is

closed under

homotopy equivalence and shifting (suspension and de-suspension)

the formation of (possibly infinite) wedges

the formation of mapping cones.

For any spectrum E the class of the E-acyclic spectra is saturated. Conversely

it is known [ 2] that any saturated class occurs in this fashion from a suitable E

If M is any collection of spectra let the of M mean the smallest sa-

turated class of spectra containing M; we denote it sat(M) We will say that a
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localization functor L , resp. the associated acyclicity type CI(L) , is generated

by a collection of spectra M if CI(L) = sat(M) • And we will say that a localiza

tion functor is of finite type, or that it is a finite localization functor, if it

is generated by some collection M any member of which is a finite spectrum. (Note

that the number of spectra in M may well be infinite, however).

A finite localization functor has an important property which we refer to as

the convergence property. It says that for every X the localization LE(X) may

be obtained, up to homotopy, as the direct limit of a sequence of Eequivalences

each of which has finite homotopy cofibre. In particular if X is finite then

LE(X) is the direct limit (up to homotopy) of a sequence of finite spectra Eequi

valent to X.

The proof may first of all be reduced to the assertion that the Eacyclic spec

trum LE(X)/X , the (homotopy)cofibre of X LE(X) , is the direct limit (up to

homotopy) of a sequence of finite Eacyclic spectra. (For LE(X) can be recon

structed by attaching LE(X)/X to X). By hypothesis now CI(LE) is generated by

some collection M any member of which is finite and therefore certainly has the

property asserted of LE(X)/X Inspection of the individual constructions per

mitted in generating sat(M) out of M now shows that each member of sat(M) must

have the property also; in particular therefore LE(X)/X does.

The following properties of a spectrum E and of the associated localization

functor LE are particularly desirable. It is known that these four properties are

mutually equivalent [8].

Every direct limit of EIocal spectra is EIocal,

LE commutes with direct limit (up to homotopy),

LE(S) , the localization of the sphere spectrum,

LE(X) = TAX (up to homotopy), in particular T = LES = LELES = TATAS = TAT.

A spectrum (resp. localization functor) having these properties is called smashing
[8].

Finite localization functors are smashing. For if LE is any such then for

every X the localization LE(X) is obtainable from X by repeated attaching of

finite Eacyclic spectra (the convergence property). It follows that LE(X) is the

direct limit of the localizations of the finite subspectra of X, thus LE com

mutes with direct limit and is therefore smashing.

It has been conjectured by Bousfield [ 2] and Ravenel [ 8] that, conversely,

all smashing localization functors should be of finite type. Furthermore Ravenel

has formulated some spectacular conjectures which assert a complete classification

of the smashing localization functors. We shall discuss these conjectures below.
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One defines a partial ordering on localization functors by saying that L' L"

if L' retains at least as much information as L" does; in other words if every

L' -trivial spectrum is also L"-trivial. One knows that, up to homotopy, L 'L" = L"

L"L' in this situation.

If a smashing localization is not trivial it is L(O) , the rationalization.

On the other hand every rationally trivial spectrum decomposes into its p-primary

parts. There is therefore no essential loss of generality in restricting attention

to localization functors which are L(p) , the localization at a prime p The

conjectures of Ravenel, below, assert that there is precisely a sequence of smashing

(or indeed, finite) localization functors between L(p) and L(O) ,

L(p) = L(p,oo) > > L(p,2) > L(p,J) > L(p,O) = L(O)

this (conjectural) sequence is the chromatic fiZtration.

Following Ravenel, but adapting the notion a little, let us say that a spectrum

is disharmonic (at p, to be precise) if it is trivial with respect to all finite

localization functors < L(p) Examples of disharmonic spectra are provided by the

bounded-above p-torsion spectra (I am indebted to Bokstedt for pointing out this

fact and for contributing the following argument):

L(p) •
contains asX A zIpis bounded below the Hurewicz theorem applies, andXSince

Let L be a finite localization functor < L(p) Then L is smashing and it

trivializes at least one bounded-below spectrum X not trivialized by

a summand a (shifted) copy of the Eilenberg-MacLane spectrum ZIp The triviality

of L(X) = TAX thus not only entails that of T A X A zIp but also that of T A ZIp
L(Z/p) . We conclude by a cofibration argument that L trivializes every p-tor-

sion spectrum bounded both above and below, i.e. having only finitely many non-zero

homotopy groups. A bounded-above spectrum, finally, is a direct limit of such, so

it is trivialized by L, too.

Here is an interesting special case. Let L be a finite localization functor,

and SL L(S) the localization of the sphere spectrum. Then S SL

valence since L is smashing. Let SL be the connected cover of SL

is bounded above and hence disharmonic. It follows that SL SL and

also SL-equivalences.

is a SL-equi-

Then SL!SL

S SL are

To conclude this review we will now describe in more detail the conjectures of

Ravenel [ 8] as far as they are relevant to the present context. The conjectures

were motivated by the manifestation of certain algebraic phenomena in the context of

the Adams-Novikov spectral sequence associated to the Brown-Peterson spectrum BP

The conjectures seek to say that the algebraic phenomena are there for geometric

reasons.

Let denote the p-localization of BP it is a ring spectrum (in the
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sense of stable homotopy theory - no coherence conditions asserted) and its homotopy

groups form a polynomial ring Z(p)[v].vZ •..•vn •.•. ] where the generator vn has

grading Zpn-Z; it is convenient to let Vo = p • the prime at hand. The multipli-
-1

cation by vn gives a (graded) self-map of BP(p) • and one defines BP(p)[Vn ]

as the telescope of this self-map; that is. the homotopy direct limit of the sequence

·vn

-I
The spectrum BP(p)[Vn ] admits the multiplication by

is thus a periodic spectrum (if n>O).

v
n

as an automorphism. it

denote the localization functor associated toL
n

being understood.

Following Ravenel we let
-I

BP(p)[Vn J • the prime p

if p

The smashing oorujecture [8 I asserts that

be true for n p-Z as well as for n =
L
n

is smashing.

z [8].

This is known to

When combined with the finiteness conjectu:t'e of Bousfield and Ravenel (that

smashing localizations are necessarily finite) it asserts that Ln is finite. This

is known to be true for L] [Z J (and of course for La). The situation is slight-

ly better with regard to the existence of finite Ln-trivial spectra. Such spectra

have been obtained for small values of n in connection with the construction of

the so-called periodic families in the stable homotopy of spheres [8]. [3 J.

The elaee invariance coruieature [8 J finally asserts that. as far as: finite

spectra are concerned. there are no acyclicity types beyond those provided by the L
n

form a sequence with respect to the par-It is known [ 8 J that the functors L
n

tial ordering of the localization functors. namely Ln > Ln_ 1 • The three conjec-

tures taken together then say that the sequence of the Ln is the aforementioned

chromatic filtration.

Independently of the conjectures one knows that all finite spectra X are har-
monic [81. that is. they are local for the homology theory given by the wedge of

all the BP(p) [vn-1J ; in particular if X is finite and non-trivial then Ln(X)

is non-trivial for sufficiently large n

On the other hand one also knows many (infinite) X which are dissonant. that

is. they are trivialized by each of the Ln (if the conjectures are true then

"dissonant" is the same as "disharmonic"). For example the p-torsion Eilenberg-

MacLane spectra are known to be dissonant [8 J.
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3. The local counterparts of A(*) •

Let C denote the category of spectra. Let L: C C be a localization func

tor. Associated to L there is a category of weak equivalences we where, by de

finition, a map in C is in we (or is a w-map, as we shall say) if the homotopy

cofibre is trivialized by L

A spectrum is finite up to if it is in the same connected compo

nent, in we , as some finite spectrum; we denote the subcategory of the wfinite

spectra by Cwf' Let C(L) denote the category of the Llocal spectra, and

C(L)f C(L) n Cwf

If L' is a second localization functor, coarser than L, we let
L'

C denote

the category of the L'trivial spectra, and

C(L) n C
L'

Let the hmaps, finally, mean the weak homotopy equivalences.

Localization theorem. Let Land L' be localization functors of finite type,

and L > L' . There is a homotopy cartesian square

L'
hS,C(L)f hS,C(L)f

t 1
hS,C(L')f hS,C(L')f

where the term on the lower left is contractible.

In other words, if one considers the Ktheories of the Llocal and of the

L'local spectra, respectively, then their difference (i.e. the homotopy fibre of

the natural map) is explicitly describable, namely it is represented by the Ktheory

of the category of those Llocal spectra which are L'trivial.

Proof. There is a similar looking result which is valid in a much more general con

text. In the situation at hand we check that the terms may be rewritten in the

desired form.

Namely if a category with cofibrations is equipped with two notions of weak
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equivalence, one finer than the other, then under rather general hypotheses which

we will not spell out here, there results a homotopy cartesian square of the associ

ated Ktheories [14], [5], [16]. In particular there is such a square in the case

of the category Chf of the homotopyfinite spectra, equipped with the two notions

of weak equivalence wand w' given by Land L' ,respectively. It reads

w'
wS'Chf 

1.
wS,Chf

j
In order to put this square into the desired form we will need to know of the

finiteness of the localization functors, and of the ensuing smashing property (sec

tion 2).

Since L is smashing we can replace it, if necessary, by the functor given by

smashproduct with a Llocalization T of the sphere spectrum. The LIocalization

can thus be an exact functor in the technical sense, so it induces a map in Ktheory.

Similarly L' can be replaced, if necessary, by smashproduct with

it can also be replaced by smashproduct with TAT' (since L > L' ).

T' But

It results

that we can define a natural transformation from the above square to the square of

the theorem: On the upper terms the map is induced by smashproduct with T , and

on the lower terms it is induced by smashproduct with TAT' (We are using here

that hS,C(L)f = wS,C(L)f in view of the fact that hmaps and wmaps are the same

in C(L) ; and similarly with the other terms).

To conclude we check that the map of squares is a homotopy equivalence on each

term. We treat only the case of the map wS,Chf hS,C(L)f' The other cases are

similar.

The map factors as

wS,Chf ---+ wS,Cwf -- hS,C(L)f

so it suffices to show that these two maps are homotopy equivalences.

The inclusion wS,C
hf

wS,Cwf is a homotopy equivalence because of the appro

ximation theorem (section I) which applies in view of the convergence property (sec

tion 2) of the finite localization functor L

The localization map Cwf C(L)f is left inverse to the inclusion C(L)f Cwf
up to a natural transformation which is a wequivalence. It results that the loca

lization map induces a deformation retraction from wS'Cwf to wS,C(L)f = hS,C(L)f

This completes the proof of the localization theorem. _
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Let now P be a set of primes. We denote by A(*,P) the analogue of A(*)

constructed from P-Iocal spaces or spectra; that is, QlhS,C(P)fl .

Lemma I.

from P

There is a natural map A(*,P) K(Z(p» which is an equivalence away

More precisely, the homotopy groups of the homotopy fibre are P-torsion,

and the first p-torsion, pEP, occurs in dimension 2p-2 .

Proof. The map is given by linearization (this involves a definition of the alge-

braic K-theory of rings analogous to that of the algebraic K-theory of spaces, but

in terms of abelian-group-objects, resp. module-objects, cf. [16]). To obtain the

numerical statement we have to know that A(*,P) can also be defined in other terms.

This is one of the main results about the algebraic K-theory of spaces, the argument

is given in [16] for the case where P is the set of all primes, i.e. the case of

A(*). It is not difficult to modify the argument so as to apply to the case of ge-

neral P. The outcome is that A(*,P) may be redefined, up to homotopy, as

Z x llm BH(VkS(p»+

k
where V S(P) denotes a wedge of k P-Iocal sphere spectra, H( .• ) is the sim-

plicial monoid of homotopy equivalences, BH( •• ) its classifying space, and ( .• )+

denotes the plus construction of Quillen. Given that, under the translation, the

A(*,P) K(Z(p»
k themap corresponds to the natural map BH(V S(P» BGlk(Z(p» ,

asserted numerics now follows easily from the fact that the higher homotopy of S(P)
is P-torsion only and the first p-torsion occurs in dimension 2p-3 . -

Lemma 2. The map A(*,(O» K(Q) is a homotopy equivalence.

Proof. This is the special case P = 0 of the preceding lemma. _

Let F(*,P) denote the K-theory of the P-Iocal torsion spaces, or what is the

same, the P-torsion spaces.

Lemma 3. There is a homotopy equivalence

n' F(*,p)
pEP

where n' denotes the restricted product, the direct limit of the products indexed

by the finite subsets of P.

Proof. Every P-torsion spectrum decomposes, up to homotopy, into its p-primary

parts, and only finitely many of these parts are non-trivial because of the finite

type condition on the spectrum. This shows that the approximation theorem (section

J) applies to the reconstruction map which takes a finite collection

of p-primary spectra to the wedge of these spectra. _
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Lemma 4. There is a diagram of homotopy fibrations

F(*,p) I A(*,p) )A(*,(O))

1 j
K(Z/p) ) K(Z(P)) ) K(Q)

In particular the square on the left is homotopy cartesian.

Proof. The upper row is given by the localization theorem applied to the rationali

zation map A(*,P) A(*,(O)) , together with the rewriting provided by lemma 3.

The lower row is the analogous case of Quillen's localization theorem for the map

K(Z(p)) K(Q) . To obtain the map from top to bottom it is necessary to rewrite

the lower row suitably, namely as the analogue of the upper row in the framework of

abeliangroupobjects, cf. [16]. The map on the right is a homotopy equivalence by

lemma 2••

Theorem. The square

A(*) ) n A(*,p)

j
p

1
K(Z) ) n K(Z( ))

p p

is homotopy cartesian, and for every prime p there is a homotopy equivalence

fibre( A(*) K(Z) )(p) fibre( A(*,p) K(Z(p)) ) •

Proof. By lemma 4 there are homotopy cartesian squares

n' F(*,p) F(*,p) A(*,p)
p

1 1 1 1
n' K(Z/p) ) K(Z) K(Z/p) ) K(Z(p))
P

and the localization at p induces a map from the former to the latter. We take

the product of all these maps. Then the square formed by the right hand columns

gives the square of the theorem. To show it is homotopy cartesian it suffices to

show that the square formed by the left hand columns is homotopy cartesian. That is,

we want to show that the map

fibre( n' F(*,p) n' K(Z/p) ) + fibre( n F(*,p) n K(Z/p) )p p p p
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is a weak homotopy equivalence; equivalently (by lemma 4 and since the homotopy fibre

commutes with products and direct limits, up to homotopy) that the inclusion map

fibre( A(*,p) K(Z(p» ) -----+ fibre( A(*,p) K(Z(p»

is one. But by lemma 1 the homotopy group fibre( A(*,p) K(Z(p») is zero

for sufficiently large p (depending on n). So the map induces an isomorphism on

homotopy groups.

The second part of the theorem follows from the first by taking p-localizations

of the vertical fibres and noting that

fibre( A(*,q) K(Z(q» )(p)

in view of lemma I .•

Let us fix a prime p now. Recall from section 2 the localization functors

L >
'"

> L >
n

> >

-I
where Ln is associated to BP(p)[Vn ] (and La is the same as rationalization).

Following the conjectures of Bousfield and Ravenel discussed in section 2 we make the

Hypothesis. Ln is a finite localization functor.

Let us denote the category of the Ln-local spectra by C(p,n) .

A(*,p,n) to be its K-theory,

We define

n IhS.C(p ,n)f I ,

where as usual the subscript f indicates the finite type condition. Localization

induces maps between these spaces, so we obtain a tower of spaces and maps,

interpolating between A(*,p) and the K-theory of the rational numbers.

Next, let C(;:n) be the subcategory of C(p,n) of the spectra which are

Ln_1-trivial; this is what Ravenel calls the n-th monochromatic category [8]. By

the localization theorem its K-theory

n-I
n IhS.C (p,n)f I

represents the n-th layer in the localization tower,

fibre( A(*,p,n) A(*,p,n-I) ) •

The following argument, due to Bokstedt, can be used to prove the non-triviality

of M(*,p,n) in certain cases. Suppose h* is a homology theory coarser than Ln
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(that is, Ln-triviality implies h*-acyclicity). Suppose further that for finite

Ln_1-trivial X the groups hiX are finite and periodic of period 2s, say.

Let ciX denote the order of hiX Then, as one checks, the rational number given

by the alternating product

eX

is multiplicative for cofibration sequences. It results that c defines a homomor-

phism from the class group rrOM(*,p,n) to the multiplicative group of rational num-

bers.

The argument applies in the case of rroM(*,p,l) and shows that this group is

not trivial. For it is known [8] that the localization functor L
I

is definable

in terms of p-Iocal complex K-theory, and KU
i

applied to a finite torsion spectrum

is certainly finite and periodic. It suffices then to note that the number eX is

not in the case of the Moore spectrum Sip

It is likely that a similar argument can be applied to show that rrOM(*,p,2)
is not trivial, and more specifically that the Toda spectrum V(I) represents an

element of infinite order. (Recall that V(I) is the mapping cone of a certain

graded self-map on the Moore spectrum Sip ; the self-map induces multiplication by

(a power of) v j in BP-homology). Assuming this is so, we can deduce a strange

looking consequence. Namely the element [V(I)] in rr
oM(*,p,2)

projects to zero

in rrOA(*,p,2) because the cofibration sequence rk(S/p) >----+ sip _V(J) (where k

is even) implies a relation [V(I)] [Sip] - [Sip] Therefore [V(I)] must be

the image of some element vI ' say, in rr1A(*,p,1) • Thus the periodicity operator
-I

vI E rr*BP(p) [vI ] somehow corresponds to a 'phantom unit' vI in algebraic

K-theory.

As to a general attack on the spaces M(*,p,n) , the first (and perhaps main)

step should be the search for a devissage theorem. Its content would be that for

the purpose of constructing M(*,p,n) one does not really need all of the mono-

chromatic category but only a subcategory of elementary objects. A good

candidate for the elementary objects would seem to be the spectra in C
n- I

which(p,n)
are periodic of minimal period.

We proceed to the construction of the integral localization tower A(*,p,n)

Asis a finite localization functor.Recall our standing hypothesis that L
n

a consequence Ln is smashing (section 2), and Sen) , the Ln-Iocalization of the

sphere spectrum, satisfies Sen) A Sen) Sen) and is thus a very particular kind

of ring spectrum. In particular the associated infinite loop space QS(n) is a

ring space.

Let denote the space of k x k matrices. It is a multiplicative

H-space and, if n I , the monoid of connected components is Mk(Z(p)) . Define
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GLk(QS(n)) as the union of connected components given by pullback with the inclu

sion of GLk(Z(p)) in

Lemma. has a canonical (up to homotopy) classifying space.

set) of maps
k k

Map(V S,V Sen))

a monoid by com

position of maps;
k k
V S V Sen) on the one hand and by smash product with Sen) on the other, using

that Sen) A Sen) Sen) It results that GLk(QS(n)) is homotopy equivalent,

as Hspace, to a monoid. _

Proof. QS(n) may be defined as the space (or better, simplicial

S Sen) ,and may be identified to the mapping space

The latter is homotopy equivalent to Map(Vks( ),vks( ,) which is
n n)

the requisite homotopy equivalences are given by restriction along

We define

The factor Z is the class group of the ring , it has to be taken care of

in this artificial way since the class group is invisible to the plus construction.

The case n = ° is exceptional from the present point of view, we can include it

by defining A(*,p,O) as Z x 11m BGLk(Z(p))+

By exploiting the plus construction one can arrive at a certain amount of nume

rics (as in [14], [16]). There is one general result which can be obtained in this

way, namely the fact that the map

A(*,p,n) A(*,p,nl)

is an equivalence away from p (this uses that QS(n) QS(nl) is an equivalence

away from p , as well as Iconnected). Note this is in sharp distinction from the

situation with the other localization tower.

Beyond that it is possible to obtain quantitative results in (very) low dimen

sions. For example the first homotopy in fibre( A(*,p,l) A(*,p,O)) occurs in

dimension 2p2 and is cyclic of order p

that one can go much further in this way.

But it seems unreasonable to expect

Perhaps the best approach eventually will be to compare the two localization

towers. The idea is that in order to obtain information about

fibre( A(*,p,n) A(*,p,nl)

one should first try to compute with fibre( A(*,p,n) A(*,p,nl)

fibres of a natural transformation

as well as the
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There is no problem in defining a map A(*,p,n) A(*,p,n) . Briefly, one can

also construct A(*,p,n) out of BGLk(QS(n» by group compLetion (with respect

to block sum). And BGLk(QS(n» is practically contained in IhSIC(p,n)fl

(there are some technicalities; in particular the category hSIC(p,n)f should be

blown up to a homotopy equivalent simplicial category in order that one can have an

honest inclusion, cf. corresponding constructions in [16]). The inclusion of

BGLk(QS(n» into IhSIC(p,n)f' , the geometric of the category in

degree I, now induces an inclusion of the suspension BGLk(QS(n») into

IhS.C(p,n)f' , the geometric realization of the full simplicial category. The

adjoint of the latter inclusion then extends, by the group completion principle, to

the desired map of A(*,p,n) into the loop space nlhS.C(p,n)fl •

We will describe a localization theorem for the map A(*,p,n) A(*,p,n) now.

We need a further hypothesis. In fact we need the further hypothesis even for

formulating the theorem.

The hypothesis is that there exists a category of modules over the ring spec

trum Sen) , the connected cover of Sen) (for n I). The hypothetical part

about it is that the morphisms in the category should be actual maps, not homotopy

classes of maps. (There has been done some work on module spectra in this sense by

Robinson [ 9]; recent unpublished work of Schwanzl and Vogt is also relevant). Let

the hypothetical category be denoted Mod (S(n» It will be a category with cofi

brations and weak equivalences in the technical sense of section I. In fact there

are two notions of weak equivalence, the hmaps and the W4napS, where the former are

the weak homotopy equivalences and the latter are the maps which become equivalences

upon changing the ground ring from Sen) to Sen) (or what amounts to the same,

cf. below, the maps which become homotopy equivalences by Lnlocalization).

An object of Mod(S(n» is said to be finite if there is a finite filtration

(sequence of cofibrations, that is) any quotient of which is free of rank I, i.e.

a perhaps shifted copy of Sen) Somewhat more generally we can also speak of

finiteness up to h-equivaLence (resp. w-equivaLence); we indicate this by the sub

script hf (resp. wf). The coarser notion of weak equivalence gives rise to the
w

subcategory Mod(S(n» of the wtrivial modules, or torsion moduLes as we will

say.

The desired localization theorem says that the homotopy fibre

fibre( A(*,p,n) A(*,p,n) )

is represented by the Ktheory of the category of torsion modules over Sen)

The argument of proof is similar to that given in the proof of the localization

theorem in the beginning of this section. Namely for general reasons there is a

homotopy cartesian square
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OlhSO"!'S,n»h"

QIwS.Mod (5(n) I
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· OlhSol':,n»hfl

QlwS.Mod(S(n))hf l

in which the lower left term is contractible. The upper left term is the K-theory

of the category of torsion modules over Sen) It only remains to be shown, there-

fore, that the map on the right may be identified to the map A(*,p,n) A(*,p,n) •

The identification of the upper right term with A(*,p,n) comes from the main

result of [16]; cf. the proofs of lemmas 1 and 4 above for similar points.

The identification of the lower right term with A(*,p,n) is similar to the

argument at the end of the proof of the localization theorem (the last three para-

graphs). Two points deserve mentioning. The first is that one can construct a

Ln-Iocalization of a given S(n)-module by (infinitely) repeated attaching of finite

Ln-acyclic modules; this uses Bokstedt's lemma (section 2) that S Sen) is a S(n)-

equivalence. It results that there exists a Ln-Iocalization functor on MOd(5(n))

which is of finite type (in view of its construction) and therefore also has the

convergence property (section 2). The second point is that a Ln-Iocal spectrum has

a unique S(n)-module structure which may therefore be suppressed or resurrected

according to the need of the moment.

It is a matter of checking the definitions, finally, to see that under these

identifications the two maps correspond as desired.
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4. Appendix: An implication the Lichtenbaum-Quillen conjecture.

We give a quick review of the conjecture, a homotopy theo-

retic reformulation, and finally the application to obtaining a kind of lower bound

on the difference of A(*) and K(Z) .

The content of LQC is that for many rings (and schemes) the algebraic K-theory

ought to be expressible in terms of etale cohomology and thereby computable. With

the advent of the etale K-theory of Dwyer and Friedlander [4] a simpler, and more

explicit, formulation became possible. The new formulation is that the natural

transformation

should be an isomorphism for suitable R. Actually this is conjectured only for

odd primes p, and for sufficiently high degrees; it is known that some such re-

striction is necessary, cf. [lZ].

As usual here K*(R,Z/p) denotes the K-theory of R with coefficients in Zip

We think of it in terms of spectra, namely as the homotopy of K(R,Z/p) , the smash

product of the K-theory spectrum K(R) and the Moore spectrum sip .

The necessity of working with finite coefficients comes from the fact that the

etale homotopy, and therefore also the etaIe K-theory, does not behave properly

unless one restricts to working with finite coefficients.

We will not define the etale K-theory here. We don't have to, in fact. For

Thomason has proved the amazing result that etale K-theory is the same, in many

cases, as "Bott periodic" algebraic Kr t heory [13]. In view of this result LQC trans-

lates into the conjecture that the map

is an isomorphism (for suitable R, odd P , and in sufficiently high degrees).

As to the Bott periodic algebraic K-theory, we find it convenient to use the

qefinition given by Snaith [11]. Namely the Moore spectrum sip supports a self-

map known as the Adams map; if p is odd the map is of degree 2p-Z. It induces

a graded self-map of K(R,Z/p) ,and K(R,Z/p)[S-I] is now defined as the mapping

telescope of the latter, the homotopy direct limit of the sequence

K(R,z/p) __ K(R,Z/p) __ ...

in which each map is the map in question.
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Actually Snaith's procedure is slightly different in that he defines K(R,Z/p)

as the spectrum of maps sip K(R) , so the self-map on K(R,Z/p) is given by com-

position with the Adams map. However the distinction is minor since the Moore spec-

trum and the Adams map are self-dual with respect to Spanier-Whitehead duality.

At any rate, the definition is equivalent to letting

where S/p[S-)j is the mapping telescope of the Adams map.

Recall the localization functor L) (section 2). It is known [ 2 j that

S/p[S-lj L] (Sip) •

Since L) is smashing (section 2) we obtain

K(R,Z/p)[S-lj K(R) A sip A L](S) L](K(R» A sip.

SO LQC translates into a conjecture saying that the homotopy cofibre, F say, of

the localization map

K(R) L) (K(R»

is annihilated by smash product with Sip (for suitable R and odd p, that is,

and in sufficiently high degrees). In view of the cofibration sequence

S ---sip

this means that the self-map of

(in high degrees), so F may be

the self-map; that telescope is

F given by multiplication by p is an equivalence

identified (in high degrees) to the telescope of

F[p-]] , the localization away from p •

Replacing K(R) by K(R)(p) now (the localization at p) we conclude that

the homotopy cofibre of

K(R) (p) --. L) (K(R) (p»

is unchanged (in high degrees) by inverting p , that is, by the rationalization

functor La. Since La = LOL] it follows that the homotopy cofibre is trivial (in

high degrees).

We have thus translated LQC into a conjecture saying that, for suitable R,

and odd p, the localization map

K(R) (p) --. L) (K(R) (p»

should be an equivalence of sufficiently highly connected covers; in other words

that, apart from some bounded piece, the p-local K(R)(p) should already be

L)-local; in still other words that, in terms of the chromatic filtration, K(R)(p)

should support first order phenomena only.
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R the validity of

fractions R[p-I] •
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Before discussing any implications of LQC we must briefly comment on which

rings R are supposed to be 'suitable'. Etale homotopy requires all coefficients

to be finite, as pointed out before, but it also requires them to be prime to the

residue characteristics at hand. As a result the etale K-theory K;t(R,Z/p) is

only defined if p is invertible in R, and there can't possibly be any conjecture

about it otherwise.

sense for general R A standard argument shows that for some

LQC in this sense is equivalent to its validity for the ring of

In particular this is so for Z , the ring of integers. Namely by the theorems of

Quillen, the difference of K(Z) and K(Z[p-I]) is given by K(Z/p) , and that is

trivial at p except in degree °
By naturality of localization applied to the map QSO K(Z) now there is a

commutative diagram

L1(K(Z) (p»

If the right hand vertical map is assumed to be an equivalence it follows that,

at p, the map QSO K(Z) factors through J , the connective cover of LI(QSO)

On the other hand the map QSO K(Z) factors through QSO A(*) which is

known to be a split injection [IS], [17]. If one assumes the validity of LQC it

thus follows that (at least for odd p and in sufficiently high degrees) the diffe-

·rence between

between QSO

and K(Z) must in some way or other account for the difference
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