PROJECT MUSE’

On the topological cyclic homology of the integers

Stavros Tsalidis The

American Journal of Mathematics, Volume 119, Number 1, February Univet
1997, pp. 103-125 (Article) Press

Published by Johns Hopkins University Press
DOI: https://doi.org/10.1353/ajm.1997.0008

FROIECT LAFSE

= For additional information about this article
https://muse.jhu.edu/article/739/summary

[131.111.5.193] Project MUSE (2025-04-04 11:55 GMT) University of Cambridge



Project MUSE (2025-04-04 11:55 GMT) University of Cambridge

[131.111.5.193]

ON THE TOPOLOGICAL CYCLIC HOMOLOGY OF THE INTEGERS

By Stavros TsALIDIS

Abstract. This article provides a computation of the mod p homotopy groups of the fixed points
of the Topological Hochschild Homology of the ring of integers under the action of any finite
subgroup of the cirle group whose order is a power of an odd prime p. This leads to a computation
of the Topological Cyclic Homology groups of the ring of integers, and determines also the p-adic
completion of the algebraic K-theory of the p-adic integers.

1. Introduction. Thetopological Hochschild homology T H H (R) isa spec-
trum (or infinite loop space) associated functorially to each algebraic ring R, or,
more generally, to each strictly associative ring spectrum R. It was introduced
originally by Bokstedt in [B]. The spectrum THH (R) comes equipped with a
natural action of the circle group T. The topological cyclic homology of R, TC(R)
is the homotopy inverse limit of a diagram of spectrawith vertices the fixed point
spectra THH (R)© of THH (R) under the action of the finite cyclic subgroups
C of the circle. The maps in this diagram are either inclusions of fixed points
or certain “Frobenius’ maps particular to the topological Hochschild homology
construction (see [G]). The topological Hochschild and cyclic homology of R are
both related to the algebraic K-theory of the ring R; their relation can be depicted
by a commutative diagram of spectra

TC(R)

tr pr

B

K(R THH(R)

where tr denotes the cyclotomic trace map of [BHM], and the composition B =
pr tr isthe Bokstedt trace map. A result of McCarthy [Mc] and computations
of [HM] imply that the cyclotomic trace map is a homotopy equivalence after
p-adic completion for a number of rings R including the cases R = Z/p" and
R = 7y, the p-adic integers.

The main result of this paper is the computation of the mod p homotopy
groups (THH (2)%"; Fp) for eech n 1. This is achieved using a result of
our previous work [T2, Theorem 3.8] which we recall as
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104 STAVROS TSALIDIS

THeEOREM 1.1. Let (n) denote the standard canonical map (see 3.1) relating
fixed points to homotopy fixed points:

(n): THH (R — THH R,

If (1) induces isomorphisms on mod p (resp. on p-adically completed) homotopy
groups in all nonnegative degrees, then the sameistruefor (n) for eachn 2.

In this article we show (Theorem 5.3) that, when R = Z, and p is an odd
prime, then the hypothesis in the above theorem is satisfied, that is, the map (1)
induces isomorphisms on mod p homotopy groups in all nonnegative degrees.
Therefore, Theorem 1.1 applies, and we can conclude that

(THH@Y";F) = (THH (@), Fy)

foreechn 1and 0. Now, for each n 1, the groups (THH(Z)hCDn » Fp)
are the abutment of the mod p homotopy fixed points spectral sequence {E"(n)}
described in 3.3. We will use an inductive scheme, which was expounded in our
thesis [T1], to determine completely the structure of differentials in the spec-
tral sequences {E'(n)} for each n 1. Those differentials were conjectured by
Bokstedt and Madsen in [BM 1, Conjecture 4.3] where the authors tried to justify
their conjecture by comparing with the corresponding spectral sequences for the
“homotopy” ring QS° [BM1, Assertion 5.5]. We establish this conjecture here by
a different approach based on the result of [T2] mentioned above. This gives a
complete computation of the groups  (THH(Z)""; [Fp), thus answering a ques-
tion of Carlsson’s [C, Problem 1V]. Moreover, by [BM1, Section 7], and [Mc],
these computations determine also the mod p algebraic K-theory groups of the
p-adic integers since

K (Zp;Fp) = TC (Zp; Fp) = (TC(Z); Fp)

for each 0, and each odd prime p.

This paper is closely related and overlaps with the papers [BM1] and [BM2]:
Conjecture 4.3 of [BM1] mentioned above was the motivation for proving The-
orem 1.1, and a description of the calculations in this paper using the argument
we just described was given in [BM2]. We believe that this article provides a
more direct and complete account of these results.

Finally, | would like to thank Tom Goodwillie for reading the manuscript and
suggesting corrections.

2. Topological Hochschild homology. There is now a number of alterna-
tive constructions for topological Hochschild homology resulting from the recent
constructions of categories of spectra endowed with an associative smash product
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of [EKMM] and [S]. We will be using here the original construction of Bokstedt's
[B], [G], [T2], which we now recal briefly.

Let s.S denote the category of based simplicial sets. A functor with smash
product (FSP for short) is a functor F: s.S — s.§, together with two natural
transformations. the multiplication : F(X )AF(Y ) — F(X AY ) of the FSP
F,whichisassociative, (i.e, (idA )= ( Aid),andaunitl: X — F(X)
for ; this means that the composites

LA FX) 2 () A FX) — F(EL AX)

and

FX) AL 7o) A F() — FXA D),
are both the identity transformation.

Examples. (i) Each unitary ring R defines an FSP R: s.§ — s.S by means
of the formula R(X ) = RIX ]/R[ ], where RIX ] denotes the simplicia free
R-module generated by X , and the base point of X . The unit and the mul-
tiplication of the FSP R are defined by using the unit and multiplication of the
ring R in the evident way. (ii) Any based simplicial monoid M defines an FSP
M by M(X)=M A X .Again, the FSP structure maps are evident.

An FSP F determines a “ strictly associative” ring spectrum n — F, =

(S|, with unit 1,; 8= || 2L |£(9Y)] = Fa, and multiplication

mnt Fo A F = |F(E)] AFED)] = |7 A F ST 15 7S] = Fom,

where | | denotes geometric realization. The structure maps of the spectrum F
are defined to be the composites

S N AL N S

Clearly, the spectrum associated to the FSP R is an Eilenberg-McL ane spectrum
HR, whereas the spectrum associated to M is the suspension spectrum Z>°|M|.

Let now Z denote the category whose abjects are finite sets of the form
n = {1,2,...,n}, and whose morphisms are al injections of such sets. The
topological Hochschild homology of the FSP F, which is denoted by T H H (F),
is the geometric realization of a cyclic spectrum THH (F) which is defined by
the formula

THH(F:S") =holimMap(S° A A S S"AFn A AFng),

nezdl



Project MUSE (2025-04-04 11:55 GMT) University of Cambridge

[131.111.5.193]

106 STAVROS TSALIDIS

where n = (no, Ny, . . ., Ng) runs through the objects of the product category Z79+1.
For the cyclic structure of THH (F) see [T2, §3]. The spectrum structure maps

M S'A THH(F; S™) — THH(F; S™)

are induced by the canonical map X A Map (Y,Z) — Map (Y, X A Z), using the
fact that the smash product “commutes’ with homotopy colimits.

Being the realization of a cyclic spectrum, T H H (F) is a spectrum with an
action of the circle group T; this means that, foreachm O, THH (F;S") isa
T-space, and the structure maps ™ are T-equivariant. Moreover, TH H (F) can
be “lifted” to a genuine T-spectrum T H(F) [T2, §4]: for each T-representation
V the T-space T Hp(F; S') is defined to be the geometric realization of the cyclic
space

[a] — holimMap(S® A AS9 S AFy, A AFn),

nezdt!

with the T-action which combines the action of T on S and the cyclic structure
of the above simplicial space. T Hy(F) is a “lifting” of THH (F) in the sense
that the restriction of T Hy(F) to trivial T-representations is equivalent as a naive
Ca-spectrum to T H H (F) for each finite cyclic subgroup C, of T.

We let TH (F) = LKT Hp(F), where L and K are the functors of [M]. That
is, L is a left adjoint to the forgetful functor from G-spectra to G-prespectra,
whereas K is the cylinder functor described in [M, ch. XII, Construction 9.6].
Thus TH(F) is a T-spectrum in the sense of [LMS] (i.e., the stucture maps are
G-homeomorphisms) and of the same T-homotopy type as the T-prespectrum
T Hy(F) defined above. When F isacommutative FSP (i.e., when  ( Aid) =
(idA )), then T H (F) isacommutative ring T-spectrum [HM, Proposition 1.7.1],
anditisaso alifting of TH H (F). In other words, for each cyclic subgroup C
T, the fixed point spectra THH (F)© and T H ()¢ are homotopy equivalent.

For the FSP R associated to an algebraic ring R we will write THH (R)
and TH (R) instead of THH (R) and T H (R); these are both functors from the
category of rings to the categories of naive and genuine T-spectra respectively.

3. Homotopy orbits, homotopy fixed points, and Tate spectra. In this
section we recall some of the theory of the homotopy fixed points, homotopy
orbits, and Tate spectra associated to a G-spectrum K. The main reference for
this materia is [GM], which the reader should consult for more details. This
theory works for any compact Lie group G. In our applications G will be either
the circle group T, or afinite cyclic subgroup C thereof. So, our presentation will
be directed towards groups of that type.

3.1. Given any compact Lie group G, one can consider the universal space
EG of G; this is a free contractible G-CW complex. The homotopy cofiber of
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the based G-map : EG:. — S with (+)=0and (EG) =1in S ={0,1},
is denoted by EG. Let F(EG., K) denote the function spectrum of [LMS, ch. II,
3.1]. Then, the map induces a map of G-spectra

K = F(S,K) — F(EG:,K)

which is a honequivariant equivalence, since thisis true for the map . Smashing
the G-cofibration sequence

EG+—>§—>~EG

with the G-spectra K and F(EG., K), and then taking G-invariants one gets the
following commutative diagram of spectra whose columns are cofibration se-
guences of spectra

!

(EG; AK)® —— (EG; A F(EG4,K))®

! |

(D) KE ——  F(EG,,K)®

| l

(EGAK)® —— (EG A F(EGs,K))C.

The three horizontal maps in this diagram areinduced by  : namely, =( )S,

"=(lgs, A )6, and” = (lgg A )C Since s a non-equivariant equiv-
alence, the map 1lgg, A is an equivariant egquivalence by the G-Whitehead
theorem [LMS, ch. I, Theorem 5.10], and, therefore, ' is an equivaence of non-
equivariant spectra. Moreover, the Adams' isomorphism theorem [LMS, ch. I,
Theorem 7.1.] provides an equivalence of spectra

AAC)(EG, A1 K) = (EG+ AK)©

where i K denotes the naive G-spectrum associated to K, and Ad(G) the adjoint
representation of G. The spectrum

Kig = (EG+ Ai K) = s ~AIC)EG, A K)©

is called the homotopy orbits spectrum of K, while the spectrum K¢ = F(EG,, K)©
is called the homotopy fixed points spectrum of K. Finally, the G-spectrum t(K) =
EG A F(EGs,K) is called the Tate spectrum of K. There are spectral sequences
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abutting to the homotopy groups of the spectra Kng, K'®, and t(K)© which we
now describe briefly.

3.2. The homotopy orbits spectral sequence {E"(Kng)}. Let EG be a
filtration of EG by finite G-CW subcomplexes so that

EGP/EGP '=G, A \/ &

where VS is a finite wedge sum of p-spheres. When G is finite, one can take
EGP to be the p-skeleton of EG, i.e., EGP = EG(P) = |skPEG | where EG is
the standard simplicial set with EGq = G, When G = T the circle group, then
one can take ET = I|_r)n SqC), where SC) is the unit sphere in the vector space

gC =C 9 onwhich T acts by multiplication. The following string of cofibrations
gives rise to the homotopy orbits spectral sequence

(EG? AK)G EGPTAKSGE — —  (EPAKE
) l
(G+ AV AK)C.

Now let G be a finite group. Then [GM]

Epq(Kng) = prg(Gs A (V) AK)® = (K - Hp(Gs A V).

The groups Hp(G+ A V) = Ho(G+) Hp(Vv S) = Z[G] Hp(V ) together
with the respective boundary maps d, make up a resolution of Z by relatively
injective Z[G]-modules, and it follows that

Epq(Kne) = Hp(G: oK).
By the Adams isomorphism mentioned in 3.1, the string of cofibrations (st®)

which givesrise to the spectral sequence {E'(Kng)} is equivalent to the following
one

EGQéi K EGE"léi K — EGEéi K -

(ste) l

G+ e (VL AI K).
Of course, we are still assuming that G is finite, so that Ad(G) = {0}.

For any subgroup H G one can consider K as an H-spectrum by forgetting
the additiona structure. The space EG is aso a model for EH and one can use
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the same filtration EHP = EGP. The spectra sequence {E"(Kny)} is then induced
by the string

EG9|/_|\i K EGE*l/H\i K — EGE/H\i K S

(stn) l

G+'/_|\(\/SP/\i K).

The canonical quotient map L/H — L/G which is defined for each naive G-
spectrum L induces a map of strings (sty) — (stg), and therefore it also induces
a map of spectral sequences

D {E (Knn)} — {E' (Khe)}-
Themap will be called corestriction, because on E2-terms
: Eg,q(KhH) = Hp(H; qK) — Hp(G; qK) = Eﬁq(th)
is the classical corestriction homomorphism in group homology [Se, ch. 11, §5].

3.3.  The homotopy fixed points spectral sequence {E"(K"®)} is induced by
the following tower of fibrations of spectra

F(EGY K)C —— —— FEGY T KCE ——  FEGRK)SC

(te®) T
F(G+ Vv P, K)C.

When G is finite one has [GM, (9.3)]
EPHK®) = pigF(Gs A VS, K)® = Homgzg) (Hp(Gi A VS), _gK)

and ER9(K"®) = HP(G; _K). For asubgroup H G, the inclusion of fixed
pointsL® LM defines amap of towers (to®) — (to"), and, therefore, it induces
a map of spectral sequences

: {Er(KhG)} _ {Er(KhH)}.
The map will be called restriction because on Ex-terms
; Eg'q(KhG) = HP(G; _K) — HP(H; _K) = ES"‘(K“G)

is the classical restriction map in group cohomology [Se, ch. VII, §5].
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3.4. The Tate spectral sequence {E'(t(K)®)}. Thisisinduced by a suitable
“filtration” of the suspension G-spectrum of EG = & C(EG,) where C(X)
denotes the cone on the based space X. Using the same symbol for a space and
its suspension spectrum, this “filtration” is given, when G is finite, by [GM, 9.5]:

(L CEGYYH for p ©
EGP= & for p=0
| D(EGP) for p 0,

where D(X) = F(X, &) is the Spanier-Whitehead G-dual spectrum of X [LMS].
The following sequence of cofibrations, then, gives rise to the Tate spectral se-
quence {E" (t(K)®)}:

—— (EGP1AK)C® ——  (EGPAK)E ——
(Seq®) |
(G:AVS A K)G.

When G = T one can take ET = lim ST, with ET® = ET%~! = SI° for each
p € Z. In both cases the successive cofibers are of the form G+ A VS. When G
is finite, then

E24((K)®) = A P(G; oK)

where H (G; A) denotes the Tate cohomology of the group G with coefficientsin
the G-module A. When G =T, then T acts trivially on K and

2 Gy _ -
E5q(t(K)®) = Z[t,t 7] K.
as an algebra where deg (t) = —2.

3.5. When K is a connective spectrum (as it will be in the case of our
computations), then {E"(t(K)®)} is an upper half plane spectral sequence, and it
“contains’ the homotopy fixed points spectral sequence in its left quadrant. For
the precise relationship between these two spectral sequences see [BM1, Theo-
rem 2.15]. In other words there is a map of spectral sequences : {E"(K"®)} —
{E"(t(K)®)} which on E2-terms is the standard surjection of the group coho-
mology onto the Tate cohomology. On the other hand, the right quadrant of the
Tate spectral sequence “contains’ a shifted copy of the homotopy orbits spectral
sequence.

We now consider the case of the T-spectrum K =T H (F). The next lemma
gives the fundamental equivariant property of the T-spectrum T H (F):
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Lemma 3.6. [T2, Proposition 5.9] There are equivalences of spectra

(ECon ATH (F)S" ~ (@PTH (F) Cpn)Cp“—l ~ (TH(F) Cpn_l)cp“—l

~ TH (F)%

for eachn 1. Moreover, these equivalences are functorial in F.

Here, K |, denotes the G-spectrum K considered as an H-spectrum, H being
a subgroup of G. The diagram (D) of 3.1 with K = T H (F), and the above lemma
imply the following:

ProrosiTion 3.7. For each n 1, there is a homotopy cartesian diagram of
spectra

TH (f-)Cpn . TH (f-)thn

Lk
TH(F)P —— (TH(F)S"

whose vertical fibers are equivalent to the homotopy orbits spectrum T H (F )hCpn .

As we mentioned in the end of §2, when F is a commutative FSP, then
TH (F) is a commutative ring T-spectrum [HM], and T H (F) Ca is a commu-
tative Cy-spectrum. It then follows [GM, Proposition 3.5] that the diagram of
Proposition 3.7 is a diagram of ring spectra and ring maps, and that the respec-
tive homotopy fixed points and Tate spectral sequences are spectral sequences of
differential algebras.

4. Some permanent cycles. For the remaining part of this paper p will al-
ways denote an odd prime number. We will let {E"(n)} denote the mod p homo-
topy fixed points spectral sequence for T H (Z)"?" for eachn 1, and {E"(0)}
the corresponding spectral sequence for T H (Z)"T. Furthermore, {Er(n)} will de-
note the mod p Tate spectral sequence for t(T H ()™, and {E"(cc)} the mod
p Tate for t(TH (2))T.

The homotopy type of THH (Z) was determined in [B]: THH(Z) is a
generalized Eilenberg-MacL ane spectrum with

THH(Z) ~H(®Z) v §7 >~ LH(zZ/n)

n=1

and (THZFp) = Fp(e) IFp[f] with deg(e) = 2p — 1 and deg(f) = 2p. For
any ring R, we will use the standard convention that R[X, Y, ..] is the polynomial
algebra and R(x, Y, . ..) is the exterior algebra over R (generated by the variables

XYy,
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The spectral sequences {E"(c0)} and {E'(c0)} have E2-terms:
EZV (00) =H™ (BT; (THZFp)) = Fplt] Fplf] TFp(e)

and

E? (00) = Fp[t,t™ 1] Fp[f] TFp(e

with deg(t) = —2, deg(f) = 2p, and deg(e) = 2p — 1.

One can compare these spectral sequences with the corresponding ones for
the spectrum T H (7), where 7 denotes the identity FSP with Z(X) = X for each
X in s.S. The spectrum associated to the FSP 7 is clearly the sphere spectrum S,
Now, the inclusion

" — THH(@)(S") = [d — holimMap(SP A AS9, S AS° A ASY)

definesamap of T-spectra : St — T H (Z), where Sy denotes the T-equivariant
sphere spectrum. The map is a hon-equivariant equivalence since the underly-
ing non-equivariant spectra of Sy and T H (Z) are both equivalent to the sphere
spectrum S. It follows that ~ induces homotopy equivalences ST — T H (7)",
and SF° — TH (Z)" for each cyclic group C  T. The unit of the FSP Z
associated to the ring of integers Z defines a map of FSPsZ — Z, and con-
sequently a map of T-spectra TH (Z) — T H (7). Composing with one gets a
map of T-spectra Sy — T H (Z). Now Sy is a split spectrum in the sense that

" = Map(ET:, Sr)" ~ Map (BT, 9),

where S denotes the (non-equivariant) sphere spectrum. By choosing a base point
in BT, and evaluating maps BT+ — Sat , onegetsamap Map(BT+,S — S
which is split by the map S — Map (BT, S sending each point x € S to the
constant map fy: BT, — Swith fy(t) = x for each t € BT. This implies that
the zero-th column in the mod p homotopy fixed point spectral sequence for SiT
(and the same is true for §J}Ca for each C; T) consists of permanent cycles.
In particular, the generator vi of 25 2(SFp) = [y is a permanent cycle in the
spectral sequence for §J}T and represents a nonzero class in its E>°-term.

Lemma 4.1. [BM1, Lemma 5.4] Themap S — ST — TH (Z)"T sends
the homotopy classvy € 2p-2(S Fp) to anonzero classin o, »(TH (Z)NT: Fp)
which represents the class tf in the E>°-term of the spectral sequence {E"(c0)}.
Consequently, the classtf and all its powers (tf )" are permanent cyclesin {E"(c0) },
they survive to the E>°-term, and they are mapped on by the classes v{.

Remark 4.2. Using the restriction maps : {E'(c0)} — {E"(n)} one gets
that tf and its multiples are permanent cycles in al spectral sequences {E'(n)}
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forn 1. Moreover, under the spectral sequence maps
{E'(N)} — {E'M}, 1 n oo,

the classes t, Aand e in E?(n) are mapped to the corresponding classes with the
same name in E?(n). It follows that tf and all its powers are permanent cyclesin
{E'(n)} foreach1l n ooc.

Let {E"} denote the (integral) homotopy fixed points spectral sequence for
TH(@Z)". It has

EZ, = HXBT, ,TH(2)

and so E?; = Z[t] and for ech n  1,E®,, = 0, and E®,, ; = (Z/n)[t]
with deg(t) = —2. The map of T-spectra T H (Z) — T H (Z)/p induces a map
of spectral sequences ¢': {E'} — {E'(o0)} under which the generators t €
E2,0 = Z and e € E§,, ; = F, are mapped on the classes t and e in E*(c0),
i.e, ¢ () =t, and ¢ (e) = e. The first possibly nonzero differential in {E"} is
d?. Since d?(t'P) = ¢ptP~1dt = 0 in [F,, for each £ 0, the classes t*Pe are not
hit by the differential d?", and the same is true for dimensional reasons for the
classestMewithO0 m p. It follows that the classes t’Pe and t™e for ¢ 0 and
0 m psurviveand represent permanent cyclesin the spectral sequence {E'},
because all differentials on these classes are zero for dimensional reasons—all
classesin Ez, , except the ones on the base ling, are in odd total degree.

Lemma 4.3. Foreach?¢ 0,andeachO0 m p the classes tPe and t™e
are permanent cycles in the spectral sequences {E"'(n)} foreach1l n oo.
Therefore, the corresponding classes tPe and t™e are also permanent cycles in
{E'(n)} foreachf e Zand1 n oo.

Proof. The statement for {E"(c0)} is shown by using the map of spectra
sequences ¢: {E'} — {E'(c0)}, since p(t™e) = tMe for each m 0. The
statement for {E'(n)} then follows by using the restriction maps

: {E'(0)} — {E'(M)}
since (tMe) = tMe, and the one for {E"(n)} using the maps {E"(n)} — {E"(n)}.

5. The Tate spectral sequence {Er(l)}. In this section we determine the
differentialsin the Tate spectral sequence {E'(1)}, and compute the mod p homo-
topy groups t(T H Z)%r. Actually, from this point on al homotopy groups will be
assumed to be with mod p coefficients, and K will mean the mod p homotopy
of K, unlessit is explicitly stated otherwise. The E2-term of the spectral sequence
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{E"(1)}, as an Fp-algebra, is given by
EZ, = Fp[t,t™1]  Fp(u) Fp[f]l Fy(e)

with deg(t) = —2,deg(f) = 2p, and deg (e) = 2p — 1. The first possibly nonzero
differential is d®. However, we first get some information about the next differ-
ential d?*1,

Lemma 5.1. Thedifferential d2°*1isnonzeroontheclassu;. Thatis, d?Pu; = 0,
and d?*!uy = tP*1f up to multiplication by a nonzero unitin F, .

Proof. Consider the commutative diagram

S—— TH@®)® —— TH(@®)"

I l g

S—— TH@® —— t(TH(®)%.

As we mentioned in Lemma 4.1, vy is anonzero classin 5, ,TH (Z)"Cp
which represents tf in the E2-term (and aso in the E>-term) of the spectral
sequence {E'(1)}. So w viisaclassin ,, t(TH (%)% represented in
E2,50(1) by tf. Butw vy = vi=0since vy € o ,TH(Z) = 0.
Since tf is a permanent cycle in {E"(1)}, this means that tf must be hit by a
differential. This can only happen for d®**! and so d?**1(t—Pu) = tf. Since

d?(t Pu) = d®(t PJu+t Pd®u=—pt P lu+t Pd®Pu=t Pd®uc F,

and t~P # 0 one gets that d®’u # 0. One now checks easily that d®**(t=P) = 0
independently of the behavior of the differential d2°: if d?°(t) = 0, then t survives
to E?*(1) and d®(t P) = —pt P = 0 € F,; wheress, if d®(t) # 0, then
d?*1(t=P) = 0 for dimensional reasons. Since

d2p+1(tfpu) — d2p+1(t7p)u + tfpd2p+1u - tfpd2p+1u

it follows that d®*1u # 0.
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We now show that d®t # 0. Consider the commutative diagram of T-spectra

TH@Z) —— TH@ —— TH®/p

| [p |
THO - THD —— TH (2)/p?

| | |

L TH®/p —— TH®/p

I

STH(Z)/p

in which al rows and columns are cofibration sequences and X K, X denotesthe
multiplication by k map. Recall that K denotes the mod p homotopy of K, in
other words, the integral homotopy of K/p. Wehave XTH(Z) =% TH (%),
and we denote by >x the classin 2T H (Z) which corresponds to the class
xe TH(2).
Themap induces a map of Tate spectral sequences with (f) =2e. So
(d®*lu) = (ftP*) = 5tP*le. But

(d2p+1u) — d2p+1 (U) — d2p+10 =0.

This means that the class tP*le is zero in the E?*1-term of the mod p Tate
spectral sequence for >T H (Z) with respect to the group C,. It follows that
ZtP*le must be hit by the differential d?. Since the Tate spectral sequence for
2T H (7Z) isjust the suspension of the corresponding Tate for T H (Z) we get that
d?(t) = t**1e modulo multiplication by units. We have therefore shown

THeEOREM 5.2. Inthe Tate spectral sequence {E"(1)} all differentialsare deter-
mined by d?°(t) = tP**e and d?®*1u; = t*1f. One then computes

E?P*(1) = Fp[tP,t™P]  Fp(u) Fpltf]  Fp(e)
and
t(TH(2Z)® = E® (1) = E®(1) = Fp[t°, t™P]  Fp(e).

Considerthemap ™ : TH(Z) —  t(T H (Z))%r. Notice that in nonnega-
tive degrees the homotopy groups of the domain and range of =~ are isomorphic,
and that in order to show that ™ is an isomorphism in nonnegative degrees it
is enough to show that "5, and “o,—1 are nontrivial, = being a ring map. Now,
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the map of FSP's Z() — Z/p() induces the following commutative diagram
where al four groups involved are isomorphic to Fy:

wTH(Z) —  l(TH @)%
WTHEZ/D) ——  t(TH @/p)C.

The left vertical map in the above diagram is an isomorphism by [B], and the
lower ",y is an isomorphism by [HM, Proposition 4.3]. It follows that the upper
"2p is @lso an isomorphism. Since © commutes with the Bockstein , we have

“op1(€) ="pa( )= Tpoa(f) 0.

Therefore, the map ™ is an isomorphism in nonnegative degrees. From the ho-
motopy cartesian square of Lemma 5.1

TH®Z)% —— TH(@)M
TH@Z) — (TH(2)%

onegetsthat : TH(Z)% — TH(Z)" isaso an isomorphism for each
0. Theorem 3.8 of [T2] then implies the following:

THeEOREM 5.3. For eachn 1, the homomor phisms
TH@ — TH@"S, and”: TH@ ' — (TH (@)%

are isomor phisms for 0.

In the next section we will use Ttleorem 5.3 to determine the differentiadsin
the spectral sequences {E"(n)} and {E"(n)} for eachn 2.

6. The spectral sequences {E'(n)} and {E"(n)}. The next theorem givesa
complete description of the differential structure of the spectral sequences {E"(n)}
and {E'(n)} foreach1 n  oco. The second part of the theorem (about the
structure of {E'(n)}) follows from the first part by using the comparison map
¢: {E"(n)} — {E"(n)}, and it was conjectured by Bokstedt and Madsen [BM1,
Conjecture 4.3]. Recall that

E2 (M =H (Cyn; TH(®) =TFplt,t ] Fp(un) Fp[f] Fp(e)
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and
E2 (N =H (Con; TH(®) =Fplt] Fo(un) Fp[f] Fy(e.

THeorem 6.1. Thefollowing formulasgivethe nonzero differentialsin {E"(n)}
on the classes tP and Un Up to multiplication by nonzero unitsin I, :

() d? D) = P (e Def ) fork  n, and

(ii) d2 (n)+1(un) =t (n)+1f (n—1)+1
where (k) = p(%). All remaining nonzerodifferentialsin {Er(n)} aredetermined
multiplicatively by the differentials (i), (i) and the fact that the classes tf and t‘Pe
(¢ € Z) are permanent cycles.

Furthermore, all nonzero differentials in the homotopy fixed points spectral
sequence {E'(n)} are determined multiplicatively by the differentials (i), (ii) and
the fact that the classest™ef X are permanent cyclesfor each0 m pandk 0.

Theorem 5.2 is case n = 1 of the above theorem. The proof of Theorem 6.1
is then by induction on n. We first describe the inductive argument in the case
(n=1) (n=2). Aswe will see afterwards the argument in the general caseis
verbatim the same.

6.2. First, using Theorem 5.2 and the comparison map {E" (1)} — {E"(1)}
one computes the differentialsin {E"(1)}. We have

E> (1) =H (Cpi TH(®) =Fplt] Fp(w) Fplf] Fp(e).
The first nonzero differential is d? with d?°t # 0, and d®’u; = 0. One computes

E?(1) = Fplt’] Fp(uy) Fpltf]  Fp(e)
PFl Pl Fp(®) Folur) Fpltf]
@<u1tfefm| =0,1, m=kp+l, ke N, and ¢ |>

Z,m

where (v1, V2, . . .) denotesthe vector space over [F, with basisthe vectorsvy, vo, . . ..

The next differential d?**! is determined by multiplicativity and its values
d®*1u; # 0, and d®*1(te) = 0. The spectral sequence collapses at this stage, and
one gets

E> (1) = E?¥(1)
Fol Pl Fp(e)  (Fpltf]/(tF)P™) + Fp[tP]  Fp(e)

@<u1t‘zefm| =0,1, m=kp+I, ke N, and ¢ I>.

£,m
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From the above E*°-term and Theorem 5.3 one can read off the mod p homotopy
groups

Fp if pz r
Fo TFp it pAr,

xTH@Z)® = 2 TH(@)™ =

and

F if p?r
Cp — th — p
a—1TH(Z) a—1TH(Z) F, F, if pAlr.
6.3.  We now turn now the computation of the differential structure of the
Tate spectral sequence {E"(2)}. We have

E2 (Q=H (Cz TH®)=Tplt,t1] TFp(wx) Fp[f] Fy(e),

and the first, possibly nonzero differential, is again d?. The spectral restriction
map "1 {E'(2Q} — {E'(1)} is given on E>-terms by (t) = t, (u2) = O,

(f)=f,and (e) = e It follows that d?’t # 0 aso in the spectral sequence
EQ}. )

To see that d?°(uy) = 0 in {E'(2)}, we look at the homotopy orbits spectral
sequences {E"(i)} for i = 1,2. From Theorem 5.2 one gets that d®(ut ) = 0
in {E"(1)} for each k € Z, and therefore d?®(u;t=%°) = 0 in {E"(1)} for each
k 1 since these differentials do not cross the fiber line (that is the vertical line
consisting of the groups HO(CPZ; T H (Z))). By the corestriction map of spectral
sequences : {E"(1)} — {E'(2)} which has (uit e ™) = uyt ke f™ for
eacchk,m Oand = 0,1, one gets that d®(ut™*°) = 0 in {E"(2)} for each
k 1.1t follows that d®’(ust *°) = 0 for each k 1 adso in {E'(2)} since these
differentials do not cross the fiber line. Since {Er (2)} is a spectral sequence of
algebras, and since d?P(t%°) = 0 in IF, we get

d?®(up) = d®(t° ugt™) = tPdP (Ut ™) = 0
in {E7(2)}. One now computes E**1(2) = Fy[t°, tP]  Fplup] Fpltf]  Fp(e).
6.4. The next differential d®**1 is trivial on tP for dimensiona reasons. If

we had d2**(uy) # 0, then the spectral sequence {E"(2)} would collapse, and we
would have

E>(2) = E® (1) = Fp[t",t™P]  Fp(®).
But this does not give the right abutment, because in this case the map

L TH@® —  (TH (@)%
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can not be an isomorphism in nonnegative dimensions. It follows that d**(uz) =
0 and E®*?(2) = E®*1(2). The next differential in {E(2)} that can possibly be
nontrivial is the differential d%**1. It is d%**1(uy) = O for dimensional reasons
and

LEmMA 6.5, d2?**1(tP) = 0.

Proof. Consider the restriction map *: {E"(c0)} — {E"(2)}. It has ~ () =
~ 2
tP and " (tf) = tf. Let df_ denote the differential in {E"(c0)}. Then dZ® "t =0
for dimensional reasons. It follows that

d?®P) = gL () =~ dF ) = 7 (0)=0 in {E')}.

The next two differentials in {E"(2)} that can possibly be nontrivial are the
differentials d®> @ and d? @*1 which are described by Theorem 6.1. For their
computation we need the following lemma which is due to M. Bokstedt:

LEmma 6.6. d2 @*L(uy) = tP**P*1fP*L yp to multiplication by nonzero unitsin
F
o -

£2 (2)+1

Proof. Notice that the class t"*1fP*1 survives to
commutative diagram

(2), and consider the

S —— TH@OW —— TH@®"¥

ool r

S TH@S —— (TH @)%,

The class vi € S maps to a nonzero class vi € TH (Z)hcp2 which
represents the class tP*1fP* in {E>(2)}. Sow viisaclassin  t(TH ()%
which represents the class (tf)P** in {E"(2)}. In the commutative diagram

S S(I?p ’ §[1I_Cp

I | [

S —— TH®% —— TH(@®"

one findsthat ~v; = ' ' v; = O because the class tP*1fP*L did not sur-
vive to the E*°(1). Since  is an isomorphism in nonnegative degrees we get
“v1=0 and thereforew  vi=" " vi= /(0)=0in t(TH (Z)%*. Since
tP*1fP*1 js a permanent cycle in {E"(2)} it must be hit by some differential.
But the only differentia that can possibly hit tP*1fP*1 js d2 @*1 and therefore
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we have d2 @*L(t-P°u,) = tP*1fP*1 up to multiplication by nonzero units in F, .
Notice now that d2 @*1(t P*) = 0 independently of the value of the differential
&2 A(tPy: if d2 A(tP) = 0, then o2 @*1(t~P) = pd? @*L(t~P) = 0 in F, whereas,
if 0 A(tP) #0, then d? @*1(t~P) = 0 for dimensional reasons. Therefore,

d? (2)+1(rp2u2) — t7p2d2 (2)+1(u2) = tPt1fprl
and d? @*1(y,) = PPl yp to multiplication by nonzero units in F, .

6.7. To finish our computation of {EV(Z)} we dill need to show that
d2 @(t°) # 0. One can establish this by checking both possibilities for the dif-
ferential:

Case 1. d? @(tP) # 0. In this case d? @ (uy) = 0 and one computes

E2 @) = Fp[t",t 7] Fp(up) Tpltf]  Fp(e)
P <u2tfpe(tf)m| =0,1, p ¢/, m=0,1,...,p— 1>

and since d® @*1(u,) #0

Eo’o (2) — EZ’ (2)+l(2)
Fplt” PP ] Fp(e)  (Fpltf]/(tf)P™Y)
@<u2tfpe(tf)k| =0,1, p 4 ke N>.

So this case gives the correct abutment with

F, if p?r
F, Fp, if p?r,

|
3
o

2t(TH (2)% =

F, if p*r
F, Fp if p?r.

2 —1t(T H (7))

Case 2. d* A(tP) = 0. In this case, since d? @*1y, # 0, the spectral sequence
collapses again at EZ, (2)+2(2) = E*°(2), but this time it does not provide the
correct abutment.

6.8. Proof of Theorem 6.1. To prove the induction step in the general case
we assume that the differential structures of {E"(n)} and {E'(n)} are the ones
given by Theorem 6.1, and we will show that the same is true for {Er(n +1)}
and {E"(n+ 1)}. The proof is the same as in the special case n = 1. Using the
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assumed differential structure of {E'(n)} one computes E* (n), and therefore
TH@% = TH (2" for each 0. By Theorem 5.3, the homomor-
phism

T TH@S —  t(TH (@)%

is an isomorphism for each 0. This determines the size of the EO? (n+1).
More explicitly, these computations give

oo Cn hCyn F," it p™tor
@ Ek,g(n + 1) = oTH (Z) = TH (Z) = F. 0+ jf n+1
k+¢=2r p I p |I’

and

x ATH@) = 5 1 TH (@)

P ENn+1)
k+0=2r—1

_ R, if p™l oy
- F,™ if p™r.

The restricion map : {E'(n+1)} — {E"(n)} has (t) =t, and it follows
that in {E"(n+ 1)} the differentials d? < D(tP) = t?*+ (+Def ® for k n. The
sameisthen true for the Tate spectral sequence {E'(n+1)} since these differentials
do not cross the fiber line. This shows part (i) of Theorem 6.1 for K n.

Dually, using the corestriction maps : {E'(n)} — {E'(n+ 1)} one finds
that

g2 (+D) (t’lpkunﬂ) -0

foreachk n,and ¢ 1. The same is true then in the Tate spectral sequence
{E"(n + 1)} for the differentials d2 &*D that do not cross the fiber line. Using
the multiplicativity in {E"(n+ 1)} one finds that d® ®*Du.,; = 0in {E"(n+1)}.
Furthermore, d2 W*1y.,; = 0 since, otherwise, the spectral sequence collapses
and E* (n+1) = E> (n) which does not have the correct size.

The next possibly nonzero differentia is d? (™D—20*1 This differentia is
trivial on up+1 for dimensional reasons, and it is also trivial on tP" by an argument
using the restriction map : {E'(0)} — {E"(n+1)} exactly asin Lemma 6.5.

The next two differentials that can possibly be nontrivial are the ones de-
scribed by Theorem 6.1 with n = n+1, i.e, d® ™D and d?2 ™D Now the
class (tf) ™*1 survivesin E2 ™V (n+1) but not in E* (n). By the argument of
Lemma 6.6 the class (tf) ™*1 must be hit by the differential d® (™D*1 and this
implies that

d? DUt P = (1) O in {(E'(n+ 1))
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By multiplicativity, it follows that d? (™D*1(y,,,) =t (*D+f ()+1

We are once again left to show that d2 ™D (tP") # 0. One checks that, if this
is the case, then E* (n+ 1) = E2 ™*?(n+ 1) and hence it has the correct size.
On the other hand, if d2 ™D (tP") = 0, then d? ™D*L(y.,,) # 0, and the spectral
sequence collapses again at the E2 (MD*2_stage but this time the abutment does
not satisfy (**). This concludes the proof of the inductive step of Theorem 6.1.

7. The mod p topological cyclic homology of the integers In this section
we give a brief account of the topological cyclic homology spectrum of an FSP
F, and of how Theorem 6.1 can be used to compute the mod p topological cyclic
homology in the case where 7 = Z. This is the content of [BM1, Section 7]
which can be consulted for more details.

7.1. Diagram (D) of 3.1 with K = TH (F) considered as a Cyn-spectrum
yields a diagram of spectra

TH (P

(D) TH (A% TH (F)""
; J

TH (S —— (TH ()%

for eachn 1. Theinclusion of the Cy-fixed points in the Cy-fixed points
defines a map of diagrams : (Dp+1) — (Dp) for each n 1. The homotopy
inverse limit of the diagrams (D) over the inclusions is a diagram p-adically
equivalent to the following one

ZTH(F)nr

A

(D) holim THAS : TH ()™

O] Q

-1

holim T H ()% t(TH (F)".
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One then defines TC(F; p), the p-part of topological cyclic homology of F, to be
the homotopy fixed set of the endomorphism @, in other words,

TC(F;p) = (holim TH (F)%")"®
fiber(® — 1: holim TH (F)%" — holim TH (F)%").

Remark 7.2. As the name suggests TC(F; p) is the p-part of a“global” object,
the topological cyclic homology of F which can be constructed as follows: for
each positive integer m, n with njm one can define two maps

pr TH(F)P™ — TH (A%

the inclusion of fixed points , and the Frobenius ¢ defined by means of dia-
gram (D) or as in [G], [BHM]. The homotopy inverse limit over al ¢, for
al positive integers njm is called the topological cyclic homology of the FSP
F and denoted by TC(F). It turns out, however, that after p-adic completion
TC(F)p =~ TC(F; p)p- Since in this article we are only interested in mod p ho-
motopy groups we only need to consider the p-part TC(F; p). For more details
on the “global” TC(F) see [G].

7.3. When F = Z, the FSP associated to the ring of integers Z, then by
Theorem 5.3 and [BK, ch. IX, Theorem 3.1], the map I' induces isomorphisms
on mod p (resp. p-adically completed) homotopy groups

r: holim TH@%" — TH(@™

for each 0, and the sameistruefor I . Using the restriction maps {E"(c0)}
— {E"(n)}, (resp. ~: {E"(c0)} — {E"(n)}) and Theorem 6.1 one easily deter-
mines the differential structure of the spectral sequence {E" (o)} (resp. {Er ()}
as they are described in the following:

THeorem 7.4. All nontrivial differentials in the spectral sequences {E"(c0)}
and {E"(o0) } are multiplicatively generated by the differentials from the base line

g2 (k+1)(tpk) = P (D) (). ke N
and thefact that the classestf andt‘Pe (¢ € Z) are permanent cycles. The E*-terms
are given by

B () = Fp(e) Fpltf] [[(tefl| 0 i (k+1), andp!(i-]))
k=0
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E> () = Fyp(e) Fy[tf] ﬁ<tipk+le(tf)j|iez, and (K j  (k+ 1)>.
k=0

Notice that the onIyAcIasses in even total degree that survive to the E>-term
of both {E"(c0)} and {E'(c0)} are the powers of tf. So

F, = (tf) if r=i(p—1)

aTH@™ = 2tTH@) = P 00 0y f

On the other hand, each »_1 TH(Z)' = 5 _1t(TH(Z)T is an infinite di-
mensional [Fp-vector space. Let {Xor_1(K) fken (resp. {%or—1(K) }ker) be generators
(ordered by fiber degree) of

P Exy() (resp. b Egjg(oo))

p+g=2r—1 p+tg=2r—1

and chooseelements 2 1(K) € 2 1 TH (@ (resp. 2 1(K) € 21 Y(TH (2)T)
representing xor _1(K) (resp. Xor_1(k) ). Then

o0

2r71TH(Z)hT = H< 2rfl(k)>1 and
k=0

a1 (TH @) = T[( 2-a(K)).
k=0

In order to conclude the calculation of the mod p topological cyclic homology
groups of the integers TC (Z; Fp) =  TC(Z, p) it is left to determine the action
of @ on the mod p homotopy groups of holim TH (Z)%", or, what is equivalent

by the diagram (D) of 7.1, to determine the behavior of the map
Q: TH@™ — (TH®@)"

on the classes o _1(K) (it is easy to see that Q is an isomorphism in even
dimensions). This is done in [BM, §7] where it is computed that

Fp TFp ifr 0,1mod(p—1)orifr=1

TCar—1(ZiFp) = Fy otherwise

([ Fp ifr=0
TCx(Z:Fp) = Fp Fp if (p—1)r, (r #0)
. {10} otherwise.
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By the result of [Mc] mentioned in theintroduction TC (Z; Fp) = K (Zp;Fp),
and the above groups are isomorphic to the respective algebraic K-theory groups
of the p-adic integers with mod p coefficients.
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