
ALGEBRAIC K-THEORY OF SPACES.

FriedheIm Waldhausen

This is an account of foundational material on the algebraic K-theory of spaces

functor X A(X)

The paper is in three parts which are entitled "Abstract K-theory", "A(X) " ,

and "Relation of A(X) to WhPL(X)", respectively.

The main result of the paper is in the second part. It says that several defi-

nitions of A(X) are in fact equivalent to each other, up to homotopy. The proof

uses most of the results of the first part. An introduction to this circle of ideas

can be obtained from looking at the sections entitled "Review of A(X)" and "Review

of algebraic K-theory" in the papers [17] and [18] (these two sections were written

with that purpose in mind).

The third part of the paper is devoted to an abstract version of the relation

of the A-functor to concordance theory. The content of the parametrized h-aobordism

theorem in the sense of Hatcher is that PL concordance theory, stabilized with re-

spect to dimension, can be re-expressed in terms of non-manifold data. A detailed

account of the translation is given elsewhere [16], in particular the relevant re-

sults of Hatcher's are (re-)proved there. The result of the translation (after a

dimension shift) is a functor WhPL(X) . It is shown here that there is a map

A(X) WhPL(X) and that the homotopy fibre of that map is a homology theory (i.e.,

that, as a functor of X, the homotopy fibre satisfies the excision property).

The first part of the paper, on which everything else depends, may perhaps look

a little frightening because of the abstract language that it uses throughout. This

is unfortunate, but there is no way out. It is not the purpose of the abstract lan-

guage to strive for great generality. The purpose is rather to simplify proofs, and

indeed to make some proofs understandable at all. The reader is invited to run the

following test: take theorem 2.2.1 (this is about the worst case), translate the

complete proof into not using the abstract language, and then try to communicate it

to somebody else.
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I. ABSTRACT K-THEORY.

1.1. Categories with cofibrations, and the language of filtered objects.

A category

object *, i.e.

C is called pointed if it is equipped with a distinguished zero

an object which is both initial and terminal.

A category with cOfibrations shall mean a pointed category C together with a

subcategory coC satisfying the axioms Cof - Cof 3 below. The feathered arrows

, will be used to denote the morphisms in coC. Informally the morphisms

in coC will simply be referred to as the cofibrations in C.

Cof I. The isomorphisms in Care cofibrations (in particular coC contains all

the objects of C).

Cof 2. For every A E C , the arrow * A is a cofibration.

Cof 3. Cofibrations admit cobase changes. This means the following two things.

If B is a cofibration, and A C any arrow, then firstly the pushout CUAB

exists in C , and secondly the canonical arrow C CUAB is a cofibration again.

Here is some more language. If A---B is a cofibration then BfA will denote

any representative of *UAB. We think of it as the quotient of B by A The

canonical map B BfA will be referred to as a quotient map. The double headed

arrows are reserved to denote quotient maps. (Note that it is neither

asked, nor asserted, that the quotient maps form a category, i.e. that the composite

of two quotient maps is always a quotient map again.)

Our usage of the term cofibration sequence conforms to the usage in homotopy

theory. It refers to a sequence A>---+B -BfA where B-BfA is the quotient

map associated to A>---+B.

Beware that we will also be using the term sequence of cofibrations which of

course refers to a sequence of the type AI >---->A2---- ... >-+An

The most important example of a category with cofibrations, for our purposes,

is that of the spaces having a given space X as a retract. We will denote this

category by R(X) . As a technical point, there will be several cases to consider

depending on whether space means simplicial set, or cell complex, or whatever, and
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perhaps with a finiteness condition imposed. In any case the term cofibration has

essentially its usual meaning here. (As a technical point again, note that the

axiom Cof 2 may force us to put a condition on one of the structural maps of an

object of R(X) - the section ohould be a cofibration).

Another important example, though of less concern to us here, is that of an

exact category in the sense of Quillen. Any exact category can be considered as a

category with cofibrations by choosing a zero object, and declaring the admissible

monomorphisms to be the cofibrations. The re-interpretation involves a loss of

structure: one ignores that pullbacks used to playa role, too (the base change by

admissible epimorphisms).

Since our axioms are so primitive it will not be surprising that they admit

examples which are not important at all, and perhaps even embarrassing. Here is a

particularly bad case. Consider a category having a zero object and finite colimits.

It can be made into a category with cofibrations by declaring all morphisms to be

cofibrations.

Here is some more language. A functor between categories with cofibrations is

called exact if it preserves all the relevant structure: it takes * to *, co-

fibrations to cofibrations, and it preserves the pushout diagrams of axiom Cof 3 .

For example, a map X X'

spaces it is given by pushout of

induces an exact functor R(X) R(X')

X X' with the structural sections.

On total

Another example of an exact functor is the linearization functor (or Hurewicz

map) which takes an object of R(X) to the abelian-group-object in R(X) which it

generates.

There is a concept slightly stronger than that of an exact inclusion functor

which we will have to consider. We say that C' is a subcategory with cofibrations

of C if in addition to the exactness of the inclusion functor the following condi-

tion is satisfied: an arrow in C' is a cofibration in C' if it is a cofibration

in C and the quotient is in C' (up to isomorphism).

An example of a subcategory-with-cofibrations arises if we consider a subcate-

gory of R(X) defined by a finiteness condition.

Here is a more interesting example. For n 2 let Rn(X) denote the full

subcategory of R(X) whose objects are obtainable from X by attaching of n-cells

(up to homotopy). It can be considered as a subcategory with cofibrations of R(X)

In the remainder of the section we will check that certain elementary construc-

tions with categories do not lead one out of the framework of categories with cofi-

brations. In particular we will be interested in filtered objects; that is, sequen-

ces of cofibrations. (Despite the fact, exemplified above, that cofibrations need

not be monomorphic at all, we shall let ourselves be guided by the more relevant
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examples to justify using this terminology). The arguments below will not go beyond

trivial manipulation with colimits. There is, however, one idea involved, The idea

is that the notion of bifiltered object (or lattice) can be formulated without pull­

backs, Namely if the diagram

A ----+ B

! 1
C ----+ D

is to be a 'lattice' we are inclined to ask this in the form of two conditions:

firstly, that all the arrows be cofibrations, and secondly, that the 'images' in D

satisfy Im(A) Im(B) n Im(C) The latter does not make sense in our context, in

general, but we can substitute it with the condition that the arrow BUAC D be a

cofibration.

For any category C we let ArC denote the category whose objects are the

arrows of C and whose morphisms are the commutative squares

,---+,

1 1
,---+,

in C If C is a category with cofibrations then so is ArC in an obvious way:

a map is in coArC if and only if the two associated maps in C are in coC,

Definition. FIC

tions in C and

having the property

is the full subcategory of ArC whose obj ects are the cofibra­

coFIC is the class of the maps (A .... B) (A',.... B') in FIC

that both A .... A' and A'UAB B' are cofibrations in C

Lemma I. I • I . coFIC makes FIC a category with cofibrations,

Proof. There are two points that require proof: that coF]C is a category, and

that the axiom Cof 3 is satisfied,

As to the first, let (A>­+ B) .... (A' .... B') and (A' .... B') .... (A" .... B") be in

co FIC. Then A.... A" since coC is a category. By assumption about the second

map A"UA,B' .... B" and by assumption about the first map and by axioms Cof and

Cof 3 for coC, all the following terms are defined and the composed map

is also in coC. Taking the composition of the two maps we obtain that A"UAB .... B"

is in coC as was to be shown,

As to the second, let (A>­+ B) >­+ (A' .... B') and (A H B) .... (C >­+ D) be maps in

resp, FIC. Their pushout exists in ArC by Cof 3 for C

and A'UAB>­> B' implies BH B') where it is represented by

(because
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We show below that this is an object of (and consequently also a pushout in) FIC

We must in addition show that the canonical map (CH D) (A'UAC B'UBD) is in

coF]C This amounts to the two assertions that CH A'UAC, which is clear, and

that (A'UAC)UCDH (B'UBD) . The latter map is isomorphic to A'UAD B'UBD which

in turn is isomorphic to the composed map

and this is a cofibration since A'UAB B' is one. Finally A'UAC (A'UAC)UCD

is a cofibration since C D is one. Composing it with the cofibration

(A'UAC)UCD B'UBD (above) we obtain the map A'UAC B'UBD. This proves the post-

poned claim that the latter map is a cofibration. 0

B/A in other

in C It is

F+C FIC]

is the category equivalent to FIC in which an object consists

of FIC together with the choice of a quotient

is the category of cofibration sequences AH B ..... B/A

category with cofibrations by means of the equivalence

Definition.

of an object

F+Cwords, I

made into a

Lemma 1.1.2. The three functors s, t, q: F+C C sending AHB ..... B/A to A, B,
I

and B/A , respectively, are exact.

Proof· For s this holds by definition, and for t almost so. The case of q

requires proof. + coCWe must show that q takes coFIC to , and that q pre-

serves the pushout diagrams of axiom Cof 3

As to the first, if (A >-+ B) (A' >-+ B') is in then, by definition,

A'UAB B' is in coC. Hence so is

B/A ---+ *UA,A'UAB ---+ *UA,A'UABU(A'U B)B' ---+B'/A'
A

as claimed.

As to the second, let such a pushout diagram in F;C be given by the diagram

(A>-+ B ""* B/ A) ------+. (C .... D ..... D/C)

I 1
Then the assertion means that

and

are canonically isomorphic. But this is clear from the fact that an iterated colimit

may be computed in any way desired provided only that all the colimits involved exist.

In particular the two objects at hand are canonically isomorphic because both repre-

sent the colimit of the diagram
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D +------< C *
i r r
B+---<A *
I r I
B' +-----<A' ---> *

when this colimit is computed in the two obvious ways. a

Definitlon. FmC is the category in which an object is a sequence of cofibrations

Ao>---+ AI>----+ ••• Am

in C, and where a morphism is a natural transformation of diagrams.

in which an object consists of one ofcategory equivalent to

with a choice, for every

F C
m
o i < j of a quotient A..

1,]

F C
m

A./A.•
J 1

F+C is the
m
together

Lemma 1.1.3. Let A ... A' be a map in F C r e sp • F+C Suppose that the maps
m m

A. -- --+A'
J J J j J+ j +1

are cofibrations in C Then

for every pair < k the map ... Ak is a cofibration, and
J A.

J
for every triple i < j < k the map A .U Ai,k

... At is a cofibration.
1,J A. . i,k

1,J

Froof. The first results inductively by considering the compositions

and the second follows from the first by the preceding lemma applied to the cofibra-

tion in FIC,

way. The forgetful map

Proposition 1.1.4. F C
m

q.:
J m

A 1---+ A.
J

a

are categories with cofibrations in a natural

is an exact equivalence. The 'subquotient' maps

A
J 1

are exact.

In fact, a map in F C resp. F+C is defined to be a cofibration if it
m m '

satisfies the hypothesis of lemma 1.1.3, and the assertions of the proposition just

summarize the preceding lemmas. a

and

Iterating the construction one can obtain categories with cofibrations
F+F+C
nm

F F Cnm
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Lemma 1.1.5. There are natural isomorphisms of categories with cofibrations

F F C RJ F F C
nm mn

Proof. It suffices to remark that an object of FnFmC can be more symmetrically

defined as a rectangular array of squares each of which consists of cofibrations

only and satisfies the condition in the definition of a cofibration in FIC; the

point is that the condition is symmetric with respect to horizontal and vertical.

Similarly, a cofibration in FnFmC, or sequence of such, may be identified to a

3-dimensional diagram satisfying conditions with respect to which none of the three

directions is preferred. o

We will want to know that categories with cofibrations reproduce under certain

other simple constructions. By the fibre product of a pair of functors f: A C ,

g: B C is meant the category TI(f,g) whose objects are the triples

(A, c , B) A E A, B E B ,
RJ

c: f(A) --g(B) ,

and where a morphism from (A,c,B) to (A' ,c',B') is a pair of morphisms (a,b)

compatible with the isomorphisms c and c' . In some special cases the fibre pro-

duct category is equivalent to the pullback category AXCB; notably this is so if

either f or g is a retraction. (If the two are not the same, up to equivalence,

the pullback should be regarded as pathological.)

Lemma 1.1.6. If f: A C and g: B C are exact functors of categories with co-

fibrations then TI(f,g) can be made into a category with cofibrations by letting

co(TI(f,g)) TI(co(f) ,co(g))

and the projection functors from TI(f,g) to A and B are exact.

Similarly, if j C. ,
J

tions and exact functors then

j E J ,

lim C.
J

is a direct system of categories with cofibra-

is a category with cofibrations, with

co ( 1im C. )
J

and the functors C. lim C. are exact.
J J

lim cot". ,
J

o

Definition and corollary. Let A, B, C be categories with cofibrations and let A

and B be subcategories of C in such a way that the inclusion functors are exact.

Define E(A,C,B) as the category of the cofibration sequences in C ,

A E A B E B •

Then E(A,C,B) is a category with cofibrations, and the projections to A, C, B

are exact.

Indeed, E(A,C,B) is the pullback of a diagram F;C --+ C x C A x B; the

pullback is not pathological since the first arrow has a section. 0
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1.2. Categories with cofibrations and weak equivalences.

Let C be a category with cofibrations in the sense of section 1.1 (we will

from now on drop explicit mentioning of the category of cofibrations coC from the

notation). A of weak equivalences in C shall mean a subcategory we
of C satisfying the following two axioms.

Weq I. The isomorphisms in C are contained in wC (and in particular therefore

the category wC contains all the objects of C).

Weq 2. (Gluing lemma). If in the commutative diagram

B..---<A C

1 1 1
the horizontal arrows on the left are cofibrations, and all three vertical arrows

are in wC , then the induced map

BUAC -- B'UA,C'

is also in we.

Here are some examples. Any category with cofibrations can be equipped with a

category of weak equivalences in at least two ways: the minimal choice is to let

we be the category of isomorphisms in C

be equal to C itself.

while the maximal choice is to let we

To obtain an example of a category of weak equivalences on the category R(X)

(the preceding section) choose a homology theory and define wR(X) to be the cate-

gory of those maps which induce isomorphisms of that homology theory.

To obtain another example define hR(X) to be the category of the weak homotopy

equivalences.

To obtain yet another example define sR(X) to be the category of the simple

maps, i.e. the maps whose point inverses have the shape (or Cech homotopy type) of a

point. (We shall consider simple maps in the simplicial setting only in which case

the definition simplifies to asking that the point inverses in the geometric realiza-

tion of the map are contractible.) Neither the fact that sR(X) is a category nor

the gluing lemma are trivial to prove.

The following two further axioms may, or may not, be satisfied by a given cate-

gory of weak equivalences.
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Saturation axiom. If a, bare composable maps in C and if two of a, b, ab are

in we then so is the third.

For example the simple maps do not satisfy the saturation axiom. E.g. consider

the two maps a, b in R(*) given by the inclusion of the basepoint in a I-simplex

and by the projection of that I-simplex to the basepoint, respectively.

Extension axiom. Let

A >---> B - B/A

1 1 1
A' >----+B' -* B'/A'

be a map of cofibration sequences. If the arrows A A' and B/A B'/A' are

in wC then it follows that B B' is in we too.

For example the weak homotopy equivalences do not satisfy the extension axiom.

E.g. consider the diagram in R(*)

__ *

"1 ! !
BZ >----+ BG -- BG/BZ

where BZ is the classifying space of the infinite cyclic group and BG the classi-

fying space of a suitable non-abelian group which is normally generated by a sub-

group Z, for example a classical knot group.

As the examples show there may be a great profusion of categories of weak equi-

valences on a given category with cofibrations. Also, we will have occasion to con-

sider a category with cofibrations equipped with two categories of weak equivalences

at the same time, one finer than the other, and study their interplay. We must

therefore exercise some care with the notation, and in general the category of weak

equivalences will be explicitly mentioned.

Still there are some situations where there is no danger of confusion. On

those occasions we will allow ourselves the abuse of referring to the maps in we
as the weak equivalences in C, and denote them by the decorated arrows

By a category with cofibrations and weak equivalences will be meant a category

with cofibrations equipped with one (and only one) category of weak equivalences. A

functor between such is called exact if it preserves all the relevant structure.

As in the preceding section, the notion of an exact inclusion functor may be

sharpened to that of a subcategory with cofibrations and weak equivalences.

Finally we note that categories of weak equivalences are inherited by diagram

categories. There are lemmas similar to, but easier than, those of the preceding

section. We omit their formulation.
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1. 3. The K-theory of category with cofibrations and weak equivalences.

Consider the partially ordered set of pairs (i,j) o " i " " n , where

(i,j) (i I , j ') if and only if i i' and j " .i ' Regarded as a category it

may be identified to the arrow category Adn] where as usual [n] denotes the

ordered set (0 < I < ... < n) (considered as a category).

Let C be a category with cofibrations. We consider the functors

A: Ar l n] -----+ C

(i,j) 1------+ A••

having the property that for every j ,

and that for every triple i

A.. * ,
J ,J

k, the map

A.. --+ A. k
1,J i ,

is a cofibration, and the diagram

is a pushout; in other words,

is a cofibration sequence.

natural transformations by

We denote the category of these functors and their

S C
n

To give an object

cofibrations

A E S
n

is really the same thing as to give a sequence of

o,n

together with a choice of subquotients

A.. A ./A .
O,J

It results that the category SnC can be identified with one of the categories of

filtered objects considered in section 1.1 (namely F:_
I

and in particular there-

fore SnC can be regarded as a category with cofibrations in a natural way.
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given here has the advantage of making it clear that

of the ordered

We therefore have a simplicial category

The definition of S C
n

is contravariantly functorial on the category[n] Ar[n] S C
n

sets [0], [I], ••••

S.C: /',op (cat)

[n] 1----+ S C
n

In fact, we have a simplicial category with cOfibrations; that is, a simplicial ob­

ject in the category whose objects are the categories with cofibrations and whose

morphisms are the exact functors between those. This results from the lemmas of

section I. I upon inspection of what the face and degeneracy maps are. For example

the face map d. : S C ­+ Sn_I C corresponds, for i > 0 , to the forgetful map which
1 n

drops A
o,i

from the sequence A0,1 >-+ ••• >-+ A ; and for i = 0 it corresponds
o,n

to the map "quotient by A II which replaces that sequence by AI,2>­+ .•• HAI,n0,1

If C is equipped with a category of weak equivalences, wC then SnC comes

naturally equipped with a category of weak equivalences, wSnC By definition here

an arrow A -+ A' of SnC is in wSnC if and only if the arrow Ai,j -+ Ai,j is in

wC for every pair i j or what amounts to the same in view of the assumed glu­

ing lemma, if this is so for = O. It results that S.C is a simplicial category

with cofibrations and weak equivalences in this case.

Let us take a look at the simplicial category of weak equivalences

wS.C: /',op (cat)

[ n] 1­­­­­+ wS C
n

The category SoC, and therefore also its subcategory wSoC, is the trivial

category with one object and one morphism. Hence the geometric realization IwSoCI

is the one­point space.

The category SIC is the category of diagrams

* = Ao,o>­­­­+Ao,I­­AI,1 =*

and is thus isomorphic to C. Hence the category of weak equivalences may be iden­

tified to wC

Consider IwS.CI the geometric realization of the simplicial category wS.C

The 'I­skeleton' in the S.­direction is obtained from the 'O­skeleton' (which is

IwSoCI) by attaching of IwSICI x I/',I I (where 1/',1 I denotes the topological space

I-simplex). It results that the 'I­skeleton' is naturally isomorphic to the suspen­

sion SIAlwCl • As a consequence we obtain an inclusion SIA1wC 1 -+ IwS.CI , and by

adjointness therefore an inclusion of IwCI into the loop space of IwS.CI,

IwCI .

The passage from IwCI to is reminiscent of the 'group completion'
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process of Segal [11] (by which it was originally motivated, to some extent). We

will have occasion to make an actual comparison later (in section 1.8).

Definition. The aZgebraic K-theory of the category with cofibrations C with

respect to the category of weak equivalences wC is given by the pointed space

nlwS.CI

To pursue the analogy with Segal's version of group completion a little further,

one can actually describe K-theory as a spectrum rather than just a space. Namely

the S.7construction extends, by naturality, to simplicial categories with cofibra-

tions and weak equivalences. In particular therefore it applies to S.C to produce

a bisimplicial category with cofibrations and weak equivalences, S.S.C. Again the

construction extends to bisimplicial categories with cofibrations and weak equiva-

lences; and so on. There results a spectrum

...• S.CI
-n--+

whose structural maps are defined just as the map IwCl QlwS.CI above.

It turns out that the spectrum is a Q-spectrum beyond the first term (the addi-

tivity theorem is needed to prove this, below). As the spectrum is connective (the

n-th term is (n-I)-connected) an equivalent assertion is that in the sequence

IwCl--+ nlwS.CI nnlwS.S.CI ...

all maps except the first are homotopy equivalences. It results that the K-theory

of (C,WC) could equivalently be defined as the space

lim
n

There is another way of making K-theory into a spectrum. Namely the pushout of

the cofibrations * A induces a sum in C and therefore a composition law in the

sense of Segal on wC wS.C, and so on. As QlwS.CI is 'group-like'

Segal's machine produces a connective n-spectrum from it. To see that the spectrum

is equivalent to the former it suffices to note that the two spectra can be combined

into a connective bi-spectrum. (A more direct relationship can also be established.)

The definition of K-theory is natural for categories with cofibrations and weak

equivalences: an exact functor F: C' C induces maps wS.F: wS.C' wS.C, etc.

Let a weak equivaZence of exact functors F, F': C' C mean a natural trans-

formation F F' having the property that for every A E C' the map F(A) F'(A)

is a weak equivalence in C.

Proposition 1.3.1. A weak equivalence from F to F' induces a homotopy between

wS.F and wS.F' .
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Proof. The weak equivalence from F to F' restricts to a natural transformation

of the restricted functors F, F': wC' wC and thereby induces a homotopy between

these by a well known remark due to Segal [10J. Similarly there is what may be

called a simplicial natural transformation from wS.F to wS.F' It gives rise

to a homotopy in the same way. 0

Let a aofibration sequenae of exact functors C' C mean a sequence of natu­

ral transformations F' F F" having the following two properties: (i) for

every A E C' the sequence F ' (A) F(A) F"(A) is a cofibration sequence, and

(ii) for every cofibration A' A in C' the square of cofibrations

F • (A ') --+ F' (A)

!
F (A') ­­ F (A)

is admissible in the sense that F (A') UF I (A') F I (A) -+ F(A) is also a cofibration.

Recall the category E(A,C,B) (section 1.1), and let E(C) E(C,C,C) .

Proposition 1.3.2. (Equivalent formulations of the additivity theorem). Each of

the following four assertions implies all the three others.

(1) The following projection is a homotopy equivalence,

wS.E(A,C,B) ­­­­­. wS.A x wS.B

A>­+C .... BI 'A B.

(2) The following projection is a homotopy equivalence,

wS.E(C) wS.C x wS.C

A B .

(3) The following two maps are homotopic (resp. weakly homotopic),

wS.E(C) wS.C

A>­+ C .... B C, r e sp , AvB .

(4) If F' F F" is a cofibration sequence of exact functors C' C then

there exists a homotopy

IwS.FI IwS.F'1 v IwS.F"1 (= IwS. (F'vF") I )

Proof. (2) is a special case of (1), and (3) is a special case of (4). So it will

suffice to show the implications (2) (3) (4) and (4) (I) .

Ad (3)=0(4). To give a cofibration sequence of functors F',... F .... F" from C' to C

is equivalent to giving an exact functor G: C' E(C) , with F' = sG, F = tG ,

and F" = qG, where s , t , q are the maps A>­+ C .... B A, C, B, respectively
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(which are exact by proposition 1.1.4). Thus (4) follows from (3) by- naturality.

Ad The desired homotopy IwS.tl IwS.(svq) I is certainly valid upon re-

striction along the map

IwS .CI x IwS .CI ----.+1 IwS.E(C) I

A B 1-1----.... A>-+ AvB .... B

so it will suffice to know that this map is a homotopy equivalence. But the map is

a section to the map in (2) and therefore is a homotopy equivalence if that is one.

Ad (4).(1). The map p: wS.E(A,C,B) wS.A x wS.B is a retraction, with section cr

given by A,B A>-+ AvB .... B. To show p is a homotopy equivalence it therefore

suffices to show that the identity map on wS.E(A,C,B) is homotopic to the map crp

(In fact, it would suffice to know that the two maps are weakly homotopic, that is,

homotopic upon restriction to any compactum, for that would still imply that the

map cr is surjective, and hence bijective, on homotopy groups.) The desired homo-

topy results from (4) applied to a suitable cofibration sequence of endofunctors

on E(A,C,B) The cofibration sequence is shown by the following diagram which

depicts the functors (the rows) applied to an object AHe .... B ,

(A A *)
r

(A>-+ C -It B)

•(* B -;: B)

This completes the proof. o

The actual proof of the additivity theorem is rather long and it will be given

later (it occupies the next section). We will now convince ourselves that a consi-

derable short cut to the proof is possible if the definition of K-theory is adjusted

somewhat. We begin with the

Observation J.3.3. Let s. t, q denote the maps from E(C) to C given by

A>-+ C .... B A, C, B, respectively, and let svq denote the sum of sand q.

Then the following two composite maps are homotopic,

!wE(C) I
t

__--.+ IwCl ---. nlwS.CI •
svq

This results from an inspection of IwS.CI (2) , the '2-skeleton' of IwS.CI

in the S.-direction. Let us identify wc to wSIC, as before, and let us identify

wE(C) to wS2C whose objects are the cofibration sequences Ao,1 Ao,2 .... A1,2
The face maps from wS2C to wSIC then correspond to the three maps s, t, q ,

respectively, and which is which can be seen from the diagram
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2

7,
1

Let us consider the canonical map IwS2CI x 1621 IwS.CI (2) • Regarding the 2-sim-

plex 1621 as a homotopy from the edge (0,2) to the edge path (0,J)(J,2) we

obtain a homotopy from the composite map jt,

t j
IwCl ,

to the loop product of the two composite maps js and jq

loop product is homotopic to the composition law, by a well known fact about loop

spaces of H-spaces, whence the observation as stated.

The same consideration shows, more generally,

Observation 1.3.4. For every n ° the two composite maps

svq

are homotopic, where = wS• . . . S.C
+--n_

Corollary 1.3.5. The additivity theorem (proposition 1.3.2) is valid if the defini-

tion of K-theory as QlwS.CI is substituted with = lim

Froof. First, proposition 1.3.2 is formal in the sense that it applies to the pre-

sent definition of K-theory just as well. Second, by the preceding observation the

two composite maps

svq

are weakly homotopic. Since the arrow on the right is an isomorphism this is one of

the equivalent formulations of the additivity theorem (proposition 1.3.2). 0

Remark. As a consequence of the corollary we could add yet another reformulation of

the additivity theorem to the list of proposition 1.3.2. Namely the additivity theo-

rem as stated there implies (section 1.5) that the maps are

homotopy equivalences for n 1 . Conversely if these maps are homotopy equivalen-

ces then so is nlwS.CI , and thus the additivity theorem is provided

by the corollary.
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To conclude this section we describe a modification of the simplicial category

wS.C which was suggested by Thomason. It is a simplicial category wT.C. By de­

finition wTnC is a subcategory of the functor category C[n] . The objects of

wTnC are the sequences of cofibrations

... >-+ C
n

and the morphisms are the natural transformations C C' satisfying the condition

that for every i j the induced map

Uc C. ­­­+ C!
1. i J J

is a map in we •

wT.C is 'better' than wS.C insofar as it may be regarded as the horizontal

nerve of a bieategory.

the choice

the basepoint.

i ,j ;

a little, by including

except that in the data of an

for every

wLC

that C.. = *
1.1.

is an equivalence of categories in each degree, and

is to be arbitrary except if

The forgetful map wT:C wT.C

In order to compare the two we have to modify

choices. Namely let wT+C be defined just as wT C
n n

object we include a choice of quotients C.. = C./C.
1.J J 1.

i = j where we insist

therefore a homotopy equivalence.

simplicial categories wT:C wS.C

The comparison is now made by means of a map of

which we show to be a homotopy equivalence. The

map is defined as the forgetful map which forgets the

subquotients C..
1.J

C.
1.

and remembers only the

To show the map is a homotopy equivalence it suffices to show wT+C wS C is
n n

a homotopy equivalence for every n. For fixed n now wSnC may be regarded as a

retract of wT:C; the section is the map which defines Ci as Co,i (the section

is not induced by a simplicial map). We show the retraction is a deformation retrac­

tion by exhibiting a homotopy explicitly. There is a natural transformation from

the identity functor to the composed map wT+C wS C wT+C, it is given on an
n n n

obj ect Co ............. Cn by the quotient map to C ............. C which is a map in
0,0 o,n

wT C in view of the definition of what this means. The natural transformationn
gives the desired homotopy.
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1.4. The additivity theorem.

The proof of the additivity theorem involves only the cofibration structure,

not the weak equivalences. It will therefore be convenient to explicitly concentrate

on the cofibrations, a kind of 'separation of variables'.

If C is a (small) category with cofibrations we let

of objects of SnC, and the simplicial set [n] .

Ob(S/) , the set

Lemma 1.4.1. An exact functor of categories with cofibrations f: C C' induces

a map An isomorphism between two such functors f and f'

induces a homotopy between and •

Before proving this we note the following consequence.

Corollary. (I) An exact equivalence of categories with cofibrations C C' induces

a homotopy equivalence .

(2) Let C be made into a category with cofibrations and weak equivalences by means

of the category iC of isomorphisms in C. Then there is a homotopy equivalence

is.C .

Indeed, (I) is clear, and (2) results by considering the simplicial object

[m] H imS.C, the nerve of is.C in the i-direction, and noting that ioS.C

and that the face and degeneracy maps are homotopy equivalences by (1).

Proof of lemma. The first part is clear. To prove the second part we will explicit-

ly write down a simplicial homotopy. This is best done in categorical language. It

is quite well known that simplicial objects in a category V can be regarded as

functors X: V, [n] H X[n] and maps of simplicial objects as natural

transformations of such functors. It seems to be less well known that simplicial

homotopies can be described in similar fashion. Namely let

gory of objects over [I] in the objects are the maps

X: V let X* denote the composed functor

X
(M[I])oP

([n] [J]) >---+ [n] ......-- X[n]

denote the cate-

[n] [1]. For any

Then a simplicial homotopy of maps from X to Y may be identified with a natural

transformation X* Y* .

In the case at hand suppose that a functor isomorphism from f to f' is given
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and write it as a functor F: C x [I] C' . The required simplicial homotopy then

is the map from .... .onC to (I n l-d l I) ..... .o nC' given by

(a: [n] [J]) 0--------+ ( (A: Ar ]n ] C) I----t (A': Ar l ri] C') )

where A' is defined as the composition

Ar l n ] CxAr[I]
id x p F

C x [I] C'

and p: Ar[l] [I] is given by (0,0) .... ° (I , I) ..... 1 , and (0, I) .... 1 IJ

Recall the equivalent formulations of the additivity theorem given in proposi-

tion 1.3.2. We will now prove one of them.

Theorem 1.4.2. (Additivity theorem). Let C be a category with cofibrations and

weak equivalences. Then the following map is a homotopy equivalence,

wS.E(C) wS.C x wS.C

A ....

We deduce this from

Lemma ].4.3. The map h.E(C) h.C x h.C is a homotopy equivalence.

The lemma may be regarded as a special case of the theorem, namely the case of

the map is.E(C) is.C x is.C, in view of lemma 1.4.1. Conversely,

Proof of theorem from lemma 1.4.3. Define C(m,w) to be the full subcategory of

the functor category C[m] of those functors which take values in wC. Then

C(m,w) is a subcategory-with-cofibrations of C[m] and [m] .... C(m,w) defines a

simplicial category with cofibrations. Applying the lemma we obtain that each of

the maps h.E(C(m,w» h.C(m,w) x h.C(m,w) is a homotopy equivalence. It follows,

by the realization lemma, that the map of simplicial objects

( [m] .... h.E(C(m,w» [m] .... h.C(m,w» x ([m] .... h.C(m,w)

is a homotopy equivalence. But this is equivalent to the assertion of the theorem

in view of the natural isomorphism of [m],[n] ..... hnC(m,w) with the bisimplicial set

[m],[n] .... wmSnC' the nerve of the simplicial category wS.C • IJ

In the proof of lemma 1.4.3 we will need a version of the fibration criterion,

theorem B of Quillen [ 8], in the framework of simplicial sets. We proceed to for-

mulate this.

Let denote the simplicial set standard n-simplex, [m] .... .

If Y is any simplicial set then its set of n-simplices may be identified with the

set of maps Y (a case of the Yoneda lemma). Let f: X Y be a map of sim-

plicial sets and let y be a n-simplex of Y. Define a simplicial set f/(n,y)
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as the pullback

Lemma 1.4.A. If f/(n,y) is contractible for every (n,y) then f is a homotopy

equivalence.

Lemma 1.4.B. If for every a: [m] [n] , and every y E Y
n,

the induced map

from f/(m,a*y) to f/(n,y) is a homotopy equivalence then for every (n,y) the

pullback diagram above is homotopy cartesian.

These two lemmas follow at once from theorems A and B of Quillen [8]. For let

simp(Y) denote the category whose objects are the (n,y) and where a morphism from

(n' ,y') to (n,y) is a morphism a: [n'] [n] in such that a*y = y' . By

applying simp(-) to everything in sight we obtain a translation of lemmas A and B

into cases of theorems A and B, respectively. This uses that simp(f/(n,y» is na-

turally isomorphic with simp(f)/(n,y) , the left fibre over (n,y) of the map of

categories simp(f) . And it uses further that, if N denotes the nerve functor,

there is a natural transformation Nsimp(Y) Y which is a homotopy equivalence

(cf. the end of section 1.6).

Froof of lemma 1.4.3. We defer till later the proof of the following

Sublemma. The map f: .6.E(C) .6.C, A>-+ C .... B 1--+ A , satisfies the hypothesis

of lemma B above.

Applying lemma B we obtain a certain homotopy cartesia'l square for each simplex

(n,y) of .6.C. In particular we obtain such a square for the unique O-simplex *

of .6.C in which case the homotopy cartesian square may be rewritten as a fibration

up to homotopy f/(O,*) .6.E(C) .6.C. The term f/(O,*) can be identified with

.6.E'(C) where E'(C) denotes the subcategory with cofibrations of E(C) whose

objects are the cofibration sequences C .... B. As the quotient map in those

cofibration sequences is necessarily an isomorphism, E'(C) is equivalent to C

and by lemma 1.4.1 therefore .6.E'(C) is homotopy equivalent to .6.C. We conclude

that the sequence

.6.C -.6.E(C)

BI---->* .... B .... B

is a fibration up to homotopy. There is a map to this fibration sequence from the

product fibration sequence. The map is the identity on the fibre and on the base,
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and on total spaces it is given by the spZit sequences, i.e. it is the

map x (A,B) (AH AvB B) . It follows that this map is a

homotopy equivalence. The map is a section to the map of lemma 1.4.3, so that map

must be a homotopy equivalence, too. 0

Proof of subZemma. The assertion is that for every y E and w: [m] [n]

in the map w*: f/(m,w*y) f/(n,y) is a homotopy equivalence.

It will suffice to consider the special case of maps [0] [n] . For any map

w: [m] [n] can be embedded in some commutative triangle

w
[m] ) [n]

\1
[0]

and if we know that u* and v* are both homotopy equivalences then it follows

that w* is a homotopy equivalence, too.

We are thus reduced to proving this: let A' be a n-simplex of for

Then for every i the map

some n, and * the unique a-simplex of

map which takes 0 to i

Let v.: [0] [n] denote the
1

is a homotopy equivalence.

A m-simplex of may be identified to an object of E(SmC) , that is,

a cofibration sequence AH C in the category S C .
m

A m-simplex of f/(n,A') now consists of such am-simplex AH C together

with a map u: [m] [n] and these data are subject to the condition that A is

equal to the composite
u* A'

Ar[m] Ar[n] C

The quotient projection A>-+ C I---tB induces a map p: f/(n,A')

It will suffice to show that p is a homotopy equivalence. Indeed, p is left

inverse to each of the composed maps

therefore if p is a homotopy equivalence then so is vi*j*, and hence also v i* ,

since j* certainly is a homotopy equivalence, being induced by the equivalence

C f/(O,*), B (*>-+ B -* B, -)

Finally, in order to show p is a homotopy equivalence, it suffices to show

that the particular map vn*j*p: f/(n,A') f/(n,A') is homotopic to the identity

map on f/(n,A') • We will construct such a homotopy explicitly.
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The homotopy to be constructed will be a lifting of the simplicial homotopy

that contracts to its last vertex. In categorical language, this simplicial

homotopy is given by a map of the composed functor

-----+ (sets)

(jm] .... [I]) 1------4 [m] I----t Homf lm] ,[n])

to itself, namely by

(v: [m] .... [I]) I-------. ( (u : [m] .... l n I) f---4 lml .... Irrl ) )

where u is defined as the composite

(u,v) w
Iml ) [n] x [I] __ [n]

and where w(j,O) j w(j, 1) n .

A lifting of this homotopy to one on f/(n,A') will be a map taking

(v: lml .... [I])

to

(A>-+ C -ot B, u: [m] .... l o I) (A>-+ C ..... B, u: [m] .... l n l)

where u is obtained from (v,u) as before and where certain compatibility condi-

tions must be satisfied. In particular A must be equal to the composite

u* A'
Ar lm] Ar[n] - C

and is thus entirely forced.

To see that the rest of the data can be found in the required way we note that

for every j E [m] we have

u(j)

This may be expressed by saying that there is a map of functors

(u : [m] .... [n]) -----+ [m] .... l n l) .

Consequently there is also a map of functors

and the latter induces a map of the composed functors

Adm] ---+Ar[n] ---+ C ,

that is, a map from A to A in S C •m

For later reference we record that a map A .... A obtained in this fashion is

necessarily unique. Indeed, A .... A is induced by a map of functors Ar[m] .... Ar[n]

and the latter map, if it exists at all, is unique because Ar[n] is a partially

ordered set.
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We now define a cofibration sequence A- C as being obtained from

A- C by cobase change, in SmC, with the map A A. Thus

A >----+ C __ B

1 1 111

C--B

The definition involves a choice of pushouts; that is, given A- C we must

complete it to a pushout diagram, with pushout C, in some definite way. We

insist at this point that those choices shall be made in C rather than in SmC

Because of the way pushouts in SmC are computed (proposition 1.1.4) this gives

the required choices in SmC as well.

We are left to verify that the construction of C ..... B is compatible with

the structure maps of the category b/[l] ; that is, if in our data we replace [m]

by [m'] throughout, by means of some map [m'] [m] , then the structure map

in induced by [m'] [m] takes the one cofibration sequence to the other.

To see this we review the steps of the construction. The first step was the

definition of the map A A. The definition is compatible with structure maps

because of the uniqueness property pointed out above.

The second step was the choice of actual pushout diagrams. But this choice was

made in C, and an element of SmC is a certain kind of diagram in C on which

the simplicial structure maps operate by omission and/or reduplication of data. So

again there is the required compatibility.

With a little extra care we can arrange the choices so that the homotopy starts

from the identity map (namely if A A is an identity map we insist that C C
is also an identity map); and that the image of vn*j* is fixed under the homotopy

(namely if A = * we insist that C B is the identity map on B). We have now

constructed the desired homotopy. This completes the proof of the sublemma and

hence that of the additivity theorem. 0
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1.5. Applications of the additivity theorem to relative K-theory, de-looping,

and cofinality.

Let X: V be a simplicial object in a category V. The associated path

object PX is defined as the composition of X with the shift functor 6

which takes [n] to [n- l ] (by 'sending i to i+1 • this fixes the behaviour

on morphisms). The fact that a path space deforms into the subspace of constant

paths has the following well known analogue here, e.g. [I I], which we record in de-

tail because we need to know the homotopy.

Lemma 1.5.1. PX is simplicially homotopy equivalent to the constant simplicial

object [n],... X
o

Proof. We show there is a simplicial homotopy between the identity on PX and the

composite map PX X PX
o induced from

l o l ( [n+l] [0] [n+l]

01-------+0

The homotopy is given by the natural transformation

(a: [n] ... [I)) (lP:: Xn+1 ... Xn+ l)

induced from (a: [n] ... [I)),... (lP
a:

[n+l] [n+J]) where lPa(O) o and

[ j+1 if a (j)
lPa (j+1)

0 if a(j) 0 0

PX comes equipped with a projection PX-+X (it is induced by the O-face map

of X which is not otherwise used in PX and there is an inclusion of XI con-

sidered as a constant simplicial object (because (PX)o = XI)' There results a

sequence XI'" PX ... X

In particular if C is a category with cofibrations and weak equivalences we

obtain a sequence wSIC P(wS.C) ... wS.C which in view of the isomorphism of wSIC

with wC we may rewrite as

wC ---+ P(wS.C) wS.C .

The composite map is constant, and Ip(wS.C) I is contractible (for by the preceding

lemma it is homotopy equivalent to the one-point space IwSoCI), so we obtain a

map, well defined up to homotopy,

IwCl --+ QlwS.CI
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Lemma 1.5.2. The map can be chosen to agree with the corresponding map in the

preceding section.

Proof. From the explicit homotopy of the preceding lemma one actually obtains an

explicit choice of the map. This is the map in question. 0

By naturality we can substitute C with the simplicial category S.C in the

above sequence. We obtain a sequence

wS.C P(wS.S.C) --+ wS.S.C

(where the 'P' refers to the first S.-direction, say).

Proposition 1.5.3. The sequence is a fibration up to homotopy. That is, the map

from IwS.CI to the homotopy fibre of IP(wS.S.C) I IwS.S.CI is a homotopy equi-

valence.

Proof. This is a special case of proposition 1.5.5 below.

Thus IwS.CI nlwS.S.CI is a homotopy equivalence and more generally there-

fore, in view of the realization lemma, also the map for

every n 1 , proving the postponed claim (section 1.3) that the spectrum

I S (n )CI . .nH w. a n-spectrum beyond the term.

o

We digress to indicate in which way the twice de-looped K-theory wS.S.C is

used in defining products; or better, external pairings (products are induced from

those). The ingredient that one needs is a bi-exact functor of categories with

cofibrations and weak equivalences. This is a functor AxB C (A,B) AAB

having the property that for every A E A and B E B the partial functors A A ?

and ? A B are exact, and where in addition the following more technical condition

must also be satisfied; namely for every pair of cofibrations A' and B'

in A and B, respectively, the induced square of cofibrations in C must be

admissible in the sense that the map A'AB UAAB AAB' BAB' is a cofibration.

A bi-exact functor induces a map, of bisimplicial bicategories,

wS.A x wS.B wwS.S.C

which upon passage to geometric realization factors through the smash product

IwS.AI A IwS.BI --+ IwwS.S.CI

and in turn induces

nlwS.AI A nlwS.BI --+ nnlwwS.S.CI •

This is the desired pairing in K-theory in view of the homotopy equivalence of

IwS.CI with nlwS.S.CI , and a (much more innocent) homotopy equivalence of wS.S.C

with wwS.S.C which we will have occasion later on to consider in detail (the

'swallowing lemma' in section 1.6).
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Definition 1.5.4. Let f: A 4 B be an exact functor of categories with cofibra­

tions and weak equivalences. Then S.(f:A4B) is the pullback of the diagram

S.A ­­­­­. S.B PS.B .

Thus for every n we have a pullback diagram

S A
n

-----+. S B
n

The vertical map on the right has a section (it is not compatible with face maps),

so the pullback category is equivalent to the fibre product category and in any case

is not pathological. It results (sections 1.1 and 1.2) that S.(f:A4B) is a sim­

plicial category with cofibrations and weak equivalences in a natural way, and all

the maps in the defining diagram (definition 1.5.4) are exact.

Considering B as a simplicial category in a trivial way we have an inclusion

B4 P (S. B) whose composition with the projection to S.B is trivial (c f , above).

Lifting the inclusion to the pullback, and combining with the other projection, we

then obtain a sequence

B --+ S. (f :A4B) --+ S.A

in which the composed map is trivial. The sequence is formally very similar to the

sequence describing the homotopy fibration associated to a map of spaces. The

following result says that in fact the sequence serves a similar purpose.

Proposition 1.5.5. The sequence

wS.B _ wS.S. (f:A4B) ­­ wS.S.A

is a fibration up to homotopy.

Froof. There is a fibration criterion which says that it is enough to show that for

every n the sequence wS.B 4 wS.S
n(f:A4B)

4 wS.SnA is a fibration up to homotopy

(e.g. since the base term wS.SnA 1S connected for every n, the criterion given

by lemma 5.2 of [13j will do). Using the additivity theorem we will show that, in

fact, the sequence is the same, up to homotopy, as the trivial fibration sequence

associated to the product wS.B x wS.S A •
n

Neglecting choices to simplify the notation, we can identify an object of

to a pair of filtered objects in

Ao, I"'" ••• ,.... Ao,n and Bo ­ BI ­ ••• ,.... Bn '

tered objects,

f (A I),.... ....... f (A )
0, o,n

A and B respectively, say

together with an isomorphism of fil­
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o

.... B
1
.......... B

n
C' is isomorphic
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Let C' denote the subcategory of the objects where all the maps

are identities and all the A . are equal to the basepoint; then
O,l.

to B. Let C" denote the subcategory where B
o

is equal to the basepoint; then

C" is isomorphic to SnA There is an obvious cofibration sequence of endofunctors

j' id -----* j "

where j' and j" take values in C' and C", respectively. Applying the addi­

tivity theorem (in formulation (4) of proposition 1.3.2) we obtain that the identity

map on wS.Sn(f:A....B) is homotopic to the sum of wS.j' and wSoj". It results

that the map, given by the split cofibration sequences,

is a retraction, up to homotopy. On the other hand the map is obviously also a

coretraction. It is therefore a homotopy equivalence. We conclude with the remark

that the homotopy equivalence can be induced by a map from the product fibration

sequence to the sequence in question (i.e. the degree n part of the sequence of

the proposition). It follows that the two sequences are the same, up to homotopy.

This completes the proof of the proposition. 0

In a special situation we can modify the definition of S.(f:A....B) to obtain a

variant which is technically a little more convenient. Namely suppose that A is

a subcategory with cofibrations and weak equivaZences of B as defined in sections

1.1 and 1.2. Then we define

as the category whose objects are the sequences of cofibrations l.n B,

subject to the condition that for every pair i

to some object of A 0 There is a forgetful map

the object Bj/Bi is isomorphic

(forget choices of quotients B./B. in A). It is an equivalence of categories
J t.

with cofibrations and weak equivalences. Further the Fn(B,A) may be assembled to

a simplicial category with cofibrations and weak equivalences Fo(S,A) By the

realization lemma then the forgetful map

wS.S.(A....B) wS.F.(B,A)

is a homotopy equivalence. Thus F.(S,A) may be used interchangeably with S.(A....B)

if A is a subcategory with cofibrations and weak equivalences of B.
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Corollary 1.5.6. If A B C are exact functors of categories with cofibrations

and weak equivalences then the square

wS.B wS.S.

1 1
,.S.C ----- wS.S.

is homotopy cartesian. Similarly the square

wS.B ----+ wS.F.(B,A)

1 1
wS.C wS.F. (C,A)

is homotopy cartesian if the terms on the right are defined.

Proo]', There is a commutative diagram

wS.B -+

1
wS.S.

1
------+ wS.S.A

1
wS.C --+ wS.S. wS.S.A

in which the vertical map on the right is an identity map and where the rows are

fibrations up to homotopy, by the preceding proposition. It results that the square

on the left is homotopy cartesian.

Concerning the second square, if that is defined, there is a natural transfor-

mation between the two squares in which all the maps are homotopy equivalences. The

second assertion is just a rewriting of the first. 0

Corollary 1.5.7. To an exact functor B C there is associated a sequence of the

homotopy type of a fibration (with a preferred null-homotopy of the composed map)

wS.B ---+ wS.C -- wS.S.

Indeed, this is the case A = B of corollary 1.5.6 since wS.S.(A-=-A) is

contractible.

Corollary 1.5.8. If C is a retract of B (by exact functors) there is a splitting

wS.B wS.C x wS.S. •

Indeed, this is the case of corollary 1.5.6 where the composed map A B C

is an identity map (or more generally, an exact equivalence) since is

contractible in that case.



346

Let A be a subcategory with cofibrations and weak equivalences of B We

say that A is cofinal in B if for every B E B there exists a A E A

such that BvA is isomorphic to an object of A.

For example the category of free modules over a ring qualifies as strictly

cofinal in the category of stably free modules, but not in the category of projec­

tive modules.

Proposition 1.5.9. If A is strictly cofinal in B then wS.A wS.B is a

homotopy equivalence.

It will be convenient to assume that A is saturated in B in the sense

that every object of B isomorphic to one of A is actually contained in A

Since A can be enlarged to an equivalent category which is saturated in Band

since such an enlargement does not affect any homotopy types, this assumption is

not a loss of generality.

By corollary 1.5.7 or 1.5.6 the map wS.A wS.B will be a homotopy equiva­

lence if the bisimplicial category wS.F.(B,A) is contractible. By the realization

lemma this follows if wSnF.(B,A) is contractible for every n. We can rewrite

wSnF.(B,A) wF,(SnB,SnA).

strictly cofinal in

Assertion I. If A is strictly cofinal in B then, for every n,

S B .
n

S A
n

is

The assertion will be proved later. It reduces us to showing that wF.(B,A)

is contractible if A is strictly cofinal in B By the realization lemma again

this follows if the simplicial set wmF.(B,A) ,

in the w­direction, is contractible for every m

i.e. the degree­m­part of the nerve

Let, as before, B(m,w) denote

the category of the diagrams Bo B
I

... B
n

in

weak equivalences; and similarly with A(m,w) Let

set of objects of F.(B,A) . We can rewrite

B in which the arrows are

6.(B,A) denote the simplicial

6.(B(m,w),A(m,w))

Assertion 2. If A is strictly cofinal in B then, for every m , A(m,w) is

strictly cofinal in B(m,w)

The assertion reduces us to proving

Assertion 3. If A is strictly cofinal in B then 6.(B,A) is contractible.

It remains to prove the assertions.
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We can define an

A; it is therefore in SnA in

to be a subcategory with cofibra-

A.. involves at least one summand
1,]

with itself. Then B v A is in

i < j ,

v A! .
1,]

B•• v
1,J

where, for every

B••
1,J

Then

S A
n

A! .
1,J

A of

tration) so that

object

all the

A' ; briefly, A . is the i-fold sum of A'
0,1

SnB, and all the objects involved in it are in

view of the definition of what it means for A

Proof of assertion I. Let B E SnB. We think of it as a filtration Bo,l .... Bo,2 H

••• >+ Bo,n plus a choice of subquotients Bi,j By applying the cofinality

hypothesis for A c B we can find objects in A (not subquotients of a fil-
1,J

is in A for every (i,j) • Let A' be the sum of

A' is in A for every (i,j)

dons of B

Proof of assertion 2. This is similar, but easier.

Proof of assertion 3. A n-simplex of 6.(B,A) 1S a sequence of cofibrations in B

Bo >+ ....... Bn, subject to the condition that every subquotient

phic to some object of A (in fact, equal to an object of A

B./B. is isomor-
J 1

for any choice

whatsoever, in view of the assumed fact that A is saturated in B). We apply the

cofinality hypothesis to each of the

tained. This gives an object A in

for every

ob-A

We refer to thisB ).

and then add all the objects of

with the property that Bi v A is in A

is thus a sequence of cofibrations

B.
1

A

the sequence BoVA ....... H BnVA

A is a subcategory with cofibrations of

i .,
(sinceAin

situation by saying that the object A moves the simplex B ........... B
o n

More generally, given finitely many simplices, not necessarily of the same di-

mension, we can find objects as before and add them all up to obtain a single object

A which moves everyone of these simplices.

The simplicial set 6.(A,A) is contractible (it is the nerve of the category

of cofibrations in A which has an initial object). To show 6.(B,A) is con-

tractible it suffices therefore to show that the inclusion 6.(A,A) 6.(B,A) is a

homotopy equivalence. This follows if we can show that for every finite pair of

simplicial subsets (L,K) c (6.(B,A),6.(A,A)) there is a homotopy, of pairs, from

the inclusion map to some map with image in 6.(A,A)

The simplicial set L

there is an object A E A

has only finitely many non-degenerate simplices. So

which moves everyone of these simplices. But then A

moves every other simplex of L as well.

6.(A,A) , and the homotopy ter-

This gives the required homotopy

The restriction of that homotopy to6.(B,A)

6.(B,A) , resp.

into 6. (A,A) .

6.(B,A) is a simplicial subset of the nerve of the category of cofibrations in

B The sum with A induces a natural transformation of that category, and in turn

a homotopy of the identity map on

L resp. K is entirely in

minates at a map which takes L

of pairs. The proof is complete. [J
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1.6. Cylinder functors, the generic fibration, and the approximation theorem.

Let C be a category with cofibrations and weak equivalences. By a cylindep

functop on C is meant a functor from ArC to the category of diagrams in C

taking f: A B to a diagram

The functor is required to satisfy the axioms Cyl J - Cyl 3 below. The object

Tef) will be referred to as the cylinder of f, and the maps jl ' j2' P as

the fpont inclusion, back inclusion, and projection, respectively.

Cyl I. The front and back inclusions assemble to an exact functor

ArC I FIC
A ---. B ) I ( A v B ) I T(f) )

f j 1 v j2

A, for every A E C, and the projection and back inclusion

are the identity map on A .

Cyl 3.

I 1 • I '• J J
tit.

(fool's morning song [9], the tune replaces an unnecessary axiom)
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Consider, for example, the category R(x) of the spaces having X as retract.

It has a cylinder functor where X Uxx[O,]] Yx[O,]] UYx] Y'

The following axiom may, or may not, be satisfied by a particular category of

weak equivalences we

Cylinder axiom. The projection p: T(f) B is in we for every f: A B in C •

Note. If in addition to the cylinder axiom wC also satisfies the saturation

axiom (section I. 2) it follows that the back inclusion j2 is always in wC , and

the front inclusion j I is in we whenever f is.

For example in R(X) the weak homotopy equivalences and the simple maps satisfy

the cylinder axiom while the isomorphisms do not. However the simple maps do not

satisfy the saturation axiom, and in fact jl and j2 are not, in general, simple

maps.

Lemma 1.6.]. Cylinder functors are inherited by filtered objects. That is, a cylin-

der functor on C induces one on SnC for every n

in C satisfy the cylinder axiom then so do those in

If the weak equivalences

S C .
n

Proo f', The required functor on ArS C
n

is defined as the induced map

ArSnC SnArC Sn(diagrams in C) (diagrams in SnC)

The only non-trivial point to check is the exactness of the functor ArSnC FISnC

of axiom Cyl ] • But this functor may be identified to the composite

and hence is exact since ArC FIC is exact by axiom Cyl I in C • o

Definition. The cone functor cA is defined by

cA T(A *) ,

and the suspension functor is defined as the quotient of the cone by the front

inclusion A,... T(A *) ,

rA cA/A .

Proposition 1.6.2. If C has a cylinder functor and the weak equivalences satisfy

the cylinder axiom then the suspension map

r: wS.C _ wS.C

represents a homotopy inverse with respect to the H-space structure on wS.C given

by the sum.
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Proof', By the additivity theorem the cofibration sequence of functors id>+ c .... 1:

implies a homotopy of self-maps on wS.C, id v 1: c. The natural transforma-

tion cA * is a weak equivalence in view of the assumed cylinder axiom. By lemma

1.3.1 therefore c, and hence id v 1:, is null-homotopic. D

Define we to be the subcategory of wC of those weak equivalences which are

also cofibrations. (This is not, in general, a category of weak equivalences in the

sense of section 1.2.)

Lemma 1.6.3. If C has a cylinder functor, and the weak equivalences in C satisfy

the cylinder axiom and saturation axiom, then the inclusion we wC is a homotopy

equivalence.

noof. Calling the inclusion i,

every B E wC the left fibre i/B

it suffices to show by theorem A [8] that for

is contractible. An object of i/B is a pair

(A,f) where f: A B is a map in wC. since the cylinder projection p: T(f) B

is in wC (by the cylinder axiom) we can define a functor t: i/B i/B

t(A,f) = (T(f),p). The front inclusion jl: A T(f) and back inclusion

T(f) are weak equivalences as well as cofibrations (by the cylinder axiom

by letting

j2: B

and satu-

ration axiom), so they define natural transformations to the functor t one from

the identity functor (using that p jl = f and one from the constant functor with

value (B,idB) (using that p j2 idB). It results that t is homotopic to both

the identity map on i/B and the trivial map (B,idB) Hence the latter two are

homotopic, and i/B is contractible. D

To formulate the next result suppose that C is a category with cofibrations

and that C is equipped with categories of weak equivalences, one finer than

the other, vC c wC. Let CW denote the subcategory with cofibrations of C given

by the objects A in C having the property that the map * A is in wC It

inherits categories of weak equivalences vCw = cWnvc and wCw cWnwC.

Theorem 1.6.4. (Fibration theorem). If C has a cylinder functor, and the coarse

category of weak equivalences wC satisfies the cylinder axiom, saturation axiom,

and extension axiom, then the square

1
vS.C

1
--_I wS.C

cs * )

is homotopy cartesian, and the upper right term is contractible.
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Define vwC to be the bicategory of the commutative squares

1 1
• -----+ •

in C in which the vertical and horizontal arrows are in vC and wC, respec-

tively. Considering wC as a bicategory in a trivial way we have an inclusion

wC -+ vwC which is a homotopy equivalence (lemma 1.6.5 below). There is a map in

the other direction. The map exists only after passing to nerves, and diagonalizing

(briefly, the map takes each square to its diagonal arrow), but to simplify the

notation we will allow ourselves the abuse of writing the map as vwC -+ wC. The

map is left inverse to the former map, hence is a homotopy equivalence itself.

We can similarly define a simplicial bicategory vwS.C By the realization

vwS C
n

from

lemma it results from the above that the maps wS.C -+ vwS.C and vwS.C -+ wS.C are

homotopy equivalences as well (again the second map exists only after passing to

nerves and diagonalizing the v- and w-directions).

Let vWC denote the sub-bicategory of vwC of the squares in which the hori-

zontal arrows are in WC rather than just wC. Then the inclusion vWC -+ vwC is

a homotopy equivalence by lemma 1.6.3, which applies in view of the assumed cylinder

axiom and saturation axiom. (In detail, by the realization lemma we can reduce to

passing to nerves in the v-direction and showing that v we -+ v wC is a homotopy
n n

equivalence for every n The map may be rewritten, in a way we have used before,

as WC(v,n) -+ wC(v,n) , and lemma 1.6.3 now applies to the latter). Similarly there

is a simplicial bicategory vwS.C, and the inclusion vwS.C -+ vwS.C is a homotopy

equivalence. (For by the realization lemma we can reduce to showing that vwS C -+
n

is a homotopy equivalence for every n. As SnC inherits a cylinder functor

C (lemma 1.6.1) the above considerations apply to it.)

The square of the theorem may be identified to the large square in the following

diagram

vs.c" _ vwS.Cw -------+ vwS.Cw -------+ wS.Cw

1 1 1 1
vS.C ----+, vwS.C ----+, vwS. C wS.C

As the preceding discussion shows, the horizontal maps in the middle and on the right

are homotopy equivalences. So the square will be homotopy cartesian if and only if

the square on the left is. After passing to nerves in the w-direction we can iden-

tify the square on the left to one of the squares of corollary 1.5.6 associated to

the categories at hand, namely
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vS.C -----.+ vS.F. (C,CW
)

the point is that a map in wC can be characterized as a cofibration in C whose

quotient is in CW (this uses the assumed fact that we satisfies the extension

axiom). The square is thus homotopy cartesian by corollary 1.5.6.

Finally the simplicial category wS.Cw is contractible because in each degree

it has an initial object. o

The following lemma was used in the preceding argument; cf. [13) for some

generalities on bicategories.

Lemma J .6.5. (SWallowing Zemma). Let A be a subcategory of B, and AB the

bicategory of the commutative squares with vertical and horizontal arrows in A and

B, respectively. The inclusion B AB is a homotopy equivalence.

FPoof. By the realization lemma it will suffice to take the nerve in the A-direction

For fixed

A .•• A to A
o n 0

Composing the other way we obtainB .

the map B AnB is a homotopy equivalence.

by taking the sequence

nand show that for every

n we can define a map AnB B

This is left inverse to the inclusion of

to the appropriate sequence of identity mapsthe map which takes Ao ••• An

There is a natural transformation of this map to the identity map; it ison A
o

given by the diagram

A --=----. A ---=----t
0 0 0

1 1a1 1an
... az a

l

A --+-A ------+ A
o a 1 I aZ a nn

This shows that B is a deformation retract of A B
n

o

In order to formulate the next result it is convenient to introduce the follo-

wing notion. Let F: A B be an exact functor of categories with cofibrations and

weak equivalences. We say it has the approximation property if it satisfies the

conditions App 1 and App Z below.

App I. An arrow in A is a weak equivalence in A if (and only if) its image

in B is a weak equivalence in B.
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2. Given any object A in A and any map x: F(A) B in B there exist

a cofibration a: AH A' in A and a weak equivalence x': F(A') B in B

so that the following triangle commutes,

F(A)

F(a) I -: B

F(A ') x

Lemma l , 6 • 6 • If F: A B has the approximation property then so does S A S B
n n

App 2 for the map SnF .

SnA as a filtration Ao,l .... Ao , 2 H ... H Ao,n plus a

Proceeding by induction on n we suppose we have found

Proof. The non-trivial thing to verify is the condition

We think of an object of

choice of subquotients.

already a sequence AI 1 H ... H A I I together with maps as required. From these
0, o,n-

data we obtain an object in A ,

and a map in B,

A
o,n UAo,n-\

A'o,n-I

A'o,n-I o,nF( Ao,n UAo,n-I

to which the hypothesis App 2 for F may be applied. This gives a cofibration

Ao,n UAo,n-]
A'
o,n-] o j n

and a weak equivalence

(where the broken arrow

F(A' ) B
o,n o,n

A >-- .. A 'o,n o,n

so that the following diagram commutes

is defined as the composite)

Bo,n

I
F(A ' )o,n-I

I
F(A U

A
AI )

o,n o,n-\

>-----___ I
F(A ' )

o,n

F(A )o,n

F(A I)
0,n- >-------

I
We are done. []
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Theorem 1.6.7. (Approximation theorem). Let A and B be categories with

cofibrations and weak equivalences. Suppose the weak equivalences in A and B
satisfy the saturation axiom.

and the weak equivalences in

Suppose further that A has a cylinder functor

A satisfy the cylinder axiom. Let F: A B be

an exact functor. Suppose F has the approximation property. Then the induced

maps wA wB and wS.A wS.B are homotopy equivalences.

It will suffice to show that wA wB is a homotopy equivalence. For this

implies, in view of the preceding lemma, that wSnA wSnB is a homotopy equiva­

lence for every n, and hence, by the realization lemma, that wS.A wS.B is a

homotopy equivalence.

The proof that wA wB is a homotopy equivalence, is quite long. It occupies

the rest of this section. Calling the map f it suffices to show, by theorem A

[ 8 ], that for every B E wB the left fibre fiB is contractible, and this is

what we shall prove.

The idea for the proof of contractibility of fiB is in the following observa­

tion which says that certain diagrams V in fiB admit extensions to their cones

and are thus contractible in fiB; by the cone on V is meant here the diagram V

together with an added terminal vertex.

Observation. Let V be a diagram in fiB Suppose that as a diagram in FIB

it extends to the cone (for example, this is the case if the colimit of V exists

in FIB). Then V fiB also extends to the cone.

Indeed, suppose that V fiB c FIB extends to the cone. Let the cone point

be represented by (A' in FIB Applying the approximation property of

F we find a cofibration A' H A" in A and a weak equivalence F (A") in B

so that the triangle

F(A r
)

I ::B
F (A") ,.,

commutes. Then may be regarded as a terminal vertex to V in fiB

rather than just FIB as we see by checking that certain maps are weak equivalences.

Namely let represent any vertex of V. Then there is a triangle

( )

F (A) ""'

F(A')E 1
F(A") ""'

in which both of the maps going to B are weak equivalences. Applying the satura­

tion axiom we obtain that F(A) F(A") is a weak equivalence in B. From this we

deduce in turn, using property App 1 of F, that A A" is a weak equivalence,

as required.
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For example the empty diagram in f/B has a colimit in F/B provided by the

initial object of A In view of the observation we conclude that f/B is non-

empty.

Similarly any discrete two-point-diagram in f/B has a colimit in F/B provi-

ded by the sum in A. In view of the observation this shows that f/B is connec-

ted.

To show that f/B is contractible it remains to find sufficiently many dia-

grams to which the observation applies. The sublemma below claims that this can be

done. But we must first explain what 'sufficiently many' means in this context.

Let a non-singular simplicial set mean one where for every n and every non-

degenerate n-simplex, the representing map from is an embedding. For example

ordered simplicial complexes may be regarded as simplicial sets and as such are non-

singular.

In order to show the simplicial set N(f/B) , the nerve of f/B, is contrac-

tible it will suffice to show that for every non-singular X and every map from X

to N(f/B) , this map is null-homotopic. (E.g. think of X as running through

iterated subdivisions of spheres. There are sufficiently many maps from such X to

represent all the elements of the homotopy groups of N(f/B) • If they are all tri-

vial N(f/B) is thus contractible by the Whitehead theorem).

To any simplicial set Y we can associate its category of simplices simp(Y)

and there is a natural transformation N(simp(Y)) Y (the last vertex map) which

is a homotopy equivalence (this will be recalled at the end of this section). If Y

happens to be the nerve of a category then the natural transformation is the nerve

of a map of categories. In particular we have a map simp(N(f/B)) f/B

If Y is non-singular then the category simp(Y) has a subcategory which is

given by the non-degenerate simplices (it is a partially ordered set really). The

inclusion simpn.d.(y) simp(Y) is a homotopy equivalence (cf. the end of the sec-

tion).

The map X N(f/B) now gives rise to a sequence of maps

simpn.d(X) simp(X) -----+ simp(N(f/B)) fiB

as well as a diagram

N simp(X) ---. N simp(N(f/B))

II 1<
X N(f/B)

This shows that the map
. n.d.() f/map s rmp X B

X N(f/B) will be null-homotopic as soon as the induced

is. The proof of the theorem has thus been reduced to the
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Assertion. Let X be a non-singular finite simplicial set and q: X N(f/B) a

Th h · d d . n i d , () st . 11 h .map. en t e 1n uce map q*: s1mp X B 1S nu - omotop1c.

We prove below

Sublemma. In this situation there exists a functor

T simpn.d. (X) ---+ fiB
q

with the following two properties.

(I) There is a natural transformation from T to q* .
q

(2) The composite functor
T

simpn.d. (X) --.9.....f/B c FIB

extends to a functor on seX) , the partially ordered set of the simplicial subsets

of X.

The sublemma implies the assertion and hence the theorem. For the partially

ordered set seX) has a maximal element, therefore part (2) of the sublemma implies

that simpn.d. (X) FIB extends to the cone on simpn.d·(X) In view of the ob-

servation therefore T : simpn.d·(X) fiB extends to the cone, too, thus T is
q q

null-homotopic. By part (1) of the sublemma Tq is homotopic to q* It results

that q* is null-homotopic.

Froof of sublemma. In order to define Tq we need the notion of iterated mapping

cylinder, a notion derived from the cylinder functor on A. Let Ao ••. An be

a sequence of maps in A. We will associate to this sequence the following data

(I) the (iterated) cylinder object ... ,

(2)

the

a map d.: T(A ... ... )
1 0 1 n

hat indicates the omission of A.
1

... for every

from the sequence,

where

Proceeding inductively we define •.. as An) ,

the cylinder of the composed map
P

----+An-1 --An'

and p: ... An as the cylinder projection.

The definition of di requires a case distinction. The map

is defined as the front inclusion of the cylinder. If n = the map

is the back inclusion. And in general, finally, if i < nand n > 1 then the map
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d. T(A A A ) -----. T(A
O

• A
n)1 0 1 n

is defined inductively as T(ai) where a
1

is the (vertical) map of diagrams

T(A A A 1)o 1 n- n

From the particular sequence A
o

.... . . •.... An

simpn.d. (lIn)--+A

we can obtain a functor

taking each face of lin to the iterated cylinder of the subsequence indexed by that

justify this we must check that the maps

On morphisms the functor is given by the maps To

it follows from the

d i and their composites.

satisfy the identities for iterated

an this follows inductively from

and for the identities which do involve d
n

a.
1

But for the identities not involving

n-1

face.

the case

face maps.

fact that the front inclusion is a natural transformation.

The desiree functor T 1S obtained by a slight modification, and generaliza-
q

tion, of this construction. Namely let X be a non-singular simplicial set, and q

a map from X to the nerve of fiB Then the image of q on a n-simplex x of

x is given by a sequence of weak equivalences in A over B E B ,

A (x) ---+ .•. ---+ A (x)
o n

Assuming now that x is a non-degenerate n-simplex of X we define

the iterated cylinder of that sequence, making it an object of fiB

T (x) to be
q

by means of the

composite map F(T(Ao(x) ...........An(x») .... F(An(x» .... B (the first map here is induced

from the projection p by the functor F, it is a weak equivalence in view of the

assumed cylinder axiom). On morphisms Tq is defined by the maps di and their

iterates (the morphisms are in fiB rather than just FIB in view of the assumed

cylinder axiom and saturation axiom). It was checked above that the rule for mor-

phisms is compatible with the identities for iterated face maps. There are no other

identities in simpn.d. (X), so T is a functor on it.
q

The desired natural transformation from T to q* is given by the projection
q

p T(A (x) ........... A (x) -=---. A (x)
o n n

This completes the argument for part (1) of the sublemma.

In defining the proposed extension t of the composed functor

T
simpn.d. (X) -----.1.... st« c: FIB

we will insist on the following two properties of t

(1) t takes maps in seX) to cofibrations (as maps in A, after neglect of the
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structure maps to B, that is),

(2) t(X I Ux X2) t(X1) Ut(X ) t(X2) •
o 0

Given its restriction to simpn.d·(X) provided by T the functor t is
q

uniquely determined by these conditions, up to isomorphism.

To establish the existence of t we proceed by induction, assuming in the

inductive step that t does exist on the (n-I)-skeleton of X. Our aim is to

establish the existence of t on the n-skeleton. There is only one thing that

could conceivably go wrong with the inductive step. Namely if x is an-simplex

of X and ax its boundary (the union of the proper faces) then t(ax) and t(x)

are both defined, and a map t(ax) t(x) is also defined. The problem now is if

this map is a cofibration.

Let

d x so
n

Anx be the n-th horn of x , the union of all the proper faces except

Condition (2) above expresses t(Anx) in terms of values of t on faces of x.

Since a similar formula is valid for the cylinder functor, in view of its exactness,

we conclude that

where An denotes the value of t on the n-th vertex of x (and where, for ease

of notation, we are ignoring the structure maps of objects in FIB). Applying con-

dition (2) again we obtain that the map t(ax) t(x) can be identified to the map

t(dnx) Ut(ad x) .
n

That the latter map is a cofibration, is one of the conditions that must be satis-

fied for the following map in FIA to be a cofibration in FIA,

t(adnx) ) -----+ ( t(dnx) ) ,

so it will suffice to know that.

(t) A' A"

The map is the image, with respect to

1-----+ ( A' ) ,

of the following map in ArA

( t(adnx) An ) ----+ ( t(dnx) An ) ,

which is a cofibration in ArA because t(adnx) t(dnx) is a cofibration by con-

dition (1) above and the inductive hypothesis. We conclude by recalling that a

cylinder functor has certain exactness properties, as specified in the axiom Cyl I .

In particular therefore the map (t) preserves cofibrations. This completes the

proof of the sublemma and hence also that of the theorem. 0
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It remains to say a few words, as promised, about the map Nsimp(Y) Y. In

view of the natural isomorphisms Nsimp(Y) colim. (y)«[n],y) Nsimp(6n» andSimp
Y colim. (y)«[n],y) 6n) , the map is fully described once one knows thesimp
special case of simplices 6n• A m-simplex of Nsimp(6n) is a sequence of maps

in 6,
ao a 1 am

[no] -- [n
l
] ... ----+ [nm] Inl ,

and one associates to it the m-simplex b: [m] [n] in 6n given by the last

vertices, i.e.

Nsimp(6n) is contractible since simp(6n) has a terminal object. Therefore the

map Nsimp(6n) 6n is a homotopy equivalence. In view of the gluing lemma it

results from this that Nsimp(Y) Y is a homotopy equivalence in general (cf. the

appendix A to [11 ]).

Suppose now that Y is the nerve of a category C. Then simp (NC) is the

category of pairs ([m],x) , x: [m] C, and we can define a natural transforma-

tion simp(NC) C by ([m],x) x(m) • On passing to nerves this induces the

above natural transformation in the case when C = [n] , and consequently also in

general.

We conclude with

Lemma, If X · . 1 . f . () . n , d. (X)is non-slngu ar there is a unctor simp X simp which is

left adjoint, and left inverse, to the inclusion functor.

The functor associates to each simplex of X the unique non-degenerate

simplex of which the simplex is a degenerate. It is clear that this works in the

special case where X is 6n. The general case reduces to this special case

in view of the non-singularity of X 0
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1.7. Spherical objects and cell filtrations.

By a homology theory on a category with cofibrations e with values in an

abelian category A , will be meant a sequence of functors H. : e ... A , i 0,1, •. ,

together with connecting maps (A,... B) 1---+ (Hi + 1(B/A) ... Hi(A» such that the long

sequence resulting from a cofibration sequence A .... B .... B/A is exact and terminates

in a surjection Ho(B) .... Ho(B/A) .

Given such a homology theory, e may be regarded as a category with cofibra­

tions and weak equivalences where the latter are defined as the maps inducing iso­

morphisms in homology. The category of weak equivalences will be denoted we It

satisfies the saturation axiom and extension axiom.

Suppose given a full subcategory E of the abelian category A which is closed

under the formation of extensions and kernels; that is, if E' .... E .... E" is short

exact then E', E" E E implies E E E, and E, E" E E implies E' E E. For

example A itself will do.

Definition. An object A E C is (H*,E)-spherieal of dimension n if

o if i # n , and H (A) E E
n

With H* and E being understood, such an A will also be simply referred to as

iv-ephez-ical.,

We denote the category of the n­spherical objects by en

with cofibrations and weak equivalences of e (section 1.1).

It is a subcategory

Example. On the category R(X) of the spaces having X as a retract there is a

homology theory with values in the category of Hi(Y,r,s)

• For E one can take the category of projective Z[rrIX]­mo­

dules, or even the subcategory of the stably free ones. The n­spherical objects in­

clude the objects (Y,r,s) where Y is obtainable, up to homotopy, by attaching

rr-c e l l s to X.

We assume that e has a cylinder functor and that the weak equivalences satisfy

the cylinder axiom. Any map f: A ... B then gives rise to a long exact sequence

... Hi(A) ... Hi(B) ... Hi(f) ... Hi­ 1(A) ...

Hi(f)

where

We say the map f is k-eonneeted if Hi(f) = 0 for i k

The following hypothesis will be needed in the theorem below.
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x ... y
m

in e there is a factorization

X
m >---..... Xm+1 >-------+ ••• - Xn

\ +1
X Ix E em
m+l m

-------+) Y

Recall (proposition 1.6.2) that the suspension induces an exact functor

E: e ... e and a homotopy equivalence wS.e ... wS.e. As a consequence if we denote

by wS.e the direct limit of the system wS.e in which the maps are

given by suspension then

is a homotopy equivalence.

The suspension also induces an exact functor en ... en+ 1 , so we can form

lim en •...
n

Theorem 1.7. 1• The map

lim ws.e
n

- lim(L) wS.e
n

is a homotopy equivalence, provided that the hypothesis is satisfied.

The proof of the theorem occupies all of this section. The strategy of the

proof is to replace C by a category of cel.L fiUrations, and to study two notions

of weak equivalence, as well as their interplay, on that category.

Definition. A cell filtration in e is an eventually stationary sequence of cofi-

brat ions

*
such that

for every n. The object to which the sequence stabilizes is denoted A
QO

For example, given any object A E e one can find a cell filtration {A. } to-

gether with a weak equivalence A ... A This results from the hypothesis of the
co

theorem applied to the map * ... A in e

The category of cell filtrations will be denoted C It is a category with

cofibrations where, by definition, a map {Ai}'" {Ai} is a cofibration if, and only

if, for all n the map

A --A'n n
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is a cofibration in C with quotient in Cn. (Note this implies that the maps

An/An_I and

quotient as the above.

cofibration. )

are cofibrations, with the same

It also implies that for all n the map An is a

} •

The cylinder functor on C induces one on C where

{ A. U
A

T(f·_ I) UA,i-I i-I

As usual the cylinder functor induces functors cone and suspension. The suspension

functor on C relates very simply to that on C, namely it is given by

E{A. }

Of the two categories of weak equivalences in C to be considered, the coarse

one is the category we of the maps {Ai} {Ai} having the property that Am

is in we. The category wC satisfies the saturation axiom and extension axiom,

and also the cylinder axiom.

Lemma 1.7.2. The map wS.C wS.C, {Ai} Am' is a homotopy equivalence.

This is where the hypothesis of the theorem is used. We verify that the

approximation theorem 1.6.7 applies to the forgetful map C C. The non-trivial

thing to prove is that given {Ai} E C and a map x: Am B in C, we can find

a cofibration {ai}: {Ai} >+ {AP in C and a weak equivalence x': B in C

so that x = x'am

Let, for definiteness, Am = Am If m = -I then {Ai} = * and

be found by applying the hypothesis of the theorem to the map * B

{A! } can

For m 0 we proceed by induction. Truncating {Ai} at level m-I we can

apply the inductive hypothesis to find {A'.'} , a cofibration {Ai}(m-I) ..... {A'.'} ,
and a weak equivalence A: B so that the resulting triangle commutes.

A homology computation (downward induction on

i-connected for every i, in particular B

homology computation we deduce from this that

i shows that B is
t.

is (m-I)-connected. By another

Am UA __ B
ur-I

is also (m-I)-connected. We can now apply the hypothesis of the theorem to factor

the map as

A U
A

A" >---+ AI >---+ ••• >---+ A' .-..::::.-.... B
m nr-I m-I m n

where the quotients of the cofibrations are spherical of the appropriate dimensions.

We define A! =
for the fact that

for i m-I .

A'/A' E Cm.
m m-I

Then everything has been proved already except

To see this we consider the sequence



363

Alt

m-l m

The associated cofibration sequence

AmiAm_1 >-----> Am' IAm'-I A' I (A U AIt
)m m Am- 1 nr-I

has both its 'subobject' and quotient in Cm. Since Cm is extension closed in C

we conclude that A'iA' E Cm. The lemma is proved. 0m m-l

Let the fine category of weak equivalences in C be defined as the category

vC of the maps

every i

{A.} -> {A!}
1. 1.

having the property that A. -> A!
1. 1.

is in wC for

Let Cm denote the category of the cell filtrations in dimensions m, i.e.

the full subcategory of the {Ai} in C with Am = A
oo

We consider Cm as a

subcategory-with-cofibrations-and-weak-equivalences (sections 1.1 and 1.2) of (C,,
vC) •

Lemma 1.7.3. The map

vS.C ) wS.Co x wS.C 1
x

m

CAo .... A1 .......>-> Am) Ao' Al lAo '

is a homotopy equivalence.

By iQduction it suffices to show that the map

vS,C
m_ 1

x vS.Cm

.--...- (Ao ..... ··..... Am_I) , Am/Am_1

is a homotopy equivalence. The map is a retraction. We show that it is also a

coretraction, up to homotopy. The desired homotopy is given by the additivity

theorem applied to the cofibration sequence of functors f',......id_f lt on Cm where

f' and fit take (A
o
............ Am) to (Ao ............ Am_I'::; Am-I) and (* ............ * ..... Am/Am_ l)

respectively. o

as

'w
C denote the subcategory of the {Ai} in C where * -> {Ai}

= CW n C . it is the category of the cell filtrations
m'wC

Let, as usual,

Let CW
m

CAo ........... Am-1 ..... Am) having the property that Am is acyclic. We consider

a subcategory-with-cofibrations-and-weak-equivalences of (C,vC) .

is in

Lemma 1. 7 . 4 • If then A E Cn
n

for all n •

Using suitable long exact sequences we obtain

if

if

k > n

k < n

then

then

"" ""Hk CAn) <f-- Hk CAn_ 1) (---

"" ""Hk CAn) -----+ Hk CAn+ I) -----+

""t--- HkCA_ I) = 0 ,

""-----.. H
k

CA
oo

) = 0 ,

and
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o if kin. There is a short exact sequence

Hn(An) '""""- Hn(An/An- I) -- Hn- I (An_I) .

By induction we may assume Hn_ 1(An-I) E E, and by definition of a cell filtration

we have Hn(An/An_ J ) E E It follows that Hn(An) E E in view of the assumed fact

that the category E is closed under taking kernels. 0

Lemma 1.7.5. The map

x •• " xwS.C o
x wS.C J

Am) 1-------+ Ao' AI'

vS.cw
m

(A
o

>-+ A
J

>-+ ......

is a homotopy equivalence.

Proof. The map exists by the preceding lemma. To show it is a homotopy equivalence

it suffices, by induction, to show that the map p,

vS.C
m

m-]
vS,C

m_1
x wS.C

(Ao >-+ ...... Am) 1-----+ (Ao >-+. r+ Am-Z .... Am) , Am- I '

is a homotopy equivalence (p exists by the preceding lemma since Hi (Am/Am-Z)

Hi-1(Am- Z» . We show that the map s in the other direction,

(Bo >-+ ••- Bm_l ) , B t--------+ (Bo >-+ ...... Bm-Z >-+ Bm- IvB >-+ Bm- IvcB) ,

is homotopy inverse to p where, as usual, cB denotes the cone on B.

The composite sp is given by

(B
O

.... ··>-+ Bm- J ) , B 1-------+ (Bo >-+ ••>-+ Bm-Z >-+ Bm-1vcB) , Bm- IvB •

There is a natural transformation from the identity map to sp. It is a weak equi-

valence since both Bm- 1 B
m_1vcB

and B B
m_1VB

are weak equivalences. Hence

it induces a homotopy (lemma 1.3.1), showing that s is left inverse to p

To show that s is right inverse to p we construct a homotopy by applying

the additivity theorem to a cofibration sequence of maps on Cw . We can write
m

ps = f' vf " where f' and f " are the self-maps of CW taking (A >-+••>-+ A) tomorn
(* .. * >-+ Am- J >-+ cAm_I) and (Ao >-+ ...... Am-Z .... Am'::; Am) , respectively. If we

could find a cofibration sequence f' - f _f", where f denotes the identity map

on CW it would follow by the additivity theorem that there is a homotopy between
m

f and f' vf", and we would be done.

The desired cofibration sequence does not exist directly, but it exists after

the maps f and f" have been modified a little. The modified maps are related to

the original maps by chains of weak equivalences.

In a first step we replace the identity map f by a map f
l

taking

to (Ao >-+ ...... Am- J >-+ c(AmUA cAm_I». There is a weak equivalence
m-I

(A >-+ .....
o

f f
J
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In a second step we blow up f
l

to a weakly

can be replaced by a cofibration f' ..... f Z •
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and we can define a map f' f] now.

equivalent f Z so that the map f' f
l

By definition, f Z takes (Ao >-+ ••>-+ Am)

( Ao ........ >-> Am-Z >-+ TAm_1 >-+ Tc(AmUA cAm_1))ur-t

where TA is defined as T(id
A)

, the cylinder of the identity map on A •

Let f) be defined as the quotient fZ/f' . There is a weak equivalence to it

from f"
Z '

the latter maps by weak equivalence to f"
1 '

and, to conclude, we have a weak equivalence f" f'J'. We are done.

Lemma ].7.6. The map

vs.cw x ws.em vS.e
m m

is a homotopy equivalence.

[J

Proof. The map

x wS.em-] vs.cw
m

A
o

is a homotopy equivalence. For by composing it with the homotopy equivalence of the

preceding lemma we obtain a map induced by a self-map of eOx... xem- J weaklyequiva-

lent to the identity map. As a result it will suffice to show that the composite map

(eo x ... x em-I) x em _ CW x em ---+ c -----+ CO x ••. x em ,
m m

where the right hand map is that of lemma 1.7.3, induces a homotopy equivalence of

wS.eox •• xws.em to itself. The composite map is given by

( Ao ' ... , Am ) ( Ao ' EAoVA J ' EA1VAZ ' ••• , EAm_JvAm ) .

This is clearly a homotopy equivalence.

Lemma 1.7.7. The map

(limits by suspension) is a homotopy equivalence.

[J

Proof. The desired homotopy equivalence results by direct limit once it is known

that the maps lim wS.em x lim vS.Cw ---+lim vS.em+k are homotopy equivalen-
-+ -+ m+k -+m m m
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ces. The case k = 0 follows from the preceding lemma by direct limit. We deduce

the case k = I from the case k o Namely the two maps

lim Cm lim Cm+1 lim C
-+ Rl -+ -+ m+1 'm m m

are related by a cofibration sequence of functors 0 where 0 is the

composite map

-----+1 lim CW
-+ m+1

A C•• ,. >-+ cA .• )

By the additivity theorem there results a homotopy of the induced maps, t/>jVt/>OL "" 0 ,
A
Wshowing that, modulo lim Cm+1 the maps WI and t/> L are the same up to sign.

-+ 0

We conclude that <PI is a homotopy equ i.va l ence since <Po is. Similarly it follows

that <P2 is a homotopy equivalence since <PI is. And so on. 0

Froof of theorem 1.7. I. By the fibration theorem 1.6.4 there is a homotopy cartesian

square

vS.C

1
ws.C'" ws.c

vS.C'" ----+

1
Suspension induces a self-map of the square, and hence a direct system. Passing to

the direct limit we obtain a square which is homotopy cartesian again. It is the

large square in the following diagram

lim vS.Cw ---- lim vS.Cw x wS.Cm ) - lim vS.C
-+ -+ -+

1 1 1
AW --+ lim ( wS.Cw x ws.cm ) lim wS.Clim wS.C --+ -+ -+

By comparing the vertical homotopy fibres we see that the left square in the diagram

is also homotopy cartesian. It follows that the square on the right is homotopy

cartesian. By the preceding lemma the upper horizontal map in the right hand square

is a homotopy equivalence. We conclude that the lower horizontal map is a homotopy

equivalence. Discarding the contractible factor lim wS.C
w

we obtain the map
-+

lim wS.Cm -- lim wS.C
-+ -+

which is therefore a homotopy equivalence. In view of the homotopy equivalence

lim wS.C -----+ lim wS.C
-+ -+

of lemma 1.7.2 this completes the proof of the theorem. n
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1.8. Split cofibrations, and Kr-theory via group completion.

Let A be a category with sum (categorical coproduct), and let A be pointed

by an initial object *. There is an associated simplicial category

N.A: (cat)

[n] 1----+ N A
n

the nerve with respect to the composition By definition NnA is the category

equivalent to An in which an object consists of a tuple AI, ... ,An together with

appropriate sum diagrams, one for each subset of {I, ... ,n} ; these choices are to

be compatible, and for the subsets of cardinality they are to be given by the

objects AI, .•• ,An themselves and by the initial object *, respectively.

By a category of weak in A will be meant any subcategory wA

which contains the isomorphisms and is closed under sum formation; that is, if

AI Ai and AZ Ai are in wA then so is AjvAZ AjvAi

If A is a category with sum and weak let wNnA be defined as

the subcategory of NnA whose morphisms are the natural transformations with values

in wA. It is a category of weak equivalences in NnA, and it is equivalent to

wAn by the forgetful map. N.A may be regarded as a category with sum

and weak and the simplicial category of weak equivalences is

wN.A: __ (cat)

Inl A
n

The construction is a special case of Segal's construction of r-categories [II].

The present notation has been chosen to conform to that of section 1.3.

Let C be a category with cofibrations and weak equivalences. By neglect of

structure C is a category with sum and weak equivalences, AvB = AU*B There is

a map of simplicial categories

wN.C wS.C ,

it takes

to

AI ..... AlvAZ ............ A1v...VAn, (fewer) choices) .

The theorem to be formulated below says that the map is a homotopy equivalence in

certain cases.
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Suppose that C, a category with cofibrations and weak equivalences, has a

cylinder functor and that the weak equivalences 1n C satisfy the cylinder axiom,

saturation axiom, and extension axiom.

ces

Suppose given a sequence of subcategories-with-cofibrations-and-weak-equivalen-

Cn in C subject to the condition that suspension takes Cn into Cn+ 1 for

all n. The example to be kept in mind is that of a sequence of categories of

spherical objects in the sense of the preceding section.

Let us say that a cofibration A- B in Cn is splittable up to weak equiva­

lence if there is a chain of weak equivalences, relative to A, relating A- B

to A - BI where BI "" A V BI IA •

Theorem 1.8.1. The map

lim wN.Cn __ lim wS.Cn
--> -->
n n

is a homotopy equivalence, provided that, for every n , all cofibrations in Cn

are splittable up to weak equivalence.

The proof of the theorem occupies the present section. The argument will be

summarized at the end of the section. The splittability condition actually used is

slightly weaker than the one formulated here.

For any X E C let Cx denote the category of the cofibrant objects under X

the objects of Cx are the cofibrations X>-> A in C and the morphisms are the

maps A --> A' restricting to the identity map on X Cx is a category with sum,

X-A)v(X-A'

and it comes equipped with a category of weak equivalences wCx , the pre-image of

wC under the projection Cx --> C, (X- A) H A .

Let as usual c denote the cone functor derived from the cylinder functor

( cA = T(A-->*)) and E the suspension functor, EA = cA/A = cA UA * •

Lemma 1.8.2. To X- A in Cx there 1S naturally associated a chain of weak

equivalences in CEX'

Proof. The chain consists of two maps. These are given by the two diagonal arrows

in the following diagram
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r.A Un r.A U *
*

.i> r
r.A Ur.x ( cAlx UA/X cA/cX ) -----+ r.A Ur.x r.A U r.A/r.X

*

1
r.A u* r.A/r.X

By definition, the horizontal arrow is given by pushout with the map A/X *

and the downward vertical arrow is induced by the folding map LA Ur.x r.A LA

The upper diagonal arrow is a weak equivalence since it is given by pushout with

the weak equivalence cA/cX *. The lower diagonal arrow is a weak equivalence

in view of the assumed extension axiom. For by cobase change with the map

one obtains from it the weak equivalence cA/cX U
A/X

cA/cX r.A/r.X

r.A *

[]

Remark. If C happens to be an additive category the lemma is true without suspen-

sian, one can define a weak equivalence A U
x

A A U* A/X as a map whose restric-

tion to the second A is the sum of the identity * and the projection
*

A * U* A/X In the additive case the argument leading to the theorem, and the

theorem itself, can thus be simplified. []

If X E Cm we can form There are maps, of categories with sum and weak

equivalences,

q

and

on

is left inverse to j , up to natural isomorphism of q j to the identity

Proposition 1.8.3. The map

. N Cm+n 1 . N Cm+nw • - w • r.nX
n n

(limits by suspension) is a homotopy equivalence.

Proof. It will suffice to know that for each n the composite q becomes homo-

topic to the identity upon suspension. The next lemma provides this; upon re-indexing

r. j q

it will suffice to formulate the lemma for the case n = 0 .

Lemma 1.8.4. The geometric realizations of the two maps

m m+1
wN.Cx wN.Cr.x

are homotopic.

[]

Proof. The natural transformations of lemma 1.8.1 provide a homotopy between the two
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m m+1
maps wN.CX which take X- A to

respectively; that is, the maps

V z

and

and v .

m+1The geometric realization of is an H-space (by v) which is connected and

hence group-like. So we can cancel the left to obtain the desired homotopy. 0

The following is the analogue of definition 1.5.4 with the S. construction

replaced by the N. construction. In particular the letter P refers to the simpli­

cial path object construction whose elementary properties have been recalled in the

beginning of section 1.5.

Definition 1.8.5. Let f: A B be a map of categories with sum and weak equiva-

lences. Then is the simplicial category with sum and weak equivalences

given by the pullback of the diagram

N.A --+ N.B - PN.B

represents a one­sided bar construction of A

sum via f. In fact, notice that in particular for every n

diagram

acting on B by the

there is a pullback

NA
n

----0+> N B
n

and the vertical map on the right corresponds, under the equivalence of B withm
the product category Bm , to the projection map Bn+ 1 B

n , the projection away

from the first factor; and is equivalent to the product category BxAn

Considering B as a simplicial category in a trivial way we have a sequence

of simplicial categories with sum and weak equivalences

B --+ N. -- N.A

We would like this sequence to represent a fibration, up to homotopy, of the associ-

ated simplicial categories of weak equivalences, but we cannot expect this to be

true in general since A need not act invertibly on B We circumvent the diffi-

culty by introducing another simplicial direction, using either the S. or the N. con-

struction (we need both cases), as follows.

If

N.then

is a map of categories with cofibrations and weak equivalences

is a simplicial category with cofibrations and weak equivalences,
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so we can form Alternatively we could apply the definition 1.8.5 to

the map S.f: S.A S.B to obtain , and the two bisimplicial cate­

gories are naturally isomorphic. There is a sequence, of bisimplicial categories

with cofibrations and weak equivalences,

S.B

alternatively we could rewrite it, up to isomorphism, as

S.B N.S.A

In general we can apply the N. construction to the simplicial category with sum

and weak equivalences to obtain . Alternatively we could

apply the definition 1.8.5 to the map N.f: N.A N.B to obtain ,
and the two bisimplicial categories are naturally isomorphic (the isomorphism invol­

ves a switch of the two N. directions). There is a sequence, of bisimplicial cate­

gories with sum and weak equivalences,

N.B ­­ N.N. ­­+ N.N.A

alternatively we could rewrite it, up to isomorphism, as

N.B N. (N.f :N.A-.N.B) ­­ N.N.A

Lemma 1.8.6. The sequence

wN.B ­­ wN.N.A

is a fibration up to homotopy. Similarly so is the sequence

wS.B _ wS.N. ­­­+ wS.N.A

if that is defined. In either case, if f is an identity map then the middle term

, resp. is contractible.

Froof. This is a special case of a result of Segal [11]. Essentially the same proof

results if the argument of proposition 1.5.5 is adapted to the present situation.

That is, one observes that (in the second case, say) for every n one has a fibration

namely a product fibration, and one draws the desired conclusion from this, using a

suitable fibration criterion for simplicial objects. 0

Let V be a category with cofibrations and weak equivalences. The example to

be kept in mind is that of the category lim en of the theorem. Our next result is

of a formal nature. It gives a sufficient condition for the conclusion of the theo­

rem to be valid.
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Proposition 1.8.7. If for every X E 0 the simplicial category wN.(j:O OX) is

contractible then the map wN.O wS.O is a homotopy equivalence.

Proof. Applying lemma 1.8.6 we obtain that the map of the proposition de-loops to

wN.N.O wN.S.O , so it will suffice to show that the latter map is a homotopy equi-

valence. By the realization lemma this follows if for every n the map

wN.N 0 ---. wN.S 0
n n

is a homotopy equivalence, and this is what we shall show.

The simplicial category on the left is equivalent to the product (wN.O)n, so

our task is to show that the simplicial category on the right is homotopy equivalent

to that same product by the subquotient map. In other words, our task is to estab-

lish a case of the additivity theorem for the N. construction rather than the S. con-

struction.

By induction it will suffice to show that the map

wN.SnO wN.Sn_IO x wN.O

( A] ...... >-+ An ' choices) 1------+ ( A] .... " >-> An-I ,choices; An/An_ 1 )

is a homotopy equivalence. To reduce further we consider the map

o ---4. SO
n

A........-.* ...... -* .... A

By combining these two maps, and using lemma 1.8.6, we obtain a diagram of homotopy

fibrations

wN.S 0 wN.N. (jn :0 S 0) , wN.N.O
n n

1 1 18
wN. (Sn-I O x 0) --+ wN.N. (0 Sn_lO x 0) ---+ wN.N.O

So our task of showing that the vertical map on the left is a homotopy equivalence,

translates into the task of showing that the vertical map in the middle is one. By

the realization lemma this will follow if we can show that

is a homotopy equivalence. Now

wS 0 x wN. (0 .:; 0)
n-l

and the factor wN.(O 0) is contractible. So the proof of the proposition has

been reduced to proving the following lemma:

Lemma 1.8.8. If for every X E 0 the simplicial category wN.(j:V Vx) is con-

tractible then the map p: wN.(jn:V SnV) wS
n_ 1V

is a homotopy equivalence.



373

Proof. There is a variant of theorem A [ 8] for simplicial categories. A special

case, sufficient for the present application, has been described in [13, prop. 6.51

in great detail. A neater, and more general, version may be found in [15, section 4]

with a sketch proof. In any case, the criterion says that for the map p to be a

homotopy equivalence it suffices that for every object

B ( B1 ,... .• ,... Bn_ 1 ' choices) E wS
n_ 1

V

the left fibre (p/B). is contractible.

Capitalizing on the special feature that wSn_IB, the target of p , is only

a simplicial category in a trivial way, we can re-express (p/B). in terms of left

fibres of maps of categories, namely

An object of Pm/B consists of a diagram

Al ... >--+ An-I >----+ An

1
B] >--+ ••• >---+ Bn-r l

plus a m-tuple of objects in V, plus certain sum diagrams formed from this m-tuple

and An (plus, as usual, certain other choices).

There is a natural transformation of the identity map on Pm/B , it is given by

pushout with the vertical map(s) in the diagram. For varying m the natural trans-

formations are compatible, so they combine to give a homotopy of the identity map

of (p/B). ; namely a deformation retraction into the simplicial subcategory defined

by the condition that the vertical map(s) be the identity.

That subcategory is isomorphic to wN.(j:V Vx) where X

contractible by assumption. We are done.

Bn_ 1 ' it is thus

[J

Let V be a category with cofibrations and weak equivalences, and X E V. It

turns out that the contractibility of wN.(V Vx) may be re-expressed in terms of

two other conditions which appear to be rather independent of each other.

Proposition 1.8.9. wN.(V Vx) is contractible if and only if the following two

conditions are satisfied:

(I) wN.(V VX) is connected,

(2) the map wN.V wN.Vx is a homotopy equivalence.

Proof. If wN.(V VX) is connected it has wN.N.(V Vx) as a de-loop (by [Ill

or a variant of lemma 1.8.6). Therefore, provided it is connected, it is contractible
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if and only if wN.N.(V VX) is contractible. By lemma 1.8.6 we have a diagram

of homotopy fibrations

wN.V -- wN.N. (V .:; V) -- wN.N.V

1 1 1"
wN.Vx -- wN.N. (V Vx) -- wN.N.V

and the middle term in the upper row is contractible. Therefore wN.N.(V VX) is

contractible if and only if the vertical map on the left is a homotopy equivalence. 0

Froof of theorem 1.8.1. The nerve of the simplicial category wN.(V Ox) is a bi-

simplicial set whose vertices are the objects X- A in Vx ' There are two kinds

of l-simp1ices, corresponding to the morphisms of wVx on the one hand, and to the

'operation' of the objects of V on those of Vx on the other. It results that

the set of connected components is the set of equivalence classes of the X- A

under the equivalence relation generated by

(ii) (X - A)

(i) (X>-+ A) (X>-+ A') if there is a map (X ..... A) (X - A') in wVx
(X _ AU*A") if A" E V

The condition referred to in the theorem, that cofibrations in V are spZittabZe up

to weak equivaZence, implies that every object of Vx can be related (in a special

way, in fact) to the trivial object X>-+ X , thus wN.(V VX) is connected.

Let V = 11m en now. Then, as just observed, wN.(V VX) is connected for

every X and, by proposition 1.8.3, the map wN.V wN.Vx is a homotopy equiva-

lence. By proposition 1.8.9 these two properties imply that wN.(V VX) is con-

tractible for every X which in turn, by proposition 1.8.7, implies that

wN.V --+ wS.V

is a homotopy equivalence, as desired. o
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1.9. Appendix: Relation with the Q construction.

Let A be an exact category in the sense of Quillen [81. One can make A

into a category with cofibrations and weak equivalences by choosing a zero object

and by defining the cofibrations and the weak equivalences to be the admissible

monomorphisms and the isomorphisms, respectively. So a simplicial category is.A

is defined. It turns out that is.A is naturally homotopy equivalent to the cate­

gory QA of Quillen.

To see this we first replace QA by a homotopy equivalent simplicial category

iQ.A Namely let iQA be the bicategory of the commutative squares in QA in

which the vertical arrows are the isomorphisms (in either A or QA ­those are

the same). Then QA and iQA are homotopy equivalent (lemma 1.6.5), and we let

iQ.A be a partial nerve of iQA, namely the nerve in the Q direction.

Next we replace is.A by a homotopy equivalent simplicial category is:A.

We use the edgewise subdivision functor [12] which to any simplicial object X. ,

say X. : 60P K , associates another 60P K , namely the composite

where d: 6 6 is the doubling map which takes [n] to [2n+l] and whose behavi­

our on maps may be described by saying that it takes

(O<I< ••• <n) to ( n I < ..• < I' < 0' < 0 < 1 < ••• < n )

If X. is a simplicial space then the geometric realizations Ix. I and IX:I are

naturally homeomorphic [12, prop. (A. I)]. Applying this fact to the simplicial

space [n] H liS AI we obtain that is.A and its edgewise subdivision is:A, or
n

rather their geometric realizations, are homotopy equivalent.

There is a map of simplicial categories

which is an equivalence of categories in each degree, and therefore a homotopy

equivalence. The map is best explained by drawing a diagram to illustrate the

situation for n = 3 .

An object of is;A is a sequence of cofibrations

A(3 1,2
') ­ A(3',l') A(3I,O') A(3',O) A(3',I) A(3',2) >­+ A(3',3)

together with a choice of quotients
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By dropping some of the choices while retaining others we can associate to the

object the following diagram

>---> A(31 ,2) >----->A(3 ',3)

1

1
\0' ,0)

The diagram describes a sequence of three composable morphisms in QA as well as

the different ways in which the actual composition can be performed. In particular

the diagram defines an object of iQ
3A

The object in question is not identical

to the diagram itself, rather it is an equivalence class of diagrams; two diagrams

are considered equivalent if they are isomorphic by an isomorphism which restricts

to the identity on each of the diagonal objects A
C
" .) .
J ,J

To conclude we note a variant of the homotopy equivalence. Let denote

the simplicial set of objects of S.A Considering as a simplicial category

in a trivial way we have an inclusion is.A which is a homotopy equivalence

by lemma 1.4.1. Let Q.A denote the nerve of the category QA. Above we have

described a map

---> Q.A

This map is a homotopy equivalence. For it fits into a diagram

---+ Q.A

1 1
-iQ.A

and we know already that the three other maps in the diagram are homotopy equiva-

lences.
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2. THE FUNCTOR A(X) .

2.1. Equivariant homotopy theory, and the definition of A(X) .

Let X be a space. A(X) is defined as the K-theory, in the sense of the

preceding chapter, of an equivariant homotopy theory associated to X

There are several ways of making this precise. The main purpose of this

section is to describe a few of those ways in detail and to show that they all

lead to the same result, up to homotopy.

The various cases arise from the fact that we want to keep the option of inter-

preting each of the terms space, equivariant, and finite type in two different ways.

Namely we will want to work either with topological spaces or with simplicial sets.

We want to use spaces over X on the one hand or spaces with an action of G(X)

the loop group of X, on the other. And finally we want to be free to impose a

condition of strict finiteness on the objects of the category or to be content with

a condition of finiteness up to homotopy.

We begin with a construction that combines the two equivariant points of view.

We will be mainly interested, eventually, in the two special cases where one of G

and W below is trivial and the other one is X , resp. a loop group of X

Let G be a simplicial monoid and W a simplicial set on which G acts

(by a monoid is meant an associative semigroup with 1). We define

R(W,G)

to be the category of the G-simplicial sets having W as a retract. In detail, the

objects of R(w,G) are the triples (Y,r,s) where Y is a simplicial set with

G-action and 5: W Y and r: Y Ware G-maps so that rs = IdW ' and the mor-

phisms from (Y,r,s) to (Y',r',s') are the G-maps f: Y Y' so that r'f = r

and fs = s'

If G is the trivial monoid we omit it from the notation. In other words, we

let R(X) denote the category of the simplicial sets having X as a retract.

There are similar constructions in the topological case, and geometric realiza-

tion induces a functor R(W,G) R(IWI, IGI)
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We define our finite type conditions now. We proceed in the following order:

I. finiteness in the simplicial case,

2. finiteness in the topological case,

3. homotopy finiteness in the topological case,

4. homotopy finiteness in the simplicial case.

I. Finiteness in the simplicial case. An object (Y,r,s) of R(X) is called

finite if the simplicial set Y is generated by the simplices of s(X) together

with finitely many other simplices. An equivalent condition is that the geometric

realization IYI is a finite CW complex relative to the subspace Is(X) 1 • The

full subcategory of the finite objects is denoted Rf(X)

In the general case of R(w,G) we must combine the finite generation condition

with a freeness condition. Finite generation of (Y,r,s) means that Y is gene­

rated, as a G­simplicial set, by the simplices of s(W) together with finitely many

other simplices. Freeness means that, for every k, the action of Gk on Yk is

free away from Wk ; precisely, the condition is that Y may be obtained from W by

attaching of free G-cells, that is, by direct limit and the formation of pushouts of

diagrams of the kind Y' +­ where denotes the simplicial set

n-simplex, and the simplicial subset boundary. We denote Rf(W,G) the full

subcategory of R(W,G) given by the objects which are both finitely generated and

free; the objects (Y,r,s), in other words, where Y can be obtained from W by

attaching of finitely many free G­cells. Rf(W,G) is a category with cofibrations

and weak equivalences in the sense of sections 1.1 and 1.2, the cofibrations are the

injective maps, and the weak (homotopy) equivalences are the maps (Y,r,s) (Z,t,u)

whose underlying maps Y Z are weak homotopy equivalences in the usual sense

(that is, induce isomorphisms of homotopy groups upon geometric realization). We

denote the category of the weak homotopy equivalences by hRf(W,G) •

2.· Finiteness in the topological case. Let Ixi be a topological space, not

necessarily the geometric realization of a simplicial set X. An object (Y,r,s)

of R(IXI) is called finite if Y is equipped with the structure of a finite CW

complex relative to the subspace s(IXI) . We let Rf(IXI) denote the category of

these objects and their cellular maps (it is not, of course, a full subcategory

of R(IXI». We consider Rf(IXI) as a category with cofibrations and weak (homo­

topy) equivalences; by definition, a map in Rf(IXI) is a cofibration if it is

isomorphic to a cellular inclusion.

More generally, in the case of R(IWI,IGI) , we define Rf(IWI,IGI) to be the

category of the finite IGI­free CW complexes, relative to Iwl, and their cellular

maps.
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3. Homotopy finiteness in the topological case. We define Rhf(IWI,IGI) as

the full subcategory of R(lwl, IGI) given by the (Y,r,s) where (Y,s) has the

IGI-homotopy type, in the strong sense, of a finite IGI-free CW complex relative

to Iwi • This is a category with cofibrations and weak (homotopy) equivalences,

where cofibration has its usual meaning as a map having the ICI-homotopy extension

property (after neglect of structural retractions, that is). To see that cobase

change by cofibrations does not take one out of the category, i.e. preserves homo-

topy finiteness, it suffices to note that weak homotopy equivalences have homotopy

inverses, after neglect of structural retractions (the Whitehead theorem for

ICI-free CW complexes).

Remark. On the face of it there are set theoretical difficulties in the construc-

tion of K-theory from Rhf(IXI) . For hS.Rhf(IXI) is not a 'small' simplicial

category, nor even equivalent to one (in the sense of category theory). Here are

a few ways of dealing with this matter, each with its own virtues and drawbacks:

(a) one can pick an explicit small category Rhf(IXI) with which to work (for

example, have all one's spaces embedded in IXlxR
oo

) , (b) one may postulate the

existence of a universe, in the sense of Grothendieck, work in a fixed one, and

check that an enlargement of the universe does not alter the homotopy type, (c) one

may regard the notion of a 'large' space as just as legitimate as that of a 'large'

category, provided only that certain constructions are avoided (this is the nalve

version of the preceding). Which one of these or other alternatives to adopt seems

a matter of taste. We will not pursue the matter further.

4. Homotopy finiteness in the simplicial case. We reduce to the topological

case. That is, we define Rhf(W,G) as the full subcategory of R(W,C) given by

the (Y,r,s) whose geometric realizations are homotopy finite in the sense of the

preceding case.

Recall that the approximation theorem 1.6.7 describes sufficient conditions

for an exact functor C C' to induce a homotopy equivalence hS.C hS.C' .

Proposition 2.1.1. The approximation theorem applies to the map

resp. its topological analogue.

Proof. The non-trivial thing to verify is the following assertion (the part App 2

of the approximation property).

Assertion. Let (Y,r,s) e Rf(W,C) , and let (Y,r,s) (Y',r',s') be any map in

Rhf(W,G) . Then the map can be factored as (Y,r,s) (Y1,r J ,sl) (Y',r',s')

where (YI,rl,sl) e Rf(W,G) , the first map is a cofibration in Rf(W,G) , and the

second map is a weak equivalence in Rhf(W,G) .
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To prove the assertion it will suffice to find a factorization

(Y, s ) --. (Y I ,s I) ----> (Y' ,s ') .

For it is then possible to define the structural retraction r
j

as the composite

of YI .... Y' wi t h r '; Y' .... W

We treat the topological case first. The Whitehead theorem for ICI-free

CW complexes relative to Iwi is available here, so we can find a finite (Yo,so)

together with homotopy equivalences (Yo,so) .... (Y' ,s') and (Y' ,s') .... (Yo,so) ,

homotopy inverse to each other. Choose a cellular map (Y,s) .... (Yo,so) homotopic

to the composition (Y,s) .... (Y',s') .... (Yo,s) , and define (Y1,Sj) as its mapping

cylinder. Then there exists a map (Yj,Sj) .... (Y',s') extending the given maps on

(Y,s) and (Yo,so), This has the required properties.

In the simplicial case we know, by the topological case, that there exists

some factorization

( IYI , I s I) (Y1 ,s I) ----+ (I y' I , Is' I) .

We show that, by perturbing ,sl) a little, we may lift it back to the simpli-

cial framework.

Proceeding by induction on the cells of Y
j

not IYI we suppose that we

have found a subcomplex IZI of Y
j

which does arise by geometric realization,

and so that the map Izl .... IY'I is a geometric realization, too. To add another

one of the cells of

the kind

to IZI , means that we form the pushout of a diagram of

We use simplicial approximation to rigidify this. Namely let Sd denote the

subdivision functor for simplicial sets [4 ], and Sdk its k-fold iteration. Then

if k is large enough one knows [4 ] that there is a map of simplicial sets,

whose geometric realization is homotopic to the map

I E Icl ,

and, again if k is large enough, the composite map .... Z .... Y' extends

to , in the preferred homotopy class. We now define

z'

Then z .... Y' extends to a map Z' .... Y' in the preferred homotopy class. By the

ICI-homotopy extension theorem IZ'I in turn may be extended, by induction on the

remaining cells, to a Icl-cw complex Yj mapping to Y1 by homotopy equivalence.

This completes the inductive step, and hence the proof of the proposition. 0
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Proposition 2.1.2. The approximation theorem applies to the geometric realization

map

FToof. The non-trivial thing to verify is the following assertion.

Assertion. Let (Y,r,s) E: Rf(w,G) , and let (IYI,lrl,lsl) (Y',r',s') be any map

Rf(IWI, IGI) Then the map can be factored as

(IYI,lrl,lsl) __ (IY"I,lr"I,ls"l) (Y',r',s')

where the first map is the geometric realization of a cofibration Rf(W,G) , and

the second map is a weak equivalence in Rf(IWI, IGI) .

As before (the preceding proof) it suffices to find a factorization

(IYI,lsl) ---4 (IY"I,ls"l) __ (Y',s') •

Define (Y1,sl) as the mapping cylinder of (IYI,lsl) (Y',s') Then (Y",s")

is obtained from (Y1,Sj) by rigidifying, one after the other, the cells of Y1
not in IYI The argument is the same as that in the second part of the preceding

proof. o

Let G be a simplicial group now, not just monoid, and X a simplicial set.

By a principal G-bundle with base X is meant a free G-simplicial set P together

with an isomorphism of X with PxG* , the simplicial set of orbits.

Lemma 2.1.3. There is an equivalence of categories R(x) R(p,G) .

FToof· We can define functors between these categories by

by the orbit map, respectively. If (Y,r,s) E: R(X) then

(Y' , r' , s') E R(p,G) then the diagram

Y' • P

1 1
Y'xG* --+ pxG*

pullback with P X and

G And i f(YXXP) x * "" Y c

is a pullback, thanks to the freeness of the G-action on P and the fact that G
Gis a simplicial group, not just monoid. Hence Y' "" (Y'x *)xxP , and the two

functors are inverse to each other, up to isomorphism. 0

By a universal G-bundle with base X will be meant a principal bundle whose

total space P is contractible (in the weak sense). In this situation it is

necessarily the case that G represents the loop space of X, but apart from

this restriction one knows that universal bundles exist in great profusion. Speci-

fically there is a functor, due to Kan, which to connected pointed X associates

a universal G(X)-bundle where G(X) is a certain free simplicial group, the loop



382

group of X. Conversely it is also possible, in any of several functorial ways,

to associate to a simplicial group G a universal bundle over a cZassifying space.

Given a universal G-bundle over X we can define a functor

R(x) • R(*,G)

(Y,r,s) ( (yxxP)!(xxxP)

The functor respects the notion of finiteness, resp. homotopy finiteness, and it is

exact (sections 1.1 and 1.2), so it induces a map in K-theory. In a similar way

we can also use P to define a map R(lxl) R(*, IG I) .

Proposition 2.1.4. The map hS.Rhf(X) hS.Rhf(*,G) IS a homotopy equivalence.

Proof. In view of its definition, the map arises as the composite of the equiva-

lence Rhf(X) Rhf(P,G) of lemma 2.1.3 with the map Rhf(P,G) Rhf(*,G) given by

pushout with P *. It therefore suffices to show ttat the latter map induces a

homotopy equivalence. We show this by providing a homotopy inverse. Consider the

map R(*,G) R(p,G) given by product with P , using the diagonal action of G.

The map respects the notion of homotopy finiteness, in view of the contractibility

of P, and it is exact, so it induces a map in K-theory. The composite map on

R(*,G) admits a natural transformation to the identity,

YxP U*xP * ---. Y ,

and the composite map on R(p,G) admits a natural transformation from the identity,

Y ----+ YxP Upxp P

In view of the contractibility of P each of these two natural transformations is

a weak equivalence. Using proposition 1.3.1 now we are done.

Theorem 2. ].5. If X is a simplicial set (resp. if G IS a simplicial monoid)

there is a 2x2 diagram of homotopy equivalences, namely the left one (resp. right

one) of the following two squares

o

hS.Rhf(*,G)

1
-----+, us.R

h f
(X)

1
hS.Rf(IXI) ---+ hS.Rhf(IXI)

If G is a loop group of X, and if a universal G-bundle with base X is given,

there is a natural transformation from the left square to the one on the right, and

all the arrows in the resulting 2x2x2 diagram are homotopy equivalences.

Proof. This results from propositions 2.1.1, 2.1.2, and 2.1.4. o



383

Picking one of the choices offered by the theorem we now make the definition

if X is a simplicial set.

A map x: X X' induces x*: R(X) R(X') by pushout with x, and hence a

map 1n K-theory. In this way A(X) becomes a covariant functor. Below we give an

argument to show that this functor is a homotopy functor (proposition 2. I .7).

We have to consider functorial behaviour in a slightly more general situation.

Namely let g: G G' be a group map, and w: W W' a map under g. These

induce a map (g,w)*: R(W,G) R(W' ,G') as the composite

R(w,G) ---+ R(wxGG' ,G') --- R(W' ,G')

where the first map is given by product with G' under G , and the second map by

pushout with wxGG' W' .

Let a map of universal bundles mean a triple of maps

(x,p,g): (X,P,G) --+ (X' ,p' ,G')

where p is a map under g, and over x. We note that xx p'". pxGG'
X' in this

situation.

Lemma 2.1.6. To such a map there is associated a commutative diagram

R(* ,G)

R(x)

j
-----.+. R(X ' )

j
( ) • R(*,G')
*,g *

Proof. This results from the definition of the maps and the commutativity of the

diagram

R(x) • R(X) I R(X')

j2 lc lc

R(P ,G) ----+ R(pxGG' ,G') ----+ R(P' ,G')

j j 1
R(*,G) ) RC*,G') ) R(*,G')

where the arrows ----+ denote equivalences of categories (lemma 2.1.3). o
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Proposition 2.1.7. If x: X X' is a weak homotopy equivalence then so is the

induced map x*: A(X) A(X')

Pr>oof· The functor X .... hS.Rf(X) commutes with direct limit, and it takes finite

disjoint unions to products. As a result it suffices to prove the proposition in

the case where X and X' are connected. We may further replace 'h' by 'hf'

Our task is then to show that x*: hS.Rhf(X) hS.Rhf(X ') is a homotopy equivalence

ln that special case.

Choose a universal bundle over X' , say a universal G'-bundle pI . Since

x: X X' is a weak homotopy equivalence, pullback with it defines a universal

G'-bundle P = xxx,P' over X. There is a map of universal bundles now,

(x,pr
2,IdG,):

(X,P,G') -----+ (X' ,P' ,G')

Hence (the preceding lemma) there is a commutative diagram

-----. hS.Rhf(X')

1 1
-----+. hS. Rhf (*,G')

and the vertical arrows are homotopy equivalences by proposition 2.1.4. It follows

that x* is a homotopy equivalence.

Remark. For simplicial monoids in general, as opposed to simplicial groups, it

does not follow in the same way that G .... QlhS.Rf(*,G) I is a homotopy functor.

The result is still true, however. For example it follows from theorem 2.2.1

below.

o
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2.2. A(X) via spaces .£i matrices.

Let G be a simplicial monoid. We consider the free pointed IGI-CW complex

with k IGI-cells in dimension n and no other cells; or what is the same thing,

the half-smash product of IGI with a wedge of k spheres of dimension n.

Let

denote the simplicial monoid of pointed IGI-equivariant (weak) homotopy equivalences,

and let denote its classifying space. There are stabilization maps

given by suspension and by the addition of an identity map, respectively.

The purpose of this section is to show that the K-theory of the preceding

section can be re-expressed in terms of the + construction of Quillen, as follows.

Theorem 2.2.1. There is a natural chain of homotopy equivalences

n +
Z x li,m BHk (G) .

n,k

By combining with theorem 2.1.5 we obtain that, ln particular, A(X) may be

so re-expressed for connected X

A(X) Z x Ilm .
n,k

This may be regarded as a description of A(X) In terms of spaces of matrices,

analogous to the definition of the algebraic K-theory of a ring in terms of matrices

and the + construction, as follows.

In the case at hand, the 'ring' In question is the ring up to homotopy

lim Map(Sn,SnAIGI ) .
-? +
n

Let denote the product of kxk copies of this space, considered

as a multiplicative H-space by means of matrix multiplication. We denote

the sub-H-space of the homotopy-invertible matrices; it is the unlon of those connec-

ted components which are invertible in the monoid of connected components. The point
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now is simply that

lim
n

provides a classifying space for the H-space GLk(QooSooIGI+)

homotopy equivalence of H-spaces

Indeed, there is a

It is given, in the limit, by the (n-I)-connected map

M k n I I k n I Mnp(VkSn,VkSnAIGI+)aPIGI (V SAG +'V S A GI+)

k n k n n n kxk
MapeV S ,n S AIGI+) Map(s,s AIGI+)

nFroof of theorem. Define Rk(*,G)

by the objects which are n-spherical

objects weakly equivalent to

to be the full subcategory of Rfe*,G) given

o,f rank k. By definition, these are the

*
that is, the objects which are in the same connected component, in hRfe*,G) , as

that particular object.

It is plausible, and will be shown below (proposition 2.2.5), that there is

a natural chain of homotopy equivalences

Define Rn(*,G) to be the subcategory of Rfe*,G) of the objects which are

n-spherical of unspecified rank; that is, the union of the categories .

This is a category with sum and weak equivalences (section 1.8), so the group com-

pletion in the sense of Segal is defined; in the language of section 1.8 this is the

simplicial category hN.Rne*,G) Bya theorem of Segal [11] there is a homotopy

equivalence, well defined up to weak homotopy (homotopy on compacta),

z x ,+ .
k

Combining with the homotopy equivalence above, and passing to the limit with respect

to n, we obtain now a homotopy equivalQnce

z x .
n,k

This reduces the proof of the theorem to the following proposition.

Proposition 2.2.2. There is a natural chain of homotopy equivalences

hN.Rne*,G)
n
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The proof of the proposition is an application of theorems 1.7.1 and 1.8.1.

To make these theorems applicable we have to check some things first. Let us define

for Y E Rf(*,G) , where H* denotes the reduced integral homology of pointed

spaces.

Lemma 2.2.3. If H. (Y) = 0 for
1

i < m then H (Y) h (Y) is an isomorphism.
m m

connected component of 1 E G. Choose a

ciated bundle over Ex
F*

, i.e. (YXE)xF*

homotopy, to the quotient (YXE)xF*/ExF*

simplicial group, not just monoid.

Proof· We give two proofs. The first applies to the special case where G is a

In this case G YXF* where F is the
o

universal F-bundle E and form the asso-

Then YxF* may be identified, up to

, and the lemma results from the Serre

spectral sequence of the fibration.

In the general case one notices that the lemma is really a special case of one

in the next section (lemma 2.3.4) which concerns simplicial modules over a simpli-

cial ring and whose proof depends on a spectral sequence of Quillen's on (derived)

tensor products. o

Let Rf
(2) (*,G) d h b f R ( G)enote t e su category 0 f *,

I-connected.

of the objects which are

Lemma 2.2.4. The inclusion is a homotopy equivalence.

Proof. Double suspension defines an endomorphism of each of these which is homoto-

pic to the identity map (proposition 1.6.2). On the other hand, double suspension

takes hS.Rf(*,G) into hS.Ri 2) (*,G) , so it gives a deformation retraction. 0

Proof of proposition 2.2.2. The functor h*(Y) defines a homology theory on

Rf(*,G) , in the sense of section 1.7, with values 1n the category of

Restricting attention to I-connected objects, as we may by lemma 2.2.4, we

obtain from lemma 2.2.3 together with the Hurewicz theorem that the weak equivalen-

ces are homologically defined: a map is a weak equivalence if and only if it induces

an isomorphism on h*

have the property that hi(Y) is 0 for i f n , and

Conversely they are characterized by this property.G] for i = n
o

it suffices to construct a map from a standard object inducing an iso-

h*. Such a map is obtained by mapping each generating cell 5
nxl

,

To see this

morphism on

The objects of

free over

suitably subdivided, so as to represent an appropriate generating element of the
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We show next that the hypothesis of section 1.7 is satisfied: if

any p-connected map then it is possible to construct a factorization

Y .... Y
P

is

YP --> Yp+] -----> ••• -------+ Yq -----> Y

where each Yn+ 1 obtained from Y
n

by attaching (n+I)-cells and where the map

Yq Y is a weak homotopy equivalence. First, the inductive construction of Y
n+ 1

from Yn is done as follows. The module h
n
+
1
(Yn....Y) "" TI

n+ 1
(IYnl .... IYI) is finitely

generated over Z[TIoG] , and each element may be represented by mapping a (suitably

subdivided) pair (t,n+ I, (l{jn+1) . Picking a generat i ng set, we can use these maps

to attach (n+I)-cells to Y
n

and to extend the map to Y to the cells. Next, the

construction can terminate. For suppose that q is at least as large as the

dimension of Y. Then h (Y I....Y) is computed from a finitely generated freeq q--
chain complex which is both (q-I )-connected and q-dimensional. It follows that

h is the only non-vanishing homology, and that it is stahly free. After attaching
q

some more (q-l)-cells to Y
q_ 1

' if necessary, we may suppose the homology is actu-

ally free, so that in a last step, finally, we can attach q-cells to kill the homo-

logy without introducing new homology in the next dimension.

We have verified most of the hypotheses of theorem ].7.1 now. The one excep-

tion is the condition that the category E the definition of spherical objects

in section 1.7, should be closed under the operation of taking kernels of surjec-

tions. Our E so far the category of finitely generated free modules over

Z[TIoGJ This does not satisfy the condition, in general, so we must enlarge it.
n

We therefore replace R (*,G) by R (*,G) which we define as follows. It is the

subcategory of Rf(*,G) of the objects which are n-spherical in the following

sense: hi (Y) is 0 for i # n , and it is stahly free for = n .

Theorem 1.7.1 now applies to give homotopy equivalences

lim ------+ hS.Rf(*,G) hS.Rf(*,G)
n

(we have used lemma 2.2.4 to suppress the superscript (2) on R
f

again).

It is plain from the preceding discussion, on the other hand, that Rn(*,G)

is strictly cofinal in Rn(*,G) the sense of proposition 1.5.9, so the inclusion

n
hS.R (*,G) ------+ hS.R (*,G)

is a homotopy equivalence.

Finally it is also plain that the cofibrations in Rn(*,G) are splittable up

to weak equivalence in the sense of theorem 1.8.1, so the map

hN.Rn(*,G) hS.Rn(*,G)
n n

a homotopy equivalence.

The proof of the proposition now complete. o
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The preceding argument can be varied a little. Namely instead of replacing

by Rn(*,G) as we have just done, we could also argue directly that

lim lim.... ....
n n

is a homotopy equivalence. Segal's theorem used elsewhere in the proof of the

theorem then applies in the form of giving a homotopy equivalence

K' (Z[" G]) x lim IhRknU,G) I
o 0 It

where denotes the subgroup of the class group given by the stably free

modules (that subgroup is of course Z again).

The theorem itself can also be varied. Namely the category Rf(*,G) may be

enlarged to the category Rdf (* ,G) of the ob j ect s dominated by fiwite ones (these

are the objects which are retracts, up to homotopy, of finite ones). The theorem

then goes through unchanged except that the restricted class group has

to be replaced by the full class group K (Z[" GJ) .
o 0

o

with

To complete the proof of the theorem we are still left to compare
n

hRk (*,G) .

Let C denote any of the categories hRhf(*,G) hRf(*,IGI) , hRhf (*, IGI )

We blow it up to a simplicial category C. [m] H C where C is defined as
m m

the category whose objects are the same as those of C and whose morphisms are the

m-parameter families of morphisms in

Z is a map

C That is, a morphism in C from Y
m

to

m
Y -------> Z;o

1n C (resp. similarly with ;Om replaced by l;om l in the topological case) or,

what is the same, a map YX;om/*x;om .... Z. Considering C as a simplicial category

in a trivial way, we have a map C C.

If Y E C we let Cy , resp. C.y , denote the connected component of C,

resp. C. , containing Y, and C.(Y) the simplicial subcategory of

of Y r n C..

Proposition 2.2.5. In the topological case, the maps

Cy -----+ C. y <----- C. (Y)

are homotopy equivalences. The same is true in the simplicial case provided that

Y satisfies the Kan extension condition.

Corollary. There 1S a natural chain of homotopy equivalences
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Ppoof. Let C: hR
f(*,

IGI) in the proposition, and Y: VkSnAIGI+. Then IC.(Y) I

is the same as , by definition of the latter, and it is homotopy equivalent

to , by application of the proposltlon. On the other hand, the geome-

Rn n .
tric realization map h k(*,G) hR

k(*,
IGI) is a homotopy equivalence by proposl-

tion 2.1.2.

PPoof of proposition. By lemma 2.2.6 below, each of the (degeneracy) maps

is a homotopy equivalence. It follows (the realization lemma) that C C.

homotopy equivalence. Consequently, Cy C. y is one, too.

C C
m

is a

In the topological case, the inclusion C.(Y) is a homotopy equivalence

by lemma 2.2.7 below.

In the simplicial case, that lemma does not apply to C. directly, it only

applies to the simplicial subcategory C: of the objects which satisfy the Kan ex-

tension condition. It remains to see that the inclusion C: C. is a homotopy

equivalence. By the first part of the proposition we can reduce to showing that

C' C is a homotopy equivalence. This follows if we can find a functor C C'

together with a natural transformation from the identity functor. The desired

functor is given by one of the standard devices of forcing the extension condition,

namely the process of fiZZing horns (which may be arranged in a G-equivariant way). 0

Lemma 2.2.6. The map C C
m

is a homotopy equivalence.

Proof', Call this map We define a map p: C C It is the identity on
m

objects, and it takes a morphism yxt,m/*xt,m z to the map Y Z given by restric-

tion to the last vertex of t,m Then pj is the identity map on C We will

show that jp is homotopic to the identity map on C
m

To construct the homotopy we use an auxiliary functor

objects is given by

Y f-----+ Yxt,1/ht, 1 •

F: C C which onm m

To define F on morphisms we use the standard contraction of t,m, that is, the

map f: t,mxt,1 t,m whose restrictions to t,mxO and t,mx j are the identity map on

t,m , and the projection of t,m into its last vertex, respectively. By definition

now F takes a map yxt,m/*xt,m Z to the map given by

(a,b)

(or rather the induced map of quotients) where b is the projection yxt,mxt,l t,l ,

and a is the composite map

Id x f

The point of considering F is that there are natural transformations Id F
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and jp F. They are induced by the inclusions Y taking Y to

YxO and Yx! ,respectively. In view of these natural transformations, each of

the functors Id and jp is homotopic to F. Hence they are homotopic to each

other. o

In order to formulate the next lemma we need a little preparation. Let C.

be a simplicial category. We say it is special if all the categories C
m

have the

same objects, and the face and degeneracy maps are the identity on objects. By

abuse we can then speak of the objects of C. , rather than objects in some fixed

degree, and for any two objects Y and Z we have a simplicial set of morphisms,

which we denote C.(Y,Z) •

As before we let C.(Y) denote the simplicial category of endomorphisms of Y

We must carefully distinguish between C. (Y) and C.(Y,Y) . For they have diffe­

rent geometric realizations (the geometric realization of the former takes the com­

position law into account, whereas that of the latter does not).

We will say that two objects Y and Z are strictly homotopy equivalent if

there exist f E Co(Y,Z) and

in the simplicial set C. (Y,Y)

g E Co(Z,Y) so that the composite gf is homotopic,

, to the identity map on Y , and so that similarly

the composite fg is homotopic in C. (Z,Z) to the identity map on Z .

Lemma 2.2.7. Let C. be a special simplicial category in which all objects are

strictly homotopy equivalent to each other. Then for every object Y the inclu­

sion C. (Y) C. is a homotopy equivalence.

We deduce the lemma from a version of Quillen's theorem A for simplicial cate­

gories. In the case of special simplicial categories it takes the following form,

d. [15].

Criterion. Let F: V. C. be a map of special simplicial categories. A suffici­

ent condition for F to be a homotopy equivalence is that for every object Z of

C. the simplicial category F./z : [m] ..... F Iz
m

is contractible.

Proof of lemma. By the criterion applied to the inclusion F: C.(Y) C. it

suffices to show that for every Z the simplicial category F./z is contractible.

Suppose that f E Co(Z,Z') It induces a map f*: F./z F./z' ,

u E Cm(Y ,Z) ) 1­­­­­+ ( d *(f) u E Cm(Y ,Z ') )

where d* denotes the (degeneracy) map induced by d: [m] [0] .

Suppose next that fjECj(Z,Z') ,andlet f and f ' be its faces in

Co(Z,Z'), Then we claim that f* and are homotopic. Indeed, a simplicial
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homotopy from f* to is given (cf. the proof of lemma J .4. 1 for a discussion

of simplicial homotopies) by the natural transformation which takes a: [m] [1]

to the map Fm/Z Fm/Z' ,

By induction we conclude that if f and f" are in the same connected compo­

nent of C. (Z,Z') then they induce homotopic maps F./Z F./Z' .

In turn we conclude that if Z
o

each other, then F./Zo and

and Zj are strictly homotopy equivalent to

are homotopy equivalent.

Applying the hypothesis of the lemma now we obtain that, for every Z, F./Z

is homotopy equivalent to F./Y

But F./Y is the same as IdC./Y: [m] IdCm/Y' This is a simplicial object

of contractible categories (each has a terminal object). Hence it is contractible.

We are done. 0
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2.3. K-theory of simplicial rings, and linearization of A(X) .

The theme of this section is that much of the material of the preceding two

sections can be redone in a 'linearized' setting. This leads to considering a

K-theory of simplicial rings, and specifically, to comparing several definitions

of it. In the case of discrete rings the Kr-theory is the same as Quillen's.

There is a natural transformation, linearization, from the 'non-linear' to the

'linear' setting. We record the plausible fact that, up to homotopy, the induced

map in K-theory does not depend on which particular definition of K-theory is used.

Let R be a simplicial ring (with ). By a module over R is meant a

simplicial abelian group A together with a (unital and associative) action of R,

that is, a map A®R A (degreewise tensor product). We let M(R) denote the

category of these modules and their R-linear maps.

A simplicial set Y gives rise to a module R[Y] where (R[Y])n Rn[Yn]
the free Rn-module generated by Y

n
By the attaching of a n-cell to a module A

is meant the formation of a pushout of the kind

We say that B is obtainable from A by attaching of cells if it can be built up

by this process together with, perhaps, direct limit; we will also refer to this

situation by saying that A B is a free map Cthe notion is the same as that of

a free map in [ 6]).

We define MfCR) to be the full subcategory of the modules which are obtainable

from the zero module by attaching of finitely many cells. This is a category with

cofibrations (free maps) and weak (homotopy) equivalences.

More generally, we define Mhf(R) as the category given by the modules obtain-

able from 0 by attaching of perhaps infinitely many cells, but homotopy equivalent

to some module in MfCR) . Again this is a category with cofibrations and weak

equivalences, in the same way.

MfCR) and Mh£CR) give rise to the same K-theory, that is, the map

is a homotopy equivalence. This results from

Proposition 2.3.1. The approximation theorem applies to the map MfCR) MhfCR) •
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Froof. The argument IS the same as that in the first part of the proof of proposi­

tion 2. 1.1. The point is that the Whitehead theorem is available for objects in

Mf(R) or Mhf(R) (one just constructs any desired map by induction on the genera­

ting simplices I, I E R ; it is not even necessary to subdivide in the

process since simplicial abelian groups satisfy the Kan extension condition). 0

Let Nkxk(R) denote the simplicial ring of the kxk matrices in R. We de­

fine GLk(R) to be the multiplicative simplicial monoid given by the matrices in

NkXk(R) which are invertible up to homotopy. Let BGLk(R) denote the classifying

space.

Theorem 2.3.2. There is a natural chain of homotopy equivalences

Here denotes the subgroup of the class group of the ring rroR given

by the free modules (it is cyclic, and in cases of interest it is usually Z).

Remark. There is a variant of the theorem where the category Mf(R) IS replaced

by the larger category Mdf(R) of the objects dominated by finite ones; that is,

the objects which are retracts of such In Mhf(R) . In that case the restricted

class group in the theorem has to be replaced by the full class group

Ko(rroR) .

Froof of theorem. Define

the objects which are n-spherical
lent to

to be the full subcategory of Mf(R) given by

of rank k ; that is, the objects weakly equiva­

It will be shown below (proposition 2.3.5) that there is a natural homotopy

equivalence

compatible with suspension (the passage from n to n+1 on the right hand side).

Define Mn(R) as the union of the categories

we have a homotopy equivalence

According to Segal [11]

K'(rr R) x lim fhMkn(R)!+
o 0 k

Combining with the former homotopy equivalence we obtain one

A +
x BGLk(R)

compatible with suspension. The proof of the theorem has thus been reduced to the

following proposition.
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Proposition 2.3.3. There is a natural chain of homotopy equivalences

The proposition is actually true without passage to the limit on the left, but

the limit makes for easier quoting of the general results (which were designed for

different applications).

The proof is an application of theorems 1.7.1 and 1.8.1. To make these theo­

rems applicable we have to check some things first. Let us define

LellDlla 2.3.4. If '!T.M = 0 for
1

i < n then the map 'ifM­>hM
n n

is an isomorphism.

Proof. If M and M' are right and left R­modules, respectively, there is a

derived tensor product M M' , well defined up to homotopy [ 6,p.6.8). If the

module M happens to be 'free' (in the sense that 0 ­> M is a free map ­­ the ob­

jects of Mhf(R) have that property, by definition) then the derived tensor product

is represented by the actual tensor product M 0
R

M' , by the corollary [ 6,p.6.10).

Therefore the spectral sequence (b) of theorem 6 [ 6,p.6.8) gives, in the case at

hand, a first quadrant spectral sequence

2 'if*RE Tor (".*M,'if R) 1T (M0R". R)p,q P 0 q p+q 0

where Tor ( .• )
p q

Now '!T.M = 0 for
1 2

'if (M0R'if R) "" En 0 o,n

denotes the degree q

i < n , so E
2

0
p,q

, proving the lemma.

part of the graded abelian group Tor ( .• ) .p
for q < n , and we obtain an isomorphism

n

Proof of proposition. The argument is precisely the same as that of the proof of

proposition 2.2.2. Here is a brief account.

The objects of Mn(R) may be characterized by the property that hiM is 0

for i # n , and free of finite rank over 'if R for i = n. Let Mll(R) be the
o

corresponding category with free replaced by stably free. Then all the hypotheses

of section 1.7 are satisfied, so by theorem 1.7.1 we have homotopy equivalences

litm hS.Mll(R) ----+ litmO:) hS.Mf(R) ­­ hS.Mf(R)
n

On the other hand, Mn(R) is strictly cofinal in Mll(R) , so the inclusion

is a homotopy equivalence by proposition 1.5.9. And finally the cofibrations in

Mn(R) are splittable up to weak equivalence, so theorem 1.8.1 applies to show that

lim hN.Mn(R) ----+ lim hS.Mn(R)
­> ­>
n n
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is a homotopy equivalence. By combining the homotopy equivalences we obtain the

proposition. 0

To complete the proof of the theorem we are now left to compare
A

BGLk(R)

I and

Let us write C instead of hMf (R) , for short. We blow up C to a simpli-

cial category C. , [m] .... C The objects of C are the same as those of C ,
m m

and the morphisms in C are the m-parameter families of morphisms in C That
m

is, a morphism in C from A to B is a map A[lIm] "'" AI8lZ[lIm] .... B Considering
m

C as a simplicial category in a trivial way we have a map C .... C.

If A E C we let

resp. C. , containing

in C.

C
A
,resp. C.A, denote the connected component of C,

A ,and C.(A) the simplicial category of self-maps of A

Proposition 2.3.5. For every A E hMf(R) there are homotopy equivalences

Proof. The argument is similar to that of proposition 2.2.5. o

Corollary. There is a natural chain of homotopy equivalences, BGLk(R) I ,

compatible with suspension.

Proof. Let A = denote the module obtained by attaching k n-cells to zero,

R[Llkllnj/R[Llkalln)

We claim that the simplicial ring of self-maps of is homotopy equivalent to

, independently of n To see this we can reduce, by a direct sum argument,

to the special case k = I Restricting to the generating simplex we then obtain

an isomorphism

But it is well known, and easy to prove, that the n-fold loop space of the simplicial

abelian group R[lIn)/R[alln) is R again, up to homotopy. For example consider the

horn An, the union of all the faces of lin except the last. Then R[lIn)/R[An)

is contractible. Hence the short exact sequence

gives a looping fibration. It follows from the claim that the simplicial monoid of

self-equivalences of is homotopy equivalent, as monoid, to GLk(R) • Hence

I • Applying the proposition now we obtain that the latter is

homotopy equivalent to ICAI = I . The corollary results. 0
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RemaPk. The theorem includes a description of the Quillen K-theory of a discrete

ring in terms of chain complexes over that ring. For if R is discrete then a

'module' in the sense used above is really the same thing as a simpZieiaZ moduZe

over R. In view of the Dold-Kan theorem there is therefore an equivalence (it is

given by the normalized chain complex functor) of the category Mf(R) with a cate-

gory of chain complexes over R. C

Below, in the context of linearization, it will be convenient to know that the

foregoing material can be redone topologically rather than simplicially. We record

this now.

As a technical point, we will want to know that the geometric realization

functor commutes with finite products. Therefore products should be formed in the

category of compactly generated spaces. As a result we will restrict ourselves to

working in that category. For example, if we mention a topological abelian group

it will be tacitly understood that the underlying topological space is compactly

generated.

Let IAI be a topological abelian group, not necessarily the geometric reali-

zation of a simplicial abelian group A, and Ixl a topological space, not neces-

sarily the geometric realization of a simplicial set X either. In this situation

we can form IAI[lxl] , the topological abelian group freely generated by Ixl over

IAI . The underlying space is the space of linear combinations of the kind

a1x1 + ". + akxk '

3ubject to a suitable equivalence relation, and topologized accordingly. In detail,

one forms

where the equivalence relation is generated by the rule that for every map of finite

sets, 6: , the two maps

Id x e*

are to be equalized.

If, in particular, IRI is a topological ring, and Ixl a topological space,

we can in this way obtain IRI[ Ixl] , the free IRI-module generated by Ixl The

construction is compatible with geometric realization in the sense that if R is a

simplicial ring, and X a simplicial set, then IRI[ Ixl] IR[X] I

We have the means now of defining the notion of the attaehing of a n-eeZZ to a

IRI-module M. Namely this is the formation of a pushout of the kind

Starting from this notion we can proceed as in section 2.1 to carryover the defini-
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tions of MfCR) and MhfCR) to the topological context to obtain definitions of

MfCIRI) and MhfC!RI) •

Proposition 2.3.6. Let R be a simplicial ring. The approximation theorem applies

to the geometric realization map MfCR) MfCIRI)

Proof. The argument is similar to that of proposition 2.1.2.

Define tLk(IRI) as in the simplicial case; that is, it is the simplicial

monoid of the homotopy-invertible matrices over IRI.

Corollary 2.3.7. Let R be a simplicial ring. There is a natural chain of homo-

topy equivalences

A +
K'(rr R) x lim BGLk(IRI) ,
o 0 k

and the chain is compatible, via geometric realization, to that of theorem 2.3.2.

o

Proof. We consider the chain of maps in theorem 2.3.2 as consisting of three parts.

The first part is the chain of maps between hN.Mn(R) and hS.Mf(R) in propo-

sition 2.3.3. The preceding proposition applies to each map in the transformation

from this chain to its topological analogue, so these maps are homotopy equivalences.

As a result, since the maps in the former chain are homotopy equivalences, it fol-

lows that so are those in the latter.

The second part of the chain is Segal's homotopy equivalence of QlhN.Mn(R) 1

with x 1+. This is certainly compatible with its topological

analogue.

The third part of the chain, finally, is given by the maps in proposition 2.3.5,

resp. its corollary. There is a compatible chain of maps in the topological case,

and the maps are homotopy equivalences by the version of proposition 2.3.5 in the

topological case. 0

Suppose now that G is a simplicial monoid. Let Z be the ring of integers.

There is an exact functor

R(*,G) M(z[G])

Y Z[Y] = Z[Y]/Z[*]

and hence an induced map in K-theory, the linearization map

QlhS.Rf(*,G)! ----+ QlhS.Mf(Z[G]) 1

On the other hand, the map of rings up to homotopy QooSooIGI+ Z[ IGI] induces, by

matrix multiplication, a map of H-spaces
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This is de-Ioopable to a map of classifying spaces

well defined up to homotopy. Namely the latter is

/\ (X) (XI A
GL(Q S IGI+) ----+ GL(z[IGI]) •

1"\ 00 co ""
BGL(Q S IGI+) BGL(Z[ IGI]) ,

obtained by composing, in the

limit with respect to nand k, the map

A
kn kn

B utIGI(V S AIGI+) ---+ B AutZ[IGI](Z[V S AlGI)

with a homotopy inverse to the homotopy equivalence

We can further compose with an inverse to the homotopy equivalence

Corollary 2.3.8. The linearization map corresponds, under the homotopy equivalences

of theorems 2.2.1 and 2.3.2, to the map

....-. 0000 + 1\ +
Z x BGLCQ S IGI) ---+ Z x BGL(Z[G]) .

As indicated in [14], this result can be used to obtain numerical information.

For example, as a consequence of the fact that the map QooSooIGI+ Z[ IGI] is a

rational homotopy equivalence as well as an isomorphism on no ' it follows that

the map of the corollary is a rational homotopy equivalence.

in proposi-

This is compatible, by

lim hN.Mn(Z[G]) and

hS.Rf(*,G) in proposition 2.2.2.

corresponding chain of maps between

Proof of corollary. This is a matter of checking, similar to the preceding corol-

lary. We regard the chain of homotopy equivalences in theorem 2.2.1 as consisting

of three parts. The first part is the chain of maps between lim hN.Rn(*,G) and

linearization, to the

tion 2.3.3.

The second part of the chain is Segal's homotopy equivalence of QlhN.Rn(*,G) I

with Z x 1+. This is compatible to its linear analogue, the homotopy

equivalence between QlhN.Mn(z[G]) I and Z x ,+ .

The third part, finally, is the commutative diagram of homotopy equivalences,

with the notation as in proposition 2.2.5, and Y the simplicial version of

VkSnAIGI+ '

I
I
I
I1

Cy ---+ C.Y e- - - - - -

1
CIYI ------> c· 1YI+-- C. (Iyl)

The notation of the broken arrows here simply means that these arrows are missing.
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For we have not tried to put anything into the upper right corner. Such a Y would

have to satisfy the Kan extension condition (proposition 2.2.5) and it would also

have to fit into a sequence of Y's related to each other by some kind of suspen­

sion.

At any rate, the diagram is compatible, by linearization, to one

­­­­+1 C'
A

(

1

C. (A)

j
C1A1-C.1A1'f- C.(IAI)

where the upper row is that of proposition 2.3.5, with A

is the topological analogue of it.

Z[Y] , and the lower row

CJ

To conclude the topic of linearization let us briefly mention that, in the case

of A(X) , there is a description of the linearization map which uses only spaces

over

tor

R(x)

x , not the loop group of X

R(X) Rab(X) where Rab(X)

The map is defined in terms of an exact func­

denotes the category of abelian group objects in

In particular this means that, for connected X, there is a description of

K(Z[G(X)]) in terms of Rab(x) To obtain that description, one defines a notion

of weak equivalence in Rab(x) so that the map Rab(X) Rab(*,G) M(z[G]) corre­

sponding to that of proposition 2.1.4, respects and detects weak equivalences. The

argument of proposition 2.1.4 may then be adapted.
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, s: X Y , and the morphisms

with fs = s'
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3. THE WHITEHEAD SPACE WhPL(X) , AND ITS RELATION TO A(X) .

3.1. Simple maps and the Whitehead space.

A map of simplicial sets is called simple if its geometric realization has

contractible point inverses. We will admit here that simple maps form a category,

that is, that a composite of simple maps is simple again, and that the gluing lemma

is valid for simple maps. Proofs of these facts may be found e.g. in [16] where

also a few other characterizations of simple maps are given.

If X is a simplicial set we denote by C(X)

objects under X; the objects are the pairs (Y,s)

from (Y,s) to (Y',s') are the maps f: Y Y'

As before we let R(X) denote the category of the triples (Y,r,s) , rs = Id X

In either case, the subscript 'f' will denote the subcategory of the finite

objects (where Y is generated, as simplicial set, by the simplices of s(X) to­

gether with finitely many other simplices) and the superscript 'h' will denote the

subcategory of the homotopically trivial objects (where s: X Y is a weak homo­

topyequivalence). Finally the prefix's' will denote the subcategory of the

simpLe maps.

The category is of interest because of its role in the classification

of PL manifolds and their automorphisms [ 2] [3] [16]; cf. also [15] and especially

the proof of proposition 5.5 in that paper.

By the Whitehead space (the PL Whitehead space, to be precise) is meant a space

whose fundamental group turns out to be the Whitehead group (the Whitehead group of

, that is, if X is connected) and which can be obtained from the (classifying

space of the) category by de­looping, as follows.

In the language of section 1.8, the category may be regarded as a cate­

gory with sum (gluing at X) and weak equivalences (simple maps). Hence the group

completion in the sense of Segal, the simplicial category , is defined.

Proposition 3.1.1. There is a natural homotopy equivalence
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hFroof. Thanks to Segal [11] one knows that the canonical map from !sCf(X) I to
h h

nlsN.Cf(X)1 is a homotopy equivalence if the H-space IsCf(X) I is group-like or,

what amounts to the same thing, if the monoid I is a group. But it is

well known that this is the case, cf. e.g. [16] for a proof. D

The main goal of this section is to prove the result (theorem 3.1.7 below) that

the sum construction in can be traded for the cofibration construction;

that is, that 'N.' can be replaced by'S.' In order for this replacement to

make sense it is necessary to trade 'c' for 'R' first, that is, to impose struc-

tural retractions throughout. We also need an auxiliary construction; its purpose
his to prevent the homotopy property of the functor X H sN.Cf(X) from being lost

upon transition from 'c' to 'R'

Let F be a functor defined on the category of simplicial sets, with values in

a category B, say. We associate to it another functor F, with values in the

category of simplicial objects in B

F(X) (
t:,n

[n] >-+ F (X ) )

where
t:,n

denotes the simplicial of maps t:,nX set -+X

Remark. In cases where the name of the functor is not F but something lengthy,

such as for example the notation F(X) would be awkward. We will there-
t:,.

fore use instead the notation F(X ) on such occasions. a

t:,o
Using the identification of F(X) with F(X ) , and considering objects of B

as simplicial objects in a trivial way, we can define a natural transformation from
v

F to F.

Supposing now that in the receiving category B it makes sense to speak of

weak homotopy equivalences, we will say that the functor F respects weak homotopy

equivalences if X X' always implies F(X) F(X') •

Lemma 3.1.2. If F respects weak homotopy equivalences then the natural transfor-

mation F -+ F is a weak homotopy equivalence.

t:,0 t:,n
Froof. The (degeneracy) map X X is a weak homotopy equivalence and there-

fore so is F(Xt:,o) -+ F(Xt:,n) , by assumption about F. We conclude with the reali-

zation lemma.

v
Lemma 3.1.3. For any F, the functor F preserves simplicial homotopies.

a

!II
Froof. Let X -+ Y be a simplicial homotopy. The claim is that one can naturally

associate to it a simplicial homotopy of maps F(X) -+ F(Y) Such a simplicial ho-

motopy may be identified to a natural transformation of functors on the category

!l/[ 1J ,
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( a: l nl .... [1] ) ....- (F(X) .... F(Y) )
n n

The desired map on the right is defined as the composite map

where the first and second map are induced, respectively, by the homotopy

and by the map
(a*,Id) 1

r::, x r::,n .
o

Lemma 3.1.4.

equivalences.

hLet F(X) = sRf(X) . Then the functor
hSimilarly with the functors sN.Rf(X) and

respects weak homotopy
h

sS.Rf(X) .

Proof. By a well known argument (which e.g. may be found in [16]) it suffices to

show that F(X) .... F(X') is a weak homotopy equivalence if X' is obtained from X

by fitting a horn, that is, if it is the pushout of a diagram X .... r::,n where

is the i-th horn in r::,n, the union of all the faces except the i-tho The idea

of the following argument is to construct, in this situation, a deformation retrac-

tion of F(X') to F(X) by using the preceding lemma. Since it is not true, in

general, that X is a deformation retract of X' by a simplicial homotopy, we must

subdivide first.

Let Sd denote the sUbdivision functor for simplicial sets, and Sdk its

k-fold iteration. One knows that the subdivision of a simple map is simple again,

cf. [16], so we can use SdZ' say, to define a map

We compose with the map f*: .... induced by pushout with

f: SdZX' .... X' (the composite of the 'last vertex map' Sd(X") .... X" with itself),

The composite map on then is homotopic to the identity, For, it takes

(Y,r,s) to

with the appropriate structure maps, and the desired homotopy is given by the natu-

ral transformation to the identity functor induced from SdZY .... Y , which is a

simple map, cf. [16].

As shown below, f: SdZX' .... X' is simplicially homotopic, relative to SdZX,

to a map into X Applying the preceding lemma we thus obtain a simplicial homo-

topy of the map f* We conclude that there is a map homotopic to the identity
h r::, h r::,'

on sRf(X' ') ,namely , which is also homotopic to a map into sRf(X ) • The

latter homotopy is relative to the 'identity' on ; more precisely, the

homotopy is constant on the analogue of the map constructed from X instead
• . Rh( /1') sRh

f
(X,r::, ')of X . So we can draw the desired that the map s f X ....
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is a weak homotopy equivalence.

We are left to show that Sd2X' X· is simplicially homotopic, relative to

Sd2X , to a map into X. Since the subdivision functor commutes with pushouts,

this reduces to the following special case.

Assertion.

a map into

The map

fir: .
is simplicially homotopic, relative to

To see this we note that there is a homotopy of maps ISd\6n, 16n l which has

all the asserted properties except that it is not quite the geometric realization of

a simplicial homotopy; it is only a linear homotopy of unordered simplicial comple-

xes. We can get the ordering right by subdividing once more. This gives a simpli-

cial homotopy of maps Sd
26

n Sd 6n Composing with the map Sd 6n 6n we ob-
1 1

tain the desired homotopy from it.

The other cases of the lemma are handled similarly. a

Lemma 3.\.5. If X satisfies the Kan condition, the map is

a homotopy equivalence.

hProof. We define a simplicial category [m] sRf(X)m in which an object is one
hof sCf(X) ,say (Y,y) , together with a map YX6m X extending the projection

XX6m X. Since y is a weak homotopy equivalence, and X satisfies the exten-

sion condition, the simplicial set of those objects of which arise from

any particular (Y,y) , is contractible. In other words, the simplicial set of
h h

objects of sRf(X). maps by homotopy equivalence to the set of objects of sCf(X)
hSimilarly, the simplicial set of morphisms of sRf(X). maps by homotopy equivalence

hto the set of morphisms of sCf(X) ; and so on. It follows (the realization lemma)
h hthat the forgetful map sRf(X). sCf(X) is a homotopy equivalence.

Next we define a bisimplicial category [m],[n] sRhf(X) = sRh(X
6n)

Inm,n f m
view of the homotopy equivalence just established it follows, by the realization

lemma, that the map .• is a homotopy equivalence. Passing to the

diagonal simplicial category of the bisimplicial category on the left (it has the

same geometric realization, up to isomorphism) we obtain

contains as a

the restriction of the latter

h h 6'
diag sRf (X) .. -- sCf (X )

hsR
f
(X) .•

lemma is

The lemma now results by checking that diag

deformation retract, and that the map of the

homotopy equivalence.

restricts to the

(with a finite-An object of sRhf(X) consists of an injective map
n,n n

ness condition) together with a map YX6n X6 which on

projection. The object is in the subcategory if the map on itself

factors through the projection.
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tPx",n
Passing to the adjoint, we can rewrite the map as Y X The desired

simplicial homotopy now is induced by a simplicial deformation retraction of

En] x",nx",n to En] x",n Cf. e.g. [16] for a description of the homotopy.

Lemma 3.1.6. If X satisfies the Kan condition, the forgetful map

a

>-+Y
n

is a homotopy equivalence.

h
Froof. Define a category sSnRf(X)

structural retraction on the object

There is a forgetful map

, Yn/Yn- J

hjust as sSnRf(X) except that there is no

Yn in the filtration Yo>-+'" >-+ Yn- 1 >-+ Yn

which forgets the structural retraction in question. This forgetful map is a homo-

topy equivalence as one sees by a straightforward adapt ion of the argument of the

preceding lemma. Consequently (and in view of the preceding lemma) the assertion

of the lemma is equivalent to the assertion that the map

h ",' h "'. h s:
sSnRf(X ) - sSn_IRf(X ) x sCf(X )

is a homotopy equivalence. By the realization lemma this follows if we can show it

degreewise, for fixed m. Writing X instead of X",m now, we are reduced to

showing that the map

is a homotopy equivalence.

Let us denote the components of this map by p and q, respectively, and the

section of the map q by i. In order to show that (p,q) is a homotopy equiva-

lence, it will suffice to show that the sequence

h i h P h
sCf(X) sSnRf(X) sSn_IRf(X)

is a fibration, up to homotopy. We use Quillen's theorem B [8] to prove this. We

proceed to show that the theorem applies, in its version for left fibres, to the

map p .

Let be an object of sS • An object of the category
n h

consists of an object of sSnRf(X) together with
ha map g, say, in sSn_1Rf(X) the (vertical) transformation

Y' ... Y'
0 n-]

1 1
Y ... Yn-I0
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Let denote the subcategory of the objects for which the structural

map g is the identity map. It is a deformation retract of ; in

fact, a deformation retraction is given by pushout with g

h
On the other hand, is isomorphic to sCf(Yn_ l) As shown

in [16J, the functor respects weak homotopy equivalences. Hence the

structural inclusion X Yn- 1 induces a homotopy equivalence

It results that the maps in induce homotopy equivalences of the left

fibres. Thus theorem B applies, showing that for every the square

is homotopy cartesian. In particular this is so for the distinguished object

•• We saw above that .• contains as a deformation retract a sub-
hcategory isomorphic to sCf(X) Under the horizontal map in the square this subca-

tegory projects to the image of the inclusion map i, and under the vertical map

it projects trivially into the contractible category .. We obtain that

the maps i and p form a homotopy fibration, as claimed. 0

Theorem 3.1.7. Let X be a simplicial set. There are homotopy equivalences

--
hProof. It is shown in [16] that the functor sCf(X) respects weak homotopy

h h /:;.
equivalences. By lemma 3.1.2 therefore the map from sCf(X) to sCf(X ) is a

h h s:
homotopy equivalence, and consequently also sN.Cf(X) sN.Cf(X ) , in view of the

realization lemma. To proceed we choose a weak equivalence X X' where X' is a

simplicial set satisfying the Kan condition. Then all maps in the transformation of

the chain of the theorem to the corresponding chain with X replaced by X' are

weak equivalences by lemma 3.1.4. Thus we can reduce to proving the theorem for

simplicial sets which actually satisfy the Kan condition. Applying lemmas 3.1.5

and 3.1.6 now to the second and third map, respectively, we obtain that these maps

are homotopy equivalences degreewise in the N. ,resp. S. , directions. We con-

clude with the realization lemma. 0
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3.2. The homology theory associated to A(*) .

Let F be a functor defined on the category of simplicial sets, with values

in some category of spaces. We say F is excisive if it satisfies the following

two axioms.

(Limit). F commutes with direct limit.

(Excision). If Xo XI

is homotopy cartesian.

is a cofibration, and X X
20

F(Xo)
_F(X

2)

1 1
F(X

j
) ----+ F(XIUX X2)

0

any map, then the square

We say F is a homological functor (or a homology theory) if, in addition to

being excisive, it also satisfies

(Homotopy). If X X' is a homotopy equivalence then so is F(X) F(X ') •

Recall (the preceding section) that F(X) = F(XlI') denotes the functor

X .-----+ ( [n] ... F(X",n) ) .

The purpose of this section is to prove the following result.

Theorem 3.2. J. The functor is a homology theory.

",'
Addendum 3.2.2. The functor X.... Q IsS. Rf (X ) I may be identified, up to a natural

chain of maps, to the homology theory associated to A(*) .

In fact, the chain is given by the maps (of loop spaces of)

( [n] ... sS.Rf(X",n) ) +------ ( [n] ... sS.Rf(X
n)

) ( [n] ... hS.Rf(Xn) )

where X = ( [n] ... X ) and where the first map is induced by the identification
n n

Xn = (X'" )0' Each of the three terms is a homology theory. In the first case this

is so by the theorem, and in the second and third cases, the terms are the homology

theories associated to the r-spaces with underlying spaces sS.Rf(*) and hS.Rf(*) ,

respectively (cf. e.g. [13] for a detailed description of the homology theory asso-

ciated to a (special) r-space). Given the fact that the three terms are homology
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theories, and connected, the proof that the maps are homotopy equivalences can be

reduced to checking the case X = *. In that case, the first map is an isomor­

phism, while the second map is the inclusion sS.Rf (*) hS.Rf (*) . There does not

seem to exist a direct proof that the latter map is a homotopy equivalence, but an

indirect proof is provided by theorem 3.3.1, below, together with the fact that
h

sS.Rf (*) is contractible (which, e.g., follows from proposition J .3. I).

In order to prove the theorem it will suffice to prove the following two pro­

positions 3.2.3 and 3.2.4.

Proposition 3.2.3. The functor X H sS.Rf(X) is excisive.

Proof. First, it is clear that the functor commutes with direct limit (up to iso­

morphism).

Next, suppose that X
o

Xl is an injective map. Pullback with it defines a

map Rf(X
1
) Rf(X o) which respects simple maps. The inclusion­induced map Rf(X o)

Rf(X1
) also respects simple maps. Composing the two we therefore obtain a sub­

functor f of the identity functor on Rf(X I) which is exact, and hence a cofibra­

tion sequence of exact functors f Id f' where f' is defined as the quotient

f' = Id/f. Let Rf(XI,Xo) be defined as the category of the objects (Y,r,s) in

Rf(X1
) having support away from Xo ; that is, having the property that the pullback

X x Y
o XI

is not bigger than Xo Then f' takes values in Rf(X] ,Xo) , and it restricts to

the identity map on that subcategory. Applying the additivity theorem to the cofi­

bration sequence f Id f' now, we obtain a homotopy equivalence of sS.Rf(X I)
with the product sS.Rf(Xo) x sS.Rf(X],Xo). In particular, therefore, the sequence

is a fibration, up to homotopy.

Applying this consideration in the situation of the excision axiom, we obtain

a diagram of homotopy fibrations

sS.Rf(Xo) • sS.Rf(X1) • sS.Rf(X1,Xo)

1 1 1
sS.Rf(X2) • sS.Rf(X]UX X2) • sS.Rf(X1UX X2'X2)

0 0

The vertical map on the right is an isomorphism (an inverse is induced by pullback).

It follows that the square on the left is homotopy cartesian, as asserted by the

excision axiom. This completes the proof.
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Proposition 3.2.4. Let F be an excisive functor, and suppose that F(X) is
v

connected for every X. Then the associated functor F is a homology theory.

The proof will be given at the end of this section. Together with the prepara­

tory material, it occupies the rest of the section.

Remark. The artificial looking connectivity assumption comes from the fact that our

proof of the proposition uses the following lemma 3.2.5. Some auxiliary condition,

such as connectivity, is definitely needed in that lemma.

Lemma 3.2.5. Let

W•• ---X..

I
Y••

___ 2 ..

be a commutative diagram of bisimplicial sets. Suppose that for every m the

diagram of simplicial sets

1 1
is homotopy cartesian. Suppose further that for every m the simplicial sets Ym•
and 2m, are connected. Then the diagram of bisimplicial sets is also homotopy

cartesian.

Remark. There are easy examples to show that the connectivity assumption cannot be

dropped without replacing it by something else. Here is a particularly bad case.

Take any pullback diagram of simplicial sets, and consider it as a diagram of bisim­

plicial sets in a trivial way. Then in each degree m we have a pullback diagram

of sets, and certainly therefore a homotopy cartesian square (of sets !). But it

rarely happens, on the other hand, that a pullback diagram of simplicial sets is

also homotopy cartesian.

Proof of lemma. We deduce the lemma from a corresponding result for homotopy fibra­

tions which we refer to as the fibre realization lemma. A proof may be found in

[13]; for convenience we recall the statement here. By a fibration up to homotopy

is meant here a sequence of maps of 'spaces' of some sort, X Y Z , having the

property that, firstly, the composite map X 2 is a trivial map, with image *
say, and, secondly, the map from X to the homotopy fibre of Y 2 at * is a

weak homotopy equivalence. The fibre realization lemma says the following. Let

X•• Y.. Z.. be a sequence of maps of bisimplicial sets so that the composite
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map X•• z.. is a trivial map. Suppose that, for every m, the sequence of maps

of simplicial sets Xm' Ym' Zm' is a fibration up to homotopy. Suppose further

that for every m the simplicial set Zm' is connected. Then the sequence of bi­

simplicial sets, X•• Y•• Z•• , is itself a fibration up to homotopy.

The idea for proving the present lemma comes from the fact that a homotopy car­

tesian square with connected bases can be characterized as a commutative square in

which the homotopy fibres of the vertical maps are mapped to each other by homotopy

equivalence. Using this one hopes to obtain a translation of the assertion which

follows from the fibre realization lemma.

To get the details right, it is convenient to replace homotopy fibres by actual

fibres in a systematic way. We need to know that there is a functorial way of turn­

ing a map of simplicial sets into a Kan fibration; e.g., the process of filling

hoPns [ I] will do. Using it we replace, for every m, the square of the lemma by

a square

W' ---+ X' •m' m

1 1
Y' -- z ' .m' m

in which the vertical maps are Kan fibrations. In view of the naturality of the

construction, these squares still assemble to a square of bisimplicial sets

---+ •

1 1
There is a natural transformation from the old square to the new, and the maps

W.• , etc., are homotopy equivalences by the realization lemma. To prove the

lemma it will therefore suffice to show that the new square is homotopy cartesian.

Choose any point of Ci.e., a compatible family of points in the ) as

a basepoint; denote it * Let denote the actual fibre at *.

Since is a Kan fibration, it is certainly true that the sequence

is a fibration up to homotopy, for every m

lemma we deduce from this that the sequence

In view of the fibre realization

fibreCW: (*) ­­W:.

is also a fibration up to homotopy, where the term on the left denotes the actual

fibre again; the point is that ,)C*) ([m] C*)

There are similar fibrations if W' and Y' are replaced by X· and Z'
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We can now complete the proof of the lemma as follows. In view of the assump­

tion of homotopy cartesianness we have, for every m, a homotopy equivalence

-----+ (Im(*))

By the realization lemma this implies a homotopy equivalence

­­ ,

and therefore, in view of the preceding, a homotopy equivalence of the vertical

homotopy fibres in the square. Thus that square is homotopy

cartesian, as was to be shown.

The lemma enters into the proof of proposition 3.2.4 through the following

consequence.

o

Proposition 3.2.6. Let [m] Fm be a simplicial object of functors. Suppose that

Fm(X) is connected for every m and every X. Then if the Fm are excisive,

it follows that so is F, where F(X) = ( [m] Fm(X) )

Proof. The validity of the limit axiom for F is automatic.

excision axiom for

preceding lemma.

F follows from its validity for the Fm

The validity of the

by application of the

o

For later use we record the following here.

Lemma 3.2.7. Let F1 and F2 be excisive functors so that FI(X) and F2(X) are

connected for every X Let F I F2 be a natural transformation. If the natural

transformation is a weak equivalence in the cases X = 6n, n = 0, I, 2, ... , then

it is a weak equivalence in general.

Froof. By the limit axiom we can reduce to showing that FI(X) F2(X) is a weak

equivalence for finite X

to a simplicial set Y

out in a diagram

Let X be obtained by attaching a 'last' simplex 6n

In other words, choose an isomorphism of X to the push­

1 1
Applying F l to the diagram we obtain a homotopy cartesian square, in view of exci­

sion, and applying F2 we obtain another. The map F I F2 gives a map of the

first homotopy cartesian square to the second. Since FI(X) and F2(X) are con­

nected we conclude that, in order for FI(X) F2(X) to be a homotopy equivalence,
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it suffices that the map is a hOTImtopy equivalence in the other three cases. But

in the case of this is true by hypothesis, and in the cases of and Y

it may be assumed true by induction. 0

The crucial step in the proof of proposition 3.2.4 is the construction given

in the following two definitions.

Definition 3.2.8. Let X be a simplicial set. Define [k] COV(X)k to be the

simplicial object, in the category of simplicial sets, given by

x Nk(m,n) x Xnm,n

where Nk(m,n) denotes the set of sequences in ,

k arrows)

To describe the simplicial scructure one rewrites Cov(x) as the bisimplicial

set where a bisimplex in bidegree (q,k) consists of a sequence

l q l --> [mol -+ [m]] --> ... --> --> [mk]

together with an element x E By definition now the i-th face map with

respect to the k-direction is given by omitting Em. ]
].

from the sequence; except

if i = k in which case, in addition, the element x E must be taken to the

appropriate element of The degeneracy maps are given by the insertion

of identity maps in the sequence.

Definition 3.2.9. Let F be a functor on the category of simplicial sets. Then

Considering the simplicial set X as a simplicial object in a trivial way, we

can define a natural transformation

COV(X). -- X ;

by definition, its restriction to [m]-->•.• -->[n], x) is the composite map

Lemma 3.2.10. If X is a simplex or, more generally, a disjoint union of

simplices, then this map is the retraction in a simplicial deformation retraction

from the simplicial object [k] COV(X)k to the trivial simplicial object [k] X

Proof. In the case X = , the simplicial homotopy is defined as the natural

transformation on the category taking a: [k] --> [1] to the map of

to defined in the following way. The map a* takes the sequence
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to the sequence

[q] [mol .•. [miCa)] [p] [p]

where i(a) is the largest of the i E [k] which are in the pre-image of 0 E [I)

if a takes [k) entirely into E [1] then the image sequence is

l q l l p l ... l p l .

The homotopy is similarly defined in the more general case where X is a

disjoint union of simplices.

Considering the objects of the receiving category of the functor F as sim-

plicial objects in a trivial way, we can define a natural transformation

as the map which in degree k takes F(COV(X)k) into F(X) by the map induced

from COV(X)k X

Lemma 3.2.]1. In the case where X is a simplex, or a disjoint union of such,

the map FX(X) F(X) is a (simplicial) homotopy equivalence.

n

Proof', The functor
x

F has been defined by means of degreewise extension in the

k-variable, so it preserves simplicial homotopies in the k-variable. The present

lemma thus results from the preceding lemma. lJ

Remark. It is not difficult to show that COV(X). X is a weak homotopy equiva-

lence for all X. On the other hand there seems little reason to suppose, in

general, that the natural transformation FX(X) F(X) is a weak equivalence for

X which are not just disjoint unions of simplices.

Proposition 3.2.12. Suppose that F(X) is connected for all X, and that F is

excisive. Then FX(X) F(X) is a weak homotopy equivalence for all X.

&oof. The functor

X 1----------+ COV (X) k

preserves monomorphisms and pushouts.

m
6 x Nk(m,n) x Xn

As a result, the functor

is excisive since F is. Applying proposition 3.2.6 now we obtain that

is an excisive functor, too.
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Thus FX(X) F(X) is a map of excisive functors. By lemma 3.2.11 the map is

a weak equivalence in the case X = 6n• Consequently, by lemma 3.2.7, it is a weak

equivalence in general. [J

Proposition 3.2.13. Let G be a functor satisfying that G(X) is connected for

all X. Suppose that G commutes with direct limit, and that it takes finite dis­

joint unions to products (up to homotopy); e.g., suppose that G is excisive. Then

the functor
VX
G is excisive.

Proof. Let X ([j] X.) Then the functor XI­> G(X.) is excisive by hypo­
J J

thesis about G. By proposition 3.2.6 therefore the functor XH ( [j] H G(X.) )
J vx

is excisive, too. We will show that the latter functor is weakly equivalent to G

We show this by constructing an intermediate functor H and relating it to both.

Recalling the definitions

F
X
(X) ( [k] ..... F(Cov(X)k)

v
( [j] ..... F (X

6j
)and F (X)

unravel the definition of
vx

we G as

Vx
( [j] ( [k] G(Cov (X

6J
)k) )G (X) ... .....

[j] [k] G(ll m 6j... .... 6 xNk(m,n)x(X )n)m,n

( [k] [j ] G(ll m 6n ) )I':; ..... .... 6' xNk(m,n)x(X )j)m,n

We define the intermediate functor H by replacing by X in the latter term,

H(X) ([k] .... ([j] .... G(ll
m,n

The projection 6n 60 induces an inclusion X x6n and hence a map of H(X) to

eX(X) . We claim this map is a homotopy equivalence.

6nIn fact, the map ([j] ..... X. ) ( [j] ..... (X ).) is a simplicial homotopy
J J

equivalence. The process of applying functors degreewise preserves simplicial homo­

topies. Hence the map

( [j] .... G(ll
m,n

m
6 xNk(m,n)xX

J.)
) ­­­­­. ( [j] .... G(llm,n

Applying the realization lemma with
Yx

H(X) G (X) is a (weak) homotopy

is a (simplicial) homotopy equivalence still.

respect to the k­variable now, we conclude that

equivalence.

To proceed, we rewrite H(X) as

( [j] ... ( [k] .... Gell
m,n

The map
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is a (simplicial) homotopy equivalence by lemma 3.2.JJ. Applying the realization

lemma with respect to the j-variable now we conclude that the map

H(X) -----+ ( [j] .... ( [k] .... G(X.) ) )
J

is a (weak) homotopy equivalence. The target of this map is the simplicial object

[j] G(X.) considered as a bisimplicial object in a trivial way. We are done. 0
J

Proof of proposition 3.2.4. Recall, the claim is that if F

such that F(X) is connected for every X, then the functor

theory.

is an excisive functor
v
F is a homology

duce the functor F
X

(definition 3.2.9).

The main problem is to show that
v
F is excisive again. To see this we intro-

The natural transformation F
X

F is a

weak homotopy equivalence in the situation at hand (proposition 3.2.12). By the

realization lemma it follows that the natural transformation
vX v
F F is a weak

homotopy equivalence as well. Thus we can reduce to showing that the functor
VX
F

is excisive. This was shown in proposition 3.2. J3.

We are left to show now that the functor f respects weak homotopy equivalen-

ces. By a well known argument (which e.g. may be found in [ 1]) it suffices to show

that reX) F(X') is a homotopy equivalence if X' is obtained from X by fill-

ing a horn, that is, if there is a pushout diagram

X __ X'

v
F applied to this diagram gives a homotopy cartesian square, by excision, so we can

reduce further to showing that is a homotopy equivalence.
i

Now is contractible to its i-th vertex by simplicial homotopy (if i = 0

or n, a single homotopy will do; otherwise one needs a chain of two) and the con-

traction restricts to one of Since F preserves simplicial homotopies (lemma

3.1.3) we conclude that indeed is a homotopy equivalence. The proof

is now complete. o
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3.3. The fibration relating WhPL(X) and A(X) .

The fibration arises from the interplay of two notions of weak equivalence on

the category Rf(X) ,where X is a simplicial set. The two notions are given by

the simple maps on the one hand and by the weak homotopy equivalences on the other.

denote the subcategory of the objects which are homo­

(Y,r,s) where s is a weak homotopy equivalence.

As before preceding two sections) let denote the simplicial category

[n] .... )

Theorem 3.3.1. The square

is homotopy cartesian, and the term on the upper right is contractible. The other

terms are as follows,

X ...

I A(X) ,

sS.Rf(X) is a homology theory,

h PL
sS.Rf(X ) Wh (X) ,

and each of the homotopy equivalences can be described by a natural chain of maps.

In order to show that the square is homotopy cartesian it will suffice to

show, by lemma 3.2.5, that for each n the square with replaced by is

homotopy cartesian. Writing X instead of now we have reduced to showing

that the square

h h
sS.Rf (X) ­­­­­­ hS.Rf (X)

1 1
is homotopy cartesian. The desired fact is essentially a special case of theorem

1.6.4. There is a little technical point. Namely the category of weak homotopy
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equivalences on Rf(X) does not satisfy the extension axiom as required for a

direct app l i cat ion of theorem I. 6.4. For this reason we compare with the square

where R(2) (X) denotes the subcategory of Rf(X) of the (Y,r,s) where s: X .... Y
f

R(2) (X)is a 1-connected map. The weak homotopy equivalences in may alternativelyf
be characterized as the maps inducing isomorphisms in homology (the Whitehead theo-

rem), consequently they do satisfy the extension axiom. Hence theorem 1.6.4 applies

to show the latter square is homotopy cartesian. We conclude by noting that the map

to the former square is a homotopy equivalence on each of the four corners. In

fact, double suspension induces an endomorphism of each of the terms, the endomor-

phism is homotopic to the identity map (proposition 1.6.2), and it takes Rf(X)

into Ri 2) (X) .

The upper term is contractible since it is a bisimplicial

object of categories with initial objects.

6'
The term hS.Rf(X ) is a de-loop of A(X) since hS.Rf(X) ....

homotopy equivalence (by lemma 3.1.2) in view of the fact that X

6'
hS.Rf(X )

hS.Rf(X)

is a

respects weak homotopy equivalences (proposition 2.1.7).

The homotopy equivalence WhPL(X) is given in theorem 3.1.7.

6'The fact that X .... sS.Rf(X ) is a homology theory, finally, is provided by

theorem 3.2.1. o

Y-"'::-XX6n

The theorem may be reformulated a little by defining the auxiliary simplicial

structure in a slightly different way. Namely define a simplicial category Rf(X).

as follows. Rf(X)n is the subcategory of Rf(xx6n) given by the objects (Y,r,s)

which have the property that the composite map
pr2___.... 6n

is locally fibre homotopy trivial.

Proposition 3.3.2. There is a homotopy cartesian square

and it is homotopy equivalent to the square of the theorem by a natural map.
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Proof. The homotopy cartesianness of the square is established in the same way as

in the theorem. There is a map from the square of the theorem to that of the propo­

Sition. It is induced from the map of simplicial categories Rf(X). de­

fined as follows. The map in degree n is the composite map

n n
) ----+ ­­­­+

where the first map is given by product with and the second map is induced

from a map

n nX ,

namely the map whose second and first components are the projection map pr 2 and

the evaluation map

respectively.

In order to show that the transformation of squares is a homotopy equivalence

it suffices, in view of the homotopy cartesianness of the two squares, to show that

the map is a homotopy equivalence on three of the four corners.

This is automatic in the case of the upper right corner as both terms are con­

tractible.

the mapn

(the theorem) it suffices to know that

2.2.6) that for every

the case of the lower right corner. Namely in view of the

hS.Rf(X )

is a homotopy equivalence. This follows from the

It is still easy in

homotopy equivalence hS.Rf(X)

the map hS.Rf(X) hS.Rf(X).

fact (by the argument of lemma

is a homotopy equivalence.

As our third case we take that of the upper left corner. That case is less easy.

We consider the diagram

h h h h
sN.Cf(X) ­­­­­­. sN.Cf(X ) ­­ sN.Rf(X ) ­­­ sS.Rf(X )

1° 1 1 1
h h h h

sN.Cf(X) --- sN.Cf(X). - sN.Rf(X). ­­­+ sS,Rf (X) .

where the upper row is the chain of maps of theorem 3.1.7, and the lower row is an

analogue of that chain for the other auxiliary simplicial structure. The maps in

the upper row are homotopy equivalences (theorem 3.1.7), so it will suffice to know

that the maps in the lower row are homotopy equivalences, too. The second and third

maps in the chain now are handled as before (lemmas 3.1.5 and 3.1.6). In the case

[J

one can reduce (by the realization lemma) to showing that the map
h h

sCf(X) sCf(X)n is,

of the first map
h h

sCf(X) sCf(X). is a homotopy equivalence; or in fact, that

for every n. But this has been proved in [16].
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