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Abstract. We give an explicit presentation of the moduli stack of elliptic
curves with full level three structures and a choice of a Weil pairing M(3)ζ ,

together with a description of the action of SL2(Z/3) (due to Charles Rezk).
Then we proceed to compute the cohomology ring H∗(SL2(Z/3), H∗(M(3)ζ))

with its full multiplicative structure including Massey products using several

spectral sequences. The result is the E2 page of a homotopy fixed point spectral
sequence computing the homotopy groups of Tmf [1/3].

1. Introduction

Topological modular forms exhibit some fascinating properties; for example, in
[Sto12], the author showed that Tmf1 is Anderson self dual (up to a shift), after
inverting 2. The reason for concentrating on the 3-primary torsion in that paper
was to avoid the technical difficulties that appear in the 2-primary calculations.
The goal of the present work is precisely to address those algebraic technicalities.

1.1. Acknowledgements. Charles Rezk has generously shared his notes on
the presentation described in Section 4, without which the present work would
not have been possible. Most of the Massey product calculations are completely
analogous to Tilman Bauer’s in [Bau08]; Tilman also gets the credits for creating
the spectral sequence latex packages (sseq and luasseq) that I used to create the
figures for this paper.

2. Recalling elliptic curves

A curve over a base S is a map of schemes p : E → S which is flat, proper, has
finite presentation and dimension one. An elliptic curve is a diagram

p : E � S : e(2.1)

where p : E → S is a curve of genus one whose geometric fibers are non-empty,
connected, and smooth, and e : S → E is its section. An elliptic curve has a unique
structure of an abelian group scheme with e as its identity [KM85, 2.1]. The object
which classifies elliptic curves and isomorphisms between them is the moduli stack
of elliptic curves, denoted2 M0. Its compactification M classifies diagrams (2.1)
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where p : E → S is a curve of genus one whose geometric fibers can be smooth or
have an isolated nodal singularity away from e [DR73, II.1.12].

Associated to an elliptic curve p : E → S is the sheaf ωE/S of (translation-)
invariant differentials, which can be described as the push-forward p∗ΩE/S of the
sheaf of relative differentials on E. Let I denote the ideal sheaf defining the identity
section e; then by [Har77, II.8]

ωE/S = p∗ΩE/S = I/I2.(2.2)

The sheaf ωE/S is invertible; if E is generalized (i.e. not necessarily smooth), ωE/S
can be defined as I/I2, giving again an invertible line bundle. Consequently, the
assignment

E/S 7→ ωE/S
defines an invertible quasi-coherent sheaf on M, which we denote by ω. The ring
of (holomorphic) modular forms MF∗ is defined to be the graded ring

H0(M, ω∗) =
⊕
n≥0

H0(M, ω⊗n)

Locally, a choice of an OS-basis for ωE/S gives rise to a Weierstrass equation for
E as follows. Let U = SpecR be an open subset of S on which ωE/S is trivializable,

with η as a generator. Note that η is unique up to multiplication by a unit u ∈ R×.
For any n ∈ Z, ηn generates In/In+1, and for n > 0, the sheaf p∗I−n is locally
free of rank n [KM85, 2.2.5].

The natural inclusion OC ∼= I0 → I−n defines a generator 1 of I−n for any
n ≥ 0. Let x be a generator of I−2 which reduces to η−2 in I−2/I−1, and let y
be a generator of I−3 which reduces to η−3 in I−3/I−2. Then {1, x} is a basis for
I−2, and {1, x, y} is a basis for I−3. Note x and y are uniquely determined up to
a change of variables

(2.3)
x 7→ u−2x+ r,

y 7→ u−3y + u−2sx+ t,

where u is a unit, and r, s, t are arbitrary elements of R. Continuing in this fashion,
we find that p∗I−4 is freely generated by 1, x, y, x2, and p∗I−5 by 1, x, y, x2, xy.
Next, p∗I−6 is freely generated on either 1, x, y, x2, xy, y2 or 1, x, y, x2, xy, x3, where
y2 − x3 is in fact an element of I−5, as x3 and y2 both reduce to η−6. Therefore,
a relation called a Weierstrass equation

(2.4) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

must hold, for some ai ∈ R. In fact, the map

φ = [x, y, 1] : EU → P2
U

identifies EU with the locus of vanishing of (2.4), with the identity section emapping
to the point at infinity [0 : 1 : 0] in P2

U ][Sil86, III.3],[KM85, 2.2.5]. The differential
form η is expressed as

(2.5) η =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
.

Conversely, any curve given by an equation (2.4) which is smooth or has at most
a nodal singularity is a generalized elliptic curve. Consequently, the moduli stack
of generalized elliptic curves M is represented by the Hopf algebroid (A,Γ), where
A = Z[a1, a2, a3, a4, a6] and Γ = A[u±1, r, s, t], while the structure map ψ : A → Γ



CALCULATING DESCENT FOR 2-PRIMARY TOPOLOGICAL MODULAR FORMS 3

is deduced from the change of variables (2.3). The formulas can be found in [Sil86,
Table 1.2] or [Bau08, Section 3].

This presentation eases the computation of the ring of modular forms; one has
[Bau08]

MF∗ = Z[c4, c6,∆]/(123∆ = c34 − c26),

where cn is a global section of ω⊗n, and ∆ is the discriminant of the equation (2.4).
The global sections of ω⊗12 c34 and ∆ do not simultaneously vanish (as that would
indicate a cusp singularity), and they define a map

(2.6) j = [c34 : ∆] :M→ P1

called the j-invariant (its target usually called the projective j-line), which classifies

the line bundle ω⊗12 and which restricts to j : M0 → A1 i
↪→ P1, where i includes

the complement of the point [1 : 0] in P1. The j invariant can be used to describe
the compactificationM ofM0 as the normalization in the field of functions ofM0

of the projective j-line [DR73].
The embedding φ : EU → P2

U also gives a geometric way to describe the
group law on EU by interpreting Abel’s theorem [KM85, 2.1.2] as explained in
[Sil86, III.2]. A line in P2

U intersects EU at exactly three points (counted with
multipilicites) since the defining equation (2.4) has degree three. Then the sum
P +Q+R of three (not necessarily distinct) points of E is the identity if and only
if they are collinear in P2

U .

3. Recalling level structures

Let n be a positive integer and let S be a scheme over Z[1/n]; then multipli-
cation by n on a smooth elliptic curve E/S is a finite map of degree n2 whose
kernel E[n] is étale locally isomorphic to (Z/n)2. Specification of this isomorphism
is called a (full) level n structure on E. For i = 1, 2, let

(
Ei, ϕi : (Z/n)2 → Ei

)
be

two elliptic curves (both over S) with level n structures; an isomorphism

f : (E1, ϕ1)→ (E2, ϕ2)

is a commutative diagram

(Z/n)2
ϕ1 // E1

ψ

��

(Z/n)2
ϕ2 // E2

where ψ is an isomorphism of elliptic curves. We denote by M(n)0 the moduli
stack classifying elliptic curves with level n structure and isomorphisms between
them. In fact, M(n)0 is a scheme whenever n ≥ 3 [DR73, IV.2.7]. Forgetting the
level structure gives a covering map f :M(n)0 →M0[1/n], hence also a j-invariant
j :M(n)0 → A1[1/n] by composition.

The finite group E[n] of n-torsion points in E is equipped with a non-degenerate
alternating form

en : E[n]× E[n]→ µn,

called the Weil pairing [KM85, 2.8] into the group of n-th roots of unity. While at
first we haveM(n)0 as a scheme over Z[ 1n ], the Weil pairing gives a mapM(n)0 →
SpecZ[ζn,

1
n ] by sending (E,ϕ) to en(ϕ(1, 0), ϕ(0, 1)) = ζn.
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Now the compactification M(n) of M(n)0 can be described as the normaliza-
tion in the field of functions of M(n)0 of the projective j-line over Z[ζn] [DR73].
Deligne-Rapoport [DR73] develop insightful and important modular description
of these compactifications using so-called Néron polygons, but for the purposes of
this work we will stick to the approach via normalization.

The automorphism group GL2(Z/n) of (Z/n)2 acts on the right on M(n)0 by
precomposition; namely, g ∈ GL2(Z/n) maps (E,ϕ) to (E,ϕ ◦ g). This action
is in fact free and transitive, making the forgetful map f : M(n)0 → M0[1/n] a
torsor for the group GL2(Z/n). Moreover, the action extends over M(n), but the
stabilizers of the cusps are non-trivial; they are conjugates of the subgroup

±U :=

{
±
(

1 ∗
0 1

)}
⊂ GL2(Z/n),

as described in [DR73, IV.5].
Since M(n) is a stack (scheme when n > 2) over Z[ζn,

1
n ], after a finite étale

extension, it splits as a disjoint union of stacks M(n)ζ indexed by the primitive
n-th roots of unity. To be more precise, let k be a ring in which n is invertible
and which contains a primitive n-th root of unity; then k[ζn] := k[x]/(x2 + x + 1)
splits as a product k×k, and therefore any scheme or stack X over k[ζn] splits as a
disjoint union indexed over µ×n . In particular, this happens for M(n) and we have
a diagram

M(n)ζ //

��

∐
µ×
n

M(n)ζ //

��

M(n) //

��

M

��

Spec k // Spec k[ζn] //// SpecZ[ζn] // SpecZ.

The moduli stack M(n)ζ has action by the subgroup SL2(Z/3), and in fact the
composed map M(n)ζ → M is an SL2(Z/3)-torsor away from the cusps which
have ±U ⊂ SL2(Z/n) as stabilizers.

4. Level-3-structures made explicit

In this section we describe an explicit presentation of the moduli stack M(3),
due to Charles Rezk. From this point on, 3 will be assumed to be invertible every-
where.

Let E/S be a generalized elliptic curve (over a scheme on which 3 is invertible);
by completing the cube in the Weierstrass equation (2.4), we get that locally E is
isomorphic to a Weierstrass curve of the form

(4.1) y2 + a1xy + a3y = x3 + a4x+ a6,

with discriminant ∆ = (a31 − 27a3)a33. The points of order three are the inflection
points of E. Choose P = (r, t) to be such a point; applying the transformation
(x, y) 7→ (x+ r, y + t) puts E in the form

(4.2) y2 + a1xy + a3y = x3,

where now P has coordinates (0, 0). The inversion map [−1] : E → E is given
by [−1](x, y) = (x, y − a1x − a3). Thus [−1]P = (0,−a3), and the tangent line to
[−1]P is y = −a1x− a3.
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4.1. The nonsingular case. If the curve E is smooth, choose Q = (e2, e3) to
be another point of order three which is different from ±P . There are exactly three
points on E with x-coordinate equal to zero (±P and the point at infinity), hence
e2 = x(Q) is invertible. From (4.2) it follows then that e3 = y(Q) is also invertible.
If y = b1x+ b3 is the tangent line to E at Q, we have (as Q is an inflection point)

x3 − (x− e2)3 = (b1x+ b3)2 + a1x(b1x+ b3) + a3(b1x+ b3),

which yields

3e2 = b21 + a1b1

−3e22 = 2b1b3 + a1b3 + b1a3

e32 = b23 + a3b3,

whence b1, b3, as well as e3 − b3 = b1e2 must be invertible. In particular, the
quotient e3/b3 cannot be 1. However,

e33
b33

=
(b1e2 + b33)

b33

=
(b23 + a3b3)b31 − (2b1b3 + a1b3 + b1a3)b21b3 + (b21 + a1b1)b1b

2
3 + b33

b33
= 1,

hence e3
b3

must be a primitive third root of 1. Set ζ = e3/b3, and denote γ1 = b1
and γ2 = a1 + b1. We have the following formulas.

a1 = γ2 − γ1

e2 =
1

3
γ1γ2

b3 = −1

9
(1− ζ2)γ21γ2

e3 =
1

9
(1− ζ)γ21γ2

a3 =
1

9
(ζ − 1)γ1γ2(γ1 + ζ2γ2)

a31 − 27a3 = (γ2 − ζγ1)3.

4.2. A presentation. Let Γ = Z[1/3, ζ][γ1, γ2] be the graded ring with γi in
degree 1. The above discussion shows that the locus M0(3)ζ of smooth curves in
M(n)ζ is (

Spec Γ[∆−1]
)
//Gm.

Consequently, the compactification M(3)ζ must be Proj Γ.

4.3. The action of GL2(Z/3). Fix an elliptic curve E and its Weierstrass
equation adapted to the level structure (P,Q) as above, and think of a1, b1, ζ as

functions of the level structure (P,Q). To determine the action of A =

(
α β
γ δ

)
∈

GL2(Z/3) on M(3), we need to determine the Weierstrass equation associated to
E with the level structure (P,Q)A = (αP + γQ, βP + δQ) (giving a1((P,Q)A)),

the slope b1((P,Q)A) of the tangent line at βP + δQ, as well as ζ = y(βP+δQ)
b3((P,Q)A) .
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Note that a1 is in fact only a function of the first point of order three. We
already saw that when P is at (0, 0), then −P has coordinates (0,−a3) and a
tangent line y = −a1x− a3. The transformation

x 7→ x

y 7→ y − a1x− a3

moves −P to (0, 0), putting E in the form

y2 − a1xy − a3 = x3.

In particular a1(−P ) = −a1.
Similarly, the transformation

x 7→ x+ e2

y 7→ y + b1x+ e3

moves Q to (0, 0) and gives that a1(Q) = a1 + 2b1. This transformation also moves
P to (−e2,−e3), giving that

b1(Q,P ) = −b1, b3(Q,P ) = −e3,
e3(Q,P ) = −b3, ζ(Q,P ) = ζ−1.

The line through P and Q is y = e3
e2
x, the other point of E which lies on this

line is

R =

(
−a3e3

e22
,−a3e

2
3

e32

)
,

and R = −P −Q. The tangent line at R is given by

y = −ζb1x−
b21
9

((ζ2 − 1)a1 + (ζ − 1)b1).

Consequently,

b1(Q,−P −Q) = ζ2b1, b3(Q,−P −Q) = −b
2
1

9
((ζ − 1)a1 + 2ζb1),

e3(Q,−P −Q) =
b21
9

((2ζ + 1)a1 − 3ζ2b1), ζ(Q,−P −Q) = ζ.

Putting all of the above together, we deduce the following result.

Proposition 4.1. The (left) action of GL2(Z/3) on Γ is the ring action de-
termined by(

−1 0
0 −1

)
:
γ1 7→ −γ1,
γ2 7→ −γ2,

(
0 −1
1 0

)
:
γ1 7→ −γ2,
γ2 7→ γ1,(

0 1
1 0

)
:
γ1 7→ −γ1,
γ2 7→ γ2,

(
0 −1
1 −1

)
:
γ1 7→ ζ2γ1,
γ2 7→ γ2 − ζγ1.

The elements of SL2(Z/3) preserve ζ, while the rest map ζ to ζ−1 = ζ2.

Let

x =
(
0 −1
1 0

)
, y =

(−1 −1
−1 1

)
, z =

(
0 −1
1 −1

)
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be a choice of generators for SL2(Z/3). Then Proposition 4.1 implies that SL2(Z/3)
acts onM(3)ζ = Proj Γ by the map χ : SL2(Z/3)→ PGL2(Z[1/3, ζ]) = Aut(Proj Γ)
given by

(4.3) x 7→
(

0 −1
1 0

)
, y 7→

(
−ζ2 ζ
ζ ζ2

)
, z 7→

(
ζ2 0
−ζ 1

)
.

5. Serre Duality on M(3)ζ

SinceM(3)ζ = Proj Γ is a projective line, it has Serre duality, and its dualizing
sheaf is the invertible sheaf of differentials Ω = ΩM(3)ζ . Note that line bundles

on M(3)ζ are in bijection with shifts of Γ as a module over itself; namely, for any
integer k, O(k) denotes the line bundle corresponding to the graded module Γ[k]
which in degree t is the (t+k)-graded part of Γ. We have O(k)⊗O(n) = O(k+n).

Now the differential form γ1dγ2−γ2dγ1 is a nowhere vanishing differential form
of degree two, hence it is a trivializing global section of O(2) ⊗ Ω. We conclude
that Ω ∼= O(−2).

On the other hand, the sheaf ω is a line bundle locally generated by the invariant
differential η = dx

2y+a1x+a3
which is of degree 1, so ω ∼= O(1). Consequently, Ω ∼=

ω−2.
The cohomology H∗(M(3)ζ ,Ω) is zero in degrees other than 1, and is Z[1/3, ζ]

in degree 1. The group SL2(Z/3) acts on H1(M(3)ζ ,Ω) =: Zζ via the determinant
of the image of χ in PGL2(Z[1/3, ζ]) (4.3). Hence x and y act trivially, and z acts
as multiplication by ζ2.

There is an SL2(Z/3)-equivariant Serre duality pairing [Har77, III.7.1]

H0(M(3)ζ , ω∗)⊗H1(M(3)ζ , ω−∗−2)→ Zζ ,

hence H1(M(3)ζ , ω−∗−2) ∼= Hom(Γ,Zζ)[−2] =: Γ∨ζ [−2]. We will now proceed to
compute the cohomology

H∗(SL2(Z/3), H∗(M(3)ζ , ω∗)) = H∗(SL2(Z/3),Γ⊕ Γ∨ζ [−2]).

6. Quaternion group cohomology

Having determined the action of GL2(Z/3) on Γ, we will proceed to compute
the cohomology ring H∗(GL2(Z/3),Γ). We will make repeated use of Lyndon-
Hochshield-Serre (LHSSS) and Bockstein spectral sequences (BSS), and we will
keep track of Massey products, which in particular will be useful in identifying
hidden extensions in the E∞-pages of the various spectral sequences.

The quaternion group Q8, which has a presentation

〈x, y|xyx = y, x2 = y2, x4 = 1〉

is a subgroup of GL2(Z/3), and a Sylow 2-subgroup of SL2(Z/3). As a prelimi-
nary calculation, we will determine H∗(Q8,F4), where Q8 acts trivially on F4, and
consequently the cohomology of Q8 with trivial coefficients for any extension of F4.

The Lyndon-Hochschield-Serre spectral sequence for

1→ C2 × C2 → Q8 → C2 → 1

looks as

F4[a, b, c] = H∗(C2, H
∗(C2 × C2,F4))⇒ H∗(Q8,F4),
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where a, b ∈ H1(C2 × C2,F4). Then d2(c) = a2 + ab + b2, and d3(c2) = a2b + ab2.
Consequently,

H∗(Q8,F4) = F4[P ][a, b]/(a2 + ab+ b2, a3, b3, a2b+ ab2),

where P is the class of c4 [?, IV.2.10]. We can visualize this as the pattern

•
• •
• •
•

tensored with F4[P ], where each dot represents an F4-generator, and they are ar-
ranged so that the cohomological degree is mapped along the vertical axis (not
displayed).

The periodicity element P can be written as a Massey product

P = 〈a+ b, ab, a+ b, ab〉,

as d3(c2) = a2b+ ab2, and P is the class of c4. This is not a Massey product that
we will use since it involves elements (ab, a+b) which are not invariant under larger
subgroups of GL2(Z/3). However, a crucial Massey product is closely related to
this one, and we describe it now.

Let Q8 act trivially on γ̄ in the polynomial ring Γ1 := F4[γ̄]. (We will see
shortly how Γ1 appears in some Bockstein spectral sequences.) Then

H∗(Q8,Γ1) = H∗(Q8,F4)⊗ Γ1.

Consider the elements

h1 = (a+ ζ2b)γ̄, h2 = (a+ ζb)γ̄2 ∈ H1(Q8,Γ1)

(we will justify their appearance in 7 below). In H∗(Q8,Γ1) we have a Massey
product

P γ̄12 =

〈(
h22 h1

)
,

(
h2 h21γ̄

3

h21γ̄
3 h2

)
,

(
h22 h1
h1 h22

)
,

(
h2
h21γ̄

3

)〉
;

following from the fact that h32 +h31γ̄
3 = (ab2 +a2b)γ̄6 = d3(c2γ̄6), and all the other

products in the Massey product are represented by zero.
Further, we use naturality of Massey products to conclude that the same rela-

tion holds in H∗(SL2(Z/3),Γ1), where z · γ̄ = ζ2γ̄. We record this as

Lemma 6.1. In H∗(SL2(Z/3),Γ1), there is a Massey product

P γ̄12 =

〈(
h22 h1

)
,

(
h2 h21γ̄

3

h21γ̄
3 h2

)
,

(
h22 h1
h1 h22

)
,

(
h2
h21γ̄

3

)〉
.

7. Using Bockstein spectral sequences

Before continuing, let us summarize the structure of the group SL2(Z/3) and
its action on Γ. The summary can also serve as guidelines for the method we will
use to execute the computations.

The group SL2(Z/3) has a presentation

SL2(Z/3) = 〈x, y, z|x2 = y2, x4 = 1 = z3, xyx = y, xz = zy3, zyx = yz〉
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such that the elements x and y generate a normal subgroup isomorphic to Q8, and
there is an exact sequence

1→ Q8 → SL2(Z/3)→ C3 → 1.

This implies that if M is any SL2(Z/3)-module on which 3 is invertible, we
have that

H∗(SL2(Z/3),M) = H∗(Q8,M)C3 .

To describe the action of G = SL2(Z/3) on Γ = Z[1/3][ζ][γ1, γ2], recall that
the matrices corresponding to x, y, z are

x =
(
0 −1
1 0

)
, y =

(−1 −1
−1 1

)
, z =

(
0 −1
1 −1

)
respectively, and they act on Γ as follows

x :γ1 7→ −γ2 y :γ1 7→ −ζ2γ1 + ζγ2

γ2 7→ γ1 γ2 7→ ζγ1 + ζ2γ2

z :γ1 7→ ζ2γ1

γ2 7→ γ2 − ζγ1.

This group action preserves the ideals I0 = (2) and I1 = (2, γ1 + γ2), and we
will compute cohomology using the corresponding Bockstein spectral sequences.

First, Γ1 = Γ/I1 = F4[γ̄], where γ̄ is the class of γi. The elements x and y of
G act trivially on Γ1, while z maps γ̄ to ζ2γ̄. We have, first of all

H∗(Q8,Γ1) = H∗(Q8,Z)⊗ Γ1 = F4[γ̄][P ][a, b]/(a2 + ab+ b2, a2b+ ab2, a3, b3),

where P is the periodicity class in degree 4, and a and b are in degree 1. From the
conjugation action of z on Q8, i.e. the relations in G

zxz−1 = xy zyz−1 = x3,

we get that z preserves the periodicity element P , and acts on a and b as

z : a 7→ a+ b, b 7→ a.

In bidigree (∗, 0) (first is the cohomological, second is the internal grading), we
have F4[P ][a, b]/(a2 + ab+ b2, a2b+ ab2, a3, b3), and the only C3-invariants are the
powers of P . In bidegree (∗, 2) we have γ̄F4[P ][a, b]/(a2 +ab+ b2, a2b+ab2, a3, b3)],
and here γ̄P k is acted on by multiplication by ζ2. However, the elements γ̄(a +
ζ2b)P k are invariant, as are γ̄(a2 + ζ2b2)P k, for any k ≥ 0. Similarly, in bidegree
(∗, 4) the invariants are the elements γ̄2(a+ ζb)P k as well as γ̄2(a2 + ζb2)P k. Thus
we obtain

H∗(G,Γ1) = H∗(Q8,Γ1)C3 =

F4[γ̄3, P ]
〈
1, a2b = ab2, (a+ ζ2b)γ̄, (a2 + ζ2b2)γ̄, (a+ ζb)γ̄2, (a2 + ζb2)γ̄2

〉
,

with all the above relations and thus obtained multiplicative structure.
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Denote suggestively

h1 = [(a+ ζ2b)γ̄]

h2 = [(a+ ζb)γ̄2]

e0 = [(a2 + ζ2b2)γ̄]

e3 = [a2b] = [ab2]

ā3 = [γ̄3].

Then H∗(G,Γ1) = F4[ā3, P, h1, h2, e3]/(∼), the relations being described as

h31 = e3ā3

h32 = h31ā3

e2i = 0.

Pictorially, we have the pattern in Figure 1, where the cohomological degree is
along the vertical axis, while the horizontal axis depicts the “topological” degree
2t − s. Each dot represents an F4, and multiplications by h1 and h2 are depicted
as connecting line segments.

Figure 1. H∗(SL2(Z/3),Γ1)

The relation h32 = a3h
3
1 holds since

h32 − a3h31 = [(ζ2 + ζ)(a2b+ ab2)γ̄6] = 2[e3][γ̄6] = 0.

7.1. The a1-Bockstein spectral sequence. We proceed to compute the a1-
BSS

H∗(G,Γ1)[a1]⇒ H∗(G,Γ0).

Recall that a1 = γ1 + γ2; to simplify the notation, x
.
= y will mean that x and y

are equal up to multiplication by a unit.

Proposition 7.1. The differentials in the a1-BSS are determined by

di(a1) = 0 d1(a3)
.
= a1h2 d1(e0)

.
= a1e3 d2(a23)

.
= a21h1γ̄

3.

Proof. For d1(a3) and d2(a23), one checks that a3 is not invariant in Γ0/(γ1 +
γ2)2 and a23 is not invariant in Γ0/(γ1 + γ2)3, so they need to support the specfied
non-trivial differentials.

We can directly compute that H∗(SL2(Z/3), (Γ0)1) (internal degree one) is F4

in cohomological degrees congruent to 1 modulo 4, and zero otherwise; the only
differential making this work is d1(e0)

.
= a1e3. �
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The following are the resulting charts, in which a • denotes an element in the
cohomology of Γ1, a ◦ is an a1-multiple of such an element, a � is an a21-multiple of
such an element, and for clarity we have omitted drawing all higher powers of a1.
The elements which support a differential or are hit by one are grayed out. The
entire pattern is P -periodic and the result is also a43-periodic.

Figure 2. d1 differential in the a1-BSS

Figure 3. E2-page of a1-BSS

Figure 4. d2 differential in the a1-BSS

The resulting E∞-page is in Figure 5, where we have stopped distinguishing
between the elements which have different a1-divisibility. The dotted lines denote
hidden extensions which we prove in the following few results.

Figure 5. E∞-page of a1-BSS

Lemma 7.2. We have Massey products

x := [a3h1] = 〈a1, h2, h1〉
y := [a23h2] = 〈x, a21, h2〉 = 〈a1x, a1, h2〉.
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Proof. Since d1(a3) = a1h2, and h2h1h1 = 0, we conclude that 〈a1, h2, h1〉 =
[a3h1] = x. For the next, we have that d2(a23) = a21, d1(a1a3) = a21h2, and d1(a3) =
a1h2, hence

〈x, a21, h2〉 = [a23h2 + a1a3x] = [a23h2] = y, and

〈a1x, a1, h2〉 = [a23h2 + a1a3x] = y.

�

Corollary 7.3. Let d = [a23h
2
1]. We have the following multiplications in

H∗(G,Γ0)

xh2 = a1xh1, yh1 = a1d dh2 = yh21.

Proof. For the first equality, we note that xh2 is represented by the class

(a2 + ab+ b2)γ21(γ1 + ζγ2)γ1γ2(γ1 + ζ2γ2)

and a1xh1 is represented by the class

ζ2(a2 + ζb2)γ21(γ1 + γ2)γ1γ2(γ1 + ζ2γ2).

Hence the sum xh2+a1xh1 is represented by the sum of the representatives, namely

γ31γ2(γ1 + ζ2γ2)(a+ ζ2b)(ζ2aγ1 + bγ2).

But this element reduces to ζa3h1h2, which is zero. Therefore xh2 = a1xh1.
For the rest, we use Lemma 7.2, simple shuffling, and that xh2 = a1xh1. We

have

yh1 = 〈a1x, a1, h2〉h1 = a1x〈a1, h2, h1〉 = a1x[a3h1] = a1d

yh21 = 〈a1x, a1, h2〉h21 = a1x〈a1, h2, h21〉 = a1x[a3h
2
1] = [xh2a3h1] = dh2.

�

Proposition 7.4. There is an extension h41 = a41P

Proof. From Lemma 6.1, we get

a41a
4
3P = a41γ̄

12P =

〈(
h22 h1

)
,

(
h2 a3h

2
1

a3h
2
1 h2

)
,

(
h22 h1
h1 h22

)
,

(
h2
a3h

2
1

)〉
a41

⊆
〈(
h22 h1

)
,

(
0 a1a3h

2
1

a1a3h
2
1 0

)
,

(
0 a1h1

a1h1 0

)
,

(
h2
a3h

2
1

)〉
a21

= 〈h1, a1a3h21, a1h1, a3h21〉a21 + 〈h22, a1a3h21, a1h1, h2〉a21 = L+R.

By shuffling, we get

R ⊆ 〈a21, h22, a1a3h21, a1h1〉h2 = 0, L = h41a
4
3.

But multiplication by a43 is injective, so the result follows. �
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7.2. The 2-Bockstein spectral sequence.

Proposition 7.5. In the 2-BSS we have the following differentials, which de-
termine all the rest.

d1(a1)
.
= 2h1 d1(x) = 2h22 d1(y) = 2d

d2(a21)
.
= 4h2

d3(e3) = 8P.

Proof. For the differentials on powers of a1, we just check that a1 is invariant
mod 2 but not mod 4, and a21 is invariant mod 4 but not mod 8.

The cohomology H∗(SL2(Z/3),Z) = Z[P ]/(8P ), which gives that d3(e3) = 8P .
Since d1(a1) = 2h1, and d1(h1) = 0 = d1(h2) we get d1(x) = d1(〈a1, h2, h1〉) =

2〈h1, h2, h1〉 = 2h22.
d1(yh1) = h1d1(y) = d1(a1d) = 2h1d, so d1(y) = 2d. �

The chart is displayed in Figure 6; the d1 differentials are dotted, the d2 differ-
entials are dashed, and the d3 differentials are the solid curved lines.

Figure 6. The mod 2-Bockstein spectral sequence

The resulting E∞-page is in Figure 7; a bullet denotes an F4, and mod 2
extensions are depicted as circles around the bullet.

Figure 7. H∗(G,Γ)
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8. The cohomology H∗(SL2(Z/3), H∗(M(3)ζ))

Completely analogously to the above calculations, one can obtain the group
cohomology of the twisted module Γζ = Γ⊗Zζ , where Zζ = H1(M(3)ζ , ω−2) is the
module on which Q8 acts trivially, and the element z ∈ SL2(Z/3) of order three
acts as multiplication by ζ. The resulting pattern is displayed in Figure 8; again
there are periodicity operators P of degree (−4, 4) and a43 of degree (24, 0).

Figure 8. H∗(SL2(Z/3),Γζ)

To obtain the cohomology of the dual module Γζ , we proceed as in Section 10
of [Sto12]. The result is the familiar pattern depicted in Figure 9.
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Figure 9. H∗(SL2(Z/3), H∗(M(3)ζ))


