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ON THE TOPOLOGICAL CYCLIC HOMOLOGY OF THE INTEGERS

By STAVROS TSALIDIS

Abstract. This article provides a computation of the mod p homotopy groups of the fixed points
of the Topological Hochschild Homology of the ring of integers under the action of any finite
subgroup of the cirle group whose order is a power of an odd prime p. This leads to a computation
of the Topological Cyclic Homology groups of the ring of integers, and determines also the p-adic
completion of the algebraic K-theory of the p-adic integers.

1. Introduction. The topological Hochschild homology T H H (R) is a spec-
trum (or infinite loop space) associated functorially to each algebraic ring R, or,
more generally, to each strictly associative ring spectrum R. It was introduced
originally by Bökstedt in [B]. The spectrum T H H (R) comes equipped with a
natural action of the circle group T . The topological cyclic homology of R, TC(R)
is the homotopy inverse limit of a diagram of spectra with vertices the fixed point
spectra T H H (R)C of T H H (R) under the action of the finite cyclic subgroups
C of the circle. The maps in this diagram are either inclusions of fixed points
or certain “Frobenius” maps particular to the topological Hochschild homology
construction (see [G]). The topological Hochschild and cyclic homology of R are
both related to the algebraic K-theory of the ring R; their relation can be depicted
by a commutative diagram of spectra

TC(R)

K(R) T H H (R)
?

pr

-
B
�

�

�

��3tr

where tr denotes the cyclotomic trace map of [BHM], and the composition B =
pr � tr is the Bökstedt trace map. A result of McCarthy [Mc] and computations
of [HM] imply that the cyclotomic trace map is a homotopy equivalence after
p-adic completion for a number of rings R including the cases R = Z=pn and
R = bZp , the p-adic integers.

The main result of this paper is the computation of the mod p homotopy
groups ��(T H H (Z)Cpn ; Fp) for each n � 1. This is achieved using a result of
our previous work [T2, Theorem 3.8] which we recall as

Manuscript received August 9, 1995.
American Journal of Mathematics 119 (1997), 103–125.

103

[1
31

.1
11

.5
.1

93
]  

 P
ro

je
ct

 M
U

S
E

 (
20

25
-0

4-
04

 1
1:

55
 G

M
T

) 
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge



104 STAVROS TSALIDIS

THEOREM 1.1. Let (n) denote the standard canonical map (see 3.1) relating
fixed points to homotopy fixed points:

(n): T H H (R)Cpn
�! T H H (R)hCpn .

If (1) induces isomorphisms on mod p (resp. on p-adically completed) homotopy
groups in all nonnegative degrees, then the same is true for (n) for each n � 2.

In this article we show (Theorem 5.3) that, when R = Z, and p is an odd
prime, then the hypothesis in the above theorem is satisfied, that is, the map (1)
induces isomorphisms on mod p homotopy groups in all nonnegative degrees.
Therefore, Theorem 1.1 applies, and we can conclude that

��(T H H (Z)Cpn ; Fp) �= ��(T H H (Z)hCpn ; Fp)

for each n � 1 and � � 0. Now, for each n � 1, the groups ��(THH(Z)hCpn ; Fp)
are the abutment of the mod p homotopy fixed points spectral sequence fEr(n)g
described in 3.3. We will use an inductive scheme, which was expounded in our
thesis [T1], to determine completely the structure of differentials in the spec-
tral sequences fEr(n)g for each n � 1. Those differentials were conjectured by
Bökstedt and Madsen in [BM1, Conjecture 4.3] where the authors tried to justify
their conjecture by comparing with the corresponding spectral sequences for the
“homotopy” ring QS0 [BM1, Assertion 5.5]. We establish this conjecture here by
a different approach based on the result of [T2] mentioned above. This gives a
complete computation of the groups ��(THH(Z)Cpn ; Fp), thus answering a ques-
tion of Carlsson’s [C, Problem IV]. Moreover, by [BM1, Section 7], and [Mc],
these computations determine also the mod p algebraic K-theory groups of the
p-adic integers since

K�(bZp ; Fp) �= TC�(bZp ; Fp) �= ��(TC(Z); F p)

for each � � 0, and each odd prime p.
This paper is closely related and overlaps with the papers [BM1] and [BM2]:

Conjecture 4.3 of [BM1] mentioned above was the motivation for proving The-
orem 1.1, and a description of the calculations in this paper using the argument
we just described was given in [BM2]. We believe that this article provides a
more direct and complete account of these results.

Finally, I would like to thank Tom Goodwillie for reading the manuscript and
suggesting corrections.

2. Topological Hochschild homology. There is now a number of alterna-
tive constructions for topological Hochschild homology resulting from the recent
constructions of categories of spectra endowed with an associative smash product
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of [EKMM] and [S]. We will be using here the original construction of Bökstedt’s
[B], [G], [T2], which we now recall briefly.

Let s.S denote the category of based simplicial sets. A functor with smash
product (FSP for short) is a functor F : s.S �! s.S , together with two natural
transformations: the multiplication �: F(X�)^F(Y�) �! F(X�^Y�) of the FSP
F , which is associative, (i.e., ��( id^�) = ��(�^id)), and a unit 1: X� �! F(X�)
for �; this means that the composites

S0
^ F(X) 1^id

�! F(S0) ^ F(X)
�
�! F(S0

^ X)

and

F(X) ^ S0 id^1
�! F(X) ^ F(S0)

�
�! F(X ^ S0),

are both the identity transformation.

Examples. (i) Each unitary ring R defines an FSP R: s.S �! s.S by means
of the formula R(X�) = R[X�]=R[�], where R[X�] denotes the simplicial free
R-module generated by X�, and � the base point of X�. The unit and the mul-
tiplication of the FSP R are defined by using the unit and multiplication of the
ring R in the evident way. (ii) Any based simplicial monoid M� defines an FSP
M by M(X�) = M� ^ X�. Again, the FSP structure maps are evident.

An FSP F determines a “strictly associative” ring spectrum n 7! Fn =

jF(Sn
�)j, with unit 1n: Sn = jSn

�j
j1j
�! jF(Sn

�)j = Fn, and multiplication

�m,n: Fn ^ Fm
�= jF(Sn

�)j ^ jF(Sm
� )j �= jF(Sn

�) ^ F(Sm
� )j

j�j
�! jF(Sn+m

� )j = Fn+m,

where j � j denotes geometric realization. The structure maps of the spectrum F
are defined to be the composites

�n: S1
^ Fn

11^id
�! F1 ^ Fn

�1,n
�! Fn+1.

Clearly, the spectrum associated to the FSP R is an Eilenberg-McLane spectrum
HR, whereas the spectrum associated to M is the suspension spectrum Σ1jMj.

Let now I denote the category whose objects are finite sets of the form
n = f1, 2, : : : , ng, and whose morphisms are all injections of such sets. The
topological Hochschild homology of the FSP F , which is denoted by T H H (F),
is the geometric realization of a cyclic spectrum T H H�(F) which is defined by
the formula

T H H q(F ; Sm) = holim
�!

n2Iq+1

Map (Sn0 ^ � � � ^ Snq , Sm
^ Fn0 ^ � � � ^ Fnq),
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where n = (n0, n1, : : : , nq) runs through the objects of the product category Iq+1.
For the cyclic structure of T H H�(F) see [T2, x3]. The spectrum structure maps

�m: S1
^ THH(F ; Sm) �! THH(F ; Sm+1)

are induced by the canonical map X ^Map (Y , Z) �! Map (Y , X ^ Z), using the
fact that the smash product “commutes” with homotopy colimits.

Being the realization of a cyclic spectrum, T H H (F) is a spectrum with an
action of the circle group T; this means that, for each m � 0, T H H (F ; Sm) is a
T-space, and the structure maps �m are T-equivariant. Moreover, T H H (F) can
be “lifted” to a genuine T-spectrum T HT(F) [T2, x4]: for each T-representation
V the T-space T HT(F ; SV ) is defined to be the geometric realization of the cyclic
space

[q] 7! holim
�!

n2Iq+1

Map (Sn0 ^ � � � ^ Snq , SV
^ Fn0 ^ � � � ^ Fnq),

with the T-action which combines the action of T on SV and the cyclic structure
of the above simplicial space. T HT(F) is a “lifting” of T H H (F) in the sense
that the restriction of T HT(F) to trivial T-representations is equivalent as a naive
Ca-spectrum to T H H (F) for each finite cyclic subgroup Ca of T .

We let T H (F) = LKT HT(F), where L and K are the functors of [M]. That
is, L is a left adjoint to the forgetful functor from G-spectra to G-prespectra,
whereas K is the cylinder functor described in [M, ch. XII, Construction 9.6].
Thus TH(F) is a T-spectrum in the sense of [LMS] (i.e., the stucture maps are
G-homeomorphisms) and of the same T-homotopy type as the T-prespectrum
T HT(F) defined above. When F is a commutative FSP (i.e., when ��(�^id) = ��
( id^�)), then T H (F) is a commutative ring T-spectrum [HM, Proposition 1.7.1],
and it is also a lifting of T H H (F). In other words, for each cyclic subgroup C �

T , the fixed point spectra T H H (F)C and T H (F)C are homotopy equivalent.
For the FSP R associated to an algebraic ring R we will write T H H (R)

and T H (R) instead of T H H (R) and T H (R); these are both functors from the
category of rings to the categories of naive and genuine T-spectra respectively.

3. Homotopy orbits, homotopy fixed points, and Tate spectra. In this
section we recall some of the theory of the homotopy fixed points, homotopy
orbits, and Tate spectra associated to a G-spectrum K. The main reference for
this material is [GM], which the reader should consult for more details. This
theory works for any compact Lie group G. In our applications G will be either
the circle group T , or a finite cyclic subgroup C thereof. So, our presentation will
be directed towards groups of that type.

3.1. Given any compact Lie group G, one can consider the universal space
EG of G; this is a free contractible G-CW complex. The homotopy cofiber of
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the based G-map �: EG+ �! S0 with �(+) = 0 and �(EG) = 1 in S0 = f0, 1g,
is denoted by ẼG. Let F(EG+, K) denote the function spectrum of [LMS, ch. II,
3.1]. Then, the map � induces a map of G-spectra

K �= F(S0, K) ��
�! F(EG+, K)

which is a nonequivariant equivalence, since this is true for the map �. Smashing
the G-cofibration sequence

EG+ �! S0
�! ẼG

with the G-spectra K and F(EG+, K), and then taking G-invariants one gets the
following commutative diagram of spectra whose columns are cofibration se-
quences of spectra

(EG+ ^ K)G
0

���! (EG+ ^ F(EG+, K))G

??y ??y
KG


���! F(EG+, K)G

??y ??y
(ẼG ^ K)G

̃
���! (ẼG ^ F(EG+, K))G.

(D)

The three horizontal maps in this diagram are induced by ��; namely,  = (��)G,
0 = (1EG+ ^ ��)G, and ̃ = (1ẼG ^ ��)G. Since �� is a non-equivariant equiv-
alence, the map 1EG+ ^ �� is an equivariant equivalence by the G-Whitehead
theorem [LMS, ch. II, Theorem 5.10], and, therefore, 0 is an equivalence of non-
equivariant spectra. Moreover, the Adams’ isomorphism theorem [LMS, ch. II,
Theorem 7.1.] provides an equivalence of spectra

ΣAd(G)(EG+ ^
G

i�K) '
�! (EG+ ^ K)G

where i�K denotes the naive G-spectrum associated to K, and Ad(G) the adjoint
representation of G. The spectrum

KhG = (EG+ ^
G

i�K) ' Σ�Ad(G)(EG+ ^ K)G

is called the homotopy orbits spectrum of K, while the spectrum KhG = F(EG+, K)G

is called the homotopy fixed points spectrum of K. Finally, the G-spectrum t(K) =
ẼG ^ F(EG+, K) is called the Tate spectrum of K. There are spectral sequences
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abutting to the homotopy groups of the spectra KhG, KhG, and t(K)G which we
now describe briefly.

3.2. The homotopy orbits spectral sequence fEr(KhG)g. Let EG� be a
filtration of EG by finite G-CW subcomplexes so that

EGp=EGp�1 = G+ ^
_

Sp

where _Sp is a finite wedge sum of p-spheres. When G is finite, one can take
EGp to be the p-skeleton of EG, i.e., EGp = EG(p) = j skp EG�j where EG� is
the standard simplicial set with EGq = Gq+1. When G = T the circle group, then
one can take ET = lim

�!
S(qC ), where S(qC ) is the unit sphere in the vector space

qC = C �q on which T acts by multiplication. The following string of cofibrations
gives rise to the homotopy orbits spectral sequence

(EG0
+ ^ K)G �����! � � � �����! (EGp�1

+ ^ K)G �����! (EGp
+ ^ K)G �����! � � �??y

(G+ ^ _Sp ^ K)G.

(stG)

Now let G be a finite group. Then [GM]

E1
p,q(KhG) �= �p+q(G+ ^ ( _ Sp) ^ K)G �= �qK 


Z[G]
Hp(G+ ^ _Sp).

The groups Hp(G+ ^ _Sp) �= H0(G+) 
 Hp( _ Sp) �= Z[G] 
 Hp( _ Sp) together
with the respective boundary maps @p make up a resolution of Z by relatively
injective Z[G]-modules, and it follows that

E2
p,q(KhG) �= Hp(G;�qK).

By the Adams isomorphism mentioned in 3.1, the string of cofibrations (stG)
which gives rise to the spectral sequence fEr(KhG)g is equivalent to the following
one

EG0
+ ^

G
i�K �����! � � � �����! EGp�1

+ ^
G

i�K �����! EGp
+ ^

G
i�K �����! � � �??y

G+ ^
G

( _ Sp ^ i�K).

(stG)

Of course, we are still assuming that G is finite, so that Ad(G) = f0g.
For any subgroup H � G one can consider K as an H-spectrum by forgetting

the additional structure. The space EG is also a model for EH and one can use
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the same filtration EHp = EGp. The spectral sequence fEr(KhH)g is then induced
by the string

EG0
+ ^

H
i�K �����! � � � �����! EGp�1

+ ^
H

i�K �����! EGp
+ ^

H
i�K �����! � � �??y

G+ ^
H

( _ Sp ^ i�K).

(stH)

The canonical quotient map L=H �! L=G which is defined for each naive G-
spectrum L induces a map of strings (stH) �! (stG), and therefore it also induces
a map of spectral sequences

�: fEr(KhH)g �! fEr(KhG)g.

The map � will be called corestriction, because on E2-terms

��: E2
p,q(KhH) �= Hp(H;�qK) �! Hp(G;�qK) �= E2

p,q(KhG)

is the classical corestriction homomorphism in group homology [Se, ch. II, x5].

3.3. The homotopy fixed points spectral sequence fEr(KhG)g is induced by
the following tower of fibrations of spectra

F(EG0
+, K)G  ����� � � �  ����� F(EGp�1

+ , K)G  ����� F(EGp
+, K)G  ����� � � �x??

F(G+ _ Sp, K)G.

(toG)

When G is finite one has [GM, (9.3)]

Ep,q
1 (KhG) �= �p+qF(G+ ^ _Sp, K)G �= HomZ[G] (Hp(G+ ^ _Sp),��qK)

and Ep,q
2 (KhG) �= Hp(G;��qK). For a subgroup H � G, the inclusion of fixed

points LG
� LH defines a map of towers (toG) �! (toH), and, therefore, it induces

a map of spectral sequences

�: fEr(KhG)g �! fEr(KhH)g.

The map � will be called restriction because on E2-terms

��: Ep,q
2 (KhG) �= Hp(G;��qK) �! Hp(H;��qK) �= Ep,q

2 (KhG)

is the classical restriction map in group cohomology [Se, ch. VII, x5].
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3.4. The Tate spectral sequence fEr(t(K)G)g. This is induced by a suitable
“filtration” of the suspension G-spectrum of ẼG = S0

[ C(EG+) where C(X)
denotes the cone on the based space X. Using the same symbol for a space and
its suspension spectrum, this “filtration” is given, when G is finite, by [GM, 9.5]:

ẼGp =

8>><
>>:

S0
[ C(EGp�1

+ ) for p > 0

S0 for p = 0

D(ẼG�p) for p < 0,

where D(X) = F(X, SG) is the Spanier-Whitehead G-dual spectrum of X [LMS].
The following sequence of cofibrations, then, gives rise to the Tate spectral se-
quence fEr(t(K)G)g:

� � � ���! (ẼGp�1
^ K)G

���! (ẼGp
^ K)G

���! � � �??y
(G+ ^ _Sp

^ K)G.

(SeqG)

When G = T one can take ẼT = lim
�!

SqC , with ẼT2p = ẼT2p�1 = SqC for each
p 2 Z. In both cases the successive cofibers are of the form G+ ^ _Sp. When G
is finite, then

E2
p,q(t(K)G) �= bH�p(G;�qK)

where bH�(G; A) denotes the Tate cohomology of the group G with coefficients in
the G-module A. When G = T , then T acts trivially on ��K and

E2
p,q(t(K)G) �= Z[t, t�1]
 ��K.

as an algebra where deg (t) = �2.

3.5. When K is a connective spectrum (as it will be in the case of our
computations), then fEr(t(K)G)g is an upper half plane spectral sequence, and it
“contains” the homotopy fixed points spectral sequence in its left quadrant. For
the precise relationship between these two spectral sequences see [BM1, Theo-
rem 2.15]. In other words there is a map of spectral sequences �: fEr(KhG)g �!
fEr(t(K)G)g which on E2-terms is the standard surjection of the group coho-
mology onto the Tate cohomology. On the other hand, the right quadrant of the
Tate spectral sequence “contains” a shifted copy of the homotopy orbits spectral
sequence.

We now consider the case of the T-spectrum K = T H (F). The next lemma
gives the fundamental equivariant property of the T-spectrum T H (F):
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LEMMA 3.6. [T2, Proposition 5.9] There are equivalences of spectra

(ẼCpn ^ T H (F))Cpn
' (ΦCpT H (F)#Cpn

)Cpn�1
' (T H (F)#Cpn�1

)Cpn�1

' T H (F)Cpn�1

for each n � 1. Moreover, these equivalences are functorial in F .

Here, K#H denotes the G-spectrum K considered as an H-spectrum, H being
a subgroup of G. The diagram (D) of 3.1 with K = T H (F), and the above lemma
imply the following:

PROPOSITION 3.7. For each n � 1, there is a homotopy cartesian diagram of
spectra

T H (F)Cpn


���! T H (F)hCpn

??y� ??y!
T H (F)Cpn�1

̃
���! t(T H (F))Cpn

whose vertical fibers are equivalent to the homotopy orbits spectrum T H (F)hCpn .

As we mentioned in the end of x2, when F is a commutative FSP, then
T H (F) is a commutative ring T-spectrum [HM], and T H (F)#Ca

is a commu-
tative Ca-spectrum. It then follows [GM, Proposition 3.5] that the diagram of
Proposition 3.7 is a diagram of ring spectra and ring maps, and that the respec-
tive homotopy fixed points and Tate spectral sequences are spectral sequences of
differential algebras.

4. Some permanent cycles. For the remaining part of this paper p will al-
ways denote an odd prime number. We will let fEr(n)g denote the mod p homo-
topy fixed points spectral sequence for T H (Z)hCpn for each n � 1, and fEr(1)g
the corresponding spectral sequence for T H (Z)hT . Furthermore, fÊr(n)g will de-
note the mod p Tate spectral sequence for t(T H (Z))Cpn , and fÊr(1)g the mod
p Tate for t(T H (Z))T .

The homotopy type of T H H (Z) was determined in [B]: T H H (Z) is a
generalized Eilenberg-MacLane spectrum with

T H H (Z) ' H(Z) _
1_
n=1

Σ2n�1 H(Z=n)

and ��(T H Z; F p) �= Fp(e) 
 Fp[ f ] with deg (e) = 2p � 1 and deg ( f ) = 2p. For
any ring R, we will use the standard convention that R[x, y, ..] is the polynomial
algebra and R(x, y, : : :) is the exterior algebra over R (generated by the variables
x, y, : : :).
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The spectral sequences fEr(1)g and fÊr(1)g have E2-terms:

E2
�,�(1) = H��(BT;��(T H Z; F p)) �= Fp[t]
 Fp[ f ]
 Fp(e)

and

Ê2
�,�(1) �= Fp[t, t�1]
 Fp[ f ]
 Fp(e)

with deg (t) = �2, deg ( f ) = 2p, and deg (e) = 2p� 1.
One can compare these spectral sequences with the corresponding ones for

the spectrum T H (I), where I denotes the identity FSP with I(X) = X for each
X in s.S . The spectrum associated to the FSP I is clearly the sphere spectrum S.
Now, the inclusion

SV
�! T H H (I)(SV) =

���[q] 7! holim
�!

Map (Sn0 ^ � � � ^ Snq , SV
^ Sn0 ^ � � � ^ Snq)

���
defines a map of T-spectra �: ST �! T H (I), where ST denotes the T-equivariant
sphere spectrum. The map � is a non-equivariant equivalence since the underly-
ing non-equivariant spectra of ST and T H (I) are both equivalent to the sphere
spectrum S. It follows that � induces homotopy equivalences ShT

T

'
�! T H (I)hT ,

and ShC
T

'
�! T H (I)hC for each cyclic group C � T . The unit of the FSP Z

associated to the ring of integers Z defines a map of FSP’s I �! Z , and con-
sequently a map of T-spectra T H (I) �! T H (Z). Composing with � one gets a
map of T-spectra ST �! T H (Z). Now ST is a split spectrum in the sense that

ShT
T = Map (ET+, ST)T ' Map (BT+, S),

where S denotes the (non-equivariant) sphere spectrum. By choosing a base point
� in BT , and evaluating maps BT+ �! S at �, one gets a map Map (BT+, S) �! S
which is split by the map S �! Map (BT+, S) sending each point x 2 S to the
constant map fx: BT+ �! S with fx(t) = x for each t 2 BT . This implies that
the zero-th column in the mod p homotopy fixed point spectral sequence for ShT

T

(and the same is true for ShCa
T

for each Ca � T) consists of permanent cycles.
In particular, the generator v1 of �2p�2(S; Fp) �= Fp is a permanent cycle in the
spectral sequence for ShT

T
and represents a nonzero class in its E1-term.

LEMMA 4.1. [BM1, Lemma 5.4] The map S �
�! ShT

T

�
�! T H (Z)hT sends

the homotopy class v1 2 �2p�2(S; Fp) to a nonzero class in �2p�2(T H (Z)hT ; Fp)
which represents the class tf in the E1-term of the spectral sequence fEr(1)g.
Consequently, the class tf and all its powers (tf )n are permanent cycles in fEr(1)g,
they survive to the E1-term, and they are mapped on by the classes vn

1 .

Remark 4.2. Using the restriction maps �: fEr(1)g �! fEr(n)g one gets
that tf and its multiples are permanent cycles in all spectral sequences fEr(n)g
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for n � 1. Moreover, under the spectral sequence maps

�: fEr(n)g �! fÊr(n)g, 1 � n � 1,

the classes t, f and e in E2(n) are mapped to the corresponding classes with the
same name in Ê2(n). It follows that tf and all its powers are permanent cycles in
fÊr(n)g for each 1 � n � 1.

Let fEr
g denote the (integral) homotopy fixed points spectral sequence for

T H (Z)hT . It has

E2
k,`
�= H�k(BT;�#` T H (Z))

and so E2
�,0

�= Z[t] and for each n � 1, E2
�,2n

�= 0, and E2
�,2n�1

�= (Z=n)[t]
with deg (t) = �2. The map of T-spectra T H (Z) �! T H (Z)=p induces a map
of spectral sequences 'r: fEr

g �! fEr(1)g under which the generators t 2
E2
�2,0

�= Z and e 2 E2
0,2p�1

�= Fp are mapped on the classes t and e in E2(1),
i.e., '�(t) = t, and '�(e) = e. The first possibly nonzero differential in fEr

g is
d2p. Since d2p(t`p) = `pt`p�1dt = 0 in Fp , for each ` � 0, the classes t`pe are not
hit by the differential d2p, and the same is true for dimensional reasons for the
classes tme with 0 � m � p. It follows that the classes t`pe and tme for ` � 0 and
0 � m � p survive and represent permanent cycles in the spectral sequence fEr

g,
because all differentials on these classes are zero for dimensional reasons—all
classes in E2

�,�, except the ones on the base line, are in odd total degree.

LEMMA 4.3. For each ` � 0, and each 0 � m � p the classes t`pe and tme
are permanent cycles in the spectral sequences fEr(n)g for each 1 � n � 1.
Therefore, the corresponding classes t`pe and tme are also permanent cycles in
fÊr(n)g for each ` 2 Z and 1 � n � 1.

Proof. The statement for fEr(1)g is shown by using the map of spectral
sequences ': fEr

g �! fEr(1)g, since '(tme) = tme for each m � 0. The
statement for fEr(n)g then follows by using the restriction maps

�: fEr(1)g �! fEr(n)g

since ��(tme) = tme, and the one for fÊr(n)g using the maps fEr(n)g �! fÊr(n)g.

5. The Tate spectral sequence fÊr(1)g. In this section we determine the
differentials in the Tate spectral sequence fÊr(1)g, and compute the mod p homo-
topy groups t(T H Z)Cp . Actually, from this point on all homotopy groups will be
assumed to be with mod p coefficients, and ��K will mean the mod p homotopy
of K, unless it is explicitly stated otherwise. The E2-term of the spectral sequence
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fÊr(1)g, as an Fp-algebra, is given by

Ê2
�,�
�= Fp[t, t�1]
 Fp(u1)
 Fp[ f ]
 Fp(e)

with deg (t) = �2, deg ( f ) = 2p, and deg (e) = 2p� 1. The first possibly nonzero
differential is d2p. However, we first get some information about the next differ-
ential d2p+1.

LEMMA 5.1. The differential d2p+1 is nonzero on the class u1. That is, d2pu1 = 0,
and d2p+1u1 = tp+1f up to multiplication by a nonzero unit in F�p .

Proof. Consider the commutative diagram

S
�

���! T H (Z)Cp


���! T H (Z)hCp??y=
??y� ??y!

S
�̃

���! T H (Z)
̃

���! t(T H (Z))Cp .

As we mentioned in Lemma 4.1, ���v1 is a nonzero class in �#2p�2T H (Z)hCp

which represents tf in the E2-term (and also in the E1-term) of the spectral
sequence fEr(1)g. So !����v1 is a class in �#2p�2t(T H (Z))Cp represented in
Ê2
�2,2p(1) by tf . But !����v1 = ̃��̃�v1 = 0 since �̃�v1 2 �#2p�2T H (Z) �= 0.

Since tf is a permanent cycle in fÊr(1)g, this means that tf must be hit by a
differential. This can only happen for d2p+1 and so d2p+1(t�pu) = tf . Since

d2p(t�pu) = d2p(t�p)u + t�pd2pu = �pt�p�1u + t�pd2pu = t�pd2pu 2 Fp

and t�p
6= 0 one gets that d2pu 6= 0. One now checks easily that d2p+1(t�p) = 0

independently of the behavior of the differential d2p: if d2p(t) = 0, then t survives
to Ê2p+1(1) and d2p+1(t�p) = �pt�p�1 = 0 2 Fp ; whereas, if d2p(t) 6= 0, then
d2p+1(t�p) = 0 for dimensional reasons. Since

d2p+1(t�pu) = d2p+1(t�p)u + t�pd2p+1u = t�pd2p+1u

it follows that d2p+1u 6= 0.
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We now show that d2pt 6= 0. Consider the commutative diagram of T-spectra

T H (Z)
p

���! T H (Z) ���! T H (Z)=p??y ??yp
??y

T H (Z)
p2

���! T H (Z) ���! T H (Z)=p2

??y ??y ??y
� ���! T H (Z)=p

=
���! T H (Z)=p??y�

ΣT H (Z)=p

in which all rows and columns are cofibration sequences and X k
�! X denotes the

multiplication by k map. Recall that ��K denotes the mod p homotopy of K, in
other words, the integral homotopy of K=p. We have ��ΣT H (Z) �= Σ��T H (Z),
and we denote by Σx the class in ��ΣT H (Z) which corresponds to the class
x 2 ��T H (Z).

The map � induces a map of Tate spectral sequences �� with ��( f ) = Σe. So
��(d2p+1u) = ��( ftp+1) = Σtp+1e. But

��(d
2p+1u) = d2p+1��(u) = d2p+10 = 0.

This means that the class Σtp+1e is zero in the E2p+1-term of the mod p Tate
spectral sequence for ΣT H (Z) with respect to the group Cp. It follows that
Σtp+1e must be hit by the differential d2p. Since the Tate spectral sequence for
ΣT H (Z) is just the suspension of the corresponding Tate for T H (Z) we get that
d2p(t) = tp+1e modulo multiplication by units. We have therefore shown

THEOREM 5.2. In the Tate spectral sequence fEr(1)g all differentials are deter-
mined by d2p(t) = tp+1e and d2p+1u1 = tp+1f . One then computes

E2p+1
�,� (1) �= Fp[tp, t�p]
 Fp(u)
 Fp[tf ]
 Fp(e)

and

��t(T H (Z))Cp �= E1�,�(1) �= E2p+2
�,� (1) �= Fp[tp, t�p]
 Fp(e).

Consider the map ̃�: ��T H (Z) �! ��t(T H (Z))Cp . Notice that in nonnega-
tive degrees the homotopy groups of the domain and range of ̃� are isomorphic,
and that in order to show that ̃� is an isomorphism in nonnegative degrees it
is enough to show that ̃2p and ̃2p�1 are nontrivial, ̃� being a ring map. Now,
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the map of FSP’s Z(�) �! Z=p(�) induces the following commutative diagram
where all four groups involved are isomorphic to Fp :

�2pT H (Z)
̃2p

���! �2pt(T H (Z))Cp??y ??y
�2pT H (Z=p)

̃2p
���! �2pt(T H (Z=p))Cp .

The left vertical map in the above diagram is an isomorphism by [B], and the
lower ̃2p is an isomorphism by [HM, Proposition 4.3]. It follows that the upper
̃2p is also an isomorphism. Since ̃� commutes with the Bockstein ��, we have

̃2p�1(e) = ̃2p�1(��f ) = ��̃2p�1( f ) 6= 0.

Therefore, the map ̃� is an isomorphism in nonnegative degrees. From the ho-
motopy cartesian square of Lemma 5.1

T H (Z)Cp


���! T H (Z)hCp??y ??y
T H (Z)

̃
���! t(T H (Z))Cp

one gets that �: ��T H (Z)Cp �! ��T H (Z)hCp is also an isomorphism for each
� � 0. Theorem 3.8 of [T2] then implies the following:

THEOREM 5.3. For each n � 1, the homomorphisms

�: ��T H (Z)Cpn
�! ��T H (Z)hCpn , and ̃�: ��T H (Z)Cpn�1

�! ��t(T H (Z))Cpn

are isomorphisms for � � 0.

In the next section we will use Theorem 5.3 to determine the differentials in
the spectral sequences fEr(n)g and fÊr(n)g for each n � 2.

6. The spectral sequences fEr(n)g and fÊr(n)g. The next theorem gives a
complete description of the differential structure of the spectral sequences fEr(n)g
and fÊr(n)g for each 1 � n � 1. The second part of the theorem (about the
structure of fEr(n)g) follows from the first part by using the comparison map
': fEr(n)g �! fÊr(n)g, and it was conjectured by Bökstedt and Madsen [BM1,
Conjecture 4.3]. Recall that

Ê2
�,�(n) �= Ĥ��(Cpn ;��T H (Z)) �= Fp[t, t�1]
 Fp(un)
 Fp[ f ]
 Fp(e)
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and

E2
�,�(n) �= H��(Cpn ;��T H (Z)) �= Fp[t]
 Fp(un)
 Fp[ f ]
 Fp(e).

THEOREM 6.1. The following formulas give the nonzero differentials in fÊr(n)g

on the classes tpk
and un up to multiplication by nonzero units in F�p :

(i) d2�(k+1)(tpk
) = tpk+�(k+1)ef �(k+1) for k < n, and

(ii) d2�(n)+1(un) = t�(n)+1f �(n�1)+1

where�(k) = p( pk�1
p�1 ). All remaining nonzero differentials infÊr(n)gare determined

multiplicatively by the differentials (i), (ii) and the fact that the classes tf and t`pe
(` 2 Z) are permanent cycles.

Furthermore, all nonzero differentials in the homotopy fixed points spectral
sequence fEr(n)g are determined multiplicatively by the differentials (i), (ii) and
the fact that the classes tmef k are permanent cycles for each 0 � m � p and k � 0.

Theorem 5.2 is case n = 1 of the above theorem. The proof of Theorem 6.1
is then by induction on n. We first describe the inductive argument in the case
(n = 1) ) (n = 2). As we will see afterwards the argument in the general case is
verbatim the same.

6.2. First, using Theorem 5.2 and the comparison map fEr(1)g �! fÊr(1)g
one computes the differentials in fEr(1)g. We have

E2
�,�(1) �= H��(Cp;��T H (Z)) �= Fp[t]
 Fp(u1)
 Fp[ f ]
 Fp(e).

The first nonzero differential is d2p with d2pt 6= 0, and d2pu1 = 0. One computes

E2p+1
�,� (1) �= Fp[tp]
 Fp(u1)
 Fp[tf ]
 Fp(e)M

Fp[ f p]
 Fp(e)
 Fp(u1)
 Fp[tf ]M
�,`,m

D
u�1t`ef m

j� = 0, 1, m = kp + l, k 2 N , and ` - l
E

where hv1, v2, : : :i denotes the vector space over Fp with basis the vectors v1, v2, : : :.
The next differential d2p+1 is determined by multiplicativity and its values

d2p+1u1 6= 0, and d2p+1(te) = 0. The spectral sequence collapses at this stage, and
one gets

E1�,�(1) �= E2p+2
�,� (1)

�= Fp[ f p]
 Fp(e)
 (Fp[tf ]=(tf )p+1) + Fp[tp]
 Fp(e)M
�,`,m

D
u�1t`ef m

j� = 0, 1, m = kp + l, k 2 N , and ` - l
E

.
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From the above E1-term and Theorem 5.3 one can read off the mod p homotopy
groups

�2rT H (Z)Cp �= �2rT H (Z)hCp �=

(
Fp if p2 - r

Fp � Fp if p2
jr,

and

�2r�1T H (Z)Cp �= �2r�1T H (Z)hCp �=

(
Fp if p2 - r

Fp � Fp if p2
jr.

6.3. We now turn now the computation of the differential structure of the
Tate spectral sequence fÊr(2)g. We have

Ê2
�,�(2) �= Ĥ��(Cp2 ;��T H (Z)) �= Fp[t, t�1]
 Fp(u2)
 Fp[ f ]
 Fp(e),

and the first, possibly nonzero differential, is again d2p. The spectral restriction
map �̂: fÊr(2)g �! fÊr(1)g is given on E2-terms by ��(t) = t, ��(u2) = 0,
��( f ) = f , and ��(e) = e. It follows that d2pt 6= 0 also in the spectral sequence
fÊr(2)g.

To see that d2p(u2) = 0 in fÊr(2)g, we look at the homotopy orbits spectral
sequences fẼr(i)g for i = 1, 2. From Theorem 5.2 one gets that d2p(u1t�kp) = 0
in fÊr(1)g for each k 2 Z, and therefore d2p(u1t�kp) = 0 in fẼr(1)g for each
k � 1 since these differentials do not cross the fiber line (that is the vertical line
consisting of the groups H0(Cp2 ;��T H (Z))). By the corestriction map of spectral
sequences �: fẼr(1)g �! fẼr(2)g which has ��(u1t�kpe�f m) = u2t�kpe�f m for
each k, m � 0 and � = 0, 1, one gets that d2p(u2t�kp) = 0 in fẼr(2)g for each
k � 1. It follows that d2p(u2t�kp) = 0 for each k � 1 also in fÊr(2)g since these
differentials do not cross the fiber line. Since fÊr(2)g is a spectral sequence of
algebras, and since d2p(tkp) = 0 in Fp we get

d2p(u1) = d2p(tkp
� u1t�kp) = tkpd2p(u2t�kp) = 0

in fÊr(2)g. One now computes Ê2p+1
�,� (2) �= Fp[tp, t�p]
 Fp[u2]
 Fp[tf ]
 Fp(e).

6.4. The next differential d2p+1 is trivial on tp for dimensional reasons. If
we had d2p+1(u2) 6= 0, then the spectral sequence fÊr(2)g would collapse, and we
would have

Ê1�,�(2) �= Ê1�,�(1) �= Fp[tp, t�p]
 Fp(e).

But this does not give the right abutment, because in this case the map

̃�: ��T H (Z)Cp �! ��t(T H (Z))Cp2
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can not be an isomorphism in nonnegative dimensions. It follows that d2p+1(u2) =
0 and Ê2p+2

�,� (2) �= Ê2p+1
�,� (2). The next differential in fÊr(2)g that can possibly be

nontrivial is the differential d2p2+1. It is d2p2+1(u2) = 0 for dimensional reasons
and

LEMMA 6.5. d2p2+1(tp) = 0.

Proof. Consider the restriction map �̂: fÊr(1)g �! fÊr(2)g. It has �̂�(tp) =

tp and �̂�(tf ) = tf . Let dr
1 denote the differential in fÊr(1)g. Then d2p2+1

1 t = 0
for dimensional reasons. It follows that

d2p2+1(tp) = d2p2+1�̂�(t
p) = �̂�d

2p2+1
1 (tp) = �̂�(0) = 0 in fÊr(2)g.

The next two differentials in fÊr(2)g that can possibly be nontrivial are the
differentials d2�(2) and d2�(2)+1 which are described by Theorem 6.1. For their
computation we need the following lemma which is due to M. Bökstedt:

LEMMA 6.6. d2�(2)+1(u2) = tp2+p+1f p+1 up to multiplication by nonzero units in
F�p .

Proof. Notice that the class tp+1f p+1 survives to Ê2�(2)+1
�,� (2), and consider the

commutative diagram

S
�

���! T H (Z)Cp2


���! T H (Z)hCp2

??y=
??y' ??y!

S
�̃

���! T H (Z)Cp
̃

���! t(T H (Z))Cp2 .

The class v1 2 ��S maps to a nonzero class ���v1 2 ��T H (Z)hCp2 which
represents the class tp+1f p+1 in fE1(2)g. So !����v1 is a class in ��t(T H (Z))Cp2

which represents the class (tf )p+1 in fEr(2)g. In the commutative diagram

S
�

���! S
Cp
T

0

���! S
hCp
T??y=

??y� ??y�0
S

�̃
���! T H (Z)Cp


���! T H (Z)hCp

one finds that ��̃�v1 = �0�
0
���v1 = 0 because the class tp+1f p+1 did not sur-

vive to the E1(1). Since � is an isomorphism in nonnegative degrees we get
�̃�v1 = 0, and therefore !����v1 = ̃��̃�v1 = 0�(0) = 0 in ��t(T H (Z))Cp2 . Since
tp+1f p+1 is a permanent cycle in fÊr(2)g it must be hit by some differential.
But the only differential that can possibly hit tp+1f p+1 is d2�(2)+1 and therefore
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we have d2�(2)+1(t�p2
u2) = tp+1f p+1 up to multiplication by nonzero units in F�p .

Notice now that d2�(2)+1(t�p2
) = 0 independently of the value of the differential

d2�(2)(tp): if d2�(2)(tp) = 0, then d2�(2)+1(t�p2
) = pd2�(2)+1(t�p) = 0 in Fp , whereas,

if d2�(2)(tp) 6= 0, then d2�(2)+1(t�p) = 0 for dimensional reasons. Therefore,

d2�(2)+1(t�p2
u2) = t�p2

d2�(2)+1(u2) = tp+1f p+1

and d2�(2)+1(u2) = tp2+p+1f p+1 up to multiplication by nonzero units in F�p .

6.7. To finish our computation of fÊr(2)g we still need to show that
d2�(2)(tp) 6= 0. One can establish this by checking both possibilities for the dif-
ferential:

Case 1. d2�(2)(tp) 6= 0. In this case d2�(2)(u2) = 0 and one computes

Ê2�(2)+1
�,� (2) �= Fp[tp2

, t�p2
]
 Fp(u2)
 Fp[tf ]
 Fp(e)MD

u�2t`pe(tf )m
j� = 0, 1, p - `, m = 0, 1, : : : , p� 1

E

and since d2�(2)+1(u2) 6= 0

Ê1�,�(2) �= Ê2�(2)+1
�,� (2)

�= Fp[tp2
, tp�2

]
 Fp(e)
 (Fp[tf ]=(tf )p+1)MD
u�2t`pe(tf )k

j� = 0, 1, p - `, k 2 N
E

.

So this case gives the correct abutment with

�2rt(T H (Z))Cp2 �=

(
Fp if p2 - r

Fp � Fp if p2
jr,

and

�2r�1t(T H (Z))Cp2 �=

(
Fp if p2 - r

Fp � Fp if p2
jr.

Case 2. d2�(2)(tp) = 0. In this case, since d2�(2)+1u2 6= 0, the spectral sequence
collapses again at Ê2�(2)+2

�,� (2) �= Ê1�,�(2), but this time it does not provide the
correct abutment.

6.8. Proof of Theorem 6.1. To prove the induction step in the general case
we assume that the differential structures of fÊr(n)g and fEr(n)g are the ones
given by Theorem 6.1, and we will show that the same is true for fÊr(n + 1)g
and fEr(n + 1)g. The proof is the same as in the special case n = 1. Using the
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assumed differential structure of fEr(n)g one computes E1�,�(n), and therefore
��T H (Z)Cpn �= ��T H (Z)hCpn for each � � 0. By Theorem 5.3, the homomor-
phism

̃: ��T H (Z)Cpn
�! ��t(T H (Z))Cpn+1

is an isomorphism for each � � 0. This determines the size of the Ê1�,�(n + 1).
More explicitly, these computations give

M
k+`=2r

Ê1k,`(n + 1) �= �2rT H (Z)Cpn �= �2rT H (Z)hCpn �=

(
F�n

p if pn+1 - r

F�(n+1)
p if pn+1jr

and

M
k+`=2r�1

Ê1k,`(n + 1) �= �2r�1T H (Z)Cpn �= �2r�1T H (Z)hCpn

�=

(
F�n

p if pn+1 - r

F�n+1
p if pn+1

jr.

The restriction map �: fEr(n + 1)g �! fEr(n)g has ��(t) = t, and it follows

that in fEr(n + 1)g the differentials d2�(k+1)(tpk
) = tpk+�(k+1)ef �(k) for k � n. The

same is then true for the Tate spectral sequence fÊr(n+1)g since these differentials
do not cross the fiber line. This shows part (i) of Theorem 6.1 for k < n.

Dually, using the corestriction maps �: fẼr(n)g �! fẼr(n + 1)g one finds
that

d2�(k+1)(t�`p
k
un+1) = 0

for each k < n, and ` � 1. The same is true then in the Tate spectral sequence
fÊr(n + 1)g for the differentials d2�(k+1) that do not cross the fiber line. Using
the multiplicativity in fÊr(n + 1)g one finds that d2�(k+1)un+1 = 0 in fÊr(n + 1)g.
Furthermore, d2�(n)+1un+1 = 0 since, otherwise, the spectral sequence collapses
and Ê1�,�(n + 1) �= Ê1�,�(n) which does not have the correct size.

The next possibly nonzero differential is d2�(n+1)�2p+1. This differential is
trivial on un+1 for dimensional reasons, and it is also trivial on tpn

by an argument
using the restriction map �: fEr(1)g �! fEr(n + 1)g exactly as in Lemma 6.5.

The next two differentials that can possibly be nontrivial are the ones de-
scribed by Theorem 6.1 with n = n + 1, i.e., d2�(n+1) and d2�(n+1)+1. Now the
class (tf )�(n)+1 survives in Ê2�(n+1)+1

�,� (n + 1) but not in E1�,�(n). By the argument of
Lemma 6.6 the class (tf )�(n)+1 must be hit by the differential d2�(n+1)+1, and this
implies that

d2�(n+1)+1(un+1t�pn+1
) = (tf )�(n)+1 in fÊr(n + 1)g.
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By multiplicativity, it follows that d2�(n+1)+1(un+1) = t�(n+1)+1f �(n)+1.
We are once again left to show that d2�(n+1)(tpn

) 6= 0. One checks that, if this
is the case, then Ê1�,�(n + 1) �= Ê2�(n+1)+2

�,� (n + 1) and hence it has the correct size.
On the other hand, if d2�(n+1)(tpn

) = 0, then d2�(n+1)+1(un+1) 6= 0, and the spectral
sequence collapses again at the E2�(n+1)+2-stage but this time the abutment does
not satisfy (**). This concludes the proof of the inductive step of Theorem 6.1.

7. The mod p topological cyclic homology of the integers In this section
we give a brief account of the topological cyclic homology spectrum of an FSP
F , and of how Theorem 6.1 can be used to compute the mod p topological cyclic
homology in the case where F = Z . This is the content of [BM1, Section 7]
which can be consulted for more details.

7.1. Diagram (D) of 3.1 with K = T H (F) considered as a Cpn-spectrum
yields a diagram of spectra

T H (F)hCpn

T H (F)Cpn T H (F)hCpn

T H (F)Cpn�1 t(T H (F))Cpn

�

�

�

�
�+

Q

Q

Q

Q
Qs

?

'

-


?

!

-
̃

(Dn)

for each n � 1. The inclusion � of the Cpn+1 -fixed points in the Cpn-fixed points
defines a map of diagrams �: (Dn+1) �! (Dn) for each n � 1. The homotopy
inverse limit of the diagrams (Dn) over the inclusions � is a diagram p-adically
equivalent to the following one

Σ T H (F)hT

holim
 �

T H (F)Cpn
T H (F)hT

holim
 �

T H (F)Cpn�1
t(T H (F))T .

�

�

�

�

�
�+

Q

Q

Q

Q

Q

Qs

?

Φ

-
Γ

?

Ω

-
Γ̃

(D1)
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One then defines TC(F ; p), the p-part of topological cyclic homology of F , to be
the homotopy fixed set of the endomorphism Φ, in other words,

TC(F ; p) = ( holim
 �

T H (F)Cpn )hΦ

� fiber(Φ� 1: holim
 �

T H (F)Cpn
�! holim

 �
T H (F)Cpn ).

Remark 7.2. As the name suggests TC(F ; p) is the p-part of a “global” object,
the topological cyclic homology of F which can be constructed as follows: for
each positive integer m, n with njm one can define two maps

�,': T H (F)Cpm
�! T H (F)Cpn

the inclusion of fixed points �, and the Frobenius ' defined by means of dia-
gram (D) or as in [G], [BHM]. The homotopy inverse limit over all �,', for
all positive integers njm is called the topological cyclic homology of the FSP
F and denoted by TC(F). It turns out, however, that after p-adic completion
TC(F)^p ' TC(F ; p)^p . Since in this article we are only interested in mod p ho-
motopy groups we only need to consider the p-part TC(F ; p). For more details
on the “global” TC(F) see [G].

7.3. When F = Z , the FSP associated to the ring of integers Z, then by
Theorem 5.3 and [BK, ch. IX, Theorem 3.1], the map Γ induces isomorphisms
on mod p (resp. p-adically completed) homotopy groups

Γ�: �� holim
 �

T H (Z)Cpn
�! �� T H (Z)hT

for each � � 0, and the same is true for Γ̃�. Using the restriction maps �: fEr(1)g
�! fEr(n)g, (resp. �̂: fÊr(1)g �! fÊr(n)g) and Theorem 6.1 one easily deter-
mines the differential structure of the spectral sequence fEr(1)g (resp. fÊr(1)g)
as they are described in the following:

THEOREM 7.4. All nontrivial differentials in the spectral sequences fEr(1)g
and fÊr(1)g are multiplicatively generated by the differentials from the base line

d2�(k+1)(tpk
) = tpk+�(k+1)ef �(k), k 2 N

and the fact that the classes tf and t`pe (` 2 Z) are permanent cycles. The E1-terms
are given by

E1�,�(1) �= Fp(e)
 Fp[tf ]�
1Y
k=0

D
tief j

j�(k) � i < �(k + 1), and pk
j(i� j)

E
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Ê1�,�(1) �= Fp(e)
 Fp[tf ]�
1Y
k=0

D
tipk+1

e(tf )j
j i 2 Z, and �(k) � j < �(k + 1)

E
.

Notice that the only classes in even total degree that survive to the E1-term
of both fEr(1)g and fÊr(1)g are the powers of tf . So

�2r T H (Z)hT �= �2r t(T H (Z))T �=

(
Fp
�=


(tf )i� if r = i(p� 1)

f0g if (p� 1) - r.

On the other hand, each �2r�1 T H (Z)hT �= �2r�1 t(T H (Z))T is an infinite di-
mensional Fp-vector space. Let fx2r�1(k)gk2N (resp. fx̂2r�1(k)gk2N ) be generators
(ordered by fiber degree) of

M
p+q=2r�1

E1p,q(1)

0
@resp.

M
p+q=2r�1

Ê1p,q(1)

1
A

and choose elements �2r�1(k) 2 �2r�1 T H (Z)hT (resp. �̂2r�1(k) 2 �2r�1 t(T H (Z))T )
representing x2r�1(k) (resp. x̂2r�1(k) ). Then

�2r�1 T H (Z)hT �=
1Y
k=0

h�2r�1(k)i, and

�2r�1 t(T H (Z))T �=
1Y
k=0

h�̂2r�1(k)i.

In order to conclude the calculation of the mod p topological cyclic homology
groups of the integers TC�(Z; F p) �= �� TC(Z; p) it is left to determine the action
of Φ� on the mod p homotopy groups of holim

 �
T H (Z)Cpn , or, what is equivalent

by the diagram (D1) of 7.1, to determine the behavior of the map

Ω�: �� T H (Z)hT
�! �� t(T H (Z))T

on the classes �2r�1(k) (it is easy to see that Ω� is an isomorphism in even
dimensions). This is done in [BM, x7] where it is computed that

TC2r�1(Z; F p) �=

(
Fp � Fp if r � 0, 1 mod (p� 1) or if r = 1

Fp otherwise

TC2r(Z; F p) �=

8><
>:

Fp if r = 0
Fp � Fp if (p� 1)jr, (r 6= 0)
f0g otherwise.
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By the result of [Mc] mentioned in the introduction TC�(Z; F p) �= K�(bZp ; Fp),
and the above groups are isomorphic to the respective algebraic K-theory groups
of the p-adic integers with mod p coefficients.
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