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Abstract. In this paper we investigate homological and homotopical aspects
of a concept of torsion which is general enough to cover torsion and cotorsion

pairs in abelian categories, t-structures and recollements in triangulated cat-

egories, and torsion pairs in stable categories. The proper conceptual frame-
work for this study is the general setting of pretriangulated categories, an

omnipresent class of additive categories which includes abelian, triangulated,

stable, and more generally (homotopy categories of) closed model categories
in the sense of Quillen, as special cases.

The main focus of our study is on the investigation of the strong connec-

tions and the interplay between (co)torsion pairs and tilting theory in abelian,
triangulated and stable categories on one hand, and universal cohomology the-

ories induced by torsion pairs on the other hand. These new universal cohomol-

ogy theories provide a natural generalization of the Tate-Vogel (co)homology
theory. We also study the connections betweeen torsion theories and closed

model structures, which allow us to classify all cotorsion pairs in an abelian

category and all torsion pairs in a stable category, in homotopical terms. For
instance we obtain a classification of (co)tilting modules along these lines. Fi-

nally we give torsion theoretic applications to the structure of Gorenstein and
Cohen-Macaulay categories, which provide a natural generalization of Goren-
stein and Cohen-Macaulay rings.
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Introduction

The concept of torsion is fundamental in algebra, geometry and topology. The
main reason is that torsion-theoretic methods allow us to isolate and therefore to
study better, important phenomena having a local structure. The proper frame-
work for the study of torsion is the context of torsion theories in a homological or
homotopical category. In essence torsion theories provide a successful formaliza-
tion of the localization process. The notion of torsion theory in an abelian category
was introduced formally by Dickson [41], although the concept was implicit in the
work of Gabriel and others from the late fifties, see the books of Stenström [100]
and Golan [56] for a comprehensive treatment. Since then the use of torsion theo-
ries became an indispensable tool for the study of localization in various contexts.
As important examples of localization we mention the localization of topological
spaces or spectra, the localization theory of rings and abelian categories, the local
study of an algebraic variety, the construction of perverse sheaves in the analy-
sis of possibly singular spaces, and the theory of tilting in representation theory.
The omnipresence of torsion suggests a strong motivation for the development of a
general theory of torsion and localization which unifies the above rather unrelated
concrete examples.

In this paper we investigate homological and homotopical aspects of a con-
cept of torsion which is general enough to cover the situations mentioned above.
More importantly we provide new connections between different aspects of torsion
in various settings, and we present new classes of examples and give a variety of
applications. We study their interplay in the general working context of pretrian-
gulated categories. This class of categories gains its importance from the fact that
it includes the following classes of homological or homotopical categories as special
cases:

• Abelian categories.
• Triangulated categories.
• Stable categories.
• Closed model categories in the sense of Quillen and their homotopy cat-

egories.

It is well-known that the proper framework for the study of homological algebra
and for large parts of representation theory is the context of abelian categories. In
recent years triangulated categories, and in particular derived and stable categories,
entered into the picture of homological representation theory in a very essential way,
offering new invariants and classification limits, through the work of Happel [57],
Rickard [91], Keller [69], Neeman [86], Happel-Reiten-Smalø [60], Krause [77]
and others. There is a formal analogy between abelian categories and triangulated
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INTRODUCTION 2

categories. In the first case we have exact sequences and in the second case we have
triangles, which can be regarded as a reasonable substitute for the exact sequences.
Pretriangulated categories, which can be regarded as a common generalization of
abelian and triangulated categories, incorporate at the same time also the stable
categories, which are very useful for the study of the behavior of several stable
phenomena occurring in homological representation theory.

Recall that a pretriangulated category is an additive category C equipped with
a pair (Σ,Ω) of adjoint endofunctors, where Ω is the loop functor and Σ is the sus-
pension functor, and in addition with a class of left triangles ∆ and a class∇ of right
triangles which are compatible with each other and with Σ and Ω. Important exam-
ples are abelian categories (in which case Σ = 0 = Ω) and triangulated categories
(in which case Σ or Ω is an equivalence). A central source of examples of pretrian-
gulated categories is an abelian category C with a functorially finite subcategory ω.
Then the stable category C/ω becomes in a natural way a pretriangulated category;
the functors Ω, Σ and the class of left and right triangles are defined via left and
right ω-approximations of objects of C, in the sense of Auslander-Smalø [13] and
Enochs [46]. As a special case we can choose C = mod(Λ), the category of finitely
presented modules over an Artin algebra, and let ω be the additive subcategory
generated by a (tilting or cotilting) module.

Another important source of examples of pretriangulated categories is coming
from homotopical algebra. It is well known that the proper framework for doing
homotopy theory is the context of closed model categories in the sense of Quillen
[88]. The homotopy category of a closed model category has a rich structure and in
particular is in a natural way a pretriangulated category, see the book of Hovey [64]
for a comprehensive treatment. Actually the stable category C/ω mentioned above
can be interpreted as a homotopy category of a suitable closed model structure,
see [24].

Torsion theories play an important role in the investigation of an abelian cat-
egory. There is a natural analogous definition for triangulated categories which is
closely related to the notion of a t-structure. These concepts of torsion generalize
naturally to the setting of pretriangulated categories. Our main interest lies in the
investigation of these generalized torsion theories on pretriangulated, and especially
on triangulated or stable categories. In this way we are provided with a convenient
conceptual umbrella for the study of various aspects of torsion and their interplay.
Our results indicate that torsion theories in this general setting can be regarded as
generalized tilting theory.

We would like to stress that there is an interesting interplay between the differ-
ent settings where we have torsion theories. An abelian category C is naturally
embedded in interesting triangulated categories like the bounded derived cate-
gory Db(C). A torsion theory in C induces in an natural way a torsion theory
(t-structure) in Db(C), a fact which was important in the investigation of tilting
in abelian categories [60]. Another important connection is the fact that a torsion
theory (t-structure) in a triangulated category gives rise to an abelian category,
the socalled heart [18]. Applying both constructions, an abelian category with a
given torsion theory gives rise to a new abelian category, actually also with a dis-
tinguished torsion theory. Further, given any pretriangulated category, there are
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naturally associated with it two triangulated categories, and we show that through
this construction there is a close relationship between (hereditary) torsion theories,
a fact which is used for constructing new (co)homology theories in the last chapter.

Tilting theory, a central topic in the representation theory of Artin algebras,
is intimately related to torsion theories in several different ways. When T is a
tilting module with pdT ≤ 1, that is Ext1(T, T ) = 0 and there is an exact sequence
0 −→ Λ −→ T0 −→ T1 −→ 0 with T0 and T1 summands of finite direct sums of copies
of T , there is an associated torsion theory (T ,F) where T = FacT (the factors
of finite direct sums of copies of T ). This torsion theory plays an important role
in tilting theory, and is closely related to a torsion theory for the endomorphism
algebra Γ = End(T )op. The tilting in abelian categories referred to above gave a
way of constructing mod(Γ) from mod(Λ) via the torsion theory (T ,F) and the
one induced in Db(mod(Λ)). When T is more generally a tilting module with
pdT < ∞, there is no natural associated torsion theory in mod(Λ) which plays a
similar role. But it is interesting that in this case we can show that T generates
a torsion theory in Db(mod(Λ)), whose heart is equivalent to mod(Γ). There is a
still more general concept of tilting module, called Wakamatsu tilting module. We
conjecture that any Wakamatsu tilting module of finite projective dimension is in
fact a tilting module. We give interesting reformulations of this conjecture. One
of them is that if (XT ,YT ) is a hereditary torsion theory in D(Mod Λ) generated
by a Wakamatsu tilting module T of finite projective dimension, then XT is closed
under products.

It is well-known that tilting theory can be regarded as an important general-
ization of classical Morita theory, which describes when two module categories are
equivalent. During the last fifteen years investigations of many authors extended
Morita theory for module categories to derived categories, thus offering new in-
variants and levels of classification. These investigations culminated in a Morita
Theory for derived categories of rings and DG-algebras, which describes explic-
itly when derived categories of rings or DG-algebras are equivalent as triangulated
categories. This important generalization can be regarded as a higher analogue
of tilting theory and plays a fundamental role in representation theory, providing
interesting connections with algebraic geometry and topology. In this paper we
interpret Morita theory for derived categories in torsion theoretic terms, and we
give simple torsion theoretic proofs of (slight generalizations of) central results of
Happel [57], Rickard [91] and Keller [69], concerning the construction of derived
equivalences. In addition this interpretation via torsion theories gives interesting
reformulations of several important open problems in various contexts, providing
new ways for their investigation.

On the other hand there are the notions of contravariantly, covariantly and
functorially finite subcategories of an additive category as introduced by Auslander
and Smalø in [13] and independently by Enochs in [46]. Special cases of these are
subcategories for which there exist a right or left adjoint of the inclusion. Con-
travariantly or covariantly finite subcategories play a fundamental role in the rep-
resentation theory of Artin algebras. They provide a convenient setting for the
study of several important finiteness conditions in various settings and there is
again a strong connection to tilting theory. For Artin algebras these categories
occur in pairs (X ,Y), under some natural additional assumptions, namely X is
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contravariantly finite, closed under extensions and contains the projectives and Y
is covariantly finite, closed under extensions and contains the injectives. Then X
and Y are in one-one correspondence, via the vanishing of Ext1 rather than of
Hom. This correspondence was observed by Auslander and Reiten in [9] in the
setting of Artin algebras and by Salce in the setting of abelian groups in [97]. By
definition the subcategories X and Y involved in the above correspondence form a
cotorsion pair (X ,Y). Cotorsion pairs have been studied recently by many people
leading to the recent proof of the Flat Cover Conjecture by Enochs, Bashir and
Bican [17]. A central concept which is omnipresent in the paper and that it is
closely related to cotorsion pairs is that of a (relative) (Co)Cohen-Macaulay object.
Their importance follows from the fact that for any cotorsion pair (X ,Y) in an
abelian category, the cotorsion class X , resp. the cotorsion-free class Y, consists of
relative Cohen-Macaulay, resp. CoCohen-Macaulay, objects with respect to X ∩Y.
We would like to stress that prominent examples of cotorsion theories are coming
from Gorenstein rings, and, more generally, from tilting or cotilting modules, where
Cohen-Macaulay modules play an important role. Generalizing, we define and in-
vestigate in this paper Gorenstein and Cohen-Macaulay abelian categories and we
prove structure results for them in the context of (co)torsion theories.

For abelian and triangulated categories (in the latter case first formulated in
the language of t-structures), there is a close connection between X being a torsion
class of a torsion theory and X admitting a right adjoint (and between Y being
a torsion-free class of a torsion theory and Y admitting a left adjoint). There
is a similar connection in the setting of pretriangulated categories, although the
extension of the results does not work so smoothly in general. The main reason
is that the compatibility of the left and right triangles is not so well behaved as
in the abelian or triangulated case. However we prove the corresponding result
under some additional assumptions. Of particular interest for us is the case of a
stable category C/ω. Here we obtain at the same time the correspondence between
contravariantly finite and covariantly finite subcategories via Ext1 discussed above
and the torsion theory correspondence between the associated subcategories of C/ω,
where ω = X ∩ Y.

As already mentioned such a stable category C/ω is the homotopy category of
a closed model structure in C in the sense of Quillen, which is defined via left/right
approximations of objects of C by objects from ω. In this paper we show that there is
a strong connection between the pairs of subcategories realizing the correspondence
described above, and closed model structures in the sense of Quillen in C. Recently
a similar connection from a different viewpoint was observed independently by
Hovey [65]. More precisely our results give a classification of all cotorsion pairs
(X ,Y) in an abelian category C with X ∩Y contravariantly or covariantly finite, in
terms of suitable closed model structures. This leads to a classification of all torsion
theories in a stable category of an abelian category. As a consequence we obtain
an interesting connection between (co)tilting modules and closed model structures.

In general it is of central importance for the structure of the pretriangulated
category in question, that a reasonable subcategory is a torsion or torsion-free class.
For instance when we have a torsion theory in a stable pretriangulated category of
an abelian category, we define new universal (co)homology theories on the abelian
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category which are complete with respect to the torsion or torsion free class in
an appropriate sense. These new (co)homology theories are generalizations of the
Tate-Vogel (co)homology theories to the non-Gorenstein case. This procedure pro-
vides a useful interplay between torsion-theoretic properties of the stable category
and homological properties of the abelian category. In this setting there is a strong
connection between the relative homological algebra, in the formulation proposed
by Butler-Horrocks and later by Auslander-Solberg, induced by the torsion theory
and the behavior of the (co)homology theories. This connection has important
consequences for the homological structure of the abelian category. For instance
these investigations allow us to generalize recent results of Avramov-Martsinkovsky,
see [16], from finitely generated modules of finite Gorenstein dimension, to arbi-
trary modules, provided that a suitable torsion theory exists in the stable module
category. We show that such torsion theories exist in many cases, and in particular
in the stable module category of, not necessarily finitely generated, modules over an
Artin algebra. In this case we construct big Cohen-Macaulay modules and modules
of virtually finite projective dimension, and we show that these classes of modules
define a new relative cohomology theory for Artin algebras, called Cohen-Macaulay
cohomology, which has intimate connections with many homological conjectures.

We have provided background material, together with motivation, through re-
calling previous developments. Some of the main results of the paper have been
mentioned along the way. But to make it easier to focus on the essential points, we
collect a list of the main features below.

• Unify various concepts of torsion in different settings, and provide a gen-
eral framework for studying torsion theories.

• Develop a general theory of torsion in pretriangualated categories, in-
cluding interplay between the various settings.

• Provide methods for constructing torsion theories.
• Give applications to tilting theory.
• Give simpler (torsion theoretic) proofs of (slightly more general) results

in the Morita theory of derived categories.
• Give interesting reformulations of homological conjectures for Artin alge-

bras in terms of properties of torsion theories in the unbounded derived
category of all modules.

• Establish relationsip between cotorsion theories (X ,Y) in an abelian cat-
egory C and torsion theories in the stable category C/X ∩ Y.

• Give connections with closed model structures and classification of torsion
and cotorsion theories in terms of these.

• Give structure results for (generalizations of) Gorenstein rings and, suit-
ably defined, Gorenstein and Cohen-Macaulay abelian categories, in the
context of (co)torsion theories.

• Give methods for constructing Gorenstein Categories out of certain Co–
hen-Macaulay categories.

• Construct interesting (co)torsion theories in abelian categories equipped
with suitable Nakayama functors, where the Cohen-Macaulay objects
constitute the (co)torsion class and the CoCohen-Macaulay objects con-
stitute the (co)torsion-free class.
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• Construct new (co)homology theories generalizing Tate-Vogel (co)homo–
logy using torsion theories.

The article is organized as follows.
In Chapter I, which is of preliminary nature, we recall some definitions and re-

sults, most of them well-known, concerning (hereditary/cohereditary) torsion theo-
ries in an abelian or triangulated category, which serve as motivation for the results
of the rest of the paper. Here we observe that in the triangulated case the con-
cept of a torsion theory essentially coincides with the concept of a t-structure in
the sense of Beilinson-Bernstein-Deligne [18]. We discuss briefly the connection
between torsion theories in abelian and derived categories investigated in [60] and
indicate the relationship with tilting theory.

In Chapter II we introduce the fairly general concept of torsion theory (X ,Y)
in a pretriangulated category. But first we recall basic results on left/right triangu-
lated and pretriangulated categories, and provide a rather large source of examples.
We give basic properties of torsion theories, and show that the notion specializes to
the concept of torsion theory in abelian and triangulated categories discussed in the
previous chapter. We also show that we can lift a hereditary or cohereditary torsion
theory in a pretriangulated category to such a pair in the left or right stabilization.

In Chapter III we give a method for constructing torsion theories in triangulated
categories containing all small coproducts. This is accomplished by starting with a
set of compact objects. We investigate properties of the heart of this torsion theory,
and give conditions for the heart to be a module category. Then we use these results
to give applications to tilting theory, and to proving (a slight generalization of) a
result of Rickard on Morita theory of derived categories.

In Chapter IV we deal with hereditary torsion theories generated by compact
objects in a triangulated category with arbitrary small coproducts. Following the
fundamental work of Keller [69] on derived categories of DG-algebras, we describe
the torsion class of the hereditary torsion theory generated by a set of compact
objects in terms of derived categories of appropriate DG-algebras. These results
provide simple torsion theoretic proofs of basic results of Happel [57], Rickard [91]
and Keller [69]. We end with the relationship between homological conjectures in
the representation theory of Artin algebras and (hereditary) torsion theories in the
unbounded derived category of the algebra.

In Chapters V and VI we investigate torsion theories in pretriangulated cate-
gories of the form C/ω where C is abelian and ω is a functorially finite subcategory
of C. We give sufficient conditions for the existence of torsion theories, and give the
relationship with cotorsion pairs in C. We also give applications to tilting theory. In
Chapter VI we discuss the problem of when a torsion or torsion free class in a stable
category is triangulated. We show that this happens if and only if the functorially
finite subcategory ω is the category of projective or injective modules. In this case
the torsion subcategory is related to the subcategory of Cohen-Macaulay objects
and the torsion free subcategory is related to the subcategory of objects with finite
projective dimension. We show that natural sources for such torsion theories are co-
torsion triples induced by resolving and coresolving functorially finite subcategories
of C.
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In Chapter VII we introduce and investigate in detail Gorenstein and Cohen-
Macaulay abelian categories, which appear to be the proper generalizations of the
category of (finitely generated modules) over a (commutative Noetherian) Goren-
stein and Cohen-Macaulay ring. We give structure results for them in the context
of (co)torsion theories in connection with the finiteness of various interesting homo-
logical dimensions. In particular we show that, under mild conditions, the trivial
extension, in the sense of [48], of a Cohen-Macaulay category is Gorenstein. We
also study minimal Cohen-Macaulay approximations and we give applications to
Gorenstein and Cohen-Macaulay rings which admit a Morita self-duality.

In Chapter VIII we investigate homotopy theoretic properties of torsion and
cotorsion theories by studying the connections with closed model structures, thus
giving a homotopy theoretic interpretation of the results of the previous chapters.
In particular we give classifications of cotorsion pairs and cotorsion triples in an
abelian category and torsion pairs in a stable category in terms of closed model
structures. As an application we give a closed model theoretic classification of
(co)tilting modules over an Artin algebra.

In the last two chapters we apply the results of the previous chapters to con-
struct and investigate universal (co)homology extension functors on an abelian cat-
egory C, when the stable category C/ω admits a (co)hereditary torsion theory. We
show that these universal (co)homology extension functors are natural generaliza-
tions of the Tate-Vogel (co)homology functors studied in homological group theory,
commutative algebra and representation theory. More importantly we show that
the generalized Tate-Vogel (co)homology functors fit nicely in long exact sequences
involving the relative extension functors induced by the torsion or torsion-free class.
Working in a Nakayama abelian category, which is a natural generalization of
the module category of an Artin algebra, we show that there are well-behaved
(co)hereditary torsion pairs which are intimately related to Cohen-Macaulay and
CoCohen-Macaulay objects. We close the paper by studying the resulting universal
(co)homology extension functors induced by the (Co)Cohen-Macaulay objects.

Convention. From now on and following the current increasingly strong
trend, we use throughout the paper the terminology torsion pair instead of torsion
theory and TTF-triple instead of TTF-theory.

Throughout the paper we compose morphisms in the diagrammatic order, i.e.
the composition of morphisms f : A −→ B and g : B −→ C in a given category is
denoted by f ◦ g. Our additive categories admit finite direct sums.

Acknowledgement. The authors would like to thank the referees for their
useful comments.



CHAPTER I

Torsion Pairs in Abelian and Triangulated
Categories

In this chapter we give definitions and useful properties of torsion pairs in
abelian and triangulated categories. For triangulated categories we show that our
definition is closely related to the notion of t-structure in the sense of [18] and to the
notion of aisle in the sense of [74]. We also recall an interesting interplay between
torsion pairs in abelian and triangulated categories related to tilting theory. This
serves as background for more general results proved in later chapters.

1. Torsion Pairs in Abelian Categories

In this section we recall some basic results concerning torsion pairs in an abelian
category.

We start by fixing some notation.
If Z is a class of objects in an additive category C, we denote by

⊥Z := {X ∈ C | C(X,Z) = 0}

the left orthogonal subcategory of Z, and by

Z⊥ := {Y ∈ C | C(Z, Y ) = 0}

the right orthogonal subcategory of Z.
Assume now that C is an abelian category.

Definition 1.1. A torsion pair in an abelian category C is a pair (X ,Y)
of strict (i.e. closed under isomorphisms) full subcategories of C satisfying the
following conditions:

(i) C(X,Y ) = 0, ∀X ∈ X , ∀Y ∈ Y.
(ii) For any object C ∈ C there exists a short exact sequence:

0 −→ XC
fC−−→ C

gC−−→ Y C −→ 0 (1)

in C such that XC ∈ X and Y C ∈ Y.

If (X ,Y) is a torsion pair, then X is called a torsion class and Y is called a
torsion-free class.

It is well–known and easy to see that for a torsion pair (X ,Y) in C we have
that X is closed under factors, extensions and coproducts and Y is closed under
extensions, subobjects and products, and moreover: X⊥ = Y and ⊥Y = X . Con-
versely if C is a locally small complete and cocomplete abelian category, then any
full subcategory of C which is closed under factors, extensions and coproducts, is

8
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a torsion class. Dually any full subcategory of C which is closed under subobjects,
extensions and products, is a torsion-free class.

For a torsion pair (X ,Y) in C the assignment R(C) = XC extends to an additive
functor R : C −→ X which is a right adjoint of the inclusion i : X ↪→ C, that is X is
a coreflective subcategory of C. Moreover the morphism fC serves as the counit of
the adjoint pair (i,R) evaluated at C. Dually the assignment L(C) = Y C extends
to an additive functor L : C −→ Y which is a left adjoint of the inclusion j : Y ↪→ C,
that is Y is a reflective subcategory of C. Moreover the morphism gC serves as the
unit of the adjoint pair (L, j) evaluated at C.

To make comparison with our later results easier, we include the following
characterization of torsion or torsion-free classes.

Proposition 1.2. Let C be an abelian category and let X and Y be full subcat-
egories of C closed under isomorphisms. Then we have the following.

(1) Y is a torsion-free class in C if and only if the inclusion j : Y ↪→ C admits
a left adjoint L : C −→ Y, and Y is closed under extensions of left exact sequences,
that is, if 0 −→ Y1 −→ C −→ Y2 is a left exact sequence with Y1, Y2 ∈ Y, then C lies
in Y.

(2) X is a torsion class in C if and only if the inclusion i : X ↪→ C admits a
right adjoint R : C −→ X , and X is closed under extensions of right exact sequences,
that is, if X1 −→ C −→ X2 −→ 0 is a right exact sequence with X1, X2 ∈ X , then C
lies in X .

Proof. (1) (⇐) If Y is closed under extensions of left exact sequences, then
trivially Y is closed under extensions and subobjects. Let L : C −→ Y be the left
adjoint of the inclusion j : Y ↪→ C and let gC : C −→ L(C) be the unit evaluated
at C. Since Y is closed under subobjects, it is trivial to see that the inclusion
Im(gC) ↪→ L(C) is invertible, hence gC is epic. Let fC : XC −→ C be the kernel of
gC . Then XC ∈ ⊥Y. Indeed if α : XC −→ Y is a morphism with Y ∈ Y, then in

the push-out 0 −→ Y −→ Y ′
h−→ L(C) −→ 0 of 0 −→ XC −→ C −→ L(C) −→ 0 along α,

the object Y ′ is in Y since Y is closed under extensions. Since gC is the reflection
morphism of C in Y it follows directly that h splits, hence α factors through fC ,
say via a morphism β : C −→ Y . Since Y ∈ Y, then β factors through gC , and this
implies trivially that β = 0, so α = 0. Hence we have XC ∈ ⊥Y. Then by definition
we have that Y is the torsion-free class of the torsion pair (⊥Y,Y) in C.

(⇒) Let Y be a torsion-free class and let 0 −→ Y1
α−→ C

β−→ Y2 be a left exact
sequence with Y1, Y2 ∈ Y. Since Y is closed under subobjects, Im(β) ∈ Y, and since
Y is closed under extensions, we have C ∈ Y. Hence Y is closed under extensions of
left exact sequences and as noted before the inclusion Y ↪→ C admits a left adjoint.

(2) The proof is dual. �

Let (X ,Y) be a torsion pair in C, let R be the right adjoint of the inclusion
i : X ↪→ C and let L be the left adjoint of the inclusion j : Y ↪→ C. We recall that
(X ,Y) is said to be hereditary, resp. cohereditary, if the torsion class X is closed
under subobjects, resp. the torsion–free class Y is closed under factors. Hereditary
torsion pairs form a well-behaved class of torsion pairs which is important in ring
theory in connection with the localization theory of rings and modules, since they
correspond bijectively with Gabriel topologies, see the books of Golan [56] and
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Stenström [100] for details and more information. It is well–known that (X ,Y) is
hereditary if and only if X is a Serre subcategory if and only if the (idempotent
radical) functor iR : C −→ C is left exact [100]. Dually (X ,Y) is cohereditary if and
only if Y is a Serre subcategory if and only if the (idempotent coradical) functor
jL : C −→ C is right exact.

A nice situation occurs when the torsion class Y of a hereditary torsion pair
(Y,Z) is a torsion-free class. In this case Y induces a torsion, torsion-free triple,
TTF-triple for short, in the abelian category C, that is, a triple (X ,Y,Z) of strict
full subcategories of C such that (X ,Y) and (Y,Z) are torsion pairs. Then Y is
called a TTF-class. TTF-triples occur frequently in practice in connection with
recollement of abelian categories. For instance TTF-triples in generic representation
theory of the finite general linear group are related to stratifications of categories
which are of interest in representation theory, see [80]. In ring theory TTF-triples
correspond bijectively to idempotent ideals, see [100].

If (X ,Y,Z) is a TTF-triple in C, then obviously (X ,Y) is cohereditary and
(Y,Z) is hereditary. It follows that the TTF-class Y is a reflective and coreflective
Serre subcategory of C. If V is a Serre subcategory of C, then we denote by C/V the
induced Gabriel quotient, see [49] for details and more information. The following
result, proved in [53] in a different way, describes the Gabriel quotient C/Y and
presents an interesting connection between the involved subcategories in a TTF-
triple. We include a simple proof for comparison with our results in later chapters.

Proposition 1.3. [53] If (X ,Y,Z) is a TTF-triple in C then there exists an

equivalence: X ∩ Z ≈−→ C/Y. In particular the category X ∩ Z is abelian.

Proof. Let π : C −→ C/Y be the exact quotient functor. We show that the

composition F : X ∩Z ↪→ C π−→ C/Y is an equivalence. If f : U1 −→ U2 is a morphism
in X ∩ Z such that π(f) = 0, then by the construction of C/Y we have that Im(f)
lies in Y. Then Im(f) = 0 since U1 is in X . Hence f = 0 and consequently F is
faithful. If α : π(U1) −→ π(U2) is a morphism in C/Y, where the Ui are in X∩Z, then

α is represented by a diagram U1
s←− U3

f−→ U2 where s is a morphism with kernel
and cokernel in Y. Since (X ,Y) = 0 = (Y,Z) we infer that s is invertible. Then it
is easy to see that α = π(s−1 ◦ f). Hence F is full. Finally let π(C) be an object
in C/Y. Consider the canonical exact sequences 0 −→ XC −→ C −→ Y C −→ 0 and
0 −→ YC −→ C −→ ZC −→ 0. Applying the exact functor π to the above sequences,

we have isomorphisms π(XC)
∼=−→ π(C)

∼=−→ π(ZC). Let U be the image of the
composition XC −→ C −→ ZC . Then U lies in X ∩ Z since X is closed under
factors and Z is closed under subobjects. Since the composition π(XC) −→ π(ZC)
is invertible, we have π(C) ∼= π(U). This shows that F is surjective on objects. �

2. Torsion Pairs in Triangulated Categories

Motivated by the notion of a torsion pair in the abelian case we study in
this section the analogous concept of a (hereditary) torsion pair in triangulated
categories, and give the relationship to t-structures.

Let C be a triangulated category with suspension functor Σ. A direct analogue
of the definition of a torsion pair in an abelian category in the triangulated case is
the following.
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Definition 2.1. A torsion pair in C is a pair of strict full subcategories (X ,Y)
of C satisfying the following conditions:

(i) C(X ,Y) = 0.
(ii) Σ(X ) ⊆ X and Σ−1(Y) ⊆ Y.

(iii) For any C ∈ C there exists a triangle

XC
fC−−→ C

gC−−→ Y C
hC

−−→ Σ(XC) (2)

in C such that XC ∈ X and Y C ∈ Y.

Then X is called a torsion class and Y is called a torsion-free class.

The following observation shows that if (i) and (iii) hold, then Σ(X ) ⊆ X if
and only if Σ−1(Y) ⊆ Y. Moreover if (X ,Y) is a torsion pair in C, then (X ,Y) is
complete with respect to the vanishing of Hom.

Remark 2.2. Suppose that the pair (X ,Y) satisfies (i), (iii) above.
(1) If Σ(X ) ⊆ X , then: X⊥ = Y and Σ−1(Y) ⊆ Y. Indeed by (i), Y ⊆ X⊥. If

C ∈ X⊥, then by (iii) we have fC = 0. This implies that Y C ∼= C ⊕ Σ(XC). Since
Σ(XC) ∈ X , we have trivially that C ∼= Y C ∈ Y. For any Y ∈ Y we now have
C(X ,Σ−1(Y )) ∼= C(Σ(X ), Y ) = 0. Hence Σ−1(Y ) ∈ X⊥ = Y, i.e. Σ−1(Y) ⊆ Y.

(2) Dually if Σ−1(Y) ⊆ Y, then: ⊥Y = X and Σ(X ) ⊆ X .
(3) Hence if (X ,Y) is a torsion pair in C, then: ⊥Y = X and X⊥ = Y.
(4) If (X ,Y) is a torsion pair in C, then X , resp. Y, is a right, resp. left,

triangulated subcategory of C in the sense of [19].

Recall that a full subcategory Z of C is said to be closed under extensions, if
for any triangle Z1 −→ C −→ Z2 −→ Σ(Z1) in C with Z1, Z2 ∈ Z, the object C lies in
Z. Using the above remark, it is easy to see that if (X ,Y) is a torsion pair in C,
then X and Y are closed under extensions.

The following result, first observed by Keller-Vosieck in [74], is a triangulated
analogue of Proposition 1.2. Note that our torsion, resp. torsion-free, classes,
coincide with aisles, resp. coaisles, in the sense of [74].

Proposition 2.3. Let C be a triangulated category and let X and Y be full
subcategories of C closed under isomorphisms. Then we have the following.

(1) Y is a torsion-free class if and only if Y is closed under extensions and
Σ−1, and the inclusion j : Y ↪→ C admits a left adjoint L : C −→ Y.

(2) X is a torsion class if and only if X is closed under extensions and Σ, and
the inclusion i : X ↪→ C admits a right adjoint R : C −→ X .

Proof. (1) (⇐) Let L : C −→ Y be the left adjoint of the inclusion j : Y ↪→ C.

For C ∈ C let XC
fC−−→ C

gC−−→ L(C)
hC

−−→ Σ(XC) be a triangle in C where gC is the
counit of (L, j) evaluated at C. Applying the cohomological functor C(−,Y) to the

above triangle we get the long exact sequence C(ΣL(C),Y)
(Σ(gC),Y)−−−−−−→ C(Σ(C),Y) −→

C(Σ(XC),Y) −→ C(L(C),Y)
C(gC ,Y)−−−−−→ C(C,Y) in which (gC ,Y) is invertible. Since Y

is closed under Σ−1, then (Σ(gC),Y) which is isomorphic to (gC ,Σ−1(Y)), is also
invertible. It follows that C(Σ(XC),Y) ∼= C(XC ,Σ

−1(Y)) = 0. We set X := ⊥Y,
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and it suffices to show that XC ∈ X . Now let α : XC −→ Y be a morphism with
Y ∈ Y. Consider the following morphism of triangles:

XC
fC−−−−→ C

gC−−−−→ L(C)
hC

−−−−→ Σ(XC)

α

y ∃ β
y ∥∥∥ Σ(α)

y
Y

f ′−−−−→ Y ′
g′−−−−→ L(C)

h′−−−−→ Σ(Y )

Then Y ′ ∈ Y since Y is closed under extensions. Since gC is the coreflection of C
in Y, there exists a unique morphism ρ : L(C) −→ Y ′ such that gC ◦ ρ = β. Then
α◦f ′ = fC ◦β = fC ◦gC ◦ρ = 0. Hence there exists a morphism τ : XC −→ Σ−1L(C)
such that τ ◦ Σ−1(h′) = α. Since C(XC ,Σ

−1(Y)) = 0, we have τ = 0 and then
α = 0. We infer that XC ∈ ⊥Y = X .

(⇒) If Y is a torsion-free class with corresponding torsion class X , then by
Remark 2.2, we have X = ⊥Y which is closed under Σ and X⊥ = Y which is closed
under Σ−1. This implies trivially that Y is closed under extensions. Consider the

triangle XC
fC−−→ C

gC−−→ Y C
hC

−−→ Σ(XC) of Definition 2.1. Applying the functor
C(−,Y) to this triangle and using that Σ(X ) ⊆ X we see directly that C(gC ,Y) :
C(Y C ,Y) −→ C(C,Y) is invertible, i.e. gC is the coreflection morphism of C in Y.
Hence setting L(C) = Y C we obtain a left adjoint L : C −→ Y of the inclusion
j : Y ↪→ C.

(2) The proof is dual. �

Remark 2.4. If (X ,Y) is a torsion pair in C, then so is (Σn(X ),Σn(Y)), ∀n ∈ Z.
Indeed obviously we have C(Σn(X ),Σn(Y)) = 0, Σ(Σn(X )) ⊆ Σn(X ) and for any
C ∈ C we have the triangle ΣnRΣ−n(C) −→ C −→ ΣnLΣ−n(C) −→ Σ(ΣnRΣ−n(C)).

Inspired by the characterization of hereditary torsion pairs in abelian categories,
we make the following definition (note that “left” or “right” exact functors between
triangulated categories are exact).

Definition 2.5. A torsion pair (X ,Y) in C is called hereditary, resp. co-
hereditary, if the idempotent functor iR : C −→ C is exact, resp. the idempotent
functor jL : C −→ C is exact.

We recall that a thick subcategory of C is a full triangulated subcategory of
C closed under direct summands. A thick subcategory Z ⊆ C is called localizing,
resp. colocalizing, if the inclusion Z ↪→ C admits a right, resp. left, adjoint. If Z is
a thick subcategory of C then we denote by C/Z the induced quotient [102]. Thick
subcategories can be regarded as triangulated analogues of Serre subcategories. If
U ,V are full subcategories of C, then we denote by U ?V the category of extensions
of V by U , that is, the full subcategory of C consisting of objects C which may be
included in a triangle U −→ C −→ V −→ Σ(U) in C, with U ∈ U and V ∈ V. The
next result, which has no direct analogue in the abelian case, shows that hereditary
torsion pairs coincide with cohereditary torsion pairs and includes a result of Bondal
and Kapranov [33].

Proposition 2.6. If X and Y are full subcategories of C, then the following
conditions are equivalent.
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(i) (X ,Y) is a hereditary torsion pair in C.
(ii) (X ,Y) is a cohereditary torsion pair in C.

(iii) (X ,Y) is a torsion pair in C and Σ−1(X ) ⊆ X .
(iv) (X ,Y) is a torsion pair in C and Σ(Y) ⊆ Y.
(v) C(X ,Y) = 0, X and Y are thick subcategories of C, and C is generated as

a triangulated category by X and Y.
(vi) X is a localizing subcategory of C and there exists a short exact sequence:

0 −−−−→ X i−−−−→ C L−−−−→ Y −−−−→ 0

(vii) Y is a colocalizing subcategory of C and there exists a short exact sequence:

0 −−−−→ Y j−−−−→ C R−−−−→ X −−−−→ 0

Proof. (i) ⇔ (iii) If Σ−1(X ) ⊆ X , then X is a full triangulated subcategory
of C. Hence i : X ↪→ C is exact. It is well–known that left or right adjoints of exact
functors between triangulated categories are exact, see [102]. Hence R is exact and
then so is iR : C −→ C, i.e. (X ,Y) is hereditary. If (X ,Y) is hereditary, then iR is
exact, in particular iR commutes functorially with Σ−1. This implies trivially that
Σ−1(X ) ⊆ X .

The proof of (ii) ⇔ (iv) is dual and the proof of (iii) ⇔ (iv) follows from the
fact that if X⊥ = Y and ⊥Y = X , then Σ−1(X ) ⊆ X if and only if Σ(Y) ⊆ Y.

(i) ⇔ (v) Obviously (i) implies (v). If (v) holds, then let D = X ? Y and it
suffices to show that D is a triangulated subcategory of C. Obviously D is closed
under Σ,Σ−1. Let α : D1 −→ D2 be a morphism in D, so that there are triangles

Xi
fi−→ Di

gi−→ Yi
hi−→ Σ(Xi) with Xi ∈ X and Yi ∈ Y, i = 1, 2. Since C(X ,Y) = 0

we have f1 ◦ α ◦ g2 = 0. Hence there exists a diagram

X1
f1−−−−→ D1

g1−−−−→ Y1
h1−−−−→ Σ(X1)

β

y α

y ∃ γ
y Σ(β)

y
X2

f2−−−−→ D2
g2−−−−→ Y2

h2−−−−→ Σ(X2)

By a result of Verdier [104], this can be completed to a 3× 3−diagram of triangles
which implies in particular that a cone D3 of α is included in a triangle X3 −→ D3 −→
Y3 −→ Σ(X3) where X3 is a cone of β and Y3 is a cone of a morphism γ making the
above diagram commutative. Since X ,Y are triangulated, it follows that D3 ∈ D.
Hence D is triangulated category.

(i) ⇔ (vi) Assume that (i) holds. Since X = ⊥Y, it follows trivially that X is
thick and by Proposition 2.3 we know that X is coreflective and Y is reflective with
coreflection functor L. Consider the quotient C/X which is defined as the category
of fractions C[J−1], where J is the class of morphisms which admit a cone in X .
This implies that L : C −→ Y sends J to isomorphisms in Y. If F : C −→ E is an exact
functor to a triangulated category with this property, then F factorizes uniquely
through L by defining F ∗ : Y −→ E , F ∗ = F j. Indeed F ∗L = F jL is isomorphic to
F , since the unit IdC −→ jL lies in J and F inverts J. Hence F ∗L = F . If G : C −→ E
is another exact functor such that GL = F , then G = GLj = F j = F ∗. It follows
that L : C −→ Y represents the quotient functor C −→ C[J−1] = C/X , i.e. it induces
a triangle equivalence C/X −→ Y. Conversely since X is coreflective, by Proposition
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2.3 we have a hereditary torsion pair (X ,X⊥) in C. Then by a well-known result
of Verdier, see [102], we have triangle equivalences C/X ≈ Y = X⊥.

(i)⇔ (vii) The proof is dual and is left to the reader. �

We recall that a Grothendieck category is an abelian category with a generator
and exact filtered colimits. The triangulated analogue of a Grothendieck category
is usually considered to be a compactly generated triangulated category. We
recall that a set U of objects of C is called a generating set, if U⊥ = 0 and U
is closed under Σ and Σ−1. An object T ∈ C is called compact, if the functor
C(T,−) : C −→ Ab preserves coproducts. In what follows we denote by Cb the full
subcategory of C consisting of all compact objects. Then C is compactly generated
if C has coproducts and admits a set of compact generators. This is equivalent
to saying that C has coproducts and coincides with the smallest full triangulated
subcategory which is closed under coproducts and contains the compact objects.
Important examples of compactly generated triangulated categories include the
following:

• The unbounded derived category D(Mod(Λ)) of an associative ring Λ;
the compact objects are the perfect complexes.

• The stable homotopy category of spectra, see [81]; the compact objects
are the finite CW-complexes.

• The unbounded derived category of quasi-coherent sheaves over a quasi-
compact separated scheme; the compact objects are the complexes of the
thick subcategory generated by the suspensions of powers of an ample
line bundle, see [85].

• The stable module category Mod(kG) of the group algebra of a finite
group over a field k; the compact objects are the objects induced by the
finitely generated kG-modules.

The corresponding characterization of torsion or torsion-free classes in a com-
pactly generated triangulated category is analogous to the characterization in Grot–
hendieck categories, modulo some set-theoretic restrictions which are necessary for
the existence of (left or right ) triangulated quotients.

Corollary 2.7. Let C be a compactly generated triangulated category.
(1) For a strict full subcategory X of C, the following are equivalent.

(i) X is the torsion class of a (hereditary) torsion pair in C.
(ii) X is closed under Σ (and Σ−1), extensions, coproducts and the right

triangulated quotient C/X has small Hom sets.

(2) For a strict full subcategory Y of C, the following are equivalent.

(i) Y is the torsion-free class of a (cohereditary) torsion pair in C.
(ii) Y is closed under Σ−1 (and Σ), extensions, products and the left trian-

gulated quotient C/Y has small Hom sets.

Proof. (1) (ii)⇒ (i) By hypothesis X is a full right triangulated subcategory
of C closed under coproducts. Then by Proposition 2.3 it suffices to show that the
inclusion X ↪→ C admits a right adjoint, and this follows from [24]. The converse
follows trivially from Proposition 2.6.
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(2) The proof is similar to (1) using Neeman’s Theorem [86] that in a compactly
generated triangulated category C, a product preserving homological functor C −→
Ab is representable. �

Motivated by the definition of a TTF-triple in an abelian category, we introduce
the notion of a TTF-triple in a triangulated category.

Definition 2.8. A torsion, torsion-free triple, TTF-triple for short, in C
is a triple (X ,Y,Z) of full subcategories of C such that the pairs (X ,Y) and (Y,Z)
are torsion pairs. In this case Y is called a TTF-class.

If (X ,Y,Z) is a TTF-triple in C, then we have that (X ,Y) is cohereditary and
(Y,Z) is hereditary. Hence by Proposition 2.6, X is a thick localizing subcategory
of C, Z is a thick colocalizing subcategory of C, and Y is a thick localizing and
colocalizing subcategory of C. As usual we denote by R : C −→ X the right adjoint
of the inclusion i : X ↪→ C, by T : C −→ Z the left adjoint of the inclusion k : Z ↪→ C,
and by L : C −→ Y, resp. S : C −→ Y the left, resp. right, adjoint of the inclusion
j : Y ↪→ C. Then we have adjoint pairs:

(
i,R

)
: X

i−→
R←−
C

L−→
j←−
Y :

(
L, j
)

and
(
j,S
)

: Y
j−→
S←−
C

T−→
k←−
Z :

(
T,k

)
and ∀C ∈ C we have the following functorial exact commutative diagram of trian-

gles, where the involved morphisms are the adjunctions:

iR(C) iR(C)y y
jS(C) −−−−→ C −−−−→ kT(C) −−−−→ ΣjS(C)∥∥∥ y y ∥∥∥
jS(C) −−−−→ jL(C) −−−−→ jLkT(C) −−−−→ ΣjS(C)y y

ΣiR(C) ΣiR(C)

The second vertical triangle in the above diagram shows that the above reflec-
tion/coreflection functors are connected with a natural isomorphism:

jS iR
∼=−→ Σ−1jL kT : C −→ C

In other words for any object C in C we have: YXC

∼=−→ Σ−1(Y Z
C

). Observe that
for any two objects A,B in C we have natural isomorphisms:

C
(
L(A), B

) ∼=←− Y
(
L(A),S(B)

) ∼=−→ C
(
A,S(B)

)
.

The proof of the following analogue of Proposition 1.3 is a direct consequence of
Proposition 2.6 and the above diagram.

Corollary 2.9. If (X ,Y,Z) is a TTF-triple in C, then there are triangle

equivalences: X ≈←− C/Y ≈−→ Z.



2. TORSION PAIRS IN TRIANGULATED CATEGORIES 16

Note that the equivalence X ≈−→ Z above is given explicitly by the functor
Ti : X −→ Z which is given by X 7→ ZX , with quasi-inverse the functor Rk : Z −→ X
which is given by Z 7→ XZ .

Remark 2.10. If (X ,Y,Z) is a TTF-triple in an abelian category C, then
in general it is not true that X and Z are equivalent. However if C has enough
projectives and enough injectives, then it is not difficult to see that the analogous

functors as above induce an equivalence A ≈−→ B, where B is the Giraud subcategory
of C corresponding to the hereditary torsion pair (Y,Z), and A is the co-Giraud
subcategory of C corresponding to the cohereditary torsion pair (X ,Y), see [100]
for the concept of a (co-)Giraud subcategory corresponding to a (co-)hereditary

torsion pair. Since there are equivalences A ≈←− C/Y ≈−→ B, by Proposition 1.3 we

have equivalences A ≈←− X ∩ Y ≈−→ B.
With a proper definition of TTF-triple (X ,Y,Z) in a stable category of an

abelian category, we shall see in Chapter VI that the subcategories X and Z are
equivalent up to projective or injective summands.

TTF-triples in triangulated categories occur frequently in practice and play an
important role in connection with stratifications of derived categories of stratified
spaces and highest weight categories, see [18], [39]. In the setting of compactly gen-
erated triangulated categories we have the following existence result of TTF-triples
which will be useful later in connection with tilting theory in derived categories.

Proposition 2.11. Let C and D be compactly generated triangulated categories,
and let F : D −→ C be a fully faithful exact functor which preserves coproducts
and compact objects. Then F admits a right adgoint G : C −→ D which preserves
coproducts, and if X = Im(F ) is the essential image of F , then there exists a
TTF-triple (X ,Y,Z) in C, where Y := Ker(G), and Z := Y⊥.

Proof. Since the functor F preserves coproducts, the existence of G follows
by [85]. Note that by [85] the functor G : C −→ D preserves coproducts, since F
preserves compact objects. Since G preserves coproducts, it follows that G admits
a right adjoint H : D −→ C. Hence we have an adjoint triple (F,G,H). Now it
is easy to see that in such an adjoint triple, F is fully faithful if and only if H
is fully faithful [34]. Hence H is fully faithful. Let Z := Im(H) be the essential
image of H, and let Y := Ker(G). Observe that C(X ,Y) = 0 and C(Y,Z) = 0.
Indeed if X ∈ X , Y ∈ Y, and Z ∈ Z, then X = F (A) for some object A ∈ D,

G(Y ) = 0, and Z = H(B) for some object B in D. Then C(X,Y ) = C(F (A), Y )
∼=−→

D(A,G(Y )) = 0. Similarly C(Y, Z) = C(Y,H(B))
∼=−→ D(G(Y ), B) = 0. Now let

ε : FG −→ IdC be the counit of the adjoint pair (F,G), and let δ : IdC −→ HG be
the unit of the adjoint pair (G,H). For any object C in C consider the functorial

triangles FG(C)
εC−−→ C −→ Y C −→ Σ(FG(C)) and YC −→ C

δC−−→ HG(C) −→ Σ(YC)
in C. Using standard properties of adjoint functors we have G(YC) = 0 = G(Y C).
Hence YC , Y

C ∈ Y. Since by definition FG(C) ∈ X and HG(C) ∈ Z, we infer that
(X ,Y) and (Y,Z) are torsion pairs. Hence (X ,Y,Z) is a TTF-triple in C. �

Remark 2.12. In the situation of the above Proposition it is easy to see that

we have functorial triangles FG
ε−→ IdC −→ jL −→ ΣFG and Σ−1HG −→ jS −→ IdC

δ−→
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HG, where ε is the counit of the adjoint pair (F,G), and δ is the unit of the adjoint
pair (G,H). Moreover we have identifications: iR = FG, kT = HG.

Torsion pairs in triangulated categories are used in the literature mainly in the
form of t-structures. Recall from [18] that a t-structure in a triangulated category
C is a pair (T ≤0, T ≥0) of full subcategories such that setting T ≤n = Σ−n(T ≤0) and
T ≥n = Σ−n(T ≥0), ∀n ∈ Z, the following are satisfied. First C(T ≤0, T ≥1) = 0.
Second T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0. Thirdly any object C ∈ C is included in a
triangle C≤0 −→ C −→ C≥1 −→ Σ(C≤0), where C≤0 ∈ T ≤0 and C≥1 ∈ T ≥1.

The following result shows that torsion pairs and t-structures essentially coin-
cide.

Proposition 2.13. The maps

Φ : (X ,Y) 7−→ (X ,ΣY) and Ψ : (T ≤0, T ≥0) 7−→ (T ≤0, T ≥1)

are mutually inverse bijections between torsion pairs and t-structures in C.

Proof. If (X ,Y) is a torsion pair in C, then set T ≤0 = X and T ≥0 = Σ(Y) and
further T ≤n = Σ−n(X ) and T ≥n = Σ−n+1(Y). Then C(T ≤0, T ≥1) = C(X ,Y) = 0.
Since Σ(X ) ⊆ X , we have T ≤0 = X ⊆ Σ−1(X ) = T ≤1. Since Σ−1(Y) ⊆ Y, we
have T ≥1 = Y ⊆ Σ(Y) = T ≥0. Finally since (X ,Y) is a torsion pair, ∀C ∈ C, there
exists a triangle XC −→ C −→ Y C −→ Σ(XC) with XC ∈ T ≤0 and Y C ∈ T ≥1. So
(X ,Σ(Y)) is a t-structure in C. Conversely if (T ≤0, T ≥0) is a t-structure, then set
X = T ≤0 and Y = T ≥1. By definition C(X ,Y) = 0 and Σ(X ) = T ≤−1 ⊆ T ≤0 = X .
Since ∀C ∈ C there exists a triangle XC −→ C −→ Y C −→ Σ(XC) with XC ∈ T ≤0

and Y C ∈ T ≥1, we infer that (T ≤0, T ≥1) is a torsion pair. �

Let (X ,Y) be a torsion pair in C. As usual we denote by R the right adjoint
of the inclusion i : X ↪→ C and by L the left adjoint of the inclusion j : Y ↪→ C.
Let T ≤n = Σ−n(X ) and T ≥n = Σ−n+1(Y), ∀n ∈ Z. Then we have the functor
τ≤n := Σ−nRΣn : C −→ T ≤n which is a right adjoint of the inclusion T ≤n ↪→ C
and the functor τ≥n := Σ−nLΣn : C −→ T ≤n which is a left adjoint of the inclusion
T ≥n ↪→ C. In other words the functors τ≤n and τ≥n are the truncation functors in
the sense of [18] associated to the t-structure (X ,Σ(Y)).

We recall from [18] that the heart of a t-structure (T ≤0, T ≥0) in C is defined
to be the full subcategory H = T ≤0 ∩ T ≥0. We also define the heart of a torsion
pair (X ,Y) in C to be the full subcategory H = X ∩ Σ(Y). As in [18], we define
homology functors by Hn := ΣLΣ−1RΣn = RΣLΣn−1 : C −→ H, ∀n ∈ Z. By [18],
the heart H of the torsion pair (X ,Y) is an abelian category and the functors Hn

are indeed homological, i.e. they send triangles in C to long exact sequences in H.

Remark 2.14. Proposition 2.13 has an analogue for TTF-triples. In fact, it is
not difficult to see that TTF-triples are in bijective correspondence with recollement
situations in the sense of [18].

There are connections between torsion pairs in C and in C/V for a thick sub-
category V of C, and between torsion pairs and the corresponding hearts. This is
also interesting since it provides new ways of constructing torsion pairs.

We have the following result, where we denote by Q : C −→ C/V the localization
functor of the quotient C/V with respect to the thick subcategory V.
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Proposition 2.15. Let V be a thick subcategory of C and (X ,Y) a (hereditary)
torsion pair in C. Then the following statements are equivalent:

(i) L(V) ⊆ V.
(ii) R(V) ⊆ V.

(iii) The pair (Q(X ),Q(Y)) is a (hereditary) torsion pair in C/V.
(iv) For any object A in C which is isomorphic in C/V to an object from X ,

the object L(A) is in V.
(v) For any object A in C which is isomorphic in C/V to an object from Y,

the object R(A) is in V.

If (iii) holds and H = X ∩Σ(Y) is the heart of (X ,Y) in C and K = Q(X )∩Σ(Q(Y))
is the heart of (Q(X ),Q(Y)) in C/V, then U := X ∩Σ(Y)∩V is a Serre subcategory
of H and there exists a short exact sequence of abelian categories:

0 −→ U −→ H −→ K −→ 0

Moreover if V is a localizing, resp. colocalizing, subcategory of C, then the functor
H −→ K admits a right, resp. left, adjoint.

Proof. (i) ⇒ (ii) Let V be in V and consider the standard triangle XV −→
V −→ Y V −→ Σ(XV ) with XV ∈ X and Y V ∈ Y. By hypothesis we have Y V ∈ V.
Since V is thick, we infer that XV lies in V and this implies that R(V) ⊆ V.

(ii) ⇒ (iii) It is clear that (Q(X ),Q(Y)) is a torsion pair in C/V if and only
if (Q(X ),Q(Y)) = 0. Let α : Q(X) −→ Q(Y ) be a morphism in C/V. Then α is

represented by a fraction X
s←− A

ρ−→ Y , where in the triangle V
κ−→ A

s−→ X −→
Σ(V ) the object V ∈ V. Consider the triangle R(A)

fA−−→ A
gA−−→ L(A) −→ ΣR(A).

Applying the Octahedral Axiom to the composition fA◦s we see easily that there is
a triangle L(A) −→ X ′ −→ V −→ ΣL(A) with X ′ ∈ X and V ∈ V. From this triangle
it is clear that X ′ = R(V ) and ΣL(A) = L(V ). By hypothesis we have that X ′

lies in V. Hence fA ◦ s : R(A) −→ X is invertible in C/V, and then so is fA. This

implies that the fraction X
s←− A

ρ−→ Y is equal to the fraction X
fA◦s←−−− R(A)

0−→ Y
which represents the zero morphism in C/V. Hence α = 0 in C/V.

(iii) ⇒ (iv) Let A be an object in C such that Q(A)
∼=−→ Q(X) where X is in

X . Consider the triangle R(A) −→ A −→ L(A) −→ ΣR(A) in C. Then we have the
triangle QR(A) −→ Q(A) −→ QL(A) −→ QΣR(A) in C/V. Since (Q(X ),Q(Y)) is a
torsion pair we have QL(A) ∈ Q(X ) ∩ Q(Y) = 0. This implies that L(A) lies in V.

(iv) ⇒ (i) Let V be in V and consider the triangle XV −→ V −→ Y V −→ Σ(XV )
with XV ∈ X and Y V ∈ Y. Then obviously Σ−1(Y V ) is isomorphic in C/V to
XV ∈ X . By hypothesis we have that Σ−1(Y V ), or equivalently Y V , lies in V.
Hence L(V) ⊆ V.

(v)⇔ (iii) Follows by dual arguments.
Now let A1 � A2 � A3 be a short exact sequence in H. Then there exists

a morphism C −→ Σ(A) such that A1 −→ A2 −→ A3 −→ Σ(A1) is a triangle in C.
Applying Q we have a triangle Q(A1) −→ Q(A2) −→ Q(A3) −→ ΣQ(A1) in C/V with
the Q(Ai) in K. Then the sequence Q(A1) � Q(A2) � Q(A3) is short exact in
K and we infer that the induced functor Q : H −→ K is exact. By definition Q is
surjective on objects and Ker(Q) := U = X∩Σ(Y)∩V. Using the universal property
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of Q : C −→ C/V we infer that Q : H −→ K is the localization functor H −→ H/U . We
leave the easy proof of the last assertion to the reader. �

A thick subcategory V of C is called (X ,Y)-stable, where (X ,Y) is a torsion
pair in C, if the equivalent conditions of Proposition 2.15 hold. If V is a thick (X ,Y)-
stable subcategory of C, then by [18] we get an induced torsion pair (X ∩V,Y ∩V)
in V with heart precisely the category U . In this case the inclusion functor V ↪→ C
and the quotient functor C −→ C/V are t-exact in the sense of [18].

The above result can be used to construct interesting torsion theories:

Example. Let C be an abelian category and letH(C) be the homotopy category
of, say unbounded, complexes over C. If X , resp. Y, denotes the full subcategory
of complexes which are acyclic in degrees > 0, resp. < 1, then it is easy to see
that (X ,Y) is a torsion pair in H(C) and the subcategory V of acyclic complexes
is (X ,Y)-stable. Then the quotient H(C)/V is the derived category D(C) of C and
the induced torsion pair (Q(X ),Q(Y)) is the natural torsion pair (= t-structure)
(D≤0(C),D≥0(C)) of D(C), see [18]. In our case the exact sequence of the hearts
in Proposition 2.15 reduces to the following exact sequence of abelian categories

0 −→ mode(C) −→ mod(C) −→ C −→ 0

where mod(C) is the category of contravariant coherent functors over C and mode(C)
is the full subcategory consisting of all coherent functors F which admit a presen-
tation C(−, A) −→ C(−, B) −→ F −→ 0 where A −→ B is an epimorphism. Note that
the above exact sequence of abelian categories, which is due to Auslander [4], plays
an important role in representation theory.

Example. Let Λ be a self-injective Artin algebra and let mod(Λ) be its stable
module category. Let Db(mod(Λ)) be the bounded derived category and let (X ,Y)
be a torsion pair in Db(mod(Λ)). Setting V = Hb(PΛ) to be the full subcategory
of perfect complexes and assuming that V is (X ,Y)-stable, we get a torsion pair in
mod(Λ), since it is well-known that the quotient Db(mod(Λ))/Hb(PΛ) is triangle
equivalent to mod(Λ), see [74], [37], [92], [20].

3. Tilting Torsion Pairs

In this section we discuss an interesting interplay between torsion pairs in
abelian and triangulated categories, related to tilting theory.

In classical tilting theory, the torsion pair associated with a tilting module of
projective dimension less than or equal to one plays an important role in connection
with homological or representation theoretic questions. Actually the tilting process
can be made starting directly with a tilting torsion pair (T ,F) in an abelian cate-
gory C, in the sense that any object of C embeds in an object from T . This tilting
process, which was initiated by Happel, Reiten and Smalø in [60], takes place in
the bounded derived category Db(C) and presents an interesting interplay between
torsion pairs in an abelian category and torsion pairs in the bounded derived cat-
egory, thus generalizing the classical tilting situation. More precisely let T and F
be full subcategories of C closed under isomorphisms, and define full subcategories
in Db(C) as follows:

X (T ) := {C• ∈ Db(C) | Hn(C•) = 0,∀n > 0, H0(C•) ∈ T }
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Y(F) := {C• ∈ Db(C) | Hn(C•) = 0,∀n < 0, H0(C•) ∈ F}
Then we have the following relationship.

Theorem 3.1. [60] The following conditions are equivalent.

(i) (T ,F) is a torsion pair in C.
(ii)

(
X (T ),Y(F)

)
is a torsion pair in Db(C).

Proof. For a proof that (i) ⇒ (ii) we refer to [60]. Assume that (ii) holds.
We view C as the full subcategory of Db(C) consisting of complexes concentrated
in degree zero. If T ∈ T and F ∈ F , then T ∈ X (T ) and F ∈ Y(F). Hence

C(T, F )
∼=−→ Db(C)(T, F ) = 0. Now let C be in C, and let XC −→ C −→ Y C −→ Σ(XC)

be the standard triangle associated with the torsion pair
(
X (T ),Y(F)

)
in Db(C).

Applying the usual homological functor H0 : Db(C) −→ C to this triangle, we infer
an exact sequence 0 −→ H0(XC) −→ C −→ H0(Y C) −→ 0 in C with H0(XC) ∈ T and
H0(Y C) ∈ F . Hence (T ,F) is a torsion pair in C. �

If (T ,F) is a torsion pair in C and if H is the heart of the torsion pair(
X (T ),Y(F)

)
in Db(C), then (Σ(F), T ) is a torsion pair in H [60]. Moreover

if (T ,F) is a tilting torsion pair then another application of the construction to
Db(H) recovers the original torsion pair. In addition if C has enough projectives or

H has enough injectives, then there exists a derived equivalence Db(H)
≈−→ Db(C),

which extends the inclusion H ↪→ C. The case of a classical tilting module gives
rise to a special case of this construction. The map (T ,F) 7→

(
X (T ),Y(F)

)
, which

establishes an injective function between the poset of torsion pairs in C and the
poset of torsion pairs in Db(C), seems to be a very useful tool for interchang-
ing information between module categories and derived categories. For instance
this generalized tilting process was used in an essential way in the classification
of hereditary Noetherian abelian categories with Serre duality by Reiten-Van den
Bergh in [89] and the classification of hereditary abelian categories with tilting
object by Happel in [59].

It would be interesting to know under what conditions a torsion pair in Db(C)
can be recovered in some way from a torsion pair in C.

Example. Let (T ,F) be the torsion pair generated by the injective envelope
E(Λ) of Λ, where Λ is any ring, see [100]. Then T is a tilting torsion class, since it

contains all the injectives. It follows that there is a triangle equivalence Db(H)
≈−→

Db(Mod(Λ)), where H is the heart of the induced torsion pair in Db(Mod(Λ)).

As noted above an important source of examples illustrating the above consid-
erations emerges from tilting modules.

Let Λ be an Artin algebra and T a finitely generated Λ-module. We denote by
add(T ) the full subcategory of mod(Λ) consisting of all direct summands of finite
direct sums of copies of T . We recall that T is called a tilting module, if:

(i) ExtnΛ(T, T ) = 0, ∀n ≥ 1,
(ii) pdΛ T <∞.
(iii) There exists an exact sequence 0 −→ Λ −→ T 0 −→ T 1 −→ · · · −→ T r −→ 0 with

T i ∈ add(T ) for all i = 0, 1, ..., r.

Dually T is called a cotilting module, if:
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(i) ExtnΛ(T, T ) = 0, ∀n ≥ 1,
(ii) idΛ T <∞.

(iii) There exists an exact sequence 0 −→ Ts −→ · · · −→ T1 −→ T0 −→ D(Λ) −→ 0
with Ti ∈ add(T ) for all i = 0, 1, ..., s, where D(Λ) is the minimal injective
cogenerator of mod(Λ).

Let T be a tilting module with pdΛ T = 1. Then (T ,F) is a torsion pair in the
category mod(Λ) of finitely generated Λ-modules, where:

T = {C ∈ mod(Λ) | Ext1
Λ(T,C) = 0} and F = {C ∈ mod(Λ) | HomΛ(T,C) = 0}

The heart of the corresponding torsion pair
(
X (T ),Y(F)

)
in Db(mod(Λ)) is

equivalent to mod(EndΛ(T )) and Λ and EndΛ(T ) are derived equivalent. See [60]
for a generalization of this situation, which led to the concept of a quasi-tilted
algebra.

In general a tilting module T with pdΛT > 1 does not define a reasonable
torsion pair in mod(Λ). However T induces important torsion pairs in the derived
category and in an appropriate stable category, see Chapters III, V.



CHAPTER II

Torsion Pairs in Pretriangulated Categories

Motivated by the results of the first chapter, we introduce and investigate in this
chapter the concept of a torsion pair in the fairly general setting of a pretriangulated
category. Pretriangulated categories provide a common generalization of abelian,
triangulated and stable categories, so it is interesting to develop our theory in this
more general setting. There are natural triangulated categories associated with a
pretriangulated category, and we investigate connections between torsion pairs in
this situation.

1. Pretriangulated Categories

In this section we discuss the concept of a pretriangulated category which gives
the general setting for the rest of the paper. We give many examples, illustrating
the wide variety of contexts that are covered by the notion of a pretriangulated
category.

Left and Right Triangulated Categories. First we recall basic definitions
and results about left, right and pretriangulated categories. For details and more
information on one-sided triangulated categories we refer to [19], [24], [74]. Let C
be an additive category equipped with an additive endofunctor Ω : C −→ C. Consider

the category LT (C,Ω) whose objects are diagrams of the form Ω(C)
h−→ A

g−→ B
f−→

C and where the morphisms are indicated by the following diagram:

Ω(C)
h−−−−→ A

g−−−−→ B
f−−−−→ C

Ω(γ)

y α

y β

y γ

y
Ω(C ′)

h′−−−−→ A′
g′−−−−→ B′

f ′−−−−→ C ′

A left triangulation of the pair (C,Ω) is a full subcategory ∆ of LT (C,Ω) which
satisfies all the axioms of a triangulated category, except that Ω is not necessarily
an equivalence. Then the triple (C,Ω,∆) is called a left triangulated category,
the functor Ω is the loop functor and the diagrams in ∆ are the left triangles.

Dually if C is an additive category equipped with an additive endofunctor Σ :
C −→ C, consider in C the category RT (C,Σ) with objects diagrams of the form

22
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A
f−→ B

g−→ C
h−→ Σ(A) and morphisms indicated by the following diagram:

A
f−−−−→ B

g−−−−→ C
h−−−−→ Σ(A)

α

y β

y γ

y Σ(α)

y
A′

f ′−−−−→ B′
g′−−−−→ C ′

h′−−−−→ Σ(C ′)

A right triangulation of the pair (C,Σ) is a full subcategory ∇ of RT (C,Σ) which
satisfies all the axioms of a triangulated category, except that Σ is not necessarily
an equivalence. Then the triple (C,Σ,∇) is called a right triangulated category,
Σ is the suspension functor and the diagrams in ∇ are the right triangles.

Exact and Homological Functors. The most important functors defined
on a left or right triangulated category are the homological functors and the (left
or right exact) functors. We recall here the basic definitions.

If (C,Ω,∆) is a left triangulated category, then an additive functor F : C −→
Ab is called homological, if for any triangle Ω(C) −→ A −→ B −→ C in ∆, the
sequence · · · −→ FΩ(C) −→ F (A) −→ F (B) −→ F (C) is exact. It is easy to see
that ∀E ∈ C, the functor C(E,−) : C −→ Ab is homological. We recall that a
morphism g : A −→ B is a weak kernel of f : B −→ C, if the sequence of functors

C(−, A)
(−,g)−−−→ C(−, B)

(−,f)−−−→ C(−, C) is exact. It follows that any morphism in
a left triangle is a weak kernel of the next one. Similarly an additive functor
F : Cop −→ Ab is called cohomological, if for any triangle Ω(C) −→ A −→ B −→ C in
∆, the sequence F (C) −→ F (B) −→ F (A) −→ FΩ(C) −→ · · · is exact.

Dually if (C,Σ,∇) is a right triangulated category, then an additive functor
F : Cop −→ Ab is called cohomological, if for any triangle A −→ B −→ C −→ Σ(A)
in ∇, the sequence · · · −→ FΣ(A) −→ F (C) −→ F (B) −→ F (A) is exact. It is easy to
see that ∀E ∈ C, the functor C(−, E) : Cop −→ Ab is cohomological. We recall that
a morphism g : B −→ C is a weak cokernel of f : A −→ B if the sequence of functors

C(C,−)
(g,−)−−−→ C(B,−)

(f,−)−−−→ C(A,−) is exact. It follows that any morphism in a
right triangle is a weak cokernel of the previous one. Similarly an additive functor
F : C −→ Ab is called homological, if for any triangle A −→ B −→ C −→ Σ(A) in ∇,
the sequence F (A) −→ F (B) −→ F (C) −→ FΣ(C) −→ · · · is exact.

If (C1,Σ1,∇1), (C2,Σ2,∇2) are right triangulated categories, then a functor F :

C1 −→ C2 is called right exact if there exists a natural isomorphism ξ : FΣ1

∼=−→ Σ2F

such that for any triangle A
f−→ B

g−→ C
h−→ Σ1(A) in C1, the diagram F (A)

F (f)−−−→
F (B)

F (g)−−−→ F (C)
F (h)◦ξC−−−−−→ Σ2(F (A)) is a triangle in C2. Similarly one defines left

exact functors between left triangulated categories.

Pretriangulated Categories. If an additive category is left and right trian-
gulated, then usually the left and right structures are compatible in a nice way.
Following [24], [64] we formalize this situation in the following definition.

Definition 1.1. Let C be an additive category. A pre-triangulation of C
consists of the following data:
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(i) An adjoint pair (Σ,Ω) of additive endofunctors Σ,Ω : C −→ C. Let ε :
ΣΩ −→ IdC be the counit and let δ : IdC −→ ΩΣ be the unit of the adjoint
pair.

(ii) A collection of diagrams ∆ in C of the form Ω(C) −→ A −→ B −→ C, such
that the triple (C,Ω,∆) is a left triangulated category.

(iii) A collection of diagrams ∇ in C of the form A −→ B −→ C −→ Σ(A), such
that the triple (C,Σ,∇) is a right triangulated category.

(iv) For any diagram in C with commutative left square:

A
f−−−−→ B

g−−−−→ C
h−−−−→ Σ(A)

α

y β

y ∃γ
y yΣ(α)◦εC′

Ω(C ′)
f ′−−−−→ A′

g′−−−−→ B′
h′−−−−→ C ′

where the upper row is in ∇ and the lower row is in ∆, there exists a
morphism γ : C −→ B′ making the diagram commutative.

(v) For any diagram in C with commutative right square:

A
f−−−−→ B

g−−−−→ C
h−−−−→ Σ(A)

δA◦Ω(α)

y ∃γ
y β

y α

y
Ω(C ′)

f ′−−−−→ A′
g′−−−−→ B′

h′−−−−→ C ′

where the upper row is in ∇ and the lower row is in ∆, there exists a
morphism γ : B −→ A′ making the diagram commutative.

A pretriangulated category is an additive category together with a pre-triangu-
lation, and is denoted by (C,Σ,Ω,∇,∆, ε, δ).

If C is a pretriangulated category and if F : C −→ D is a functor to a right, resp.
left, triangulated category D, then F is called right, resp. left, exact, if F is a right,
resp. left, exact functor of right, resp. left, triangulated categories. Let H : C1 −→ C2
be a functor between pretriangulated categories. Then H is called exact if H is left
and right exact. More generally we define a morphism of pretriangulated categories
to be an adjoint pair (F,G) of additive functors F : C1 −→ C2, G : C2 −→ C1, such
that F is right exact and G is left exact. Note that if (F,G) is an adjoint pair of
functors between pretriangulated categories, then it is not a formal consequence of
the adjointness that, in our terminology, F is right exact and G is left exact. The
reason is that left or right exactness depends on the pretriangulations.

We now give some first examples of pretriangulated categories; later we shall
see more examples.

Example. (1) Triangulated categories are pretriangulated. Here ∇ = ∆ and
Ω = Σ−1 and the notions of right or left exactness coincide (with the usual notions).

(2) Any additive category with kernels and cokernels (in particular any abelian
category) is pretriangulated, with Ω = Σ = 0 and ∆ the class of left exact sequences
and ∇ the class of right exact sequences. The notions of right or left exactness have
their usual meaning.
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(3) There are abelian pretriangulated categories for which Ω and Σ are not
zero. An example is the category of Z-graded vector spaces, where Σ is the usual
shift functor and Ω its right adjoint.

(4) The homotopy category of an additive closed model category in the sense
of Quillen [88] is pretriangulated.

Homologically Finite Subcategories and Triangulations. One impor-
tant source of examples of pretriangulated categories arises from stable categories,
as we now explain.

Let C be an additive category with split idempotents and let X be a full additive
subcategory of C closed under direct summands and isomorphisms.

The induced stable category is denoted by C/X . We recall that the objects
of C/X are the objects of C. If A,B ∈ C, then C/X (A,B) is defined to be the
quotient C(A,B)/IX (A,B), where IX (A,B) is the subgroup of C(A,B) consisting
of all morphisms factorizing through an object of X . We denote by π : C −→ C/X
the natural projection functor and we set π(A) = A and π(f) = f .

We recall from [13] that a morphism fA : XA −→ A in C is called a right X -
approximation of A if XA is in X and any morphism X −→ A with X ∈ X factors
through fA. The subcategory X is called contravariantly finite [13] if any object
of C admits a right X -approximation. The dual notions are left X -approximation
and covariantly finite. The subcategory X is called functorially finite if it is both
contravariantly finite and covariantly finite. Finally the subcategory X is called
homologically finite if it is contravariantly, covariantly or functorially finite.

Assume now that C is abelian and X is contravariantly finite in C. By [19]
the subcategory X induces on the stable category C/X a left triangulated structure
(ΩX ,∆X ), where ΩX : C/X −→ C/X is the loop functor and ∆X is the triangulation.
The loop functor ΩX : C/X −→ C/X is defined as follows. Let A ∈ C and let

0 −→ KA
κA−−→ XA

χA−−→ A be a sequence in C, where χA is a right X -approximation
of A and κA is the kernel of χA. Then in C/X : ΩX (A) = KA. If f : A −→ B is a
morphism in C, then we have the following commutative diagram:

KA
κA−−−−→ XA

χA−−−−→ A

κf

y χf

y f

y
KB

κB−−−−→ XB
χB−−−−→ B

It is easy to see that setting Ω(f) = κf , we obtain an additive functor ΩX . The

triangulation ∆X is defined as follows. Let 0 −→ C
g−→ B

f−→ A be a sequence in C,
where f has the property that C(X , f) : C(X , A) −→ C(X , B) −→ 0 is surjective and
g = ker(f). Then we have a commutative diagram:

KA
κA−−−−→ XA

A−−−−→ A

κf

y χf

y ∥∥∥
C

g−−−−→ B
f−−−−→ A



1. PRETRIANGULATED CATEGORIES 26

Hence in C/X we have a diagram ΩX (A)
h−→ C

g
−→ B

f
−→ A. The triangulation ∆X

consists of all diagrams ΩX (H) −→ F −→ G −→ H which are isomorphic in C/X to
diagrams of the above form.

Remark 1.2. A morphism f : A −→ B is said to be an X -epic if the morphism
C(X , f) : C(X , A) −→ C(X , B) is surjective. Then the above construction works in
the more general situation in which any X -epic in C has a kernel [19]. For instance
let A be a full subcategory of an abelian category C with enough projectives, and
assume that X contains the projectives and is closed under extensions and kernels
of epimorphisms. If P is the full subcategory of projectives of C, then the stable
category X/P is a left triangulated category, in fact a left triangulated subcategory
of C/P.

Dually a morphism f : A −→ B is said to be an X -monic if the morphism
C(f,X ) : C(B,X ) −→ C(A,X ) is surjective. If Y is covariantly finite in C and C
is abelian, or more generally if any Y-monic has a cokernel in C, then the sta-
ble category C/Y admits a right triangulated structure (C/Y,ΣY ,∇Y), where ΣY
is the suspension functor and ∇Y is the right triangulation. The construction is
completely dual using left Y-approximations. For instance if C has enough injec-
tives and Y contains the injectives and is closed under extensions and cokernels
of monomorphisms, then the stable category Y/I is a right triangulated category,
in fact a right triangulated subcategory of C/I, where I is the full subcategory of
injective objects of C.

Our basic source of examples of pretriangulated categories is the following.

Example. Let X be a functorially finite subcategory of an additive category
C and assume that C is abelian, or more generally that any X -epic has a kernel and
any X -monic has a cokernel in C. Then C/X admits a right triangulated structure
(ΣX ,∇X ) and a left triangulated structure (ΩX ,∆X ). Moreover by [20] we have
an adjoint pair (ΣX ,ΩX ) and the compatibility conditions (iv), (v) in the above
definition hold. Hence the stable category C/X is a pretriangulated category. Note
that by [24], C/X is the homotopy category of a naturally defined closed model
structure in C. We refer to Chapter VII for more about this class of pretriangulated
categories in connection with torsion pairs and closed model structures.

Actually the above example also covers abelian categories (just take X = 0)
and unbounded derived categories of module categories (take C to be the category
of homotopically projective complexes [69] and X to be the full subcategory of
contractible complexes).

An Example from Artin Algebras. We now give a class of examples of
pretriangulated stable categories for which the loop and the suspension functor can
be computed rather explicitly.

Let Λ be an Artin algebra and let mod(Λ) be the category of finitely generated
right Λ-modules. Let PΛ be the full subcategory of finitely generated projective
right Λ-modules and IΛ the full subcategory of finitely generated injective right Λ-
modules. Since PΛ is functorially finite, the stable category mod(Λ)/PΛ := mod(Λ)
is pretriangulated with loop functor the usual first syzygy functor Ω and suspension
functor ΣP = TrΩTr, where Tr : mod(Λ) −→ mod(Λop) is the transpose duality
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functor [6]. The left PΛ-approximation pA : A −→ PA of A is computed as follows.
Let d = HomΛ(−,Λ) denote both Λ-dual functors. If Q −→ d(A) is a projective
cover, then PA = d(Q) and pA is composition A −→ d2(A) −→ d(Q) where the first
morphism is the natural one, and there is an exact sequence

0 −→ Ext1
Λ(Tr(A),Λ) −→ A

pA−−→ PA −→ ΣP(A) −→ 0

Similarly, since IΛ is functorially finite, the stable category mod(Λ)/IΛ =
mod(Λ) is pretriangulated with suspension functor the usual first cosyzygy func-
tor Σ, and loop functor ΩI = DTrΩTrD, where D is the usual duality for Artin
algebras. The right IΛ-approximation iA of A is included in an exact sequence

0 −→ ΩI(A) −→ N+(P )
iA−→ A −→ DExt1

Λ(TrD(A),Λ) −→ 0

where N+ = Dd is the Nakayama functor, N− = dD its right adjoint, P −→ N−(A)
is a projective cover and iA is the composition N−(P ) −→ N+N−(A) −→ A where the
last morphism is the counit of the adjoint pair (N+,N−).

It is easy to see that the adjoint pair (d,d) of Λ-dual functors induces a mor-
phism of pretriangulated categories d : mod(Λ) � mod(Λop) : d. It follows that the
adjoint pair (N+,N−) of Nakayama functors induces a morphism of pretriangulated
categories N+ : mod(Λ) � mod(Λ) : N−.

More generally let T ∈ mod(Λ) and let ω = add(T ) be the full subcategory
consisting of all direct summands of finite direct sums of copies of T . It is well-
known that ω is functorially finite, so the stable category modT (Λ) := mod(Λ)/ω
is pretriangulated.

Other Examples from Ring Theory. The previous example can be gener-
alized to the stable module category (of not necessarily finitely generated modules)
modulo projectives or injectives, for certain classes of rings that we discuss below.

Let Λ be a ring and let Mod(Λ) be the category of right Λ-modules. Let PΛ

be the category of projective right Λ-modules and IΛ the category of injective right
Λ-modules. By [24] we have the following.

• If Λ is left coherent and right perfect, then PΛ is functorially finite, hence
the stable category Mod(Λ) modulo projectives is pretriangulated.

• If Λ is right Noetherian, then IΛ is functorially finite, hence the stable
category Mod(Λ) modulo injectives is pretriangulated.

More generally let T ∈ Mod(Λ) and let ω = Add(T ) be the full subcategory con-
sisting of all direct summands of arbitrary direct sums of copies of T . We denote
the stable category Mod(Λ)/ω by ModT (Λ). In a given category with coproducts,
we denote by C(I) the coproduct of copies of the object C indexed by the set I.
Assume that T has the property that the canonical map (T, T )(I) −→ (T, T (I)) is
invertible for any index set I, and that the endomorphism ring End(T ) is left co-
herent and right perfect. It is not difficult to see that ω is functorially finite, so
the stable category ModT (Λ) is pretriangulated. Also the category ModT (Λ) is
pretriangulated if the module T is endofinite in the sense that T has finite length
as a module over its endomorphism ring. More generally ModT (Λ) is pretriangu-
lated if T is product-complete in the sense that any product of copies of T is a
direct summand of a coproduct of copies of T . This is equivalent to saying that
Add(T ) = Prod(T ), where Prod(T ) is the full subcategory of Mod(Λ) consisting of
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all direct summands of arbitrary direct products of copies of T . We refer to [78]
for more information on endofinite or product-complete modules.

For more examples we refer to Chapter V.

2. Adjoints and Orthogonal Subcategories

In this section we examine more closely the connections between subcategories
of a pretriangulated category which are orthogonal with respect to Hom, and the
existence of left or right adjoints for the corresponding inclusion functors. These
connections will be useful when discussing torsion pairs.

Throughout this section we fix a pretriangulated category C = (C,Σ,Ω,∆,∇).
Let X ,Y be full additive subcategories of C. We assume tacitly that X ,Y are

closed under direct summands and isomorphisms. We consider the left orthogo-
nal subcategory ⊥Y = {A ∈ C | C(A,Y) = 0} of Y and the right orthogonal
subcategory X⊥ = {B ∈ C | C(X , B) = 0} of X .

We begin with some elementary necessary conditions for a subcategory to be a
left or right orthogonal subcategory.

Lemma 2.1. (1) Assume that ⊥Y = X . If Y is closed under the loop functor
Ω (for instance if Y is a left triangulated subcategory of C), then X is a right
triangulated subcategory of C, closed under extensions of right triangles.

(2) Assume that X⊥ = Y. If X is closed under the suspension functor Σ (for
instance if X is a right triangulated subcategory of C), then Y is a left triangulated
subcategory of C, closed under extensions of left triangles.

Proof. (1) If Ω(Y) ⊆ Y, then ∀X ∈ C, C(Σ(X),Y) ∼= C(X,Ω(Y)) = 0. Hence
Σ(X) ∈ X and X is closed under suspension. Let X1 −→ C −→ X2 −→ Σ(X1)
be a right triangle with X1, X2 ∈ X . Since the functor C(−,Y) is cohomological
with respect to right triangles, the sequence · · · −→ C(Σ(X1),Y) −→ C(X2,Y) −→
C(C,Y) −→ C(X1,Y) is exact. It follows that C ∈ ⊥Y = X , so X is closed under
extensions of right triangles. This implies that X is a right triangulated subcategory
of C. The proof of (2) is dual. �

Corollary 2.2. Assume that X⊥ = Y and ⊥Y = X . Then X is a right
triangulated subcategory of C if and only if Y is a left triangulated subcategory of C.

It is trivial to see that in an arbitrary category, any coreflective, resp. reflective,
subcategory is contravariantly, resp. covariantly, finite. The coreflection, resp.
reflection, of an object gives the right, resp. left, approximation. Reflections and
coreflections are examples of minimal approximations. We recall that a morphism
α : X −→ C is called right minimal, if any endomorphism ρ of X such that ρ ◦
α = α, is invertible. A minimal right X -approximation is a right minimal, right
X -approximation. Left minimal morphisms and minimal left approximations are
defined dually. In an abelian category Wakamatsu’s Lemma, which we state below
for later use, gives connections between existence of minimal approximations and
vanishing of the extension functor.

Wakamatsu’s Lemma. [10] Let X be a full extension closed subcategory of
an abelian category.
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(i) If XC
fC−−→ C is a minimal right X -approximation, then

Ext1
(
X ,Ker(fC)

)
= 0.

(ii) If C
gC−−→ XC is a minimal left X -approximation, then

Ext1
(
Coker(gC),X

)
= 0.

In the setting of pretriangulated categories we have the following connection
between coreflective/reflective subcategories, contravariantly/covariantly finite sub-
categories and right/left orthogonal subcategories with respect to the vanishing
of Hom. This connection can be regarded as a stable analogue of Wakamatsu’s
Lemma.

Lemma 2.3. Let X , Y be full subcategories of a pretriangulated category C.

(i) If Σ(X ) ⊆ X , then the following are equivalent.
(a) The inclusion i : X ↪→ C admits a right adjoint R.
(b) X is contravariantly finite and ∀C ∈ C, there exists a left triangle

Ω(C) −→ YC −→ XC
fC−−→ C, where fC is a right X -approximation and

YC ∈ X⊥.
(ii) If Ω(Y) ⊆ Y, then the following are equivalent.

(a) The inclusion j : Y ↪→ C admits a left adjoint L.
(b) Y is covariantly finite and ∀C ∈ C, there exists a right triangle

C
gC−−→ Y C −→ XC −→ Σ(C), where gC is a left Y-approximation and

XC ∈ ⊥Y.

Proof. We prove only (i), since the proof of (i) is dual.
(a)⇒ (b) Let C ∈ C and let fC be the coreflection of C. Then trivially fC is a

right X -approximation, hence X is contravariantly finite. Consider a left triangle

Ω(C) −→ YC −→ R(C)
fC−−→ C in C. Then applying the homological functor C(X ,−),

we have the long exact sequence

· · · −→ C(X ,ΩR(C)) −→ C(X ,Ω(C)) −→ C(X , YC) −→ C(X ,R(C)) −→ C(X , C).

Since the morphism C(X , fC) : C(X ,R(C)) −→ C(X , C) is invertible, the sequence
C(X ,ΩR(C)) −→ C(X ,Ω(C)) −→ C(X , YC) −→ 0 is exact. Using the adjoint pair
(Σ,Ω) it follows that the morphism C(X ,Ω(fC)) : C(X ,ΩR(C)) −→ C(X ,Ω(C)) is
isomorphic to C(Σ(X ), fC) : C(Σ(X ),R(C)) −→ C(Σ(X ), C). Since Σ(X ) ⊆ X , the
above isomorphism shows that the morphism C(X ,Ω(fC)) is also invertible. From
the long exact sequence above we infer that C(X , YC) = 0. Hence YC ∈ X⊥.

(b)⇒ (a) It suffices to show that fC is the coreflection of C in X . If α : X −→ C
is a morphism with X ∈ X which admits two liftings β, γ : X −→ XC through fC ,
then β − γ factors through the weak kernel YC −→ XC of fC . Since YC ∈ X⊥, it
follows that β = γ and this implies that XC −→ C is the coreflection of C in X . �

The following result shows that in some cases contravariant/covariant finiteness
implies coreflectivity/reflectivity. First we recall that an additive category is called
a Krull-Schmidt category if any of its objects is a finite coproduct of objects with
local endomorphism ring. If X is a skeletally small additive category, then Mod(X )
denotes the category of additive functors X op −→ Ab.
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Proposition 2.4. Assume that X is a skeletally small Krull-Schmidt right,
resp. left, triangulated subcategory of C. Then the following are equivalent.

(i) The inclusion functor X ↪→ C has a right, resp. left, adjoint.
(ii) X is contravariantly, resp. covariantly, finite in C.

Proof. We prove only that (ii)⇒ (i) for the contravariantly finite case. Con-
sider the functor S : C −→ Mod(X ) defined by S(C) = C(−, C)|X . Then S is a
homological functor with respect to the left triangulation ∆ of C. Let fC : XC −→ C

be a right X -approximation of C ∈ C and let Ω(C) −→ YC −→ XC
fC−−→ C be a left

triangle in C. Then applying S to this triangle and using that X is closed under
Σ, we have a short exact sequence 0 −→ S(YC) −→ S(XC) −→ S(C) −→ 0 in Mod(X ),
which shows that S(C) is finitely generated functor, since S(XC) = X (−, XC) is
a finitely generated projective functor. Since X is a Krull-Schmidt category, it is
well-known that any finitely generated functor over X has a projective cover. Let
rC : X (−,R(C)) −→ S(C) be the projective cover. Now we claim that S(C) is a flat

functor over X . Indeed since the functor TorX∗ (S(C),−) commutes with filtered

colimits, it suffices to show that TorX1 (S(C), F ) = 0, for any finitely presented
functor F : X −→ Ab. Let X (X1,−) −→ X (X0,−) −→ F −→ 0 be a finite presentation
of F and let (T ): X0 −→ X1 −→ X2 −→ Σ(X0) be a right triangle in X . Since X is
a right triangulated subcategory of C, (T ) is also a right triangle in C. Then the
sequence · · · −→ X (Σ(X0),−) −→ X (X2,−) −→ X (X1,−) −→ X (X0,−) −→ F −→ 0 is

a projective resolution of F , hence TorX1 (S(C), F ) is the homology of the complex
S(C)⊗X X (X2,−) −→ S(C)⊗X X (X1,−) −→ S(C)⊗X X (X0,−) which is isomorphic
to C(X2, C) −→ C(X1, C) −→ C(X0, C). However the last complex is exact since it
is the result of the application of the cohomological functor C(−, C) to the right
triangle (T ) ∈ ∇. We infer that S(C) is flat. By a well-known result of Bass, the
only flat functors admitting a projective cover are the projective ones. Hence S(C)
is projective, i.e. rC : X (−,R(C)) −→ S(C) = C(−, C)|X is invertible. We infer
that the morphism rC(1R(C)) : R(C) −→ C is the coreflection of C in X . �

Example. Let Db(mod(Λ)) be the bounded derived category of finitely gen-
erated modules over an Artin algebra Λ. Then gl.dimΛ <∞ if and only if Hb(PΛ)
is contravariantly finite in Db(mod(Λ)) if and only if Hb(IΛ) is covariantly finite
in Db(mod(Λ)). We prove only the assertion for Hb(IΛ). Indeed if gl.dimΛ < ∞,
then Hb(IΛ) = Db(mod(Λ), hence the assertion is trivial. If Hb(IΛ) is covariantly
finite, then by Proposition 2.4, Hb(IΛ) is reflective, so by Proposition I.2.3 it is
a torsion-free class in Db(mod(Λ)). Since trivially ⊥Hb(IΛ) = 0, we infer that
Hb(IΛ) = Db(mod(Λ)), and this obviously implies that gl.dimΛ <∞.

Viewing an abelian category as a pretriangulated category (with Ω = 0 = Σ),
we have the following well-known observation.

Example. Let C be abelian and X a skeletally small full additive Krull-Schmidt
subcategory of C, closed under quotient objects, resp. subobjects. Then X is a
right, resp. left, triangulated subcategory of C. It follows that X is coreflective,
resp. reflective, if and only if X is contravariantly, resp. covariantly, finite.
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Now we give conditions such that a full coreflective subcategory X of C is
pretriangulated, and such that the right adjoint of the inclusion is left exact. These
conditions will be useful later in connection with hereditary torsion pairs.

Lemma 2.5. (1) Let X be a right triangulated subcategory of C, closed under
the loop functor Ω and assume that the inclusion X ↪→ C admits a right adjoint R.
Then X is a pretriangulated subcategory of C.

(2) Let Y be a left triangulated subcategory of C, closed under the suspension
functor Σ and assume that the inclusion Y ↪→ C admits a left adjoint L. Then Y
is a pretriangulated subcategory of C.

Proof. We prove only the assertion for X . First by definition X is closed
under Ω. Let X2 −→ X1 be a morphism in X and let Ω(X1) −→ A −→ X2 −→ X1 be a
left triangle in C. It is easy to see that if (F,G) is an adjoint pair of functors between
pretriangulated categories, then F preserves weak cokernels and G preserves weak
kernels. It follows that R preserves weak kernels, hence we have a complex · · · −→
RΩ(X2) −→ RΩ(X1) −→ R(A) −→ R(X2) −→ R(X1) in C in which any morphism is
a weak kernel of the next one, and a commutative diagram

RΩ(X2) −−−−→ RΩ(X1) −−−−→ R(A) −−−−→ R(X2) −−−−→ R(X1)

fΩ(X2)

y fΩ(X1)

y fA

y fX2

y fX1

y
Ω(X2) −−−−→ Ω(X1) −−−−→ A −−−−→ X2 −−−−→ X1

in which the coreflection morphisms fΩ(X2), fΩ(X1), fX2
, fX1

are invertible. Let
mod(C) be the category of finitely presented contravariant additive functors over
C and let Y : C ↪→ mod(C) be the Yoneda embedding. Since C has weak kernels,
mod(C) is abelian and the image under Y of the above diagram in mod(C) is exact.
By the 5−Lemma, it follows that the map Y(fA) : Y(R(A)) −→ Y(A) is invertible.
Since Y is fully faithful, fA is invertible, so A ∈ X . It follows that X is a left
triangulated subcategory of C. It is easy to see that the compatibility conditions of
definition 1.1 hold for X , hence X is a pretriangulated subcategory of C. �

Note that if R exists in the above Lemma, then the suspension functor Σ : X −→
X admits the functor RΩ : X −→ X as a right adjoint, even if X is not closed under
Ω. This follows from the natural isomorphisms X (Σ(X), X ′) ∼= C(X,Ω(X ′)) ∼=
X (X,RΩ(X ′)) for all X,X ′ ∈ X . This suggests that X is closed under Ω if and
only if the functors R, Ω commute. The following result which will be useful later
in connection with hereditary torsion pairs, shows that this is the case.

Proposition 2.6. Assume that the inclusion functor i : X ↪→ C has a right
adjoint R and X is closed under the suspension functor Σ. Then there exists a
natural morphism α : RΩ −→ ΩR and the following are equivalent:

(i) α : RΩ −→ ΩR is an isomorphism.
(ii) Ω(X ) ⊆ X .

If (ii) holds and in addition X is closed under extensions of left triangles, then
R : C −→ X and the idempotent functor iR : C −→ C are left exact.

Proof. Set X⊥ := Y and consider the counit fC : R(C) −→ C of the adjoint

pair (i,R). Let Ω(C)
hC−−→ YC

gC−−→ R(C)
fC−−→ C be a triangle in ∆. By Lemma 2.3,
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we have that YC ∈ Y. Consider the rotation ΩR(C)
Ω(fC)−−−−→ Ω(C)

hC−−→ YC
gC−−→ R(C)

of the above triangle, and let fΩ(C) : RΩ(C) −→ Ω(C) be the counit evaluated at
Ω(C). Since YC ∈ Y, the composition fΩ(C) ◦ hC = 0. Hence there exists a
morphism αC : RΩ(C) −→ ΩR(C) such that αC ◦ Ω(fC) = fΩ(C). The morphism
αC is unique with this property, since if α′ : RΩ(C) −→ ΩR(C) is another morphism
with α′ ◦ Ω(fC) = fΩ(C), then the morphism αC − α′ factors through Ω(YC). By
Lemma 2.1, Ω(YC) ∈ Y and then obviously αC = α′, since (X ,Y) = 0. It is not
difficult to see that the morphism αC is the component of a natural morphism
α : RΩ −→ ΩR. (i)⇒ (ii) If the natural morphism α : RΩ −→ ΩR is invertible, then
∀C ∈ C we have that ΩR(C) ∈ X . This implies trivially that Ω(X ) ⊆ X .

(ii) ⇒ (i) Assume that Ω(X ) ⊆ X . Then ΩR(C) ∈ X . Hence there exists a
unique morphism β : ΩR(C) −→ RΩ(C) such that β◦fΩ(C) = Ω(fC). Then we have:
αC ◦β ◦fΩ(C) = fΩ(C) and β ◦αC ◦Ω(fC) = Ω(fC). By the uniqueness properties of
the involved morphisms, we conclude that αC ◦ β = 1RΩ(C) and β ◦ αC = 1ΩR(C).
Hence the natural morphism α : RΩ −→ ΩR is invertible.

The easy proof of the last assertion is left to the reader. �

3. Torsion Pairs

In this section we introduce the concept of torsion pair in a pretriangulated
category and we give some basic properties.

As in the previous section, throughout C denotes a pretriangulated category.
Let X ,Y be two full additive subcategories of C, closed under direct summands
and isomorphisms. Inspired by the definition of a torsion pair in an abelian or
triangulated category, we introduce the following concept of torsion pair in a pre-
triangulated category.

Definition 3.1. The pair (X ,Y) is called a torsion pair in C, if:

(i) C(X ,Y) = 0.
(ii) Σ(X ) ⊆ X and Ω(Y) ⊆ Y.
(†) [The glueing condition]: ∀C ∈ C, there are triangles ∆(C) : Ω(Y C)

gC−−→ XC
fC−−→ C

gC−−→ Y C ∈ ∆

∇(C) : XC
fC−−→ C

gC−−→ Y C
fC

−−→ Σ(XC) ∈ ∇
(Glueing Triangles)

with XC ∈ X , Y C ∈ Y.

If (X ,Y) is a torsion pair in C, then X , resp. Y, is called a torsion class, resp.
torsion-free class. A TTF-triple is an ordered triple (X ,Y,Z), where (X ,Y)
and (Y,Z) are torsion pairs in C. In this case Y is called a TTF-class.

The following remark shows that condition (ii) in the definition can be relaxed.

Remark 3.2. If the pair (X ,Y) satisfies (i) and the glueing condition, then
Σ(X ) ⊆ X if and only if Ω(Y) ⊆ Y. Indeed if Σ(X ) ⊆ X and C ∈ X⊥, then fC = 0.

Then from the right triangle XC
fC−−→ C

gC−−→ Y C
fC

−−→ Σ(XC), we have that gC is
split monic, so C ∈ Y. It follows that X⊥ = Y. Then by Lemma 2.1, we have that
Ω(Y) ⊆ Y. Conversely Ω(Y) ⊆ Y implies that Σ(X ) ⊆ X .
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As in the case of torsion pairs in an abelian category we say that a torsion pair
(X ,Y) in a pretriangulated category C splits if any object C in C admits a direct
sum decomposition C = X ⊕ Y where X ∈ X and Y ∈ Y. We record the following
immediate consequence of the above definition.

Proposition 3.3. Assume that the pair (X ,Y) is a torsion pair in C.
(1) X = ⊥Y is a right triangulated subcategory of C closed under extensions of

right triangles and the inclusion i : X ↪→ C admits a right adjoint R : C −→ X .
(2) Y = X⊥ is a left triangulated subcategory of C closed under extensions of

left triangles, and the inclusion j : Y ↪→ C admits a left adjoint L : C −→ Y.
(3) C is generated as a left or right triangulated category by X ,Y.
(4) We have a “direct sum decomposition” C = X ⊕ Y of C, in the sense that

KerR := {C ∈ C | R(C) = 0} = Y and KerL := {C ∈ C | L(C) = 0} = X and
there exist sequences

0 −→ Y j−→ C R−→ X −→ 0 and 0 −→ X i−→ C L−→ Y −→ 0

such that Rj = 0,Li = 0,Ri = IdX ,Lj = IdY .
(5) If (X ,Y,Z) is a TTF-triple in C, then Y is a pretriangulated subcategory of

C, the inclusion Y ↪→ C admits a left and a right adjoint and finally the following
relations are true: X = ⊥Y = ⊥⊥Z, Z = Y⊥ = X⊥⊥, Y = X⊥ = ⊥Z.

(6) If (X ,Y,Z) is a TTF-triple in C, then X = Z if and only if the torsion
pairs (X ,Y) and (Y,Z) split.

Proof. Obviously X ⊆ ⊥Y. If C ∈ ⊥Y, then from the triangle ∆(C) it follows
that C ∼= XC , so C ∈ X . Hence X = ⊥Y. Now the remaining assertions of (1)
follow from Lemmas 2.1, 2.3. The proof of (2) is dual and the proof of the remaining
parts follow directly from (1), (2) and the definitions. �

In analogy with the definitions of Chapter I, we define a torsion pair (X ,Y) in C
to be hereditary, resp. cohereditary, if the idempotent functor iR : C −→ C is left
exact, resp. the idempotent functor jL : C −→ C is right exact. If (X ,Y) is hereditary
then by Lemma 2.5 and Proposition 2.6, X is a pretriangulated subcategory of C
and dually if (X ,Y) is cohereditary, then Y is a pretriangulated subcategory of C.

The class T(C) of (hereditary or cohereditary) torsion pairs on C is partially
ordered if we define: (X ,Y) ≺ (X ′,Y ′) if and only if X ⊆ X ′ (or equivalently
Y ′ ⊆ Y). The torsion pair (0, C) is the minimum element and the torsion pair (C, 0)
is the maximum element of T(C).

The following examples show that a torsion pair in a pretriangulated cate-
gory is a common generalization of a torsion pair in an abelian category and in a
triangulated category.

Example. (1) Let C be abelian considered as a pretriangulated category. Then
the concept of a torsion pair in C in the sense of the above definition, coincides with
the concept of a torsion pair in the (usual) sense of Chapter I. Also the concept of
a TTF-triple reduces to the well–known concept studied in abelian categories and
in particular in ring theory, see [100].

(2) Let C be a triangulated category considered as a pretriangulated category.
Then the concept of a torsion pair in C in the sense of the above definition, coincides
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with the concept of a torsion pair (= t-structure) in the sense of Chapter I and the
TTF-triples reduce to recollement situations [18].

Motivated by the results of Chapter I we introduce the concept of the heart
of a torsion pair in C. There are actually two, not necessarily equivalent, hearts,
reflecting the fact that the suspension and the loop functor of C are not necessarily
quasi-inverse equivalences.

Definition 3.4. Let (X ,Y) be a torsion pair in a pretriangulated category C.
Then its left heart is Hl := X ∩ ΣY and its right heart is Hr := ΩX ∩ Y.

Remark 3.5. (1) Let (X ,Y) be a torsion pair in an abelian category C viewed
as a pretriangulated category with Ω = 0 = Σ. Then the hearts of a torsion pair
(X ,Y) in C are trivial: Hl = 0 = Hr.

(2) If C is triangulated, then by [18] the hearts of a torsion pair (X ,Y) (=
t-structure), are abelian and Hr = Σ−1Hl. Observe that if (X ,Y) is hereditary,
then: Hr = 0 = Hl.

We refer to Chapter III for a study of the heart in the triangulated case and
to Chapter V for an example of a torsion pair in a pretriangulated category which
is not abelian or triangulated such that the left heart is non-zero abelian and the
right heart is zero.

We close this section with a characterization of torsion pairs. First we need a
simple lemma. We recall that in a pretriangulated category any morphism has a
weak kernel and a weak cokernel.

Lemma 3.6. Let f be a morphism in C. If f is a weak kernel (weak cokernel),
then f is a weak kernel (weak cokernel) of its weak cokernel (weak kernel).

Proof. Let A
f−→ B

g−→ C −→ Σ(A) be a triangle in C. Then g is a weak
cokernel of f . Let α : B −→ D be a morphism such that f is a weak kernel of α.
Then f ◦α = 0, hence there exists a morphism β : C −→ D such that g ◦β = α. Now
let κ : M −→ B be a morphism such that κ◦g = 0. Then κ◦g ◦β = κ◦β = 0. Since
f is a weak kernel of α, there exists a morphism λ : M −→ A such that λ ◦ f = κ.
Hence f is a weak kernel of g. The parenthetical case is dual. �

The following characterizes when a pair of subcategories forms a torsion pair.

Proposition 3.7. Let (X ,Y) be a pair of subcategories of a pretriangulated
category C. If C(X ,Y) = 0, then the following are equivalent:

(i) (α) The inclusion i : X ↪→ C has a right adjoint R and the counit
fC : R(C) −→ C is a weak kernel, ∀C ∈ C.

(β) If R(C)
fC−−→ C

gC−−→ Y C
hC

−−→ ΣR(C) is a triangle in ∇, then Y C ∈ Y.

(γ) Ω(Y) ⊆ Y and if Ω(Y C) −→ A −→ C
gC−−→ Y C is a triangle in ∆, then

C(Σ(A), Y C) = 0.
(ii) (α) The inclusion j : Y ↪→ C has a left adjoint L and the unit gC : C −→

L(C) is a weak cokernel, ∀C ∈ C.

(β) If ΩL(C)
hC−−→ XC

fC−−→ C
gC−−→ L(C) is a triangle in ∆, then XC ∈ X .
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(γ) Σ(X ) ⊆ X and if XC
fC−−→ C −→ B −→ Σ(XC) is a triangle in ∇, then

C(XC ,Ω(B)) = 0.
(iii) The pair (X ,Y) is a torsion pair in C.

Proof. We prove that (i) ⇔ (iii). The proof of (ii) ⇔ (iii) is similar. Since
(iii)⇒ (i) follows directly from Proposition 3.3, it remains to show that (i)⇒ (iii).
For any C ∈ C, let fC : R(C) −→ C be the counit of the adjoint pair (i,R), and

let (∗): R(C)
fC−−→ C

gC−−→ Y C
hC

−−→ ΣR(C) be a triangle in ∇. If Ω(Y C)
β−→ A

α−→

C
gC−−→ Y C is a triangle in ∆, then since fC ◦ gC = 0, there exists a morphism

κ : R(C) −→ A such that: κ ◦ α = fC . By Lemma 3.6, fC is a weak kernel of gC ,
hence since α◦gC = 0, there exists a morphism λ : A −→ R(C) such that λ◦fC = α.

Consider now the left triangle Ω(C)
hC−−→ YC

gC−−→ R(C)
fC−−→ C in ∆. By the

axioms of a left triangulated category, there are morphisms φ : YC −→ Ω(Y C) and
ψ : Ω(Y C) −→ YC such that the following diagram commutes:

Ω(C)
hC−−−−→ YC

gC−−−−→ R(C)
fC−−−−→ C∥∥∥ ∃ φ

y κ

y ∥∥∥
Ω(C)

Ω(gC)−−−−→ Ω(Y C)
β−−−−→ A

α−−−−→ C∥∥∥ ∃ ψ

y λ

y ∥∥∥
Ω(C)

hC−−−−→ YC
gC−−−−→ R(C)

fC−−−−→ C∥∥∥ ∃ φ

y κ

y ∥∥∥
Ω(C)

Ω(gC)−−−−→ Ω(Y C)
β−−−−→ A

α−−−−→ C

Since κ◦λ◦fC = fC , we have that κ◦λ = 1R(C). By the axioms of a left triangulated
category, this implies that φ ◦ ψ is invertible. Further we have that λ ◦ κ ◦ α = α,
so (1A − λ ◦ κ) ◦ α = 0. Hence there exists a morphism σ : A −→ Ω(Y C) such that
σ ◦ β = 1A − λ ◦ κ. By condition (γ), C(Σ(A), Y C) ∼= C(A,Ω(Y C)) = 0. Hence
σ = 0 and then 1A = λ ◦ κ. It follows that A ∼= R(C). But then also YC ∼= Ω(Y C).
Since by hypothesis Y C ∈ Y and Ω(Y) ⊆ Y, we have that Ω(Y C) ∈ Y. Now setting
XC := R(C) we have that in the following diagram

Ω(Y C)
hC−−→ XC

fC−−→ C
gC−−→ Y C

hC

−−→ Σ(XC)

the three morphisms on the right constitute a right triangle and the three morphisms
on the left constitute a left triangle. Hence the pair (X ,Y) is a torsion pair. �

4. Torsion Pairs and Localization Sequences

Associated to a (co)hereditary torsion pair in an abelian or triangulated cat-
egory there are localization sequences connecting the ambient category with the
torsion and the torsion-free subcategory. In this section we discuss an analogous
situation in the pretriangulated case, which will be useful in the investigation of
torsion pairs in a stable category in Chapter VI.
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Let (X ,Y) be a torsion pair in the pretriangulated category C. Our aim here
is to construct localization sequences relating the categories X ,Y and C in analogy
with the localization sequences in the triangulated case, cf. Proposition I.2.6.

Since X is a right triangulated subcategory of C, closed under direct summands
and extensions of right triangles, we can construct the localization category C/X as
in the triangulated case, see [50], [102] for details. Recall that the category C/X
is defined as the category of fractions C[R−1

X ], where the class RX consists of all

morphisms f : A −→ B such that in any right triangle A
f−→ B −→ X −→ Σ(A), the

object X lies in X . It is not difficult to see that the class of morphisms RX admits a
calculus of left fractions in the sense of [50]. Then the right triangulated structures
of X and C induce a right triangulated structure in the localization category C/X
in such a way that the canonical functor C −→ C/X is right exact and we have an
exact sequence of right triangulated categories 0 −→ X −→ C −→ C/X −→ 0.

Dually since Y is a left triangulated subcategory of C, closed under direct sum-
mands and extensions of left triangles, we can construct the localization category
C/Y which is the category of fractions C[L−1

Y ], where the class LY consists of all

morphisms f : A −→ B such that in any left triangle Ω(B) −→ Y −→ A
f−→ B, the

object Y lies in Y. Then the class of morphisms LY admits a calculus of right
fractions and the left triangulated structures of Y and C induce a left triangulated
structure in the localization category C/Y in such a way that the canonical functor
C −→ C/Y is left exact. In this case we have an exact sequence of left triangulated
categories 0 −→ Y −→ C −→ C/Y −→ 0.

We have the following analogue of Proposition I.2.6 and Corollary I.2.9.

Proposition 4.1. Let (X ,Y) be a torsion pair in a pretriangulated category C.

(i) If Ω(Y) = Y, then Y is right triangulated and the functor L : C −→ Y
induces an equivalence C/X ≈−→ Y. In other words we have an exact

sequence of right triangulated categories: 0 −→ X i−→ C L−→ Y −→ 0.
(ii) If Σ(X ) = X , then X is left triangulated and the functor R : C −→ Y

induces an equivalence C/Y ≈−→ X . In other words we have an exact

sequence of left triangulated categories: 0 −→ Y j−→ C R−→ X −→ 0.
(iii) If (X ,Y,Z) is a TTF-triple in C where Σ(X ) = X and Ω(Z) = Z, then

there are equivalences of pretriangulated categories: X ≈←− C/Y ≈−→ Z.

Proof. We prove only part (i), since part (ii) is dual and part (iii) follows
from parts (i) and (ii).

Consider the class of morphisms RX defined above. We call an object M ∈ C
left RX−closed if for any A

f−→ B ∈ RX , the morphism C(f,M) : C(B,M) −→
C(A,M) is invertible. Let A

f−→ B be in RX and let A
f−→ B −→ X −→ Σ(A) be

a right triangle in C with X ∈ X . Then for any Y ∈ Y, we have the long exact
sequence · · · −→ C(Σ(X), Y ) −→ C(Σ(B), Y ) −→ C(Σ(A), Y ) −→ C(X,Y ) −→ C(B, Y ) −→
C(A, Y ), which shows that C(Σ(f), Y ) : C(Σ(B), Y ) −→ C(Σ(A), Y ) or equivalently
C(f,Ω(Y )) : C(B,Ω(Y )) −→ C(A,Ω(Y )), is invertible. Hence for any Y ∈ Y, the
object Ω(Y ) is left RX−closed. Since Ω(Y) = Y, it follows that any object of Y
is left RX−closed. Conversely if M is left RX−closed, then M lies in Y. Indeed
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let C ∈ C and consider the right triangle R(C)
fC−−→ C

gC−−→ Y C
hC

−−→ ΣR(C),
where fC is the coreflection of C in X . Since ΣR(C) is in X , it follows that
the morphism gC is in RX . Hence for any left RX−closed object M we have

C(gC ,M) : C(Y C ,M)
∼=−→ C(C,M). Now if C ∈ X , the morphism fC is invertible,

hence gC = 0. It follows that C(X,M) = 0, for any X ∈ X , i.e. M ∈ X⊥ = Y.
We infer that Y coincides with the class of left RX−closed objects. Now let C ∈ C
and consider the right triangle R(C)

fC−−→ C
gC−−→ L(C)

hC

−−→ ΣR(C), in which the
morphism gC : C −→ L(C) is inRX and the object L(C) is leftRX−closed. By [98],
the localization functor C −→ C/X admits a fully faithful right adjoint C/X ↪→ C and

the composite functor Y j−→ C −→ C/X is an equivalence with inverse the composite

C/X −→ C L−→ Y. Since C/X is right triangulated, so is Y. �

The above result can be applied when the torsion class X is triangulated or
the torsion-free class Y is triangulated. For concrete examples of this situation we
refer to Chapter VI.

5. Lifting Torsion Pairs

To any left or right triangulated category there is associated in a universal
way a triangulated category called the stabilization and which keeps track of the
complexity of its left or right triangulation. Our aim in this section is to study the
relationship between the torsion or torsion-free class of a torsion pair defined in a
pretriangulated category and their stabilizations via suitable stabilization functors.
Indeed we shall show that if the torsion pair is (co)hereditary, then it can be lifted
to a torsion pair in the stabilization. This lifting construction will be used in the
investigation of universal cohomology theories with respect to (co)hereditary torsion
pairs in Chapter VIII.

Throughout this section we fix a pretriangulated category C and a torsion pair
(X ,Y) in C. As usual we denote by R : C −→ X the right adjoint of the inclusion
i : X ↪→ C and by L : C −→ Y the left adjoint of the inclusion j : Y ↪→ C.

Stabilizations. Before we study the lifting of torsion pairs in the left and
right stabilization of C, we need to recall some facts about the stabilization process.
We also investigate when the left or right stabilization of C can be realized by the
torsion or torsion-free subcategory, via the (co)reflection functor. This realization
has interesting consequences for the structure of the category.

Recall from [20], [74] that with a given left triangulated category C, we can
associate in a universal way a triangulated category T (C) which reflects many im-
portant homological properties of C. More precisely there exists a left exact functor
P : C −→ T (C) such that for any left exact functor F : C −→ T to a triangulated
category T , there exists a unique up to isomorphism exact functor F ∗ : T (C) −→ T
such that F ∗P ∼= F . The category T (C) is called the stabilization of C and the
functor P is called the stabilization functor. We refer to [20], [74], for details.
Here we need only the following facts.
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The objects of T (C) are pairs (C, n), where C is an object in C and n ∈ Z. The
space of morphisms T (C)[(A,n), (B,m)] is identified with the direct limit:

T (C)[(A,n), (B,m)] = lim−→
k≥n,k≥m

C[Ωk−n(A),Ωk−m(B)].

The loop functor Ω : T (C) −→ T (C) is defined by Ω(C, n) = (C, n − 1) and the
stabilization functor P is defined by P(C) = (C, 0). Finally the extension of the
left exact functor F above is defined by F ∗(C, n) = Ω−nF (C). Note that T (C) = 0
if and only if Ω is locally nilpotent, that is for any C ∈ C, Ωn(C) = 0 for some
n ≥ 0. Dually any right triangulated category admits its stabilization which has a
dual description and dual properties.

The stabilizations are very natural objects of study:

Example. Let (X ,Y) be the natural torsion pair (= t-structure) in the un-
bounded derived category D(C) of an abelian category. Then Tr(X ) = D−(C) is
the derived category of right bounded complexes and Tl(Y) = D+(C) is the derived
category of left bounded complexes.

The pretriangulated category C as a left and right triangulated category admits
a stabilization Pl : C −→ Tl(C) when considered as a left triangulated category and
a stabilization Pr : C −→ Tr(C) when considered as a right triangulated category.
In general the stabilizations Tl(C) and Tr(C) are not connected in a nice way, in
particular they are rarely equivalent. It is important to have computable descrip-
tions of the left and right stabilizations of C. We now study this problem in case C
admits a torsion pair.

Consider a torsion pair (X ,Y) in C. Since X is right triangulated and Y is left
triangulated, it is natural to ask what is the relationship between the stabilizations
of X ,Y and C. In this respect the following subcategories are useful:

X̂ = {C ∈ C | ∃n ≥ 0 : Ωn(C) ∈ X},

Ỹ = {C ∈ C | ∃n ≥ 0 : Σn(C) ∈ Y}

Similarly we introduce the following full subcategories of C:

P<∞(C) := {C ∈ C | ∃n ≥ 0 : Ωn(C) = 0},

I<∞(C) := {C ∈ C | ∃n ≥ 0 : Σn(C) = 0}

It follows from [20] that KerP = P<∞(C). The category P<∞(C) is the prototype
of the stable category of modules of finite projective dimension modulo projectives,
see Chapter V. It is clear that P<∞(C) is a left triangulated subcategory of C
and its stabilization is trivial: Tl(P<∞(C)) = 0. Moreover any left triangulated
subcategory of C with trivial stabilization is contained in P<∞(C). Dual remarks
hold for the category I<∞(C).

The following gives a useful connection between the above subcategories.

Lemma 5.1. (i) If X is closed under Ω, then: Y ⊆ P<∞(C) if and only

if X̂ = C.

(ii) If Y is closed under Σ, then: X ⊆ I<∞(C) if and only if Ỹ = C.
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Proof. (i) Assume that Y ⊆ P<∞(C). If C ∈ C, then consider the standard

triangle ∆(C) : Ω(C)
hC−−→ YC

gC−−→ R(C)
fC−−→ C. Since YC ∈ Y, there exists

n ≥ 0 such that Ωn(YC) = 0. Consider the n−th rotation Ωn+1(C) −→ ΩnYC −→
ΩnR(C) −→ Ωn(C) of the above triangle. Then Ωn+1(fC) : Ωn+1R(C)

∼=−→ Ωn+1(C)
is an isomorphism, since Ωn(YC) = 0. Since R(C) ∈ X and X is closed under Ω,

it follows that Ωn+1(C) ∈ X . Hence C ∈ X̂ and then C = X̂ . Conversely if this
equality holds, then fix an object C ∈ C and let n ≥ 0 be such that Ωn(C) ∈ X .
Since by Proposition 2.6, R commutes with Ω, it follows easily that ΩnR(C) ∼=
RΩn(C). Then the morphism Ωn(fC) : ΩnR(C) −→ Ωn(C) is invertible. From the
triangle ∆(C) above we infer that Ωn+1(YC) = 0. Hence for any object C in C
there exists n ≥ 0, such that Ωn(YC) = 0. Let now Y ∈ Y be an arbitrary object.

Then in the standard triangle Ω(Y )
hY−−→ YY

gY−−→ R(Y )
fY−−→ Y we have that fY = 0.

This implies trivially that YY = R(Y ) ⊕ Ω(Y ). Since R(Y ) ∈ X and YY ∈ Y we
have R(Y ) = 0. Hence YY = Ω(Y ). By the above argument there exists n ≥ 0,
such that Ωn(YY ) = 0. Hence Ωn+1(Y ) = 0, i.e. Y ⊆ P<∞(C). �

The following result characterizes when the coreflection functor R is the stabi-
lization of C with respect to its left triangulation, and when the reflection functor L
is the stabilization of C with respect to its right triangulation, in terms of properties
of the subcategories introduced above.

Proposition 5.2. Using the above notation, we have the following.

(i) The following are equivalent:
(a) R : C −→ X is the stabilization functor with respect to the left trian-

gulation of C.

(b) X is triangulated and X̂ = C (or equivalently Y = P<∞(C)).
(ii) The following are equivalent:

(a) L : C −→ Y is the stabilization functor with respect to the right trian-
gulation of C.

(b) Y is triangulated and Ỹ = C (or equivalently X = I<∞(C)).

Proof. We prove only part (i). Assume that X is triangulated and X̂ = C.
Then the coreflection functor R and the inclusion functor i are left exact. If F : C −→
D is a left exact functor to a triangulated category D, then F (Y) = 0. Indeed, since

X̂ = C, by Lemma 5.1 we have Y ⊆ P<∞(C), hence for any Y ∈ Y, there exists
n ≥ 0 such that Ωn(Y ) = 0. Since F commutes with Ω, we have ΩnF (Y ) = 0
where Ω is the loop functor in D. Then F (Y ) = 0, since Ω is invertible in D.

Now consider the functorial left triangle ΩL(C)
hC−−→ R(C)

fC−−→ C
gC−−→ L(C) in C,

where fC : iR(C) −→ C is the coreflection of C in X . Then we have a triangle

ΩFL(C) −→ FR(C)
F (fC)−−−−→ F (C) −→ FL(C) in D. Since F (Y) = 0, it follows

that F (fC) : FR(C) −→ F (C) is invertible. Define a functor F ∗ : X −→ D by
F ∗ = F i. Then F ∗ is obviously left exact and the above isomorphism shows that

F (f) : F ∗R
∼=−→ F . If G : X −→ D is another exact functor endowed with a natural

isomorphism ξ : GR
∼=−→ F , then ξi : G ∼= GRi

∼=−→ F i = F ∗. Hence F ∗ is the
unique up to isomorphism left exact functor which extends F . Then R : C −→ X
represents X as the stabilization of C. Conversely assume that R represents X as
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the stabilization of C with respect to its left triangulation. By [20], we know that
the kernel of the stabilization functor is P<∞(C). Since KerR = Y, we infer that

P<∞(C) = Y or equivalently by Lemma 5.1, X̂ = C. �

Lifting Torsion Pairs. Our aim now is to show that in some cases the exact
localization sequences of left or right triangulated categories in Proposition 4.1
can be lifted to exact sequences in the stabilizations, thus providing a lifting of
the torsion pair from the pretriangulated category to the triangulated stabilization.
Assume throughout that the torsion pair (X ,Y) is hereditary, the cohereditary case
being treated in a dual way.

Since (X ,Y) is hereditary we have that X is pretriangulated, and the inclusion
functor i : X ↪→ C and the coreflection functor R : C −→ X are left exact. Consider
the stabilization functors P : C −→ Tl(C) and P : X −→ Tl(X ) of C and X when these
are considered as left triangulated categories. Since i and R are left exact, by the
universal property of the stabilization functors P : X −→ Tl(X ) and P : C −→ Tl(C),
there exist unique exact functors i∗ : Tl(X ) −→ Tl(C) and R∗ : Tl(C) −→ Tl(X ), such
that the following diagrams commute:

X i−−−−→ C

P

y P

y
Tl(X )

i∗−−−−→ Tl(C)

C R−−−−→ X

P

y P

y
Tl(C)

R∗−−−−→ Tl(X ).

Proposition 5.3. Let (X ,Y) be a hereditary torsion pair in a pretriangulated
category C. Then

(
Tl(X ), Tl(Y)

)
is a hereditary torsion pair in Tl(C), that is, there

exists a short exact sequence of triangulated categories

0 −→ Tl(Y)
j∗−→ Tl(C)

R∗−→ Tl(X ) −→ 0

The functor i∗ is a left adjoint of R∗ and the functor j∗ admits a left adjoint.

Proof. It suffices to show that the functor R∗ admits a fully faithful left
adjoint and KerR∗ = Tl(Y). By Proposition 3.4 of [20] we have that the left exact
functor j : Y ↪→ C induces a fully faithful exact functor j∗ : Tl(Y) ↪→ Tl(C). Let
(C, n) be in Tl(C) such that R∗(C, n) = 0. Then Ω−nP(R(C)) = (R(C), n) = 0 and
this means that there exists k with k + n ≥ 0 such that Ωk+nR(C) = 0. Since R
commutes with the loop functor Ω we have RΩk+n(C) = 0. Hence Ωk+n(C) lies in Y
and then P(Ωk+n(C)) = Ωn+kP(C) lies in Tl(Y). Since the latter is a triangulated
subcategory of Tl(C) we have that Ω−2n−kΩn+kP(C) = Ω−nP(C) = (C, n) lies
in Y. On the other hand if (Y, n) is in Tl(Y) then R∗(Y, n) = (R(Y ), n) = 0
since R(Y) = 0. We infer that KerR∗ = Tl(Y). Since Ri = IdX it follows that
R∗i∗ = IdTl(X ). Consider now the coreflection morphism f : iR −→ IdX . It is not
difficult to see that the lifting i∗R∗ −→ IdTl(X ) of f in Tl(C) serves as the coreflection
morphism for the adjoint pair (i∗,R∗) and of course the functor i∗ is fully faithful,
since i is so. Now standard arguments [102] show that j∗ admits a left adjoint. �

Dually when the torsion pair is cohereditary, then Y is pretriangulated, and the
inclusion functor j : Y ↪→ C and the reflection functor L : C −→ Y are right exact.
Consider the stabilizations Q : C −→ Tr(C) and Q : Y −→ Tr(Y) of C and Y when
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these are considered as right triangulated categories. Since j and L are right exact,
there exist unique exact functors j∗ : Tr(X ) −→ Tr(C) and L∗ : Tr(C) −→ Tr(Y), such
that the following diagrams commute:

Y j−−−−→ C

Q

y Q

y
Tr(Y)

j∗−−−−→ Tr(C)

C L−−−−→ Y

Q

y Q

y
Tr(C)

L∗−−−−→ Tr(Y).
The following is a dual version of Proposition 5.3.

Proposition 5.4. Let (X ,Y) be a cohereditary torsion pair in a pretriangulated
category C. Then

(
Tr(X ), Tr(Y)

)
is a hereditary torsion pair in Tr(C), that is, there

exists a short exact sequence of triangulated categories

0 −→ Tr(X )
i∗−→ Tr(C)

L∗−→ Tr(Y) −→ 0

The functor j∗ is a right adjoint of L∗ and the functor i∗ admits a right adjoint.

We have the following direct consequence.

Corollary 5.5. (1) If (X ,Y) is hereditary, then the functor R∗ : Tl(C) −→
Tl(X ) is a triangle equivalence if and only if Y ⊆ P<∞(C). If this is the case and
X is triangulated, then R∗ : Tl(C) −→ X is a triangle equivalence and R : C −→ X is
the stabilization functor with respect to the left triangulation of C.

(2) If (X ,Y) is cohereditary, then the functor L∗ : Tr(C) −→ Tr(Y) is a triangle
equivalence if and only if X ⊆ I<∞(C). If this is the case and Y is triangulated,
then L∗ : Tr(C) −→ Y is a triangle equivalence and L : C −→ Y is the stabilization
functor with respect to the right triangulation of C.

Combining Proposition 4.1 and Corollary 5.5 we have the following consequence
which generalizes Corollary I.2.9.

Corollary 5.6. Let (X ,Y,Z) be a TTF-triple in a pretriangulated category
C. If X and Z are triangulated subcategories of C, then the following are equivalent:

(i) X is the left stabilization of C and Z is the right stabilization of C.
(ii) P<∞(C) ⊇ Y ⊆ I<∞(C).
(iii) X̂ = C = Z̃.

If (i) holds, then P<∞(C) = Y = I<∞(C), the categories X , Z and C/Y are
triangulated and there exist triangle equivalences:

X ≈←− C/Y ≈−→ Z.

Grothendieck Groups. We close this chapter with an application of the
lifting of torsion pairs to K-theory.

If C is a left triangulated category with loop functor Ω and (left) triangulation
∆, then its Grothendieck group K0(C) is defined as the quotient of the free abelian
group on the isoclasses of objects of C, modulo the relations (A) − (B) + (C), for
each triangle Ω(C) −→ A −→ B −→ C in ∆. The definition of the Grothendieck group
of a right triangulated category is dual. If C is pretriangulated, then we denote by
K∆

0 (C) the Grothendieck group when C is considered as a left triangulated category,
and by K∇0 (C) the Grothendieck group when C is considered as a right triangulated
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category. Of course if C is triangulated, then K∆
0 (C) = K∇0 (C) := K0(C) is the usual

Grothendieck group of C.

Corollary 5.7. (1) Let (X ,Y) be a hereditary torsion pair in C. Then the
coreflection functor R : C −→ X induces an isomorphism

K∆
0 (C)

∼=−→ K∆
0 (X ) ⊕ K∆

0 (Y)

In particular K∆
0 (C) ∼= K∆

0 (X ) if Y ⊆ P<∞(C).
(2) Let (X ,Y) be a cohereditary torsion pair in C. Then the reflection functor

L : C −→ Y induces an isomorphism

K∇0 (C)
∼=−→ K∇0 (X ) ⊕ K∇0 (Y)

In particular K∇0 (C) ∼= K∇0 (Y) if X ⊆ I<∞(C).

Proof. We prove (1) since (2) is dual. By a well-known result of Grothendieck
the exact sequence of triangulated categories in Proposition 5.3 induces an exact
sequence K0(Tl(Y)) −→ K0(Tl(C)) −→ K0(Tl(X )) −→ 0 which is a split short exact
sequence, since the functor j∗ admits a left adjoint. Now the assertion follows
from a result of [20] which says that the Grothendieck group is invariant under
stabilization. �

The first part of the following consequence was first observed in [89].

Corollary 5.8. (1) Let (X ,Y) be a hereditary torsion pair in a triangulated
category C. Then the assignment [C] 7−→

(
[R(C)], [L(C)]

)
induces an isomorphism

K0(C)
∼=−→ K0(X ) ⊕ K0(Y).

(2) Let (X ,Y,Z) be a TTF-triple in a pretriangulated category C. If X and
Z are triangulated subcategories of C and P<∞(C) ⊇ Y ⊆ I<∞(C), then we have
isomorphisms:

K0(X )
∼=−→ K∆

0 (C)
∼=−→ K∇0 (C)

∼=←− K0(Z).



CHAPTER III

Compactly Generated Torsion Pairs in
Triangulated Categories

Throughout this chapter we fix a triangulated category C. Our purpose here
is to develop a technique for constructing torsion pairs in C induced by a given
set of objects, and to give some applications to tilting theory by investigating the
heart. In particular we are interested in finding conditions such that the heart is
a module category. This will be important in connection with tilting theory in
derived categories and the construction of derived equivalences. As it happens in
the case of abelian categories, for the construction of torsion theories generated
by a set of objects, we have to assume that the category C is big enough to allow
certain infinite constructions.

1. Torsion Pairs of Finite Type

It is well-known that an important and well-behaved class of torsion pairs in
an abelian category G with exact filtered colimits, is the class of torsion pairs of
finite type. We recall from [78] that a torsion pair (T ,F) in G is said to be of finite
type if the torsion free class F is closed under filtered colimits (in case G is locally
coherent this is equivalent to the condition that the torsion subfunctor commutes
with filtered colimits). These torsion pairs are important in connection with the
Ziegler spectrum and the localization theory of abelian categories, see [78] for a
detailed analysis from a representation theoretic point of view.

Filtered colimits rarely exist in a triangulated category. However all small co-
products, which are special filtered colimits, exist in many interesting triangulated
categories, for instance the unbounded derived category of an abelian category with
exact coproducts, the stable homotopy category of spectra, and the stable module
category of a group algebra. So we are led to introduce and investigate the analo-
gous concept of torsion theories of finite type in triangulated categories.

Throughout this section C denotes a triangulated category containing all small
coproducts. In analogy with the abelian case we make the following definition.

Definition 1.1. A torsion pair (X ,Y) in C is said to be of finite type if the
torsion free class Y is closed under all small coproducts.

Let (X ,Y) be a torsion pair in C, let R : C −→ X be the right adjoint of the
inclusion i : X ↪→ C, and let L : C −→ Y be the left adjoint of the inclusion j : Y ↪→ C.
The following criterion will be useful.

43



2. COMPACTLY GENERATED TORSION PAIRS 44

Lemma 1.2. (1) The torsion pair (X ,Y) is of finite type if and only if R
preserves coproducts. In this case the functors i : X ↪→ C and L : C −→ Y preserve
compact objects.

(2) L preserves products if and only if X is closed under products.

Proof. (1) If R preserves coproducts and {Yi; i ∈ I} is a set of objects
of Y, then: C(X ,⊕i∈IYi) ∼= C(X ,R(⊕i∈IYi)) = C(X ,⊕i∈IR(Yi)) = 0. Hence
⊕i∈IYi ∈ X⊥ = Y and Y is closed under coproducts. Conversely if Y is closed
under coproducts and {Ci; i ∈ I} is a set of objects of C, then consider the triangle

⊕i∈IR(Ci)
⊕fi−−→ ⊕i∈ICi

⊕gi−−→ ⊕i∈IL(Ci)
⊕hi−−→ Σ(⊕i∈IR(Ci)) which is a coprod-

uct of the triangles R(Ci)
fi−→ Ci

gi−→ L(Ci)
hi−→ ΣR(Ci). Since Y is closed under

coproducts, we have ⊕i∈IL(Ci) ∈ Y. Then any morphism α : X −→ ⊕i∈ICi with
X ∈ X factors through ⊕fi since α ◦⊕gi = 0. Moreover the factorization is unique
since for any two of them, their difference factorizes through Σ−1(⊕i∈IL(Ci)) ∈ Y,
so it is zero. We infer that ⊕i∈IR(Ci) is the coreflection of ⊕i∈ICi in X . This
implies that the canonical morphism ⊕i∈IR(Ci) −→ R(⊕i∈ICi) is invertible.

If X is compact in X , and {Ci | i ∈ I} is a family of objects in C, then the
following isomorphisms show that X is compact in C:

⊕i∈IC(X,Ci)
∼=−→ ⊕i∈IX (X,R(Ci))

∼=−→ X (X,⊕i∈IR(Ci))
∼=−→ X (X,R(⊕i∈ICi))

∼=−→ C(X,⊕i∈ICi).
Now since Y is closed under coproducts, the inclusion j : Y ↪→ C preserves co-
products. Then working as above we have that the reflection functor L preserves
compact objects.

The proof of (2) is dual and is left to the reader. �

Note. It is easy to see that the above proof works in any pretriangulated
category with coproducts, resp. products. This more general result will be useful
in the study of the torsion pair induced by Cohen-Macaulay objects in the stable
category of a Nakayama category, see the last chapter.

Example. Let (T ,F) be a torsion pair in a Grothendieck category G and
assume that (T ,F) is of finite type, or more generally that F is closed under
coproducts. The tilting construction of Section I.3 (which as easily seen works for
unbounded complexes) produces a torsion pair of finite type

(
X (T ),Y(F)

)
in the

unbounded derived category D(G). For instance let G be a compact object in G and
let (T ,F) be the torsion pair in G generated by G, i.e. F = G⊥ and T = ⊥(G⊥).
Then the torsion pair

(
X (T ),Y(F)

)
in D(G) is of finite type.

It would be very interesting to have a classification of all torsion pairs of finite
type in C. This seems to be very difficult; see the remarks in the last section of the
next chapter. But already the special class of torsion pairs generated by compact
objects is very interesting, and has important applications. So we concentrate on
this case.

2. Compactly Generated Torsion Pairs

Throughout this section we fix a triangulated category C. Our purpose here
is to construct a torsion pair in C generated by a set of objects, and to give a
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handy description of the torsion or the torsion-free class. This will be important in
connection with having a nice description of the heart in the next section.

We fix a set of objects P ⊆ C. To define a torsion pair (XP ,YP) in C generated
by P it is necessary by Proposition II.3.3 that XP is right triangulated and YP is
left triangulated. As in the case of torsion pairs in abelian categories it is natural
to define the pair (XP ,YP) as follows (we use non-negative suspensions in the
definition of YP since a torsion-free class is closed under non-positive suspensions):

YP :=
{
C ∈ C | C(Σn(P ), C) = 0, ∀P ∈ P, ∀n ≥ 0

}
and XP := ⊥YP .

The above definition is also similar to the definition of the natural torsion pair (=
t-structure) in the derived category of a module category Mod(Λ), where the role of
P is played by the stalk complex Λ concentrated in degree zero. We are interested
in finding sufficient conditions for the pair (XP ,YP) to be a torsion pair in C. First
we record the following immediate consequence of the above definition.

Lemma 2.1. XP is a right triangulated subcategory of C closed under coproducts
and extensions, and YP is a left triangulated subcategory of C closed under products
and extensions.

From now on we assume that C contains all small coproducts and the set P
consists of compact objects of C. Throughout we use the following notation:

Q :=
{

Σn(P ) | P ∈ P, n ≥ 0
}

so Q remains a set of compact objects and by construction Q is closed under Σ.
We denote by Add(Q) the full subcategory of C consisting of direct summands of
arbitrary coproducts of objects of Q. Observe that Add(Q)⊥ = Q⊥.

The above setup and notation will be fixed throughout this chapter.
We begin with the following result which will be useful for the construction of

coreflections of objects of C in XP .

Lemma 2.2. Add(Q) is contravariantly finite in C and for any C ∈ C, there

exists a triangle Q0
f0−→ C

g0−→ Y0
h0−→ Σ(Q0) in C with the following properties:

(i) f0 is a right Add(Q)-approximation of C.
(ii) 0 −→ C(Q,Σ−n−1(Y0)) −→ C(Q,Σ−n(Q0)) −→ C(Q,Σ−n(C)) −→ 0 is a short

exact sequence, ∀n ≥ 0.
(iii) The morphism C(Σn(g0),YP) : C(Σn(Y0),YP) −→ C(Σn(C),YP) is invert-

ible, ∀n ≥ 0.

Proof. For any C ∈ C, consider the set of morphisms IC := {P −→ C | P ∈ Q}
and let Q0 = ⊕λ∈ICPλ. The set IC induces a morphism f0 : Q0 −→ C which
by construction has the property that (Q, f0) is epic. This implies that (A, f0)
is epic, ∀A ∈ Add(Q), i.e. f0 is a right Add(Q)-approximation of C. If (T ) :

Q0
f0−→ C −→ Y0 −→ Σ(Q0) is a triangle in C, then the morphism C(Q,Σ−n(f0)) :

C(Q,Σ−n(Q0)) −→ C(Q,Σ−n(C)) is isomorphic to C(Σn(Q), f0) : C(Σn(Q), Q0) −→
C(Σn(Q), C), ∀n ≥ 0. Hence assertion (ii) follows if we apply C(Q,−) to (T ), using
that Σ(Q) ⊆ Q. Since YP = Q⊥, applying C(−,YP) to the triangle (T ), the last
assertion follows. �
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In the following we use a version of Bousfield’s localization, called finite lo-
calization, popularized by Miller [82] in case C is the stable homotopy category
of spectra, and the constructed torsion or torsion-free class is closed under Σ and
Σ−1. Our result is more general since in our case C is an arbitrary triangulated
category with coproducts, and the torsion class we construct is closed only under
Σ, equivalently the torsion-free class is closed only under Σ−1.

Theorem 2.3. Let C be a triangulated category with coproducts and let P ⊆ C
be a set of compact objects. Then (XP ,YP) is a torsion pair of finite type in C,
where as before YP := {Σn(P) | n ≥ 0}⊥ and XP := ⊥YP .

Proof. By Lemma 2.1, XP is a full subcategory of C, closed under Σ and
extensions, and YP is a full subcategory of C, closed under Σ−1 and extensions. Let

Q0
f0−→ C

g0−→ Y0
h0−→ Σ(Q0) be the triangle constructed in Lemma 2.2. Inductively

∀n ≥ 0, we can construct triangles Qn
fn−→ Yn−1

gn−→ Yn
hn−−→ Σ(Qn) in C, where

Y−1 = C and fn is a right Add(Q)−approximation of Yn−1 satisfying the properties
of Lemma 2.2. Consider the tower of objects

C
g0−→ Y0

g1−→ Y1
g2−→ Y2 −→ · · · −→ Yn

gn+1−−−→ Yn+1 −→ · · · (Π)

and let holim−−−→Yn be its homotopy colimit which is defined by the triangle⊕
n≥0

Yn
1−g−−→

⊕
n≥0

Yn
α−→ holim−−−→Yn

β−→ Σ
⊕
n≥0

Yn

where the morphism 1− g is induced by Yn−1

(1Yn−1
,−gn)

−−−−−−−−→ Yn−1 ⊕ Yn ↪→ ⊕n≥0Yn.
Since Q consists of compact objects, it is well-known that the canonical morphism
lim−→C(Q, Yn) −→ C(Q,holim−−−→Yn) is invertible [21]. Since by construction C(Q, gn) =

0,∀n ≥ 0, the short exact sequence

0 −→
⊕
n≥0

C(Q, Yn)
1−(Q,g)−−−−−→

⊕
n≥0

C(Q, Yn) −→ lim−→C(Q, Yn) −→ 0

shows that 0 = lim−→C(Q, Yn) ∼= C(Q,holim−−−→Yn). Hence holim−−−→Yn ∈ YP , and since YP
is closed under Σ−1, we have that Σ−1holim−−−→Yn ∈ YP . The tower of objects (Π)

induces a morphism gC : C −→ holim−−−→Yn. Let

Σ−1holim−−−→Yn
hC−−→ X

fC−−→ C
gC−−→ holim−−−→Yn (∗)

be a triangle in C. We claim that gC is the reflection of C in YP . By construc-
tion if we apply C(−,YP) to the tower of objects (Π), we get an inverse tower

· · · −→ C(Y2,YP)
(g2,YP)−−−−−→ C(Y1,YP)

(g1,YP)−−−−−→ C(Y0,YP)
(g0,YP)−−−−−→ C(C,YP) where the

involved morphisms are invertible. Hence lim←−C(Yn,YP) ∼= C(C,YP). Now by [21],
we have a short exact sequence

0 −→ lim←−
(1)C(Σ(Yn),YP) −→ C(holim−−−→Yn,YP) −→ lim←−C(Yn,YP) −→ 0

where lim←−
(1) denotes the first right derived functor of the inverse limit functor [104].

By part (iii) of Lemma 2.2, in the inverse system · · · −→ C(Σ(Y2),YP)
(Σ(g2),YP)−−−−−−−→
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C(Σ(Y1),YP)
(Σ(g1),YP)−−−−−−−→ C(Σ(Y0),YP) the involved morphisms are invertible. Then

by the Mittag-Leffler condition [104], we have lim←−
(1) C(Σ(Yn),YP) = 0. Hence

C(holim−−−→Yn,YP) ∼= lim←−C(Yn,YP) ∼= C(C,YP). We infer that gC : C −→ holim−−−→Yn
induces an isomorphism C(gC ,YP) : C(holim−−−→Yn,YP)

∼=−→ C(C,YP), i.e. gC is the

reflection of C ∈ YP . Hence by Proposition I.2.3, fC : X −→ C is the coreflection of
C in XP and then (XP ,YP) is a torsion pair in C. Since YP = Q⊥ and Q consists of
compact objects, it follows trivially that YP is closed under coproducts, so (XP ,YP)
is of finite type. �

Since compact objects in C remain compact in XP , it follows that any object in
P is compact in XP . The following observation shows that it is necessary to start
with a set P of compact objects in C in order to get a torsion pair of finite type
(XP ,YP) in C such that P consists of compact objects in the torsion class.

Note. If P is a set of, not necessarily compact, objects in C, then P ⊆ XP
and the following are equivalent for the pair (XP ,YP), where as before YP :=
{Σn(P) | n ≥ 0}⊥ and XP := ⊥YP .

(i) P is a set of compact objects in C.
(ii) (XP ,YP) is a torsion pair of finite type in C and P is a set of compact

objects in XP .

That (i) implies (ii) follows from Theorem 2.3. If (ii) holds, then let P be in P and
let {Ci | i ∈ I} be a family of objects in C. Since the torsion pair (XP ,YP) is of
finite type, it follows that the torsion-free class YP is closed under coproducts. This
implies that in the standard triangle X⊕i∈ICi

−→ ⊕i∈ICi −→ Y ⊕i∈ICi −→ Σ(X⊕i∈ICi
),

we have: X⊕i∈ICi

∼=−→ ⊕i∈IXCi
and Y ⊕i∈ICi

∼=−→ ⊕i∈IY Ci . Hence the above triangle
is isomorphic to the triangle ⊕i∈IXCi

−→ ⊕i∈ICi −→ ⊕i∈IY Ci −→ Σ(⊕i∈IXCi
).

Applying the functor C(P,−) to this triangle, we get the following commutative
diagram ⊕

i∈I C(P,XCi) −−−−→
⊕

i∈I C(P,Ci)y y
C(P,

⊕
i∈I XCi

) −−−−→ C(P,
⊕

i∈I Ci)

where the horizontal maps are invertible. Since, by hypothesis, P is compact in XP ,
it follows that the left vertical, hence the right vertical, map is invertible. Hence P
is compact in C.

If C is the unbounded derived category of right modules over a ring, and P
is a set of, not necessarily perfect, complexes of modules which is closed under
positive and negative suspensions, then it is shown in [1] that one gets a torsion
pair (XP ,YP ) in C. Of course the torsion pair (XP ,YP ) need not be of finite type.
See also [2] for related results.

It is now natural to make the following definition.

Definition 2.4. A torsion pair (X ,Y) in C is generated by a set of compact
objects or it is compactly generated if there exists a set of compact objects P
in C such that Y = {Σn(P) | n ≥ 0}⊥ and X = ⊥Y. Such a torsion pair is always
denoted by (XP ,YP).



2. COMPACTLY GENERATED TORSION PAIRS 48

By the above theorem it follows in particular that any compact object T ∈ C
generates a torsion pair (XT ,YT ) of finite type in C.

We are interested in having a convenient description of the torsion class XP in
the torsion pair (XP ,YP) in C generated by a set compact objects P. We denote
by Loc+(P) the smallest full subcategory of C, containing P, which is closed under
Σ, extensions and coproducts. Then automatically Loc+(P) is a right triangulated
subcategory of C. Clearly the torsion class XP contains Loc+(P). It is useful
to know under what conditions we have Loc+(P) = XP . We can prove that the
equality holds under an additional assumption. For a full subcategory U of C we
denote by U?n = U ?U ? · · · ?U (n−factors) the category of n-extensions of U by U .

We need the following easy observation whose direct proof is left to the reader.

Lemma 2.5. If C(P,Σt(P)) = 0,∀t ≥ 1, then C(P,Σt(C)) = 0,∀t ≥ 1, for any
C ∈ Add(Q)?n and n ≥ 1.

Using this lemma we get a description of the torsion class XP under an ad-
ditional assumption. This assumption can be dropped whenever the triangulated
category C admits a model, see Remark 2.7 below.

Proposition 2.6. If C(P,Σn(P)) = 0,∀n ≥ 1, then XP = Loc+(P).

Proof. Since XP is closed under coproducts, extensions, Σ and contains P, it
follows by construction that Loc+(P) ⊆ XP . Let C ∈ C and consider the triangles

Qn
fn−→ Yn−1

gn−→ Yn −→ Σ(Qn), n ≥ 0 constructed in Theorem 2.3, where C = Y−1.
Setting χ0 = f0 and Q0 = T0, we can construct inductively a tower of objects

T0
τ0−→ T1

τ1−→ T2 −→ · · · and the following tower of triangles:

T0
χ0−−−−→ C

g0−−−−→ Y0
hC

−−−−→ Σ(T0)

τ0

y ∥∥∥ g1

y Σ(τ0)

y
T1

χ1−−−−→ C
g0◦g1−−−−→ Y1 −−−−→ Σ(T1)

τ1

y ∥∥∥ g2

y Σ(τ1)

y
T2

χ2−−−−→ C
g0◦g1◦g2−−−−−−→ Y2 −−−−→ Σ(T2)y ∥∥∥ y y

...
...

...
...

Using the Octahedral Axiom in each step it is not difficult to see that each object Tn
lies in Add(Q)?n [21]. Consider the homotopy colimit holim−−−→Tn of the left vertical

tower, which is equipped with a morphism χC : holim−−−→Tn −→ C induced by the above

diagram, and let

holim−−−→Tn
χC−−→ C

g−→ Ĉ
h−→ Σ(holim−−−→Tn) (T)

be a triangle in C. By construction holim−−−→Tn lies in Loc+(P). Using Lemma 2.2, we

have short exact sequences 0 −→ C(Q,Σ−1(Yn)) −→ C(Q, Tn) −→ C(Q, C) −→ 0, ∀n ≥
0. Taking direct limits we deduce a short exact sequence 0 −→ lim−→C(Q,Σ

−1(Yn)) −→
lim−→C(Q, Tn) −→ C(Q, C) −→ 0. Since Q consists of compact objects, we have
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lim−→C(Q,Σ
−1(Yn)) ∼= C(Q,holim−−−→Σ−1(Yn)) = 0 and lim−→C(Q, Tn) ∼= C(Q,holim−−−→Tn).

It follows that the morphism χC induces an isomorphism C(Q, χC) : C(Q,holim−−−→Tn)

−→ C(Q, C). Since Σ(Q) ⊆ Q, it follows that C(Q,Σ−1(χC)) : C(Q,Σ−1(holim−−−→Tn))

−→ C(Q,Σ−1(C)) is invertible. This implies that C(Q,Σ−1(Ĉ)) = 0, i.e. Ĉ ∈ Σ(YP).

Assume now that C ∈ XP . Then Ĉ ∈ XP since holim−−−→Tn lies in XP and

the latter is right triangulated. It follows that Ĉ ∈ XP ∩ Σ(YP). Applying the
functor C(P,−) to the triangle (T), we have an exact sequence C(P,holim−−−→Tn) −→

C(P, C) −→ C(P, Ĉ) −→ C(P,Σ(holim−−−→Tn)). Since P consists of compact objects we

have lim−→C(P,Σ(Tn)) ∼= C(P,Σ(holim−−−→Tn)), and by Lemma 2.5, C(P,Σ(holim−−−→Tn)) =

0. Since C(P, χC) is invertible we infer that C(P, Ĉ) = 0, hence Ĉ ∈ YP . Then Ĉ =

0, since Ĉ lies also in XP . Hence C = holim−−−→Tn ∈ Loc+(P), i.e. Loc+(P) = XP . �

Remark 2.7. The assumption C(P,Σn(P)) = 0,∀n ≥ 1, in Proposition 2.6
can be removed, in case C admits a model, for example if C is the stable module
category of a quasi-Frobenius ring or the stable homotopy category of spectra or
the unbounded derived category of an AB4 category, that is an abelian category
with exact coproducts. Indeed in any of the above cases, the tower of triangles
constructed above induces a triangle holim−−−→Tn −→ C −→ holim−−−→Yn −→ Σ(holim−−−→Tn) in C

which is isomorphic to the triangle (T) above. In particular we have Ĉ ∼= holim−−−→Yn.

Then as above we infer that if C ∈ XP , then C = holim−−−→Tn ∈ Loc+(P), since

holim−−−→Yn ∈ YP . It follows that Loc+(P) = XP . The problem is that in a general

triangulated category it is not known if the homotopy colimit of a tower of triangles
is a triangle, see [21].

Trivially the assumption can also be removed if P is closed under Σ−1. In this
case the torsion class XP coincides with the smallest triangulated subcategory of C
which is closed under coproducts and contains P.

Using the above result we get a description of the torsion class XP , not only of
the torsion-free class YP . This will be useful for a nice description of the heart of the
torsion pair in the next section. First we recall from Chapter I that a set of objects U
generates a triangulated category C, or is a generating set, if {Σn(U) | n ∈ Z}⊥ = 0.

The following result gives an explicit description of the torsion class XP , pro-
vided that P is a generating set and satisfies the assumption of Proposition 2.6.
This will be useful in the next section for a handy description of the heart.

Proposition 2.8. If C(P,Σn(P)) = 0, ∀n ≥ 1, then

XP ⊆
{
C ∈ C | C(P,Σn(C)) = 0, ∀n ≥ 1

}
.

Moreover the following statements are equivalent:

(i) P generates C and C(P,Σn(P)) = 0, ∀n ≥ 1.
(ii) XP = {C ∈ C | C(P,Σn(C)) = 0, ∀n ≥ 1}.

Proof. By Proposition 2.6, the hypothesis implies that XP = Loc+(P) is the
smallest full right triangulated subcategory of C which is closed under coproducts
and contains P. Since obviously {C ∈ C | C(P,Σn(C)) = 0, ∀n > 0} is a right
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triangulated subcategory of C, closed under coproducts and contains P, it follows
that XP ⊆ {C ∈ C | C(P,Σn(C)) = 0, ∀n ≥ 1}.

(i) ⇒ (ii) It suffices to show that {C ∈ C | C(P,Σn(C)) = 0, ∀n ≥ 1} ⊆ XP .
Let C be in C such that C(P,Σt(C)) = 0,∀t > 0, and consider the glueing triangle
R(C) −→ C −→ L(C) −→ ΣR(C)) in C. By the proof of Proposition 2.6 we can write
R(C) = holim−−−→Tn, where Tn ∈ Add(Q)?n. Applying C(Σ−t(P),−) to the above

triangle and using Lemma 2.5, we see directly that C(Σ−t(P),L(C)) = 0,∀t > 0.
Since L(C) ∈ YP , we infer that C(P,ΣtL(C)) = 0,∀t ∈ Z. Since P generates C, we
have L(C) = 0. This implies that C ∼= R(C) ∈ XP .

(ii) ⇒ (i) Since P ⊆ XP , it suffices to show that P is a generating set. So let
C be an object in C such that C(P,Σt(C)) = 0, ∀t ∈ Z. Then obviously C ∈ YP .
Moreover the description of XP implies that C ∈ XP . Hence C ∈ XP ∩ YP = 0.
We infer that P is a generating set. �

The following examples illustrate the above constructions.

Example. (1) Let C = D(Mod(Λ)) be the unbounded derived category of
right Λ-modules over a ring Λ. Let P = {Λ} consist only of the regular module
Λ concentrated in degree zero. Then P satisfies the conditions of Proposition 2.8,
and the torsion pair generated by Λ is the natural torsion pair (= t-structure)
in D(Mod(Λ)). The torsion class coincides with the smallest right triangulated
subcategory of D(Mod(Λ)) which is closed under coproducts and contains Λ.

(2) Let Ho(Sp) be the stable homotopy category of spectra and let P = {S0}
consist only of the sphere spectrum. It is well-known that S0 is compact and {S0}
satisfies the conditions of Proposition 2.8 [81]. Then the torsion pair generated by
S0 is the natural torsion pair (= t-structure) in Ho(Sp). The torsion class XP is
known in algebraic topology as the category of connective spectra.

3. The Heart of a Compactly Generated Torsion Pair

We continue to assume that C is a triangulated category with small coproducts.
In this section we investigate the heart of the torsion pair (XP ,YP) in C compactly
generated by P. For our applications to tilting theory in the next section we are
interested in finding sufficient conditions for the heart to be a module category. A
similar approach was considered independently also in [63].

For the rest of this section we denote by H(P) = XP ∩ Σ(YP) the heart of
the torsion pair (XP ,YP). As in Chapter I, H(P) is an abelian category and the
functor H0 = ΣLΣ−1R = RΣLΣ−1 : C −→ H(P) is homological. The higher
homological functors are denoted by Hn : C −→ H(P) and are defined by Hn :=
H0Σn = ΣLΣ−1RΣn = RΣLΣn−1, ∀n ∈ Z.

If A is an abelian category then we call a set of objects T ⊆ A a set of weak
generators if A(T,A) = 0, ∀T ∈ T implies that A = 0. We denote by H0(P) the
full subcategory {H0(P ) | P ∈ P} of C.

We have the following result which will be useful later.

Lemma 3.1. (i) (a) C(P, H)
∼=−→ H(P)(H0(P), H), ∀H ∈ H(P).

(b) Hn(P) = 0, ∀n ≥ 1.
(ii) H(P) has exact coproducts, i.e. it is AB4.
(iii) H0(P) is a set of compact weak generators in H(P).
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Proof. (i) Since P ⊆ XP , we have: H0(P) = ΣLΣ−1R(P) = ΣLΣ−1(P).
Then for any object H inH(P) we have: H(P)(H0(P), H) = H(P)

(
ΣLΣ−1(P), H

)
.

Since H lies in H(P), we have H = Σ(Y ) for some Y ∈ YP . Then H(P)(H0(P), H)

= YP(L(Σ−1(P), Y )
∼=−→ C(Σ−1(P), Y ) = C(P,Σ(Y )) = C(P, H) and this proves

(a). Since Σn(P) ∈ XP for n ≥ 0, we have Hn(P) = ΣLΣn−1(P). If n ≥ 1, then
LΣn−1(P) = 0, since Σt(P) lies in XP for t > 0. This proves (b).

(ii) Since the torsion pair (XP ,YP) is of finite type, the heartH(P) has all small
coproducts, so it is cocomplete. If 0 −→ Ai −→ Bi −→ Ci −→ 0 is a set of short exact
sequences in H(P) indexed by I, then there are triangles Ai −→ Bi −→ Ci −→ Σ(Ai)
in C. Since the coproduct of triangles is a triangle, we have a triangle ⊕i∈IAi −→
⊕i∈IBi −→ ⊕i∈ICi −→ Σ(⊕i∈IAi) in C. Then the sequence 0 −→ ⊕i∈IAi −→ ⊕i∈IBi −→
⊕i∈ICi −→ 0 is short exact in H(P). Hence coproducts are exact and H(P) is an
AB4 category.

(iii) Let H be an object in the heart such that H(P)(H0(P), H) = 0. Then by
(i) we have C(P, H) = 0. This implies that C(Σn(P ), H) = 0, ∀n ≥ 0 since H lies
also in Σ(YP). Hence H ∈ XP ∩ YP = 0. It follows that H0(P) is a set of weak
generators of the heart. It remains to prove that the set H0(P) consists of compact
objects in H(P). However this follows directly from the isomorphism in (i)(a) and
the fact that P consists of compact objects in C. �

We would like to know when the set H0(P) consists of compact projective
generators in H(P). The following result gives a sufficient condition.

Lemma 3.2. H0(P) is a set of projectives in H(P) if and only if LΣ−1(P) ⊆
⊥H(P). If this is the case then H0(P) is a set of compact projective generators in
H(P).

Proof. If H0(P ) is projective and h : H0(P ) −→ Σ(A) is a morphism with

A ∈ H(P), then it is easy to see that for any triangle A
f−→ B

g−→ H0(P )
h−→ Σ(A),

the sequence A
f−→ B

g−→ H0(P ) is short exact in H(P). Since H0(P ) is projective,
g splits and then h = 0. It follows that C(H0(P ),Σ(A)) = C(ΣLΣ−1R(P ),Σ(A)) =
C(LΣ−1(P ), A) = 0, ∀P ∈ P, ∀A ∈ H(P). Hence LΣ−1(P) ⊆ ⊥H(P). Conversely
if this holds, let A � B � C be an extension in H(P). Then there exists a
morphism C −→ Σ(A) such that A −→ B −→ C −→ Σ(A) is a triangle in C. Since
any morphism H0(P ) −→ Σ(A) is zero, any morphism H0(P ) −→ C factors through
B −→ C and this shows that H0(P ) is projective in H(P).

Now if the objects H0(P ), with P ∈ P, are projective in H(P), the functors
H(P)(H0(P ),−), P ∈ P, are faithful if they reflect zero objects, and this happens
by Lemma 3.1. Hence H0(P) consists of compact projective generators inH(P). �

We have the following connection between the generating set P of the torsion
pair (XP ,YP) and the full subcategory H0(P) ⊆ H(P), which will be useful for a
nice description of the heart.

Lemma 3.3. If C(P,Σn(P)) = 0, ∀n ≥ 1, then we have the following.

(i) For any T ∈ XP we have an isomorphism: C(P, T )
∼=−→ C(P,H0(T )).

(ii) The composite functor P ↪→ C H0

−−→ H(P) is fully faithful. Hence it in-

duces an equivalence H0|P : P ≈−→ H0(P).
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Proof. (i) Consider the glueing triangle for the object Σ−1(T ):

RΣ−1(T )
fΣ−1(T )−−−−−→ Σ−1(T )

gΣ−1(T )

−−−−−→ LΣ−1(T )
hΣ−1(T )−−−−−→ ΣRΣ−1(T ).

Since H0(T ) = ΣLΣ−1(T ), we have the following triangle in C:

ΣRΣ−1(T )
−Σ(fΣ−1(T ))−−−−−−−−→ T

−Σ(gΣ−1(T ))−−−−−−−−→ H0(T )
−Σ(hΣ−1(T ))−−−−−−−−→ Σ2RΣ−1(T )

Setting µT := −Σ(gΣ−1(T )) : T −→ H0(T ), it is not difficult to see that µ : IdXP −→
H0i = H0|XP is a natural morphism. By Proposition 2.8, the hypothesis implies that
C(P,ΣRΣ−1(T )) = 0 = C(P,Σ2RΣ−1(T )). It follows that C(P, µT ) : C(P, T ) −→
C(P,H0(T )) is invertible, for any T ∈ XP .

(ii) Let α : P −→ Q be a morphism in P. Then we have a morphism of triangles:

ΣRΣ−1(P )
−Σ(fΣ−1(P ))−−−−−−−−→ P

µP−−−−→ H0(P )
−Σ(hΣ−1(P ))−−−−−−−−−→ Σ2RΣ−1(P )

ΣRΣ−1(α)

y α

y H0(α)

y Σ2RΣ−1(α)

y
ΣRΣ−1(Q)

−Σ(fΣ−1(Q))−−−−−−−−→ Q
µQ−−−−→ H0(Q)

−Σ(hΣ−1(Q))−−−−−−−−−→ Σ2RΣ−1(Q)

If H0(α) = 0, then α factors through −Σ(fΣ−1(Q)). Since by Proposition 2.8 we have

C(P,ΣRΣ−1(Q)) = 0, it follows that α = 0. We infer that H0|P is faithful. Now let
β : H0(P ) −→ H0(Q) be a morphism, where P and Q lie in P. Since by Proposition
2.8 we have C

(
P,Σ2RΣ−1(Q)

)
= 0, the composition µP ◦ β ◦ (−Σ(hΣ−1(Q))) = 0.

Hence there exists a morphism α : P −→ Q such that α ◦ µQ = µP ◦ β. Then
µP ◦ H0(α) = µP ◦ β, hence H0(α) − β factors through −Σ(hΣ−1(P )). Since

C
(
Σ2RΣ−1(P ),H0(Q)

)
= C

(
Σ2RΣ−1(P ),ΣLΣ−1(Q)

)
= C

(
ΣRΣ−1(P ),LΣ−1(Q)

)
= 0, we infer that H0(α) = β. Hence H0|P is full. �

Consider the restriction functor

R : C −→ Mod(P), R(C) := C(−, C)|P
and let R∗ be the restriction of R to the heart H(P):

R∗ : H(P) −→ Mod(P), R∗(H) := C(−, H)|P
The following main result of this section gives a sufficient condition for the

heart to be a module category.

Theorem 3.4. If C(P,Σn(P)) = 0, ∀n ≥ 1, then the restriction functor

R∗ : H(P)
≈−→ Mod(P)

is an equivalence of categories.

Proof. By Lemma 3.1 the heart H(P) is a cocomplete abelian category. We
show that the set H0(P) consists of projective objects of the heart. Let P ∈ P,
and consider the triangle RΣ−1(P ) −→ Σ−1(P ) −→ LΣ−1(P ) −→ ΣRΣ−1(P )). Let
α : LΣ−1(P ) −→ A be a morphism with A ∈ H(P). Since A ∈ XP , by Proposition
2.8 we have C(Σ−1(P ), A) = 0. Hence α factors through LΣ−1(P ) −→ ΣRΣ−1(P ))
via a morphism β ∈ C(ΣRΣ−1(P ), A) = C(RΣ−1(P ),Σ−1(A)). However the last
group is zero since Σ−1(A) ∈ YP . It follows that C(LΣ−1(P ), A) = 0, ∀A ∈ H(P).
Then by Lemma 3.2 we infer that H0(P ) is projective inH(P). It follows that H0(P)
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is a set of compact projective generators in H(P). Then by a classical result of
Gabriel-Freyd, the restriction functor S : H(P) −→ Mod(H0(P)) defined by S(H) =
H(P)(−, H)|H0(P), is an equivalence. By Lemma 3.3 we have an equivalence H0|P :

P ≈−→ H0(P), and using this equivalence it is easy to see that the functor S is
isomorphic to the functor R∗. We conclude that R∗ is an equivalence. �

We can get a more pleasant description of the projective objects of the heart
H(P) and the equivalence of Theorem 3.4, if the generating set P of the torsion
pair (XP ,YP) lies in the heart. We need the following result whose easy proof is
left to the reader.

Lemma 3.5. P ⊆ H(P) if and only if C(P,Σn(P)) = 0, ∀n < 0.

Combining Theorem 3.4 and Lemma 3.5, we have the following.

Theorem 3.6. If C(P,Σn(P)) = 0, ∀n < 0, then the restriction functor

R∗ : H(P)
≈−→ Mod(P), C 7−→ R∗(C) := C(−, C)|P

is an equivalence of categories if and only if C(P,Σn(P)) = 0, ∀n > 0. If this is
the case, then Add(P) is the full subcategory of projective objects of H(P).

We recall that, in the language of t-structures, a torsion pair (X ,Y) in C is
called non-degenerate, if

⋂
n∈Z Σn(X ) = 0 =

⋂
n∈Z Σn(Y) [18]. It is well-known

that the non-degenerate property is an important finiteness condition, for instance
in this case the torsion and the torsion-free class can be described in terms of the
vanishing of the homological functors Hn : C −→ H where H = X ∩ Σ(Y) is the
heart; in addition the functors {Hn | n ∈ Z} reflect collectively isomorphisms [18].

In this connection we have the following result which gives a nice description
of the heart under special assumptions.

Corollary 3.7. If C(P,Σn(P)) = 0,∀n ≥ 1, then we have an inclusion
H(P) ⊆ {C ∈ C | C(P,Σn(C)) = 0, ∀n 6= 0}, which is an equality if and only
if P generates C. Moreover the following conditions are equivalent:

(i) P generates C and C(P,Σn(P)) = 0,∀n ≥ 1.
(ii) (XP ,YP) is non-degenerate and C(P,Σn(P)) = 0,∀n ≥ 1.

(iii) H(P) =
{
C ∈ C | C(P,Σn(C)) = 0, ∀n 6= 0

}
.

Proof. For simplicity we set X≤0
P := {C ∈ C | C(P,Σn(C)) = 0, ∀n ≥ 1}.

Assume that C(P,Σn(P)) = 0,∀n ≥ 1. Then by Proposition 2.8 we have XP ⊆
X≤0
P . Hence H(P) = XP ∩ Σ(YP) ⊆ X≤0

P ∩ Σ(YP) = {C ∈ C | C(P,Σn(C)) =

0, ∀n 6= 0}. If the last inclusion is an equality, then let C be in X≤0
P . Consider the

triangle holim−−−→Tn
χC−−→ C

g−→ Ĉ
h−→ Σ(holim−−−→Tn) constructed in Proposition 2.6. Then

holim−−−→Tn lies in XP and Ĉ lies in Σ(YP). It follows that Ĉ lies in X≤0
P ∩ Σ(YP) =

H(P). In particular Ĉ lies in XP . Since XP is closed under extensions, we have

that C lies in XP . Hence XP = X≤0
P , and then by Proposition 2.8 we infer that P

generates C. If P generates C, then the equality H(P) = {C ∈ C | C(P,Σn(C)) =
0, ∀n 6= 0} follows from Proposition 2.8. The equivalence (i) ⇔ (iii) follows from
Proposition 2.8 and the above arguments. Finally the equivalence (i)⇔ (ii) follows
from the fact that

⋂
n∈Z Σn(YP) = {C ∈ C | C(P,Σn(C)) = 0, ∀n ∈ Z}. �
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Remark 3.8. We call a torsion pair (X ,Y) in C left, resp. right, non-
degenerate if

⋂
n∈Z Σn(X ) = 0, resp.

⋂
n∈Z Σn(Y) = 0. Then (X ,Y) is non-

degenerate if and only if it is left and right non-degenerate. If the torsion pair
is generated by a set of compact objects P, then since

⋂
n∈Z Σn(YP) = {C ∈

C | C(P,Σn(C)) = 0, ∀n ∈ Z}, it follows that (XP ,YP) is right non-degenerate if
and only if P generates C. If C(P,Σn(P)) = 0,∀n ≥ 1, then it is easy to see that⋂
n∈Z Σn(XP) =

⋂
n∈Z Σn(YP). Hence in this case we have that (XP ,YP) is right

non-degenerate if and only if (XP ,YP) is left non-degenerate if and only if (XP ,YP)
is non-degenerate if and only if P generates C.

Example. Let Ho(Sp) be the stable homotopy category of spectra and let
(XS0 ,YS0) be the torsion pair in Ho(Sp) compactly generated by the sphere spec-
trum S0. Since S0 generates Ho(Sp), by Corollary 3.7 the torsion pair (XS0 ,YS0) is
non-degenerate and its heart consists of all spectra C with stable homotopy groups
πn(C) = 0, ∀n 6= 0. Since the endomorphism ring of S0 is the ring Z of integers,
by Theorem 3.4 it follows that the heart is equivalent to the category Ab of abelian
groups.

Example. Let (T ,F) be a torsion pair in an abelian category A with exact co-
products. Then the induced torsion pair

(
X (T ),Y(F)

)
in D(A) is non-degenerate.

It is interesting to know under what conditions the torsion pair
(
X (T ),Y(F)

)
is

compactly generated.

It is useful to know the structure of projective/injective objects of the heart as
well as the relationship between the extension functors Ext∗H(P) of H(P) and the

graded Hom functors Hom∗C of C. For a description of the structure of the injective
objects of H(P) we need the following construction.

If P generates C then by Brown’s representability Theorem [85], for any P ∈ P
there exists an object DQ/Z(P ) in C, unique up to isomorphism, and a natural
isomorphism of functors

ω : [C(P,−),Q/Z]
∼=−→ C(−,DQ/Z(P )).

The object DQ/Z(P ) is called the dual object of the compact object P .
The following result gives, under a special assumption, a description of the

injective objects of the heart in terms of dual objects of compact objects from
P. In addition we get a handy description of the extension functors of the heart
in terms of its morphism spaces. This will be useful in the next section for the
construction of derived equivalences.

Proposition 3.9. Assume that P generates C and C(P,Σn(P)) = 0,∀n 6= 0.
Then we have the following.

(α) P is a set of projective generators of H(P).
(β) {DQ/Z(P ) |P ∈ P} is a set of cogenerators in C and a set of injective

cogenerators in H(P).
(γ) There exists a natural isomorphism:

ExtnH(P)(−,−)
∼=−→ C(−,Σn(−)) : H(P)op ×H(P) −→ Ab, ∀n ∈ Z.

Proof. (α) By Theorem 3.6 have Proj(H(P)) = Add(P). Hence P is a gen-
erating set of projectives in H(P).
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(β) If C(Σn(C),DQ/Z(P )) = 0, ∀P ∈ P, ∀n ∈ Z, then using the natural mor-
phism ω we infer that [C(P,Σn(C)),Q/Z] = 0, ∀P ∈ P, ∀n ∈ Z. This implies that
C = 0 since P generates C and Q/Z cogenerates Ab. Now C(Σn(P ),DQ/Z(P )) ∼=
[C(P,Σn(P )),Q/Z] = 0, ∀n 6= 0 and ∀P ∈ P. Hence the set DQ/Z(P) lies in
H(P). If A � B � C is an extension in H(P), then there exists a triangle
A −→ B −→ C −→ Σ(A) in C. Applying the functor C(−,DQ/Z(P)) to the exten-

sion and using that C
(
Σ−1(C),DQ/Z(P)

)
= [C(P,Σ−1(C)),Q/Z] = 0, we infer that

DQ/Z(P) is a set of injective objects which obviously cogenerates H(P).

(γ) The sequence Fn := C(Σ−n(−), C) : H(P)op −→ Ab is obviously an exact
connected sequence of functors and F0 = Ext0

H(P)(−, C) = C(−, C). By a well-

known characterization of Ext∗ in an abelian category it suffices to show that
Fn(Q) = 0, ∀Q ∈ Proj(H(P)), ∀n ≥ 1. Indeed using that Proj(H(P)) = Add(P)
it follows that for any projective Q we have C(Σ−n(Q), C) = 0, since Q ∈ Add(P)
and C ∈ H(P). Interchanging projectives with injectives, Gn := C(A,Σn(−)) :
H(P) −→ Ab constitute an exact connected sequence of functors which kill injectives
and G0 = Ext0

H(P)(A,−) = C(A,−). Hence Gn ∼= ExtnH(P)(A,−). �

4. Torsion Pairs Induced by Tilting Objects

We know from the results recalled in section 3 of Chapter I that if T is a
tilting module over an Artin algebra of projective dimension at most one, then the
category mod(Γ), where Γ = EndΛ(T ), can be described as the heart of a torsion
pair in Db(mod(Λ)) constructed from T . In this section we use the results of the
previous section to show that a similar result holds when we more generally start
with a tilting module of finite projective dimension. We also give a new proof
of Rickard’s fundamental Morita theorem for derived categories, which describes
explicitly when two rings have equivalent derived categories.

Throughout this section we assume that the triangulated category C has all
small coproducts.

In analogy with Rickard’s definition of a tilting complex in the derived category
of a ring, see [91], we make the following definition.

Definition 4.1. An object T ∈ C is called a tilting object if:

(i) T is compact.
(ii) C(T,Σn(T )) = 0, ∀n 6= 0.
(iii) {T} generates C.

If conditions (i) and (ii) hold, then we call T a partial tilting object.

Example. Let A be an abelian category with exact coproducts. If T • is
a bounded complex in A with components compact projective objects, and if
D(A)(T •,Σn(T •)) = 0, ∀n 6= 0, then T • is a partial tilting object in D(A). T • is
a tilting complex, if in addition T • is a generator of D(A).

We have the following direct consequence of the results of the previous section,
which characterizes tilting objects in torsion-theoretic terms, and gives useful in-
formation for the structure of the heart of the torsion pair generated by a tilting
object.
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Corollary 4.2. Let T be a partial tilting object in C. Then T is a tilting object
if and only if the torsion pair (XT ,YT ) in C generated by T is non-degenerate if and
only if the heart H(T ) = XT ∩Σ(YT ) is equal to {C ∈ C | C(T,Σn(C)) = 0, ∀n 6=
0}. If this is the case, then T is a compact projective generator of the heart H(T )
and the functor C(T,−) : H(T ) −→ Mod(EndC(T )) is an equivalence of categories.

If C is compactly generated then by duality we can define an object E ∈ C
to be a cotilting object, if: (1) E is pure-injective in C in the sense of [21], (2)
C(Σn(E), E) = 0, ∀n 6= 0 and (3) {E} cogenerates C, i.e. C(Σn(C), E) = 0, ∀n ∈ Z
⇒ C = 0. By [21] any object of the form DQ/Z(T ) is pure-injective, for any compact
object T . Then under the assumptions of the above corollary we have that DQ/Z(T )
is a cotilting object in C and an injective cogenerator of H(T ) = Mod(EndC(T )).

The following result shows that a tilting object T in the unbounded derived
category of a Grothendieck category G induces a triangle equivalence between its
bounded derived category and the bounded derived category of the heart of the
torsion pair generated by the tilting object T . This generalizes Rickard’s theorem
to Grothendieck categories and presents a torsion-theoretic approach via the heart
to the construction of derived equivalences.

Theorem 4.3. Let A be an abelian category with exact coproducts, e.g. a
Grothendieck category. If T • is a tilting object in D(A), then there exists a triangle
equivalence

Db(A)
≈−→ Db

(
Mod(End(T •))

)
.

Proof. Since D(A) admits a tilting object, it is compactly generated, and the
heart of the torsion pair generated by T • is equivalent to Mod(End(T •)). Since
the latter has enough projective and injective objects, by [60], [18], there exists an
exact functor G : Db(Mod(End(T •))) −→ Db(A) extending the identity functor of
Mod(End(T •))). By the argument of Theorem 3.3 in [60], G is an equivalence if
for any pair of End(T •)-modules B,B′, the canonical morphism

ExtnEnd(T•)[B,B
′]
∼=−→ Db(Mod(End(T )))[B,Σn(B′)] −→ Db(A)[B,Σn(B′)]

induced by G is bijective, ∀n ∈ Z. However this holds, by Proposition 3.9(γ). �

It is well-known that the full subcategory of compact objects in the unbounded
derived category D(Mod(Λ)) of a ring Λ coincides, up to equivalence, with the
bounded homotopy category Hb(PΛ) of the category of finitely generated projective
modules. In this case the tilting objects of D(Mod(Λ)) are precisely the tilting
complexes of Rickard [91].

The following consequence of Theorem 4.3 gives a new, torsion theoretic, proof
of a part of Rickard’s Theorem on the construction of derived equivalences [91].

Corollary 4.4. [91] Let T • ∈ D(Mod(Λ)) be a tilting complex with endo-
morphism ring Γ := End(T •). Then there exists a triangle equivalence:

Db(Mod(Λ))
≈−→ Db(Mod(Γ)).

When T is a tilting Λ-module with pdΛT ≤ 1, we have an associated torsion
pair (T ,F) in mod(Λ), and when we have a torsion pair in mod(Λ) there is an
associated torsion pair (X ,Y) in Db(mod(Λ)), whose heart is mod(Γ) for Γ =
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EndΛ(T ). For a tilting module T of finite projective dimension there is not in
general a natural associated torsion pair in mod(Λ) which plays a role in tilting

theory. But we can pass directly to Db(mod(Λ)) and consider the pair (X̃T , ỸT )
in Db(mod(Λ)) generated by T as defined in Section 2 of this chapter, that is:

ỸT = {C• ∈ Db(mod(Λ)) | (T,Σn(C•)) = 0, ∀n ≤ 0} and X̃T = ⊥ỸT where the
left orthogonal is formed in Db(mod(Λ)). Note that it is easy to see that when
pdΛT ≤ 1, then T generates the torsion pair (X ,Y) in this sense. We want to show

that (X̃T , ỸT ) is a torsion pair also for pdΛT < ∞ and that mod(Γ) is equivalent
to its heart.

In view of the results in Section 3 it is hence an important problem to have
conditions ensuring that a given compactly generated torsion pair in the unbounded
derived category restricts to a torsion pair in the bounded derived category. Here
we deal only with the case that the torsion pair is induced by a (partial) tilting
module. So let Λ be a ring (not necessarily an Artin algebra). Recall that a right
Λ-module T is called a partial tilting module if ExtnΛ(T, T ) = 0,∀n ≥ 1, and T
has a finite exact resolution by finitely generated projective modules.

Let T be a partial tilting right Λ-module, and let Γ = EndΛ(T ) be its endo-
morphism ring. We view the module T as a stalk complex concentrated in de-
gree zero in D(Mod(Λ)). Then it is easy to see that T is a compact object in
D(Mod(Λ)) with endomorphism ring Γ. It is well-known that we have an adjoint
pair

(
−⊗L

ΓT, RHomΛ(T,−)
)

of exact functors:

RHomΛ(T,−) : D(Mod(Λ)) � D(Mod(Γ)) : −⊗L
Γ T

Let (XT ,YT ) be the torsion pair in D(Mod(Λ)) generated by T . Then

XT ⊆ X≤0
T :=

{
C• ∈ D(Mod(Λ)) |

(
T,Σn(C•)

)
= 0, ∀n ≥ 1

}
YT =

{
C• ∈ D(Mod(Λ)) |

(
T,Σn(C•)

)
= 0, ∀n ≤ 0

}
.

By Theorem 3.5 we have that the heart H(T ) is equivalent to Mod(Γ). We con-
sider also the natural torsion pair (ZΓ,WΓ) in D(Mod(Γ)) generated by Γ, i.e. ZΓ =
{C• ∈ D(Mod(Γ)) | Hn(C•) = 0, ∀n > 0} and WΓ = {C• ∈ D(Mod(Γ)) | Hn(C•)
= 0, ∀n ≤ 0}, with heart Mod(Γ).

To proceed further we need to recall from [18] the concept of t-exactness of
exact functors between triangulated categories each endowed with a t-structure.
Let F : C −→ D be an exact functor between the triangulated categories C, D. We
assume that (X ,Y) is a torsion pair in C and (Z,W) is a torsion pair in D. Then
F is called left t−exact, resp. right t−exact, if F (Y) ⊆ W, resp. F (X ) ⊆ Z.
Finally the functor F is called t−exact if F is left and right t-exact.

We have the following result.

Proposition 4.5. Let T be a partial tilting Λ-module with endomorphism ring
Γ. Then we have the following.

(1) The functor RHomΛ(T,−) : D(Mod(Λ)) −→ D(Mod(Γ)) is t-exact.
(2) The functor −⊗L

Γ T : D(Mod(Γ)) −→ D(Mod(Λ)) is fully faithful t-exact.

Proof. (1) Let X• ∈ XT . By the above observations we have (T,Σn(X•)) = 0,
∀n ≥ 1. Then HnRHomΛ(T,X•) = (T,Σn(X•)) = 0 for n ≥ 1. It follows that
RHomΛ(T,X•) lies in ZΓ, hence RHomΛ(T,−) is right t-exact. Now let Y • ∈ YT ,
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so (T,Σn(Y •)) = 0 for n ≤ 0. Then HnRHomΛ(T, Y •) = (T,Σn(Y •)) = 0 for n ≤ 0,
hence RHomΛ(T, Y •) lies inWΓ, so RHomΛ(T,−) is left t-exact. We conclude that
RHomΛ(T,−) is t-exact.

(2) Let Z• be a complex in ZΓ. By adjointness, for any complex Y • in YT we

have an isomorphism
(
Z• ⊗L

Γ T, Y
•) ∼=−→ (Z•,RHomΛ(T, Y •)

)
. Since Y • lies in YT ,

by (1) we have RHomΛ(T,C•) ∈ WΓ. Since Z• lies in ZΓ and the pair (ZΓ,WΓ) is
a torsion pair in D(Mod(Γ)), we infer that

(
Z• ⊗L

Γ T, Y
•) = 0, ∀Y • ∈ YT . Hence

Z•⊗L
ΓT lies in XT , for any Z• in ZΓ. In other words −⊗L

ΓT is right t-exact. Next we
show that −⊗L

Γ T is fully faithful. First observe that −⊗L
Γ T preserves coproducts

and sends Γ to T . Since ExtnΛ(T, T ) = 0, ∀n 6= 0, and HomΛ(T, T ) = Γ, the functor

− ⊗L
Γ T induces bijections (Γ,Σn(Γ))

∼=−→ (T,Σn(T )). Then by devissage [69] we
have that −⊗L

Γ T is fully faithful.
Now letW • be a complex inWΓ, and consider the standard triangleXW•⊗L

ΓT
−→

W • ⊗L
Γ T −→ YW

•⊗L
ΓT −→ Σ(XW•⊗L

ΓT
) in D(Mod(Λ)) associated to the torsion pair

(XT ,YT ). Applying the exact functor RHomΛ(T,−) to this triangle, we have a

triangle RHomΛ(T,XW•⊗L
ΓT

) −→ RHomΛ(T,W • ⊗L
Γ T ) −→ RHomΛ(T, YW

•⊗L
ΓT ) −→

ΣRHomΛ(T,XW•⊗L
ΓT

) in D(Mod(Γ)). Since the functor RHomΛ(T,−) is t-exact,

we have that RHomΛ(T, YW
•⊗L

ΓT ) ∈ WΓ and RHomΛ(T,XW•⊗L
ΓT

) ∈ ZΓ. Since the

functor −⊗L
ΓT is fully faithful, the canonical morphism W • −→ RHomΛ(T,W •⊗L

ΓT )
is invertible. Since W • lies in WΓ and the latter is left triangulated, it follows
that RHomΛ(T,XW•⊗L

ΓT
) lies in ZΓ ∩ WΓ = 0. Then HnRHomΛ(T,XW•⊗L

ΓT
) =

(T,Σn(XW•⊗L
ΓT

)) = 0, ∀n ∈ Z. Hence XW•⊗L
ΓT

lies in XT ∩YT = 0. It follows that

W • ⊗L
Γ T

∼=−→ YW
•⊗L

ΓT lies in YT , hence −⊗L
Γ T is left t-exact. �

Corollary 4.6. T is a tilting module if and only if XT = X≤0
T . If T is a

tilting module, then the t-exact quasi-inverse triangle equivalences

RHomΛ(T,−) : D(Mod(Λ)) � D(Mod(Γ)) : −⊗L
Γ T

restrict to quasi-inverse equivalences:

XT
≈−→ ZΓ and YT

≈−→WΓ.

We assume now that Λ is right coherent and in addition the endomorphism
ring Γ = EndΛ(T ) of T is right coherent. For simplicity we set F = − ⊗L

Γ T ,
G = RHomΛ(T,−). Consider the full subcategories:

X bT = XT ∩Db(mod(Λ)) and YbT = YT ∩Db(mod(Λ)).

Proposition 4.7. If T is a tilting module, then (X bT ,X bT ) is a torsion pair in
Db(mod(Λ)) with heart equivalent to the abelian category mod(Γ).

Proof. By [91] the triangle equivalences G : D(Mod(Λ)) � D(Mod(Γ)) : F
restrict to triangle equivalences G : Db(mod(Λ)) � Db(mod(Γ)) : F . By [18], the
torsion pair (XT ,YT ) restricts to a torsion pair in Db(mod(Λ)) if and only if the core-
flection functor R : D(Mod(Λ)) −→ XT satisfies R(Db(mod(Λ))) ⊆ Db(mod(Λ)).
Hence to prove the assertion, it suffices to show that R preserves bounded com-
plexes with finitely generated components. Let C• ∈ Db(mod(Λ)). Then G(C•) lies
in Db(mod(Γ)). Obviously the coreflection (= truncation) R′ : D(Mod(Γ)) −→ ZΓ
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satisfies R′(Db(mod(Γ))) ⊆ Db(mod(Γ)). Hence we have the standard triangle
R′G(C•) −→ G(C•) −→ L′G(C•) −→ ΣR′G(C•) in Db(mod(Γ)). Applying F , we
have a triangle FR′G(C•) −→ C• −→ FL′G(C•) −→ ΣFR′G(C•) in Db(mod(Λ)),
where FR′G(C•) ∈ XT and FL′G(C•) ∈ YT . Hence the triangle is the standard
one associated to the torsion pair (XT ,YT ), in particular FR′G(C•) ∼= R(C•).
Hence R(C•) ∈ Db(mod(Λ)) and the assertion follows. �

Since we obviously have YbT = ỸT and by Proposition 4.7 and Proposition 2.8

we have that (X bT ,YbT ) is a torsion pair in Db(mod(Λ)) with X̃T = ⊥ỸT = X bT , we
infer the following consequence.

Theorem 4.8. Let Λ be a right coherent ring and T a tilting Λ-module with

right coherent endomorphism ring Γ. Then T generates a torsion pair (X̃T , ỸT ) in
Db(mod(Λ)) with heart mod(Γ).

Remark 4.9. (1) If the ring Λ is not right coherent, then the above arguments
show that a tilting Λ-module T with endomorphism ring Γ, generates a torsion pair

(X̃T , ỸT ) in Db(Mod(Λ)) with heart Mod(Γ).
(2) The above results can be extended to complexes, that is, we may replace the

tilting module T with a tilting complex T •. More generally, replacing D(Mod(Γ))
with the derived category of the DG-algebra induced by T • (see the arguments in
the next chapter), we can replace the tilting complex T • with a compact generator
of D(Mod(Λ)).



CHAPTER IV

Hereditary Torsion Pairs in Triangulated
Categories

In this chapter we investigate hereditary torsion pairs, usually generated by
compact objects, in a triangulated category with all small coproducts. We show
that compactly generated hereditary torsion pairs provide the proper setting for the
Morita theory in derived and stable categories, and we give applications to tilting
theory by presenting torsion theoretic proofs of some important results of Rickard,
Keller and Happel which are central in the Morita theory of derived categories. Our
torsion theoretic arguments allow us to give proofs of (generalizations of) these
results which are considerably simpler and conceptual. We apply our results to
the study of homological conjectures in the representation theory of Artin algebras
by giving alternative formulations of the conjectures inside the unbounded derived
category.

1. Hereditary Torsion Pairs

In this section we study hereditary torsion pairs generated by a set of compact
objects, we give necessary conditions for the existence of TTF-triples, and we show
that compactly generated hereditary torsion pairs provide the proper setting for
various important constructions in derived categories. Finally we study the question
of when a hereditary torsion pair induces a torsion pair on the full subcategory of
compact objects. This will be useful later in connection with K-theory and the
homological conjectures in the representation theory of Artin algebras.

Throughout this section we fix a triangulated category C and we assume that C
contains all small coproducts. We recall from Section 2 of Chapter I that a torsion
pair (X ,Y) in C is hereditary if and only if the torsion class X , or equivalently the
torsion-free class Y, is triangulated.

We begin with the following basic result which characterizes the hereditary
torsion pairs of finite type and gives sufficient conditions for the existence of TTF-
triples.

Proposition 1.1. Let (X ,Y) be a hereditary torsion pair in C.

(i) If C is compactly generated, then the following are equivalent:
(a) (X ,Y) is of finite type.
(b) There exists a TTF-triple (X ,Y,Z) in C.

If one of the above conditions holds, then Y is compactly generated.
(ii) If Y is compactly generated and (X ,Y) is of finite type, then there exists

a TTF-triple (X ,Y,Z) in C.

60
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In any of the above cases, there are triangle equivalences ⊥Y = X ≈−→ Z = Y⊥.

Proof. (i) Let C be compactly generated. The implication (b)⇒ (a) is trivial.
(a)⇒ (b) Since (X ,Y) is of finite type, Y is closed under coproducts and by Lemma
III.1.2 the reflection functor L : C −→ Y preserves compact objects. Let T be a
generating set of compact objects in C. If Y ∈ Y is such that Y(L(T ), Y ) = 0 then
C(T, Y ) = 0, ∀T ∈ T , hence Y = 0. It follows that Y is compactly generated by the
set L(T ). Since Y is compactly generated and the inclusion j : Y ↪→ C is exact and
preserves coproducts, by [85], j admits a right adjoint. By the results of Section
I.2, we infer that Y is a TTF-class with TTF-triple (X ,Y,Z), where Z = Y⊥.

(ii) The same arguments as above show that if Y is compactly generated and
closed under coproducts in C, then there exists a TTF-triple (X ,Y,Z) in C even if
the latter is not compactly generated.

The last assertion follows from Corollary I.2.9. �

Example. Let (T,O) be a ringed space and let U be an open subspace of T
with closed complement V. Then let D(T,O), D(U ,O), D(V,O) be the derived
categories of sheaves of O-modules over T, U and V. Then D(V,O) is a TTF-class
in D(T,O), hence it induces a recollement in the derived category D(T,O).

Remark 1.2. It is not difficult to see that if (X ,Y) is a torsion pair in C and
X is generated by the set T and Y is generated by the set S, then C is generated
by the set T ∪S. Indeed if C is in C and C(T , C) = 0, then by adjointness we have
X (T ,R(C)) = 0 and then R(C) = 0. Hence C ∈ Y. Now if also C(S, C) = 0, then
since C ∈ Y we have C = 0. It follows that C generated by the set T ∪ S.

Let P be a set of compact objects in C and set R := {Σn(P ) | n ∈ Z, P ∈ P}.
Then as shown in Section III.2, by setting YP = R⊥ and XP = ⊥YP , we obtain
a torsion pair (XP ,YP) of finite type in C which obviously is hereditary. We call
(XP ,YP) the hereditary torsion pair generated by P. Since it will be clear
from the context, we use the same notation as in the non-hereditary case to denote

the hereditary torsion pair generated by P. Note that if (X̂P , ŶP) is the non-

hereditary torsion pair generated by P, then YP =
⋂
n∈Z Σn(ŶP). By Remark

III.2.7 the torsion class XP coincides with Loc(P), the smallest thick subcategory of
C which is closed under coproducts and contains P. In particular XP is a compactly
generated triangulated category with P as a set of compact generators.

Remark 1.3. It is not difficult to see that if P̂ is the thick subcategory of C
generated by the set of compact objects P, then P̂ consists of compact objects and

the hereditary torsion pair (XP̂ ,YP̂) generated by P̂ coincides with (XP ,YP).

Observe that if C is compactly generated, then by Proposition 1.1 (XP ,YP) is
part of a TTF-triple (XP ,YP ,ZP), where ZP = Y⊥P and moreover the TTF-class
YP is compactly generated as a triangulated category. Observe also that YP = 0 if
and only if P generates C. Hence the size of YP measures how far P is from being
a compact generating set in C.

The following result shows that a partial converse of Proposition 1.1 is true if
the torsion pair is generated by compact objects.
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Corollary 1.4. Let (X ,Y) be a hereditary torsion pair of finite type in C.
If X is compactly generated by a set T and Y is compactly generated by a set of
objects S which are compact in C, then C is compactly generated by the set T ∪ S.

Proof. By Lemma III.1.2, T is a set of compact objects in C. Since S ⊆ Cb,
Remark 1.2 implies that T ∪ S is a set of compact generators for C. �

Assume now that C is compactly generated and let (X ,Y) be a hereditary
torsion pair of finite type in C. Then by Proposition 1.1 we have a TTF-triple
(X ,Y,Z) in C. Recall from Section III.3 that to any compact object P in C we can
associate its dual object DQ/Z(P ), such that there exists a natural isomorphism:

ω : [C(P,−),Q/Z]
∼=−→ C(−,DQ/Z(P )).

The following result shows that taking duals of compact objects from the torsion
class X we get objects in the torsion-free class Z.

Proposition 1.5. (1) A compact object P lies in X if and only if its dual
object DQ/Z(P ) lies in Z. In particular Y = 0 if and only if DQ/Z(P ) lies in Z for
any compact object P of C.

(2) A compact object P lies in Y if and only if its dual object DQ/Z(P ) lies in

Z⊥. In particular X = 0 (or equivalently Z = 0) if and only if all compact objects
of C lie in Y.

Proof. Using the natural isomorphism ω we have: P ∈ X if and only if
C(P,Y) = 0 if and only if [C(P,Y),Q/Z] = 0 if and only if C(Y,DQ/Z(P )) = 0 if

and only if DQ/Z(P ) ∈ Y⊥ = Z. The last assertion of part (1) is trivial, and part
(2) is similar. �

The next result, which is a consequence of Proposition 1.5, shows that the dual
objects of a generating set of compact objects of X form a cogenerating set of Z.

Corollary 1.6. Let C be a compactly generated triangulated category and let
(XP ,YP ,ZP) be the TTF-triple generated by a set P of compact objects from C.
Then the set {DQ/Z(P ) | P ∈ P} cogenerates ZP .

The following three examples illustrate the importance of hereditary torsion
pairs of finite type and TTF-triples in concrete situations.

A: The Realization of the Derived Category in the Homotopy Cate-
gory. Let Λ be a ring and let H(Mod(Λ)) be the unbounded homotopy category
of all right Λ-modules.

Let (XΛ,YΛ) be the hereditary torsion pair in H(Mod(Λ)) generated by the
stalk complex Λ concentrated in degree zero with stalk Λ. Hence YΛ = P⊥ and
XΛ = ⊥YΛ, where P = {Σn(Λ) | n ∈ Z}. Obviously Λ is a compact object in
H(Mod(Λ)), so (XΛ,YΛ) is of finite type. Since the space H(Mod(Λ))[Σn(Λ), C•]
is identified with the cohomology H−n(C•) of the complex C•, it follows that YΛ

is identified with the unbounded homotopy category HAc(Mod(Λ)) of acyclic com-
plexes and by Remark III.2.7, XΛ is identified with the localizing subcategory of
H(Mod(Λ)) generated by Λ, which we denote by HP(Mod(Λ)). Dually we denote
by HI(Mod(Λ)) the colocalizing subcategory of H(Mod(Λ)) generated by an injec-
tive cogenerator of Mod(Λ). In the literature the complexes in HP(Mod(Λ)), resp.
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HI(Mod(Λ)), are known as homotopically projective, resp. injective, complexes,
see [72] for an explicit description of homotopically projective, resp. injective,
complexes as direct, resp. inverse, limits of special complexes of projectives, resp.
injectives.

The following well-known basic result shows that the unbounded derived cate-
gory can be realized as a full subcategory of the homotopy category of complexes,
hence it has small hom-sets, in particular D(Mod(Λ)) “exists”.

Corollary 1.7. [72], [21], [31] There exists a TTF-triple(
HP(Mod(Λ)), HAc(Mod(Λ)), HI(Mod(Λ))

)
in H(Mod(Λ)) which induces triangle equivalences:

HP(Mod(Λ))
≈←− D(Mod(Λ))

≈−→ HI(Mod(Λ)).

Proof. By Proposition I.2.6, we have triangle equivalences D(Mod(Λ)) =

H(Mod(Λ))/HAc(Mod(Λ))
≈−→ ⊥HAc(Mod(Λ)) = HP(Mod(Λ)) which show the first

part. By [72] the inclusion HAc(Mod(Λ)) ↪→ H(Mod(Λ)) admits a right adjoint
and HAc(Mod(Λ))⊥ = HI(Mod(Λ)), so we have the desired TTF-triple and in the
same way as above, the right hand side equivalence. �

Observe that by Corollary 1.7 the torsion class HP(Mod(Λ)) and the torsion-
free class HI(Mod(Λ)) are compactly generated. However in general the TTF-class
HAc(Mod(Λ)) is not compactly generated. Indeed if Λ = Z is the ring of integers,
then by [86] it follows that H(Mod(Z)) is not generated by a set, hence it is not
compactly generated. Hence by Remark 1.2 the same is true for HAc(Mod(Z)).

B: The Projective Case. The above construction can be performed in the
unbounded homotopy category H(PΛ) of the category PΛ of projective right Λ-
modules, which obviously has all small coproducts. This leads to interesting con-
nections with the stable module category which will be used later in Keller’s Morita
Theorem for stable categories.

Consider the hereditary torsion pair of finite type
(⊥HAc(PΛ), HAc(PΛ)

)
in

H(PΛ) generated by the compact object Λ ∈ H(PΛ). Observe that the torsion-free
class HAc(PΛ) is the costabilization of the stable module category Mod(Λ) mod-
ulo projectives via the exact functor HAc(PΛ) −→ Mod(Λ) which sends an acyclic
complex of projectives P • to the class of Im(d−1) in the stable category [20]. This
means that the above functor is the universal exact functor from a triangulated
category to Mod(Λ). In particular if Λ is quasi-Frobenius, then the above functor

is a triangle equivalence HAc(PΛ)
≈−→ Mod(Λ).

Proposition 1.8. If Λ is left coherent and right perfect, or if Λ has finite right
global dimension, then there exists a TTF-triple in H(PΛ):(

⊥HAc(PΛ), HAc(PΛ), HAc(PΛ)⊥
)
.

Proof. If Λ is left coherent and right perfect, then by [67] it follows that
HAc(PΛ) is compactly generated. This also follows using that the stable category
modulo projectives Mod(Λ) is a compactly generated pretriangulated category [24]
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and HAc(PΛ) is its costabilization [20]. Then Proposition 1.1 implies the existence
of the desired TTF-triple.

If r.gl.dimΛ < ∞, then by [99] the homotopy category H(PΛ) is compactly
generated. Hence the assertion follows from Proposition 1.1. �

Under the assumptions of Proposition 1.8, the torsion class ⊥HAc(PΛ) inH(PΛ)
coincides with the torsion class ⊥HAc(Mod(Λ)) in H(Mod(Λ)), hence by Corollary
1.7 it is triangle equivalent to the unbounded derived category D(Mod(Λ)). This
follows from the fact that ⊥HAc(Mod(Λ)) is contained in H(PΛ), by the discussion
preceding Corollary 1.7.

Remark 1.9. Let Λ be a left coherent and right perfect ring. Since HAc(PΛ)
and ⊥HAc(PΛ) are compactly generated, it follows by Remark 1.2 that the homo-
topy category H(PΛ) of projective modules is generated by a set.

We have seen that in general H(Mod(Λ)) is not generated by a set. However
H(Mod(Λ)) is generated by a set if Λ is a ring of finite representation type. Indeed,
this follows from the above observations since in this case the category Mod(Λ) is
equivalent to the category of all projective modules over Γ, where Γ is the Auslander
ring of Λ, which is left coherent and right perfect. Recall that the Auslander ring
of a representation finite ring Λ is the endomorphism ring of a finitely presented
Λ-module X such that mod(Λ) = add(X). More generally one can show that
H(Mod(Λ)) is generated by a set if Λ is a right pure semisimple ring.

C: Idempotent Functors. Let Λ be a QF-ring and let Mod(Λ) be the stable
category modulo projectives. It is triangulated with coproducts, and the stable
category mod(Λ) of the finitely presented modules is a skeletally small thick gener-
ating subcategory which is identified, up to equivalence, with the compact objects
of Mod(Λ). If P is a set of finitely presented modules, then the stable category P
is a set of compact objects in Mod(Λ). Hence P generates a torsion pair of finite
type in Mod(Λ). It follows that any thick subcategory S ⊆ mod(Λ) generates a
hereditary torsion pair (ES ,FS) in Mod(Λ). Consequently any module C sits in a
triangle ES(C) −→ C −→ FS(C) −→ ΣES(C), with ES(C) ∈ ES and FS(C) ∈ FS . If
Λ = kG is the group algebra over a field k of a finite group G, then the functors
ES , FS are the idempotent functors of Rickard [94], associated to the (tensor ideal)
thick subcategory S.

If (X ,Y) is a hereditary torsion pair of finite type in C, then it is natural to ask
if (X ,Y) restricts to a torsion pair in the full subcategory of compact objects of C.
This question has connections with K-theory and our results will be applied in the
next section to give a proof of a result of Happel without using Auslander-Reiten
theory.

From now on we assume that C is compactly generated and (X ,Y) is a hered-
itary torsion pair of finite type in C. As usual Cb denotes the full subcategory of
compact objects of C.

We fix a generating set T of compact objects in C. By Proposition 1.1, we know
that there exists a TTF-triple (X ,Y,Z) in C where the TTF-class Y is compactly
generated as a triangulated category by the set L(T ). Also by Lemma III.1.2 the
functor R : C −→ X preserves coproducts. Since C is compactly generated, by [85],
R admits a right adjoint h : X −→ C. Using that R admits the fully faithful left
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adjoint i, it is not difficult to see that h is fully faithful. Since Y is closed under
coproducts in C, by [85] the inclusion j : Y ↪→ C admits a right adjoint G : C −→ Y.

Lemma 1.10. (1) The essential image of the functor h : X ↪→ C is the torsion-
free class Z. Moreover the reflection functor C −→ Z is isomorphic to hR.

(2) The kernel of the functor G : C −→ Y is the torsion-free class Z. Moreover
G is the coreflection functor for Y.

Proof. (1) Let X be in X . Then C(Y,h(X)) ∼= X (R(Y), X) = 0. Hence
h(X) ∈ Y⊥ = Z. Hence h has image in Z. Now if C is an object in C, let
A −→ C −→ hR(C) −→ Σ(A) be a triangle in C where C −→ hR(C) is the unit of the
adjoint pair (R,h) evaluated at C. Applying to this triangle the functor C(X ,−)
we see easily that C(X , A) = 0, hence A ∈ X⊥ = Y. It follows that hR is the
coreflection of C in Z. In particular if Z is in Z, then the morphism Z −→ hR(Z)
is invertible and this shows that the essential image of h coincides with Z.

(2) The proof is similar. �

Keeping the above notation we have the following result which gives necessary
and sufficient conditions for a hereditary torsion pair in C to induce a torsion pair
in the full subcategory Cb of compact objects.

Proposition 1.11. Let C be a compactly generated triangulated category and
let T be a set of compact generators of C. If (X ,Y) is a hereditary torsion pair of
finite type in C, then the following conditions are equivalent.

(i) R : C −→ X preserves compact objects.
(ii) h : X ↪→ C preserves coproducts.

(iii) Z is closed under coproducts, i.e. the torsion pair (Y,Z) is of finite type.
(iv) G : C −→ Y preserves coproducts.
(v) Any compact object of Y remains compact in C.
(vi) (X b,Yb) is a hereditary torsion pair in Cb.
(vii) The inclusion X b ↪→ Cb admits a right adjoint.

If one of the above equivalent conditions holds, then the torsion pair (X ,Y) is
compactly generated by the set of objects R(T ), and X b = X ∩ Cb.

Proof. Since h is a right adjoint of R, that (i) is equivalent to (ii) follows
from [85]. Since Y is compactly generated, by [85] we have that the inclusion
j : Y −→ C preserves compact objects if and only if its right adjoint G preserves
coproducts, hence (iv) is equivalent to (v). Since G is the coreflection functor for
the hereditary torsion pair (Y,Z) by Lemma III.1.2, we have the equivalence of
(iii) and (iv). Hence the first five conditions are equivalent. If one of these holds,
then let T be a compact object of C and consider the glueing triangle R(T ) −→
T −→ L(T ) −→ ΣR(T ). By (i) we know that R(T ) ∈ X b and by Lemma III.1.2 we
know that L(T ) ∈ Yb. Since obviously C(X b,Yb) = 0, we have that (X b,Yb) is a
hereditary torsion pair in Cb. If this is true, then obviously R preserves compact
objects. Finally it is easy to see that (vi) is equivalent to (vii). Hence all conditions
are equivalent.

Finally we claim that if R preserves compactness, then the set R(T ) generates
X . Indeed, if X is in X and X (R(T ), X) = 0, then C(T ,h(X)) = 0 and then
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h(X) = 0 since T is a generating set in C. Since h is fully faithful, we have X = 0.
Hence R(T ) generates X . �

If the torsion pair (X ,Y) is generated by a set P of compact objects of C, then
X b is the thick subcategory thick(P) of C generated by P. The Localization Theo-
rem of Neeman-Ravenel, see [86], asserts that the triangulated quotient Cb/thick(P)
is fully embedded in Yb = (C/X )b and the latter is the closure of the former under
direct summands. The following consequence of Proposition 1.11 gives a simple
proof of Neeman-Ravenel’s Theorem under an additional assumption.

Corollary 1.12. Let P be a set of compact objects in C and let (XP ,YP) be the
hereditary torsion pair in C generated by P. Then R : C −→ XP preserves compact
objects if and only if (X bP ,YbP) is a hereditary torsion pair in Cb if and only if the
inclusion thick(P) ↪→ Cb admits a right adjoint. In this case we have a triangle

equivalence Cb/thick(P)
≈−→ Yb and an isomorphism K0(Cb)

∼=−→ K0(thick(P)) ⊕
K0(Yb).

2. Hereditary Torsion Pairs and Tilting

Working in a compactly generated triangulated category which is of algebraic
origin [73] (for instance derived categories, stable categories) and using the tech-
niques of differential graded algebras developed by Keller [69], we can describe in
more explicit terms the torsion class of the hereditary torsion pair generated by a
compact object. This description provides simple proofs and slight generalizations
of the Morita Theorem for derived categories of Rickard [91], of the Morita Theo-
rem for stable categories of Keller [69] and in particular of Happel’s Theorem [57]
on the description of the derived category of an Artin algebra in terms of the stable
category of its repetitive algebra. Thus using torsion-theoretic methods we obtain
simple proofs and at the same time a unified approach to the above mentioned
results. A similar approach was considered independently by Dwyer and Greenlees
in [43], although all the main ideas are due to Keller [69]. In contrast to the pre-
vious chapter where the investigation of the heart of a torsion pair was crucial in
the construction of derived equivalences, we use in this section hereditary torsion
pairs, so the heart is trivial. Therefore it is not possible to use the machinery of
the last chapter. In a sense the following results are relative versions of Corollary
1.7.

Rickard’s Theorem. Let Λ be a ring and let T • be a fixed compact object in
the unbounded derived category D(Mod(Λ)), i.e. T • is a complex quasi-isomorphic
to a bounded complex with components finitely generated projective modules. Let
(XT• ,YT•) be the hereditary torsion pair in D(Mod(Λ)) generated by T •. Let
Γ = DGHomΛ(T •, T •) be the DG-algebra induced by the complex T • and let D(Γ)
be the derived category of Γ in the sense of [69]. By Proposition 1.1 we know that
YT• is a TTF-class, so we have a TTF-triple (XT• ,YT• ,ZT•) in D(Mod(Λ)).

The following extends the bounded version of the Morita Theorem proved in
Corollary III.4.4 via the heart, and contains a version of Rickard’s Morita Theorem
for unbounded derived categories.
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Theorem 2.1. [91], [93], [69] Using the above notation, we have the follow-
ing:

(i) There are triangle equivalences:

D(Mod(Λ)) ←↩ XT•
≈←− D(Γ)

≈−→ ZT•

(ii) The inclusion D(Γ) ↪→ D(Mod(Λ)) sends Γ to T • and admits a right
adjoint.

(iii) T • is a generator of D(Mod(Λ)) if and only if the inclusion D(Γ) ↪→
D(Mod(Λ)) induces a triangle equivalence:

D(Γ)
≈−→ D(Mod(Λ)).

(iv) If HomD(Mod(Λ))(T
•,Σn(T •)) = 0, ∀n 6= 0, then the DG-algebra Γ is the

ordinary ring EndD(Mod(Λ))(T
•). In particular if T • is a tilting complex,

then we have a triangle equivalence D(Mod(Γ))
≈−→ D(Mod(Λ)) sending

Γ to T •.

Proof. (i) As in [69], T • can be considered as Γ-Λ-bimodule and then the total
right derived functor RHomΛ(T •,−) : D(Mod(Λ)) −→ D(Γ) is defined and admits
as a left adjoint the total left derived functor −⊗L

Γ T
• : D(Γ) −→ D(Mod(Λ)). We

first show that the image of − ⊗L
Γ T
• lies in the torsion class XT• . Indeed for any

DG-module M and for any torsion-free object Y • ∈ YT• we have:

HomD(Mod(Λ))

(
M ⊗L

Γ T
•, Y •

) ∼=−→ HomD(Γ)

(
M,RHomΛ(T •, Y •)

)
which is zero by the construction of the torsion-free class YT• . It follows that we
can consider the exact functor − ⊗L

Γ T
• : D(Γ) −→ XT• which obviously preserves

all small coproducts and moreover we have obviously Γ ⊗L
Γ T
• = T •. Now the

torsion class XT• is a compactly generated triangulated category with T • as a
compact generator. It is well-known that a coproduct preserving exact functor
between compactly generated triangulated categories is a triangle equivalence if
and only if it induces an equivalence between the full subcategories of compact
objects, see Lemma 4.2 in [69]. Therefore we infer that − ⊗L

Γ T
• : D(Γ) −→ XT•

is a triangle equivalence with quasi-inverse the restriction RHomΛ(T •,−) : XT• −→
D(Γ). This completes the proof of (i) since by Corollary I.2.9, we always have a

triangle equivalence XT•
≈−→ ZT• .

(ii) Since XT• is a torsion class, the inclusion XT• ↪→ D(Mod(Λ)) admits a
right adjoint and the assertion follows from (i).

(iii) If T • is a generator of D(Mod(Λ)) then by construction it follows trivially
that the torsion-free class YT• is 0. Hence the torsion class XT• coincides with
the whole derived category D(Mod(Λ)) and then the assertion follows by (i). The
converse is trivial, since Γ is a generator of D(Γ).

(iv) If T • is a tilting object, then by (i), (ii), we have a triangle equivalence

D(Γ)
≈−→ D(Mod(Λ)). Since HomD(Mod(Λ))(T

•,Σn(T •)) = 0,∀n 6= 0, the coho-
mology of the DG-algebra Γ is concentrated in degree zero. This implies that Γ is

(quasi-)isomorphic to EndD(Mod(Λ))(T
•) and then D(Γ)

≈−→ D(Mod(Γ)). �
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The above proof shows that the idempotent functor iR : D(Mod(Λ)) −→
D(Mod(Λ)) associated to the torsion class XT• is given by RHomΛ(T •,−)⊗L

Γ T
• :

D(Mod(Λ)) −→ D(Mod(Λ)).

Keller’s Theorem. Now let F be an exact category in the sense of Quillen, see
[57]. Recall from [57] that F is called Frobenius category if F has enough projective
and injective objects, and the projectives coincide with the injectives. Throughout
we fix an exact Frobenius category F which admits all small coproducts, for instance
Mod(Λ) where Λ is a quasi-Frobenius ring. Then trivially the stable category F of
F modulo projectives has all small coproducts. We fix a compact object T in F
and let (XT ,YT ) be the hereditary torsion pair in F generated by T . If F admits
a set of compact generators, then, by Proposition 1.1, we have that YT is a TTF-
class so we have a TTF-triple (XT ,YT ,ZT ) in F . By [69], the stable category
F is triangle equivalent to the homotopy category HAc(P) of acyclic complexes
of projectives of F . Let T • be the object in HAc(P) which corresponds to T via
the above equivalence; this amounts to choosing a Tate resolution of T , i.e. an

unbounded acyclic complex · · · −→ P−1 d−1

−−→ P 0 d0

−→ P 1 −→ · · · of projectives such
that Im(d−1) ∼= T in F . Let Γ be the DG-algebra DGHom(T •, T •) induced by
the complex T •. The following is essentially Keller’s Morita Theorem for stable
categories.

Theorem 2.2. [69] Using the above notation, we have the following:

(i) There are triangle equivalences:

F ←↩ XT
≈←− D(Γ)

≈−→ ZT .

(ii) The inclusion D(Γ) ↪→ F admits a right adjoint which sends T to Γ.
(iii) T is a generator of F if and only if the above inclusion D(Γ) ↪→ F induces

a triangle equivalence:

D(Γ)
≈−→ F .

(iv) If T is a tilting object, then the DG-algebra Γ is the ordinary ring

EndF (T •) and then we have a triangle equivalence F ≈−→ D(Mod(Γ)).

Proof. (i) Identifying F with HAc(P), the object T • induces an exact functor
G : F −→ D(Γ), given by G(P •) = Hom(T •, P •), which preserves coproducts.
Then, by restriction, G induces an exact functor G : XT −→ D(Γ) which preserves
coproducts and sends the compact generator T of XT to the compact generator Γ
of D(Γ). Then, as in the proof of Theorem 2.1, we infer that G induces a triangle

equivalence G : XT
≈−→ D(Γ). Parts (ii), (iii), (iv) follow as in Theorem 2.1. �

Remark 2.3. In case we work with a set of compact objects, then the DG-
algebra Γ above can be replaced by the induced DG-category in the sense of [69].

Happel’s Theorem. Let Λ be an Artin algebra. For the definition of the

repetitive algebra Λ̂ associated to Λ we refer to the book of Happel [57]. In par-

ticular by [57] we have that Λ̂ is self-injective, hence the stable category Mod(Λ̂)
is a compactly generated triangulated category and moreover it is easy to see that

Mod(Λ̂)b = mod(Λ̂). In addition Mod(Λ) is fully embedded in the stable category
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Mod(Λ̂) and then, via this embedding, Λ is a compact object in Mod(Λ̂). Consider

the TTF-triple (XΛ,YΛ,ZΛ) in Mod(Λ̂) generated by Λ.
The following consequence of Theorem 2.2 is due to Happel. Later Keller

provided a simpler proof and extended the result to the big module category. We
give a torsion theoretic proof of Keller’s version below.

Theorem 2.4. [57], [68] Let Λ be an Artin algebra and let Λ̂ be its repetitive
algebra.

(i) There are triangle equivalences

Mod(Λ̂) ←↩ XΛ
≈←− D(Mod(Λ))

≈−→ ZΛ

which induce a full embedding Hb(PΛ) ↪→ mod(Λ̂).

(ii) The inclusion H : D(Mod(Λ)) ↪→ Mod(Λ̂) admits a right adjoint R :

Mod(Λ̂) −→ D(Mod(Λ)) which sends Λ to Λ.

(iii) The inclusion H : D(Mod(Λ)) ↪→ Mod(Λ̂) induces a triangle equivalence

D(Mod(Λ))
≈−→ Mod(Λ̂)

if and only if Λ generates Mod(Λ̂) if and only if Λ is a tilting object

in Mod(Λ̂) if and only if R preserves compact objects if and only if

the inclusion Hb(PΛ) ↪→ mod(Λ̂) admits a right adjoint if and only if
gldim Λ <∞.

Proof. All the assertions, except for the last two in part (iii), are consequences
of our previous results. If Λ is a tilting object, then H and consequently R are
equivalences. Then trivially R preserves compactness. Conversely if the right
adjoint R of H preserves compact objects, then by Proposition 1.9 any compact

object of YΛ is a compact object in Mod(Λ̂), hence we have an inclusion YbΛ ⊆
mod(Λ̂). By the definition of YΛ, inside mod(Λ̂) we have: YbΛ ∩ mod(Λ) = 0.

Since mod(Λ) generates mod(Λ̂), we infer that YbΛ = 0. Since YΛ is compactly
generated, this implies that YΛ = 0, hence H and consequently R are equivalences.

If this condition holds, then Λ generates mod(Λ̂). This implies easily by devissage
that Λ has finite global dimension. Conversely if Λ has finite global dimension, then

obviously Λ generates mod(Λ̂) as a thick subcategory and consequently Λ generates

Mod(Λ̂) as category with infinite coproducts. Hence the latter coincides with XΛ

and consequently H is an equivalence. �

Remark 2.5. Happel proved that Db(mod(Λ)) is triangle equivalent to mod(Λ̂)
if and only if Λ has finite global dimension, see [57], [58]. For the (⇒) direction he
used the Auslander-Reiten theory on the existence of Auslander-Reiten sequences

and triangles in the dualizing varieties mod(Λ̂) and mod(Λ̂). The above proof avoids
this.

Remark 2.6. Using Neeman-Ravenel’s Theorem [86], it follows that the Ver–

dier quotient mod(Λ̂)/Hb(PΛ) is fully embedded in Yb and the latter is its closure

under direct summands: add
(
mod(Λ̂)/Hb(PΛ)

)
= Yb. Moreover Yb is the thick

subcategory generated by the isoclasses of the class of objects L
(
mod(Λ̂)

)
.
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It follows by the proof of Theorem 2.4 that the full exact embedding H :

D(Mod(Λ)) ↪→ Mod(Λ̂) of (ii) above is Happel’s functor constructed inductively
in [57]. Hence the above result shows that it admits a right adjoint and identifies
its image as the full subcategory XΛ or ZΛ. Moreover it identifies the triangulated

quotient Mod(Λ̂)/D(Mod(Λ)) as the TTF-class YΛ.

p-groups. The above results have an interesting application to the stable mod-
ule category of a modular group algebra.

Let G be a finite group and k a field with characteristic p > 0. Then the stable
module category Mod(kG) is compactly generated and the trivial G-module k is
a compact object. Let (Xk,Yk,Zk) be the TTF-triple of finite type in Mod(kG)
generated by k. The following gives a description of the localizing subcategory of
Mod(kG) generated by the trivial G-module k.

Corollary 2.7. (1) There are triangle equivalences

Mod(kG) ←↩ Xk
≈←− D(Γ)

≈−→ Zk
where Γ is the DG-algebra DGHom(k, k) of a Tate resolution of k, which is quasi-

isomorphic to the Tate cohomology ring Ĥ∗(G, k). Hence D(Γ) is triangle equivalent

to D(Ĥ∗(G, k)).
(2) If G is a p-group, then the full exact embedding D(Γ) ↪→ Mod(kG) of (1)

induces a triangle equivalence

D
(
Ĥ∗(G, k)

) ≈−→ Mod(kG).

Proof. The first part follows by 2.2((i). Part (2) follows from 2.2((iii), since
if G is a p-group, then the trivial G-module k is a generator of Mod(kG). �

Note that if the centralizer of each element of order p in G is p-nilpotent in the
sense of [29], then the full exact embedding D(Γ) ↪→ Mod(kG) constructed in (1)
above, induces a triangle equivalence

D
(
Ĥ∗(G, k)

) ≈−→ B0(kG)

where B0(kG) denotes the full subcategory of Mod(kG) consisting of modules in the
principal block of G. This follows from the fact that, under the above assumption,
the trivial G-module k generates the modules in the principal block of G, see [29].

3. Connections with the Homological Conjectures

In this section we use the previous results on hereditary torsion pairs to shed
new light on some homological conjectures in the representation theory of Artin
algebras. We show that an interesting problem in tilting theory, whose solution
would imply several homological conjectures, is equivalent to a problem on heredi-
tary torsion pairs in derived categories.

Throughout this section we work over an Artin R-algebra Λ where R is a
commutative Artin ring. We fix a finitely generated right Λ-module T such that
ExtnΛ(T, T ) = 0,∀n ≥ 1. Recall that T is called a Wakamatsu tilting module if the
regular right Λ-module Λ admits an exact coresolution

0 −→ Λ −→ T 0 f0

−→ T 1 −→ · · · −→ Tn
fn

−−→ Tn+1 −→ · · ·
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where Tn lies in add(T ) and Ext1
Λ

(
Im(fn), T

)
= 0, for any n ≥ 0. Dually T is

called a Wakamatsu cotilting module if the injective cogenerator D(Λ) admits an
exact resolution

· · · −→ T−n−1 f−n−−→ T−n −→ · · · −→ T−1 f0−→ T 0 −→ D(Λ) −→ 0

where T−n lies in add(T ) and Ext1
Λ

(
T, Im(f−n)

)
= 0, for any n ≥ 0. A module is

known to be a Wakamatsu tilting module if and only if it is a Wakamatsu cotilting
module [103], [36]. A Wakamatsu (co)tilting module is not necessary (co)tilting,
but it is not known whether the following, which we call (WT)-Conjecture, is true.

• (WT)-Conjecture: If T is a Wakamatsu tilting (cotilting) module of
finite projective (injective) dimension, then T is a tilting (cotilting) mod-
ule.

It would be interesting in itself to solve this problem, but even more because of
the following consequence. First we recall that the generalized Nakayama conjecture
as proposed by Auslander and Reiten [8] says the following. In the minimal injective
resolution 0 −→ Λ −→ I0 −→ I1 −→ · · · of Λ each indecomposable injective Λ-module
occurs as a summand of some In. Obviously the generalized Nakayama conjecture
implies the classical Nakayama Conjecture which says that if each In is projective
then Λ is self-injective. Then we have the following result, part (i) of which was
first observed by A. Buan, using [36]. First we recall from [9] that an Artin algebra
Λ is called Gorenstein, if Λ has finite injective dimension both as a left and right
Λ-module, equivalently Λ is a cotilting module.

Proposition 3.1. If the (WT)-Conjecture holds, then we have the following.

(i) The generalized Nakayama Conjecture holds.
(ii) The Gorenstein Symmetry Conjecture holds, that is: if idΛΛ < ∞, then

Λ is Gorenstein, i.e. idΛΛ <∞.

Proof. (i) Let 0 −→ ΛΛ −→ I0 −→ I1 −→ · · · be the minimal injective resolution
of Λ, and let T be the direct sum of the indecomposable injectives occurring as
summands of the terms In, n ≥ 0. Then T is a Wakamatsu (co)tilting module,
and hence a cotilting module if the (WT)-conjecture is assumed to hold. Hence
the number of non-isomorphic indecomposable summands equals the number of
non-isomorphic indecomposable injectives. In other words T contains all indecom-
posable injectives as summands, hence the generalized Nakayama conjecture holds.

(ii) Since idΛΛ < ∞, the injective cogenerator D(Λ) has finite projective di-
mension as a right module. Since D(Λ) is obviously a Wakamatsu tilting module
and the (WT)-Conjecture is assumed to hold, D(Λ) is a tilting module. Hence we
have pdΛ D(Λ) <∞, so that id ΛΛ <∞. �

Note that the (WT)-Conjecture also implies a related conjecture which says
that if the nth term of the minimal injective resolution of Λ has projective dimension
≤ n for each n ≥ 0, then the algebra is Gorenstein, see [12]. Indeed the direct sum
of the indecomposable injectives occurring in the resolution form a Wakamatsu
tilting module of finite projective dimension. Hence by the (WT)-conjecture this is
a tilting module. It follows that ΛΛ has finite injective dimension, and then by [12]
Λ is Gorenstein.
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We now fix a Wakamatsu tilting module T and assume that T has finite pro-
jective dimension.

We view T as an object of the unbounded derived category D(Mod(Λ)) via
the full embedding Mod(Λ) ↪→ D(Mod(Λ)), which sends a module A to the stalk
complex concentrated in degree zero with stalk A. Since T is finitely presented and
has finite projective dimension, it follows that T is a compact object in D(Mod(Λ)),
that is, T lies in Hb(PΛ). Let (XT ,YT ,ZT ) be the TTF-triple in D(Mod(Λ))
generated by T . Then the TTF-class YT is given by:

YT =
{
C• ∈ D(Mod(Λ)) |

(
T [n], C•

)
= 0, ∀n ∈ Z

}
By Proposition 1.1 we know that the categories XT ,YT and ZT are compactly
generated, and XT and ZT are triangle equivalent. We denote as usual by i :
XT ↪→ D(Mod(Λ)), j : YT ↪→ D(Mod(Λ)), and k : ZT ↪→ D(Mod(Λ)) the inclusion
functors, and let (i,R), (L, j), (j,S), (k,T), be the corresponding adjoint pairs. We
shall now interpret the subcategories X , Y and Z in different useful terms.

Let Γ = End(T ) be the endomorphism ring of T . Then we have the adjoint
pair of functors (F,G), where F := − ⊗Γ TΛ : Mod(Γ) −→ Mod(Λ) and G :=
HomΛ(ΓTΛ,−) : Mod(Λ) −→ Mod(Γ). Note that F preserves products since T is
finitely presented. The adjoint pair (F,G) induces an adjoint pair of total derived
functors (F,G) on the level of unbounded derived categories, where F := −⊗L

Γ TΛ :
D(Mod(Γ)) −→ D(Mod(Λ)) and G := RHomΛ(T,−) : D(Mod(Λ)) −→ D(Mod(Γ)).

The following is essentially a consequence of Proposition I.2.11.

Lemma 3.2. Using the above notation, the functor F is fully faithful and the
functor G admits a fully faithful right adjoint

H : D(Mod(Γ)) −→ D(Mod(Λ)), given by H := RHomΓ

(
ΛRHomΛ(T,Λ)Γ,−

)
.

Moreover we have the following identifications:

Im(F) = XT , Ker(G) = YT , Im(H) = ZT , and iR = FG, kT = HG.

Proof. By Proposition III.4.5 we have that F is fully faithful. Since T is
compact, it follows that G preserves coproducts. Hence by [85] the functor F pre-
serves compact objects and the functor G admits a right adjoint H : D(Mod(Γ)) −→
D(Mod(Λ)). By Proposition I.2.11 we have identifications Im(F) = XT , Im(H) =
ZT and Ker(G) = YT , and moreover iR = FG and kT = HG. Now consider the
complex ΛRHomΛ(T,Λ)Γ and the canonical morphism φ : −⊗L

Λ RHomΛ(T,Λ)Γ −→
RHomΛ(T,−) = G of functors D(Mod(Λ)) −→ D(Mod(Γ)), where φC• is the eval-
uation. Since both functors preserve coproducts and φΛ is invertible, by [69] it
follows that φ is invertible. This implies that the right adjoint H of G is given by
H = RHomΓ

(
ΛRHomΛ(T,Λ)Γ,−

)
. �

We have the following direct consequence.

Corollary 3.3. The functor F : D(Mod(Γ)) −→ D(Mod(Λ)) admits a factor-

ization F = iF∗, where F∗ : D(Mod(Γ))
≈−→ XT is a triangle equivalence, and the

functor H : D(Mod(Γ)) −→ D(Mod(Λ)) admits a factorization H = kH∗, where

H∗ : D(Mod(Γ))
≈−→ ZT is a triangle equivalence.
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It follows from Proposition I.2.11 and the above result that the triangle equiv-

alence Φ : XT
≈−→ ZT and its quasi-inverse Ψ : ZT

≈−→ XT are given as follows:

Ψ := −⊗L
Λ RHomΛ(T,Λ)⊗L

Γ T, Φ := RHomΓ

(
RHomΛ(T,Λ),RHomΛ(T,−)

)
= RHomΛ

(
RHomΛ(T,Λ)⊗L

Γ T,−
)

The following result gives a variety of necessary and sufficient conditions for a
Wakamatsu tilting module of finite projective dimension to be a tilting module.

Theorem 3.4. Let T be a Wakamatsu tilting right Λ-module of finite projective
dimension with endomorphism ring Γ. Then the following are equivalent.

(i) T is a tilting module.
(ii) The torsion class XT is closed under products in D(Mod(Λ)).

(iii) The total left derived functor F := −⊗L
Γ TΛ : D(Mod(Γ)) −→ D(Mod(Λ))

preserves products.
(iv) Λ ∈ XT .
(v) D(Λ) ∈ ZT .

(vi) XT ⊆ ZT .
(vii) ZT ⊆ XT .

(viii) The canonical morphism : RHomΛ(T,Λ)⊗L
Γ T −→ Λ is invertible.

(ix) The canonical morphism : D(Λ) −→ RHomΛ

(
RHomΛ(T,Λ)⊗L

Γ T,D(Λ)
)

is invertible.
(x) The non-hereditary torsion pair in D(Mod(Λ)) generated by T is non-

degenerate.
(xi) T has finite projective dimension as a left Γ-module.

Proof. Obviously (i) implies all the other conditions, since if T is a tilting
module, then XT = ZT = D(Mod(Λ)), hence YT = 0, and the functors F and G are
quasi-inverse equivalences. By Lemma 3.2, we have that (iv) is equivalent to (viii)
and (v) is equivalent to (ix). Since XT is a localizing subcategory of D(Mod(Λ)), if
XT contains the generator Λ, then by infinite devissage we have XT = D(Mod(Λ)).
Dually since ZT is a colocalizing subcategory, (v) implies that ZT = D(Mod(Λ)).
In both cases we have YT = 0, hence T generates D(Mod(Λ)) and then T is a
tilting module. By Proposition III.4.2 we have that (x) implies (i). If F preserves
products, then so does the functor FG = iR. This implies trivially that XT is
closed under products in D(Mod(Λ)). Conversely if this holds, then F preserves
products since F = iF∗ and F∗ is an equivalence. Hence (iii) is equivalent to (ii).
Since for a Wakamatsu tilting module T we have that EndΛ(T ) is isomorphic to Γ,
it is easy to see directly that (i) is equivalent to (xi). Using the glueing triangles
for the torsion pairs (XT ,YT ) and (YT ,ZT ), it is easy to see that (vi) and (vii) are
equivalent. It remains to show that (ii)⇒ (i) and (vi)⇒ (i).

We first show that the right Λ-module Λ, resp. D(Λ), as a stalk complex
concentrated in degree zero is isomorphic in D(Mod(Λ)) to a (countable) homotopy
limit, resp. homotopy colimit, of compact objects from XT . Indeed let 0 −→ ΛΛ −→
T 0 −→ T 1 −→ T 2 −→ · · · be an exact coresolution of ΛΛ, where Tn is in add(T ), ∀n ≥
0. Then ΛΛ is isomorphic to the complex T • : · · · −→ 0 −→ T 0 −→ T 1 −→ T 2 −→ · · ·
in the unbounded derived category. Filtering the complex T • by using the stupid
truncation complexes T •n : · · · −→ 0 −→ T 0 −→ T 1 −→ T 2 −→ · · · −→ Tn −→ 0 −→ · · · ,



3. CONNECTIONS WITH THE HOMOLOGICAL CONJECTURES 74

we can form in the unbounded derived category the homotopy limit holim←−−−T
•
n of the

induced inverse tower · · · −→ T •2 −→ T •1 −→ T •0 . In other words we have a triangle

holim←−−−T
•
n −→

∏
n≥0

T •n −→
∏
n≥0

T •n −→ holim←−−−T
•
n [1] (T)

in D(Mod(Λ)). By results of Boekstedt-Neeman [31], it follows that we have an

isomorphism T •
∼=−→ holim←−−−T

•
n . Hence we infer the following isomorphism in the

derived category:

ΛΛ

∼=−→ holim←−−−T
•
n (†)

and by construction all the complexes T •n lie in Hb(add(T )) = X bT . Since T is also a
Wakamatsu cotilting module, there exists an exact sequence · · · −→ T−3 −→ T−2 −→
T−1 −→ D(Λ) −→ 0, where T−n ∈ add(T ), for n ≥ 1. Working as above we infer the
following isomorphism in the derived category:

D(Λ)Λ

∼=−→ holim−−−→T
•
−n (††)

where T •−n are bounded complexes with components in add(T ). In particular we
have that D(Λ) lies in XT since the latter is closed under coproducts, hence under

homotopy colimits. This implies that ⊥XT = 0, since
(
C•,Σn(D(Λ))

) ∼=−→ Hn(C•).

Hence if (vi) holds, then YT = ⊥ZT ⊆ ⊥XT = 0, and then T is a tilting module,
i.e. (vi) implies (i). Now if XT is closed under products, then it is closed under
homotopy limits. We infer by the isomorphism (†) that XT contains Λ, hence by
(iv) we have XT = D(Mod(Λ)). Alternatively if XT is closed under products, then
XT is a colocalizing subcategory of D(Mod(Λ)). Since by the isomorphism (††),
XT contains D(Λ), it follows by Corollary 1.7 that XT = D(Mod(Λ)). This shows
that (ii) implies (i). �

When T is a Wakamatsu tilting Λ-module of finite projective dimension, with
endomorphism ring Γ, then, by Theorem 3.4 we have pdΓ T < ∞, if and only if
− ⊗L

Γ TΛ : D(Mod(Γ)) −→ D(Mod(Λ)) preserves products. In fact, there is more
generally the following useful result due to Bernhard Keller. We thank him for
allowing us to include his result here and for some valuable comments on these
topics.

Proposition 3.5. [B.Keller] Let ΓTΛ be a Γ-Λ-bimodule which as a left Γ-
module is finitely presented. Then the total derived functor −⊗L

ΓTΛ : D(Mod(Γ)) −→
D(Mod(Λ)) preserves products if and only if ΓT has finite projective dimension.

Proposition 3.5 suggests the following problem which is of independent interest,
since coherent functors play an important role in representation theory, see [78].

Problem. Let F : Mod(Λ) −→ Mod(Γ) be a coherent functor, that is, F pre-
serves filtered colimits and products. Under what conditions does the total left
derived functor LF : D(Mod(Λ)) −→ D(Mod(Γ)) preserve products?

As an application of the above results we have the following characterization of
Gorenstein algebras, where we denote by − ⊗L

Λ D(Λ) : D(Mod(Λ)) −→ D(Mod(Λ))
the total left derived functor of the Nakayama functor − ⊗Λ D(Λ) : Mod(Λ)) −→
Mod(Λ)), and by RHomΛ(D(Λ),−) : D(Mod(Λ)) −→ D(Mod(Λ)) its right adjoint.
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Corollary 3.6. The functor − ⊗L
Λ D(Λ) : D(Mod(Λ)) −→ D(Mod(Λ)) pre-

serves products if and only if idΛΛ <∞. In particular the following are equivalent.

(i) The algebra Λ is Gorenstein.
(ii) The functor RHomΛ(D(Λ),−) preserves coproducts and the functor
−⊗L

Λ D(Λ) preserves products.

(iii) The functor −⊗L
Λ D(Λ) : D(Mod(Λ))

≈−→ D(Mod(Λ)) is a triangle equiv-
alence.

Proof. By Proposition 3.5 the functor − ⊗L
Λ D(Λ) preserves products if and

only if ΛD(Λ) has finite projective dimension, or equivalently ΛΛ has finite injective
dimension. On the other hand the functor RHomΛ(D(Λ),−) preserves coproducts
if and only if D(Λ)Λ is compact if and only if D(Λ)Λ has finite projective dimension
or equivalently ΛΛ has finite injective dimension. The remaining assertions follow
from Theorem 3.4. �

The following observation shows that the behavior of the Nakayama functors
plays a role in the investigation of when a Wakamatsu tilting module of finite
projective dimension is a tilting module.

Lemma 3.7. YT ⊆ Ker
(
RHomΛ(D(Λ),−)

)
and Im

(
−⊗L

Λ D(Λ)
)
⊆ XT .

Proof. From the proof of Theorem 3.4 we have that D(Λ) lies in XT . Hence
for any complex Y • ∈ YT we have RHomΛ(D(Λ), Y •) = 0, and the first inclusion

follows. From the isomorphism
(
C• ⊗L

Λ D(Λ), Y •
) ∼=−→ (C•,RHomΛ(D(Λ), Y •)

)
= 0,

it follows that for any complex C• ∈ D(Mod(Λ)), we have that C• ⊗L
Λ D(Λ) lies in

XT , and the second inclusion follows. �

Now let F denote the set of isoclasses of indecomposable compact objects of
D(Mod(Λ)). Recall that the full subcategory of compact objects of D(Mod(Λ))
can be identified up to equivalence with the bounded homotopy category Hb(PΛ),
and it is well-known that the latter is a Krull-Schmidt category. By Brown repre-
sentability, for any object P • ∈ F, there is a natural isomorphism(

(P •,−), k
) ∼=−→

(
−,Dk(P •)

)
where k denotes the injective envelope of R/radR. As in Proposition III.3.9 it
follows that the set Dk(F) := {Dk(P •) | P • ∈ F} is a set of pure-injective cogen-
erators of D(Mod(Λ)) (see [21] and [77] for the concept of purity in triangulated
categories). By results of Happel [57], it follows that for any object P • ∈ F:

Dk(P •)
∼=−→ P • ⊗L

Λ D(Λ). Hence Dk(F) = F⊗L
Λ D(Λ) ⊆ XT .

The following result, which possibly can be proved directly, shows that the
(WT)-Conjecture holds if Λ has finite right self-injective dimension.

Proposition 3.8. Let TΛ be a Wakamatsu tilting module of finite projective
dimension. If idΛΛ <∞, then T is a tilting module.

Proof. Assume that idΛΛ < ∞ or equivalently that pdΛD(Λ) < ∞. Let
E• be an indecomposable pure-injective complex which lies in YT . Since the set
Dk(F) is a cogenerating set of pure-injectives, it follows that E• is a direct sum-
mand of

∏
P•∈F Dk(P •) =

∏
P•∈F

(
P • ⊗L

Λ D(Λ)
)
. By Proposition 3.5 we infer that
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P•∈F

(
P • ⊗L

Λ D(Λ)
) ∼=−→

(∏
P•∈F P

•)⊗L
ΛD(Λ) and this lies in XT by Lemma 3.7.

Hence E• lies in XT as a direct summand of
(∏

P•∈F P
•)⊗L

ΛD(Λ). Since E• ∈ YT ,
we have E• = 0. Then by a result of Krause, see Theorem 4.4 in [77], it follows
that Λ lies in XT , and then by Theorem 3.4 we have that T is a tilting module. �

Corollary 3.9. If ZT is closed under coproducts and RHomΛ(D(Λ), Z•) lies
in ZT for any complex Z• ∈ ZT , then T is a tilting module.

Proof. By Proposition 1.11 we have that YbT ⊆ Hb(PΛ). Let P • be an inde-
composable compact object in YT . Then Dk(P •) = P •⊗L

Λ D(Λ) lies in XT . For any

Z• in ZT we have an isomorphism
(
P • ⊗L

Λ D(Λ), Z•
) ∼=−→(P •,RHomΛ(D(Λ), Z•)

)
,

and the last space is zero by hypothesis. Hence P • ⊗L
Λ D(Λ) ∈ ⊥ZT = YT . Since

P • ⊗L
Λ D(Λ) lies also in XT we infer that P • ⊗L

Λ D(Λ) = 0. By construction this is
possible only if P • = 0. It follows that YbT = 0, hence YT = 0 since YT is compactly
generated. We infer that T is a tilting module. �

The (WT)-Conjecture is related to a problem of Grothendieck groups, which
we formulate as the following conjecture.

Conjecture. Let T be a Wakamatsu tilting module of finite projective di-
mension, and assume that the Grothendieck group K0(YbT ) of the full subcategory
of compact objects of YT is trivial. Then YT = 0, i.e. T is a tilting module.

More generally the following problem is of interest in connection with the results
of this section. In a sense the next problem measures how far a triangulated category
is from being algebraic in the sense of Keller [73].

Problem. Let T be a triangulated category with coproducts and a compact
generator. Is it true that K0(T b) = 0 implies T b = 0, or equivalently T = 0?

We have the following connection between the above Conjecture and the (WT)-
Conjecture, where for a finitely generated module M , s(M) denotes the number of
non-isomorphic indecomposable direct summands of M . Note that if T is a tilting
module, then s(Λ) = s(T ).

Proposition 3.10. Let TΛ be a Wakamatsu tilting module of finite projective
dimension and assume that s(Λ) = s(T ). If the above Conjecture is true and ZT is
closed under coproducts in D(Mod(Λ)), then T is a tilting module.

Proof. Since ZT is closed under coproducts, by Proposition 1.11 we have that
R : XT −→ D(Mod(Λ)) preserves coproducts. Then by Corollary 1.12 we have an

isomorphism K0(Hb(PΛ))
∼=−→ K0(Hb(add(T )))⊕K0(YbT ). Now it is easy to see that

K0(Hb(PΛ))
∼=−→ Zs(Λ) and K0(Hb(add(T )))

∼=−→ Zs(T ). Hence the hypothesis s(Λ) =

s(T ) implies that K0(Hb(PΛ))
∼=−→ K0(Hb(add(T ))). We infer that K0(YbT ) = 0, and

then YT = 0 by our assumptions. This implies that T is a tilting module. �

It is not known if a partial tilting module with s(T ) = s(Λ) is always a tilt-
ing module. This is a well-known open problem in representation theory [95].
The above results suggest the following conjecture which lies between the (WT)-
Conjecture and the Generalized Nakayama Conjecture.
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Conjecture. Let T be a Wakamatsu tilting module of finite projective di-
mension. If s(T ) = s(Λ), then T is a tilting module.

Remark 3.11. Observe that if ZT is closed under coproducts, then the compact
generator L(Λ) of YT is compact in D(Mod(Λ)). Hence by Theorem 2.1, there

exists a triangle equivalence YT
∼=−→ D(Mod(∆)) where ∆ is the DG-algebra of

endomorphisms of L(Λ). In this case the TTF-triple (XT ,YT ,ZT ) reduces, up to
triangle equivalence, to a TTF-triple

(
D(Mod(Γ)),D(Mod(∆)),D(Mod(Γ))

)
, i.e.

a recollement of derived categories, in D(Mod(Λ)).

We close this section with the following result which shows that the above
conjecture has an affirmative answer if ZT is closed under coproducts.

Corollary 3.12. Let T be a Wakamatsu tilting module of finite projective
dimension and assume that s(T ) = s(Λ). If the torsion pair (YT ,ZT ) is of finite
type, that is ZT is closed under coproducts, then T is a tilting module.

Proof. By Proposition 3.10 we have that K0(YT ) = 0. Then with the notation
of the above remark we have K0

(
D(Mod(∆))b

)
= 0. However this holds only if the

DG-algebra ∆ of endomorphisms of the compact object L(Λ) is (quasi-isomorphic
to) 0. Hence L(Λ) = 0, or equivalently Λ lies in XT . Then the assertion follows
from Theorem 3.4. �

We refer to [25] for a discussion of the topics of this section using pure homo-
logical algebra and the structure of the Ziegler spectrum, in connection with the
Auslander-Reiten theory in triangulated and derived categories.

4. Concluding Remarks and Comments

As noted in Chapter I, torsion pairs in a triangulated category are widely known
as t-structures. They were introduced by Beilinson-Bernstein-Deligne in [18] as an
important tool in the study of cohomology of sheaves over possibly singular spaces.
In their language, recollement situations correspond to TTF-triples.

Hereditary torsion pairs are known in the recent literature as semi-orthogonal
decompositions, a terminology introduced by Reiten-Van den Bergh, see [90], to a
concept introduced and investigated in detail by Bondal and Kapranov, see [33].
It is known that semi-orthogonal decompositions provide a very powerful tool for
the study of the derived category of coherent sheaves on manifolds and algebraic
varieties.

On the other hand hereditary torsion classes of a torsion pair of finite type in a
compactly generated triangulated category are known in the literature as smashing
subcategories, generalizing a concept which has its origin in stable homotopy theory.
We recall that a Grothendieck category G is called locally coherent if G admits a set
of finitely presented generators and the full subcategory f.p(G) of finitely presented
objects of G is abelian. It is known that hereditary torsion pairs of finite type in a
locally coherent Grothendieck category G are in bijective correspondence with the
Serre subcategories of the abelian category f.p(G) of finitely presented objects of
G [78]. This result lies at the heart of the representation-theoretic investigation of G
via the theory of the Ziegler spectrum of G. In the triangulated case the substitute
of a locally coherent Grothendieck category is a compactly generated triangulated
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category C and the substitute of the Serre subcategories of f.p(G) are the thick
subcategories of the category of compact objects of C.

Hence it is natural to ask if the above correspondence has a triangulated ana-
logue. The validity of the triangulated analogue of the above correspondence is
equivalent, in our language, to the following well-known conjecture which is con-
nected with the classification of thick subcategories of compact objects.

Let C be a compactly generated triangulated category and let Cb be the full
subcategory of compact objects of C.

Ravenel’s Telescope Conjecture: Any hereditary torsion pair of finite type
in C is generated by a set of compact objects, i.e. is of the form (XP ,YP) for a set
P ⊆ Cb closed under Σ,Σ−1. Equivalently the maps

P 7−→ (XP ,YP) and (X ,Y) 7−→ X ∩ Cb

are mutually inverse bijections between thick subcategories of Cb and hereditary
torsion pairs of finite type in C.

Let (X ,Y) be a hereditary torsion pair in C. Then by Proposition 1.1 we have
a TTF-triple (X ,Y,Z) in C. Then by Proposition IV.1.11, Ravenel’s Conjecture is
implied by any one of the following equivalent statements:

• The torsion pair (X ,Y) induces a torsion pair (X b,Yb) in Cb.
• The torsion pair (Y,Z) is of finite type.

In this generality the conjecture is false. In our language Keller [70] produced
an example of a hereditary torsion pair (X ,Y) of finite type in the unbounded
derived category D(Mod(Λ)) of a non-Noetherian ring Λ such that the torsion class
X contains no non-zero compact object from D(Mod(Λ)), so the torsion pair can
not be generated by compact objects. By results of Hopkins-Neeman (see [84]),
the conjecture holds in case C is the unbounded derived category of a commutative
Noetherian ring. We refer to the work of Krause [77] for a detailed analysis and a
partial solution. Another class of categories in which the conjecture is true is the
class of compactly generated triangulated categories C which admit filtered colimits,
that is: the pure-semisimple categories of [21]. In such a category any object is a
coproduct of indecomposable compact objects with local endomorphism ring. This
implies trivially that any hereditary torsion pair is generated by compact objects.

The class of pure-semisimple triangulated categories is very small but not quite
trivial. Important examples include the unbounded derived category of a ring which
is derived equivalent to a right pure-semisimple right hereditary ring, in particular
the unbounded derived category of an iterated tilted algebra of Dynkin type, and the
stable module category of a representation-finite quasi-Frobenius ring, in particular
the stable module category of a self-injective Artin algebra of finite representation
type, see [21].



CHAPTER V

Torsion Pairs in Stable Categories

Let throughout this chapter C be an abelian category with enough projective
and enough injective objects. When ω is a functorially finite subcategory of C we
know that the stable category C/ω is pretriangulated. A pair (X ,Y) of subcategories
of C with ω ⊆ X ∩ Y gives rise to a pair (X/ω,Y/ω) of subcategories of C/ω.
The aim of this chapter is to obtain descriptions of (X/ω,Y/ω) being a torsion
pair in terms of properties of the pair (X ,Y). In particular we show that there
is a strong relationship with pairs of contravariantly finite and covariantly finite
subcategories, orthogonal with respect to Ext1, investigated in [9], [10] and [97].
Important examples of such pairs of subcategories in the representation theory of
Artin algebras emerge from tilting or cotilting modules. In particular we show
that (co)tilting modules give rise to interesting torsion pairs, this time in stable
categories induced by (co)tilting modules.

1. A Description of Torsion Pairs

Let X ,Y be full subcategories of C such that ω = X∩Y is functorially finite in C.
Our aim in this section is to get a description of (X/ω,Y/ω) being a torsion pair in
C/ω in terms of properties of X and Y. This description is based on the comparison
of pairs of subcategories of C and C/ω with respect to being contravariantly or
covariantly finite.

We start with the following useful observation.

Lemma 1.1. (1) Assume that ω ⊆ X and ω is contravariantly finite in C. Then
X is contravariantly finite in C iff X/ω is contravariantly finite in C/ω.

(2) Assume that ω ⊆ Y and ω is covariantly finite in C. Then Y is covariantly
finite in C iff Y/ω is covariantly finite in C/ω.

Proof. (1) Assume that X/ω is contravariantly finite in C/ω and let C ∈ C.
Let α : X −→ C be a right X/ω-approximation of C. Choose an object XC and
a morphism fC : XC −→ C such that XC = X and f

C
= α. Without loss of

generality we may assume that fC is ω-epic (if it is not then f ′C := t(µ, fC) : X ′C :=
T ⊕ XC −→ C is ω-epic, where µ : T −→ C is a right ω-approximation of C and
X ′C = X and f ′

C
= α). If g : X ′ −→ C is a morphism with X ′ ∈ X , then there

exists a morphism h : X ′ −→ X such that h ◦α = g. Then g− h ◦α factors through
a right ω-approximation φC : ωC −→ C of C, i.e. there exists ρ : X ′ −→ ωC such
that ρ ◦ φC = g − h ◦ fC . Since fC is ω-epic and ω ⊆ X , there exists σ : ωC −→ XC

such that σ ◦ fC = φC . Then g = (h+ ρ ◦σ) ◦ fC . Hence g factors through fC , and
this shows that fC is a right X -approximation of C. Conversely if fC : XC −→ C is
a right X -approximation of C, then it is easy to see that f

C
: XC −→ C is a right

79
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X/ω-approximation of C in C/ω. It follows that if X is contravariantly finite in C,
then X/ω is contravariantly finite in C/ω. Part (2) is dual. �

We now compare X being contravariantly finite in C with the inclusion X/ω ↪→
C/ω having a right adjoint. We have the following connection.

Proposition 1.2. Let ω be a functorially finite subcategory of C.
(α) If ω ⊆ X , then the following are equivalent.

(i) X is closed under cokernels of left ω-approximations and the inclusion
X/ω ↪→ C/ω admits a right adjoint.

(ii) X is contravariantly finite in C and for any object C in C there ex-

ists an exact sequence 0 −→ YC −→ XC
fC−−→ C, where fC is a right X -

approximation of C and Y C ∈ (X/ω)⊥.

(β) If ω ⊆ Y, then the following are equivalent.

(i) Y is closed under kernels of right ω-approximations and the inclusion
Y/ω ↪→ C/ω admits a left adjoint.

(ii) Y is covariantly finite in C and and for any object C in C there exists an

exact sequence C
gC−−→ Y C −→ XC −→ 0, where gC is a left Y-approximation

C
gC−−→ Y C −→ XC −→ 0 of C and XC ∈ ⊥(Y/ω).

Proof. (α) (i) ⇒ (ii) Since X is closed under cokernels of left ω-approxima–
tions it follows that Σ(X/ω) ⊆ X/ω. Let R : C/ω −→ X/ω be the right adjoint of
the inclusion i : X/ω ↪→ C/ω. Let C ∈ C and let α : R(C) −→ C be the coreflection

of C in X/ω. If (T ) : Ω(C) −→ Y C −→ R(C)
α−→ C is a left triangle in C/ω, then

by Lemma II.2.3 we have Y C ∈ (X/ω)⊥. As in Lemma 1.1, α induces a right
X -approximation fC : XC −→ C of C. Since fC is ω-epic, it induces a left triangle
(T ′) : Ω(C) −→ KC −→ XC −→ C in C/ω, where KC = Ker(fC). By construction
the left triangle (T ′) coincides with (T ), so KC

∼= Y C ∈ (X/ω)⊥.

(ii)⇒ (i) Let (E) : 0 −→ YC
gC−−→ XC

fC−−→ C be an exact sequence, where fC is a

right X -approximation of C and the object Y C lies in (X/ω)⊥. Since ω ⊆ X , fC is

ω-epic, hence the sequence (E) induces a left triangle Ω(C) −→ Y C −→ XC

f
C−−→ C in

C/ω. Since Y C ∈ (X/ω)⊥, by Lemma II.2.3, the morphism f
C

is the coreflection

of C in X/ω. Hence X/ω is coreflective. It remains to show that X is closed under

left ω-approximations. Let X
κ−→ ωX

λ−→ C −→ 0 be an exact sequence, where κ is a
left ω-approximation of X ∈ X . Since ω ⊆ X , there exists β : ωX −→ XC such that
λ = β ◦ fC . Since λ is epic, so is fC and we have an exact commutative diagram

X
κ−−−−→ ωX

λ−−−−→ C −−−−→ 0

∃ α

y ∃ β

y ∥∥∥
0 −−−−→ YC

gC−−−−→ XC
fC−−−−→ C −−−−→ 0

Since X ∈ X and Y C ∈ (X/ω)⊥, there exists a factorization α = α1 ◦ α2 : X
α1−→

T
α2−→ YC , where T ∈ ω. Since κ is a left ω-approximation, there exists ρ : ωX −→ T

such that α1 = κ◦ρ. Setting τ := ρ◦α2 it follows that κ◦τ = α. Then by standard
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arguments, there exists σ : C −→ XC such that σ ◦ fC = 1C . Hence C ∈ X as a
direct summand of XC .

(β) The proof is dual. �

For ω = 0, we have the following special case, which is also easily seen directly
(compare [54]).

Corollary 1.3. (1) X is coreflective in C iff for any object C ∈ C, there exists
a right X -approximation fC : XC −→ C with Ker(fC) ∈ {C ∈ C | C(X , C) = 0}.

(2) Y is reflective in C iff for any object C ∈ C, there exists a left Y-approxima–
tion fC : C −→ Y C with Coker(fC) ∈ {C ∈ C | C(C,Y) = 0}.

Combining Lemma 1.1 and Proposition 1.2 we have the following consequence.

Corollary 1.4. Let (X/ω,Y/ω) be a torsion pair in C/ω where ω is functo-
rially finite in C. Then we have the following.

(1) Any object of C admits a right X -approximation with kernel in Y and any
object of X admits a left ω-approximation with cokernel in X .

(2) Any object of C admits a left Y-approximation with cokernel in X and any
object of Y admits a right ω-approximation with kernel in Y.

By Corollary 1.4 it follows that for C in C, a torsion pair (X/ω,Y/ω) in C/ω
gives a right X -approximation fC : XC −→ C and a left Y-approximation gC : C −→
Y C . Also we get a left ω-approximation κ : XC −→ T with cokernel in X and a left
ω-approximation µ : T ′ −→ Y C with kernel in Y. It turns out that, conversely, if
we put this information together in an appropriate commutative diagram in C, we
obtain sufficient (and necessary) conditions to have a torsion pair.

Theorem 1.5. If ω is functorially finite in C, then the following are equivalent.

(i) The pair (X/ω,Y/ω) is a torsion pair in C/ω.
(ii) ∀C ∈ C, there exists a bicartesian (i.e. a pull-back and push-out) square

XC
fC−−−−→ C

κ

y gC
y

T
µ−−−−→ Y C

(†)

with the following properties.
(α) XC ∈ X , Y C ∈ Y and any morphism X −→ Y with X ∈ X and

Y ∈ Y factors through an object in ω.
(β) κ is a left ω-approximation of XC with cokernel in X .
(γ) µ is a right ω-approximation of Y C with kernel in Y.

In this case fC : XC −→ C is a right X -approximation of C with kernel in Y and
gC : C −→ Y C is a left Y-approximation of C with cokernel in X .

Proof. (ii)⇒ (i) The bicartesian square (†) induces a short exact sequence

0 −→ XC
(κ,fC)−−−−→ T ⊕ C

t(−µ,gC)−−−−−−→ Y C −→ 0 (1)

Since κ is ω-monic, it follows that (κ, fC) is ω-monic. Hence we have a right

triangle ∇(C) : XC

f
C−−→ C

gC

−−→ Y C
hC

−−→ Σ(XC) in C/ω. Since µ is ω-epic, it
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follows that t(−µ, gC) is ω-epic. Hence we have a left triangle ∆(C) : Ω(Y C)
hC−−→

XC

f
C−−→ C

gC

−−→ Y C in C/ω. By condition (α) we have XC ∈ X/ω, Y C ∈ Y/ω
and (X/ω,Y/ω) = 0. Next we show that gC is ω-monic. Indeed if α : C −→ T ′ is
a morphism with T ′ ∈ ω, then by (β), there exists a morphism α′ : T −→ T ′ such
that κ ◦ α′ = α. Since (†) is a push-out diagram, there exists h : Y C −→ T ′ such
that gC ◦ h = α′, hence gC is ω-monic. Dually fC is ω-epic. It remains to show
that Σ(X/ω) ⊆ X/ω or equivalently that X is closed under left ω-approximations.
Suppose that C ∈ X in the diagram (†). Since Y C ∈ Y, the morphism gC factors
through ω, hence gC = 0 in C/ω. Then from the right triangle ∇(C) we infer that

Y C ∼= Σ(XC), which by (β) lies in X/ω. Since Y C ∈ Y/ω, it follows that Y C ∈
X/ω ∩ Y/ω = 0. Hence Y C ∈ ω. Set XC = Coker(gC). Then by the bicartesian
square (†) above, XC = Coker(gC) ∼= Coker(κ), so by definition XC ∈ X . Since

gC is ω-monic, it follows that Σ(C) ∼= XC ∼= Σ(XC) ∈ X/ω.
(i)⇒ (ii) Assume now that the pair (X/ω,Y/ω) is a torsion pair in C/ω. Then

(X/ω,Y/ω) = 0, X is closed under left ω-approximations because Σ(X/ω) ⊆ X/ω,
Y is closed under right ω-approximations because Ω(Y/ω) ⊆ Y/ω and finally for
any C ∈ C, there exist triangles:

Ω(Y C) −→ XC

α−→ C
β
−→ Y C ∈ ∆ and XC

α−→ C
β
−→ Y C −→ Σ(XC) ∈ ∇

Let g̃C : C −→ Y C be a morphism such that g̃C = β and let µ : T1 −→ Y C be a

right ω-approximation of Y C . Consider the left exact sequence 0 −→ X̂C
(λ,fC)−−−−→

T1 ⊕ C
t(−µ,g̃C)−−−−−−→ Y C . It is clear that in C/ω we have X̂C

∼= XC and f
C

= α.

Let κ : X̂C −→ T2 be a left ω-approximation of X̂C and consider the right exact

sequence X̂C
(κ,λ,fC)−−−−−→ T2 ⊕ T1 ⊕C

t(−ν,−ξ,gC)−−−−−−−−→ Ỹ C −→ 0. Since (λ, fC) is monic, so
is (κ, λ, fC), hence we have a short exact sequence

0 −→ X̂C
(κ,λ,fC)−−−−−→ T2 ⊕ T1 ⊕ C

t(−ν,−ξ,gC)−−−−−−−−→ Ỹ C −→ 0 (2)

The above sequence induces a right triangle X̂C

f
C−−→ C

gC

−−→ Ỹ
C
−→ Σ(X̂C) from

which we infer that Ỹ
C ∼= Y C and g̃C = β = gC . In particular Ỹ C ∈ Y. The above

construction is included in the following exact commutative diagram:

0 −−−−→ X̂C
(κ,λ,fC)−−−−−→ T2 ⊕ T1 ⊕ C

t(−ν,−ξ,gC)−−−−−−−−→ Ỹ C −−−−→ 0∥∥∥ t(0,1C)

y ∃! σ
y

0 −−−−→ X̂C
(λ,fC)−−−−→ T1 ⊕ C

t(−µ,g̃C)−−−−−−→ Y C

Observe that the right square is a pull-back diagram. We claim that the morphism
t(−ν,−ξ) : T2 ⊕ T1 −→ Ỹ C is a right ω-approximation. Indeed let φ : T −→ Ỹ C

be a morphism with T ∈ ω. Since by construction −µ : T1 −→ Y C is a right
ω-approximation, there exists a morphism θ : T −→ T1 such that θ ◦ µ = φ ◦ σ.

Consider the morphisms (θ, 0) : T −→ T1 ⊕ C and φ : T −→ Ỹ C . By the pull-
back property there exists a unique morphism ζ := (ζ1, ζ2, ζ3) : T −→ T2 ⊕ T1 ⊕ C
such that (ζ1, ζ2, ζ3) ◦ t(−ν,−ξ, gC) = φ and (ζ1, ζ2, ζ3) ◦ t(0, 1C) = (θ, 0). It follows
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trivially that ζ3 = 0 and ζ2 = θ. Then (ζ1, θ) : T −→ T2⊕T1 is a morphism such that

(ζ1, θ)◦ t(−ν,−ξ) = φ. Hence t(−ν,−ξ) : T2⊕T1 −→ Ỹ C is a right ω-approximation.

Now since κ is a left ω-approximation, so is (κ, λ) : X̂C −→ T2 ⊕ T1. Hence setting

T := T2 ⊕ T1, κ̂ := (κ, λ) : X̂C −→ T and µ̃ := t(ν, ξ) : T −→ Ỹ C , we obtain a short

exact sequence 0 −→ X̂C
(κ̂,fC)−−−−→ T ⊕C

t(−µ̃,gC)−−−−−−→ Ỹ C −→ 0, which is equivalent to the
existence of a bicartesian square with the desired properties.

Assume now that (ii) holds. If τ : C −→ Y is a morphism with Y ∈ Y, then by
(α), (β), the composition fC ◦ τ factors through κ. Since the square (†) is a push-
out, this implies that τ factors through gC . Hence gC is a left Y-approximation of
C and then Coker(gC) ∼= Coker(κ) ∈ X . The proof for fC is dual. �

Now we deduce a consequence of Theorem 1.5 which will be useful later. First
we recall that a subcategory ω of X is called a cogenerator for X if for any X ∈ X
there exists a short exact sequence 0 −→ X −→ T −→ X ′ −→ 0 with T ∈ ω and X ′ ∈ X .
Dually we have the notion of generator for a subcategory.

Corollary 1.6. If ω = X ∩ Y is functorially finite in C and (X/ω,Y/ω) is a
torsion pair in C/ω, then we have the following.

(1) X contains the projectives iff ω is a generator of Y.
(2) Y contains the injectives iff ω is a cogenerator of X .

Proof. (1) If X contains the projectives, the morphism fC in the bicartesian
diagram (†) is an epimorphism, and then µ is an epimorphism. If C ∈ Y, then the
morphism gC is a split monomorphism. Chasing the diagram (†) we see easily that
κ is split monomorphism, hence XC is in ω as a direct summand of T . Conversely if
ω is a generator of Y then µ is an epimorphism, since it is a right ω-approximation of
Y C . This implies that fC is an epimorphism. Since fC is a right X -approximation
of C it follows that X contains the projectives. Part (2) is dual. �

By the above theorem, for any torsion pair (X/ω,Y/ω) in C/ω, where ω is
functorially finite in C, and any object C in C, there exists an exact sequence

0 −→ XC
(fC ,−κ)−−−−−→ C ⊕ T

t(gC ,µ)−−−−−→ Y C −→ 0

where: (i) fC : XC −→ C is a right X -approximation of C with kernel in Y.
(ii) gC : C −→ Y C is a left Y-approximation of C with cokernel in X .
(iii) κ : XC −→ T is a left ω-approximation of XC with cokernel in X .
(iv) µ : T −→ Y C is a right ω-approximation of Y C with kernel in Y.

Definition 1.7. The short exact sequence above is called the universal exact
sequence of C with respect to the torsion pair (X/ω,Y/ω) in C/ω.

Note that for any object C in C the universal exact sequence of C remains
exact after the application of the contravariant functors C(−,Y) and C(−, ω), and
the covariant functors C(X ,−) and C(ω,−).

Remark 1.8. Theorem 1.5 generalizes the description of a usual torsion pair.
Indeed, if (T ,F) is a torsion pair in the abelian category C, and if t is the torsion
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subfunctor, then T ∩ F = 0 is functorially finite and the following square

t(C) −−−−→ Cy y
0 −−−−→ C/t(C)

is bicartesian and satisfies the conditions in part (ii) of Theorem 1.5. Moreover the
induced short exact sequence (S) : 0 −→ t(C) −→ C −→ C/t(C) −→ 0 is the universal
exact sequence of C. Conversely if C(X ,Y) = 0 and we have a bicartesian square
as above with t(C) ∈ X , C/t(C) ∈ Y, then the sequence (S) is exact, hence (X ,Y)
is a torsion pair in C in the usual sense. We infer that (X ,Y) is a torsion pair in
the usual sense iff (X ,Y) is a torsion pair in our sense with X ∩ Y = 0.

2. Comparison of Subcategories

Let ω be a functorially finite subcategory of C. In the previous section we got
a description of torsion pairs in C/ω by comparing pairs of subcategories of C and
C/ω with respect to being contravariantly or covariantly finite. Our aim in this
section is to compare pairs of subcategories of C and C/ω with respect to being
contravariantly or covariantly finite, and with respect to the vanishing of Ext1 and
Hom respectively (see [5] for a similar type of investigation). We start by recalling
some of the main results on pairs (X ,Y) investigated in [9]. These are proved in [9]
when C is the category of of finitely generated modules over an Artin algebra, but
the same proofs work when C is more generally a Krull–Schmidt category.

A subcategory X of C is preresolving if it is closed under extensions and contains
the projective objects, and it is resolving if in addition it is closed under kernels of
epimorphisms. Dually a subcategory Y of C is precoresolving if it is closed under
extensions and contains the injective objects, and it is coresolving if in addition it
is closed under cokernels of monomorphisms. Many of the results that follow work
more generally, by dropping the assumption that C has enough projectives and
injectives, and defining X in C to be preresolving if it is closed under extensions
and whenever f : A −→ B is a morphism in C such that C(X , f) is an epimorphism,
then f is an epimorphism. For a subcategory Z of C we denote by Z⊥ the full
subcategory of C whose objects are the Y with Ext1(Z, Y ) = 0, for all Z ∈ Z, and
by ⊥Z the full subcategory of C whose objects are the X with Ext1(X,Z) = 0, for
all Z ∈ Z. When we use the symbol “⊥ ” in stable categories we mean vanishing
with respect to Hom.

Definition 2.1. A pair (X ,Y) of full subcategories of C is called a good pair
if X is contravariantly finite with X⊥ = Y and Y is covariantly finite with X = ⊥Y.

We need the following result from [9] which shows how to construct good pairs
in a Krull-Schmidt category.

Theorem 2.2. Let C be a Krull-Schmidt category.

(i) If X is preresolving and contravariantly finite in C, then (X ,X⊥) is a
good pair.

(ii) If Y is precoresolving and covariantly finite in C, then (⊥Y,Y) is a good
pair.
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A subcategory ω of X is called an Ext-injective cogenerator for X if it is a co-
generator ω ⊆ X such that ω ⊆ X⊥. Dually we have the notion of an Ext-projective
generator for a subcategory. In what follows we shall need the following useful result
from [9] which, combined with Theorem 2.2, shows how to construct Ext-injective
cogenerators and Ext-projective generators in Krull-Schmidt categories.

Proposition 2.3. Let (X ,Y) be a good pair in C with ω = X ∩ Y.

(i) X is resolving iff Y is coresolving.
(ii) If C is a Krull-Schmidt category, then ω is an Ext-injective cogenerator

for X and an Ext-projective generator for Y.

We now make some comparisons between parallel properties for (X ,Y) and
(X/ω,Y/ω). Note that if X is a subcategory of C and Y = X⊥, then automatically
Y is closed under extensions and contains the injectives. And if X = ⊥Y for a
subcategory Y of C, then X is closed under extensions and contains the projectives.

Lemma 2.4. Let X and Y be subcategories of C with ω ⊆ X ∩ Y, and assume
that ω is functorially finite and Ext1(X ,Y) = 0.

(i) If (X/ω)⊥ = Y/ω, then Y is closed under extensions and cokernels of
monics.

(ii) If X/ω = ⊥(Y/ω), then X is closed under extensions and kernels of epics.

Proof. (i) Let 0 −→ Y1 −→ C −→ Y2 −→ 0 be exact in C with Y1, Y2 ∈ Y. Since
Ext1(X ,Y) = 0 and ω ⊆ X , it follows that the sequence 0 −→ C(ω, Y1) −→ C(ω,C) −→
C(ω, Y2) −→ 0 is exact. Hence it induces a left triangle Ω(Y 2) −→ Y 1 −→ C −→ Y 2 in
the pretriangulated category C/ω. Applying the homological functor (X/ω,−) to
the triangle we infer that (X/ω,C) = 0, hence C ∈ Y/ω. This means that C is in
Y so that Y is closed under extensions.

Now let 0 −→ Y1 −→ Y2
β−→ C −→ 0 be an exact sequence in C with Y1, Y2 ∈ Y.

As above the sequence induces a left triangle Ω(C) −→ Y 1 −→ Y 2

β
−→ C in C/ω.

It follows that the sequence · · · −→ (X/ω, Y 1) −→ (X/ω, Y 2)
(X/ω,β)
−−−−−→ (X/ω,C) is

exact. Now observe that we have an exact commutative diagram

(X , Y1) −−−−→ (X , Y2)
(X ,β)−−−−→ (X , C) −−−−→ 0

π1

y π2

y π3

y
(X/ω, Y 1) −−−−→ (X/ω, Y 2)

(X/ω,β)
−−−−−→ (X/ω,C)

where the πi are the canonical epimorphisms. Since the composition (X , β) ◦ π3

is epic, it follows that π2 ◦ (X/ω, β) is also epic, and this implies that (X/ω, β) :
(X/ω, Y 2) −→ (X/ω,C) is epic. Then (X/ω, Y 2) = 0, since (X/ω,Y/ω) = 0. Hence
(X/ω,C) = 0, i.e. C ∈ (X/ω)⊥ = Y/ω, so that C ∈ Y.

The proof of part (ii) is dual. �

We have the following consequence of Lemma 2.4.

Proposition 2.5. Assume that Ext1(X ,Y) = 0 and let ω be a functorially
finite subcategory of C with ω ⊆ X ∩ Y. If (X/ω,Y/ω) is a torsion pair in C/ω,
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then X is closed under extensions and kernels of epimorphisms, and Y is closed
under extensions and cokernels of monomorphisms.

The following example shows that the two orthogonality conditions are not
always related.

Example. Let Λ be a Nakayama algebra with admissible sequence (2, 2, 1),
and denote by S1, S2, S3 the corresponding simple Λ-modules. We then have the
Auslander-Reiten quiver

S3 ↗
(
S2

S3

)
↘ S2 ↗

(
S1

S2

)
↘ S1.

Let X = add
{
S1, S2,

(
S1

S2

)}
and ω = add

{
S1,

(
S1

S2

)}
. Then we have X⊥ =

add
{( S2

S3

)
,

(
S1

S2

)
, S1

}
and (X/ω)⊥ = add

{
S3,

(
S2

S3

)
, S1,

(
S1

S2

)}/
ω.

The orthogonality condition Ext1(X ,Y) = 0 is very useful. However if the pair
(X/ω,Y/ω) is a torsion pair in C/ω, so that (X/ω,Y/ω) = 0, then in general there
is no reason to expect that Ext1(X ,Y) = 0 (see Remark 2.10 and the example
after Corollary 3.8 below). The following result, which will be useful later for
constructing good and torsion pairs, gives a sufficient condition for this to happen.

Lemma 2.6. Let X be a contravariantly finite subcategory of C which is closed
under kernels of epimorphisms, and let ω be a subcategory of C which consists of
Ext-injective objects for X . Then for any subcategory Y of C with the property
(X/ω,Y/ω) = 0, we have Ext1(X ,Y) = 0.

Proof. Let 0 −→ Y −→ C −→ X −→ 0 be an extension with Y ∈ Y and X ∈
X and let fC : XC −→ C be a right X -approximation of C. Consider the exact
commutative diagram:

0 −−−−→ X ′
α−−−−→ XC

β−−−−→ X −−−−→ 0

η

y fC

y ∥∥∥
0 −−−−→ Y

g−−−−→ C
f−−−−→ X −−−−→ 0

Since X is closed under kernels of epics, X ′ ∈ X . Since Y is in Y, the morphism
η factors through an object in ω, i.e. there exists a factorization η := η1 ◦ η2 :

X ′
η1−→ T ′

η2−→ Y , with T ′ ∈ ω. The push-out of the upper row along η1 splits, since
the objects of ω are Ext-injective in X . It follows easily from this that η factors
through α. This implies that f splits. We infer that Ext1(X ,Y) = 0. �

We have seen that the existence of a torsion pair (X/ω,Y/ω) in C/ω implies
the existence of right X -approximations with kernel in Y and left Y-approximations
with cokernel in X . In order to have a better description of the pair (X ,Y) we need
to assume additional properties. It seems that the crucial properties are: (α) X
and Y are Ext-orthogonal: Ext1(X ,Y) = 0, and (β) X contains the projectives and
Y contain the injectives, or equivalently, in view of (α) and Corollary 1.6, ω is an
Ext-injective cogenerator of X and an Ext-projective generator of Y.
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To analyze the consequences of the above additional assumptions it is suggestive
to use the notion of special approximations in the sense of the following definition.

Definition 2.7. Let X and Y be full subcategories of C.
(1) An epimorphism fC : XC −→ C is called a special right X -approximation

of C, if XC ∈ X and Ker(fC) ∈ X⊥.
(2) A monomorphism gC : C −→ Y C is called a special left Y-approximation

of C, if Y C ∈ Y and Coker(gC) ∈ ⊥Y.

Observe that a special right X -approximation fC : XC −→ C of C is a right
X -approximation of C and a special left Y-approximation gC : C −→ Y C of C is a
left Y-approximation of C.

Example. If X ⊆ C is closed under extensions, then, by Wakamatsu’s Lemma,
any minimal right X -approximation is special. The converse is false: any epimor-
phism f : P −→ C where P is projective, is a special P-approximation. However f
is right minimal iff f is a projective cover. Dually a minimal left X -approximation
is special, but in general a special left X -approximation is not left minimal.

Using the terminology of special approximations we have the following conse-
quence.

Corollary 2.8. Let (X ,Y) be a pair of subcategories of C with X ∩ Y = ω.
(1) If X is extension closed with X⊥ = Y and any object of C admits a special

right X -approximation, then ω is an Ext-injective cogenerator of X .
(2) If Y is extension closed with ⊥Y = X and any object of C admits a special

left Y-approximation, then ω is an Ext-projective generator of Y.

Proof. We only prove (1) since part (2) is dual. Let X ∈ X and let 0 −→
X −→ I −→ A −→ 0 be exact with I injective. Then pulling back this sequence
along the special right X -approximation fA : XA −→ A of A, we obtain extensions
0 −→ X −→ T −→ XA −→ 0 and 0 −→ YA −→ T −→ I −→ 0, where YA = Ker(fA). Since
X and XA are in X , the fact that X is extension closed implies that T ∈ X . Since
X⊥ = Y it follows that Y is extension closed. Hence T ∈ Y since I and YA are in
Y. We infer that ω is a cogenerator of X . Since ω ⊆ Y and Ext1(X ,Y) = 0, we
conclude that ω is an Ext-injective cogenerator of X . �

We close this section with the following useful corollary of the above results
which summarizes the consequences in C of the existence of a torsion pair
(X/ω,Y/ω) in C/ω under the assumptions that X contains the projectives, Y con-
tains the injectives, and Ext1(X ,Y) = 0.

Corollary 2.9. Let ω be functorially finite in C and let (X/ω,Y/ω) be a
torsion pair in C/ω where X contains the projectives and Y contains the injectives.
If Ext1(X ,Y) = 0, then (X ,Y) is a good pair in C, X is resolving and admits ω as
an Ext-injective cogenerator, and Y is coresolving and admits ω as an Ext-projective
generator.
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Note that under the assumptions of Corollary 2.9, Theorem 1.5 implies the
existence of the following exact commutative diagram, for any C ∈ C:

0 0y y
0 −−−−→ YC

gC−−−−→ XC
fC−−−−→ C −−−−→ 0∥∥∥ κ

y gC
y

0 −−−−→ YC
λ−−−−→ T

µ−−−−→ Y C −−−−→ 0

ν

y fC

y
XC XCy y
0 0

where:

(i) fC is a special right X -approximation of C.
(ii) gC is a special left Y-approximation of C.

(iii) κ is a special left ω-approximation of XC .
(iv) µ is a special right ω-approximation of Y C .

Remark 2.10. Since for a torsion pair (X ,Y) in an abelian category C we have
in general Ext1(X ,Y) 6= 0, it follows that there exist torsion pairs (X/ω,Y/ω) in
C/ω where ω = X ∩Y is functorially finite, such that Ext1(X ,Y) 6= 0. Hence there
exist torsion pairs in pretriangulated stable categories not arising from good pairs.

3. Torsion and Cotorsion pairs

Assume that ω is a functorially finite subcategory of C and let X and Y be
full subcategories of C with ω = X ∩ Y. In this section we investigate more closely
the relationship between the pair (X ,Y) being good in C and the pair (X/ω,Y/ω)
being a torsion pair in C/ω.

We have seen in Corollary 2.9 that if (X/ω,Y/ω) is a torsion pair in C/ω and
Ext1(X ,Y) = 0 where X contains the projectives and Y contains the injectives,
then the pair (X ,Y) is good with some additional properties: any object of C
admits a special right X -approximation and a special left approximation. Using
this observation and following the way we defined torsion pairs in abelian and
(pre)triangulated categories with respect to the vanishing of Hom, it is suggestive
to use the concept of a cotorsion pair, which can be thought of as a reasonable
definition of a torsion pair in C with respect to the vanishing of Ext1.

Definition 3.1. Let X and Y be full subcategories of C, closed under isomor-
phisms and direct summands. We call (X ,Y) a cotorsion pair if the following
conditions hold:

(i) Ext1(X ,Y) = 0.
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(ii) For any object C of C there exists a short exact sequence 0 −→ YC −→
XC

fC−−→ C −→ 0 where YC ∈ Y and XC ∈ X .

(iii) For any object C of C there exists a short exact sequence 0 −→ C
gC−−→

Y C −→ XC −→ 0 where Y C ∈ Y and XC ∈ X .

Then X is called a cotorsion class and Y is called a cotorsion-free class.

Note that there are slightly different definitions of cotorsion pairs which have
appeared in the literature, see [97], [79]. The following remark shows that a cotor-
sion pair is a good pair with the additional property that the involved approxima-
tions are special.

Remark 3.2. Let (X ,Y) be a cotorsion pair in C.
(1) The pair (X ,Y) is complete with respect to the vanishing of Ext1: X⊥ = Y

and ⊥Y = X . Indeed since Ext1
C(X ,Y) = 0, we have X ⊆ ⊥Y and Y ⊆ X⊥. Now

let C ∈ ⊥Y and consider the short exact sequence 0 −→ YC −→ XC −→ C −→ 0 where
YC ∈ Y and XC ∈ X . Since YC lies in Y, the sequence splits and therefore C lies
in X as a direct summand of XC . Hence ⊥Y = X and dually we have X⊥ = Y.

(2) It follows from (1) that the morphism fC is a special right X -approximation
and the morphism gC is a special left Y-approximation.

(3) Conversely by a result of Auslander-Reiten [9] any good pair in a Krull-
Schmidt category is a cotorsion pair.

The following result gives some equivalent conditions for a pair of subcategories
(X ,Y) in C to form a cotorsion pair.

Lemma 3.3. If X , Y are subcategories of C, then the following are equivalent.

(i) Any object admits a special right X -approximation and Y = X⊥.
(ii) Any object admits a special left Y-approximation and ⊥Y = X .
(iii) (X ,Y) is a cotorsion pair.

Proof. By Remark 3.2 we have that (iii) implies (i) and (ii). Hence it suffices
to show that (i) and (ii) are equivalent. We prove only the direction (i)⇒ (ii) since
the proof of the other direction is dual.

(i) ⇒ (ii) First observe that Y is extension closed and contains the injectives.
If C is an object in ⊥Y then the special right X -approximation sequence 0 −→ YC −→
XC −→ C −→ 0 splits. Hence C lies in X , and we infer that ⊥Y = X . Now let C

be in C and let 0 −→ C
α−→ E(C)

β−→ Σ(C) −→ 0 be a short exact sequence in C,
where E(C) is injective. Let 0 −→ KΣ(C)

ψ−→ XΣ(C)
χ−→ Σ(C) −→ 0 be a special right
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X -approximation of Σ(C). Then we have the following exact commutative diagram

0 0y y
KΣ(C)

=−−−−→ KΣ(C)

λ

y ψ

y
0 −−−−→ C

g−−−−→ Y C
f−−−−→ XΣ(C) −−−−→ 0∥∥∥ µ

y χ

y
0 −−−−→ C

α−−−−→ E(C)
β−−−−→ Σ(C) −−−−→ 0y y

0 0

Since Y is extension closed and KΣ(C), E(C) are in Y, we infer that Y C lies in Y.
Since XΣ(C) lies in X , the morphism g is a special left Y-approximation of C. �

Now we are ready to characterize when a torsion pair in C/ω comes from a
cotorsion pair in C.

Proposition 3.4. If (X/ω,Y/ω) is a torsion pair in C/ω, then the following
statements are equivalent:

(i) X is closed under kernels of epics, contains the projectives and admits ω
as an Ext-injective cogenerator.

(ii) Y is closed under cokernels of monics, contains the injectives and admits
ω as an Ext-projective generator.

(iii) (X ,Y) is a cotorsion pair.

Proof. (i) ⇔ (ii) Assume that (i) holds. Then by Lemma 2.6 we have
Ext1(X ,Y) = 0. In particular Y ⊆ X⊥. Let C be in X⊥. Since ω is a cogenerator of
X , by Corollary 1.6, Y contains the injectives. Hence the left Y-approximation gC

of C in Theorem 1.5 is a monomorphism. Since its cokernel XC is in X , it follows
that gC splits, hence C ∈ Y. We infer that Y = X⊥, in particular the objects of
ω are Ext-projectives in Y. Since X contains the projectives, by Corollary 1.6 we
have that ω is a generator of Y. It remains to show that Y is closed under cokernels
of monics and this follows from Proposition 2.5. Part (ii)⇒ (i) is dual.

(iii)⇔ (i) If (i) holds, then by the equivalence of (i) with (ii) and Theorem 1.5
we have that X is contravariantly finite and X⊥ = Y, and Y is covariantly finite
and ⊥Y = X . Hence (X ,Y) is a good pair and then by Corollary 2.9 it follows that
(X ,Y) is a cotorsion pair. The converse follows from Corollary 2.9. �

We have seen in Lemma 2.4 that if (X/ω,Y/ω) is a torsion pair in C/ω where
Ext1(X ,Y) = 0, then X is closed under extensions and kernels of epics and Y is
closed under extensions and cokernels of monics. This leads to the investigation of
cotorsion pairs (X ,Y) where X is resolving and Y is coresolving.
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Definition 3.5. A cotorsion pair (X ,Y) in C is called resolving, resp. core-
solving, if X is resolving, resp. Y is coresolving.

The following result shows that a cotorsion pair is resolving if and only if it is
coresolving.

Proposition 3.6. For a pair (X ,Y) of subcategories of C, the following are
equivalent:

(i) Y = X⊥ is closed under cokernels of monics and any object of C admits
a special right X -approximation.

(ii) X = ⊥Y is closed under kernels of epics and any object of C admits a
special left Y-approximation.

(iii) (X ,Y) is a resolving cotorsion pair in C.
(iv) (X ,Y) is a coresolving cotorsion pair in C.

Proof. Follows directly from Lemma 3.3 combined with Proposition 2.3. �

The following main result of this section gives the exact relationship between
torsion pairs in a stable category and cotorsion pairs in the abelian category.

Theorem 3.7. Let (X ,Y) be a pair of subcategories of C such that ω = X ∩
Y is functorially finite. Assume that X contains the projectives, Y contains the
injectives, and one of the following vanishing conditions holds: (α) Ext1(X ,Y) = 0,
(β) Ext1(X , ω) = 0, or (γ) Ext1(ω,Y) = 0. Then the following are equivalent.

(i) (X ,Y) is a resolving cotorsion pair in C.
(ii) (X/ω,Y/ω) is a torsion pair in C/ω.

Proof. (ii)⇒ (i) Follows directly from Lemma 2.6 and Propositions 3.4, 3.6.

(i) ⇒ (ii) Let C be in C and let 0 −→ YC
gC−−→ XC

fC−−→ C −→ 0 be a special
right X -approximation sequence of C. Since by Corollary 2.8 we have that ω is an

Ext-injective cogenerator for X , there exists an exact sequence 0 −→ XC
κ−→ T

ν−→
XC −→ 0 in C where T lies in ω and XC lies in X . Consider the following exact
commutative diagram:

0 0y y
0 −−−−→ YC

gC−−−−→ XC
fC−−−−→ C −−−−→ 0∥∥∥ κ

y gC
y

0 −−−−→ YC
λ−−−−→ T

µ−−−−→ Y C −−−−→ 0

ν

y fC

y
XC XCy y
0 0
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Since the cotorsion pair (X ,Y) is resolving, it follows that Y is closed under coker-
nels of monomorphisms. In particular Y C lies in Y. Finally since the upper right
square is bicartesian, by Theorem 1.5 we infer that (X/ω,Y/ω) is a torsion pair in
C/ω. �

Corollary 3.8. If ω is a functorially finite subcategory of C, then the map
(X ,Y) 7−→ (X/ω,Y/ω) gives a bijection between resolving cotorsion pairs (X ,Y) in
C such that X ∩Y = ω, and torsion pairs (X/ω,Y/ω) in C/ω such that X contains
the projectives, Y contains the injectives, and Ext1(X ,Y) = 0.

The following is another example of a torsion pair which is not induced by a
cotorsion pair.

Example. Assume that the full subcategory P of projective objects of C is
functorially finite, so that the stable category C/P is pretriangulated. Then (C/P, 0)
is obviously a torsion pair in C/P but by Theorem 3.7 it is not induced by any good
or cotorsion pair (X ,Y), unless any projective object is injective.

The above results allow us to get further connections between a pair (X ,Y) in
C being cotorsion and the pair (X/ω,Y/ω) being a torsion pair in C/ω, when ω =
X ∩Y is functorially finite in C. We also obtain connections with the conditions that
the inclusion X/ω ↪→ C/ω has a right adjoint, together with Y/ω being orthogonal
to X/ω.

Theorem 3.9. Let X and Y be full subcategories of C such that ω := X ∩Y is
functorially finite in C. Assume that Ext1(X ,Y) = 0, that X contains the projective
objects and Y contains the injective objects, and that ω is a cogenerator for X and
a generator for Y. Then the following are equivalent:

(i) The inclusion i : X/ω ↪→ C/ω admits a right adjoint and Y/ω = (X/ω)⊥.
(ii) The inclusion j : Y/ω ↪→ C/ω admits a left adjoint and X/ω = ⊥(Y/ω).

(iii) The pair (X/ω,Y/ω) is a torsion pair in C/ω.

Proof. Obviously (iii) ⇒ (i), (ii). We show only that (i) ⇒ (iii) since the
proof of the implication (ii) ⇒ (iii) is dual. Since ω is a cogenerator for X and
X contains the projectives, by Proposition 1.2 there exists an exact sequence 0 −→
YC −→ XC −→ C −→ 0 where YC lies in Y and XC lies in X . Dually since ω is a
generator for Y and Y contains the injectives, by Proposition 1.2 there exists an
exact sequence 0 −→ C −→ Y C −→ XC −→ 0 where XC lies in X and Y C lies in Y.
Finally since Ext1(X ,Y) = 0, we infer that (X ,Y) is a cotorsion pair in C. Then
by Lemma 2.4 we have that the cotorsion pair (X ,Y) is resolving. Therefore by
Theorem 3.7 we conclude that (X/ω,Y/ω) is a torsion pair in C/ω. �

We have seen that if (X ,Y) is a cotorsion pair in C, then X is contravariantly
finite and Y is covariantly finite. We close this section by investigating when X is
covariantly finite or Y is contravariantly finite.

We begin with the following preliminary result.

Lemma 3.10. Let X be a full subcategory of C which admits an Ext-injective
cogenerator ω. Then we have the following.

(i) If X is covariantly finite, then ω is covariantly finite.
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(ii) If ω is contravariantly finite and Ωd(C/ω) ⊆ X/ω, then: ω is covariantly
finite iff X is covariantly finite.

Proof. (i) Let C be in C and let gC : C −→ XC be a left X -approximation of
C. Since ω is an Ext-injective cogenerator of X , there exists a short exact sequence

(E) : 0 −→ XC µ−→ T −→ XC −→ 0 with T ∈ ω and XC in X . We claim that
gC ◦ µ : C −→ T is a left ω-approximation of C. Let α : C −→ T ′ be a morphism
with T ′ in ω. Since T ′ is in X , there exists a morphism β : XC −→ T ′ such that
gC ◦ β = α. Since the objects of ω are Ext-injective in X , the push-out of the
sequence (E) along β splits. Hence there exists a morphism γ : T −→ T ′ such that
µ ◦ γ = β. Then gC ◦ µ ◦ γ = gC ◦ β = α, hence α factors through gC ◦ µ. We infer
that gC ◦ µ is a left ω-approximation of C.

(ii) Assume that ω is functorially finite and there exists d ≥ 0 such that
Ωd(C/ω) ⊆ X/ω. Then the stable category C/ω is pretriangulated and we have
an adjoint pair of functors (Σn,Ωn) in C/ω, for any n ≥ 0. Since ω is an Ext-
injective cogenerator of X , for any X ∈ X , there exists a long exact sequence

0 −→ X −→ T 0 g0−→ T 1 −→ · · · −→ T d−1 gd−1−−−→ T d −→ · · · with the T i in ω, such that
the sequence remains exact after the application of C(−, T ), for any T ∈ ω. This
implies that for any d ≥ 0, X = ΩdIm(gd) in C/ω. Hence X/ω ⊆ Ωd(C/ω), and
then by hypothesis we infer that X/ω = Ωd(C/ω). From the adjoint pair of functors
(Σd,Ωd) in C/ω, it follows that X/ω is covariantly finite in C/ω, in fact reflective.
Then Lemma 1.1 implies that X is covariantly finite in C. �

Let (X ,Y) be a cotorsion pair in C. The following result, which will be useful
in the next chapters in connection with Cohen-Macaulay objects, gives sufficient
conditions for the subcategories X , Y or ω to be functorially finite.

Corollary 3.11. Let (X ,Y) be a cotorsion pair in C, and let ω = X ∩ Y.

(i) If X is covariantly finite, then ω is covariantly finite.
(ii) If Y is contravariantly finite, then ω is contravariantly finite.

(iii) If X is covariantly finite and Y is contravariantly finite, then ω is func-
torially finite.

(iv) If ω is contravariantly finite and Ωd(C/ω) ⊆ X/ω for some d ≥ 0, then
ω is covariantly finite iff X is covariantly finite.

(v) If ω is covariantly finite and Σd(C/ω) ⊆ Y/ω for some d ≥ 0, then ω is
contravariantly finite iff Y is contravariantly finite.

Proof. Follows from Lemma 3.10 and its dual, using that ω is an Ext-pro–
jective cogenerator of X and an Ext-projective generator of Y. �

Remark 3.12. Recently Krause and Solberg have shown that if (X ,Y) is a
(co)resolving cotorsion pair in mod(Λ), where Λ is an Artin algebra, then the sub-
categories X , Y, ω are functorially finite, see [79]. However there are (co)resolving
cotorsion pairs (X ,Y) in Mod(Λ), where Λ is a suitable ring, such that X , hence
ω, is not functorially finite (see the last example of the next section).

4. Torsion Classes and Cohen-Macaulay Objects

Let as before C be an abelian category with enough projectives and enough
injective objects. In this section we are interested in finding when a full subcategory
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X of C which admits a functorially finite Ext-injective cogenerator ω, induces a
torsion class X/ω in the stable category C/ω. And when such a torsion class exists,
we are interested in having an explicit description of the corresponding torsion-free
class. We also indicate some interesting examples of such subcategories X , which
arise naturally in practice in connection with Cohen-Macaulay approximations.

We start by stating some of the results of the previous section as equivalent
conditions for the subcategory X of C, leaving the formulation of the dual results
concerning Y to the reader.

Proposition 4.1. Let X be a subcategory of C, closed under kernels of epi-
morphisms and containing the projective objects of C. If X has a functorially finite
Ext-injective cogenerator ω, then the following are equivalent.

(i) X/ω is a torsion class in C/ω.
(ii) For any C ∈ C there exists a right X -approximation sequence 0 −→ YC −→

XC −→ C −→ 0 with Y C ∈ (X/ω)⊥.
(iii) The inclusion X/ω ↪→ C/ω has a right adjoint.

Proof. Obviously (i) implies (iii). Since ω is an Ext-injective cogenerator of
X , we have that X is closed under cokernels of right ω-approximations. Then the
equivalence (ii)⇔ (iii) follows by Proposition 1.2.

(iii) ⇒ (i) Let Y be the subcategory of C defined by Y/ω = (X/ω)⊥, so that
ω = X ∩ Y. It suffices to show that (X ,Y) satisfies the assumptions of Theorem
3.9. First observe that by Lemma 2.6 we have Ext1(X ,Y) = 0. Then Lemma 2.4
ensures that Y is closed under extensions and cokernels of monics. Using that X
contains the projectives and ω is an Ext-injective cogenerator of X , Proposition
1.2 allows us to construct, for any C ∈ C, the bicartesian square of the proof of
Theorem 3.7. Using this we deduce easily that Y contains the injectives and has
ω as an Ext-projective generator. Hence the assumptions of Theorem 3.9 hold for
the pair (X ,Y), and since the inclusion X/ω ↪→ C/ω admits a right adjoint, by
Theorem 3.9 we infer that (X/ω,Y/ω) is a torsion pair in C/ω. �

In case of Krull-Schmidt subcategories, we have the following characterizations
of torsion classes.

Corollary 4.2. Let X be a Krull-Schmidt subcategory of C closed under ker-
nels of epimorphisms and containing the projective objects of C. If X admits a
functorially finite Ext-injective cogenerator ω, then the following are equivalent.

(i) X/ω is a torsion class in C/ω.
(ii) X is contravariantly finite in C.

Proof. By Lemma 1.1 we have that X is contravariantly finite in C iff X/ω
is contravariantly finite in C/ω. Since ω is an Ext-injective cogenerator for X , we
have that X/ω is a right triangulated subcategory of the pretriangulated category
C/ω. By Proposition II.2.4 we have that X/ω is contravariantly finite in C/ω iff
X/ω is coreflective in C/ω. Then the assertion follows from Proposition 4.1. �

Corollary 4.3. Let C be a Krull-Schmidt category and X a preresolving con-
travariantly finite subcategory of C and assume that ω := X ∩ X⊥ is functorially
finite in C. Then the following are equivalent.
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(i) X is resolving.
(ii) X/ω is a torsion class in C/ω.

In view of the above results it is natural to consider the maximal subcate-
gory of C containing ω as an Ext-injective cogenerator, which from now on we
denote by CM(ω). More explicitly if ω is a self-orthogonal subcategory ω ⊆ C, i.e.
Extn(ω, ω) = 0,∀n ≥ 1, then:

CM(ω) =
{
C ∈ C | ∃ exact sequence 0 −→ C −→ T 0 f0

−→ T 1 f1

−→ T 2 −→ · · · ,

T s ∈ ω, ∀s ≥ 0 : ExttC
(
Ker(fn), ω

)
= 0, ∀n ≥ 0, ∀t ≥ 1

}
.

We call the objects of CM(ω) the Cohen-Macaulay objects of C with respect to
ω. If ω = add(T ) for a self-orthogonal object T , then we use the notation CM(ω) =
CM(T ). This category was introduced in [9] (see also [5]), called Xω in [9], in
connection with Cohen-Macaulay approximations: if Λ is a commutative Gorenstein
ring, then CM(Λ) is the category of (maximal) Cohen-Macaulay modules. Note
that by construction and Corollary 4.2 the subcategory CM(ω) contains X for any
torsion class X/ω in C/ω arising from a contravariantly finite resolving subcategory
X of C. Since by [9], CM(ω) is closed under extensions and kernels of epimorphisms,
it is resolving if it contains the projectives. Putting things together we have the
following consequence.

Corollary 4.4. Let ω be a functorially finite self-orthogonal subcategory of C.
If CM(ω) contains the projectives of C, then the following are equivalent.

(i) CM(ω)/ω is a torsion class in C/ω.
(ii) the inclusion CM(ω)/ω ↪→ C/ω admits a right adjoint.

Example. Let ω = P ∩ I be the full subcategory of C consisting of the
projective-injective objects. We say that the object C has infinite dominant di-
mension, and then we write dom.dimC = ∞, if in any injective resolution 0 −→
C −→ I0 −→ I1 −→ · · · of C all the injective objects Ii are projective. Let Dom(C) be
the full subcategory of C consisting of all objects with dom.dimC = ∞. Observe
that CM(ω) = Dom(C). If ω is functorially finite in C and any projective object
has infinite dominant dimension, then by Corollary 4.4 we have that Dom(C)/ω is
a torsion class in C/ω iff Dom(C)/ω is coreflective in C/ω. This is equivalent to
Dom(C) being contravariantly finite in C, if C is in addition Krull-Schmidt.

Dually we denote by CoCM(ω) the maximal subcategory of C which admits ω
as an Ext-projective generator. Obviously

CoCM(ω) =
{
C ∈ C | ∃ exact sequence · · · −→ T2

f1−→ T1
f0−→ T 0 −→ C −→ 0,

Ts ∈ ω, ∀s ≥ 0 : ExttC
(
ω,Coker(fn)

)
= 0, ∀n ≥ 0, ∀t ≥ 1

}
.

If ω = add(T ) for T ∈ C, then we use the notation CoCM(ω) = CoCM(T ). The
duals of the above observations also hold. We note only the following.

Note. If (X ,Y) is a (co)resolving cotorsion pair in C with X ∩ Y = ω, then:

⊥CoCM(ω) ⊆ X ⊆ CM(ω) and CM(ω)⊥ ⊆ Y ⊆ CoCM(ω).
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Let now (X ,Y) be a good pair in the abelian Krull-Schmidt category C, and
assume that ω = X ∩ Y is functorially finite in C and X is resolving. Then we
have that (X/ω,Y/ω) is a torsion pair in C/ω. In some cases it is possible to get

a description of Y (see [5]). For a subcategory Z of C we denote by Ẑ the full
subcategory of C whose objects are the C such that there is an exact sequence

0 −→ Zn −→ · · · −→ Z1 −→ Z0 −→ C −→ 0 with the Zi in Z. Dually we denote by Z̃ the
full subcategory of C whose objects are the C such that there is an exact sequence
0 −→ C −→ Z0 −→ Z1 −→ · · · −→ Zm −→ 0 with the Zi in Z. For instance if P is the

full subcategory of projectives, then ĈM(P) is the full subcategory of objects with

finite Gorenstein dimension and P̂ := P<∞ is the full subcategory of C consisting
of the objects with finite projective dimension. Dually if I is the full subcategory

of injectives, then Ĩ := I<∞ is the full subcategory of C consisting of the objects
with finite injective dimension. Recall from [6] that the (projective) Gorenstein
dimension G-dimP C of an object C in C is defined inductively as follows. If C
is in CM(P), then G-dimP C = 0. If t ≥ 1, then G-dimP C ≤ t if there exists
an exact sequence 0 −→ Gt −→ · · · −→ G1 −→ G0 −→ C −→ 0 where G-dimP Gi = 0,
for 0 ≤ i ≤ t. Then G-dimP C = t if G-dimP C ≤ t and G-dimP C � t − 1.
Finally if G-dimP C 6= t for any t ≥ 0, then define G-dimP C =∞. It follows that

ĈM(P) = {C ∈ C | G-dimP C <∞}.

Proposition 4.5. With the above notations and assumptions we have: X̂ = C
iff Y = ω̂. Dually we have: Ỹ = C iff X = ω̃.

In the not necessarily Krull-Schmidt case we have the following result, which
is an easy consequence of our previous results and the results of [5].

Proposition 4.6. If X is a resolving subcategory with a functorially finite
Ext-injective cogenerator ω, then the following are equivalent:

(i) (X/ω, ω̂/ω) is a torsion pair in C/ω.

(ii) X̂ = C.

If this the case, then X = CM(ω).

Example. Let Λ be a left coherent ring. It is not difficult to see that the
resolving subcategory Flat(Λ) of flat right Λ-modules admits the subcategory ω :=
Flat(Λ)∩PInj(Λ) of flat and pure-injective modules as an Ext-injective cogenerator.
Hence Flat(Λ) ⊆ CM(ω). If, in addition, w.gl.dimΛ <∞, then by Proposition 4.6
we have a resolving cotorsion pair (Flat(Λ), ω̂) in Mod(Λ) with Flat(Λ) = CM(ω).
Note that left coherence of Λ forces Flat(Λ) to be covariantly finite [106]. Hence by
Corollary 3.11, ω is covariantly finite. However ω̂, hence ω, is not contravariantly
finite in general, see the example at the end of this section.

Example. Let C be an abelian category with enough projective and injective
objects, and let ω the full subcategory of projective-injective objects of C. Then C is
Frobenius if and only if any projective object of C has infinite dominant dimension
and there exists a cotorsion pair (Dom(ω), ω̂) in C. In this case C = Dom(C) =
CM(ω).

The above results are true in the more general situation in which C does not

necessarily have enough projectives and we don’t necessarily have X̂ = C. Indeed
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the following remark shows that it is possible to get a cotorsion pair in a smaller
piece of C and a torsion pair in a smaller piece of C/ω.

Remark 4.7. Let X be a full subcategory of C which is closed under extensions
and kernels of epimorphisms, and assume that X admits a cogenerator ω with
Extn(X , ω) = 0, ∀n ≥ 1. It follows by the results of [5] that (X , ω̂) is a resolving

cotorsion pair in X̂ with X ∩ ω̂ = ω, hence a resolving cotorsion pair in C if X̂ = C.
If in addition ω is an Ext-projective generator of X , then it follows easily that the

stable category X̂/ω is pretriangulated and then the pair (X/ω, ω̂/ω) is a torsion

pair in X̂/ω, hence a torsion pair in C/ω if in addition ω is functorially finite in C and

X̂ = C. In particular for any contravariantly finite self-orthogonal subcategory ω of

C, the pair (CM(ω), ω̂) is a cotorsion pair in ĈM(ω) and the pair (CM(ω)/ω, ω̂/ω)

is a torsion pair in ĈM(ω)/ω. For instance we can take ω = P to be the full
subcategory of projective objects of C. Then (CM(P),P<∞) is a cotorsion pair

in ĈM(P) with CM(P) ∩ P<∞ = P and (CM(P)/P,P<∞/P) is a torsion pair in

ĈM(P)/P.
Dual remarks hold for subcategories admitting an Ext-projective generator and

CoCohen-Macaulay objects.

The following is an example from homological group theory which illustrates
the above remark.

Example. Let G be a group and let k be a commutative ring of coefficients.
We denote by B = B(G, k) the set of functions G −→ k which take only finitely
many different values in k. Then G acts on B by multiplication and B is free as a
k-module. Let X be the full subcategory of Mod(kG) consisting of all kG-modules
M such that B ⊗k M is projective. The modules in X are known in the literature
as cofibrant modules, see [28] and the example before Definition VII.4.4 for an

explanation of the terminology. It is not difficult to see that X is resolving and X̂
consists of all kG-modules M such that B ⊗k M has finite projective dimension.
Let ω be the category of projective kG-modules, so ω̂ is the full subcategory of
all kG-modules of finite projective dimension. It is not difficult to see that ω is
an Ext-injective cogenerator of X , hence by the above remark, (X , ω̂) is cotorsion

pair in X̂ . We refer to [28] for details and more information. Note that if k has
finite global dimension, and the group G is of type FP∞, that is, the trivial G-
module k admits an exact resolution by finitely generated projective modules, and
belongs to the Kropholler’s class HF of hierarchically decomposable groups [40],

then X̂ = Mod(kG). Hence in this case (X , ω̂) is a cotorsion pair in Mod(kG).

The finiteness condition X̂ = C or Ỹ = C has some interesting consequences on
the level of derived categories, as we now explain.

Let (X/ω,Y/ω) be a torsion pair in C/ω arising from a cotorsion pair (X ,Y)
with ω = X∩Y functorially finite in C. Then X , Y and ω are closed under extensions
in C, hence they are exact subcategories of C in the sense of Quillen; obviously ω
carries the split exact structure since it is self-orthogonal. Let Db(X ), Db(Y) and
Db(ω) be the corresponding bounded derived categories, see [71] for the notion of
the derived category of an exact category. Then Db(ω) coincides with the bounded
homotopy category Hb(ω).
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Corollary 4.8. We have a commutative diagram of full exact embeddings:

Db(ω) −→ Db(Y)y y
Db(X ) −→ Db(C)

(1) If X̂ = C (equivalently Y ⊆ ω̂), then the above functors induce triangle

equivalences Db(X )
≈−→ Db(C) and Db(ω)

≈−→ Db(Y).

(2) If Ỹ = C (equivalently X ⊆ ω̃), then the above functors induce triangle

equivalences Db(Y)
≈−→ Db(C) and Db(ω)

≈−→ Db(X ).

Proof. We only prove (1) since (2) is dual. By the dual of Theorem 12.1
in [71] the induced functor Db(X ) −→ Db(C) is fully faithful, if any short exact
sequence 0 −→ A −→ B −→ X −→ 0 in C with X ∈ X can be embedded in an exact
commutative diagram

0 −−−−→ X ′ −−−−→ XB −−−−→ X −−−−→ 0y fB

y ∥∥∥
0 −−−−→ A −−−−→ B −−−−→ X −−−−→ 0

where X ′ and XB are in X . This holds by choosing fB to be a right X -approxima–

tion of B; then X ′ is in X since X is closed under kernels of epimorphisms. If X̂ = C
then the fully faithful functor Db(X ) −→ Db(C) is an equivalence by devissage. Since

X̂ = C implies that Y ⊆ ω̂, again by devissage the full embedding Db(ω) ↪→ Db(Y)
is an equivalence. �

It is not difficult to see that the above full exact embeddings induce short exact
sequences of triangulated categories

0 −→ Db(ω) −→ Db(X ) −→ Tr(X/ω) −→ 0

and
0 −→ Db(ω) −→ Db(Y) −→ Tl(Y/ω) −→ 0

where Tr(X/ω) is the stabilization of the right triangulated torsion class X/ω and
Tl(Y/ω) is the stabilization of the left triangulated torsion-free class Y/ω.

We close this section by pointing out some interesting examples of good or
cotorsion pairs in the category Mod(Λ) of all right Λ-modules, where Λ is any ring:

Example. (i) (⊥Y,Y), where Y is a covariantly finite coresolving sub-
category of Mod(Λ) consisting of pure-injective modules.

(ii) (X ,X⊥), where X is a contravariantly finite resolving subcategory of
Mod(Λ) closed under direct limits.

(iii) (⊥T, (⊥T )⊥), where T is a pure-injective module such that any projective
module is a submodule of a product of copies of T , e.g. T = Λ for a right
perfect ring Λ.

(iv) (⊥(T⊥), T⊥), where T is a finitely presented module with right perfect
endomorphism ring and such that Ext1

Λ(T, T ) = 0.
The above assertions follow from Lemma 3.3 and the following facts. Any

module admits a special right X -approximation, provided that X is a resolving
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contravariantly finite subcategory which is closed under filtered colimits [106]. And
any module admits a special left Y-approximation, provided that Y is a coresolving
subcategory which consists of pure-injective modules [78].

More generally by [45], if A ⊆ Mod(Λ) is any skeletally small subcategory, then(⊥(A⊥),A⊥
)

is a cotorsion pair in Mod(Λ). Dually
(⊥B, (⊥B)⊥

)
is a cotorsion

pair in Mod(Λ, provided that B consists of pure injective modules. The above
cotorsion pairs are (co)resolving, provided that, in addition, A is closed under
syzygies and B is closed under cosyzygies. By the recent solution of the Flat Cover
Conjecture by Bashir, Bican and Enochs [17], it follows that for any ring Λ, the
pair

(
Flat(Λ),Flat(Λ)⊥

)
is a resolving cotorsion pair in Mod(Λ). As we now explain

this example also shows that there exists a cotorsion pair (X ,Y) such that X ∩ Y
is not functorially finite, hence we cannot speak of a torsion pair in C/X ∩ Y.

Example. Consider the flat cotorsion pair
(
Flat(Λ),Flat(Λ)⊥

)
in Mod(Λ) and

assume that Λ is a left coherent and right IF-ring (that is any right injective module
is flat) which is not right Noetherian. Then it is not difficult to see that the
intersection ω = Flat(Λ) ∩ Flat(Λ)⊥ is precisely the category of injective right
modules, which is known to be contravariantly finite iff Λ is right Noetherian,
see [46]. Note that ω is covariantly finite since Λ is left coherent.

5. Tilting Modules

An important source of examples of good pairs for which the induced torsion or
torsion-free class is easily described emerges from cotilting or tilting modules over
an Artin algebra Λ. It is well-known that the category mod(Λ) of finitely generated
modules is a Krull-Schmidt category.

Let T be a finitely generated Λ-module with ExtiΛ(T, T ) = 0,∀i > 0. Recall
that T is a cotilting module if idΛT < ∞ and the injective cogenerator D(Λ) lies

in âdd(T ). Dually T is a tilting module if pdΛT <∞ and the projective generator

Λ lies in ãdd(T ). If ω is a self-orthogonal subcategory then we denote by Xω the
subcategory

Xω :=
{
C ∈ mod(Λ) | ExtiΛ(C,ω) = 0, ∀i > 0

}
.

The subcategory Yω is defined dually. If ω = add(T ), for a self-orthogonal module
T , then we use the notations XT and YT .

Note. We warn the reader that the above notation is not standard in the
literature. The subcategory above is denoted usually by ⊥ω. However in this paper
we reserved the last notation for the subcategory {C ∈ mod(Λ) | Ext1

Λ(C,ω) = 0}.

If T is a cotilting module, then XT ∩ âdd(T ) = add(T ), and (XT , âdd(T ))
is a good pair with XT resolving, hence a cotorsion pair since mod(Λ) is Krull-

Schmidt. Therefore
(
XT /add(T ), âdd(T )/add(T )

)
is a torsion pair in modT (Λ) :=

mod(Λ)/add(T ) which is pretriangulated, since add(T ) is always functorially finite
[13]. It is well-known that T is cotilting module iff add(T ) is a cogenerator for XT
and X̂T = mod(Λ) iff ĈM(T ) = mod(Λ), see [9]. We state explicitly the following
result which characterizes the cotilting modules in torsion theoretic terms, leaving
its dual concerning tilting modules to the reader.
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Proposition 5.1. Let Λ be an Artin algebra and let T be a finitely generated
Λ-module with ExtiΛ(T, T ) = 0,∀i > 0. Then the following are equivalent.

(i) T is a cotilting module.

(ii)
(
XT /add(T ), âdd(T )/add(T )

)
is a (hereditary) torsion pair in modT (Λ).

Proof. The implication (i)⇒ (ii) follows by the above considerations. (ii)⇒
(i) By induction we see easily that Ext1

Λ(X,Y ) = 0, ∀X ∈ XT ,∀Y ∈ âdd(T ). Then

Proposition 3.4 ensures that (XT , âdd(T )) is a cotorsion pair in mod(Λ). Therefore

X̂T = ĈM(T ) = mod(Λ) by Proposition 4.6. Hence T is a cotilting module. �

Now let T be a tilting and cotilting module. Then we have the torsion pairs:

(i) (X/add(T ),Y/add(T )) in modT (Λ), where X = XT and Y = âdd(T ).

(ii) (Z/add(T ),W/add(T )) in modT (Λ), where Z = ãdd(T ) and W = YT .

When Λ has finite global dimension, then by [9] we have X = Z and Y = W,
so that the torsion pairs coincide. When idΛT ≤ 1, then X is the torsion-free
class of a torsion pair (T ,X ) in mod(Λ), and when pdΛT ≤ 1, then Y is the
torsion class of a torsion pair (Y,F) in mod(Λ). We have the following close
relationship between the torsion pairs, a special case of which was observed by
Dlab and Ringel in connection with tilting modules associated to quasi-hereditary
algebras, see Theorem 4.3 in [42].

Proposition 5.2. With the above notation, if Λ has finite global dimension
and T is a classical tilting-cotilting module, then we have equivalences:

X/add(T )
≈−→ F and Y/add(T )

≈−→ T .

Proof. Let t : mod(Λ) −→ T be the right adjoint of the inclusion T ↪→ mod(Λ)
and let f : mod(Λ) −→ F be the left adjoint of the inclusion F ↪→ mod(Λ). Then for
any module C there exists a functorial exact sequence 0 −→ t(C) −→ C −→ f(C) −→ 0.
We consider the functor f : XT −→ F . Then f(T ) = 0, hence there is induced a
functor F : XT /add(T ) −→ F . Let F be a module in F and consider the right
XT−approximation sequence 0 −→ YF −→ XF −→ F −→ 0 of F . Then we know
that YF ∈ Y. Hence there exists an extension 0 −→ T1 −→ T0 −→ YF −→ 0 with
Ti ∈ add(T ). Applying to this sequence the functor (T,−) it follows easily that
Ext1

Λ(T, YF ) = 0, that is YF ∈ T . Hence t(XF ) = YF and then by definition
F(XF ) = F . Hence F is surjective on objects. If α : X1 −→ X2 is a morphism in
XT such that f(α) = 0, then obviously α factors through t(X2) ∈ Y. This implies
that α factors through add(T ), since (XT /add(T ),Y/add(T )) = 0. Hence α = 0
in XT /add(T ). Finally if β : F1 −→ F2 is a morphism in F , then the pull-back of
the extension 0 −→ YF2

−→ XF2
−→ F2 −→ 0 along the composition XF1

−→ F1 −→ F2,
splits since Ext1

Λ(XF1
, YF2

) = 0. This implies that the composition XF1
−→ F1 −→

F2 factors through XF2
−→ F2 say via a morphism α : XF1

−→ XF2
. Then by

construction F(α) = β. Hence F is full. We infer that F : XT /add(T ) −→ F is an
equivalence. The proof of the second equivalence is dual. �

The above example shows that it can happen that the torsion or torsion-free
class is an abelian category, or even a module category. Indeed, keep the above
assumptions and suppose in addition that the projective cover of T is injective.
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Then as in [42] one can show that the regular module Λ is a projective generator
of X/add(T ), hence we have an equivalence X/add(T ) ≈ mod(EndT (Λ)). More-
over D(Λ) is an injective cogenerator of W/add(T ), hence we have an equivalence(
W/add(T )

)op ≈−→ mod
(
EndT (D(Λ)

)
. It is also easy to see that the hearts of all

the torsion pairs in the above example are trivial.
The triviality of the hearts is a rather typical situation encountered, if the

pretriangulated category is not triangulated. However the following example shows
that the heart of a torsion pair in a stable non-triangulated category can be a
non-zero abelian category.

Example. Let Γ = k[x]/(x2), where k is a field and consider the Artin algebra

Λ =

(
Γ 0
Γ Γ

)
.

Then Λ is cotilting module of injective dimension 1. The indecomposable Λ-
modules fall into the following three groups, where we represent the Λ-modules
via Γ-morphisms, see [15].

(α) X = CM(Λ) = add
({

(Γ
=−→ Γ), (0 −→ Γ), (0 −→ k), (k

=−→ k), (k ↪→ Γ)
})

.

(β) Y = P<∞Λ = add
({

(Γ
=−→ Γ), (0 −→ Γ), (Γ −→ 0), (Γ

f−→ Γ)
})

, where f is

non-zero and non-invertible. Here P<∞Λ denotes the full subcategory of
modules with finite projective dimension.

(γ) U = add
({

(k −→ 0), (Γ
g−→ k)

})
, where g is non-zero.

Denote by Hl = X/PΛ ∩ Σ(Y/PΛ) the left heart of the induced torsion pair
(X/PΛ,Y/PΛ) in mod(Λ). It is not difficult to see that the only indecompos-
able object in Hl is given by (k ↪→ Γ) with stable endomorphism ring, the field k.
It follows that Hl is a non-zero abelian category. Observe that the right heart is
trivial. We don’t know if in general the left or right heart of a torsion pair in a
stable category is always zero or abelian.

We have seen that the right adjoint R of the inclusion of a torsion class tends
to be left exact. However R is not right exact in general. Indeed in the above
example, since HomΛ[(k −→ 0),Λ)] = 0, we have a sequence (k −→ 0) −→ 0 −→ 0 −→ 0,
which induces the right triangle (k −→ 0) −→ 0 −→ 0 −→ 0 in mod(Λ). The right
X -approximation of (k −→ 0) is (k ↪→ Γ), which is not projective. Since there is
no exact sequence (k ↪→ Γ) −→ P1 −→ P0 −→ 0, with P1, P0 projectives, by the
construction of R, we infer that R is not right exact.

Interesting examples of cotilting modules T occur for quasi-hereditary alge-
bras, where we have that XT is the category of good modules [96]. Other special
cases are T = Λ, where Λ is a Gorenstein Artin algebra or a commutative com-
plete local Gorenstein ring, and T = ω, where ω is a dualizing bimodule over a
Cohen-Macaulay Artin algebra or a commutative complete local Noetherian Cohen-
Macaulay ring. In all these cases XT = CM(T ) is the category of (maximal) Cohen-
Macaulay modules.

We can also speak more generally of ω being a cotilting subcategory of C,
meaning that ExtiΛ(ω, ω) = 0,∀i > 0, that there is some t ≥ 0 such that idΛT ≤ t,
for each T ∈ ω and each injective object of C lies in ω̂. This gives rise to similar
results which generalize easily to the infinite-dimensional case for any ring.



CHAPTER VI

Triangulated Torsion(-Free) Classes in Stable
Categories

In this chapter we study the natural question of when the torsion, resp. torsion-
free, class of a torsion pair in a stable pretriangulated category, is a triangulated
subcategory. This is especially interesting since it implies that the torsion pair
is hereditary, resp. cohereditary. We show that if the torsion pair is induced
by a cotorsion pair (X ,Y) in an abelian category with enough projectives, resp.
injectives, then the torsion class X/X ∩ Y, resp. the torsion-free class Y/X ∩ Y,
is triangulated if and only if X ∩ Y coincides with the projectives, resp. injectives.
Usually such situations arise from cotorsion triples (X ,Y,Z) in an abelian category,
that is, (X ,Y) and (Y,Z) are cotorsion pairs. Cotorsion triples are the abelian
analogues of TTF-triples in an triangulated category and are studied in the third
section. We also give applications to finitely generated modules over an Artin
algebra. In this case the notions of good pair (triple) and cotorsion pair (triple)
coincide. We would like to stress that in this working setting our results have
again strong connections with tilting theory and lead to various torsion-theoretic
characterizations of Gorenstein algebras.

1. Triangulated Subcategories

In this section we state and prove some general results on triangulated subcat-
egories of a stable category of an abelian category C, which will be useful in the
later sections in connection with (co)torsion pairs and Cohen-Macaulay objects.

We begin with the following observation.

Lemma 1.1. Let X be a full subcategory of C, closed under kernels of epics,
and let ω ⊆ X be a full subcategory.

(α) If ω is an Ext-injective cogenerator of X , then the stable category X/ω is
right triangulated.

(β) If ω is contravariantly finite in X and any ω-epic in X is epic, e.g. if ω is
an Ext-projective generator of X , then the stable category X/ω is left triangulated.

(γ) If ω is contravariantly finite in X and an Ext-injective cogenerator for X ,
and if any ω-epic in X is epic, then the stable category X/ω is pretriangulated.

Proof. (α) Obviously ω is covariantly finite in X . To show that X/ω is right

triangulated it suffices by [19] to show that C is in X whenever X1
f−→ X2

g−→ C −→ 0
is exact in C where X1, X2 ∈ X and f is ω-monic. Since X1 is embedded in an
object in ω, it follows that f is monic. Since ω is a cogenerator for X and X2 is

in X , there exists an exact sequence 0 −→ X2
κ−→ ω0

λ−→ X3 −→ 0, where ω0 ∈ ω and

102
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X3 ∈ X . Consider the following exact commutative diagram

0 −−−−→ X1
f−−−−→ X2

g−−−−→ C −−−−→ 0∥∥∥ κ

y α

y
0 −−−−→ X1

h−−−−→ ω0
ε−−−−→ D −−−−→ 0

Then κ induces an isomorphism Coker(κ) ∼= Coker(α) ∼= X3. We claim that h
is ω-monic. Indeed let φ : X1 −→ T be a morphism with T ∈ ω. Since f is ω-monic,
there exists τ : X2 −→ T such that f ◦ τ = φ. Since Coker(κ) ∈ X and ω consists
of Ext-injectives in X , it follows that κ is ω-monic. Hence there exists σ : ω0 −→ T
such that κ ◦ σ = τ . Then h ◦ σ = f ◦ κ ◦ σ = f ◦ τ = φ. Hence φ factors through h
and then h is ω-monic, i.e. a left ω-approximation of X1. Since ω is an Ext-injective

cogenerator of X , there exists an exact sequence 0 −→ X1
ζ−→ ω′0

η−→ X −→ 0 with
ω′0 ∈ ω and X ∈ X . Then obviously ζ is a left ω-approximation of X1. Since h, ζ
are both left ω-approximations of X1, standard arguments show that in the stable
category C/ω we have an isomorphism D ∼= X and then D ∈ X , since X ∈ X . Since
Coker(κ) and D are in X and X is closed under kernels of epics, we have C ∈ X .

(β) Since any ω-epic in X is epic and X is closed under kernels of epics, we
have that any ω-epic in X has a kernel in X . Then by [19], the stable category
X/ω is left triangulated. Part (γ) follows easily from (α) and (β). �

If (X ,Y) is a cotorsion pair in C then we know that ω = X ∩ Y is an Ext-
injective cogenerator of X and, by Lemma 1.1, the stable category X/ω is right
triangulated. Therefore it is natural to ask when, for a subcategory X endowed
with an Ext-injective cogenerator ω, the stable category X/ω is triangulated. In this
connection we have the following result which gives a useful criterion for deciding
when such a stable category is triangulated.

Proposition 1.2. Let X be a full subcategory of C closed under extensions and
kernels of epics, and let ω be an Ext-injective cogenerator for X . Then the stable
category X/ω is triangulated iff ω is an Ext-projective generator for X .

Proof. If ω is an Ext-projective generator for X , then obviously ω is con-
travariantly finite in X and any ω-epic in X is epic. Then by the above lemma,
we have that X/ω is pretriangulated. Let 0 −→ X −→ T −→ X ′ −→ 0 be exact with
T ∈ ω and X,X ′ ∈ X . Since ω is Ext-injective in X , we have that Σ(X) = X ′

in X/ω. Since ω is Ext-projective in X , we have that ΩΣ(X) = Ω(X ′) = X. It
follows that the canonical morphism IdX/ω −→ ΩΣ is invertible. Dually the canon-
ical morphism ΣΩ −→ IdX/ω is invertible. Hence X/ω is triangulated. Conversely
if X/ω is a triangulated subcategory of C/ω, then Σ|X/ω is surjective on objects,

so for any object X ∈ X , there exists a right exact sequence X ′
β−→ T

α−→ X −→ 0
such that β is ω-monic and T ∈ ω. Since ω is a cogenerator of X , β is monic, so
ω is a generator of X . It remains to show that the objects of ω are Ext-projective

in X . Let 0 −→ X
f−→ A

g−→ T −→ 0 be an extension with X ∈ X and T ∈ ω. Then
A is in X since the latter is closed under extensions. Since T is Ext-injective in X ,

the above extension induces a triangle X
f
−→ A −→ 0 −→ Σ(X) in X/ω. Since the
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latter is triangulated we have that f : X −→ A is invertible. Hence there exists a
morphism h : A −→ X such that the endomorphism 1X − f ◦h of X factors through
an object T ′ in ω, i.e. 1X − f ◦ h = κ ◦ λ, where κ : X −→ T ′ and λ : T ′ −→ X.
Since T ′ ∈ ω and the objects of ω are Ext-injective in X , the morphism κ factors
through f . Hence there exists a morphism ρ : A −→ T ′ such that κ = f ◦ ρ. Then
1X = f ◦h+κ ◦λ = f ◦h+ f ◦ ρ ◦λ = f ◦ (h+ ρ ◦λ). We infer that f is split monic
and then T is Ext-projective. Hence the objects of ω are Ext-projective in X . �

For instance if X is a resolving subcategory of an abelian category C with
enough projectives, and the full subcategory ω of projective objects of C form an
Ext-injective cogenerator of X , then the stable category X/ω is triangulated.

Example. The full subcategory X of Mod(kG) of cofibrant modules in the ex-
ample after Remark V.4.7, satisfies the assumptions of the above Proposition, where
ω is the full subcategory of projective kG-modules. Hence X/ω is triangulated.

We leave to the reader the dualization of the above result.

2. Triangulated Torsion(-Free) Classes

Throughout this section we fix an abelian category C with enough projective
objects. As usual we denote by P the full subcategory of C consisting of the projec-
tive objects. The full subcategory of C consisting of all objects with finite projective
dimension is denoted by P<∞. When ω is a functorially finite subcategory of C,
we investigate when a torsion class in the stable pretriangulated category C/ω is
triangulated. We show that this happens if and only if ω coincides with the pro-
jectives. In this case the torsion class is related to Cohen-Macaulay objects. This
connection will be useful in the last section when discussing Gorenstein algebras,
which provide a natural source for the existence of nicely behaved (co)torsion pairs.

An important class of triangulated subcategories of the stable category C/P
emerges from Cohen-Macaulay objects. Let CM(P) be the full subcategory of
Cohen-Macaulay objects in C with respect to P. Since P is an Ext-projective
generator and an Ext-injective cogenerator of CM(P), by Proposition 1.2 the stable
category CM(P)/P modulo projectives is a triangulated subcategory of C/P.

The next result shows that the example of Cohen-Macaulay objects is universal
in the sense that any triangulated torsion class induced by a cotorsion pair consists
of Cohen-Macaulay objects. First note that if (X ,Y) is a cotorsion pair in C then
the subcategories X and Y are closed under extensions in C. Hence X and Y are
exact subcategories of C. The admissible exact sequences in X , resp. Y, are the
sequences in X , resp. Y, which are exact in C. Observe that if X is resolving,
equivalently Y is coresolving, then any epimorphism in X is admissible and any
monomorphism in Y is admissible.

Theorem 2.1. Let (X ,Y) be a resolving cotorsion pair in C and assume that
ω := X ∩ Y is functorially finite. Then the following are equivalent:

(i) The torsion class X/ω is triangulated.
(ii) The exact subcategory X of C is Frobenius.

(iii) ω = P.
(iv) Y is resolving.
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If ω = P, then P is functorially finite, X ⊆ CM(P) and P<∞ ⊆ Y, the coreflection
functor R : C/ω −→ X/ω is left exact and the torsion pair (X/ω,Y/ω) is hereditary.

Conversely if P is functorially finite in C and (X/P,Y/P) is a hereditary tor-
sion pair in C/P with X ⊆ CM(P), then (X ,Y) is a resolving cotorsion pair in C
with X ∩ Y = P.

Proof. (i)⇒ ii) Assume that the torsion class X/ω is a triangulated subcate-
gory of C/ω. By Proposition V.1.3, ω is an Ext-injective cogenerator of X . Hence for
any objectX in X , there exists an admissible exact sequence 0 −→ X −→ T −→ X ′ −→ 0
in X with T ∈ ω. Since the objects of ω are Ext-injective in X , we infer that the
exact category X has enough injectives and the full subcategory of injective ob-
jects of X coincides with ω. By Proposition 1.2, ω is an Ext-projective generator
of X . Hence for any object X in X , there exists an admissible exact sequence
0 −→ X ′ −→ T −→ X −→ 0 in X with T in ω. Since the objects of ω are Ext-
projective in X , we infer that the exact category X has enough projectives and the
full subcategory of projective objects of X coincides with ω. We conclude that X
is Frobenius.

(ii) ⇒ (iii) Since X contains the projectives, it follows directly that P ⊆ ω.
Let T be in ω, and consider the exact sequence 0 −→ Ω(T ) −→ P −→ T −→ 0 in C
with P projective. Since X is resolving, we have that Ω(T ) lies in X . Since any
epimorphism in X is admissible, the above sequence is admissible in X . Since T is
projective in X , the sequence splits, so T is projective. We conclude that ω = P.

(iii) ⇒ (iv) Since ω = P, the subcategory Y contains the projectives. Let
0 −→ C −→ Y1 −→ Y2 −→ 0 be an exact sequence with Y1, Y2 ∈ Y. Since ω = P is a
generator of Y and C/P is left triangulated, we have a left triangle Ω(Y 2) −→ C −→
Y 1 −→ Y 2 in C/P with Ω(Y 2) ∈ Y/P. Applying C/P(X,−), with X ∈ X , to this tri-
angle, we have an exact sequence: C/P(X,Ω(Y 2)) −→ C/P(X,C) −→ C/P(X,Y 1) −→
C/P(X,Y 2), which implies that C/P(X,C) = 0. Hence C ∈ (X/P)⊥ = Y/P, that
is, C lies in Y. Therefore Y is closed under kernels of epimorphisms. Since Y is
closed under extensions and contains the projectives, we infer that Y is resolving.

(iv) ⇒ (i) Since Y contains the projectives, we have P ⊆ ω. Let T be in ω
and let 0 −→ Ω(T ) −→ P −→ T −→ 0 be exact with P projective. Since X and Y are
resolving, we have that Ω(T ) lies in ω. This implies that the sequence splits. Hence
T is projective. It follows that P = ω, and then obviously ω is an Ext-projective
generator of X . By Proposition 1.2 we conclude that X/ω is triangulated.

Assume now that condition (i) holds. Since X is resolving and P is an Ext-
injective cogenerator of X , it follows from Section V.4 that X ⊆ CM(P). Since Y is
coresolving and contains P, it follows easily that P<∞ ⊆ Y. It remains to show that
the torsion pair (X/P,Y/P) in C/P is hereditary. Since X is resolving and ω = P
it is easy to check that the inclusion i : X/P ↪→ C/P is left exact. By Proposition
3.6 of [9], any exact sequence 0 −→ A −→ B −→ C −→ 0 in C induces an exact sequence
0 −→ XA −→ XB −→ XC −→ 0 in X where XA, XB , XC are right X -approximations
of A,B,C. The last short exact sequence induces a triangle ΩR(C) −→ R(A) −→
R(B) −→ R(C) in X/P. If B is projective then the above triangle induces an

isomorphism ΩR(C)
∼=−→ RΩ(C) ∼= R(A). These facts imply that the coreflection

functor R : C/P −→ X/P is left exact. It follows that the idempotent functor
iR : C/P −→ C/P is left exact, so that the torsion pair (X/P,Y/P) is hereditary.
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The last assertion follows from Theorem V.3.4. �

Remark 2.2. (1) If the abelian category C admits a resolving cotorsion pair
(X ,Y) with X ∩Y functorially finite and such that the torsion class X/ω is triangu-
lated, then, by Theorem 2.1, the category P of projective objects of C is functorially
finite. This puts some restrictions on C. For instance if the category Mod(Λ) of
right Λ-modules over a ring Λ admits such a cotorsion pair, then Λ is left coherent
and right perfect. This follows from the fact that Λ is left coherent and right perfect
iff the category of projective right Λ-modules is functorially finite.

(2) The above theorem implies that if C has finite global dimension, then Y = C
and X = P. Hence for abelian categories of finite global dimension, the only
triangulated torsion class induced by a cotorsion pair is the zero subcategory.

The next result describes some important consequences of the existence of a
resolving cotorsion pair (X ,Y) in C with X ∩Y consisting of the projectives, which
will be useful in Chapter X in connection with Cohen-Macaulay objects.

Proposition 2.3. Let (X ,Y) be a resolving cotorsion pair in C with X∩Y = P.
Then we have the following.

(i) C ∈ X̂ if and only if YC ∈ P<∞, where YC is the kernel of a special right
X -approximation of C.

(ii) P<∞ = Y ∩ X̂ and I<∞ ⊆ Y.

(iii) X̂ = C iff Y = P<∞.

(iv) If X̂ = C, then X = CM(P) and I<∞ ⊆ P<∞ = Y.

Proof. (i) Since X contains the projectives it follows that P<∞ = P̂ ⊆ X̂ .
Assume now that C has a finite exact resolution 0 −→ Xn+1 −→ Xn −→ · · · −→ X1 −→
X0

α−→ C −→ 0 by objects from X . If n = 0, then consider the pull-back diagram

0 −−−−→ YC −−−−→ A −−−−→ X0 −−−−→ 0∥∥∥ y α

y
0 −−−−→ YC

gC−−−−→ XC
fC−−−−→ C −−−−→ 0

of the special right X -approximation sequence of C along α. Since X0 is in X , α
factors through fC and this implies that A ∼= YC⊕X0. But from the above diagram
it follows that A is in X since the kernel of α is X1 ∈ X and X is closed under
extensions. We infer that YC ∈ X ∩ Y = P. By induction on the length n + 1 of
the resolution of C by objects from X , we deduce easily that pdYC ≤ n. Hence YC
has finite projective dimension.

(ii), (iii) If C is in P<∞, then, by Theorem 2.1, we have that C is in Y. Since

X contains the projectives, we have P̂ = P<∞ ⊆ X̂ . Hence C lies in Y ∩ X̂ .

Conversely if C lies in Y ∩ X̂ , then by (i) we have that YC ∈ P<∞. However since
C is in Y, the right X -approximation of C is projective, hence YC = Ω(C). We
infer that C has finite projective dimension. It remains to show that I<∞ ⊆ Y.
This follows trivially from the fact that Y contains the injectives and, according to
Theorem 2.1, Y is resolving. Part (iii) follows directly from (i) and (ii).

(iv) By (iii) we have Y = P<∞. Let C be in CM(P) and let 0 −→ YC −→ XC −→
C −→ 0 be a special right X -approximation of C. Then by (i) we have that YC lies
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in P<∞. Since trivially Ext1(X,Y ) = 0 for X ∈ CM(P) and Y ∈ P<∞, the above
sequence splits. Hence C ∈ X and then CM(P) ⊆ X . Finally by Theorem 2.1 we
have X = CM(P), and by (ii) we have I<∞ ⊆ P<∞. �

The following consequence of Theorem 2.1 describes when both the torsion and
the torsion-free class are triangulated.

Corollary 2.4. Let C be an abelian category with enough projective and in-
jective objects. Let (X ,Y) be a resolving cotorsion pair in C with ω = X ∩ Y
functorially finite. Then the following are equivalent:

(i) The torsion class X/ω and the torsion-free class Y/ω are triangulated.
(ii) X is coresolving and Y is resolving.

(iii) C is Frobenius and ω = P = I.

Proof. If (i) holds, then by Theorem 2.1 and its dual we have that X is
coresolving and Y is resolving, and P = ω = I. Hence (i) implies (ii) and (iii), and
by Theorem 2.1 (ii) implies (i). Finally if (iii) holds, then C/P is triangulated. Since
X is resolving, X/P is closed under Ω, and this implies that X/P is a triangulated
subcategory of C/P. Since Y/P = (X/P)⊥, the same is true for Y/P. �

Actually in the Frobenius case we have a bijection between resolving cotorsion
pairs and hereditary torsion pairs.

Proposition 2.5. Let C be a Frobenius category and let X and Y be full sub-
categories of C. Then the following are equivalent:

(i) (X ,Y) is a (co-)resolving cotorsion pair in C with X ∩ Y = P.
(ii) (X/P,Y/P) is a (co-)hereditary torsion pair in C/P.

(iii) C/P(X ,Y) = 0, X/P and Y/P are triangulated subcategories of C/P and
the latter is generated by X/P and Y/P.

The map (X ,Y) 7→ (X/P,Y/P) gives a bijection between resolving cotorsion pairs
in C with X ∩ Y = P and hereditary torsion pairs in C/P.

Proof. The implication (i) ⇒ (ii) follows from Corollary 2.4 and the equiv-
alence (ii) ⇒ (iii) follows from Proposition I.1.9. (ii) ⇒ (i) By Corollary V.2.9 it
suffices to show that Ext1(X ,Y) = 0. Since C is Frobenius, for any X ∈ X and
Y ∈ Y we have Ext1(X,Y ) ∼= C/P(Ω(X), Y ) ∼= C/P(X,Σ(Y )). Since X is closed
under Ω we infer that Ext1(X ,Y) = 0. �

If (X ,Y) is a cotorsion pair with X resolving such that the torsion class X/ω
is triangulated, then by Theorem 2.1 we know that ω = P is functorially finite and
the coreflection functor R : C/P −→ X/P is a left exact functor of pretriangulated
categories. It is natural to ask if this functor is the universal left exact functor out
of C/P to triangulated categories. In this connection we have the following result,
which gives a nice description of the coreflection functor. Its dual is left to the
reader.

Proposition 2.6. Let (X ,Y) be a resolving cotorsion pair in C with ω = X ∩Y
functorially finite. If the torsion class X/ω in C/P is triangulated (hence ω = P),
then the following are equivalent.
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(i) The coreflection functor R : C/P −→ X/P is the universal left exact
functor out of C/P to triangulated categories, i.e. the torsion class X/P
is the left stabilization of C/P.

(ii) X̂ = C.
(iii) Y = P<∞.

If (i) holds, then X = CM(P) and the coreflection functor R : C/P −→ CM(P)/P
is given by R(C) = Ω−dΩd(C), where d ≥ 0 is such that Ωd(C) ∈ CM(P).

Proof. (i)⇒ (ii) By Proposition II.5.2 we have that for any module C there

exists n ≥ 0 such that Ωn(C) ∈ X/P. This implies that X̂ = C. (ii)⇒ (iii) Follows
from Proposition 2.3. (iii)⇒ (i) Follows from Proposition II.5.2. If (i) holds, then
the description of R follows from [20]. �

3. Cotorsion Triples

In analogy with the concept of a TTF-triple in an abelian or triangulated
category we introduce and investigate the concept of a good or cotorsion triple in
this section. We give necessary and sufficient conditions for the existence of a good
or cotorsion triple, and we show that any such triple induces two torsion pairs in
two different stable pretriangulated categories. In addition the torsion class of the
first and the torsion-free class of the second are triangulated and they are triangle
equivalent.

Following the way we defined torsion triples in abelian and (pre)triangulated
categories with respect to the vanishing of Hom, it is suggestive to use the concept
of a cotorsion triple, which can be thought of as a reasonable definition of a torsion
triple in C with respect to the vanishing of Ext1.

Definition 3.1. A triple (X ,Y,Z) of subcategories of C is called a good, resp.
cotorsion, triple, if (X ,Y) and (Y,Z) are good, resp. cotorsion, pairs.

Note that if C is Krull-Schmidt, for example the category mod(Λ) of finitely
generated modules over an Artin algebra Λ, then the notions of good triple and
cotorsion triple coincide, since the notions of good pair and cotorsion pair coincide.

The following is an obvious example of a cotorsion triple.

Example. Let C be an abelian category with enough projective and injective
objects. Then (P, C, I) is a cotorsion triple in C.

However the primary motivating example of a cotorsion triple is the following.

Example. Let Λ be an Artin algebra. If Λ is Gorenstein, then by Propositions
V.5.1, V.4.6 and their duals it follows that P<∞Λ = I<∞Λ is a functorially finite
resolving and coresolving subcategory of mod(Λ) and we have good (cotorsion)
pairs (CM(Λ),P<∞Λ ) and (I<∞Λ ,CoCM(D(Λ))). Hence(

CM(Λ), P<∞Λ = I<∞Λ , CoCM(D(Λ))
)

is a good (cotorsion) triple in mod(Λ). Moreover CM(Λ) ∩ P<∞Λ = PΛ and I<∞Λ ∩
CoCM(D(Λ)) = IΛ, and we have a hereditary torsion pair (CM(Λ)/PΛ,P<∞Λ /PΛ)
in mod(Λ) where the torsion class CM(Λ)/PΛ is triangulated, and a cohereditary
torsion pair (I<∞Λ /IΛ,CoCM(D(Λ))/IΛ) in mod(Λ) where the torsion-free class
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CoCM(D(Λ))/IΛ is triangulated. Finally by [11] it follows that the Nakayama
functor N+ = − ⊗Λ D(Λ) : mod(Λ) −→ mod(Λ) induces a triangle equivalence

CM(Λ)/PΛ
≈−→ CoCM(D(Λ))/IΛ with quasi-inverse induced by the Nakayama func-

tor N− = HomΛ(D(Λ),−) : mod(Λ) −→ mod(Λ).

The following main result of this section generalizes the above observations
and gives a method for constructing triangulated torsion(-free) classes in a stable
category.

Theorem 3.2. Let C be an abelian category with enough projective and injective
objects and assume that P is covariantly finite and I is contravariantly finite. For
a full subcategory Y of C, consider the following statements.

(i) Y is a functorially finite resolving and coresolving subcategory of C.
(ii) Y is a resolving and coresolving subcategory of C and any object of C ad-

mits a special right Y-approximation and a special left Y-approximation.
(iii) There exists a cotorsion triple (X ,Y,Z) in C with Y (co)resolving.
(iv) There is a hereditary torsion pair (X/P,Y/P) in C/P with X/P tri-

angulated and a cohereditary torsion pair (Y/I,Z/I) in C/I with Z/I
triangulated.

Then (ii) ⇔ (iii) ⇔ (iv) ⇒ (i); if C is Krull-Schmidt then all statements are
equivalent. If (iii) holds, then there is a triangle equivalence

Φ : X/P ≈−→ Z/I.

Proof. Obviously (ii) implies (i), and, by Lemma V.3.3, (ii) implies (iii). If C
is Krull-Schmidt, then that (i) implies (ii) follows from Theorem V.2.2.

(iii)⇒ (ii), (iv) Consider the cotorsion triple (X ,Y,Z) in C. Then obviously Y
is functorially finite. We assume first that Y is coresolving, hence, by Proposition
V.2.3, X is resolving. We show that P = X ∩Y. Obviously P ⊆ X ∩Y. If T ∈ X ∩Y
and (1) : 0 −→ K −→ P −→ T −→ 0 is exact with P projective, the from the long exact
sequence 0 −→ C(T,Z) −→ C(P,Z) −→ C(K,Z) −→ Ext1(T,Z) −→ · · · and the fact that
X is resolving, we infer that Ext1(K,Z) = 0, hence K lies in Y. Since also X ∈ X
we have that K ∈ X ∩Y. Then the sequence (1) splits since X ∩Y is self-orthogonal.
Hence K is projective and we conclude that P = X ∩ Y. Then by Proposition 2.3
we have that Y is resolving, and by Theorem 2.1 we have a hereditary torsion pair
(X/P,Y/P) in C/P where the torsion class X/P is is triangulated. Dual arguments
as above show that Y ∩Z = I and we have a cohereditary torsion pair (Y/I,Z/I)
in C/I where the torsion-free class Z/I is triangulated.

(iv) ⇒ (iii) By Corollary V.2.9 it suffices to show that Ext1(X ,Y) = 0 =
Ext1(Y,Z). Since X/P and Z/I are triangulated subcategories of C/P and C/I
respectively, we have isomorphisms: Ext1(X,C)

∼=−→ C/P(Ω(X), C) and Ext1(C,Z)
∼=−→ C/I(C,Σ(Z)), for any C ∈ C, for any X ∈ X and for any Z ∈ Z. Since
(X/P,Y/P) = 0 = (Y/I,Z/I) and since, by Proposition V.2.5, X is resolving and
Z is coresolving, these isomorphisms show that Ext1(X ,Y) = 0 = Ext1(Y,Z). We
conclude that (X ,Y,Z) is a cotorsion triple in C with Y (co)resolving.

Now if (iii) holds then the last assertion follows from [11]. For completeness
we include the argument for the existence of an equivalence Φ : X/P −→ Z/I and
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we show in addition that Φ is exact. If X ∈ X , let 0 −→ ZX
gX−−→ YX

fX−−→ X −→ 0
be a special right Y-approximation sequence of X. We set Φ(X) = ZX which lies
in Z/I since ZX lies in Y⊥ = Z. Using that (Y/I,Z/I) = 0, it is easy to see

that Φ is a well defined additive functor. Dually for any Z ∈ Z, let 0 −→ Z
gZ−−→

Y Z
fZ

−−→ XZ −→ 0 be a special left Y-approximation sequence of Z. As above we
have that XZ ∈ ⊥Y = X . Setting Ψ(Z) = XZ and using that (X/P,Y/P) = 0,
it is easy to see that we obtain a well defined additive functor Ψ : Z/I −→ X/P.

Since Ext1(X ,Y) = 0, it follows that 0 −→ ZX
gX−−→ YX

fX−−→ X −→ 0 is a special left

Y-approximation sequence of ZX . Hence X ∼= XZX in X/P, i.e. X ∼= ΨΦ(X).
Dually Z ∼= ΦΨ(Z), ∀Z ∈ Z. Hence Φ,Ψ are mutually inverse equivalences.

Finally we show that Φ is exact. Let X be in X and let 0 −→ Ω(X) −→ P −→
X −→ 0 be an exact sequence with P projective. Let 0 −→ ZΩ(X) −→ YΩ(X) −→
Ω(X) −→ 0 be a special right Y-approximation sequence of Ω(X). Then in Z/I we
have ΦΩ(X) = ZΩ(X). Let 0 −→ ZΩ(X) −→ I −→ Σ(ZΩ(X)) −→ 0 be an exact sequence
with I injective. The above exact sequences can be embedded in the following exact
commutative diagram of short exact sequences:

0 −−−−→ ZΩ(X) −−−−→ YΩX
−−−−→ Ω(X) −−−−→ 0y y y

0 −−−−→ I −−−−→ I ⊕ P −−−−→ P −−−−→ 0y y y
0 −−−−→ Σ(ZΩ(X)) −−−−→ Ỹ −−−−→ X −−−−→ 0

Since Y is coresolving and contains the projectives, we have that Ỹ is in Y. Since
Σ(ZΩ(X)) is in Z and Ext1(Y,Z) = 0, it follows that the lower exact sequence is
a special right Y-approximation sequence of X. It follows that in Z/I we have
Σ(ZΩ(X))

∼= ZX , and then ΣΦΩ(X) ∼= Φ(X), or equivalently ΦΩ(X) ∼= Σ−1Φ(X).

It is easy to see that this induces a natural isomorphism ζ : ΦΩ
∼=−→ Σ−1Φ, so

that Φ commutes with the loop functors Ω, Σ−1. It remains to show that Φ sends
triangles in X/P to triangles in Z/I. Let 0 −→ X1 −→ X2 −→ X3 −→ 0 be an
exact sequence in C with the Xi in X . Then by [9], there exists a short exact
sequence 0 −→ ZX1

−→ Z −→ ZX3
−→ 0 where Z ∈ Z is such that Z ∼= ZX2

in
Z/I. Hence Φ(X2) ∼= Z and then using the isomorphism ζ we have a triangle
Σ−1Φ(X3) −→ Φ(X1) −→ Φ(X2) −→ Φ(X3) in Z/I. Hence Φ is exact. �

Note. The assumption that P is covariantly finite and I is contravariantly
finite in Theorem 3.2 and all the remaining results of this section, is only needed
to ensure that the stable categories C/P and C/I are pretriangulated, so that the
pairs (X/P,Y/P) and (Y/I,Z/I) are torsion pairs.

If (X ,Y,Z) is a cotorsion triple in C with Y (co)resolving, then, by Proposition
2.3, we have P<∞ ⊆ Y ⊇ I<∞. The following consequence of Proposition 2.6 and
its dual, and Theorem 3.2, describes when we have equalities.
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Corollary 3.3. Let C be an abelian category with enough projective and injec-
tive objects and assume that P is covariantly finite and I is contravariantly finite.
If (X ,Y,Z) is a cotorsion triple in C with Y (co)resolving, then the following are
equivalent.

(i) The torsion class X/P is the left stabilizaton of C/P and the torsion-free
class Z/I is the right stabilization of C/I.

(ii) X̂ = C = Z̃.
(iii) P<∞ = Y = I<∞.

In (i) holds, then X = CM(P) and Z = CoCM(I).

We have seen that if C has enough projective and injective objects, then (P, C, I)
is a cotorsion triple in C. If C is Frobenius, then (C,P, C) also is a cotorsion triple in
C. Motivated by this example we say that a quadruple (X ,Y,Z,W) of subcategories
is a cotorsion quadruple in C, if (X ,Y,Z) and (Y,Z,W) are cotorsion triples. Hence
in the Frobenius case we have cotorsion quadruples (P, C,P, C) and (C,P, C,P) in C.
Conversely the existence of a cotorsion quadruple in C implies that C is Frobenius:

Remark 3.4. Let (X ,Y,Z,W) be a cotorsion quadruple in C such that one of
the involved subcategories is resolving or coresolving. Then by Theorem 3.2 we have
Y ∩ Z = P = I. Hence C is Frobenius and we have TTF-triples (X/P,Y/P,Z/P)
and (Y/P,Z/P,W/P) in the triangulated stable category C/P. In particular there

exist triangle equivalences: X/P ≈−→ Z/P and Y/P ≈−→W/P.

If Y is a resolving and coresolving subcategory of C, then by Theorem 3.2,
Y/P is a left triangulated subcategory of C/P and Y/I is a right triangulated
subcategory of C/I. Hence we can form the left triangulated quotient C/P�Y/P
and the right triangulated quotient C/I�Y/I. We recall that C/P�Y/P is the
localization of C/P at the class LY of morphisms f : A −→ B for which there

exists a left triangle Ω(B) −→ Y −→ A
f
−→ B with Y in Y, that is C/P�Y/P is

obtained by formally inverting the class of morphisms LY [50]. Dually C/I�Y/I
is a localization of C/I at the class RY of morphisms f : A −→ B for which there

exists a right triangle A
f
−→ B −→ Y −→ Σ(A) with Y in Y. The following result

describes the above quotients and can be regarded as an analogue of Corollary I.2.9.

Theorem 3.5. Let C be an abelian category with enough projective and injective
objects and assume that P is covariantly finite and I is contravariantly finite. Let
(X ,Y,Z) be a cotorsion triple in C with Y (co)resolving, and consider the hereditary
torsion pair (X/P,Y/P) in C/P and the cohereditary torsion pair (Y/I,Z/I) in
C/I. Then there are triangle equivalences:

C/P�Y/P ≈−→ X/P and C/I�Y/I ≈−→ Z/I.
In particular the localized categories C/P�Y/P and C/I�Y/I are triangulated and

there is a triangle equivalence C/P�Y/P ≈−→ C/I�Y/I.

Proof. By Theorem 3.2 we have that X/P is triangulated, in particular
Σ(X/PΛ) = X/P where Σ is the left adjoint of Ω in C/P, and Z/I is triangu-
lated, in particular Ω(Z/I) = Z/I where Ω is the right adjoint of Σ in C/I. Then
the result is a consequence of Proposition II.4.1 and Theorem 3.2. �
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We have the following application to stable Grothendieck groups, which follows
from Corollaries II.5.7 and II.5.8.

Corollary 3.6. Let (X ,Y,Z) be a cotorsion triple in C with Y (co)resolving.
Then we have isomorphisms:

K0(C/P) ∼= K0(X/P)⊕K0(Y/P) and K0(C/I) ∼= K0(Y/I)⊕K0(Z/I).

If Y ⊆ P<∞ ∩ I<∞, they reduce to isomorphisms: K0(Y/P) = 0 = K0(Y/I) and

K0(C/P)
∼=−→ K0(X/P)

∼=−→ K0(Z/I)
∼=←− K0(C/I).

4. Applications to Gorenstein Artin Algebras

Let Λ be an Artin algebra. In this section we study torsion pairs in the
stable module category mod(Λ) or mod(Λ), such that the torsion or torsion-free
class is triangulated, concentrating on specific features of Artin algebras related to
Auslander-Reiten theory and tilting. For instance there are interesting connections
with tilting theory where the cotilting module is projective or the tilting module
is injective. The existence of such (co)tilting modules characterizes the important
class of Gorenstein algebras. We recall that an Artin algebra Λ is Gorenstein, if Λ
has finite injective dimension both as a left and right Λ-module, equivalently Λ is
a cotilting module. We stress that Gorenstein algebras form an important class of
Artin algebras since they provide a common generalization of self-injective algebras
and algebras of finite global dimension. As another example which is important in
representation theory we mention that any gentle algebra is Gorenstein [52].

We begin with the following result which characterizes the cotilting modules
which are projective in torsion theoretic terms and gives a connection with Goren-
stein algebras. Its dual is left to the reader.

Proposition 4.1. For a Λ-module T the following are equivalent.

(i) T is a cotilting module and the torsion class CM(T )/add(T ) is a trian-
gulated subcategory of modT (Λ).

(ii) T is cotilting projective module.
(iii) T is a projective generator and Λ is a Gorenstein algebra.

Proof. (i) ⇒ (ii) By Theorem 2.1 we have that add(T ) = PΛ, so T is pro-
jective. (ii) ⇒ (iii) Since T is cotilting, T and Λ have the same number of non-
isomorphic indecomposable summands. Hence T is a projective generator and then
obviously Λ is a cotilting module, and consequently Λ is Gorenstein. (iii) ⇒ (i)
The hypothesis implies that Λ is a cotilting module and add(T ) = PΛ. Then (i)
follows by Theorem 2.1. �

The following result, which is a consequence of Theorem 3.2, Corollary 3.3
and Proposition 2.6, shows that the category of finitely generated modules over a
Gorenstein algebra admits a nicely behaved cotorsion triple. In addition we get
that Gorenstein algebras are characterized by universal properties of the induced
torsion-(free) classes of the stable module category modulo projectives or injectives.

Theorem 4.2. Let Λ be an Artin algebra. Then the following are equivalent.

(i) Λ is Gorenstein.
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(ii) There exists a resolving cotorsion pair (X ,Y) in mod(Λ) with X∩Y = PΛ

such that the torsion class X/PΛ is the left stabilization of mod(Λ).
(iii) There exists a coresolving cotorsion pair (Y,Z) in mod(Λ) with Y ∩Z =

IΛ such that the torsion-free class Z/IΛ is the right stabilization of
mod(Λ).

(iv) P<∞Λ ∩ I<∞Λ contains a functorially finite resolving and coresolving sub-
category Y of mod(Λ).

(v) There exists a cotorsion triple (X ,Y,Z) in mod(Λ) with Y resolving such

that X̂ = mod(Λ).
(vi) There exists a cotorsion triple (X ,Y,Z) in mod(Λ) with Y coresolving

such that Z̃ = mod(Λ).

The following remark identifies the categories X ,Y and Z appearing in Theorem
4.2, and gives an explicit description of the left and right stabilization functors.

Remark 4.3. If Λ is Gorenstein, then, with the notation of Theorem 4.2,
Corollary 3.3 implies that: X = CM(Λ), Z = CoCM(D(Λ)) and Y = P<∞Λ = I<∞Λ .

Moreover, by Proposition 2.6, the left stabilization functor is the coreflection
functor R : mod(Λ) −→ X/PΛ and is given by R(C) = Ω−dΩd(C), and the right
stabilization functor is the reflection functor T : mod(Λ) −→ Z/IΛ and is given by
T(C) = Σ−dΣd(C), where d = id ΛΛ = id ΛΛ.

The following result gives some consequences of the existence of cotorsion triples
in connection with Auslander-Reiten theory. For the concept of an Auslander-
Reiten triangle we refer to [57], [89].

Corollary 4.4. Let (X ,Y,Z) be a good triple in mod(Λ). Then the triangu-
lated categories X/PΛ and Z/IΛ admit Auslander-Reiten triangles from both sides.
In particular X/PΛ and Z/IΛ admit a Serre functor (see [89]).

Proof. Since X is contravariantly finite, X has right almost split morphisms:
if X is indecomposable in X and ρ : C −→ X is a right almost split morphism in

mod(Λ), then the composition β : XC
fC−−→ C

ρ−→ X is a right almost split morphism
in X , where fC is a right X -approximation of C. If X is non-projective, then it
is easy to see that β : XC −→ X is a right almost split morphism in X/PΛ. Since
X/PΛ is Krull-Schmidt, it follows that for any indecomposable object X there
exists a minimal right almost split morphism α : X ′ −→ X in X/PΛ. Since X/PΛ

is triangulated, the triangle Ω(X ′′) −→ X ′
α−→ X −→ X ′′ is an Auslander-Reiten

triangle, by [3], [57]. Hence X/PΛ has Auslander-Reiten triangles from the right.
By duality we have that Z/IΛ has Auslander-Reiten triangles from the left.

Since X/PΛ and Z/IΛ are triangle equivalent, both of them have Auslander-Reiten
triangles from left and right, in particular they admit a Serre functor by [89]. �

Remark 4.5. In general the triangle equivalence X/PΛ
≈−→ Z/IΛ of Theorem

3.2 may not be induced by a functor defined on mod(Λ). However there is a triangle
equivalence between X/PΛ and Z/IΛ which enjoys this property, and which has

interesting connections with the equivalence DTr : mod(Λ)
≈−→ mod(Λ) [15].
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Let Y be a functorially finite resolving and coresolving subcategory of mod(Λ).

Then DTr restricts to a triangle equivalence DTr : X/PΛ
≈−→ Z/IΛ with quasi-

inverse induced by TrD, where X = ⊥Y and Z = Y⊥. This was observed in [11] in
case Λ is a Gorenstein algebra and Y = P<∞Λ . Here we present a torsion-theoretic
proof in the general case.

Recall that if X is a finitely generated Λ-module, then there is an isomorphism
of functors Ext1

Λ(−,DTr(X)) −→ DHomΛ(X,−) (see [15]). If X is in X , then eval-
uating the above isomorphism at Y we have Ext1

Λ(Y,DTr(X)) ∼= DHomΛ(X,Y)
= 0. Hence DTr(X) lies in Y⊥ = Z. It follows that DTr restricts to a functor
DTr : X/PΛ −→ Z/IΛ which obviously is an equivalence with quasi-inverse induced
by TrD. Moreover the equivalence DTr is exact. Indeed, if 0 −→ X1 −→ X2 −→
X3 −→ 0 is an exact sequence with the Xi in X , then by a result of Auslander-

Bridger [6] there is an induced exact sequence 0 −→ d(X3) −→ d(X2) −→ d(X1)
ϑ−→

Tr(X3) −→ Tr(X2) −→ Tr(X3) −→ 0 in mod(Λop), where d = HomΛ(−,Λ) and Tr is
the transpose. However since the projectives are Ext-injective in X , the connecting
morphism ϑ vanishes. Hence we have an exact sequence 0 −→ Tr(X3) −→ Tr(X2) −→
Tr(X1) −→ 0, which induces an exact sequence 0 −→ DTr(X1) −→ DTr(X2) −→
DTr(X3) −→ 0 in mod(Λ). By the above argument the last sequence lies in Z. This

implies easily that DTr : X/PΛ
≈−→ Z/IΛ is an exact equivalence of triangulated

categories. It is not difficult to see that there is a natural morphism ϕ : Φ −→ DTr
between the equivalences Φ,DTr : X/PΛ −→ Z/IΛ. In general ϕ is not invertible.
A necessary and sufficient condition for ϕX to be invertible is that the middle part
of an almost split sequence starting at any indecomposable non-projective direct
summand of X ∈ X , lies in Y.

Remark 4.6. Let us denote by τ the Auslander-Reiten translate and by τ−

its inverse, in both the categories X/PΛ and Z/IΛ. If the object R(DTr(X))

is indecomposable, then it is easy to see that τ(X) ∼= R(DTr(X)), since then

the Auslander-Reiten triangle starting at X is the image of the triangle Ω(X) −→
DTr(X) −→ A −→ X under the functor R, where 0 −→ DTr(X) −→ A −→ X −→ 0 is an
almost split sequence. In particular, if for any indecomposable non-injective Z in
Z its minimal right X -approximation XZ is indecomposable up to projective sum-
mands, then τ(X) = R(DTr(X)) in X/PΛ and τ(Z) = DTrR(Z) in Z/IΛ. Dually
if for any indecomposable non-projective X in X , its minimal left Z-approximation
ZX is indecomposable up to injective summands, then τ−(X) = TrDS(X) in X/PΛ

and τ−(Z) = T(TrD(Z)) in Z/IΛ, where T denotes the reflection mod(Λ) −→ Z/IΛ.
Note that by the results of [11], all the above remarks can be applied to the cotor-
sion triple

(
CM(Λ),P<∞Λ = I<∞Λ ,CoCM(D(Λ))

)
, where Λ is a Gorenstein algebra.

If (X ,Y) is a cotorsion pair then we know that X is contravariantly finite and Y
is covariantly finite. The following remark and its corollary shows that if (X ,Y,Z)
is a cotorsion triple, then all the categories X ,Y and Z are functorially finite.

Remark 4.7. Let (X ,Y,Z) be a cotorsion triple in mod(Λ). We know that
X/PΛ = ⊥(Y/PΛ) and Z/IΛ = (Y/IΛ)⊥ and (X/PΛ)⊥ = Y/PΛ and ⊥(Z/IΛ) =
Y/IΛ. The orthogonal subcategories ⊥(X/PΛ) and (Z/IΛ)⊥ also have a com-
putable description. If C ∈ mod(Λ), then C ∈ (Z/IΛ)⊥ iff HomΛ(Z, C) = 0. Since
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DHomΛ(Z,C) ∼= Ext1(TrD(C), Z), we have C ∈ (Z/IΛ)⊥ iff TrD(C) ∈ Y/PΛ. It

follows that the functor TrD : (Z/IΛ)⊥
≈−→ Y/PΛ is an equivalence and similarly

the functor DTr : ⊥(X/PΛ)
≈−→ Y/IΛ is an equivalence.

Corollary 4.8. The subcategory (Z/IΛ)⊥ is coreflective in mod(Λ) and the
subcategory ⊥(X/PΛ) is reflective in mod(Λ). In particular the categories X and
Z are functorially finite in mod(Λ).

Proof. Let C be in mod(Λ), and let Y TrD(C) −→ TrD(C) be the coreflection

of TrD(C) in Y/PΛ. Then DTr(Y TrD(C)) −→ C is the coreflection of C in (Z/IΛ)⊥.

Similarly for any C in mod(Λ), the morphism C −→ TrD(Y DTr(C)) is the reflection

of C in ⊥(X/PΛ), where DTr(C) −→ Y DTr(C) is the reflection of DTr(C) in Y/IΛ.
The last assertion follows from Lemma V.1.1. �

The following result shows that in the category of finitely generated modules
over an Artin algebra, the notions of cotorsion pair and cotorsion triple are essen-
tially equivalent.

Proposition 4.9. If X ,Y and Z are full subcategories of mod(Λ), then the
following are equivalent.

(i) There exists a resolving cotorsion pair (X ,Y) in mod(Λ) with X∩Y = PΛ.
(ii) There exists a coresolving cotorsion pair (Y,Z) in mod(Λ) with Y ∩Z =
IΛ.

(iii) There exists a cotorsion triple (X ,Y,Z) in mod(Λ) with Y (co)resolving.

Proof. By Theorem 3.2, we have that (iii) implies (i) and (ii). If (i) holds,
then Y is coresolving and covariantly finite. By a result of Krause-Solberg, see [79],
Y is contravariantly finite. Since, by Theorem 2.1, Y is resolving, by a result of
Auslander-Reiten, see [9], we have a cotorsion pair (Y,Z) in mod(Λ). Hence (iii)
holds. The proof that (ii) implies (iii) is similar. �

The above result combined with Theorem 3.2 and the results of [9] gives the
following nice consequence.

Corollary 4.10. Let Λ be an Artin algebra. Then there are bijections between:

(i) Resolving and coresolving contravariantly finite subcategories of mod(Λ).
(ii) Resolving and coresolving covariantly finite subcategories of mod(Λ).

(iii) Functorially finite resolving and coresolving subcategories of mod(Λ).
(iv) Resolving cotorsion pairs (X ,Y) in mod(Λ) with X ∩ Y = PΛ.
(v) Coresolving cotorsion pairs (Y,Z) in mod(Λ) with Y ∩ Z = IΛ.
(vi) Cotorsion triples (X ,Y,Z) in mod(Λ) with Y (co)resolving.

We have seen that for a good triple (X ,Y,Z), the categories X/PΛ and Z/IΛ

are always triangle equivalent. The next result shows that if X = Z, then the
algebra Λ is self-injective.

Corollary 4.11. The subcategories X and Z coincide iff Λ is self-injective and
the TTF-triple (X/PΛ,Y/PΛ,Z/PΛ) in mod(Λ) splits. In this case also Y/PΛ is
triangulated and all the above subcategories are closed under DTr and TrD, and the
stable category admits a decomposition mod(Λ) = X/PΛ ×Y/PΛ = Y/IΛ ×Z/IΛ.



4. APPLICATIONS TO GORENSTEIN ARTIN ALGEBRAS 116

Proof. If X = Z, then PΛ = X∩Y = Y∩Z = IΛ. Hence Λ is self-injective and
then obviously Y/PΛ is triangulated. In particular the triple (X/PΛ,Y/PΛ,Z/PΛ)
is a TTF-triple in mod(Λ). By the discussion after Proposition II.2.3, we have that
the TTF-triple (X/PΛ,Y/PΛ,Z/PΛ) in mod(Λ) splits. Working as in Remark 4.5
we infer easily that X ,Y,Z are closed under DTr, TrD. The converse and the last
assertion are easy and are left to the reader. �

Example. Let Λ be a self-injective algebra such that the stable category
mod(Λ) is indecomposable, for instance the group algebra of a finite p-group over a
field of characteristic p which divides the order of the group. Then Corollary 4.11
implies that X 6= Z for any cotorsion triple (X ,Y,Z) in mod(Λ), unless one of the
subcategories X , Y or Z coincides with mod(Λ).

If Λ is self-injective, then the following consequence of Theorem 3.2 describes
the TTF-triples of mod(Λ) in terms of subcategories of mod(Λ).

Corollary 4.12. Let Λ be a self-injective algebra and let Y be a full subcategory
of mod(Λ). Then the following are equivalent.

(i) Y is a functorially finite resolving and coresolving subcategory of mod(Λ).
(ii) There exists a TTF-triple (X/PΛ,Y/PΛ,Z/PΛ) in mod(Λ).

In the self-injective case the following corollary shows that any cotorsion triple
in mod(Λ), equivalently any TTF-triple in mod(Λ), produces an infinite number of
cotorsion triples in the module category, equivalently an infinite number of TTF-
triples in the stable category.

Corollary 4.13. Let Λ be a self-injective algebra and let (X ,Y,Z) be a good
triple in mod(Λ). Then (⊥X ,X ,Y) and (Y,Z,Z⊥) are good triples. Iterating this
process ∀n ≥ 0 we get good triples

(
(n+2)⊥Y, (n+1)⊥Y, (n)⊥Y

)
in mod(Λ), where

(n)⊥Y is the n−th iterated left orthogonal of Y and (0)⊥Y := Y and good triples(
Y(n)⊥,Y(n+1)⊥,Y(n+2)⊥) in mod(Λ), where Y(n)⊥ is the n−th iterated right or-

thogonal of Y and Y(0)⊥ := Y.
The above good triples induce an infinite number of TTF-triples (Tn,Fn,Rn)

in mod(Λ), where Fn = (n)⊥(Y/PΛ) for n ≤ 0 and Fn = (Y/PΛ)(n)⊥ for n ≥ 0.

We close this chapter with an application to the stable Grothendieck group
K0(mod(Λ)), which is one of the few known invariants under stable equivalences of
algebras.

Corollary 4.14. If Λ is Gorenstein, there are triangle equivalences:

CM(Λ)
≈−→ mod(Λ)�P<∞Λ /PΛ

≈−→ mod(Λ)�I<∞Λ /IΛ
≈−→ CoCM(D(Λ))

and isomorphisms

K0(mod(Λ))
∼=−→ K0(CM(Λ))

∼=−→ K0(CoCM(D(Λ)))
∼=←− K0(mod(Λ)).

Proof. Since Λ is Gorenstein, by Theorem 4.2, we have the hereditary torsion
pair (CM(Λ)/PΛ,P<∞Λ /PΛ) in the stable category mod(Λ) and the cohereditary

torsion pair (I<∞Λ /IΛ,CoCM(D(Λ))) in the stable category mod(Λ). Then the
assertions follow from Theorem 3.5 and Corollary 3.6. �



CHAPTER VII

Gorenstein Categories and (Co)Torsion Pairs

The results of the previous chapter suggest to study more closely the abelian
categories C admitting a resolving cotorsion pair (X ,Y) with X ∩Y = P such that
X -res.dim C < ∞, and/or a coresolving cotorsion pair (W,Z) with W ∩ Z = I
such that Z -cores.dim C < ∞. The existence of such cotorsion pairs is strongly
connected with cotorsion-theoretic properties of (Co)Cohen-Macaulay objects. In
this chapter we introduce and investigate in (co)torsion theoretic terms Gorenstein
and Cohen-Macaulay abelian categories, which appear to be the proper generaliza-
tions of the category of finitely generated modules over a (commutative Noetherian)
Gorenstein and Cohen-Macaulay ring respectively. We give methods for construct-
ing Gorenstein categories out of certain Cohen-Macaulay categories and we study in
this context the existence of minimal (Co)Cohen-Macaulay approximations, which
behave better than the special (Co)Cohen-Macaulay approximations. We also give
(co)torsion theoretic applications to (not necessarily finitely generated) modules
over Gorenstein and Cohen-Macaulay rings which admit a Morita self-duality.

1. Dimensions and Cotorsion Pairs

Throughout this section C denotes an abelian category with enough projective
objects. We have seen in Proposition VI.2.3 that if (X ,Y) is a resolving cotorsion
pair in C such that X ∩ Y = P, then I<∞ ⊆ Y ⊇ P<∞. It is interesting to have
conditions ensuring that we have an equality P<∞ = I<∞. In this section we study
this problem, which is related to the finiteness of several interesting homological
dimensions defined on C and the existence of cotorsion pairs induced by (Co)Cohen-
Macaulay objects. We also give applications to complete projective resolutions.

First we need to recall the definition of the resolution dimension. Let X be a
resolving subcategory of C. The X -resolution dimension of an object C in C, written
X -res.dimC, is defined inductively as follows. If C is in X , then X -res.dimC = 0.
If t ≥ 1, then X -res.dimC ≤ t if there exists an exact sequence 0 −→ Xt −→ · · · −→
X1 −→ X0 −→ C −→ 0 where X -res.dimXi = 0, for 0 ≤ i ≤ t. Then X -res.dimC = t
if X -res.dimC ≤ t and X -res.dimC � t − 1. Finally if X -res.dimC 6= t for any
t ≥ 0, then define X -res.dimC = ∞. The X -resolution dimension of C is defined
by X -res.dim C := sup{X -res.dimC | C ∈ C}. The Y-coresolution dimension of
C, written Y -cores.dim C, for a coresolving subcategory Y of C, is defined dually.

The following result shows that finiteness of the resolution dimension of C with
respect to a resolving subcategory admitting the projectives as an Ext-injective co-
generator, has several interesting consequences for the category of Cohen-Macaulay
objects and the objects of finite projective or injective dimension.

117
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Proposition 1.1. Let X be a resolving subcategory of C having P as an Ext-
injective cogenerator. If X -res.dimC = d <∞, then (X ,P<∞) is a resolving cotor-
sion pair in C with CM(P) = X and P<∞ = I<∞. Moreover if P is covariantly
finite, then (CM(P)/P,P<∞/P) is a hereditary torsion pair in C/P and the torsion
class CM(P)/P is the left stabilization of C/P with stabilization functor given by
the coreflection functor R : C/P −→ CM(P)/P : C 7→ R(C) = Ω−dΩd(C).

Proof. The hypothesis X -res.dimC = d < ∞ implies that X̂ = C. Hence all
assertions, except for the identification P<∞ = I<∞, follow from Proposition V.4.6
and Proposition VI.2.6. By Proposition VI.2.3, we have I<∞ ⊆ P<∞. We claim
that Extd+1(−, Y ) = 0 for any Y ∈ P<∞. Indeed this follows easily using induction
on the bounded X -resolution length of any object of C, since Extn(X,Y ) = 0, for
n ≥ 1 and X ∈ CM(P). Hence Y ∈ I<∞. We conclude that P<∞ ⊆ I<∞. �

The above result suggests to study more closely the categories C admitting a
resolving cotorsion pair (X ,Y) with X ∩ Y = P and such that X -res.dim C < ∞.

Note that finiteness of X -res.dim C implies that X̂ = C, but the converse is false
in general. Hence it is natural to ask under what conditions the converse is true.
In this direction we have the following result which gives interesting connections
with the finitistic dimensions. First we recall that the finitistic projective dimension
FPD(C) of C is defined by FPD(C) := sup{pdC | C ∈ P<∞}, and the finitistic
injective dimension FID(C) of C is defined by FID(C) := sup{idC | C ∈ I<∞}.

Proposition 1.2. Let C be an abelian category with enough projective objects,
and let (X ,Y) be a resolving cotorsion pair in C with X ∩Y = P. Then the following
statements are equivalent.

(i) X -res.dim C <∞.

(ii) X̂ = C and FPD(C) <∞.
(iii) sup{pdY | Y ∈ Y} <∞.

If (i) holds, then X = CM(P), Y = P<∞ = I<∞ and: X -res.dim C = FPD(C) =
FID(C) < ∞. Conversely if CM(P) -res.dim C < ∞, then there exists a resolving
cotorsion pair (CM(P),P<∞) in C with CM(P) ∩ P<∞ = P, P<∞ = I<∞, and
FID(C) = FPD(C) = CM(P) -res.dim C =<∞.

Proof. (i)⇒ (ii) Assume that X -res.dim C = d <∞. Then obviously X̂ = C
and by Proposition VI.2.6 we have Y = P<∞. Let Y be in Y and let 0 −→ Xd −→
· · · −→ X0 −→ Y −→ 0 be an exact sequence with the Xi in X . Since Y ∈ Y, it follows
easily that the Xi are projective, hence pdY ≤ d. We infer that FPD(C) ≤ d <∞.

(ii)⇒ (iii) The proof is trivial since the hypothesis implies that Y = P<∞.
(iii) ⇒ (i) The hypothesis implies that Y ⊆ P<∞, hence Y = P<∞ and

FPD(C) < ∞. Let FPD(C) = d and consider the special right X -approximation
sequence 0 −→ YC −→ XC −→ C −→ 0 of C ∈ C. By Proposition VI.2.3 we have that
YC has finite projective dimension, hence pdYC ≤ d. This implies trivially that
X -res.dimC ≤ d+ 1. Hence X -res.dim C <∞.

Assume now that X -res.dim C = d <∞. Then by the above argument we have
FPD(C) ≤ d. By (the proof of) Proposition 1.1 we have P<∞ = I<∞ and idY ≤ d
for any Y ∈ Y. Hence FID(C) ≤ d < ∞. An easy induction argument shows that
in fact we have X -res.dim C = FPD(C) = FID(C). �
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By Proposition 2.8 it follows that if X -res.dim C < ∞, then C has finite P-
Gorenstein dimension. Recall from Section V.4 that the P-Gorenstein dimension
G-dimP C of C ∈ C is defined by G-dimP C := CM(P) -res.dimC, and the P-
Gorenstein dimension G-dimP C of C is defined by G-dimP C := CM(P) -res.dim C.
We say that C is P-Gorenstein if G-dimP C < ∞. Dually we define the I-
Gorenstein dimension G-dimI C of C ∈ C by: G-dimI C := CoCM(I) -cores.dimC.
Then the I-Gorenstein dimension G-dimI C of C is defined as follows: G-dimI C :=
CoCM(I) -cores.dim C. We say that C is I-Gorenstein if G-dimI C <∞.

The following example explains the above terminology.

Example. Let Λ be a Noetherian ring and C a finitely generated right Λ-
module. If PΛ is the full subcategory of mod(Λ) consisting of the finitely generated
projective right Λ modules and CM(PΛ) is the full subcategory of mod(Λ) consisting
of the finitely generated Cohen-Macaulay modules, then G-dimP C is the Goren-
stein dimension of C as defined by Auslander-Bridger [6]. By results of Auslander-
Reiten, see [11], it follows that an Artin algebra Λ is Gorenstein iff mod(Λ) is a
PΛ-Gorenstein category. In this case: G-dimPΛ

mod(Λ) = id ΛΛ = id ΛΛ. This
common value is also equal to sup{pd I | I ∈ IΛ} = sup{idP | P ∈ PΛ}.

Closely related to the P-Gorenstein dimension and the I-Gorenstein dimension
of an abelian category, are the following dimensions introduced by Gedrich and
Gruenberg, see [51], in the context of ring theory:

spli(C) = sup{pd I | I ∈ I} and silp(C) = sup{id I | P ∈ P}.
We have introduced so far several dimensions which are connected to cotorsion

pairs where the involved subcategories are related to (Co)Cohen-Macaulay objects
and objects of finite projective or injective dimension. So it is natural to ask for
the precise relations between these dimensions. In this connection we have the
following result, which will be useful in the sequel.

Proposition 1.3. Let C be an abelian category with enough projective and
injective objects. Then we have the following:

(i)

FPD(C) ≤ silp(C) ≤ G-dimP C ≤ gl.dim C
FID(C) ≤ spli(C) ≤ G-dimI C ≤ gl.dim C

and finiteness of any of these dimensions implies that the remaining in-
equalities on the left are equalities.

(ii) If P<∞ ⊆ I<∞, then:

FPD(C) ≤ silp(C) ≤ FID(C).
(iii) If I<∞ ⊆ P<∞, then:

FID(C) ≤ spli(C) ≤ FPD(C).
(iv) If P<∞ = I<∞, then:

FPD(C) = FID(C) = G-dimP C = G-dimI C = spli(C) = silp(C).
(v) G-dimP C = G-dimI C.
(vi) If spli(C) <∞ and silp(C) <∞, then spli(C) = silp(C).
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Proof. (i) Assume that sup{idP | P ∈ P} = d <∞ and let Y be in C with
pdY = n. Let C be in C such that Extn(Y,C) 6= 0, and let 0 −→ Ω(C) −→ P −→ C −→
0 be exact with P projective. Applying to this sequence the functor C(Y,−), the
resulting long exact sequence shows that Extn(Y, P ) 6= 0. Since idP ≤ d, it follows
that n ≤ d. Hence FPD(C) ≤ sup{idP | P ∈ P}. Next let G-dimP C = d < ∞.
Then for any object C in C, we have that Ωd(C) is Cohen-Macaulay, in particular

Extn(Ωd(C),P) = 0, ∀n ≥ 1. Hence Extn+d(C,P) = 0, ∀n ≥ 1, ∀C ∈ C. This
implies that idP ≤ d for any projective object P . Hence sup{idP | P ∈ P} ≤
G-dimP C. Finally it is obvious that G-dimP C ≤ gl.dim C. Now if gl.dim C <
∞, then CM(P) = P. Hence gl.dim C = G-dimP C, and then obviously all the
dimensions in the first displayed formula are equal. Next if G-dimP C = d < ∞,
then by (the proof of) Proposition VI.2.3, we have that FPD(C) = G-dimP C = d,
hence also sup{idP | P ∈ P} = d. Finally if sup{idP | P ∈ P} = d < ∞, then
FPD(C) = d, since otherwise there exists an object Y with pdY = n > d and a
projective object P such that Extn(Y, P ) 6= 0, and this is impossible. The proof of
the second displayed formula is similar.

The proof of parts (ii) and (iii) is trivial, and the proof of (iv) follows directly
from (ii) and (iii). If one of the Gorenstein dimensions G-dimP C and G-dimI C is
finite, then by Proposition 1.2 and its dual, we have P<∞ = I<∞. It follows by
part (iv) that either both Gorenstein dimensions are infinite or else they are finite
and we have G-dimP C = G-dimI C, hence part (v) holds. Finally the hypothesis
of part (vi) implies that P<∞ = I<∞, and the assertion follows by part (iv). �

We have the following characterization of P-Gorenstein categories. The dual
characterization concerning I-Gorenstein categories is left to the reader.

Theorem 1.4. Let C be an abelian category with enough projective objects.
Then the following are equivalent.

(i) C is P-Gorenstein.
(ii) There exists a resolving cotorsion pair (X ,Y) with X ∩ Y = P such that
X -res.dim C <∞.

If C is P-Gorenstein, then X = CM(P), P<∞ = I<∞ and:

G-dimP C = FPD(C) = FID(C) = silp(C) = spli(C) <∞.
If in addition P is covariantly finite, then CM(P) is functorially finite.

Proof. All assertions, except of the last one, follow from Propositions 2.2 and
2.3. However if G-dimP C = d <∞, then obviously Ωd(C/P) ⊆ CM(P)/P and the
last assertion follows from Corollary V.3.11. �

We close this section by giving the connection between P-Gorenstein categories
and complete projective resolutions. We recall that a complete projective resolution
of an object C in C is an acyclic complex P • with projective components such that:
(α) the complex C(P •, Q) is acyclic for any projective object Q, and (β) the complex
P • coincides with a projective resolution of C beyond some finite dimension. The
notion of a complete injective resolution is defined dually.

Corollary 1.5. Let C be an abelian category with enough projectives. Then
the following are equivalent.
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(i) Any object of C admits a complete projective resolution.

(ii) (CM(P),P<∞) is a cotorsion pair in C, or equivalently ĈM(P) = C.

In particular C is P-Gorenstein iff FPD(C) < ∞ and any object of C admits a
complete projective resolution.

Proof. It is clear from the definition that an object C in C admits a complete
projective resolution iff there exists n ≥ 0 such that the nth syzygy object Ωn(C)
of C is Cohen-Macaulay. The equivalence (i)⇔ (ii) follow directly from this. The
last assertion follows from Proposition 1.2, Theorem 1.4. �

We leave to the reader to formulate the dual version of the above Corollary.
Note that if the abelian category C admits exact infinite coproducts or has a finite
number of non-isomorphic soimple objects and any object has finite length, then the
existence of complete projective resolutions characterize P-Gorenstein categories.
This follows from the fact that FPD(C) <∞ in this case, see Proposition 2.4 below.

2. Gorenstein Categories, Cotorsion Pairs and Minimal
Approximations

In the previous section we defined an abelian category C with enough projec-
tives, resp. injectives, to be projectively, resp. injectively, Gorenstein, provided
that C has finite resolution, resp. coresolution, dimension with respect to the full
subcategory of Cohen-Macaulay, resp. CoCohen-Macaulay objects. Motivated by
the concept of Gorensteinness in commutative algebra and representation theory,
we give in this section a more convenient definition of Gorenstein abelian categories
and we discuss its cotorsion theoretic consequences. Then, by using our previous
results, we show that the three notions of Gorensteinness coincide and in addition
we give applications to minimal Cohen-Macaulay approximations of not necessarily
finitely generated modules over not necessarily commutative Gorenstein rings.

Recall that by definition a commutative local Noetherian ring or an Artin
algebra is called Gorenstein, if id ΛΛ < ∞ and id ΛΛ < ∞. Equivalently, Λ is
Gorenstein iff sup{pd I | I ∈ IΛ} < ∞ and sup{idP | P ∈ PΛ} < ∞. This
suggests the following notion of Gorensteinness in arbitrary abelian categories.

Definition 2.1. An abelian category with enough projective and injective
objects is called Gorenstein if

spli(C) <∞ and silp(C) <∞.

Our next result, which generalizes the situation of commutative Noetherian
Gorenstein rings and Gorenstein algebras, gives a variety of useful characterizations
of Gorenstein categories in cotorsion theoretic terms. As a consequence we get that
C is P-Gorenstein iff C is I-Gorenstein iff C is Gorenstein.

Theorem 2.2. Let C be an abelian category with enough projective and injective
objects. Then the following statements are equivalent:

(i) C is Gorenstein.
(ii) FPD(C) <∞ and

(
CM(P),P<∞

)
is a cotorsion pair in C.

(iii) FPD(C) <∞ and any object of C admits a complete projective resolution.
(iv) FID(C) <∞ and

(
I<∞,CoCM(I)

)
is a cotorsion pair in C.
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(v) FID(C) <∞ and any object of C admits a complete injective resolution.
(vi) FPD(C) < ∞ or FID(C) < ∞ and

(
CM(P),P<∞ = I<∞,CoCM(I)

)
is

a cotorsion triple in C.
(vii) I<∞ ⊆ P<∞ and silp(C) <∞.

(viii) P<∞ ⊆ I<∞ and spli(C) <∞.

If C is Gorenstein, then we have the following.

(α) CM(P) is covariantly finite iff P is covariantly finite.
(β) CoCM(I) is contravariantly finite iff I is contravariantly finite.
(γ) We have the following equalities:

G-dimP C = FPD(C) = spli(C) = silp(C) = FID(C) = G-dimI C <∞.

Proof. Follows from (the duals of) Propositions 1.2 and 1.3, and Theorem 1.4
and Corollary 1.5. �

As a corollary of Theorem 2.2 we have the following interesting consequence.

Corollary 2.3. If (X ,Y,Z) is a cotorsion triple in C with Y (co)resolving,
then X -res.dim C = Z -cores.dim C.

Proof. If X -res.dim C < ∞, then, by Theorem 1.4, C is P-Gorenstein with
X = CM(P) and Y = P<∞ = I∞. Then by Theorem 4.2, we have Z =
CoCM(I) and Z -cores.dim C = X -res.dim C < ∞. Hence X -res.dim C < ∞ iff
Z -cores.dim C <∞ and then X -res.dim C = Z -cores.dim C. If X -res.dim C =∞,
then by the above argument we have Z -cores.dim C = ∞. Hence in any case we
have X -res.dim C = Z -cores.dim C. �

The following result shows that the assumptions FPD(C) <∞ or FID(C) <∞
in Theorem 2.2 can be dropped if C admits exact infinite products or coproducts,
for instance if C = Mod(Λ) where Λ is a ring, or if C has a finite number of simple
objects and any object has finite length, for instance if C = mod(Λ) where Λ is an
Artin algebra. In these cases C is Gorenstein iff P<∞ = I<∞.

Proposition 2.4. Let C be an abelian category with enough projective and
injective objects. If P<∞ = I<∞, then C is Gorenstein provided that one of the
following conditions holds.

(i) C has exact products or exact coproducts.
(ii) C has a finite number of simple objects and any object has finite length.

Proof. Assume first that C has exact coproducts. We claim that silp(C) =
{idP | P ∈ P} < ∞. Otherwise we can find a strictly increasing sequence n1 <
n2 < · · · of positive integers and projective objects Pi such that idPi = ni. Then⊕

i≥0 Pi is a projective object, hence we have id
⊕

i≥0 Pi = d, for some d < ∞.

This leads to the contradiction that ni ≤ d, for any i ≥ 0. Hence silp(C) < ∞.
Then by Theorem 2.2 we infer that C is Gorenstein. If C has exact products, then a
similar argument shows that C is Gorenstein. Finally if C is Krull-Schmidt category
with a finite number of isoclasses of simple objects, then the assertion is easy and
is left to the reader. �

Theorem 2.2 suggests the following definition, see also [20].
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Definition 2.5. A ring Λ is called right, resp. left, Gorenstein if the cat-
egory Mod(Λ), resp. Mod(Λop), of right, resp. left, Λ-modules is a Gorenstein
category. We say that Λ is Gorenstein, provided that Λ is left and right Goren-
stein.

In the literature Gorenstein rings are defined to be the Noetherian rings with
finite left and right self-injective dimension. In the above definition we don’t use any
finiteness conditions; however the following example shows that when we restrict
to Noetherian rings, then the above definition agrees with the usual definition.

Example. (1) Any ring of finite global dimension and any quasi-Frobenius
ring is Gorenstein.

(2) If Λ is an Artin algebra, or more generally a Noetherian ring, with finite
self-injective dimension from both sides, then Λ is Gorenstein. Note that, by [20],
for a Noetherian ring Λ, we have that Λ is left Gorenstein iff Λ is right Gorenstein.

(3) If Λ is the group algebra kG of an HF-group G of type FP∞, where k is a
commutative ring of finite global dimension, then, by [40], Λ is right Gorenstein.

(4) If Λ is a Noetherian PI Hopf algebra over a field, then, by [105], Λ is
Gorenstein.

We have the following consequence of Proposition 2.4.

Corollary 2.6. A ring Λ is right Gorenstein if and only if P<∞
Λ = I<∞Λ .

Remark 2.7. (1) Let Λ be a right Gorenstein ring. Then CM(PΛ) is covariantly
finite iff Λ is left coherent and right perfect. Similarly CoCM(IΛ) is contravariantly
finite iff Λ is right Noetherian. In particular if Λ is Artinian, then both CM(PΛ)
and CoCM(IΛ) are functorially finite.

(2) Let Λ be a Noetherian Gorenstein ring. Then CM(Λ) = CM(PΛ) is covari-
antly finite. This follows from the fact that, since Λ is left coherent, the category
PΛ of finitely generated projective right Λ-modules is covariantly finite. Similarly if
Λ is Gorenstein with Morita self-duality, then CoCM(IΛ) is contravariantly finite.

Note. It is an open problem if finiteness of silp(C) or spli(C) implies that C
is Gorenstein. We refer to [26] for a discussion of the problem, when C is the
module category of an Artin algebra. In this setting the problem is equivalent to
the Gorenstein Symmetry Conjecture mentioned in Proposition IV.3.1.

We close this section by investigating the existence of minimal Cohen-Macaulay
approximations of modules over a right Gorenstein ring. Recall that any minimal
right approximation is special, but in general the converse is false. Our motivation
comes from the fact that minimal approximations behave better than the special
approximations, for instance they are unique up to isomorphism.

Theorem 2.8. Let Λ be a right Gorenstein ring.
(1) If Λ is left coherent and right perfect, then:

(i) Any right Λ-module admits a minimal right CM(PΛ)-approximation, and
a minimal left P<∞

Λ -approximation.
(ii) Any right Λ-module admits a minimal right P<∞

Λ -approximation and a
minimal left CoCM(IΛ)-approximation.
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(2) If Λ is right Noetherian, then any right Λ-module admits a minimal right
I<∞Λ -approximation and a minimal left CoCM(IΛ)-approximation.

Proof. (1) (i) Consider the subcategory XPΛ
:= {C ∈ Mod(Λ) | ExtnΛ(C,PΛ)

= 0, ∀n ≥ 1}. Obviously CM(PΛ) ⊆ XPΛ
. We claim that the above inclusion is an

equality. Let C ∈ XPΛ and let 0 −→ YC −→ XC −→ C −→ 0 be a special right Cohen-
Macaulay approximation of C. Then YC has finite projective dimension. It is not
difficult to see that ExtnΛ(XPΛ

,P<∞
Λ ) = 0, ∀n ≥ 1. Hence the above sequence splits,

and we infer that C is Cohen-Macaulay. Therefore CM(PΛ) = XPΛ
. Using this

fact we shall show that CM(PΛ) is closed under filtered colimits. Let {Xi | i ∈ I}
be a filtered system of Cohen-Macaulay modules. Then for any right Λ-module Y ,
we have Roos’s spectral sequence

Ep,q2 = lim←−
p Extq(Xi, Y ) =⇒ Extn(lim−→Xi, Y )

Choosing Y to be a projective module, we have that the spectral sequence collapses.

Hence we have isomorphisms: lim←−
n HomΛ(Xi, Y )

∼=−→ Extn(lim−→Xi, Y ), ∀n ≥ 1.
Since Λ is left coherent and right perfect we have that any projective right Λ-module
is pure injective. This implies that lim←−

n HomΛ(Xi, Y ) = 0, ∀n ≥ 1. Therefore

Extn(lim−→Xi, Y ) = 0, ∀n ≥ 1, so lim−→Xi is Cohen-Macaulay. Since CM(PΛ) is

closed under filtered colimits, by a result of Enochs, see [47], we have that any
right Λ-module admits a minimal right Cohen-Macaulay approximation and any
right Λ-module admits a minimal left CM(PΛ)⊥ = P<∞

Λ -approximation.
((ii) Since the finitistic projective dimension of Λ is finite, there exists d ≥ 0 such

that P<∞
Λ coincides with the category P≤dΛ of modules with projective dimension

bounded by d. Since Λ is left coherent and right perfect, by a result of Bass, P≤dΛ

is closed under filtered colimits. Hence by the above mentioned result of Enochs,
any right Λ-module admits a minimal right P<∞

Λ -approximation and a minimal left
CoCohen-Macaulay approximation.

(2) Follows as in (ii), using that the finitistic injective dimension of Λ is finite,
and the fact that, over a right Noetherian ring, the category of modules with finite
injective dimension bounded above, is closed under filtered colimits. �

The following result shows that over a right Gorenstein ring which is not right
perfect, there are right modules not admitting minimal right Cohen-Macaulay ap-
proximations. So although part (ii) of Theorem 2.8 holds for right Noetherian rings,
part (i) does not hold in general.

Proposition 2.9. Let Λ be a right Gorenstein ring. If any right Λ-module
admits a minimal right Cohen-Macaulay approximation, then Λ is right perfect.

Proof. Let F be a flat right Λ-module and let 0 −→ YF −→ XF
fF−−→ F −→ 0

be exact, where fF is a minimal right Cohen-Macaulay approximation of F . Since,
by Wakamatsu’s Lemma, minimal approximations are special, we have that YF has
finite projective dimension. By Theorem 2.2, the finitistic projective dimension of
Λ is finite. Then by a result of Jensen, see [66], any flat module has finite projective
dimension. Hence F has finite projective dimension, and this implies that its right
Cohen-Macaulay approximation is projective. In particular fF is a projective cover.
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Since the only flat modules admitting a projective cover are the projectives, we infer
that F is projective. We conclude that Λ is right perfect. �

The following concrete example shows that, over a non-trivial right Gorenstein
ring, there are modules not admitting a minimal right Cohen-Macaulay approxi-
mation.

Example. Let G be a group with finite virtual cohomological dimension. Then
by [51] the group ring ZG satisfies: silp(Mod(ZG)) = spli(Mod(ZG)) < ∞, hence
ZG is right Gorenstein. Since obviously ZG is not right perfect, by Proposition
2.9 we infer that there exists a right ZG-module C which admits a special Cohen-
Macaulay approximation, but C does not admit a minimal right Cohen-Macaulay
approximation.

3. The Gorenstein Extension of a Cohen-Macaulay Category

Our aim in this section is to give a procedure for constructing Gorenstein cat-
egories. Let C be an abelian category with enough projective and injective objects.
A natural generalization of Gorenstein categories is given by the class of abelian
categories C for which there exists an adjoint pair (F,G) : C −→ C of endofunctors

of C, inducing quasi-inverse equivalences (F,G) : P<∞ ≈−→ I<∞ between P<∞ and
I<∞. Our main result shows that the above quasi-inverse equivalences can be nor-
malized in the trivial extension C nF of C by F , see [48], in the following sense. If
P<∞(C n F ), resp. I<∞(C n F ), is the full subcategory of C n F consisting of all
objects with finite projective, resp. injective, dimension, then we have an equality:
P<∞(C n F ) = I<∞(C n F ). Then, under additional mild assumptions on C, we
show that the trivial extension C n F is Gorenstein.

We begin by recalling some basic facts about trivial extensions of abelian cat-
egories from [48]. Let C be an abelian category and F : C −→ C a right exact
endofuctor. The trivial extension CnF of C by F is defined as follows. The objects
of C n F are pairs (X, f), where f : F (X) −→ X is a morphism in C such that
F (f) ◦ f = 0. A morphism α : (X, f) −→ (Y, g) in C n F is a morphism α : X −→ Y
in C such that: F (α) ◦ g = f ◦ α. Then the category C n F is abelian, and we
have an adjoint pair of functors (T,U), where T : C → C n F and U : C n F → C.
The functor T is defined as follows. If X is an object in C and if α : X −→ Y is a
morphism in C, then:

T(X) = (X ⊕ F (X), tX) where tX =

(
0 1F (X)

0 0

)
, and T(α) =

(
α 0
0 F (α)

)
.

The functor U is defined as follows. If (X, f) is an object in CnF , then U(X, f) = X,
and if α : (X, f) −→ (Y, g) is a morphism in CnF , then U(α) = α. It is not difficult
to see that if C has enough projectives, then CnF has enough projectives, and any
projective object of CnF is a direct summand of an object of the form T(P ) where
P is projective in C.

Dually the trivial coextension GoC of C by a left exact endofunctor G : C −→ C
is defined as follows. The objects of GoC are pairs (X, f), where f : X −→ G(X) is
a morphism in C such that f ◦G(f) = 0. A morphism α : (X, f) −→ (Y, g) in Go C
is a morphism α : X −→ Y in C such that f ◦G(α) = α◦g. Then the category GoC
is abelian, and we have an adjoint pair of functors (U,H), where H : C → G o C
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and U : Go C → C. The functor H is defined as follows. If X is an object in C and
if α : X −→ Y is a morphism in C, then:

H(X) = (G(X)⊕X, sX) where sX =

(
0 1G(X)

0 0

)
, and H(α) =

(
G(α) 0

0 α

)
.

The functor U is defined as follows. If (X, f) is an object inGoC, then U(X, f) = X,
and if α : (X, f) −→ (Y, g) is a morphism in Go C, then U(α) = α. It is not difficult
to see that if C has enough injectives, then G o C has enough injectives, and any
injective object of Go C is a direct summand of an object of the form H(I) where
I is injective in C.

Remark 3.1. (1) If (F,G) is an adjoint pair of endofunctors in C, then, by [48],

there exists an isomorphism of categories C n F
∼=−→ G o C induced by the adjoint

pair (F,G). We refer to the comprehensive treatment [48] for more information on
trivial (co)extensions.

(2) If C = Mod(Λ) and F = − ⊗Λ ω for some Λ-bimodule, then C n F is
the module category Mod(Λ n ω), where Λ n ω is the trivial extension of Λ by ω.
Recall that Λn ω = Λ⊕ ω as abelian groups, and the multiplication is defined by
(λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +m1λ2).

After these preparations we can state the following main result of this section.

Theorem 3.2. Let C be an abelian category with enough projective and injec-
tive objects. Assume that there exists an adjoint pair (F,G) of endofunctors of C
inducing an equivalence F : P<∞(C) ≈−→ I<∞(C) with quasi-inverse G : I<∞(C) ≈−→
P<∞(C). Then in the trivial extension C n F

∼=−→ Go C we have:

P<∞(C n F ) = I<∞(C n F ).

Proof. Let δ : IdC −→ GF be the unit and ε : FG −→ IdC the counit of the
adjoint pair (F,G). To prove the assertion, it suffices to show that any injective
object of C n F has finite projective dimension and any projective object of C n F
has finite injective dimension. Since the injective objects of G o C are the direct
summands of the objects of the form H(I) where I is injective in C, and since the
projective objects of CnF are the direct summands of the objects of the form T(P )
where P is projective in C, it suffices to show that for any projective object P of C
and any injective object of C, the object H(I) has finite projective dimension and
the object T(P ) has finite injective dimension. Using the isomorphism of categories

G o C
∼=−→ C n F , it is not difficult to see that the object H(I) has the following

description in C n F :

H(I) =
(
G(I)⊕ I, tI

)
,where tI =

(
0 εI
0 0

)
: FG(I)⊕ F (I) −→ G(I)⊕ I.

Since I is injective, by hypothesis, the counit εI : FG(I) −→ I is invertible. Then it
is easy to see that we have an isomorphism in C n F :(

1G(I) 0
0 εI

)
: T(G(I))

∼=−→ H(I)

Since I is injective, G(I) has finite projective dimension. Let 0 −→ Pd −→ Pd−1 −→
· · · −→ P1 −→ P0 −→ G(I) −→ 0 be a projective resolution of G(I) in C. Since F is
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an equivalence restricted to P<∞(C), it follows that the complex 0 −→ F (Pd) −→
F (Pd−1) −→ · · · −→ F (P1) −→ F (P0) −→ FG(I) −→ 0 is exact. Hence LnF (G(I)) = 0,
∀n ≥ 1. By [22] this implies that we have an isomorphism:

ExtnCnF [T(G(I)), (Y, g)]
∼=−→ ExtnC [G(I), Y ], ∀(Y, g) ∈ C n F, ∀n ≥ 1.

Since G(I) has finite projective dimension, we infer that the same is true for
T(G(I)). This shows that any injective object of C n F has finite projective di-
mension, in other words: I<∞(C n F ) ⊆ P<∞(C n F ). By duality we have that
P<∞(C n F ) ⊆ I<∞(C n F ). Hence P<∞(C n F ) = I<∞(C n F ). �

Remark 3.3. The above proof shows that if there exists an adjoint pair of
endofunctors (F,G) : C −→ C inducing quasi-inverse equivalences between P and I,
then the trivial extension C n F is Frobenius.

Recall from [9] that an Artin algebra Λ is called Cohen-Macaulay if there an
adjoint pair of functors (F,G) : mod(Λ) −→ mod(Λ) which induces an equivalence
between P<∞Λ and I<∞Λ . Hence it is natural to make the following definition.

Definition 3.4. An abelian category C with enough projective and injective
objects is called Cohen-Macaulay, if there exists an adjoint pair (F,G) of end-

ofunctors of C which induces an equivalence F : P<∞(C) ≈−→ I<∞(C) with quasi-

inverse G : I<∞(C) ≈−→ P<∞(C). In this case the adjoint pair of functors (F,G) is
called dualizing for C.

Remark 3.5. If C is a Gorenstein category, then C is Cohen-Macaulay with
dualizing adjoint pair of functors (IdC , IdC).

If C is a Cohen-Macaulay category, then the following result, which will be
useful later, shows that several important dimensions related to C are equal.

Proposition 3.6. Let C be a Cohen-Macaulay abelian category with dualizing
adjoint pair of functors (F,G). Then we have the following:

spli(C n F ) = FPD(C) = FID(C) = silp(C n F ) =

= sup{pdG(I) | I ∈ I} = sup{idF (P ) | I ∈ P} ≤ min{silp(C), spli(C)}.

Proof. We first show that FPD(C) = sup{pdG(I) | I ∈ I}. Since for
any injective object I, the object G(I) has finite projective dimension, we have
FPD(C) ≥ sup{pdG(I) | I ∈ I}. Let sup{pdG(I) | I ∈ I} = d. If d = ∞,
then FPD(C) = sup{pdG(I) | I ∈ I}. Assume that d < ∞, and let X be in C
with pdX < ∞. Since F (X) has finite injective dimension, there exists an exact
sequence 0 −→ F (X) −→ I0 −→ · · · −→ Ik −→ 0 where the Ij are injective. Since
G is exact in I<∞, we have an exact sequence 0 −→ GF (X) −→ G(I0) −→ · · · −→
G(Ik) −→ 0 and X ∼= GF (X). Since pdG(Ij) ≤ d, ∀j ≥ 0, we infer directly that
pdX ≤ d. This shows that FPD(C) ≤ d. Hence FPD(C) = sup{pdG(I) | I ∈ I}.
From the proof of Theorem 3.2 we have sup{pdG(I) | I ∈ I} = spli(C n F ).
Hence FPD(C) = sup{pdG(I) | I ∈ I} = spli(C n F ), and by duality we have:
FID(C) = sup{idF (P ) | P ∈ P} = silp(C n F ). By Theorem 3.2 we have
P<∞(C n F ) = I<∞(C n F ). Hence by part (iv) of Proposition 1.3, we have
spli(CnF ) = silp(CnF ). Finally by part (i) of the same proposition it follows that:
FPD(C) = FPD(C) ≤ min{spli(C), slilp(C)} and this completes the proof. �
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We have the following direct consequence.

Corollary 3.7. Let C be a Cohen-Macaulay abelian category and let (F,G)
be the dualizing adjoint pair of functors for C. Then the following are equivalent:

(i) FPD(C) <∞ or FID(C) <∞.
(ii) C n F is Gorenstein.

In particular if C is Gorenstein, then the categories CnF and CnIdC are Gorenstein.

Example. Let Λ be a (right) Gorenstein ring. Since Λ n Λ
∼=−→ Λ[t]/(t2) and

since Mod(ΛnΛ) = Mod(Λ)nIdMod(Λ), we infer that Λ[t]/(t2) is (right) Gorenstein.

If the Cohen-Macaulay category C admits exact products or coproducts, then
it is easy to see that the same is true for the trivial extension C n F . Therefore we
have the following consequence of Propositions 2.4 and 3.6 and Corollary 3.7, which
shows in particular that C has finite finitistic projective and injective dimension.

Corollary 3.8. Let C be a Cohen-Macaulay abelian category and let (F,G)
be the dualizing adjoint pair of functors for C. If C admits exact (co)products, or
if C has a finite number of non-isomorphic simple objects and any object has finite
length, then FPD(C) = FID(C) <∞ and the trivial extension C n F is Gorenstein.

4. Cohen-Macaulay Categories and (Co)Torsion Pairs

We have seen that in a Gorenstein category there exist nicely behaved (co)tor–
sion pairs induced by (Co)Cohen-Macaulay objects. Since a Cohen-Macaulay cat-
egory can be regarded as a generalization of a Gorenstein category, it is natural
to ask if there exist cotorsion pairs induced by suitable subcategories of (relative)
(Co)Cohen-Macaulay objects in a Cohen-Macaulay category. We devote this sec-
tion to this question and its module-theoretic concequences.

Let C be an abelian category with exact infinite products and coproducts.
We recall that an object T in C is called product-complete if Add(T ) = Prod(T ).
Since Add(T ) is always contravariantly finite and Prod(T ) is always covariantly
finite, it follows that for a product-complete object T the category Add(T ) =
Prod(T ) is functorially finite, hence the stable category C/Add(T ) = C/Prod(T )
is pretriangulated.

Example. If Λ is a ring, then Λ is product-complete iff Λ is left coherent and
right perfect. If J is an injective cogenerator of Mod(Λ), then J is product-complete
iff Λ is right Noetherian.

The following result shows that there are nicely behaved (co)torsion pairs in a
Cohen-Macaulay category C, provided that C admits a product-complete projective
generator or injective cogenerator.

Theorem 4.1. Let C be a Cohen-Macaulay abelian category with exact products
and coproducts, and let (F,G) be the dualizing adjoint pair of functors for C.

(α) If C admits a product-complete projective generator and F preserves prod-
ucts, then there exists a product-complete object ω ∈ C such that:

(i) (CM(ω), I<∞) is a resolving cotorsion pair in C such that: ̂Prod(ω)
= I<∞ and Prod(ω) = I<∞ ∩ CM(ω).
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(ii)
(
CM(ω)/Prod(ω), I<∞/Prod(ω)

)
is a hereditary torsion pair in the

stable pretriangulated category C/Prod(ω).
(β) If C admits a product-complete injective cogenerator and G preserves co-

products, then there exists a product-complete object T ∈ C such that:
(i) (P<∞,CoCM(T )) is a coresolving cotorsion pair in C such that:

Ãdd(T ) = P<∞ and Add(T ) = P<∞ ∩ CoCM(T )).
(ii)

(
P<∞/Add(T ),CoCM(T )/Add(T )

)
is a cohereditary torsion pair

in the stable pretriangulated category C/Add(T )).

Proof. (α) Let Q be a product-complete projective generator of C. Setting
ω := F (Q), it follows that idω = d < ∞ and therefore Prod(ω) ⊆ I<∞. This

implies that ̂Prod(ω) ⊆ I<∞. Now let Y be an object of finite injective dimension.
Then G(Y ) has finite projective dimension, hence there exists an exact sequence
0 −→ Pt −→ · · · −→ P1 −→ P0 −→ G(Y ) −→ 0 where the Pi are projective. Since Q is a
product-complete projective generator, each Pi lies in Add(Q) = Prod(Q). Since
F preserves products and is exact restricted to P<∞, we have an exact sequence
0 −→ ωt −→ · · · −→ ω1 −→ ω0 −→ FG(Y ) −→ 0 in C where each ωi lies in Prod(ω). Since

FG(Y )
∼=−→ Y it follows that Y lies in ̂Prod(ω). We infer that ̂Prod(ω) = I<∞. Note

that since F preserves products and coproducts and Add(Q) = Prod(Q), it follows
that Add(ω) = Prod(ω), hence ω is product complete. Consider now the category
Xω := {C ∈ C | Extn(C,ω) = 0, ∀n ≥ 1} which contains CM(ω). Let X ∈ Xω and

let 0 −→ X
µ−→ I −→ Σ(X) −→ 0 be exact where I is injective. By the above argument

there exists a short exact sequence (E) : 0 −→ K −→ ω0 −→ I −→ 0 where the object K

lies in ̂Prod(ω) and the object ω0 lies in Prod(ω). Forming the pull-back µ(E) of the

extension (E) along the morphism µ and using that Extn(Xω, ̂Prod(ω)) = 0, ∀n ≥ 1,
we infer that the extension µ(E) splits. Hence X factors through ω0. Since µ is

monic, there exists a short exact sequence 0 −→ X
µ−→ ω0 −→ X ′ −→ 0. Since Prod(ω)

is covariantly finite, there exists a short exact sequence 0 −→ X
g−→ ωX −→ X ′ −→ 0

where ωX is a left Prod(ω)-approximation of X. Applying C(−, ω) to this sequence,
it follows directly that X ′ lies in Xω. Hence Prod(ω) is an injective cogenerator of
Xω. This implies that Xω = CM(ω). Since idω = d < ∞, the dth syzygy object

Ωd(C) of any object C ∈ C lies in CM(ω). Hence ĈM(ω) = C. Then by Proposition

V.4.6 we have a cotorsion pair (CM(ω), ̂Prod(ω)) in C and as was shown above
̂Prod(ω) = I<∞. Obviously Prod(ω) = CM(ω)∩I<∞. Since Prod(ω) is functorially

finite, it follows that the stable categorry C/Prod(ω) is pretriangulated. Then by
Theorem V.3.7 we have that

(
CM(ω)/Prod(ω), I<∞/Prod(ω)

)
is a torsion pair in

C/Prod(ω). Finally it is easy to see, using that CM(ω) is resolving, that the torsion
pair is hereditary. The proof of part (β) is dual and is left to the reader. �

Remark 4.2. The above result holds with the same proof, if C is a Krull-
Schmidt Cohen-Macaulay category which admits a projective object P such that
P = add(P ) and/or an injective object I such that I = add(I).

We have seen that any Gorenstein category is Cohen-Macaulay in an obvious
way. It is natural to ask when a Cohen-Macaulay category is Gorenstein. In this
connection we have the following result.
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Proposition 4.3. Let C be an abelian category with exact products or coprod-
ucts. If C admits a product-complete projeective generator or injective cogenerator,
then the following are equivalent.

(i) C is Gorenstein.
(ii) C is Cohen-Macaulay and silp(C) <∞.

(iii) C is Cohen-Macaulay and spli(C) <∞.

Proof. Obviously (i) implies (ii) and (iii). Assume now that (ii) holds and
let (F,G) be the dualizing adjoint pair of functors for C. Also Q be the product-

complete projective generator and let (CM(ω), ̂Prod(ω)) be the cotorsion pair in C
constructed in Theorem 4.1, where ω = F (Q). Since silp(C) < ∞, we have P ⊆
̂Prod(ω)) = I<∞. Since CM(ω) contains P, we infer that P ⊆ CM(ω)∩ ̂Prod(ω) =

Prod(ω). Now let 0 −→ K −→ P −→ ω −→ 0 be exact with P projective. Since P has
finite injective dimension, it follows that K lies in I<∞. This implies that the above
sequence splits and therefore ω is projective. Hence ω ∈ P = Add(Q) = Prod(Q).
This implies that Prod(ω) ⊆ Prod(Q) = P. It follows that Prod(ω) = P, hence

I<∞ = ̂Prod(ω) = P̂ = P<∞. Then by Theorem 2.2 we conclude that C is
Gorenstein. The proof that (iii) implies (i) is similar and is left to the reader. �

We close this section by discussing the module-theoretic interpretations of the
above results. We say that a ring Λ is right Cohen-Macaulay if there exists a
bimodule ΛωΛ, such that the adjoint pair (− ⊗Λ ω,HomΛ(ω,−)) is dualizing for
Mod(Λ), that is, the functor − ⊗Λ ω : P<∞

Λ −→ I<∞Λ is an equivalence with quasi-
inverse the functor HomΛ(ωΛ,−) : I<∞Λ −→ P<∞

Λ . Prominent examples include
quasi-Frobenius rings, rings of finite global dimension, and more generally Goren-
stein rings. Of course the classical examples are a commutative local Noetherian
Cohen-Macaulay ring and, its non-commutative analogue, a Cohen-Macaulay Artin
algebra, see [9], [11]. We have the following consequence of Theorem 4.1 which gen-
eralizes results of [9], [11].

Corollary 4.4. Let Λ be a right Cohen-Macaulay ring and (F = −⊗Λω,G =
HomΛ(ωΛ,−)) a dualizing adjoint pair of functors for Mod(Λ). If Λω and ωΛ

are finitely presented and Λ is left coherent and right perfect or right Noetherian,
then the trivial extension Λ n ω is right Gorenstein. Moreover if J is an injective
cogenerator, then setting T = HomΛ(ω, J), we have cotorsion pairs in Mod(Λ):(

CM(ω), I<∞Λ

)
and

(
P<∞

Λ ,CoCM(T )
)

with I<∞Λ = ̂Prod(ω) and P<∞
Λ = Ãdd(T ). Moreover there exist torsion pairs(

CM(ω)/Prod(ω), I<∞Λ /Prod(ω)
)

and
(
P<∞

Λ /Add(T ),CoCM(T )/Add(T )
)

in the stable pretriangulated categories Mod(Λ)/Prod(ω) and Mod(Λ)/Add(T ) re-
spectively.

Remark 4.5. It is not difficult to see that the analogue of Proposition 2.8
holds for a Cohen-Macaulay ring which satisfies the assumptions of Corollary 4.4.
In particular any module admits a minimal right CM(ω)-approximation and a min-
imal left CoCM(T )-approximation, and a minimal left I<∞Λ -approximation and a
minimal right P<∞

Λ -approximation.
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Let Λ be a ring which admits a Morita self-duality, for instance an Artin algebra
or a quasi-Frobenius ring. Then mod(Λ) is abelian with enough projective and
injective objects, and it is easy to see that Λ is right Gorenstein or Cohen-Macaulay
iff Λ is left Gorenstein or Cohen-Macaulay. Recall from [9] that a cotilting, resp.

tilting, Λ-module T is called strong, if âdd(T ) = I<∞Λ , resp. ãdd(T ) = P<∞Λ . A
bimodule ΛωΛ is called dualizing for Λ, if ωΛ and Λω are (finitely presented) strong
cotilting modules and the natural ring map Λ −→ EndΛ(ω) is an isomorphism.

We have the following consequence of the above results which extends Proposi-
tion 1.3 of [11] and Corollary 4.14 of [22] from finitely generated over Artin algebras
to arbitrary modules over rings with Morita self-duality.

Corollary 4.6. Let Λ be a ring with Morita self-duality. Then Λ is Cohen-
Macaulay iff there exists a dualizing Λ-bimodule ΛωΛ. Moreover the trivial extension
Λn ω is a Gorenstein ring with Morita self-duality.

Proof. Let D : mod(Λ) −→ mod(Λop) be a Morita duality. If (F,G) is a
dualizing adjoint pair for Mod(Λ), then F = −⊗ωΛ, G = HomΛ(ωΛ,−) and we have
seen that F (Λ) = ωΛ is a strong cotilting module and G(D(Λ)) = HomΛ(ω,D(Λ))
is a strong tilting module, hence DG(D(Λ)) = Λω is a strong cotilting module.
Moreover we have Λ = HomΛ(F (Λ), F (Λ)) ∼= Hom(ωΛ, ωΛ) = EndΛ(ωΛ), so ΛωΛ

is a dualizing bimodule. Conversely let ΛωΛ be a dualizing bimodule. Then by
Proposition 6.6 of [11], which works in our setting, we have that the functors
F = −⊗ωΛ, G = HomΛ(ωΛ,−) induce quasi-inverse equivalences between P<∞Λ and
I<∞Λ . Since Λ admits a Morita self-duality and ωΛ and Λω are finitely presented,
it is easy to see that ωΛ and Λω are product-complete. It follows easily from
this that the equivalence between P<∞Λ and I<∞Λ induced by (F,G), extends to
an equivalence between P<∞

Λ and I<∞Λ . Hence Λ is Cohen-Macaulay. The last
assertion follows from Theorem 4.1. �

We close this section with the following connection between Cohen-Macaulay
and Gorenstein rings which is a consequence of Proposition 4.3.

Corollary 4.7. If Λ is a ring with Morita self-duality, then the following are
equivalent:

(i) Λ is Gorenstein.
(ii) Λ is Cohen-Macaulay and id ΛΛ <∞.
(iii) Λ is Cohen-Macaulay and id ΛΛ <∞.



CHAPTER VIII

Torsion Pairs and Closed Model Structures

Our aim in this chapter is to present and investigate an interesting connection
between torsion and cotorsion pairs on one hand, and closed model structures in
the sense of Quillen [88] on the other hand. Closed model structures and the
associated notion of a closed model category were introduced by Quillen in the
late sixties as the proper conceptual framework for doing homotopy theory in more
general categories than the category of topological spaces. Since (co)torsion pairs
can be regarded as a generalized form of tilting theory, the above connection shows
that tilting theory admits a natural homotopical interpretation in the more general
context of closed model categories. As a byproduct we obtain new classes of torsion
pairs, since closed model structures are omnipresent in algebra and topology. Our
main results in this chapter give a classification of cotorsion pairs in an abelian
category and a classification of torsion pairs in the stable category of an abelian
category, in terms of closed model structures. As a consequence we can obtain a
classification of (co)tilting modules in terms of closed model structures. This is
investigated more closely in [27].

A similar approach to the connection between closed model structures and
cotorsion pairs was developed independently by Mark Hovey in a different context,
see [65]. However our results are quite different.

1. Preliminaries on Closed Model Categories

In this section we collect some basic concepts and results concerning closed
model categories.

Let C be an additive category. Recall that a closed model structure on C in the
sense of Quillen is a triple (C,F,W) of classes of morphisms, satisfying the following
axioms [Mi], i = 2, ..., 5. The morphisms in F are the fibrations, the morphisms in C
are the cofibrations, and the morphisms in W are the weak equivalences. Similarly
we denote by TF = F ∩W the class of trivial fibrations and by TC = C ∩W the
class of trivial cofibrations.

[M2] [Two out of three axiom] If f, g are composable morphisms in C and two
of f, g and f ◦ g are weak equivalences, then so is the third.

[M3] [Retract axiom] If f and g are morphisms in C and f is a retract of g in
the category of morphisms C2, and if g is a weak equivalence, fibration,
or a cofibration, then so is f .

132
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[M4] [Lifting axiom] Consider the following commutative diagram in C:

A
α−−−−→ C

i

y p

y
B

β−−−−→ D

If either i is a cofibration and p is a trivial fibration, or i is a trivial
cofibration and p is a fibration, then there exists a morphism λ : B −→ C
such that i ◦ λ = α and λ ◦ p = β.

[M5] [Factorization axiom] Any morphism α in C admits a factorization α = i◦g,
where i is a cofibration and g is a trivial fibration, and a factorization
α = f ◦ p, where f is a trivial cofibration and p is a fibration.

A closed model category is an additive category C equipped with a closed model
structure (C,F,W), which satisfies the following axiom:

[M1] C has kernels and cokernels.

Note that, contrary to the recent treatments of closed model categories [64],
[62], we don’t require the existence of all small limits and colimits or functoriality of
the factorizations in the axioms [M1] and [M5] respectively, as have been formulated
in [64], [62]. This approach has the advantage that our results are applicable to
a wider class of categories which are of interest in representation theory. As an
important example we mention the category of finitely presented modules over an
Artin algebra.

Consider an additive closed model category C with closed model structure
(C,F,W). We denote by Cof the category of cofibrant objects, that is the ob-
jects C such that 0 −→ C is a cofibration, and by Fib the category of fibrant objects,
that is the objects F such that F −→ 0 is a fibration. Of special importance to us
are the following subcategories:

TCof = {X ∈ C | 0 −→ X is a trivial cofibration} ⊆ Cof

TFib = {Y ∈ C |Y −→ 0 is a trivial fibration} ⊆ Fib

ωc = Cof ∩ TFib and ωf = TCof ∩ Fib.

We call the objects in TCof trivially cofibrant and the objects in TFib trivially
fibrant. Note that ωc, ωf ⊆ Cof ∩Fib, that is the objects of the subcategories ωc, ωf
are fibrant and cofibrant. By the Retract axiom [M2] it follows easily that all the
categories Cof,Fib,TCof,TFib, ωc, ωf are closed under direct summands.

In what follows we shall use repeatedly the following easy result. For a proof
we refer to [64], [62].

Lemma 1.1. (i) If p : B −→ C is a trivial fibration, then any morphism
γ : X −→ C from a cofibrant object X to C factors through p.

(ii) If i : A −→ B is a trivial cofibration, then any morphism α : A −→ Y from
A to a fibrant object Y factors through i.

(iii) Let 0 −→ F −→ A
p−→ B be an exact sequence in C. If p is a fibration then

F ∈ Fib, and if p is a trivial fibration, then F ∈ TFib.

(iv) Let A
i−→ B −→ C −→ 0 be an exact sequence in C. If i is a cofibration then

C ∈ Cof, and if i is a trivial cofibration, then C ∈ TCof.
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A very useful property of model categories is that any one of the classes of
morphisms which occur in the pairs {C,TF}, {TC,F}, characterizes the other via
a lifting property of an appropriate commutative square. Moreover the class W of
weak equivalences is determined by the pair {TC,TF}. To make this precise we
need the following definition.

Consider a commutative diagram in C:

A
α−−−−→ C

i

y p

y
B

β−−−−→ D

Definition 1.2. A lifting of the above square is a morphism λ : B −→ C such
that i ◦ λ = α and λ ◦ p = β. If such a lifting exists, then the morphism i is said to
have the left lifting property with respect to p and p is said to have the right lifting
property with respect to i.

For the easy proof of the following we refer to [64], [62].

Lemma 1.3. (i) A morphism is a cofibration iff it has the left lifting
property with respect to all trivial fibrations.

(ii) A morphism is a trivial cofibration iff it has the left lifting property with
respect to all fibrations.

(iii) A morphism is a fibration iff it has the right lifting property with respect
to all trivial cofibrations.

(iv) A morphism is a trivial fibration iff it has the right lifting property with
respect to all cofibrations.

(v) A morphism is a weak equivalence iff it can be factored as a trivial cofi-
bration followed by a trivial fibration.

For all unexplained concepts and results we use in this chapter, we refer to the
standard references [88], [64], [62].

2. Closed Model Structures and Approximation Sequences

An interesting problem for closed model categories is when a closed model
structure is determined by the subcategories of (trivial) fibrant or cofibrant objects.
This question turns out to be connected with the existence of (co)torsion pairs. In
this section we make preparations for this investigation, by first showing that the
pairs (Cof,TFib) and (TCof,Fib) have properties similar to those of cotorsion pairs.
We give a different description of these subcategories in terms of the morphism
classes, which suggests how to define closed model structures starting from the
subcategories.

We fix throughout an additive closed model category C with closed model
structure (C,F,W). In what follows by a right cofibrant, resp. trivially cofi-
brant, approximation of an object C of C we mean a right Cof-approximation,
resp. TCof-approximation, of C. Similarly by a left fibrant, resp. trivially fibrant,
approximation of an object C of C we mean a left Fib-approximation, resp. TFib-
approximation, of C.
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We begin with the following basic result which shows that there exists a re-
markable similarity between certain exact sequences induced by a closed model
category structure and the approximation sequences induced by a cotorsion pair.

Proposition 2.1. Let C be a closed model category. Then we have the follow-
ing.

(i) The category Cof of cofibrant objects is contravariantly finite in C, and
for any object A in C there exists an exact sequence

0 −→ YA
gA−−→ CA

fA−−→ A

where fA is a right cofibrant approximation of A (and a trivial fibration)
and the object YA ∈ TFib.

(ii) The category Fib of fibrant objects is covariantly finite in C and for any
object A in C there exists an exact sequence

A
gA−−→ FA

fA

−−→ XA −→ 0

where gA is a left fibrant approximation of A (and a trivial cofibration)
and the object XA ∈ TCof.

(iii) The category TCof is contravariantly finite in C, and for any object A in
C there exists an exact sequence

0 −→ FA
ψA−−→ XA

φA−−→ A

where φA is a right trivially cofibrant approximation of A (and a fibration)
and the object FA ∈ Fib.

(iv) The category TFib is covariantly finite in C and for any object A in C
there exists an exact sequence

A
ψA

−−→ Y A
φA

−−→ CA −→ 0

where ψA is a left trivially fibrant approximation of A (and a cofibration)
and the object CA ∈ Cof.

(v) The following orthogonality relations hold:

(Cof/ωc,TFib/ωc) = 0 and (TCof/ωf ,Fib/ωf ) = 0

i.e. any map C −→ Y with C ∈ Cof and Y ∈ TFib, factors through an
object in ωc, and any map X −→ F with F ∈ Fib and X ∈ TCof, factors
through an object in ωf .

Proof. (i), (ii) Let A ∈ C and let 0 −→ CA
fA−−→ A be a factorization of 0 −→ A

into a cofibration followed by a trivial fibration. Then by definition CA is cofibrant.

Consider the exact sequence 0 −→ YA
gA−−→ CA

fA−−→ A in C. Since fA is a trivial
fibration, by Lemma 1.1 we have that YA is in TFib. Also since fA is a trivial
fibration, the same lemma implies that any morphism C −→ A with C cofibrant,
factors through fA. We infer that fA is a right Cof-approximation of A and by
construction fA is a trivial fibration. Part (ii) is dual.

(iii), (iv) Let A be in C. Then by (ii) there exists a trivial cofibration fA : A −→
FA with FA fibrant which is a left fibrant approximation of A. Let FA

c−→ Y A −→ 0
be a factorization of FA −→ 0 into a cofibration and a trivial fibration. Then Y A is
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in TFib and we claim that ψA := fA ◦ c : A −→ Y A is a left TFib-approximation of
A. Indeed since cofibrations are closed under composition, ψA is a cofibration. Let
α : A −→ Y be a morphism with Y ∈ TFib. Consider the diagram

A
α−−−−→ Y

ψA

y y
Y A −−−−→ 0

Since Y −→ 0 is a trivial fibration, by the Lifting axiom, α factors through ψA. Hence
ψA is a left TFib-approximation of A and a cofibration, and then CA := Coker(ψA)
is cofibrant as a cokernel of a cofibration. Part (iii) is dual.

(v) Let Y be in TFib and consider the right cofibrant approximation sequence

0 −→ FY −→ CY
fY−−→ Y of (i). Since any morphism C −→ Y with C cofibrant factors

through CY it suffices to show that CY is in ωc. Since CY is already cofibrant
it suffices to show that CY −→ 0 is a trivial fibration. Consider the following
commutative diagram

A
α−−−−→ CY

i

y y
B −−−−→ 0

where i is a cofibration. Since Y is in TFib, the morphism Y −→ 0 is a trivial
fibration, hence by the Lifting axiom the morphism α◦fY : A −→ Y factors through
i, i.e. there exists a morphism β : B −→ Y such that i ◦ β = α ◦ fY . Hence we have
the commutative square

A
α−−−−→ CY

i

y fY

y
B

β−−−−→ Y

where i is a cofibration and fY is a trivial fibration. Then by the Lifting axiom
[M4], α factors through i. Hence CY −→ 0 is a trivial fibration since it has the
right lifting property with respect to cofibrations. We infer that CF ∈ ωc. Hence
(Cof/ωc,TFib/ωc) = 0. The proof that (TCof/ωf ,Fib/ωf ) = 0 is dual. �

In general the subcategories Cof ∩ TFib and TCof ∩ Fib are neither contravari-
antly nor covariantly finite, see for instance the example after Definition 4.8 below.
However in certain special cases Cof ∩TFib is contravariantly finite and TCof ∩ Fib
is covariantly finite. We thank the referee for the following observation which will
be useful later in connection with the classification of cotorsion pairs.

Lemma 2.2. Let (C,F,W) be a closed model structure in C.
(1) If all objects of C are fibrant, then Cof ∩ TFib = TCof. In particular Cof ∩

TFib is contravariantly finite.
(2) If all objects of C are cofibrant, then TCof ∩ Fib = TFib. In particular

TCof ∩ Fib is covariantly finite.
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Proof. The proof follows directly from Proposition 2.1 and the fact that a
map f in C is a weak equivalence if and only if γ(f) is invertible in the homotopy
category Ho(C) of C, where γ : C −→ Ho(C) is the canonical functor, see [64]. �

As we shall now see the above results allow us to obtain a homological con-
nection between the full subcategories of (trivially) fibrant or cofibrant objects and
the classes of (trivial) fibrations or cofibrations.

For a class F of morphisms in a category C, we denote by P(F) the full sub-
category of C consisting of all objects P with the property that for any morphism
f : A −→ B in F, any morphism P −→ B factors through f . Dually for a class C
of morphisms in C, we denote by I(C) the full subcategory of C consisting of all
objects I with the property that for any morphism g : A −→ B in C, any morphism
A −→ I factors through g. We call the objects in P(F) relative F-projectives and the
objects in I(C) relative C-injectives.

The following result gives another way of describing the objects from classes of
maps, which is more useful for constructing maps on the basis of subcategories.

Proposition 2.3. For a closed model structure (C,F,W) in C we have:

Cof = P(TF), Fib = I(TC), TCof = P(F), TFib = I(C).

Proof. If C is in Cof, and p : A −→ B is a trivial fibration, then by Lemma
1.2((i) any morphism C −→ B factors through p. Hence C is TF-projective. Con-
versely if P is in P(TF), then by Proposition 2.1, there exists a cofibrant approx-
imation fP : CP −→ P of P which is a trivial fibration. Hence fP splits since P is
TF-projective. Since Cof is closed under direct summands and CP is cofibrant, it
follows that P is cofibrant. Hence we have proved that Cof = P(TF).

Now let X be in TCof and let p : A −→ B be a fibration. If α : X −→ B is a
morphism, then by Lemma 1.3(ii) the square

0 −−−−→ Ay p

y
X

α−−−−→ B

admits a lifting since 0 −→ X is a trivial cofibration. Hence X is in P(F). Conversely
if P is F-projective then by Proposition 2.1((iii) there exists a right TCof-approxi–
mation φP : XP −→ P and the morphism φP is a fibration. Hence φP splits, and
this implies that P is in TCof since the latter is closed under direct summands.
This proves that TCof = P(F). The remaining equalities are proved in a similar
way. �

In particular we see that the classes of morphisms F and TF are projective
classes in C and the classes of morphisms C and TC are injective classes in C, in
the sense of relative homological algebra introduced and developed by Eilenberg-
Moore [44].

The above result suggests the following problem. Under what conditions is a
closed model structure (C,F,W) in C determined by its subcategories Cof,Fib,TCof,
TFib? Using Proposition 2.3 and the fact that in a closed model category a mor-
phism f is a weak equivalence if and only if f is a composition of a trivial cofibration
followed by a trivial cofibration, the above problem splits into two parts.
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(i) Let X ,Y,Xt,Yt be full additive subcategories of C. Define C′ to be the
class of Xt-epics, F′ to be the class of Yt-monics, and W′ to be the class of
morphisms which can be written as a composition of a Y-monic followed
by an X -epic. Under what conditions is the triple (C′,F′,W′) a closed
model structure in C?

(ii) If we choose above Xt = TCof, X = Cof, Yt = TFib, Y = Fib, for a closed
model structure (C,F,W) in C, then is it true that (C,F,W) coincides
with the closed model structure (C′,F′,W′)?

In the next sections we will give fairly general answers to the above problem
which is connected rather surprisingly with cotorsion pairs.

3. Cotorsion Pairs Arising from Closed Model Structures

Let C be a closed model category with closed model structure (C,F,W), and
assume from now on that C is abelian. In this section we describe when the pairs
of subcategories (Cof,TFib) and/or (TCof,Fib) are good, or equivalently cotorsion,
pairs in C, and also when there are induced torsion pairs in associated stable cat-
egories. In view of Proposition 2.1, the missing property is the vanishing of Ext1.
Assuming this property we obtain as a consequence that the closed model structure
is determined by the four subcategories.

We begin with the following useful result, valid in any abelian category, which
connects the vanishing of the first extension functor with the lifting property of
commutative squares defined in Section 1, and provides a tool for checking whether
various subcategories in a closed model category are orthogonal with respect to the
vanishing of Ext1.

Let X and Y be in C and consider the following exact commutative diagram:

0y
0 Yy c

y
A

α−−−−→ C

i

y p

y
B

β−−−−→ D

d

y y
X 0y
0

where the sequences 0 −→ A
i−→ B

d−→ X −→ 0 and 0 −→ Y
c−→ C

p−→ D −→ 0 are
exact.
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Extension-Lifting Lemma 3.1. The following statements are equivalent for
fixed objects X and Y in C:

(i) Ext1(X,Y ) = 0.
(ii) Any commutative diagram as above admits a lifting: there exists a mor-

phism λ : B −→ C such that i ◦ λ = α and λ ◦ p = β.

Proof. (i)⇒ (ii) Consider the pull-back diagram

0 −−−−→ Y
ε−−−−→ K

ζ−−−−→ B −−−−→ 0∥∥∥ γ

y β

y
0 −−−−→ Y

c−−−−→ C
p−−−−→ D −−−−→ 0

Since i ◦ β = α ◦ p, there exists a unique morphism φ : A −→ K such that φ ◦ ζ = i
and φ ◦ γ = α. Then we have the following exact commutative diagram

0 −−−−→ A
φ−−−−→ K

ξ−−−−→ L −−−−→ 0∥∥∥ ζ

y η

y
0 −−−−→ A

i−−−−→ B
d−−−−→ X −−−−→ 0

Since the kernel of η is isomorphic to Y , the hypothesis implies that η is split epic,
and its kernel ker(η) : Y −→ L is split monic. By the above diagram ker(η) admits
a factorization ε ◦ ξ. It follows that ε is split monic or equivalently ζ : K −→ B is
split epic. Then by the first diagram above there exists a morphism θ : B −→ C such
that θ◦p = β. Then i◦θ◦p = i◦β = α◦p⇒ (α− i◦θ)◦p = 0. Hence there exists a
unique morphism µ : A −→ Y such that µ ◦ c = α− i ◦ θ = 0. Since Ext1(X,Y ) = 0,

the push-out of the extension 0 −→ A
i−→ B

d−→ X −→ 0 along µ, splits. Hence there
exists a morphism ν : B −→ Y such that i ◦ ν = µ. Then i ◦ ν ◦ c+ i ◦ θ = α. Setting
λ := θ + ν ◦ c we have α = i ◦ λ and λ ◦ p = θ ◦ p + ν ◦ c ◦ p = θ ◦ p = β. Hence
λ : B −→ C has the desired property.

(ii)⇒ (i) Let 0 −→ Y
c−→ C

p−→ X −→ 0 be an extension. Then we have the exact
commutative diagram preceding the lemma, if we set A = C, B = A⊕X, α = 1C ,
β = t(p, 1X), i = (1A, 0), d = t(0, 1X). Then the hypothesis implies that there
exists a morphism t(κ, λ) : C ⊕ X −→ C such that t(κ, λ) ◦ p = 1X . From this it
follows that λ ◦ p = 1X . Hence p splits, that is Ext1(X,Y ) = 0. �

By part (v) of Proposition 2.1 the subcategories Cof and TFib are orthogonal
with respect to Hom in the stable category C/Cof ∩ TFib, and the categories TCof
and Fib are orthogonal with respect to Hom in the stable category C/TCof∩Fib. The
following result gives sufficient conditions for the pairs of subcategories (Cof,TFib)
and (TCof,Fib) to be orthogonal in C with respect to Ext1.

Lemma 3.2. (i) If any trivial fibration is epic, then: ⊥TFib ⊆ Cof.
(ii) If any fibration is epic, then: ⊥Fib ⊆ TCof.

(iii) If any trivial cofibration is monic, then: TCof⊥ ⊆ Fib.

(iv) If any cofibration is monic, then: Cof⊥ ⊆ TFib.
(v) If any monic with cokernel in TCof is a trivial cofibration, then:

Ext1(TCof,Fib) = 0.
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(vi) If any epic with kernel in TFib is a trivial fibration, then:

Ext1(Cof,TFib) = 0.

Proof. We prove only (i), (ii), (v), since the proof of (iii), (iv), (vi) is dual.
(i) Let A ∈ ⊥TFib and consider the right cofibrant approximation sequence

0 −→ YA −→ CA
fA−−→ A of A. Since fA is a trivial fibration, fA is epic. Since

YA ∈ TFib and A ∈ ⊥TFib, the sequence splits. Hence A is cofibrant since it is a
direct summand of CA. We infer that ⊥TFib ⊆ Cof.

(ii) Let A ∈ ⊥Fib and consider the exact sequence 0 −→ FA −→ XA
φA−−→ A where

φA is a right TCof-approximation of A. Then FA is fibrant, and since φA is a
fibration, it is epic. Since A ∈ ⊥Fib, the sequence splits, and we infer that A is in
TCof since it is a direct summand of XA.

(v) Let 0 −→ F
i−→ A −→ X −→ 0 be an extension with F fibrant and X in TCof.

Then by hypothesis i is a trivial cofibration. Since F is fibrant, by Lemma 1.1 the
morphism i splits. Hence Ext1(X,F ) = 0. �

The above lemma suggests to search for necessary and sufficient conditions such
that any (trivial) fibration is an epimorphism and/or any (trivial) cofibration is a
monomorphism. In this connection we have the following result.

Lemma 3.3. (1) Assume that C has enough projectives. Then:

(i) Any fibration is an epimorphism if and only if any projective object is
trivially cofibrant.

(ii) Any trivial fibration is an epimorphism if and only if any projective object
is cofibrant.

(2) Assume that C has enough injectives. Then:

(i) Any cofibration is a monomorphism if and only if any injective object is
trivially fibrant.

(ii) Any trivial cofibration is a monomorphism if and only if any injective
object is fibrant.

Proof. We prove only part (i) of (1). The proof of the other statements is
similar, using Lemma 3.2. First assume that any fibration is an epimorphism. Then
by part (ii) of Lemma 3.2 we infer that any projective object is trivially cofibrant.
Conversely assume that any projective object is trivially cofibrant. Let f : B −→ C
be a fibration, and let ε : P � C be an epimorphism where P is projective. Consider
the following commutative diagram

0 −−−−→ By f

y
P

ε−−−−→ C.

Since any projective object is trivially cofibrant, the map 0 −→ P is a trivial cofi-
bration. Since any fibration has the right lifting property with respect to all trivial
cofibrations, we infer that the above diagram admits a lifting. This implies that f
is an epimorphism. �
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The next result gives sufficient conditions such that the pair of subcategories
(Cof,TFib), resp. (TCof,Fib), forms a cotorsion pair in C. Note that if (Cof,TFib),
resp. (TCof,Fib), is a good pair, then Proposition 2.1 ensures that it is a cotorsion
pair. For examples satisfying the conditions below we refer to the next section.

Proposition 3.4. (1) (Cof,TFib) is a cotorsion pair in C, provided that:

(i) Any cofibration is monic.
(ii) Any trivial fibration is epic and any epic with kernel in TFib is a trivial

fibration.

(2) (TCof,Fib) is a cotorsion pair in C, provided that:

(i) Any fibration is epic.
(ii) Any trivial cofibration is monic and any monic with cokernel in TCof is

a trivial cofibration.

Proof. We prove only part (1) since the proof of (2) is dual. By Proposition
2.1 we know that Cof is contravariantly finite and TFib is covariantly finite. By
parts (i), (iv), (vi) of Lemma 3.2 we have Cof⊥ = TFib and ⊥TFib = Cof. Hence
(Cof,TFib) is a good pair or equivalently a cotorsion pair in C. �

If C has enough projective and injective objects, then using Lemma 3.3 and
Proposition 3.4 we can prove the following main result of this section, which gives
a useful characterization of when (TCof,Fib) or (Cof,TFib) is a cotorsion pair.

Theorem 3.5. Assume that C has enough projective and injective objects.
(1) The following conditions are equivalent.

(i) (TCof,Fib) is a cotorsion pair.
(ii) The following statements hold:

(a) Any fibration is epic.
(b) Any trivial cofibration is monic.
(c) Any monic with cokernel in TCof is a trivial cofibration.

(2) The following conditions are equivalent.

(i) (Cof,TFib) is a cotorsion pair.
(ii) The following statements hold:

(a) Any trivial fibration is epic.
(b) Any cofibration is monic.
(c) Any epic with kernel in TFib is a trivial fibration.

Proof. We prove only part (2) since the proof of (1) is dual. By Proposition
3.4 it suffices to show the (i) implies (ii). Assume that (Cof,TFib) is a cotorsion pair
in C. Then any projective is cofibrant and any injective is trivially fibrant. Hence
by Lemma 3.3 any trivial fibration is epic and any cofibration is monic. Hence it
suffices to show that any epic with trivially fibrant kernel is a trivial fibration. Let

0 −→ Y −→ B
p−→ A −→ 0 be an extension with Y in TFib. By the Lifting axiom,

to show that p is a trivial fibration, it suffices to show that for any commutative
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square

K
α−−−−→ B

i

y p

y
L

β−−−−→ A

where i is a cofibration, there exists a morphism λ : L −→ B which factorizes
α through i and β through p. Since i is a cofibration, we have an exact sequence

0 −→ K
i−→ L −→ C −→ 0 and C is cofibrant. Since Ext1(C, Y ) = 0, Lemma 3.1

shows that the factorizing morphism λ exists. Hence any epimorphism with kernel
in TFib is a trivial fibration. �

Putting together the conditions in (1)(ii) and (2)(ii) of Theorem 3.5, we get the
following characterization of the closed model structures (C,F,W) in C such that
both pairs (Cof,TFib) and (TCof,Fib) are good or equivalently cotorsion in C.

Theorem 3.6. Let C be an abelian closed model category with enough projective
and injective objects. Then the following conditions are equivalent.

(i) (a) Any fibration is epic and any epic with kernel in TFib is a trivial
fibration.

(b) Any cofibration is monic and any monic with cokernel in TCof is a
trivial cofibration.

(ii) (Cof,TFib) and (TCof,Fib) are cotorsion pairs in C.

Under the assumptions of Theorem 3.6, the results of this chapter, combined
with the results of Chapter V, imply the following existence result for torsion pairs
in suitable stable pretriangulated categories.

Corollary 3.7. Let C be an abelian closed model category with enough pro-
jective and injective objects. If (Cof,TFib) and (TCof,Fib) are cotorsion pairs in C,
then we have the following.

(i) If ωc is functorially finite in C, then Cof is closed under kernels of epi-
morphisms if and only if (Cof/ωc,TFib/ωc) is a torsion pair in the pre-
triangulated category C/ωc.

(ii) If ωf is functorially finite in C, then Fib is closed under cokernels of
monomorphisms if and only if (TCof/ωf ,Fib/ωf ) is a torsion pair in the
pretriangulated category C/ωf .

Combining Theorem VI.3.2 and the above results, we get the following conse-
quence which gives sufficient conditions for the existence of cotorsion triples arising
from closed model structures.

Corollary 3.8. Let C be an abelian closed model category with enough pro-
jective and injective objects. If (Cof,TFib) and (TCof,Fib) are cotorsion pairs in C
and TFib = TCof, then (Cof,TFib = TCof,Fib) is a cotorsion triple in C and the
assignments C 7→ FC and F 7→ CF induce inverse equivalences:

Φ : Cof/ωc
≈−→ Fib/ωf and Ψ : Fib/ωf

≈−→ Cof/ωc.

We close this section with the following result which gives a partial answer to
the problem posed in Section 2.
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Proposition 3.9. Let C be an abelian closed model category with closed model
structure (C,F,W). If C has enough projective and injective objects and (Cof,TFib)
and (TCof,Fib) are cotorsion pairs in C, then the triple of morphisms (C,F,W) is
completely determined by the subcategories Cof,Fib,TCof,TFib. More precisely:

(i) F is the class of TCof-epics with fibrant kernel.
(ii) C is the class of TFib-monics with cofibrant cokernel.

(iii) TF is the class of Cof-epics with trivially fibrant kernel.
(iv) TC is the class of Fib-monics with trivially cofibrant cokernel.
(v) W is the class of morphisms which can be written as a composition of

a Fib-monic with trivially cofibrant cokernel followed by a Cof-epic with
trivially fibrant kernel.

Proof. We prove only assertion (i) since the proof of the other assertions is
similar. For a subcategory X ⊆ C, we denote by E(X ) the class of X -epics. By
Proposition 2.3 we have P(F) = TCof. Hence E(P(F)) = E(TCof). Since obviously
F ⊆ E(P(F)), we have F ⊆ E(TCof). Since TCof is contravariantly finite and C has
enough projectives, E(TCof) consists of epics. Since by Lemma 1.2 the kernel of a
fibration is fibrant, it suffices to show that any TCof-epic p with fibrant kernel is
a fibration. By Lemma 1.3 it suffices to show that p has the right lifting property
with respect to trivial cofibrations. This follows from the Extension-Lifting Lemma
3.1 and condition (ii) of Theorem 3.6. �

For a more complete answer to the problem of which closed model structures
are determined by objects we refer to Theorems 4.6 and 4.7 below.

Remark 3.10. Hovey in [64] proves independently a version of Theorem 3.6,
by using closed model structures compatible with a proper class of short exact
sequences in C in a suitable sense, and he does not use enough projective and
injective objects. Moreover he implicitly proves an equivalent version of the first
part of the Extension-Lifting Lemma 3.1 in the setting of closed model categories.

4. Closed Model Structures Arising from Cotorsion Pairs

In this section we describe all cotorsion pairs in an abelian closed model cate-
gory in terms of closed model structures. This description, which is based on the
construction of maps in terms of subcategories, will be used in the next section for
the classification of all torsion pairs of a stable category. Although all the results of
this section are valid (with the necessary modifications) in any abelian category, as
in Chapter V, for simplicity we assume throughout this section that C is an abelian
category with enough projective and injective objects.

Projective Closed Model Structures. For the construction of closed model
structures in terms of subcategories, the results of the previous sections suggest
to start with a pair (X ,Y) of full additive subcategories in C, which are closed
under direct summands and isomorphisms. Fixing this setup, our principal aim
is to construct a closed model structure in C out of the triple of subcategories
(X ,Y,X ∩ Y), provided that the subcategories X , Y and X ∩ Y satisfy certain
finiteness and orthogonality conditions.

We set ω := X ∩ Y and consider the following classes of morphisms in C:
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(i) Cω is the class of monics with cokernel in X .
(ii) TCω is the class of split monics with cokernel in ω.

(iii) Fω is the class of ω-epics.
(iv) TFω is the class of epics with kernel in Y.
(v) Wω is the class of morphisms α which admit a factorization α = α1 ◦ α2

where α1 ∈ TCω and α2 ∈ TFω.

We call the morphisms in Fω, resp. TFω, projective ω-fibrations, resp. pro-
jective ω-trivial fibrations. We call the morphisms in Cω, resp. TCω, projective
ω-cofibrations, resp. projective ω-trivial cofibrations. Finally we call the morphisms
in Wω, projective ω-weak equivalences. Our aim is to investigate when the triple
(Cω,Fω,Wω) is a closed model structure in C.

The motivating source for the above definitions is the following example which
produces a closed model structure out of a specific cotorsion pair. In a sense this
example is the “trivial” case of the more general theory that follows.

Example. Let C be an abelian category with enough projective objects. Then
(P, C) is a cotorsion pair in C with P = P ∩ C contravariantly finite. It follows
easily that the class of projective P-(trivial) cofibrations coincides with the class of
split monics with projective cokernel. Similarly the class of projective P-(trivial)
fibrations coincides with the class of epimorphisms. Finally the class of projective
P-weak equivalences coincides with the class of morphisms α which admit a fac-
torization α = α1 ◦ α2, where α1 is a split monic with projective cokernel and α2

is an epimorphism. It is easy to see that the triple (CP ,CP ,WP) is a closed model
structure in C with Cof = TCof = P and TFib = Fib = C. If α : A −→ B is a

morphism in C, then we have a factorization α : A
(1A,0)−−−−→ A ⊕ P

t(α,f)−−−−→ B, where
f : P −→ B is an epimorphism with P projective. It follows that any morphism in
C is a projective P-weak equivalence.

We begin with the following useful result which gives, under some reasonable
conditions, a handy description of the projective ω-weak equivalences.

Lemma 4.1. Assume that ω is contravariantly finite, Ext1(X ,Y) = 0 and
(X/ω)⊥ = Y/ω. If X contains the projectives and admits ω as a cogenerator,
then the following are equivalent for a morphism α : A −→ B in C.

(i) α : A −→ B is in Wω.
(ii) (X,α) : (X,A) −→ (X,B) is invertible in C/ω, for any X ∈ X .

Proof. We observe first that the contravariant finiteness of ω implies that
C/ω is left triangulated. Assume that α is in Wω. Then there exists a factorization

A
(1A,0)−−−−→ A ⊕ T

t(α,κ)−−−−→ B, where T is in ω and t(α, κ) is epic with kernel in Y.
Since Ext1(X ,Y) = 0, the morphism t(α, κ) is ω-epic, hence we have a left triangle

Ω(B) −→ Y −→ A
α−→ B in C/ω. Applying (X,−) to this triangle, we have the

following commutative diagram:

C(X,A⊕ T )
(X,t(α,κ))−−−−−−−→ C(X,B)

π1

y π2

y
C/ω(X,A)

(X,α)−−−−→ C/ω(X,B)

(†)
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Since Ext1(X ,Y) = 0, the morphism C(X, t(α, κ)) is epic for any X ∈ X . By the
above diagram this implies that (X,α) is epic. However since the cone of α is in
Y/ω it follows that (X,α) is monic. Hence (X,α) is invertible for any X in X .
Conversely assume that this condition holds. First we show that if α : A −→ B is
an ω-epic, such that (X,α) is invertible for any X in X , then α is epic with kernel
in Y. Consider the commutative diagram

C(X,A)
(X,α)−−−−→ C(X,B)

π1

y π2

y
C/ω(X,A)

(X,α)−−−−→ C/ω(X,B)

(††)

Let X be in X and let f : X −→ B be a morphism. Then by the above diagram
there exists a unique morphism g : X −→ A, such that g ◦ α = f . Hence f − g ◦ α
factors through a right ω-approximation τB : T −→ B, say as: f − g ◦ α = λ ◦ τB ,
where λ : TB −→ B. Since α is an ω-epic, there exists a morphism µ : TB −→ A
such that µ ◦ α = τB . Then f − g ◦ α = λ ◦ µ ◦ α. Hence f = (g + λ ◦ µ) ◦ α. It
follows that any morphism from an object of X to B factors through α. Since X
contains the projectives, this implies that α is an epimorphism. It remains to show
that the kernel Y of α is in Y. Since ω is an (Ext-injective) cogenerator of X we
have that ω is covariantly finite in X and the cokernel of a left ω-approximation of
any object of X lies in X . In particular the suspension functor Σ : X/ω −→ X/ω
is defined and we have a natural isomorphism (Σ(X), A)

∼=−→ (X,Ω(A)) in C/ω,
for any X ∈ X and any object A in C. Now since α is an ω-epic, we have a left

triangle Ω(B) −→ Y −→ A
α−→ B in C/ω. Since (X,α) is invertible for any X ∈ X ,

applying to the above diagram the functor (X/ω,−) and using the above adjunction
isomorphism, we infer that Y ∈ (X/ω)⊥ = Y/ω. Hence the kernel Y of α lies in Y.

Now let α : A −→ B be such that (X,α) is invertible for any X in X . Consider
the ω-epic t(α, τB) : A ⊕ TB −→ B, where τB : TB −→ B is a right ω-approximation
of B. This morphism is obviously isomorphic to α in C/ω. Hence it enjoys the
same property as α. Then by the above argument we infer that t(α, τB) is epic

with kernel in Y. Then α admits a factorization A
(1A,0)−−−−→ A⊕TB

t(α,τB)−−−−−→ B, where
TB is in ω and t(α, τB) is in TFω. Hence α is in Wω. �

The following first main result of this section generalizes the previous exam-
ple and gives necessary and sufficient conditions for the existence of closed model
structures in C arising from cotorsion pairs.

First we recall that the homotopy category Ho(C) of a closed model category
structure (C,F,W) is defined as the category of fractions C[W−1], obtained by
formally inverting the weak equivalences, see [88]. A more convenient description
of the homotopy category is that Ho(C) is equivalent to the factor category Cof ∩
Fib/∼ of the category of fibrant and cofibrant objects modulo a suitable equivalence
relation ∼, called the homotopy relation, defined on the class of morphisms between
fibrant and cofibrant objects.

Example. The homotopy category of the closed model structure in C con-
structed in the example before Lemma 4.1 is trivial. This follows from the fact that
all morphisms are weak equivalences.
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Theorem 4.2. Let X and Y be full subcategories of C and let ω = X ∩Y. Then
the following conditions are equivalent:

(i) The triple (Cω,Fω,Wω) defines a closed model structure in C such that:
Cω is the class of cofibrations, Fω is the class of fibrations, and Wω is
the class of weak equivalences.

(ii) (X ,Y) is a cotorsion pair and ω is contravariantly finite in C.

If (ii) holds, then Cofω = X and TCofω = ω, and TFibω = Y and Fibω = C.
Moreover the associated Quillen homotopy category Ho(C) is equivalent to the stable
right triangulated category X/ω.

Proof. (i) ⇒ (ii) If the triple (Cω,Fω,Wω) defines a closed model structure
in C, then obviously we have Cofω = X , TCofω = ω, TFibω = Y and Fibω = C.
Then the assertion follows by Propositions 2.1 and 3.4(1).

(ii) ⇒ (i) We check the axioms [Mi], i = 1, ..., 5, of a closed model category.
First note that [M1] holds since C as an abelian category has kernels and cokernels.

[M4] Consider a commutative diagram

A
α−−−−→ C

i

y p

y
B

β−−−−→ D

Assume first that i is in Cω and p is in TFω. Then i is monic with cokernel in X
and p is epic with kernel in Y. Since Ext1(X ,Y) = 0, there exists a lifting by the
lifting-extension Lemma 3.1. Assume now that i is in TCω and p is in Fω. Since i is

a split monic with cokernel in ω we can assume that i is the inclusion A
(1,0)−−−→ A⊕T

where T ∈ ω, and then the morphism β is of the form t(β1, β2) : A⊕T −→ D. Since
p is ω-epic and T is in ω, there exists a morphism t : T −→ C such that t ◦ p = β2.
Then the morphism t(α, t) : A ⊕ T −→ C is a lifting of the above square. Hence
axiom [M4] holds.

[M5] Let α : A −→ B be a morphism in C. Let τB : TB −→ B be a right ω-

approximation of B. Then α can be factorized as follows A
(1A,0)−−−−→ A⊕TB

t(α,τ)−−−−→ B
where the first morphism is in TCω and the second is in Fω. Hence α can be written
as a composition of a morphism in TCω followed by a morphism in Fω. To prove
that α can be written as a composition of a morphism in Cω followed by a morphism
in TFω, we show first that any monic µ and any epic ε has this property. So let
µ : A −→ B be monic, and consider the following exact commutative diagram

0 −−−−→ A
i−−−−→ K

ξ−−−−→ XC −−−−→ 0∥∥∥ p

y fC

y
0 −−−−→ A

µ−−−−→ B
β−−−−→ C −−−−→ 0

where the second row is induced by pulling-back the first row along the right X -
approximation of C. Then by definition i is in Cω. Since X is contravariantly finite
and contains the projectives, the morphism fC , hence the morphism p, is epic.
Since (X ,Y) is a cotorsion pair, the kernel of fC , hence the kernel of p, lies in Y.
It follows that p is in TFω. Hence any monic is a composition of a morphism in Cω
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followed by a morphism in TFω. Next let β : B −→ C be epic. Then consider the
following exact commutative diagram:

0 −−−−→ K −−−−→ B
ε−−−−→ C −−−−→ 0

gK
y i

y ∥∥∥
0 −−−−→ Y K −−−−→ L

p−−−−→ C −−−−→ 0

where the second row is induced by pushing-out the upper row along the left Y-ap–
proximation of K. Then by definition p lies in TFω. Since Y contains the injectives,
gK is monic. Since (X ,Y) is a cotorsion pair, the cokernel of gK , hence the cokernel
of i, lies in X . Hence i is in Cω and this shows that any epic is a composition of a
morphism in Cω followed by a morphism in TFω.

Assume now that α is arbitrary and consider the factorization A
(1A,0)−−−−→ A ⊕

B
t(α,1B)−−−−−→ B of α. Since (1A, 0) is monic, there exists a factorization (1A, 0) : A

i1−→
D

p1−→ A⊕B, where i1 ∈ Cω and p1 ∈ TFω. Then the morphism p1 ◦ t(α, 1B) : D −→
B is epic, hence it admits a factorization p1◦t(α, 1B) : D

i2−→ E
p2−→ B where i2 ∈ Cω

and p2 ∈ TFω. It suffices to show that the monic i1 ◦ i2 : A −→ E has cokernel in X .
Since i1 and i2 are monics, there exists a short exact sequence 0 −→ Coker(i1) −→
Coker(i1 ◦ i2) −→ Coker(i2) −→ 0. Since Coker(i1),Coker(i2) ∈ X and X is closed
under extensions, it follows that Coker(i1 ◦ i2) ∈ X . Hence i := i1 ◦ i2 ∈ Cω, and
consequently α admits a factorization α = i ◦ p where i ∈ Cω and p := p2 ∈ TFω.

Before we prove that the remaining axioms [M3] and [M2] hold, we recall from
Chapter V, Section 3, that the good pair (X ,Y) satisfies all the properties of Lemma
4.1. Hence a morphism α : A −→ B is in Wω iff (X,α) : (X,A) −→ (X,B) is invertible
for any X ∈ X .

[M3] Let α : A −→ B be a retract of a morphism β : C −→ D in the category of

morphisms. Choosing direct sum decompositions C
∼=−→ A ⊕ A′ and D

∼=−→ B ⊕ B′
it is easy to see that we have a commutative square

C
∼=−−−−→ A⊕A′

β

y y(α 0
0 α′

)
D

∼=−−−−→ B ⊕B′.
If β ∈ Cω, then β is monic with cokernel in X . Then from the diagram above it
follows that α is monic and its cokernel lies in X as a direct summand of Coker(β).
If β ∈ Fω, i.e. β is ω-epic, then trivially so is α. Finally if β ∈Wω, then obviously
the same is true for α, using the description of morphisms in Fω.

[M2] We have to show that if two out of the three morphisms α, β, α ◦ β are in
Wω, then so is the third. This follows from the description of morphisms of Wω in
Lemma 4.1.

Assume now that (ii) holds and consider the closed model structure of (i). It
is not difficult to see that two morphisms α, β : A −→ B in C are left homotopic iff
α−β factors through an object in Y and they are right homotopic iff α−β factors
through an object in ω. Since C ∩X = X is the full subcategory of cofibrant-fibrant
objects, and a morphism between objects of X factors through an object in Y iff
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it factors through an object in ω, we infer that Ho(C) is equivalent to the stable
category X/ω and the canonical functor from C to the homotopy category Ho(C) is
isomorphic to the functor C −→ X/ω, A 7→ R(A), where as usual R : C/ω −→ X/ω
is the right adjoint of the inclusion X/ω ↪→ C/ω. �

Let (X ,Y) be a cotorsion pair in C with ω = X ∩ Y contravariantly finite.

Definition 4.3. The closed model structure (Cω,Fω,Wω) of Theorem 4.2 is
called the projective ω-closed model structure associated to the cotorsion pair
(X ,Y).

The following example shows that there are cotorsion pairs (X ,Y) not defining
a projective closed model structure.

Example. Let Λ be a left coherent right IF-ring which is not right Noetherian,
and consider the flat cotorsion pair

(
Flat(Λ),Flat(Λ)⊥

)
in Mod(Λ). Then as in

the last example of Section V.4, the subcategory ω = Flat(Λ) ∩ Flat(Λ)⊥ is not
contravariantly finite. Hence in general there cannot exist a projective ω-closed
model structure in Mod(Λ) induced by the flat cotorsion pair.

Example. Let G be a group and k be a commutative ring of coefficients,
and let B be the set of functions G −→ k which take only finitely many different
values in k. If X = {X ∈ Mod(kG) | B ⊗k X is projective} and ω is the full
subcategory of projective kG-modules, then by the example after Remark V.4.7,

we have a cotorsion pair (X , ω̂) in X̂ = {X ∈ Mod(kG) | pdkGB⊗kX <∞}. Since
the subcategory ω of projective kG-modules is contravariantly finite and all closed

model theoretic constructions of Theorem 4.2 can be performed in X̂ , Theorem 4.2

produces a closed model structure in X̂ . For this closed model structure the modules
in X are the cofibrant objects and the modules of finite projective dimension are the
trivially fibrant objects. The associated Quillen homotopy category is the stable
category X/ω, which is triangulated by Proposition VI.1.2. Note that the existence
of this closed model structure was first observed by D. Benson, see Theorem 10.2
in [28]. By the example after Remark V.4.7, the above closed model structure
extends to a closed model structure in the whole module category Mod(kG), if
k has finite global dimension and the group G is of type FP∞ and belongs to
Kropholler’s class of groups HF.

As mentioned in Chapter II that the homotopy category of an abelian closed
model category C is pretriangulated. To state our next result we need to recall a
definition from [64].

Definition 4.4. A closed model structure in C is called stable, if the associated
pretriangulated homotopy category is triangulated.

The following characterizes the stable closed model structures arising from co-
torsion pairs.

Corollary 4.5. Let X and Y be full subcategories of C and let ω = X ∩ Y.
Then the following conditions are equivalent:

(i) The triple (Cω,Fω,Wω) is a stable closed model structure.
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(ii) (X ,Y) is a cotorsion pair in C, and a map is a projective ω-fibration
(= ω-epic) iff it is an epimorphism.

(iii) (X ,Y) is a cotorsion pair in C with X ∩ Y = P.

Proof. By Theorem 4.2 we know that the homotopy category of the projective
ω-closed model structure is equivalent to X/ω. As in Theorem VI.2.1 we have
that the latter is triangulated iff P = ω. Hence (i) is equivalent to (iii). Clearly
the class of projective ω-fibrations Fω, i.e. of ω-epics, coincides with the class of
epimorphisms if and only if ω = P. Hence (ii) is equivalent to (iii). �

Using Theorem 4.2 we can now prove our second main result of this section,
which gives a classification of closed model structures arising from cotorsion pairs
in C.

Theorem 4.6. The map Φ : (X ,Y) 7−→
(
CX∩Y ,FX∩Y ,WX∩Y

)
gives a bijec-

tive correspondence between cotorsion pairs (X ,Y) in C with X ∩Y contravariantly
finite in C, and closed model structures (C,F,W) in C such that:

(i) Any cofibration is monic and any object of C is fibrant.
(ii) Trivial fibrations are epics and any epic with kernel in TFib is a trivial

fibration.

The inverse bijection is given by Ψ : (C,F,W) 7−→ (Cof,TFib).
The above bijection induces a bijective correspondence between cotorsion pairs

(X ,Y) in C with X ∩ Y = P, stable closed model structures satisfying (i), (ii), and
closed model structures (C,F,W) satisfying (i), (ii), and (iii), where:

(iii) F consists of the epimorphisms.

Proof. If (X ,Y) is a cotorsion pair in C with ω = X ∩Y contravariantly finite
in C, then by Theorem 4.2, Φ(X ,Y) = (Cω,Fω,Wω) is a closed model structure in
C which satisfies the conditions (i) and (ii). Finally observe that by Theorem 4.2
we have ΨΦ(X ,Y) = Ψ(Cω,Fω,Wω) = (X ,Y).

Conversely let (C,F,W) be a closed model structure in C satisfying the condi-
tions (i) and (ii). Then by Theorem 3.5 we have that Ψ(C,F,W) = (Cof,TFib) is a
cotorsion pair in C. Since any object of C is fibrant, by Lemma 2.2 it follows that
Cof ∩ TFib = TCof is contravariantly finite.

It remains to show that ΦΨ(C,F,W) = Φ(Cof,TFib) = (C,F,W). In other
words we have to show that the closed model structures(

CCof∩TFib, FCof∩TFib, WCof∩TFib
)

and
(
C, F, W

)
coincide. We set ω := Cof ∩ TFib which is equal to TCof by the above argument.
We first prove that C = Cω. If i is in C, then by (i) we have that i is monic. Since
the cokernel of a cofibration is cofibrant we have that Coker(i) lies in Cof. Hence i
is a projective ω-cofibration and this shows that C ⊆ Cω. Now let i : A −→ B be a

projective ω-cofibration. Then we have a short exact sequence 0 −→ A
i−→ B −→ C −→

0 where C is cofibrant. To show that i is a projective ω-cofibration, by Lemma
1.3 it suffices to show i has the left lifting property with respect to all projective
ω-trivial fibrations, which by definition are exactly the epimorphisms with kernel
in TFib. This follows by the Extension-Lifting Lemma 3.1, since C is cofibrant and
Ext1(C,TFib) = 0. Next we show that F = Fω. Let p : C −→ D be a projective
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ω-fibration, that is p is an ω-epic. To show that p is a fibration it suffices to show
that p has the right lifting property with respect to all trivial cofibrations. Let
i : A −→ B be a trivial cofibration; then Coker(i) is in TCof = ω. By Lemma 1.1,
any morphism out of A to a fibrant object factors through i. Since all objects are
fibrant, it follows that i is split monic. Hence i is a split monic with cokernel in ω,

and then without loss of generality we can assume that i is given by A
(1A,0)−−−−→ A⊕T

where T ∈ ω. Consider a commutative diagram

A
α−−−−→ C

(1A,0)

y p

y
A⊕ T

t(κ,λ)−−−−→ D

Since T is in ω and p is an ω-epic, there exists a morphism τ : T −→ C such that
τ ◦ p = λ. Then the morphism t(α, τ) : A⊕ T −→ C is a lifting of the above square.
We infer that Fω ⊆ F. Conversely let p : C −→ D be a fibration. Let T be in ω and
let α : T −→ D be a morphism. Since ω = TCof we have that 0 −→ T is a trivial
cofibration. Since any fibration has the right lifting property with respect to trivial
cofibrations, the following commutative diagram

0 −−−−→ Cy p

y
T

α−−−−→ D

admits a lifting, which means that α factors through p. Hence p is an ω-epic, that is
p ∈ Fω, and this shows that F ⊆ Fω. We infer that F = Fω. It remains to show that
W = Wω. This follows easily from the fact that in a closed model structure the
fibrations together with the cofibrations determine the weak equivalences, see [62].
This completes the proof that the functions Φ and Ψ are mutually inverse. �

For later reference we call a closed model structure projective closed model
structure if it satisfies the conditions (i) and (ii) of Theorem 4.6.

Example. Let Λ be a right pure semisimple ring. Then there exists a bijective
correspondence between projective closed model structures in Mod(Λ) and cotorsion
pairs in Mod(Λ). This follows easily from Theorem 4.6 and the fact that over a right
pure semisimle ring, any subcategory of Mod(Λ) which is closed under coproducts
and direct summands is contravariantly finite.

Injective Closed Model Structures. What we proved so far in this section
can be dualized. For the convenience of the reader we state the dual results, leaving
their proof to the reader.

Keeping the set-up of this section we continue to assume that X and Y are
full additive subcategories of the abelian category C which are closed under direct
summands and isomorphisms, and we let ω = X ∩ Y.

In a dual manner we consider the following classes of morphisms in C:
(i) Cω is the class of ω-monics.

(ii) TCω is the class of monics with cokernel in X .
(iii) Fω is the class of epics with kernel in Y.
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(iv) TFω is the class of split epics with kernel in ω.
(v) Wω is the class of morphisms α which admit a factorization α = α1 ◦ α2

where α1 ∈ TCω and α2 ∈ TFω.

We call the morphisms in Fω, resp. TFω, injective ω-fibrations, resp. injective ω-
trivial fibrations. We call the morphisms in Cω, resp. TCω, injective ω-cofibrations,
resp. injective ω-trivial cofibrations. Finally we call the morphisms in Wω, injective
ω-weak equivalences.

The following result, which we state without proof, gives the dual version of
Theorems 4.2 and 4.6.

Theorem 4.7. (1) The following are equivalent:

(i) The triple (Cω,Fω,Wω) defines a closed model structure on C such that:
Cω is the class of cofibrations, Fω is the class of fibrations, and Wω is
the class of weak equivalences.

(ii) (X ,Y) is a cotorsion pair and ω is covariantly finite in C.

If (ii) holds, then Cofω = C and TFibω = ω, and Fibω = Y and TCofω = X .
Moreover the associated Quillen homotopy category Ho(C) is equivalent to the stable
left triangulated category Y/ω.

(2) The triple (Cω,Fω,Wω) is a stable closed model structure in C if and only
if (X ,Y) is a cotorsion pair in C and the injective ω-cofibrations are the monomor-
phisms if and only if (X ,Y) is a cotorsion pair in C with X ∩Y = I (I, as always,
denotes the full subcategory of injective objects of C).

(3) The map Φ̂ : (X ,Y) 7−→
(
CX∩Y ,FX∩Y ,WX∩Y

)
gives a bijective corre-

spondence between cotorsion pairs (X ,Y) in C with X ∩ Y covariantly finite in C
and closed model structures (C,F,W) in C such that:

(i) Any fibration is epic and any object of C is cofibrant.
(ii) Trivial cofibrations are monics and any monic with cokernel in TCof is

a trivial cofibration.

The inverse bijection is given by: Ψ̂ : (C,F,W) 7−→ (TCof,Fib).
The above bijection induces a bijection between cotorsion pairs (X ,Y) in C

with X ∩ Y = I, stable closed model structures satisfying (i), (ii), and closed model
structures (C,F,W) satisfying (i), (ii) and (iii), where:

(iii) C consists of the monomorphisms.

Let (X ,Y) be a cotorsion pair in C with ω = X ∩ Y covariantly finite.

Definition 4.8. (1) The closed model structure (Cω,Fω,Wω) of part (1) of
Theorem 4.7 is called the injective ω-closed model structure associated to the
pair (X ,Y).

(2) A closed model structure is called injective closed model structure if
it satisfies the conditions (i) and (ii) of part (3) of Theorem 4.7.

Example. Let Λ be a left coherent ring and let X = Flat(Λ) be the category
of flat right Λ-modules. Then ω = X ∩X⊥ which, by Section V.4, is the category of
flat and pure-injective modules, is covariantly finite. Since (X ,X⊥) is a cotorsion
pair, by Theorem 4.7 we get an injective closed model structure in Mod(Λ) where
the flat modules are the trivially cofibrant objects, and the modules in X⊥, widely
known as the cotorsion modules, are the fibrant objects. Note that for this closed
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model structure, ω is the category of cofibrant and trivially fibrant objects, which
by the Example after Definition 4.3 is not always contravariantly finite.

Example. Let Λ be a right pure semisimple ring. Then there exists a bijective
correspondence between injective closed model structures in Mod(Λ) and cotorsion
pairs in Mod(Λ). This follows easily from Theorem 4.7 and the fact that over a right
pure semisimple ring, any subcategory of Mod(Λ) which is closed under products
and direct summands is covariantly finite. The above correspondence combined
with the correspondence of the Example after Theorem 4.6, shows that, over a
right pure semisimpe ring Λ, there exist bijective correspondences between:

• Cotorsion pairs in Mod(Λ).
• Projective closed model structures in Mod(Λ).
• Injective closed model structures in Mod(Λ).

Combining Theorems 4.6 and 4.7 we have the following consequence.

Corollary 4.9. Assume that C has enough projective and injective objects.
Then C is Frobenius if and only if (Cω,Fω,Wω) and (Cω,Fω,Wω) are stable closed
model structures in C.

Frobenius and Functorial Closed Model Structures. We have seen that
Theorems 4.6 and 4.7 give descriptions of projective or injective closed model struc-
tures in C in terms of suitable cotorsion pairs. Hence it is natural to ask the following
question: What is the structure of an abelian category which admits a closed model
structure (C,F,W) which is both projective and injective? Let us call such a closed
model structure (C,F,W) Frobenius. We have the following result which explains
the terminology and in addition shows that a Frobenius closed model structure, if
it exists, is uniquely determined and stable.

Theorem 4.10. Let C be an abelian category.

(i) C is Frobenius if and only if it admits a Frobenius closed model structure.
(ii) For a closed model structure (C,F,W) in C, the following are equivalent:

(a) (C,F,W) is Frobenius.
(b) (C,F,W) is stable, projective and all objects are cofibrant.
(c) (C,F,W) is stable, injective and all objects are fibrant.
(d) C is the class of monomorphisms, F is the class of epimorphisms,

and W is the class of stable equivalences, that is, the morphisms
which are isomorphisms in the stable category modulo projectives or
injectives.

If (C,F,W) is a Frobenius closed model structure in C, then the associated homotopy
category is the stable category C/P.

Proof. (i) (⇒) Assume that C is Frobenius. Then we have the cotorsion pairs
(C,P) and (I, C) in C with P = I functorially finite. It follows easily that the
closed model structures arising, via Theorems 4.2 and 4.7, from these cotorsion
pairs coincide. Hence the resulting closed model structure in C is Frobenius.

(⇐) Let (C,F,W) be a Frobenius closed model structure in C. Then by defini-
tion all objects of C are fibrant and cofibrant, and by Theorems 4.2 and 4.7 we have
cotorsion pairs (C,TFib) and (TCof, C). Hence TFib = I and TCof = P. By Propo-
sition 2.1, TFib is covariantly finite and TCof is contravariantly finite. Hence C has
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enough projective and injective objects. Since all objects are fibrant and cofibrant,
by Lemma 2.2 we have TFib = TCof. Hence P = I, so that C is Frobenius.

(ii) (a)⇒ (d) If (C,F,W) is a Frobenius closed model structure in C, then, by
part (i), it is induced by the cotorsion triple (C,P = I, C); in particular we have
TFib = I = P = TCof and Cof = C = Fib. Then the description of the closed
model structure (C,F,W) follows from Proposition 3.9.

(d)⇒ (a) Since C is the class of monomorphisms and F is the class of epimor-
phisms, we infer that all objects of C are fibrant and cofibrant. By Proposition 2.3
we have TCof = P and TFib = I. Then by Lemma 2.2 we conclude that P = I, so
C is Frobenius. Then part (i) ensures that the closed model structure (C,F,W) is
Frobenius.

(a) ⇒ (b) Let (C,F,W) be a Frobenius closed model structure in C. Then
(C,F,W) is projective and injective, and, by part (i), all objects are fibrant and
cofibrant. By Theorem 4.2 it follows that the associated homotopy category is
equivalent to the stable category C/P. The latter is triangulated since, by part (i),
C is Frobenius. Hence the closed model structure (C,F,W) is stable.

(b) ⇒ (a) If (C,F,W) is a stable projective closed model structure with all
objects cofibrant, then by Theorem 4.6 we have that C/P is triangulated, and this
implies that C is Frobenius. Hence by part (i) the closed model structure (C,F,W)
is Frobenius.

The proof of the equivalence (c)⇔ (a) is similar and is left to the reader. �

Now let (X ,Y) be a cotorsion pair in C with X ∩Y := ω. If ω is contravariantly
finite, then we can define in C the projective ω-closed structure (Cω,Fω,Wω), and
when ω is covariantly finite, we can define in C the injective ω-closed structure
(Cω,Fω,Wω). If ω is functorially finite, so that both closed model structures are
defined, then there is an additional closed model structure defined in C which is
induced by ω. Indeed, by [24] any functorially finite subcategory ω defines a closed
model structure

(
C(ω),F(ω),W(ω)

)
in C, with cofibrations the ω-monics, fibrations

the ω-epics and weak equivalences the morphisms which are isomorphisms in C/ω.
Actually, by [24], the map ω 7→

(
C(ω),F(ω),W(ω)

)
gives a bijection between func-

torially finite subcategories of C and closed model structures in C with all objects
fibrant and cofibrant. The inverse is given by (C,F,W) 7→ TFib = TCof. This
suggests the following definition which will be useful in the next section.

Definition 4.11. (1) If ω is a functorially finite subcategory of C, then the
closed model structure

(
C(ω),F(ω),W(ω)

)
is called the functorial ω-closed mo–

del structure.
(2) A closed model structure in C is called functorial if all objects of C are

fibrant and cofibrant.

For instance a Frobenius closed model structure is functorial, more precisely
it is of the form

(
C(P),F(P),W(P)

)
. Note also that by [24], the Quillen homo-

topy category of a functorial closed model structure is the stable category C/ωcf ,
where ωcf = TCof = TFib. In particular the functorial ω-closed model structure(
C(ω),F(ω),W(ω)

)
arising from a functorially finite subcategory ω, is the stable

pretriangulated category C/ω.
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Remark 4.12. Observe that between the triples (Cω,Fω,Wω), (Cω,Fω,Wω)
we have the following relations:

(i) Fω = TFω which are epics and Cω = TCω which are monics.
(ii) TCofω = Cofω ∩ TFibω and TFibω = Fibω ∩ TCofω.

(iii) TCofω = ω = TFibω and Fibω = C = Cofω.

Remark 4.13. As we pointed out in the Introduction, M. Hovey in [64] initi-
ated independently a study of the connections between cotorsion pairs and closed
model structures in an abelian category. The closed model structures constructed
by Hovey are quite different. First note that Hovey uses two cotorsion pairs to
construct a closed model structure, where fibrations are epimorphisms but in gen-
eral not all objects are fibrant. We use one cotorsion pair to construct a closed
model structure, where all objects are fibrant but the fibrations are not in general
epimorphisms. The following example illustrates the difference.

Let Λ be an Artin algebra and let T be a finitely presented tilting module. Then

by the dual of Proposition V.5.1, we have a cotorsion pair (ãdd(T ), T⊥) in mod(Λ)

such that ãdd(T ) ∩ T⊥ = add(T ) is contravariantly finite. Hence our Theorem 4.2
produces a closed model structure where the fibrations are add(T )-epimorphisms.
If T is not projective then the fibrations are not epimorphisms, hence the closed
model structure we produce does not appear amongst those constructed by Hovey
(for any proper class of short exact sequences in the setting of [64]).

Conversely if we assume the existence of a closed model structure constructed
as in [64], then in general we can not recover it by using our Theorem 4.2 since in
our case all objects are fibrant.

It is not difficult to see that our closed model structure constructed in Theorem
4.2 coincides with the closed model sructure constructed by Hovey if all objects
are fibrant and the class of trivially cofibrant objects coincide with the projective
objects of C. In this case the two identical closed model structures are stable.

5. A Classification of (Co)Torsion Pairs

In this section we classify in terms of closed model structures all cotorsion pairs
(X ,Y) in C with the property that X∩Y is functorially finite in C. This classification
will be used for the classification of torsion pairs in the stable category of C modulo
a functorially finite subcategory. We investigate briefly also the connection between
cotorsion triples and closed model structures. We apply our results to categories of
complexes, obtaining in this way the well-known descriptions of the derived category
as the homotopy category of suitable closed model structures, and to tilting theory
where we obtain a classification of (co)tilting modules over an Artin algebra.

If (X ,Y) is a cotorsion pair in C with ω = X ∩ Y functorially finite, then
by Remark 4.11 there are several compatibility conditions between the projective
ω-closed model structure (Cω,Fω,Wω) and the injective ω-closed model structure
(Cω,Fω,Wω). This suggests the following definition, which can be considered as
“glueing” together closed model structures.

Definition 5.1. An (ordered) pair of closed model structures (C1,F1,W1) and
(C2,F2,W2) in C are called compatible if:

(i) F2 = TF1 which are epics and C1 = TC2 which are monics.
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(ii) TCof1 = TFib2.
(iii) Fib1 = C = Cof2.

Let (C1,F1,W1) and (C2,F2,W2) be a pair of compatible closed model struc-
tures in C. It follows easily from the definition and Lemma 1.3 that TF2 ⊆ F1 and
TC1 ⊆ C2. Then by Proposition 2.3 we have the following relations:

TCof2 = Cof1, TFib1 = Fib2, TCof1 ⊆ Cof2, TFib2 ⊆ Fib1.

Moreover by Proposition 2.1, TCof1 = TFib2 := ω is a functorially finite subcat-
egory of C. Hence the functorial ω-closed model structure (C(ω),F(ω),W(ω)) is
defined in C. This motivates us to make the following definition.

Definition 5.2. Let (C1,F1,W1) and (C2,F2,W2) be a pair of compatible
closed model structures in C. Their intersection (C1,F1,W1) ∩ (C2,F2,W2) is
defined to be the functorial ω-closed model structure (C(ω),F(ω),W(ω)), where
TCof1 = TFib2 := ω.

Using the notion of compatible closed model structures and Theorems 4.6 and
4.7, we arrive at the following consequence which gives a classification of cotorsion
pairs (X ,Y) in C with functorially finite intersection X ∩Y, in terms of closed model
structures.

Theorem 5.3. If the abelian category C has enough projectives and enough in-
jectives, then there exists a bijective correspondence between cotorsion pairs (X ,Y)
in C with X ∩ Y functorially finite in C and compatible closed model structures
(C1,F1,W1) and (C2,F2,W2) in C. The bijection is given as follows:(

X ,Y
)
7−→

{(
CX∩Y ,FX∩Y ,WX∩Y

)
,
(
CX∩Y ,FX∩Y ,WX∩Y

)}
{

(C1,F1,W1), (C2,F2,W2)
}
7−→

(
Cof1,Fib2

)
.

The following consequence of Theorem 5.3 shows that if we have a pair of com-
patible closed model structures in C, then we obtain a torsion pair in the homotopy
category of the closed model structure of their intersection; moreover any torsion
pair in the homotopy category is obtained in this way, provided that the torsion
and the torsion free subcategories are orthogonal with respect to Ext1.

Theorem 5.4. Assume that the abelian category C has enough projectives and
enough injectives and let ω be a functorially finite subcategory of C. Then the
correspondence of Theorem 5.3 induces a bijective correspondence{

torsion pairs (X/ω,Y/ω) in C/ω with Ext1(X ,Y) = 0
}
7−→{

compatible closed model structures (C1,F1,W1) and (C2,F2,W2) in C
such that : Cof1 is closed under kernels of epics, or equivalently

Fib2 is closed under cokernels of monics, and : Cof1 ∩ Fib2 = ω
}
.

Note that under the correspondence of Theorem 5.4:

(i) The stable pretriangulated category C/ω is the homotopy category of the
functorial ω-closed model structure and corresponds to the homotopy
category of the intersection (C1,F1,W1) ∩ (C2,F2,W2).
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(ii) The torsion class X/ω is the homotopy category of the projective ω-closed
model structure and corresponds to the homotopy category of the closed
model structure (C1,F1,W1).

(iii) The torsion-free class Y/ω is the homotopy category of the injective ω-
closed model structure and corresponds to the homotopy category of the
closed model structure (C2,F2,W2).

Remark 5.5. If C = mod(Λ) is the category of finitely generated Λ-modules
over an Artin algebra Λ, then by a recent result of Krause-Solberg [79] it follows
that X ∩Y is functorially finite in mod(Λ), for any (resolving) cotorsion pair (X ,Y)
in mod(Λ). Hence in this case the assumption that X ∩ Y is functorially finite in
Theorems 5.3 and 5.4 can be removed.

It follows by the above result that torsion pairs appear as “glueing” together
homotopy categories of compatible closed model structures inside the homotopy
category of the closed model structure of their intersection. This gives a conceptual
homotopy-theoretic interpretation of the theory developed in Chapters V and VI,
and puts it in the proper framework.

The correspondences given by the above theorems combined with the corre-
spondence of Proposition VI.2.5 allow us to deduce the following.

Corollary 5.6. Let C be a Frobenius abelian category. Then there exist bijec-
tive correspondences between:

(i) Compatible stable closed model structures in C.
(ii) Resolving cotorsion pairs (X ,Y) in C with X ∩ Y the projectives P.

(iii) Hereditary torsion pairs in C/P.

We can define closed model structures in C starting from a subcategory instead
of X ,Y and ω. Indeed, let X be a full preresolving subcategory of C. Define CX to
be the class of monomorphisms with cokernel in X , FX to be the class of all epics,
TCX to be the class of all monics with projective cokernel, TFX to be the class of
epics with kernel in X⊥, and finally WX to be the class of morphisms which can be
written as a composition of a morphism in TCX followed by a morphism in TFX .

Dually, for a precoresolving subcategory Y of C, define CY to be the class of all
monics, FY to be the class of all epics with kernel in Y, TCY to be the class of all
monics with cokernel in ⊥Y, TFY to be the class of epics with injective kernel, and
finally WY to be the class of morphisms which can be written as a composition of
a morphism in TCY followed by a morphism in TFY .

Theorem 5.7. (1) Assume that C is Krull-Schmidt or else C has filtered colimits
and X is closed under filtered colimits. If X∩X⊥ = P, then the triple (CX ,FX ,WX )
is a (stable) closed model structure in C if and only if X is contravariantly finite.

(2) Assume that C is Krull-Schmidt or else C is Grothendieck and TCY is closed
under filtered colimits. If ⊥Y ∩ Y = I, then the triple (CY ,FY ,WY) is a (stable)
closed model structure in C if and only if Y is covariantly finite.

Proof. (1) If the preresolving subcategory X is contravariantly finite, then ei-
ther of the imposed assumptions on C and/or X implies that (X ,X⊥) is a cotorsion
pair in C, see the example at the end of Section V.4. Since X ∩ X⊥ = P is con-
travariantly finite, by Theorem 4.2 we have a closed model structure (CX ,FX ,WX )



5. A CLASSIFICATION OF (CO)TORSION PAIRS 157

and obviously CofX = X , FibY = C, TCofX = P, and TFibX = X⊥. The converse
follows from Proposition 2.1, since CofX = X . The proof of (2) is dual. �

A Classification of (Co)Tilting Modules. We have seen that for any tilting
or cotilting module T over an Artin algebra Λ, there is associated in a natural way
a cotorsion pair. Since ω = add(T ) is functorially finite, Theorems 4.6 and 4.7 can
be applied. It follows that any tilting or cotilting module defines natural closed
model structures in mod(Λ). We leave to the reader to write down explicitly the
associated closed model structures.

We only note that as an application of Theorems 4.6 and 4.7 we can obtain
the following classification of cotilting modules in terms of closed model structures.
First we recall that a module T is called basic if the indecomposable summands in
a direct sum decomposition of T are non-isomorphic.

Theorem 5.8. If Λ is a basic Artin algebra, then there exist bijective corre-
spondences between:

(I) Isomorphism classes of basic cotilting modules T in mod(Λ).
(II) Closed model structures in mod(Λ) satisfying the following conditions:

(a) Any fibration is epic and any finitely generated Λ-module is cofibrant.
(b) Trivial cofibrations are monics and any monic with trivially cofibrant

cokernel is a trivial cofibration.
(c) For any trivial cofibration K −→ X where X is trivially cofibrant, the

module K is trivially cofibrant.
(d) Any fibrant module admits a finite exact resolution by trivially cofi-

brant modules.
(III) Closed model structures in mod(Λ) satisfying the following conditions:

(a) Any cofibration is monic and any finitely generated Λ-module is fi-
brant.

(b) Trivial fibrations are epics and any epic with trivially fibrant kernel
is a trivial fibration.

(c) For any trivial fibration Y −→ C where Y is trivially fibrant, the
module C is trivially fibrant.

(d) Any trivially fibrant module admits a finite exact resolution by cofi-
brant modules.

The mutually inverse correspondences above are given as follows:

T 7−→ (Cadd(T ),Fadd(T ),Wadd(T )) (I) −→ (II)

(C,F,W) 7−→ T, where TCof ∩ Fib = add(T ) (II) −→ (I)

T 7−→ (Cadd(T ),Fadd(T ),Wadd(T )) (I) −→ (III)

(C,F,W) 7−→ T, where Cof ∩ TFib = add(T ) (III) −→ (I)

If T is a basic cotilting module, then we have the following:

(i) The closed model structure of part (II) is stable if and only if T is isomor-
phic to D(Λ), in which case the associated homotopy category is trivial.

(ii) The closed model structure of part (III) is stable if and only if T is iso-
morphic to Λ, in which case the associated homotopy category is equiv-
alent to the stable category CM(Λ) of Cohen-Macaulay modules modulo
projectives, and Λ is a Gorenstein algebra.
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Proof. If T is a basic cotilting Λ-module, then by a basic result of Auslander-

Reiten, see [9], we have a cotorsion pair (⊥T, âdd(T )) in mod(Λ) such that ⊥̂T =
mod(Λ). Since add(T ) is covariantly finite, by Theorem 4.7 we have the injec-
tive add(T )-closed model structure (Cadd(T ),Fadd(T ),Wadd(T )) in mod(Λ), where

TCofadd(T ) = ⊥T and Fibadd(T ) = âdd(T ). In particular the closed model structure
satisfies (i) and (ii). Now let β : K −→ X be a trivial cofibration where X is trivially
cofibrant. Then by Lemma 1.1 we have that Coker(β) is trivially cofibrant. Since

X is trivially cofibrant and TCofadd(T ) is resolving, we infer that K is trivially

cofibrant, i.e. (iii) holds. Finally property (iv) holds since ⊥̂T = mod(Λ). Con-
versely let (C,F,W) be a closed model structure in mod(Λ) satisfying (i)-(iv). The
first two properties ensure, in view of Theorem 4.7, that (TCof,Fib) is a cotorsion
pair in mod(Λ). Then property (iii) implies that TCof is resolving. Finally let C
be a finitely generated Λ-module. By Proposition 2.1 there exists a short exact

sequence 0 −→ FC −→ XC
f−→ C where f is a fibration, FC is fibrant and XC is

trivially cofibrant. Since fibrations are epics and any fibrant module admits a finite
exact resolution by trivially cofibrant modules, it follows that any module admits
a finite exact resolution by trivially cofibrant modules. In other words TCof is a
contravariantly finite resolving subcategory of mod(Λ) satisfying the property that

T̂Cof = mod(Λ). Then by [9] we infer that TCof ∩ Fib = add(T ) for a cotilting
module T . Combining Theorem 4.7 and the results of [9] we conclude that the cor-
respondences (I) −→ (II) and (II) −→ (I) are mutually inverse. Using Theorem 4.6
a similar argument shows that the correspondences (I) −→ (III) and (III) −→ (I)
are mutually inverse.

Finally if T is a basic cotilting module, then by Theorem 4.7 we have that the
homotopy category of the closed model structure of part (II) is equivalent to the

stable category âdd(T )/ add(T ), which is stable if and only if add(T ) = IΛ, that
is, if and only if T = D(Λ). In this case the homotopy category is trivial, since

ÎΛ = IΛ. Dually, by Theorem 4.6, the homotopy category of the closed model
structure of part (III) is equivalent to the stable category ⊥T/ add(T ), which is
stable if and only if add(T ) = PΛ, that is, if and only if T = Λ. In this case the
homotopy category is equivalent to ⊥T/ add(T ) = CM(Λ), and the algebra Λ is
Gorenstein. �

To state our next result we need a simple lemma which was used implicitly in
the proof of Theorem 5.8.

Lemma 5.9. Let C be an abelian category and let (C,F,W) be a closed model
structure in C.

(1) If (C,F,W) is projective, then the following are equivalent.

(i) For any trivial fibration Y −→ C where Y is trivially fibrant, the object C
is trivially fibrant.

(ii) Cof is resolving.

(2) If (C,F,W) is injective, then the following are equivalent.

(i) For any trivial cofibration K −→ X where X is trivially cofibrant, the
object K is trivially cofibrant.

(ii) Fib is coresolving.



5. A CLASSIFICATION OF (CO)TORSION PAIRS 159

Proof. We prove only part (1) since the proof of part (2) is similar. First let
Cof be resolving, and let p : Y −→ C be a trivial fibration with Y trivially fibrant.
Then by Lemma 1.1 we have that Ker(p) is trivially fibrant. Since the closed
model structure is projective, we have a cotorsion pair (Cof,TFib) in C and any
trivial fibration is an epimorphism. In particular p is an epimorphism. Since Cof is
resolving, the subcategory TFib is coresolving. Since Y,Ker(i) are trivially fibrant,
it follows that the same is true for the object C. Conversely assume that (i) holds,

and let 0 −→ Y1 −→ Y2
p−→ C −→ 0 be a short exact sequence with the Yi trivially

fibrant. Since the closed model structure is projective, p is a trivial fibration.
Hence by hypothesis, C is trivially fibrant. It follows that TFib is coresolving, or
equivalenlty, Cof is resolving. �

Lemma 5.9 suggests the following terminology.

Definition 5.10. Let C be an abelian category.
(1) A closed model structure is called resolving if it is projective and the

equivalent conditions of part (1) of Lemma 5.9 hold.
(2) A closed model structure is called coresolving if it is injective and the

equivalent conditions of part (2) of Lemma 5.9 hold.

Using this terminology we can restate Theorem 5.8 as follows: There are bijec-
tive correspondences between:

• Isoclasses of basic cotilting Λ-modules.

• Resolving closed model structures in mod(Λ) with TFib ⊆ Ĉof.

• Coresolving closed model structures in mod(Λ) such that Fib ⊆ T̂Cof.

Under a finitenness condition we can refine the above correspondence. More
precisely let Λ be an Artin algebra with finite global dimension. Then by a result
of Auslander-Reiten (see [9]), the assumption (d) in (II) and (III) of Theorem 5.8
can be dropped. Hence we have the following consequence of Theorem 5.8 which
gives a classification of cotilting Λ-modules in terms of (co)resolving closed model
structures.

Corollary 5.11. If gl.dim Λ < ∞, then the correspondeces of Theorem 5.8
induce bijective correspondences between:

(i) Isomorphism classes of basic cotilting Λ-modules.
(ii) Resolving closed model structures in mod(Λ).

(iii) Coresolving closed model structures in mod(Λ).

Note that using Theorems 4.6 and 4.7 we can obtain an analogous classification
of tilting modules over an Artin algebra. In particular in the above corollary we can
replace cotilting by tilting, provided that Λ has finite global dimension, since in this
case the cotilting modules coincide with the tilting modules. We leave the details to
the reader. For a classification of (infinitely generated) (co)tilting modules over an
arbitrary ring in terms of closed model structures we refer to [27]. We note finally
that the well-known equivalences and dualities induced by a tilting or cotilting
module can be recovered as Quillen equivalences between the above closed model
structures.
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Cotorsion Triples. We close this section by discussing briefly the connections
between closed model structures and cotorsion triples. As a consequence we obtain
a closed model theoretic classification of cotorsion triples.

We fix throughout an abelian category C and assume that C has enough pro-
jective and injective objects. Let (X ,Y,Z) be a cotorsion triple in C. As in the
proof of Theorem VI.3.2 we have that (X ,Y) is a resolving cotorsion pair if and
only if (Y,Z) is a resolving cotorsion pair. Assume in the sequel that one of these
conditions holds. Then X is closed under kernels of epics and Z is closed under
cokernels of monics, and moreover X ∩ Y = P, hence X/P is triangulated, and
Y ∩ Z = I, hence Z/I is triangulated. By Theorems 4.6 and 4.7, the cotorsion
pairs (X ,Y) and (Y,Z) induce two stable closed model structures in C:(

CP ,FP ,WP
)

and
(
CI ,FI ,WI

)
where the first one is resolving and the second is coresolving. By Theorem VI.3.2
these stable closed model structures have (triangle) equivalent homotopy categories,

in other words there exists a (triangle) equivalence X/P ≈−→ Z/I. We don’t know
if this equivalence is induced by a Quillen equivalence in the sense of [64]. For a
specific situation where this happens we refer to the last chapter.

Combining the above observations with Theorems 4.6 and 4.7, we obtain the
following classification of cotorsion triples in C in terms of closed model structures.

Theorem 5.12. Let C be an abelian category with enough projective and injec-
tive objects. Then there exists a bijective correspondence between cotorsion triples
(X ,Y,Z) in C with Y (co)resolving, and couples

{
(C1,F1,W1), (C2,F2,W2)

}
of sta-

ble closed model structures in C, such that (C1,F1,W1) is resolving and (C2,F2,W2)
is coresolving, and TFib1 = TCof2. The bijective correspondence is given by:

(X ,Y,Z) 7−→
{(

CX∩Y ,FX∩Y ,WX∩Y
)
,
(
CY∩Z ,FY∩Z ,WY∩Z

)}
{

(C1,F1,W1), (C2,F2,W2)
}
7−→

(
Cof1,TFib1 = TCof2,Fib2

)
.

If P is covariantly finite, then C/P is pretriangulated and (X/P,Y/P) is a
hereditary torsion pair in C/P with X/P triangulated. Similarly if I is contravari-
antly finite, then C/I is pretriangulated and (Y/I,Z/I) is a cohereditary torsion
pair in C/I with Z/I triangulated. By Theorems 4.6 and 4.7, the cotorsion pairs
(X ,Y) and (Y,Z) induce, two additional closed model structures in C:(

CP ,FP ,WP
)
,
(
CI ,FI ,WI

)
where the first one is coresolving and the second one resolving. Hence if P is
covariantly finite and I is contravariantly finite, then the cotorsion triple (X ,Y,Z)
induces four closed model structures in C:(

CP ,FP ,WP
)
,
(
CP ,FP ,WP

)
,
(
CI ,FI ,WI

)
,
(
CI ,FI ,WI

)
.

Gorenstein Algebras and Categories. A special case of the above situation is the
case of the cotorsion triple

(
CM(Λ),P<∞Λ = I<∞Λ ,CoCM(D(Λ))

)
in mod(Λ) where

Λ is a Gorenstein algebra, or more generally the cotorsion triple
(
CM(P),P<∞ =

I<∞,CoCM(I)
)

in a Gorenstein abelian category C. We leave to the reader to
write down the four closed model structures. For an arbitrary Artin algebra Λ,
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working with all (not necessarily finitely generated) modules, we will show in the last
chapter that there exists a pair of compatible closed model structures in Mod(Λ),
hence four in all, and two of them are stable. For the first stable closed model
structure the Cohen-Macaulay modules appear as cofibrant objects and for the
second, the CoCohen-Macaulay modules appear as fibrant objects. Actually we
prove the existence of such closed model structures in the more general setting of a
Nakayama abelian category, which provides a natural generalization of the module
category of an Artin algebra.

Cohen-Macaulay Categories and Rings. If C is a Cohen-Macaulay abelian cate-
gory with exact (co)products and a product-complete projective generator or injec-
tive cogenerator, then the results of this chapter, combined with Theorem VII.4.1,
imply that there are four naturally induced closed model structures in C which are
related to relative (Co)Cohen-Macaulay objects and the objects of finite projective
or injective dimension. In particular there exist such closed model structures in the
module category of a right Cohen-Macaulay ring which is left coherent and right
perfect or right Noetherian. We leave to the reader to write down the four closed
model structures.

Categories of Complexes. A nice illustration of the above results is the following
example which shows that derived categories are homotopy categories of stable
closed model structures induced by cotorsion triples in the category of complexes.

Let Λ be a ring and let C(Mod(Λ)) be the category of complexes of right
Λ-modules. Let C0(Mod(Λ)) be the full subcategory of contractible complexes.
It is easy to see that the latter is functorially finite, hence by [24], the sta-
ble category C(Mod(Λ))/C0(Mod(Λ)) is identified with the homotopy category
H(Mod(Λ)). We denote by CAc(Mod(Λ)) the full subcategory of acyclic com-
plexes and by CP(Mod(Λ)), resp. CI(Mod(Λ)), the full subcategory of homotopi-
cally projective, resp. injective, complexes [72]. It is not difficult to see that
CP(Mod(Λ)) ∩ CAc(Mod(Λ)) = C0(Mod(Λ)) = CAc(Mod(Λ)) ∩ CI(Mod(Λ)). We de-
note as in Chapter III by HP(Mod(Λ)), HI(Mod(Λ)), HAc(Mod(Λ)), the induced
homotopy categories. By Corollary IV.1.7 we have a TTF-theory(

HP(Mod(Λ)),HAc(Mod(Λ))),HI(Mod(Λ))
)

inH(Mod(Λ)), and it is not difficult to see that Ext1(CP(Mod(Λ)),CAc(Mod(Λ))) =
Ext1(CAc(Mod(Λ)),CI(Mod(Λ))) = 0. Hence by Theorem 4.2 we have a closed
model structure (CP,FP,WP) in C(Mod(Λ) with corresponding Quillen homotopy
category HP(Mod(Λ)) and a closed model structure (CI,FI,WI) in C(Mod(Λ)) with
corresponding Quillen homotopy category HI(Mod(Λ)). By Corollary IV.1.7 both
Quillen homotopy categories are triangle equivalent to the unbounded derived cat-
egory D(Mod(Λ)). This recovers a result of B. Keller [72].

It follows that Theorems 4.2 and 4.7 produce the projective and injective closed
model structures on the category of complexes investigated in [64]. In our ter-
minology the projective model structure of [64] is the projective ω-closed model
structure (Cω,Fω,Wω) associated with the good pair (CP(Mod(Λ)),CAc(Mod(Λ))),
where ω = CP(Mod(Λ))∩CAc(Mod(Λ)) is the full subcategory of contractible com-
plexes. For instance for the projective closed model structure we have the following
description: the cofibrations are the monomorphisms with cokernel a homotopically
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projective complex, the fibrations are the epimorphisms, and the weak equivalences
are the morphisms which are compositions α ◦ β where α is split monic with con-
tractible cokernel and β is an epimorphism with acyclic kernel. In particular the
weak equivalences are quasi-isomorphisms. The injective closed model structure
has a similar description.

Note that the above analysis with the necessary modifications works if we
replace the module category with a Grothendieck category (with projectives).

For the history of the development of these and related closed model structures
we refer to [64].



CHAPTER IX

(Co)Torsion Pairs and Generalized Tate-Vogel
Cohomology

Let C be an abelian category and ω a functorially finite subcategory of C. Our
aim in this chapter is to construct and investigate universal (co)homology theories
in C which are induced by a (co)hereditary torsion pair (X/ω,Y/ω) defined in the
pretriangulated stable category C/ω. These new cohomology theories generalize
the Tate-Vogel cohomology in module categories, and are characterized as comple-
tions, with respect to the torsion class X/ω or the cotorsion-free class Y/ω in an
appropriate sense, of the relative extension functors induced by the subcategory
ω. In this way we generalize results of Mislin. We also study the connections and
the interplay between these new (co)homology theories and the relative homology
theories in C induced by subcategories X ,Y and ω, by providing comparison maps
between them which fit into a long exact sequence, thus generalizing recent work by
Avramov and Martsinkovsky. An especially nice situation occurs when we have tor-
sion pairs induced by a cotorsion triple in C. In this case we show that the complete
cohomology theories induced by the two torsion pairs involved are isomorphic.

1. Hereditary Torsion Pairs and Homological Functors

We have seen in Chapter II that any (co)hereditary torsion pair in a pretrian-
gulated category C gives rise to a torsion pair in the associated triangulated left or
right stabilization category of C. In this section, using the left or right stabilization
of C, we define universal (co)homology theories in C with respect to a (co)hereditary
torsion pair. In the next section we will apply our results to construct (co)homology
theories in an abelian category relative to a (co)hereditary torsion pair for an as-
sociated stable category.

We fix throughout a torsion pair (X ,Y) in the pretriangulated category C, and
as usual let R : C −→ X be the right adjoint of the inclusion i : X ↪→ C and
L : C −→ Y the left adjoint of the inclusion j : Y ↪→ C. We denote by P : C −→ Tl(C),
resp. Q : C −→ Tr(C), the stabilization functor of C, when the latter is a considered
as a left, resp. right, triangulated category.

Recall from section II.5 that if the torsion pair (X ,Y) is hereditary, then X is
pretriangulated, and the inclusion functor i : X ↪→ C and the coreflection functor
R : C −→ X are left exact. In this case there exist unique exact functors i∗ : Tl(X ) −→
Tl(C) and R∗ : Tl(C) −→ Tl(X ), such that the following diagrams commute:
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X i−−−−→ C

P

y P

y
Tl(X )

i∗−−−−→ Tl(C)

C R−−−−→ X

P

y P

y
Tl(C)

R∗−−−−→ Tl(X )

where P : X −→ Tl(X ) is the stabilization functor of X when the latter is
considered as a left triangulated category. Moreover R∗ is a right adjoint of i∗, and(
Tl(X ), Tl(Y)

)
is a hereditary torsion pair in Tl(C). Hence we have a short exact

sequence of triangulated categories:

0 −→ Tl(Y)
j∗−→ Tl(C)

R∗−→ Tl(X ) −→ 0

Dually if the torsion pair (X ,Y) is cohereditary, then Y is pretriangulated, the
inclusion functor j : Y ↪→ C and the reflection functor L : C −→ Y are right exact,
and there exist unique exact functors j∗ : Tr(Y) −→ Tr(C) and L∗ : Tr(C) −→ Tr(Y),
such that the following diagrams commute:

Y j−−−−→ C

Q

y Q

y
Tr(X )

j∗−−−−→ Tr(C)

C L−−−−→ Y

Q

y Q

y
Tr(C)

L∗−−−−→ Tr(Y)

where Q : Y −→ Tr(Y) is the stabilization functor of Y when the latter is
considered as a right triangulated category. Moreover L∗ is a left adjoint of j∗, and(
Tr(X ), Tr(Y)

)
is a hereditary torsion pair in Tr(C). Hence we have a short exact

sequence of triangulated categories:

0 −→ Tr(X )
i∗−→ Tr(C)

L∗−→ Tr(Y) −→ 0

The above considerations suggest the following.

Definition 1.1. Let (X ,Y) be a hereditary torsion pair in C. Then the n−th
projective extension bifunctor

Êxt
n

(X ,Y)(−,−) : Cop × C −→ Ab, n ∈ Z
of C with respect to (X ,Y) is defined as follows:

Êxt
n

(X ,Y)(A,B) := Tl(X )[ΩnR∗P(A),R∗P(B)]
∼=−→ Tl(X )[ΩnPR(A),PR(B)]

∼=−→

lim−→
k,k+n≥0

X [Ωk+nR(A),ΩkR(B)]
∼=−→ lim−→

k,k+n≥0

C[Ωk+nR(A),Ωk(B)].

Let (X ,Y) be a cohereditary torsion pair in C. Then the n−th injective
extension bifunctor

Ẽxt
n

(X ,Y)(−,−) : Cop × C −→ Ab, n ∈ Z
of C with respect to (X ,Y) is defined as follows:

Ẽxt
n

(X ,Y)(A,B) := Tr(Y)[L∗Q(A),ΣnL∗Q(B)]
∼=−→ Tr(Y)[QL(A),ΣnQL(B)]

∼=−→

lim−→
k,k+n≥0

Y[ΣkL(A),Σk+nL(B)]
∼=−→ lim−→

k,k+n≥0

C[Σk(A),Σk+nL(B)].
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Example. Let C be triangulated and let (X ,Y) be a hereditary torsion pair
in C. Then (X ,Y) is also cohereditary, and according to Chapter I, X and Y are
thick subcategories of C; in particular all the involved stabilization functors are

triangle equivalences in this case. Then Êxt
n

(X ,Y)(A,B) = X (ΩnR(A),R(B)) ∼=
C(ΩnR(A), B) and Ẽxt

n

(X ,Y)(A,B) = Y(L(A),ΣnL(B)) ∼= C(A,ΣnL(B)).

Example. The smallest torsion pair (0, C) and the largest torsion pair (C, 0)
in C are obviously hereditary and cohereditary. In this case we have

Ẽxt
n

(C,0)(−,−) = 0 = Êxt
n

(0,C)(−,−) and Êxt
n

(C,0)(−,−) = Ẽxt
n

(0,C)(−,−).

The above example suggests the following definition. The terminology will be
justified in the next section.

Definition 1.2. The n-th projective extension bifunctor with respect to the
hereditary torsion pair (C, 0) is called the n-th Tate-Vogel projective extension

bifunctor of C and is denoted by Êxt
n

C(−,−). In other words

Êxt
n

C(A,B) := Tl(C)[ΩnP(A),P(B)].

The n-th injective extension bifunctor with respect to the cohereditary torsion pair
(0, C) is called the n-th Tate-Vogel injective extension bifunctor of C and is

denoted by Ẽxt
n

C(−,−). In other words

Ẽxt
n

C(A,B) := Tr(C)[Q(A),ΣnQ(B)].

From now on we assume that the torsion pair (X ,Y) is hereditary. The corre-
sponding results concerning cohereditary torsion pairs follow by duality.

The following result presents some properties of the bifunctor Êxt
n

(X ,Y)(−,−).

Proposition 1.3. (1) If A or B is in Y then Êxt
n

(X ,Y)(A,B) = 0, ∀n ∈ Z.

(2) Êxt
0

(X ,Y)(A,A) = 0 iff R(A) ∈ P<∞(C) iff Ωn(A) ∈ Y for some n ≥ 0.

(3) For any left triangle Ω(C) −→ A −→ B −→ C in C and for any D ∈ C there
exists an infinite long exact sequence:

· · · −→ Êxt
−1

(X ,Y)(A,D) −→ Êxt
0

(X ,Y)(C,D) −→ Êxt
0

(X ,Y)(B,D) −→

−→ Êxt
0

(X ,Y)(A,D) −→ Êxt
1

(X ,Y)(C,D) −→ Êxt
1

(X ,Y)(B,D) −→ · · ·
and an infinite long exact sequence:

· · · −→ Êxt
−1

(X ,Y)(D,C) −→ Êxt
0

(X ,Y)(D,A) −→ Êxt
0

(X ,Y)(D,B) −→

−→ Êxt
0

(X ,Y)(D,C) −→ Êxt
1

(X ,Y)(D,A) −→ Êxt
1

(X ,Y)(D,B) −→ · · ·

Proof. Parts (1) and (2) follow directly from the definitions. Part (3) follows
from the fact that the stabilization Tl(X ) is a triangulated category. �
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Observe that the functor R∗ : Tl(C) −→ Tl(X ) induces a natural morphism

Êxt
n

C(−,−) −→ Êxt
n

(X ,Y)(−,−), ∀n ∈ Z, which is induced by the lifting of the ad-

junction iR −→ IdC . Using Proposition 1.3, the glueing triangle ΩL(A) −→ R(A) −→
A −→ L(A), ∀A ∈ C, and Corollary II.5.5, we have the following.

Corollary 1.4. Let A,B be objects in C. Then there exists a natural in A
and B infinite long exact sequence:

· · · −→ Êxt
n

C(L(A), B) −→ Êxt
n

C(A,B) −→ Êxt
n

(X ,Y)(A,B) −→ · · ·

In particular the natural map Êxt
n

C(A,−) −→ Êxt
n

(X ,Y)(A,−) is invertible for all

n ∈ Z iff L(A) ∈ P<∞(C), that is: ΩnL(A) = 0 for some n ≥ 0.

Finally the natural map Êxt
n

C(−,−) −→ Êxt
n

(X ,Y)(−,−) is invertible for all n ∈ Z
iff Y ⊆ P<∞(C) iff X̂ = C.

Part (3) of Proposition 1.3 suggests the following definition, which will be useful
in the next section when we will discuss completions. Note that Definition 1.5 below
extends the usual definition of Grothendieck of homology theories (or homological
functors) defined on an abelian category. Of course if we view an abelian category
as pretriangulated with zero loop and suspension functor and with left and right
triangles to be the exact sequences, then the two definitions agree.

Definition 1.5. A left homology theory on C is a sequence of additive
functors F∗ := {Fn}n∈Z, Fn : C −→ Ab, such that for any left triangle Ω(C) −→ A −→
B −→ C in C there exists a long exact sequence

· · · −→ F−1(C) −→ F0(A) −→ F0(B) −→ F0(C) −→ F1(A) −→ · · ·

which is natural with respect to morphisms of left triangles.
A right homology theory on C is a sequence of additive functors F∗ :=

{Fn}n∈Z, Fn : C −→ Ab, such that for any right triangle A −→ B −→ C −→ Σ(A) in C
there exists a long exact sequence

· · · −→ F−1(C) −→ F0(A) −→ F0(B) −→ F0(C) −→ F1(A) −→ · · ·

which is natural with respect to morphisms of right triangles.

We are mainly concerned with left homology theories on the petriangulated
category C, called from now on just homology theories. The treatment of right
homology theories is dual and is left to the reader. We consider homological func-
tors in an abelian category C as (left or right) homology theories, viewing C as a
pretriangulated category in the usual way. In the sequel we shall need the follow-
ing, which extends a well-known concept of completeness of homological functors
defined on an abelian category, see [83].

Definition 1.6. Let Y be a full subcategory of C. A homology theory {Fn}n∈Z
is called Y-complete if Fn(Y) = 0, ∀n ∈ Z.

The following are examples of homology theories on C.

Example. (i) For any C ∈ C the functor Êxt
∗
(X ,Y)(C,−) is a Y-complete

homology theory on C.
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(ii) For any C ∈ C we define a sequence of functors πCn : C −→ Ab as follows.

For n ≥ 0 we set πCn = C(Ωn(C),−) and πC−n(C) = C(C,Ωn(−))
∼=−→

C(Σn(C),−). It is not difficult to see that if Σ is fully faithful, then the
sequence of functors πC∗ is a homology theory in C which is Y-complete
iff C ∈ X .

Let F• = {Fn} be a homology theory on C. Let AbZ be the category of graded
abelian groups. Its objects are sequences {An}n∈Z of abelian groups, and a mor-
phism {An}n∈Z −→ {An}n∈Z is a sequence {αn : An −→ Bn}n∈Z indexed by Z.
We consider AbZ as a graded category equipped with the shift automorphism
S : AbZ −→ AbZ which sends the graded object {An} to {S(An)} which in de-
gree n has the object An−1. Then a homology theory is a homological functor
F• : C −→ AbZ such that F•Ω ∼= SF•. From now on we identify homology theories
C −→ Ab and homological functors C −→ AbZ which commute with Ω and S.

The following gives a connection between homology theories in the left trian-
gulated category C and homological functors over its stabilization Tl(C).

Lemma 1.7. For any homology theory F• : C −→ AbZ, there exists a homolog-
ical functor F ∗• : Tl(C) −→ AbZ, unique up to isomorphism, such that F ∗•P

∼= F•.
The functor F• 7→ F ∗0 establishes an equivalence between the category of homology
theories on C and the category of homological functors Tl(C) −→ Ab.

Proof. Defining F ∗• (C, n) = S−nF•(C) it is easy to see that F ∗• is a homo-
logical functor on Tl(C). Moreover F ∗•P(C) = F ∗• (C, 0) = F•(C), hence F ∗•P

∼= F•.
Trivially F ∗• is the unique homological functor on Tl(C) which extends F• via the
stabilization functor. This shows that the functor F• 7→ F ∗• is an equivalence be-
tween homology theories on C and homology theories on Tl(C). Since the latter is
triangulated, the map F ∗• 7→ F ∗0 gives an equivalence between the category of ho-
mology theories on Tl(C) and the category of homological functors Tl(C) −→ Ab. �

2. Torsion Pairs and Generalized Tate-Vogel (Co-)Homology

Let ω be a functorially finite subcategory of an abelian category C. In this
section we use (co)hereditary torsion pairs defined in the stable pretriangulated
category C/ω to define and investigate generalized Tate-Vogel (co)homology func-
tors defined in the abelian category C. Our focus is concentrated on the construc-
tion of completions of a (co)homology theory defined on C, relative to the torsion
or torsion-free class of a (co)hereditary torsion pair defined on C/ω. Our main
result shows that the relative extension functor Ext∗ω with respect to the subcat-
egory ω admits such completions, which we call generalized Tate-Vogel extension
functors. This result generalizes work of Mislin [83]. Moreover we show that the
completion can be realized as an appropriate (co)homotopy functor in the sense of
Eckmann-Hilton [61].

Throughout this section we fix an abelian category C. We also fix a full additive
functorially finite subcategory ω ⊆ C. We start with a reasonable pair of full
subcategories of C which induce a hereditary torsion pair in the stable category
C/ω. Throughout this section our working setup is the following.

• [Setup] (X ,Y) is a fixed pair (not necessarily cotorsion) of subcategories
of C such that:
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(i) X is closed under extensions, direct summands and kernels of epi-
morphisms.

(ii) ω := X ∩ Y is functorially finite in C and any ω-epic is an epimor-
phism.

(iii) The pair (X/ω,Y/ω) is a torsion pair in C/ω.
In particular we don’t assume that Ext1

C(X ,Y) = 0.

Remark 2.1. The following are some consequences of the above setup which
will be useful in the sequel.

(i) The torsion pair (X/ω,Y/ω) in C/ω is hereditary.
(ii) Any right ω-approximation of an object in C is an epimorphism.

(iii) X is contravariantly finite and, since ω ⊆ X , any right X -approximation
of an object in C is an epimorphism. Hence for any object C in C , there
exists a right X -approximation sequence 0 −→ YC −→ XC −→ C −→ 0 which
is exact and where the object YC lies in Y.

The main examples of the above setup are the following.

Example. (i) (X ,Y) is a resolving cotorsion pair in C such that ω =
X ∩ Y is functorially finite in C, and any ω-epic is an epimorphism in C.

(ii) (C,P) where we assume that the full subcategory P of projective objects
of C is functorially finite. Then the pair

(
C,P

)
is not necessarily cotorsion,

but
(
C/P, 0

)
is a hereditary torsion pair in C/P.

(iii) (X ,Y) is a cotorsion pair with X resolving and X ∩Y = P. For instance
we can take X = P and Y = C. Then (X/P,Y/P) is a hereditary torsion
pair in C/P with X/P triangulated.

As usual we denote by R : C/ω −→ X/ω the right adjoint of the inclusion
i : X/ω ↪→ C/ω and by L : C/ω −→ Y/ω the left adjoint of the inclusion j : Y/ω ↪→
C/ω. By the assumptions on X and ω in the above setup, it follows that the stable
category X/ω is a pretriangulated subcategory of C/ω and the functors i and R
are left exact, i.e. the torsion pair (X/ω,Y/ω) in C/ω is hereditary. We denote by
P the stabilization functor of any of the categories X/ω,Y/ω, C/ω with respect to
their left triangulation. By Proposition II.5.3, we know that the hereditary torsion
pair (X/ω,Y/ω) in C/ω induces a hereditary torsion pair (Tl(X/ω), Tl(Y/ω)) in the
stabilization Tl(ω) of C/ω with respect to its left triangulation. In other words we
have a short exact sequence of triangulated categories

0 −→ Tl(Y/ω)
j∗−→ Tl(C/ω)

R∗−→ Tl(X/ω) −→ 0

and the functor R∗ admits a fully faithful left adjoint i∗, and the functor j∗ admits
a left adjoint.

Now we can use the results from Section 1 to transfer the concept of a pro-
jective extension bifunctor with respect to a hereditary torsion pair in the stable
pretriangulated category, to the abelian category.

Definition 2.2. The n-th complete projective extension bifunctor of C
with respect to the pair (X ,Y):

Êxt
n

(X ,Y)(−,−) : Cop × C −→ Ab, n ∈ Z
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is defined to be the n-th complete extension bifunctor Êxt
n

(X/ω,Y/ω)(−,−) of C/ω
with respect to the hereditary torsion pair (X/ω,Y/ω). In other words

Êxt
n

(X ,Y)(A,B) := Tl(X/ω)[ΩnR∗P(A),R∗P(B)]
∼=−→ lim−→

k,k+n≥0

C/ω[Ωk+nR(A),Ωk(B)].

Example-Definition. Let Êxt
∗
(C,P)(−,−) be the complete projective exten-

sion bifunctor with respect to the largest hereditary torsion pair (C/P, 0) in C/P.
Since in this case R = IdC/P , we have:

Êxt
n

(C,P)(A,B) = Tl(C/P)[ΩnP(A),P(B)], n ∈ Z

In other words the bifunctor Êxt
∗
(C,P)(−,−) is what is known in the literature as

the projective Tate-Vogel extension bifunctor and from now on we denote it

by Êxt
∗
TV (−,−).

Historical Remark. Tate cohomology, which was introduced by Tate, see
[38], was designed for finite groups and found applications in number theory. His
cohomology subsumed the ordinary cohomology and ordinary homology into a sin-
gle cohomological functor. Later Farell extended Tate’s cohomology to groups of
virtually finite cohomological dimension, see [35]. The projective version of Tate-
Vogel cohomology was introduced in the late eighties by Vogel (unpublished, but
see [55]), and independently by Mislin (see [83]) and Benson-Carlson (see [30]),
using different methods. This cohomology theory is working for arbitrary groups
and in fact for any ring. See also [20] for another approach which works for more
general categories and is closer to the present construction.

Note that using the short exact sequences of Proposition 1.3 and the fact that
Tl(P<∞/P) = 0, it follows that the projective Tate-Vogel extension bifunctors are
the complete projective extension bifunctors with respect to any hereditary torsion
pair (X/P,Y/P) in C/P such that the cotorsion-free class Y consists of modules of
finite projective dimension.

From now on we concentrate on the construction of completions of homological
functors. First we need some preparations on functors which are homological with
respect to certain classes of extensions. Let Fω be the class of short exact sequences
0 −→ A −→ B −→ C −→ 0 in C such that the induced sequence 0 −→ C(ω,A) −→
C(ω,B) −→ C(ω,C) −→ 0 is exact. Since ω is contravariantly finite and any ω-epic is
an epimorphism, it follows that Fω is an additive subfunctor of the Yoneda extension
functor Ext1

C(−,−). Let F• := {Fn}n∈Z be a sequence of functors C −→ Ab. We say
that F• is an ω-homological functor if Fn(ω) = 0, ∀n ∈ Z, and for any extension
0 −→ A −→ B −→ C −→ 0 in Fω, there exists a long exact sequence

· · · −→ F−1(C) −→ F0(A) −→ F0(B) −→ F0(C) −→ F1(A) −→ · · ·

which is natural with respect to morphisms of extensions in Fω. In other words
F• is ω-homological if the induced functor F • is a (left) homology theory in the
left triangulated category C/ω, where each Fn : C/ω −→ Ab is naturally induced



2. TORSION PAIRS AND GENERALIZED TATE-VOGEL (CO-)HOMOLOGY 170

from Fn. F• is called Y-complete, if the induced (left) homology theory F • is Y/ω-
complete. This is equivalent to saying that Fn(Y) = 0, ∀n ∈ Z. The following is
the basic example of a Y-complete ω-homological functor.

Example. For any object C the sequence of functors {Êxt
n

(X ,Y)(C,−)}n∈Z is
an ω-homological functor, which is Y-complete by construction, that is we have

Êxt
∗
(X ,Y)(C,Y) = 0.

To obtain more examples we need to recall some basic facts about relative
homology in an abelian category. These facts will be useful in the sequel.

Let C be an abelian category and ω a full subcategory of C. A complex C• is
called right ω-exact, if the complex C(ω,C•) is exact in Ab. A right ω-projective

resolution of an object C in C is a right ω-exact complex · · · −→ T1 −→ T0
ε−→ C −→ 0

where the Ti are in ω. Then ε is a right ω-approximation of C and the kernel Ker(ε)
is the first relative syzygy of C with respect to ω, and as usual is denoted by Ωω(C)
or Ω(C). The higher relative syzygies Ωn(C) of C are defined inductively. Observe
that a right ω-projective resolution is a genuine exact complex, provided that any ω-
epic is an epimorphism. We denote by Rappω(C) the full subcategory of C consisting
of all objects which admits right ω-resolutions. Note that Rappω(C) = C iff ω is
contravariantly finite in C.

We define, for any object C ∈ C, the relative Ext functors Extnω(−, C) :
Rappω(C)op −→ Ab, for n ≥ 0, as follows. Let A be an object with right ω-
resolution · · · −→ T1 −→ T0 −→ A −→ 0. Then Extnω(A,C) is the nth cohomology
of the complex 0 −→ C(T0, C) −→ C(T1, C) −→ · · · . Observe that that there exists a
natural map C(A,C) −→ Ext0

ω(A,C) which is invertible, provided that any ω-epic
is an epimorphism. We refer to [20] for basic properties of the relative extensions
functors. In particular we shall need the following fact. If 0 −→ A −→ B −→ C −→ 0 is
a right ω-exact complex, where the involved objects lie in Rappω(C), then, for any
object D ∈ C, there exists a long exact sequence 0 −→ Ext0

ω(C,D) −→ Ext0
ω(B,D) −→

Ext0
ω(A,D) −→ Ext1

ω(C,D) −→ · · · . Observe that if ω is contravariantly finite and
any ω-epic is an epimorphism, then Ext1

ω(−,−) is the subfunctor Fω of the usual
Yoneda Ext functor Ext1

C(−,−) of C introduced above.
Now we can give a variety of examples of ω-homological functors.

Example. (i) Any object C defines an ω-homological functor {Extnω(C,−)}n∈Z,
where of course we set Extnω(C,−) = 0,∀n < 0.

(ii) Any object C defines a homological functor {Πn
C(−)}n∈Z, as follows:

Πn
C(−) =:

{
Extnω(C,−) n ≥ 1
C/ω(C,Ω−nω (−)) n ≤ 0

In other words Πn
C(−) is an analogue of the n-th projective homotopy functor of C

introduced by Eckmann-Hilton, see [61] where the case ω = P or ω = I is treated.
From now on we call Πn

C(−) the n-th Eckmann-Hilton projective homotopy functor

of C with respect to ω. The Eckmann-Hilton injective homotopy functor Π
∗
C(−) of

C with respect to ω is defined dually.
Observe that the negative parts of the homological functors in (i), (ii) are

ω-complete. However Π∗C(−) is ω-complete iff Extnω(C,ω) = 0, ∀n ≥ 1, and
Ext∗ω(C,−) is ω-complete iff Extnω(C,ω) = 0, ∀n ≥ 0.
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We are going to show that for any object C, the Y-complete projective extension

functor Êxt
∗
(X ,Y)(C,−) is the Y-completion of the extension functor Ext∗X∩Y(C,−),

in the sense of the following definition.

Definition 2.3. The Y-completion of an ω-homological functor {Fn}n∈Z :
C −→ Ab with respect to a full subcategory Y of C, is a Y-complete homologi-

cal functor {F̂n}n∈Z : C −→ Ab together with a morphism of homological functors

φ∗ : {Fn}n∈Z −→ {F̂n}n∈Z, which satisfies the following universal property: any
morphism α∗ : {Fn}n∈Z −→ {Gn}n∈Z to a Y-complete homological functor {Gn}n∈Z
factors uniquely through φ∗. In this case φ∗ is called the Y-completion mor-
phism.

We first give some preliminary results on Y-complete homological functors de-
fined on C, which will be useful later for the construction of Y-completions. So
we fix for a moment a Y-complete homological functor {Fn}n∈Z. Since ω ⊆ Y, it
follows that Fn(ω) = 0. Hence each Fn induces a functor Fn : C/ω −→ Ab.

Lemma 2.4. There are natural isomorphisms

(i) F−n
∼=−→ F0Ωn, ∀n ≥ 0.

(ii) Fk
∼=−→ Fk+1Ω and Fk−n

∼=−→ FkΩn, ∀k ∈ Z, ∀n ≥ 0.
(iii) ∀C ∈ C, ∀n ≥ 0, ∀k ∈ Z:(

Extnω(C,−), Fk

) ∼=−→ Fk(Ωn(C))
∼=←−

(
Πn
C , Fk

)
.

(iv) ∀C ∈ C, ∀n < 0, ∀k ∈ Z: (Πn
C , Fk) = FkΣ−n(C).

(v) ∀C ∈ C, the right X -approximation sequence 0 −→ YC −→ XC
fC−−→ C −→ 0

induces a commutative diagram of isomorphisms, ∀n ≥ 0, ∀k ∈ Z:

(Extnω(XC ,−), Fk)
(fn

C ,Fk)−−−−−→ (Extnω(C,−), Fk)

∼=
y ∼=

y
Fk(Ωn(XC))

Fk(Ωn(fC))−−−−−−−−→ Fk(Ωn(C))

∼=
y ∼=

y
Fk−n(XC)

Fk−n(fC)−−−−−−→ Fk−n(C)

where fnC = Extnω(fC ,−) and all the involved morphisms are isomor-
phisms.

Proof. The assertions in (i), (ii) follow easily from the fact that each Fk kills
the objects of ω and is half-exact on extensions from Fω. If Ω(C) � ωC � C is a
right ω-approximation sequence of C, then applying (−, Fk) to the exact sequence of
functors (C,−) � (ωC ,−) −→ (Ω(C),−) � Ext1

ω(C,−) and using Yoneda’s Lemma

we deduce an isomorphism: (Ext1
ω(C,−), Fk)

∼=−→ Fk(Ω(C)). Then part (iii) follows

by induction. Part (iv) follows from the isomorphisms [C/ω(C,Ωn(−)), Fk]
∼=−→

[C/ω(Σn(C),−), Fk]
∼=−→ Fk(Σn(C)). Here Σ is the left adjoint of the loop functor Ω

of C/ω. Part (v) follows from the isomorphisms of the previous parts and the fact
that each Fk kills the objects of Y and is half-exact on extensions from Fω. �
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Since the homological functor {Êxt
m

(X ,Y)(A,−)}m∈Z is Y-complete, we have
the following direct consequence.

Lemma 2.5. If A,C ∈ C, then for any n ≥ 0, m ∈ Z:(
Extnω(C,−), Êxt

m

(X ,Y)(A,−)
) ∼=−→ lim−→

k+m,k+n≥0

C/ω[Ωk+mR(C),Ωk+n(A)].

For any object C we now define a specific morphism ϕ∗C,− : Ext∗ω(C,−) −→
Êxt

∗
(X ,Y)(C,−) as follows. For n < 0 we set ϕnC,− = 0. For n ≥ 0, let fC : XC −→ C

be a right X -approximation of C. Then we have an induced morphism Ωnω(fC) :
Ωnω(XC) −→ Ωnω(C), which in turn serves as a representative of a unique morphism

P(f
C

) ∈ lim−→
k,k+n≥0

C/ω[Ωk+nR(C),Ωk+n(C)]
∼=−→ Tl(C/ω)[(ΩnPR(C),ΩnP(C)]

and then by Lemma 2.5 this morphism represents a unique morphism

ϕnC,− : Extnω(C,−) −→ Êxt
n

(X ,Y)(C,−).

Now we can prove the main result of this section.

Theorem 2.6. The morphism ϕ∗C,− : Ext∗X∩Y(C,−) −→ Êxt
∗
(X ,Y)(C,−) is the

Y-completion of the relative Ext-homological functor Ext∗X∩Y(C,−).

Proof. Let F∗ : C −→ Ab be a Y-complete homological functor and let ξ∗ :
Ext∗ω(C,−) −→ F∗ be a morphism of ω-homological functors. Then we have ξn = 0
for n < 0, and by Lemma 2.5 we have that ξn is represented by a unique ele-

ment ζn ∈ Fn(Ωn(C)). We define a morphism ξ̂∗ : Êxt
∗
(X ,Y)(C,−) −→ F∗ as fol-

lows. First let n ≥ 0, let A be an object and let α ∈ Êxt
∗
(X ,Y)(C,A). Choose a

representative αk : Ωn+kR(C) −→ Ωk(A) in Êxt
∗
(X ,Y)(C,A), where k ≥ 0. Then

Fn+k(αk) : Fn+kΩn+kR(C) −→ Fn+kΩk(A). By Lemma 2.4 this morphism is iso-
morphic to the morphism Fn(αk) : FnΩnR(C) −→ Fn(A). It is clear that the
construction is independent of the choice of the representative αk of α. By Lemma
2.4 the morphism Fn(Ωn(fC)) : FnΩnR(C) −→ Fn(Ωn(C)) is invertible. Consider
the composition

Fn(Ωn(C))
Fn(Ωn(fC))−1

−−−−−−−−−→ FnΩnR(C)
Fn(αk)
−−−−→ Fn(A)

and define ξ̂n(α) := Fn(αn)((FnΩn(fC))−1(ζn)). It is easy to see that the above

construction is functorial, hence ξ̂n : Êxt
n

(X ,Y)(C,−) −→ Fn is a natural morphism

for n ≥ 0. Now we define the morphism ξ̂−n for n > 0. Consider the mor-

phism ξ̂0 : Êxt
0

(X ,Y)(C,−) −→ F0 and define ξ̂−n = ξ̂0Ωn : Êxt
0

(X ,Y)(C,Ω
n(−)) −→

F0Ωn ∼= F−n, where the last isomorphism follows by Lemma 2.4 and the fact that

Êxt
0

(X ,Y)(C,Ω
n(−)) = Tl(C/ω)[PR(C),PΩn(−)] = Tl(C/ω)[Ω−nPR(C),P(−)] =

Êxt
−n
(X ,Y)(C,−).

We claim that ξ̂∗ ◦ ϕC∗ = ξ∗. For n < 0 this is clear since then ϕnC = ξn = 0.
Assume now that n ≥ 0. Since ϕnC is represented by Ωn(fC) using the isomor-

phisms of Lemmas 2.3 and 2.4 it suffices to show that ξ̂n(Ωn(fC)) = ξn. Using the
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definition of ξ̂n we have ξ̂n(Ωn(fC)) = Fn(Ωn(fC))((FnΩn(fC))−1(ζn)) = ζn which
represents the morphism ξn. Since the construction is independent of the choices

for representatives, we have ξ̂n(Ωn(fC)) = ξn. We infer that ξ̂∗ ◦ϕ∗C = ξ∗. The easy

proof that ξ̂∗ is the unique morphism of homological functors with this property is
left to the reader. �

Remark 2.7. Observe that for any n ∈ Z, Êxt
n

(X ,Y)(−,−) is a bifunctor, but
enjoys the universal property of the above theorem only in the first variable. The

discussion that follows suggests that the functor Êxt
n

(X ,Y)(−,−) can be considered

as a generalized (projective) Tate-Vogel bifunctor.

From now on we assume that in the setup of the beginning of this section, the
abelian category C has enough projectives and ω = X∩Y = P. Mislin in [83], work-
ing in the setting of a module category over a ring Λ, constructed the completion
of the usual extension functor Ext∗Λ(C,−) with respect to the projective modules,
using filtered colimits of satellites of half-exact functors. Applying Theorem 2.6
to the largest hereditary torsion pair (C/P, 0) in the stable category C/P modulo

projectives and noting that by definition we have Êxt
∗
TV (C,−) = Êxt

∗
(C/P,0)(C,−),

we get the following generalization of Mislin’s result as an immediate consequence.

Corollary 2.8. For any object C in C, the Tate-Vogel projective extension

functor Êxt
∗
TV (C,−) is the P-completion of the homological functor Ext∗C(C,−).

If X ∈ X satisfies Ext1
C(X,Y) = 0, then the Eckmann-Hilton projective ho-

motopy functor Π∗X is obviously a Y-complete homological functor. It is natural
to ask if in this case the canonical morphism p∗X : Ext∗C(X,−) −→ Π∗X(−) is the
Y-completion of Ext∗C(X,−), where pnX = 0 for n < 0, p0

X is the canonical map
C(X,−) −→ C/P(X,−), and pnX is the canonical map Ext∗C(X,−) −→ C/P(Ωn(X),−)
for n ≥ 1. This is not true in general. However we have the following.

Corollary 2.9. For any object X ∈ X ∩ ⊥Y, the following are equivalent:

(i) X ∈ ⊥P.
(ii) The map p∗X : Ext∗C(X,−) −→ Π∗X(−) is the Y-completion of Ext∗C(X,−).

Proof. (i) ⇒ (ii) By Lemma 5.12 of [20] we have that the canonical maps
C/P(X,B) −→ Tl(C/P)[P(X),P(B)] and ExtnC(X,B) −→ C/P[Ωn(X), B] are invert-

ible, ∀n ≥ 1, ∀X ∈ ⊥P, and any object B. It follows from this that Êxt
∗
(X ,Y)(X,−)

∼=−→ C/P[Ω∗(X),−] = Π∗X(−), and then p∗X is isomorphic to ϕ∗X .
(ii) ⇒ (i) The hypothesis implies that the canonical morphism p∗X : Π∗X −→

Êxt
∗
(X ,Y)(X,−) is invertible. In particular the canonical morphism C/P(X,−) −→

Tl(C/P)[P(X),P(−)] is invertible. Then X ∈ ⊥P by Theorem 4.2 of [20]. �

The following result shows that, if (X ,Y) is a cotorsion pair in C with X∩Y = P,
then the Y-completion of the usual homological functor Ext∗C(C,−) with respect to
the hereditary torsion pair (X/P,Y/P) in C/P can be realized as the Eckmann-
Hilton projective homotopy functor of the special right X -approximation of C.

Corollary 2.10. Let (X ,Y) be a resolving cotorsion pair in C with X∩Y = P.
Then the Y-completion of the functor Ext∗C(C,−) is the Eckmann-Hilton projective
homotopy functor Π∗XC

(−) of the special right X -approximation XC of C.
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Proof. By Theorem VI.2.1 we have X ⊆ ⊥P. Then for any object C, using
the above Corollary and the fact that R(C) = XC , we have:

Êxt
∗
(X ,Y)(C,−)

∼=−→ Tl(C/P)[Ω∗PR(C),P(−)]
∼=−→ Π∗XC

(−).

�

Remark 2.11. All the results of this section can be dualized working, for
instance, with pairs (Y,Z) with Z coresolving and Y ∩ Z = I, and assuming that
(Y/I,Z/I) is a cohereditary torsion pair in C/I. In this case for any object C the

usual cohomological functor Ext∗C(−, C) admits the Y-completion Ẽxt
∗
(Y,Z)(−, C).

We leave to the reader to state the dual results.

3. Relative Homology and Generalized Tate-Vogel (Co)Homology

In this section we concentrate on complete projective or injective extension bi-
functors with respect to torsion pairs (X/ω,Y/ω) in C/ω, arising from cotorsion
pairs in C. By the results of Chapter V we know that ω is an Ext-injective co-
generator of X . In this section we are especially interested in the case where ω is
also an Ext-projective generator of X . The last condition is very pleasant since, by
Theorem VI.2.1, it implies that the torsion class is triangulated. In this case there
are defined two natural relative homological theories on C. The first one is repre-
sented by the relative extension functor Ext∗X induced by the cotorsion subcategory

X and the other one is the Generalized Tate-Vogel (Co)Homology Êxt
∗
(X ,Y). We

compare these with the relative homological theory represented by the relative ex-
tension functor Ext∗ω induced by ω, by providing comparison morphisms which fit
in an infinite long exact sequence. These results generalize recent investigations by
Avramov-Martsinkovsky which deal with relative (co)homological theories induced
by modules of finite Gorenstein dimension over a Noetherian ring, see [16].

Throughout this section we fix an abelian category C, not necessarily with
enough projective or injective objects. We recall that if A is a full subcategory of
C, then an object C of C is said to be of finite right A-projective dimension, if there

is a right A-projective resolution 0 −→ Xn
xn−−→ Xn−1 −→ · · · −→ Xi

xi−→ Xi−1 −→ · · · −→
X0

x0−→ C −→ 0 of C of length n. In this case we write A -pdC ≤ n. The least
such integer n is called the (relative) A-projective dimension of C and is denoted
by A -pdC = n. Otherwise, C is said to have infinite A-projective dimension and
we write A -pdC =∞.

Instead of working directly with cotorsion pairs in C, it is possible to work
in the more general setting of cotorsion pairs defined in a smaller piece of C. So
we start with a full additive subcategory X of C which is closed under extensions,
direct summands and kernels of epimorphisms. We assume throughout that X
admits an Ext-injective cogenerator ω. Then by Auslander-Buchweitz theory, see

[5], any object C in X̂ admits a special right X -approximation sequence 0 −→
YC

gC−−→ XC
fC−−→ C −→ 0 with YC ∈ ω̂, and a special left ω̂-approximation sequence

0 −→ C
gC−−→ Y C

fC

−−→ XC −→ 0 with XC in X . In particular the category X is

contravariantly finite in X̂ , hence X̂ ⊆ RappX (C), and the category ω̂ is covariantly

finite in X̂ . Moreover we have X ∩ ω̂ = ω.
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The following result which will be useful later, gives sufficient conditions such
that the X -resolution dimension and the relative X -projective dimension are equal.

Lemma 3.1. Let X be a full subcategory of C which is closed under extension,
direct summands and kernels of epics. We assume that X admits an Ext-injective
cogenerator ω and any X -epic in C is an epimorphism. Then X -res.dimC =

X -pdC, provided that one of the following conditions holds: (α) C lies in X̂ or (β)
C lies in C and X is contravariantly finite in C.

Proof. If X -pdC = 1, then there exists a non-split exact sequence 0 −→
X1 −→ X0 −→ C −→ 0 in C with the Xi in X , such that the sequence remains exact
after the application of the functor C(X,−), for any X ∈ X . This implies that
X -res.dimC = 1. Conversely if X -res.dimC = 1, let 0 −→ X1 −→ X0 −→ C −→ 0
be an exact sequence in C with the Xi in X . Then C admits a special right X -
approximation 0 −→ YC −→ XC −→ C −→ 0, where YC ∈ ω̂ in case (α), and YC ∈ X⊥
in case (β). Therefore we have the following exact commutative diagram

0 −−−−→ X1 −−−−→ X0 −−−−→ C −−−−→ 0

γ

y κ

y ∥∥∥
0 −−−−→ YC

gC−−−−→ XC
fC−−−−→ A −−−−→ 0

Since X1 lies in X , the morphism γ factors through ω. Since ω is an Ext-injective

cogenerator of X , there exists a short exact sequence 0 −→ X1
α−→ T −→ X ′1 −→ 0

with T in ω and X ′1 in X , which is a left ω-approximation sequence of X1. Hence γ

admits a factorization γ = α ◦ β : X1
α−→ T

β−→ X ′1. Pushing out the upper sequence
in the diagram along the morphism α, we get a short exact sequence (†) : 0 −→ T −→
X ′ −→ C −→ 0. Since Coker(α) lies in X and X is closed under extensions, we infer
that X ′ lies in X . Since Ext1(X , ω) = 0, we infer that the sequence (†) is an X -
resolution of C, hence X -pdC = 1. Now by induction we have that X -pdC <∞
if and only if X -res.dimC <∞, in which case X -pdC = X -res.dimC. �

From now on we assume that ω is contravariantly finite in C and any ω-epic

in C is an epimorphism. For any object A in X̂ and any object C in C, we de-
note by Ext∗X (A,C) the relative extension functors with respect to X . Since X is

contravariantly finite in X̂ , they can be computed using exact resolutions of A by
objects from X which have the property that they remain exact after the applica-

tion of C(X,−) for any X ∈ X . Contravariant finiteness of X in X̂ ensures that

such resolutions exist in X̂ . Since any ω-epic is an epimorphism in C, it follows that

Ext0
ω(−,−) = C(−,−) and Ext1

ω(−,−) ↪→ Ext1
C(−,−). Since any object A of X̂ is

a factor of an object from X , it follows that any X -epic is an epimorphism, and

therefore: Ext0
X (X,−) = C(X,−) and Ext1

X (X,−) ↪→ Ext1
C(X,−), for any X ∈ X̂ .

Now since ω is an Ext-injective cogenerator of X , it follows that ω is covariantly
finite in X and any ω-monic in X admits a cokernel in X . Since ω is contravariantly
finite in X and the latter is closed under kernels of epimorphisms, it follows that
any ω-epic in X admits a kernel in X . We conclude that the stable category X/ω
is pretriangulated. Let P : C/ω −→ Tl(C/ω), resp. P : X/ω −→ Tl(X/ω), be the
stabilization of C/ω, resp. X/ω, with respect to its left triangulation. For any
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object A in X̂ and any object C in C, we define, for any n ∈ Z, the following
sequence of functors:

Êxt
n

X (−,−) : X̂ × Cop −→ Ab, Êxt
n

X (A,C) := Tl(C/ω)[ΩnP(XA),P(C)]

Remark 3.2. If X is part of a resolving cotorsion pair (X ,Y) in C such that

ω := X ∩ Y is functorially finite, then the sequence of functors Êxt
∗
X (−,−) defined

above coincides with the complete extension bifunctors with respect to the cotorsion
pair (X ,Y). This follows from the fact that XA = R(A), where R is the right
adjoint of the inclusion i : X/ω ↪→ C/ω, and the following natural isomorphisms:

Êxt
n

X (A,C) = Tl(C/ω)[ΩnPR(A),P(C)]
∼=−→ Tl(C/ω)[ΩnR∗P(A),P(C)]

∼=−→

Tl(X/ω)[ΩnR∗P(A),R∗P(C)]
∼=−→ Êxt

n

(X ,Y)(A,C)

where R∗ is the right adjoint of the fully faithful exact functor i∗ : Tl(X/ω) ↪→
Tl(C/ω) induced by the inclusion i : X/ω ↪→ C/ω.

We construct as in Section 2 a natural morphism

φnA,− : Extnω(A,−) −→ Êxt
n

X (A,−), ∀A ∈ X̂ , ∀n ≥ 0

as follows. For any object C in C and n ≥ 0, φn+1
A,C is the composition of the following

morphisms:

Extn+1
ω (A,C)

∼=−→ Ext1
ω(Ωn(A), C)

εΩn+1(A),C−−−−−−−→ C/ω[Ωn+1(A), C]
PΩn+1(A),C−−−−−−−→

Tl(C/ω)[P(Ωn+1(A)),P(C)]
∼=−→ Tl(C/ω)[Ωn+1P(A),P(C)]

ψn+1
A,C−−−→

Tl(C/ω)[Ωn+1P(XA),P(C)] = Êxt
n+1

X (A,C)

where, for any A ∈ X̂ and any C ∈ C:
• εA,C : Ext1

ω(A,C) −→ C/ω[Ω(A), C] is the canonical (epi)morphism in-
duced by applying the functor C(−, C) to a the right ω-approximation
sequence 0 −→ Ω(A) −→ ωA −→ A −→ 0 of A.

• ψn+1
A,C = Tl(C/ω)[Ωn+1P(f

A
),P(C)], where fA : XA −→ A is a special right

X -approximation of A.

Finally φ0
A,− : Ext0

ω(A,−) −→ Êxt
0

X (A,−) is defined as the composition

Ext0
ω(A,C) = C(A,C) −→ C/ω(A,C) −→ Tl(C/ω)[P(A),P(C)] −→

Tl(C/ω)[P(XA),P(C)] = Êxt
0

X (A,C).

Remark 3.3. Consider the special right X -approximation sequence 0 −→ YA
gA−−→

XA
fA−−→ A −→ 0 of A ∈ X̂ . Then the object YA lies in ω̂. This implies that the

loop functor Ω of the stable category C/ω restricted to the left triangulated sub-
category Y/ω is locally nilpotent. Hence, by Section II.5, we have that P(Y ) = 0,
for any Y ∈ ω̂. Applying the left exact stabilization functor P : C/ω −→ Tl(C/ω) to

the left triangle Ω(A) −→ Y A −→ XA

f
A−−→ A in C/ω, it follows that the morphism
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P(f
A

) : P(XA) −→ P(A) is invertible. We infer that, for any A ∈ X̂ , the map ψnA,C
is invertible, ∀n ≥ 0 and ∀C ∈ C. It follows that we have natural isomorphisms

Êxt
n

X (A,C)
∼=−→ Tl(C/ω)[ΩnP(A),P(C)], ∀A ∈ X̂ , ∀C ∈ C.

In particular it follows that the ω-homological functor Êxt
∗
X (A,−) is ω̂-complete.

To proceed further we need the following basic result.

Lemma 3.4. Let X be a full subcategory of an abelian category C which admits
an Ext-injective cogenerator ω. If ω is contravariantly finite in C and any ω-epic
in C is an epimorphism, then the canonical map

PX,C : C/ω(X,C) −→ Tl(C/ω)[P(X),P(C)], f 7−→ P(f)

is invertible, for any X ∈ X and any C ∈ C.

Proof. Since ω is an Ext-injective cogenerator in X we have Ext1
C(X , ω) = 0.

Then the result follows from Lemma 5.12 in [20]. �

Consider now the morphism ϕn−,− : Extnω(−,−) −→ Êxt
n

X (−,−),∀n ∈ Z con-
structed above. The following result collects some basic properties of the bifunctor

Êxt
∗
(X ,Y)(−,−) and the connecting morphism ϕ∗−,−, and in addition gives a first

connection with the relative homological algebra in C induced by the subcategory
X . We recall that X induces a subfunctor FX of Ext1

C(−,−) as follows:

FX (C,A) := {(E) : 0 −→ A −→ B −→ C −→ 0 ∈ Ext1
C(C,A) such that

0 −→ C(X , A) −→ C(X , B) −→ C(X , C) −→ 0 is exact}.
The subfunctor FX is defined dually. Observe that if ω ⊆ X , then FX ⊆ Fω. Part
(iv) below was observed by A. Martsinkovsky in a different setting.

Proposition 3.5. If ω is an Ext-projective generator of X , then:

(i) The stable category X/ω is a full triangulated subcategory of the stable
left triangulated category C/ω.

(ii) The morphism ϕnX,− is invertible ∀n ≥ 1 if and only if X lies in X .

(iii) The kernel of ϕ0
−,− is the ideal of C consisting of all morphisms factorizing

through an object of ω̂.
(iv) The kernel of φ1

−,− is the subfunctor FX ⊆ Ext1
ω(−,−).

Proof. (i) Follows by Proposition VI.1.2.
(ii) Since X/ω is triangulated, it is easy to see that the canonical morphism

Extnω(X,B) −→ C/ω[Ωn(X), B] is invertible, for any X ∈ X , for any B ∈ C and for
any n ≥ 1. Then the assertion follows from Remark 3.3 and Lemma 3.4.

(iii) Let α : A −→ C be a morphism in the kernel of ϕ0
A,C , where A is in X̂ and

C is in C. Using Remark 3.3 and Lemma 3.4, it is easy to see that this implies
that f

A
◦ α = 0. Hence α factors through the reflection gA : A −→ Y A of A in

ω̂/ω. Therefore there exists a morphism ρ : Y A −→ C such that the morphism
α − gA ◦ ρ factors through an object T in ω. Hence there exists a factorization

α − gA ◦ ρ = κ ◦ λ : A
κ−→ T

λ−→ C. Since T ∈ ω̂, there exists a morphism
σ : Y A −→ T such that gA ◦ σ = κ. Then α − gA ◦ ρ = gA ◦ σ ◦ λ, and this implies
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that α = gA ◦ (ρ+ σ ◦ λ). Hence α factors through an object in ω̂. The converse is
clear since by Remark 3.3, P(Y ) = 0, for any Y ∈ ω̂.

(iv) Let A be in X̂ and let (E) : 0 −→ C −→ B
ε−→ A −→ 0 be a short exact sequence

in C which lies Ext1
ω(A,C). We assume that (E), as an element of Ext1

ω(C,A), is
represented by a morphism ρ : Ωω(A) −→ C, that is there exists a push-out diagram:

0 −−−−→ Ωω(A) −−−−→ ωA −−−−→ A −−−−→ 0

ρ

y y ∥∥∥
0 −−−−→ C −−−−→ B

ε−−−−→ A −−−−→ 0

By Remark 3.3 and Lemma 3.4, it follows that (E) ∈ Ker(ϕ1
A,C) iff the composition

f
Ωω(A)

◦ ρ = 0, where f
Ωω(A)

: XΩω(A) −→ Ωω(A) is the coreflection of Ωω(A) in

X/ω. Now for any X in X we have an exact commutative diagram

C(X,A)
ϑ−−−−→ Ext1

ω(X,Ωω(A))∥∥∥ ρ∗X

y
C(X,A)

ϑ̃−−−−→ Ext1
ω(X,C)

Since ω is an Ext-injective cogenerator of X , the inclusion Ext1
ω(X,Ωω(A)) ↪→

Ext1
C(X,ωA) = 0 shows that ϑ is epic. Hence (E) lies in FX iff ϑ̃ = 0 iff ρ∗X = 0.

From the proof of part (ii) it follows that we have isomorphisms Ext1
ω(X,Ωω(C)) =

C/ω[Ωω(X),Ωω(A)] and Ext1
ω(X,C) = C/ω[Ωω(X), C], and then ρ∗X is the mor-

phism which sends α : Ωω(X) −→ Ωω(A) to the composition α ◦ ρ : Ωω(X) −→ C.

Since XΩω(A)

∼=−→ Ωω(XA), and since any morphism Ωω(X) −→ Ωω(A) factors

through f
Ωω(A)

, we have: (E) ∈ Ker(ϕ1
A,C) iff f

Ωω(A)
◦ ρ = 0 iff α ◦ ρ = 0, for any

morphism α : Ωω(X) −→ Ωω(A) with X ∈ X , iff ρ∗X = 0, ∀X ∈ X , iff (E) ∈ FX . �

Now we can prove the main result of this section, which gives a nice connection
between the three involved relative homological theories represented by the bifunc-

tors Ext∗X (−,−),Ext∗ω(−,−) and Êxt
∗
X (−,−), by providing comparison morphisms

which fit in a long exact sequence.

Theorem 3.6. Let X be a full additive subcategory of an abelian category C
which is closed under extensions, direct summands and kernels of epimorphisms.
We assume that X admits an Ext-injective cogenerator ω which is an Ext-projective
generator in X . If ω is contravariantly finite in C and any ω-epic is an epimorphism,

then for any object A in X̂ there exists a long exact sequence of functors C −→ Ab:

0 −→ Ext1
X (A,−) −→ Ext1

ω(A,−) −→ Êxt
1

X (A,−) −→ · · ·

· · · −→ ExtnX (A,−) −→ Extnω(A,−) −→ Êxt
n

X (A,−) −→ · · ·

· · · −→ ExtdX (A,−) −→ Extdω(A,−) −→ Êxt
d

X (A,−) −→ 0

where d := X -res.dimA = X -pdA.

Proof. Let A be an object in X̂ , and let

0 −→ YA
gA−−→ XA

fA−−→ A −→ 0 (†)
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be a special right X -approximation of A. Then we know that YA lies in ω̂. If
A lies in ω̂, then XA ∈ X ∩ ω̂ = ω. Hence the right X -approximation sequence
(†) of A is a right ω-approximation sequence of A. This implies that for any
Y ∈ ω̂ we have ΩX (Y ) ∼= Ωω(Y ), where ΩX (Y ), resp. Ωω(Y ) is the first relative

X -syzygy, resp. ω-syzygy, of Y , and an isomorphism Ext1
X (Y,−)

∼=−→ Ext1
ω(Y,−).

Since ω̂ is closed under relative ω-syzygies, this implies that the canonical map
ExtnX (Y,−) −→ Extnω(Y,−) is invertible, for any Y ∈ ω̂ and n ≥ 0. Since ω ⊆ X ,
the special right X -approximation sequence (†) induces a long exact sequence of
relative ω-extension functors:

· · · −→ Extnω(YA,−) −→ Extn+1
ω (A,−) −→ Extn+1

ω (XA,−) −→ · · · (††)

By the above observation we have an isomorphism Extnω(YA,−)
∼=−→ ExtnX (YA,−).

Since YA is the first relative X -syzygy of A, the last extension space is isomorphic to
Extn+1

X (A,−). Since, by Proposition 3.5, X/ω is a triangulated subcategory of C/ω,

we infer that the canonical map Extn+1
ω (XA, C) −→ C/ω[Ωn+1

ω (X), C] is invertible,
for any n ≥ 0 and any C ∈ C. By Lemma 3.4, the last space is isomorphic to

Tl(C/ω)[P(Ωn+1
ω (XA)),P(C)]

∼=−→ Tl(C/ω)[Ωn+1P(XA),P(C)]. Hence

Extn+1
ω (XA, C)

∼=−→ Tl(C/ω)[Ωn+1P(XA),P(C)] = Êxt
n+1

X (A,C).

It is easy to see that the above isomorphisms make the next diagram commutative:

· · · −−−−−→ Extnω(YA,−) −−−−−→ Extn+1
ω (A,−) −−−−−→ Extn+1

ω (XA,−) −−−−−→ · · ·

∼=
y ∥∥∥ ∼=

y
· · · −−−−−→ Extn+1

X (A,−)
θn+1
A,−−−−−−→ Extn+1

ω (A,−)
φn+1
A,−−−−−−→ Êxt

n+1

X (A,−) −−−−−→ · · ·

where θn+1
A,− is the canonical morphism induced by the inclusion Ext1

X (A,−) ↪→
Ext1

ω(A,−), which in turn is induced by the inclusion ω ⊆ X , and φn+1
A,− is the

natural morphism defined before. Since we have an identification Ext1
X (A,−) =

Coker
(
C(XA,−) −→ C(YA,−)

)
, and by Proposition 3.5 we have an exact sequence

0 −→ Ext1
X (−,−) −→ Ext1

ω(−,−) −→ Êxt
1

X (−,−), we have proved the exactness of

the desired sequence. Finally we show that the sequence stops at Êxt
d

X (A,C). To

prove this, it suffices to show that Extd+1
X (A,C) = 0. Let d = X -res.dimA. Then,

by Lemma 3.1, we have d = X -pdA. Hence Extd+1
X (A,C) = 0. �

We have the following direct consequence.

Corollary 3.7. Let C be an abelian category with enough projectives and let X
be a full additive subcategory of C which is closed under extensions, direct summands
and kernels of epimorphisms. If P is an Ext-injective cogenerator of X , then for

any object A in X̂ there exists a long exact sequence of functors C −→ Ab:

0 −→ Ext1
X (A,−) −→ Ext1

C(A,−) −→ Êxt
1

TV (A,−) −→ · · ·

· · · −→ ExtnX (A,−) −→ ExtnC(A,−) −→ Êxt
n

TV (A,−) −→ · · ·

· · · −→ ExtdX (A,−) −→ ExtdC(A,−) −→ Êxt
d

TV (A,−) −→ 0
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where d := X -res.dimA = X -pdA.

Proof. The assertion follows from Theorem 3.6, except of the identification

Êxt
∗
TV (A,−)

∼=−→ Êxt
∗
X (A,−). However this follows from Remark 3.3 and the defi-

nition of projective Tate-Vogel Cohomology. �

In a recent paper Avramov-Martsinkovsky [16], using complete resolutions,
proved that there is a long exact sequence involving Tate-Vogel cohomology, abso-
lute cohomology, and the relative cohomology induced by finitely generated modules
of finite Gorenstein dimension over a Noetherian ring. The following result general-
izes and gives a simple proof of the result of Avramov-Martsinkovsky, see Theorem
7.1 of [16], avoiding complete resolutions.

Corollary 3.8. Let C be an abelian category with enough projectives. Then

for any object A in C with finite P-Gorenstein dimension, that is A lies in ĈM(P),
there exists a long exact sequence of functors C −→ Ab:

0 −→ Ext1
CM(P)(A,−) −→ Ext1

C(A,−) −→ Êxt
1

TV (A,−) −→ · · ·

· · · −→ ExtnCM(P)(A,−) −→ ExtnC(A,−) −→ Êxt
n

TV (A,−) −→ · · ·

· · · −→ ExtdCM(P)(A,−) −→ ExtdC(A,−) −→ Êxt
d

TV (A,−) −→ 0

where d is the P-Gorenstein (resolution) dimension of A.

Now we apply our results to cotorsion pairs. Let C be an abelian category with
enough projectives, and let (X ,Y) be a resolving cotorsion pair in C. Although
Theorem 3.9 below holds for cortorsion pairs with X ∩ Y = ω, for convenience we
assume that X ∩Y = P. Then the following result shows that there exists an exact
sequence of functors as in Theorem 3.6. However the sequence in general does not
stop, since in general Y contains objects of infinite projective dimension.

Theorem 3.9. Let C be an abelian category with enough projective objects. If
(X ,Y) is a resolving cotorsion pair in C such that X ∩ Y = P, then there exists a
long exact sequence of bifunctors: Cop × C −→ Ab:

0 −→ Ext1
X (−,−) −→ Ext1

C(−,−) −→ Êxt
1

(X ,Y)(−,−) −→ · · ·

· · · −→ ExtnX (−,−) −→ ExtnC(−,−) −→ Êxt
n

(X ,Y)(−,−) −→ · · ·

where Êxt
n

(X ,Y)(−,−) is the complete projective extension bifunctor of C with respect

to the cotorsion pair (X ,Y). Moreover the sequence stops at some stage if and only
if the category C is Gorenstein.

Proof. By Remark 3.2, the bifunctor Êxt
∗
(X ,Y)(−,−) coincides with the bifunc-

tor Êxt
∗
X (−,−). Now the existence of the long exact sequence follows exactly as in

Theorem 3.6, using that X is contravariantly finite in C. Finally if Extd+1
X (−,−) = 0

for some d ≥ 0, then X -res.dim C < ∞, hence X̂ = C. This implies, by Theorem

VII.1.4, that C is Gorenstein. If Extd+1
C (−,−) = 0 or Êxt

d+1

(X ,Y)(−,−) = 0 for some
d ≥ 0, then it is easy to see that gl.dim C <∞, hence C is Gorenstein. Conversely
if C is Gorenstein with Gorenstein projective dimension G-dimP C = d <∞, then,
by Theorem VII.1.4 we have X = CM(P) and Extd+1

X (−,−) = 0. �
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Let (X ,Y) be a resolving cotorsion pair in C with X ∩Y = P. In addition to the
three homological theories represented by the homological bifunctors Ext∗X (−,−),

Ext∗C(−,−) and Êxt
∗
(X ,Y)(−,−), there is a fourth one, namely the Tate-Vogel pro-

jective extension bifunctor Êxt
∗
TV (−,−). We close this section by comparing the

bifunctors Êxt
∗
TV (−,−) and Êxt

∗
(X ,Y)(−,−).

Let C be an object of C and consider the completion morphism ζ∗C,− : Ext∗C(C,−)

−→ Êxt
∗
TV (C,−) of the extension functor Ext∗C(C,−) with respect to the subcate-

gory P, and the completion morphism φ∗C,− : Ext∗C(C,−) −→ Êxt
∗
(X ,Y)(C,−) of the

extension functor Ext∗C(C,−) with respect to the subcategory Y. Since P ⊆ Y,

by the universal property of Êxt
∗
TV (C,−), there exists a unique morphism ρ∗C,− of

P-homological functors making the following diagram commutative:

Ext∗C(C,−)
ζ∗C,−−−−−→ Êxt

∗
TV (C,−)∥∥∥ ∃ ! ρ∗C,−

y
Ext∗C(C,−)

φ∗C,−−−−−→ Êxt
∗
(X ,Y)(C,−)

It is not difficult to see that ρ∗C,− coincides with the natural morphism constructed
in Corollary 1.4, in particular ρ∗C,− extends to a morphism of bifunctors

ρ∗−,− : Êxt
∗
TV (−,−) −→ Êxt

∗
(X ,Y)(−,−)

which we call the comparison morphism. The following result shows that the
comparison morphism measures how far C is from being Gorenstein.

Proposition 3.10. The natural morphism ρ∗C,− is invertible iff C ∈ X̂ . In
particular the comparison morphism ρ∗−,− is invertible iff C is Gorenstein.

Proof. Let ρ∗C,− be invertible. Then by Corollary 1.4, YC lies in P<∞, and

this implies that C lies in X̂ . Conversely if C ∈ X̂ , then by Proposition VI.2.3, YC
has finite projective dimension, and then ρ∗C,− is invertible by Corollary 1.4. �

Remark 3.11. The results of this section have dual versions concerning cat-
egories which admit an Ext-projective generator, for instance CoCohen-Macaulay
objects. In particular the dual results can be applied to categories admitting core-
solving cotorsion pairs. We leave the formulation of the dual results to the reader.

4. Cotorsion Triples and Complete Cohomology Theories

Throughout this section we fix an abelian category C and we assume that C has
enough projective and enough injective objects. As we have seen in Chapter VI,
torsion pairs (X/P,Y/P) in C/P with X ∩ Y = P, arise usually in practice from
cotorsion triples. In this section we study the complete extension bifunctors induced
by the cotorsion pairs (X ,Y) and (Y,Z) involved in a cotorsion triple (X ,Y,Z) in
C. In particular we show that the two (co)homology theories arising from the two
cotorsion pairs are isomorphic, and we show that the same is true for the relative
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homological theories defined by the cotorsion subcategory X and the cotorsion-
free subcategory Z. This generalizes the well-known isomorphism between the
projective and injective Tate-Vogel cohomology bifunctors, see [87], [20].

Throughout we fix a cotorsion triple (X ,Y,Z) in C with Y (co)resolving. Then
we know that X ∩ Y = P and Y ∩ Z = I, the torsion class X/P in C/P is trian-
gulated, and the torsion-free class Z/I in C/I is triangulated. Hence the results of
the previous section can be applied to both cotorsion pairs (X ,Y) and (Y,Z). We

shall show that the complete extension bifunctors Êxt
n

(X ,Y)(−,−), Ẽxt
n

(Y,Z)(−,−) :
Cop × C −→ Ab are isomorphic, ∀n ∈ Z. We recall that by Theorem VI.3.2 there

exists a triangle equivalence Φ : X/P ≈−→ Z/I with quasi-inverse Ψ.
First we need the following result which shows that the two reasonable possible

ways to go from C to X/P and to Z/I are isomorphic. As usual we denote by
R : C/P −→ X/P the right adjoint of the inclusion i : X/P ↪→ C/P, and by
T : C/I −→ Z/I the left adjoint of the inclusion k : Z/I ↪→ C/I.

Lemma 4.1. There exist commutative diagrams of functors

C π−−−−→ C/I

π

y yΣ−1T

C/P ΦR−−−−→ Z/I

C π−−−−→ C/P

π

y yΩ−1R

C/I ΨT−−−−→ X/P
that is, there exist natural isomorphisms of functors

ϕ : Σ−1Tπ
∼=−→ ΦRπ and ψ : ΨTπ

∼=−→ Ω−1Rπ.

Proof. Let A be a object in C and consider the special right X -approximation

sequence 0 −→ YA −→ XA
fA−−→ A −→ 0 of A and the special right Y-approximation

sequence 0 −→ ZXA
−→ YXA

gXA−−−→ XA −→ 0 of XA. Then by definition the object
ZXA

in C/I is the object ΦRπ(A). The above exact sequences are included in the
following exact commutative diagram

0 −−−−→ U −−−−→ YXA
−−−−→ A −−−−→ 0y gXA

y ∥∥∥
0 −−−−→ YA −−−−→ XA

fA−−−−→ A −−−−→ 0

which induces an exact sequence 0 −→ ZXA
−→ U −→ YA −→ 0. Since ZXA

is in Z
and YA is in Y, the sequence splits, hence U ∼= ZXA

⊕ YA. Since the left square in
the above diagram is bicartesian, it induces an exact sequence 0 −→ ZXA

⊕ YA −→
YA ⊕ YXA

−→ XA −→ 0. Then we have a right triangle ZXA
⊕ Y A −→ Y A ⊕ Y XA

−→
XA −→ Σ(ZXA

⊕ Y A) in C/I. Applying to this triangle the right exact reflection
functor T : C/I −→ Z/I and using that T(Y/I) = 0, we have an isomorphism

T(XA)
∼=−→ Σ(ZXA

) = ΣΦRπ(A). Applying T to the right triangle Y A −→ XA −→
A −→ Σ(Y A) in C/I, we have an isomorphism T(XA)

∼=−→ T(A). Combining the

above isomorphisms we infer that we have an isomorphism Tπ(A) = T(A)
∼=−→

ΣΦRπ(A), or equivalently an isomorphism ϕ : Σ−1Tπ(A)
∼=−→ ΦRπ(A). We leave

to the reader the easy proof that ϕ is functorial as well as the proof of the existence
of the isomorphism ψ. �
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The following main result of this section shows that the complete projective
extension bifunctor induced by the good pair (X ,Y) is isomorphic to the complete
injective extension bifunctor induced by the good pair (Y,Z).

Theorem 4.2. If (X ,Y,Z) is a cotorsion triple in C with Y (co)resolving, then
the complete extension bifunctors

Êxt
n

(X ,Y)(−,−) and Ẽxt
n

(Y,Z)(−,−) : Cop × C −→ Ab
are isomorphic, for any n ∈ Z.

Proof. Using the isomorphisms of Lemma 4.1 and the exactness of Φ, we have
for any n ∈ Z:

Êxt
n

(X ,Y)(A,B) = X/P[ΩnR(A),R(B)]

∼= Z/I[ΦΩnR(A),ΦR(B)]
∼= Z/I[Σ−nΦR(A),Σ−1T(B)]

∼= Z/I[Σ−1T(A),Σ−1ΣnT(B)]

∼= Z/I[T(A),ΣnT(B)]

= Ẽxt
n

(Y,Z)(A,B).

�

Combining Theorems 4.2 and 2.6, we obtain the following consequence.

Corollary 4.3. Let (X ,Y,Z) be a cotorsion triple in C with Y (co)resolving.
Then the Y-completion of the homological functor Ext∗C(A,−) evaluated at B is
isomorphic to the Y-completion of the cohomological functor Ext∗C(−, B) evaluated
at A.

The following consequence generalizes and gives a simple proof of a result of [20]
which was obtained independently by Nucinkis [87], using satellites.

Theorem 4.4. The following statements are equivalent:

(i) C is Gorenstein.
(ii) FPD(C) < ∞ or FID(C) < ∞ and the projective Tate-Vogel homology

bifunctor is isomorphic to the injective Tate-Vogel homology bifunctor:

Êxt
∗
TV (−,−)

∼=−→ Ẽxt
∗
TV (−,−).

If C admits exact products or exact coproducts or if C has finite number of non-
isomorphic simple objects and any object of C is of finite length, then the assumption
FPD(C) <∞ or FID(C) <∞ in (ii) can be removed.

Proof. (i) ⇒ (ii) If C is Gorenstein, then by Theorem VII.2.2 we have a
cotorsion triple (X ,Y,Z) in C with Y = P<∞ = I<∞ and FPD(C) = FID(C) <∞.
Hence Tl(Y/P) = 0 = Tr(Y/I) and then Tl(C/P) = X/P and Tr(C/I) = Z/I. It
follows that we have isomorphisms

Êxt
∗
TV (−,−)

∼=−→ Êxt
∗
(X ,Y)(−,−)

∼=−→ Ẽxt
∗
(Y,Z)(−,−)

∼=←− Ẽxt∗TV (−,−).

(ii) ⇒ (i) Let I be an object of finite injective dimension. Then we have

0 = Ẽxt
∗
TV (I, I)

∼=−→ Êxt
∗
TV (I, I), hence Êxt

0

TV (I, I) = Tl(C/P)[P(I),P(I)] = 0.
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However this holds if and only if I has finite projective dimension. Dually if P has
finite projective dimension, then P has finite injective dimension. We conclude that
P<∞ = I<∞. Then by Proposition VII.1.3 and Theorem VII.2.2, we have that C
is Gorenstein. Finally if C admits exact (co)products or if C has a finite number
of non-isomorphic simple objects and any object of C has finite length, then the
assertion follows from Proposition VII.2.4. �

It is now natural to ask if the relative homological theories induced by the
subcategories X and Z involved in a cotorsion triple (X ,Y,Z) are isomorphic. The
answer is provided by the following result which shows that the additive subfunctors
FX and FZ of Ext1

C(−,−) coincide.

Theorem 4.5. Let (X ,Y,Z) be a cotorsion triple in C with Y (co)resolving.
Then the subfunctors FX and FZ of Ext1

C(−,−) coincide. In particular there exists
an isomorphism of bifunctors

Ext∗X (−,−)
∼=−→ Ext∗Z(−,−).

Hence if 0 −→ A −→ B −→ C −→ 0 is a short exact sequence in C, then any morphism
X −→ C with X ∈ X factors through B −→ C if and only if any morphism A −→ Z
with Z ∈ Z factors through A −→ B.

Proof. Let ξ∗−,− : Êxt
∗
(X ,Y)(−,−) −→ Ẽxt

∗
(Y,Z)(−,−) be the isomorphism of

complete extension bifunctors contructed in Theorem 4.2. Consider the Y-comple–

tion morphism ϕ∗A,− : Ext∗C(A,−) −→ Êxt
n

(X ,Y)(−,−) of the usual extension functor

Ext∗C(A,−), and the Y-completion morphism ψ∗−,B : Ext∗C(−, B) −→ Ẽxt
∗
(Y,Z)(−,−)

of the usual extension functor Ext∗C(−, B). It is easy to see from the construction
of the completion morphisms and the isomorphism ξ∗−,−, that the completion mor-
phisms ϕ∗A,− and ψ∗−,B are compatible with ξ∗−,− in the sense that for all objects A
and B in C, the following diagram commutes:

Ext∗C(A,B)
ϕ∗A,B−−−−→ Êxt

∗
(X ,Y)(A,B)∥∥ ξ∗A,B

y∼=
Ext∗C(A,B)

ψ∗A,B−−−−→ Ẽxt
∗
(Y,Z)(A,B)

Then by Theorem 3.9 and its dual it follows that the long exact sequences of functors

· · · −→ ExtnX (−,−) −→ ExtnC(−,−) −→ Êxt
n

(X ,Y)(−,−) −→ · · ·

· · · −→ ExtnZ(−,−) −→ ExtnC(−,−) −→ Ẽxt
n

(Y,Z)(−,−) −→ · · ·
are isomorphic. Hence the relative extension functors Ext∗X (−,−) and Ext∗Z(−,−)
are isomorphic. �

As usual any one of the subfunctors FX and FZ defines a relative homolog-
ical theory in C, see [14]. The corresponding global dimensions are denoted by
X -gl.dim C and Z -gl.dim C. Let P(FX ), resp. P(FZ), be the full subcategory of
FX -projective, resp. FZ -projective, objects of C, and let I(FX ), resp. I(FZ), be
the full subcategory of FX -injective, resp. FZ -injective, objects of C. We have the
following direct consequence of Theorem 4.5, which combined with the fact that,
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by Lemma 3.1, X -gl.dim = X -res.dim C and Z -gl.dim = Z -cores.dim C, gives a
new proof of Corollary VI.4.4.

Corollary 4.6. Let (X ,Y,Z) be a cotorsion triple in C with Y (co)resolving.
Then we have the following.

(i) The subfunctors FX and FZ have enough projective and injective objects,
and moreover: P(FX ) = X = P(FZ) and I(FZ) = Z = I(FX ).

(ii) X -gl.dim C = Z -gl.dim C, and this common value is finite if and only if
C is Gorenstein.

Remark 4.7. By our previous results, for a resolving cotorsion pair (X ,Y)
with X ∩Y = P, we have the following: Tl(Y/P) = 0 ⇔ R∗ : Tl(C/P) −→ X/P is a
triangle equivalence ⇔ Y consists of objects of finite projective dimension ⇔ C is
Gorenstein. Dually if we have a coresolving cotorsion pair (Y,Z) with Y ∩ Z = I,
then the following are equivalent: Tr(Y/I) = 0⇔ T∗ : Tr(C/I) −→ Z/I is a triangle
equivalence⇔ Y consists of objects of finite injective dimension⇔ C is Gorenstein.
Hence the existence of such cotorsion pairs (X ,Y) and/or (Y,Z) and more generally
of cotorsion triples (X ,Y,Z), provides a generalization of the Gorenstein case.

All the above results can be applied to the category of (finitely generated)
modules over an Artin algebra. Any Artin algebra Λ admits the cotorsion pair
(PΛ,mod(Λ)) with PΛ ∩ mod(Λ) = PΛ and the cotorsion pair (mod(Λ), IΛ) with
mod(Λ)∩IΛ = IΛ. We call these pairs trivial. A cotorsion triple (X ,Y,Z) is trivial
if and only if X = PΛ or equivalently Z = IΛ.

In view of the results of this and the previous sections it is natural to pose the
following problem:

• Characterize the Artin algebras Λ such that mod(Λ) admits a non trivial
resolving cotorsion pair (X ,Y) with X ∩ Y = PΛ. By Proposition VI.6.9, this is
equivalent to asking for a characterization of the Artin algebras which admit a non
trivial coresolving cotorsion pair (Y,Z) in mod(Λ) with Y∩Z = IΛ, or a non-trivial
cotorsion triple (X ,Y,Z) in mod(Λ) with Y (co)resolving.

Certainly the class of Gorenstein algebras belongs to all the three classes above,
but we don’t know if there are additional algebras. In the next chapter we shall
show that any Artin algebra belongs to any of the above classes, except possibly
for the third class, provided we work with the category of all modules.



CHAPTER X

Nakayama Categories and Cohen-Macaulay
Cohomology

As we have seen in the previous chapter a hereditary torsion pair in the pretri-
angulated stable category of an abelian category gives rise to a complete cohomol-
ogy theory, which play an important role in the investigation of the homological
structure of the abelian category. Our aim in this chapter is to show that in any
abelian category with exact infinite (co)products and which is endowed with an ad-
joint pair of suitable Nakayama functors, the stable category of Cohen-Macaulay,
resp. CoCohen-Macaulay, objects is the torsion, resp. torsion-free, class of a hered-
itary, resp. cohereditary, torsion pair in the stable category modulo projectives,
resp. injectives. Hence, using the results of the previous chapter, we can construct
the complete cohomology theories induced by the Cohen-Macaulay and CoCohen-
Macaulay objects. We investigate the basic properties of these new Cohomology
theories, which is natural to call Cohen-Macaulay cohomology theories, and we give
connections with relative homology and closed model structures.

1. Nakayama Categories and Cohen-Macaulay Objects

Throughout this section we fix an abelian category C and assume that C has
enough projective and injective objects. As usual we denote by P, resp. I, the
full subcategory of projective, resp. injective objects of C. Our aim in this section
is to study (Co)Cohen-Macaulay objects in Nakayama abelian categories which, as
we shall see in the next section, provide the proper setting for the investigation
of Cohen-Macaulay cohomology. In particular working in this context, we shall
see that the (stable) categories of Cohen-Macaulay and CoCohen-Macaulay objects
are (triangle) equivalent. Our motivation for introducing the notion of a Nakayama
category comes from Artin algebras:

An important feature of the category Mod(Λ) of all right modules over an
Artin algebra, is the existence of Nakayama functors. Recall that if D : mod(Λ) −→
mod(Λop) is the usual duality of Artin algebras, then setting N+ = − ⊗Λ D(Λ)
and N− = HomΛ(D(Λ),−), we obtain an adjoint pair (N+,N−) of endofunctors of
Mod(Λ) which induces an equivalence between the category of projective modules
and the category of injective modules. The following notion, which will be useful
later as the appropriate context for the study of Cohen-Macaulay cohomology,
generalizes this situation from Artin algebras to a broader context.

Definition 1.1. The abelian category C is said to be a Nakayama category
if there exists an adjoint pair of functors (N+,N−) : C −→ C inducing an equivalence

186



1. NAKAYAMA CATEGORIES AND COHEN-MACAULAY OBJECTS 187

N+ : P ≈−→ I with quasi-inverse N− : I ≈−→ P. Then the functors N+ and N− are
called the Nakayama functors of C.

The following gives a variety of interesting examples of Nakayama categories.

Example. (1) Any Frobenius abelian category is a Nakayama category. In
this case we can choose N+ = N− = IdC .

(2) As mentioned above, prominent examples of Nakayama categories are the
module categories mod(Λ) and Mod(Λ) over an Artin algebra Λ. More generally
the categories mod(Λ) and Mod(Λ) are Nakayama categories, when Λ is a ring with
a Morita self-duality. More precisely for a ring Λ the following are equivalent:

(i) Mod(Λ) is a Nakayama category and N− commutes with filtered colimits.
(ii) Λ is a ring with a Morita self-duality.

Indeed if Λ is a ring with Morita self-duality D, then D(Λ) is finitely generated
and the functor − ⊗Λ D(Λ) is a product preserving Nakayama functor with right
adjoint the Nakayama functor HomΛ(D(Λ),−). Conversely if (i) holds, then Λ
is right Artinian and the Λ-bimodule ω := N+(Λ) is a finitely generated injective
cogenerator of Mod(Λ) with End(ω) = Λ. Hence Λ is a ring with Morita self-duality.

(3) Let C be a dualizing R-variety in the sense of [7], where R is a commutative
Artin ring. Then mod(C) and Mod(C) are Nakayama categories. This include
locally bounded categories over a field.

(4) Let C be a hereditary Ext-finite abelian k-category over a field k. If C
admits a Serre functor in the sense of [89], then C is a Nakayama category .

If C is a Nakayama category, then we denote always by (N+,N−) the adjoint
pair of Nakayama functors. Moreover we denote always by δ : IdC −→ N−N+ the
unit, and by ε : N+N− −→ IdC the counit of the adjoint pair (N+,N−).

The following result, which will be useful later in connection with torsion pairs
induced by Cohen-Macaulay objects, shows that the stable categories modulo pro-
jectives or injectives of a Nakayama category are pretriangulated, hence we can
speak of torsion pairs in them.

Lemma 1.2. If C is a Nakayama category, then P and I are functorially finite.
In particular the stable categories C/P and C/I are pretriangulated.

Proof. Let C be in C and let µ : N+(C) −→ I be a monomorphism with

I injective. We claim that C
δC−−→ N−N+(C)

N−(µ)−−−−→ N−(I) is a left projective
approximation of C. First N−(I) is projective, since I is injective. Let f : C −→ P
be a morphism where P is projective. Since N+(P ) is injective, then there exists
a morphism g : I −→ N+(P ) such that µ ◦ g = N+(f). Then δC ◦ N−(µ) ◦ N−(g) =
δC ◦ N−N+(f) = f ◦ δP . But δP is invertible, since P is projective. Then δC ◦
N−(µ) ◦ N−(g) ◦ δ−1

P = f , hence f factors through δC ◦ N−(µ). We infer that P is
covariantly finite. By duality we have that I is contravariantly finite. �

We are going to show that the (stable) categories of Cohen-Macaulay objects
and CoCohen-Macaulay objects are (triangle) equivalent, via the Nakayama func-
tors. First we need the following preliminary result. From now on by ⊥X we denote
the full subcategory {C ∈ C | ExtnC(C,X ) = 0, ∀n ≥ 1}, and similarly for Y⊥.

Lemma 1.3. Let C be a Nakayama category.
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(i) ∀C ∈ C, ∀I ∈ I, there exists a natural isomorphism:

C(LnN+(C), I)
∼=−→ Extn(C,N−(I)).

In particular: C ∈ ⊥P if and only if LnN
+(C) = 0, ∀n ≥ 1.

(ii) ∀C ∈ C, ∀P ∈ P, there exists a natural isomorphism:

Extn(N+(P ), C)
∼=−→ C(P,RnN−(C)).

In particular: C ∈ I⊥ if and only if RnN−(C) = 0, ∀n ≥ 1.

Proof. We prove only part (i), since (ii) is dual. Let C be an object in C and
and let 0 −→ Ω(C) −→ P −→ C −→ 0 be an exact sequence in C with P projective.
Then we have the following exact sequence:

0 −→ L1N
+(C) −→ N+(Ω(C)) −→ N+(P ) −→ N+(C) −→ 0

Applying the functor C(−, I) to the above exact sequence with I injective, we have
the following exact sequence:

0 −→ C(N+(C), I) −→ C(N+(P ), I) −→ C(N+(Ω(C)), I) −→ C(L1N
+(C), I) −→ 0

Using adjointness the above sequence is isomorphic to the exact sequence:

0 −→ C(C,N−(I)) −→ C(P,N−(I)) −→ C(Ω(C),N−(I)) −→ C(L1N
+(C), I) −→ 0

from which we infer an isomorphism: C(L1N
+(C), I)

∼=−→ Ext1(C,N−(I)). Replacing

C with its higher syzygies, we deduce natural isomorphisms C(LnN+(C), I)
∼=−→

Extn(C,N−(I)), ∀n ≥ 1. Since any projective object is of the form N−(I), where I
is injective, it follows that Extn(C,P) = 0, ∀n ≥ 1 iff N+(C) = 0, ∀n ≥ 1. �

Proposition 1.4. Let C be a Nakayama category. Then the adjoint pair of

Nakayama functors (N+,N−) induces an equivalence N+ : CM(P)
≈−→ CoCM(I)

with quasi-inverse N− : CoCM(I)
≈−→ CM(P), and a triangle equivalence N+ :

CM(P)/P ≈−→ CoCM(I)/I with quasi-inverse N− : CoCM(I)/I ≈−→ CM(P)/P.

Proof. Since CM(P) ⊆ ⊥P and CoCM(I) ⊆ I⊥, the above Lemma ensures
that LnN

+(X) = 0, ∀n ≥ 1, ∀X ∈ CM(P), and RnN−(Z) = 0, ∀n ≥ 1, ∀Z ∈
CoCM(I). In particular the functor N+ is exact on exact sequences with right end
term a Cohen-Macaulay object, and the functor N− is exact on exact sequences
with left end term a CoCohen-Macaulay object.

Now let X be a Cohen-Macaulay object. Then there exists an exact coreso-
lution 0 −→ X −→ P 0 −→ P 1 −→ · · · of X by projective objects. Since the func-
tor N+ is exact on Cohen-Macaulay objects, the exact sequence 0 −→ N+(X) −→
N+(P 0) −→ N+(P 1) −→ · · · is an injective resolution of N+(X). Applying the left
exact functor N− to this sequence we have an exact sequence 0 −→ N−N+(X) −→
N−N+(P 0) −→ N−N+(P 1). Since the adjunction morphisms P i −→ N−N+(P i) are
invertible, we infer that the adjunction morphism X −→ N−N+(X) is invertible.
Now let · · · −→ P−2 −→ P−1 −→ X −→ 0 be a projective resolution of X. Since
the functor N+ is exact on Cohen-Macaulay objects, we have an exact resolution
· · · −→ N+(P−2) −→ N+(P−1) −→ N+(X) −→ 0 of N+(X) by injectives. Then to
show that N+(X) is a CoCohen-Macaulay object it suffices to show that if we ap-
ply C(I,−) for any injective object I to the above coresolution, then we still get
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an exact sequence. Since any injective object of C is of the form N+(Q) where Q
is projective, it suffices to show that the sequence · · · −→ C(N+(Q),N+(P−2)) −→
C(N+(Q),N+(P−1)) −→ C(N+(Q),N+(X)) −→ 0 is exact for any projective object
Q. The last sequence is isomorphic to the sequence · · · −→ C(Q,N−N+(P−2)) −→
C(Q,N−N+(P−1)) −→ C(Q,N−N+(X)) −→ 0. Since the unit IdC −→ N−N+ is invert-
ible on Cohen-Macaulay objects, the last sequence is isomorphic to the sequence
· · · −→ C(Q,P−2) −→ C(Q,P−1) −→ C(Q,X) −→ 0 which is exact, since Q is projective.
We infer that N+ sends Cohen-Macaulay objects to CoCohen-Macaulay objects, and
therefore we have a fully faithful functor N+ : CM(P) −→ CoCM(I). By duality,
for any CoCohen-Macaulay object Z, the object N−(Z) is Cohen-Macaulay and the

adjunction morphism N+N−(Z) −→ Z is invertible. This shows that N+ : CM(P)
≈−→

CoCM(I) is an equivalence with quasi-inverse N− : CoCM(I)
≈−→ CM(P). Since

the functor F is exact on Cohen-Macaulay modules and sends projectives to in-

jectives, it follows that the induced functor N+ : CM(P)/P ≈−→ CoCM(I)/I is a
triangle equivalence with quasi-inverse N−. �

It is useful to point out that as a consequence of the above proposition we have
natural isomorphisms

N+Ω
∼=−→ Σ−1N+ : CM(P)/P −→ CoCM(I)/I,

N−Σ
∼=−→ Ω−1N− : CoCM(I)/I −→ CM(P)/P.

In general the triangle equivalence of Proposition 1.4 is not induced by an
equivalence between the stable categories. As we now explain, there exists an

equivalence C/P ≈−→ C/I which restricts to an equivalence between the stable cate-
gories of (Co)Cohen-Macaulay objects. Let A and B be arbitrary objects in C. Let
0 −→ Ω2(A) −→ P1 −→ P0 −→ A −→ 0 be the start of a projective resolution of A, and
let 0 −→ B −→ I0 −→ I1 −→ Σ2(B) −→ 0 be the start of an injective resolution of B.
We define the objects τ+(A) and τ−(B) by the exact sequences:

0 −→ τ+(A) −→ N+(P1) −→ N+(P0) −→ N+(A) −→ 0

0 −→ N−(B) −→ N−(I0) −→ N−(I1) −→ τ−(B) −→ 0

We call the assignments A 7→ τ+(A) and A 7→ τ−(A), the Auslander-Reiten oper-
ators of the Nakayama category C with respect to the adjoint pair (N+,N−). Part
(1) of the following observation follows easily from the fact that the Nakayama
functors restrict to an equivalence (N+,N−) between P and I. Part (2), which
shows that the stable equivalences induced by the Nakayama functors N+, N− and
the operators τ+ and τ− are compatible follows from (1) and Proposition 1.4.

Lemma 1.5. (1) The assignments A 7→ τ+(A) and B 7→ τ−(B) induce well
defined additive functors

τ+ : C/P −→ C/I and τ− : C/I −→ C/P
which are mutually inverse equivalences.

(2) The equivalences τ+ and τ− restrict to triangle quasi-inverse equivalences

τ+ : CM(P)/P ≈−→ CoCM(I)/I and τ− : CoCM(I)/I ≈−→ CM(P)/P
such that the following diagrams are commutative (i and k are the inclusions):
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CM(P)/P N+

−−−−→ CoCM(I)/I

i

y Σ−2

y
C/P τ+

−−−−→ C/I

CoCM(I)/I N−−−−−→ CM(P)/P

k

y Ω−2

y
C/I τ−−−−−→ C/P.

Remark 1.6. If C = Mod(Λ), where Λ is an Artin algebra or more generally
a ring with Morita self-duality, then Lemma 1.5 was first observed by H. Krause
in [76]. Note that the Auslander-Reiten operators τ+ and τ− restricted to finitely
generated modules coincide with the operators DTr and TrD, where D is the usual
duality for Artin algebras and Tr is the Auslander-Bridger transpose, see [15]. Note
that the operators DTr and TrD play an important role in the representation theory
of Artin algebras.

2. (Co)Torsion Pairs Induced by (Co)Cohen-Macaulay Objects

Throughout this section we fix a Nakayama abelian category C and let (N+,N−)
be the adjoint pair of Nakayama functors for C. Our aim in this section is show that,
under some reasonable conditions, the stable category of Cohen-Macaulay objects
modulo projectives is the torsion class of a hereditary torsion pair in C/P and the
stable category of CoCohen-Macaulay objects modulo injectives is the torsion-free
class of a cohereditary torsion pair in C/I. In particular we shall show that the
categories of (Co)Cohen-Macaulay objects are functorially finite and are parts of
(co)resolving cotorsion pairs in C.

Let H(P) be the (unbounded) homotopy category of P and let H(I) be the
(unbounded) homotopy category of I. We denote by HAc(P) the full subcategory
of H(P) consisting of the acyclic complexes of projectives and by HAc(I) the full
subcategory of H(I) consisting of the acyclic complexes of injectives. Note that
HAc(P) is the costabilization of C/P and HAc(I) is the costabilization of C/I,
see [20] for details. Obviously HAc(P) is a thick subcategory of H(P) and HAc(I)
is a thick subcategory of H(I). We denote by EP(C) the full subcategory of HAc(P)
consisting of the acyclic complexes of projectives P • such that the complex (P •, P )
is acyclic for all projective modules P . Dually we denote by EI(C) the full sub-
category of HAc(I) consisting of the acyclic complexes of injectives I• such that
the complex (I, I•) is acyclic for all injective modules I. It is easy to see that the
functor P • 7→ Ker(d0) induces an equivalence EP(C) −→ CM(P)/P and the functor
I• 7→ Ker(d0) induces an equivalence EI(C) −→ CoCM(I)/I. In particular EP(C)
and EI(C) are triangulated.

To prove the main result of this section we need some preliminary observations.
We begin with the following easy consequence of Proposition 1.4 and the definitions.

Proposition 2.1. The adjoint pair (N+,N−) of Nakayama functors induces
quasi-inverse triangle equivalences

N+ : H(P)
≈−→ H(I), N− : H(I)

≈−→ H(P)

which induce quasi-inverse triangle equivalences

N+ : EP(C) ≈−→ EI(C), N− : EI(C) ≈−→ EP(C).
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Remark 2.2. In general the triangle equivalences N+ : H(P)
≈−→ H(I) and

N− : H(I)
≈−→ H(P) do not restrict to equivalences between HAc(P) and HAc(I).

For a necessary and sufficient condition for this to happen, we refer to [20]. Note
that for Gorenstein categories C, we have HAc(P) = EP(C) and HAc(I) = EI(C).

From now on we assume that the Nakayama category C has exact products and
coproducts and a set of compact projective generators. In addition we assume that
the Nakayama functor N− preserves coproducts. These assumptions hold for the
module category of a ring with Morita self-duality, for instance an Artin algebra.

To proceed to the main result of this section we need the following preliminary
observation.

Lemma 2.3. Under the above assumptions, the stable categories C/P and C/I
and their costabilizations HAc(P) and HAc(I) are compactly generated.

Proof. Let Q be a set of compact projective generators for C. Since N−

preserves coproducts, it follows easily that N+ preserves compact objects. We
infer that P = Add(Q) and N+(Q) is a set of compact injective cogenerators of
C. By a well-known result of Freyd [100], C is equivalent to the functor category
Mod(Q). Since the categories P and I are functorially finite, we infer, by [23],
that the Grothendieck category Mod(Q) is perfect and locally Noetherian and the
Grothendieck category Mod(Qop) is locally coherent. In particular we have I =
Add(N+(Q)). Let T be the set of isoclasses of factors of finite direct sums of objects
from the compact generating set Q. Then the category mod(Q) of finitely presented
functors Qop −→ Ab is equivalent to T . By Theorems 5.3 and 5.7 of [24] we infer
that the stable categories T /P and T /I are compact generating sets in the stable
categories C/P and C/I. Using the above analysis and the results of [67], it follows
that the categories HAc(P) and HAc(I) are compactly generated. �

Now we can prove the main result of this section.

Theorem 2.4. Let C be a Nakayama abelian category with exact products and
coproducts and let (N+,N−) be the adjoint pair of Nakayama functors for C. If C
admits a set of compact projective generators and N− preserves coproducts, then:

(i) There is a hereditary torsion pair
(
CM(P)/P,Y/P

)
in C/P and a co-

hereditary torsion pair
(
W/I,CoCM(I)/I

)
of finite type in C/I.

(ii) The inclusion CM(P)/P ↪→ C/P admits a left adjoint and a right adjoint,
and the inclusion CoCM(I)/I ↪→ C/I admits a right adjoint and a left
adjoint.

(iii) The torsion class CM(P)/P in C/P is a compactly generated triangulated
category, and the torsion-free class CoCM(I)/I in C/I is a compactly
generated triangulated category.

(iv) There is a resolving cotorsion pair
(
CM(P),Y

)
in C. The full subcate-

gory CM(P) of Cohen-Macaulay objects is functorially finite and the full
subcategory Y is resolving and coresolving. Moreover: CM(P) ∩ Y = P
and P<∞ = Y ∩ ĈM(P).
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(v) There is a coresolving cotorsion pair
(
W,CoCM(I)

)
in C. The full

subcategory CoCM(I) of (co)Cohen-Macaulay objects is functorially fi-
nite and the full subcategory W is resolving and coresolving. Moreover:

CoCM(I) ∩W = I and I<∞ = ˜CoCM(I) ∩W.

Proof. (i) If C is the module category Mod(Λ), where Λ is an Artin algebra,
then the fact that the inclusion CM(P)/P ↪→ C/P admits a right adjoint was first
proved by Joergensen in [67]. We include a slightly different proof for the general
case, and we also prove the dual assertion for CoCohen-Macaulay objects.

Consider the category HAc(P) of acyclic complexes of projective objects of C.
Then we have a left exact functor R : HAc(P) −→ C/P of pretriangulated categories
defined by sending an acyclic complex P • of projectives to Im(d0). By [67], the func-
tor R admits a left adjoint Sp : C/P −→ HAc(P), called the projective spectrification
functor, which is a right exact functor of pretriangulated categories. Consider the
full subcategory EP(C) ↪→ HAc(P). The functor H0N+ : HAc(P) −→ Ab is a homolog-
ical functor which preserves coproducts, where H0 is the 0-th cohomology functor,
and it is easy to see that EP(C) = {P • ∈ HAc(P) | H0N+Σn(P •) = 0,∀n ∈ Z}.
Since the homological functor H0N+ preserves coproducts, then by [67] the quo-
tient HAc(P)/EP(C) has small hom-sets. Since EP(C) is closed under coprod-
ucts and H0N+ preserves coproducts, it is easy to see that the quotient functor
q : HAc(P) −→ HAc(P)/EP(C) preserves coproducts. By a result of Neeman [86], a
coproduct preserving exact functor from a compactly generated triangulated cat-
egory to a triangulated category admits a right adjoint. Since HAc(P) is com-
pactly generated and q preserves coproducts, we have that q admits a right adjoint.
Then by a well-known result of Verdier [102], the inclusion EP(C) ↪→ HAc(P) ad-
mits a right adjoint. Identifying the categories EP(C) and CM(P)/P, it follows
that the inclusion CM(P)/P ↪→ HAc(P) admits a right adjoint R∗ : HAc(P) −→
CM(P)/P. It is not difficult to see that the functor Sp : CM(P)/P −→ HAc(P)
is fully faithful and the strict image of Sp|CM(P)/P is identified with the full sub-
category EP(C). Moreover for any Cohen-Macaulay object X the natural map
C/P(X,A) −→ HAc(P)[Sp(X),Sp(A)] is invertible for any object A in C. In partic-

ular R∗Sp|CM(P)/P
∼=−→ IdCM(P)/P . It follows that, for any X ∈ CM(P) and any

C ∈ C, we have natural isomorphisms:

C/P(X,A)
Sp−→ HAc(P)[Sp(X),Sp(A)]

∼=−→ CM(P)/P[X,R∗Sp(A)].

This shows that the functor R∗Sp : C/P −→ CM(P)/P is the right adjoint of the in-
clusion CM(P)/P ↪→ C/P. Finally by Proposition V.4.1 we infer that the stable cat-
egory CM(P)/P is the torsion class of a hereditary torsion pair

(
CM(P)/P,Y/P

)
in C/I, where Y is the full subcategory of C defined by Y/P = CM(P)/P)⊥.

We now show that the inclusion CoCM(I)/I ↪→ C/I admits a left adjoint,
using the results of [67] and results of Neeman. Consider the full subcategory
EI(C) ↪→ HAc(I). The functor H0N− : HAc(I) −→ Ab is a homological functor
which preserves coproducts, where H0 is the 0-th cohomology functor, and it is
easy to see that EI(C) = {I• ∈ HAc(I) | H0N−Σn(I•) = 0,∀n ∈ Z}. Since the ho-
mological functor H0N− preserves coproducts and HAc(I) is compactly generated,
then by [67] the quotientHAc(I)/EI(C) has small hom-sets. Since EI is closed under
products and H0N− preserves products, it is easy to see that the quotient functor
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q : HAc(I) −→ HAc(I)/EI(C) preserves products. By a result of Neeman [86], a
homological product preserving functor from a compactly generated triangulated
category to a Grothendieck category is representable. This implies that a prod-
uct preserving exact functor from a compactly generated triangulated category to
a triangulated category admits a left adjoint. Since HAc(I) is compactly gener-
ated and q preserves products, we have that q admits a left adjoint. Then by a
well-known result of Verdier [102], the inclusion EI(C) ↪→ HAc(I) admits a left
adjoint. Since EI(C) is triangle equivalent to CoCM(I), working as above we infer
that the inclusion CoCM(I) ↪→ C/I admits a left adjoint. Then by the dual of
Proposition V.4.1 we infer that CoCM(I)/I is the torsion-free class of a cohered-
itary torsion pair

(
W/I,CoCM(I)/I

)
in C/I. Finally observe that the category

CoCM(I) is closed under all small coproducts in C. This implies that the stable
category CoCM(I)/I is closed under all small coproducts in C/I. Hence the torsion
pair

(
W/I,CoCM(I)/I

)
is of finite type.

(ii) Let R : C/P −→ CM(P)/P be the right adjoint of the inclusion CM(P)/P ↪→
C/P and let T : C/I −→ CoCM(I)/I be the left adjoint of the inclusion CoCM(I)/I
↪→ C/I; these functors exist by part (i). For any object C in C, the object
RN−(C) lies in CM(P)/P. Hence, by Proposition 1.4, the object N+RN−(C)
lies in CM(I)/I. It follows that we can consider the functor N+RN− : C/I −→
CoCM(I)/I. Then, using Proposition 1.4, we have the following natural isomor-
phisms, for any object Z in CoCM(I) and any object A in C:

C/I[Z,A]
∼=−→ C/I[N+N−(Z), A]

∼=−→ C/P[N−(Z),N−(A)]
∼=−→

CM(P)/P[N−(Z),RN−(A)]
∼=−→ CoCM(I)/I[Z,N+RN−(A)]

We infer that the functor N+RN− : C/I −→ CoCM(I)/I is the right adjoint of
the inclusion CoCM(I)/I ↪→ C/I. By duality we have that the functor N−TN+ :
C/P −→ CM(P)/P is the left adjoint of the inclusion CM(P)/P ↪→ C/P.

(iii) By Lemma 2.3 we know that the stable category C/I is compactly gener-
ated as a right triangulated category. Let T /I be a compact generating set in C/I
and let T : C/I −→ CoCM(I)/I be the left adjoint of the inclusion CoCM(I)/I ↪→
C/I. We claim that the set T(T /I) is a compact generating set in CoCM(I)/I.
Since

(
W/I,CoCM(I)/I

)
is of finite type, we have that the inclusion CoCM(I)/I

↪→ C/I preserves coproducts. Hence, as in Lemma III.1.2, its left adjoint T pre-
serves compact objects, so T(T /I) is a set of compact objects in CoCM(I)/I. Now
for any T ∈ T and any CoCohen-Macaulay object Z we have: CoCM(I)/I[T(T ), Z]
= 0⇒ C/I[T ,Z] = 0⇒ Z = 0. We conclude that T(T /I) is a compact generating
set and therefore CoCM(I)/I is compactly generated. Since CM(P)/P is triangle
equivalent to CoCM(I)/I, it follows that CM(P)/P is compactly generated as well
by the set N−T(T /I).

(iv), (v) Using (i) and Theorem V.3.7, it follows that we have a resolving
cotorsion pair (CM(P),Y) in C with CM(P) ∩ Y = P, and by Theorem VI.2.1 we

have that Y is resolving and P<∞ = Y ∩ ĈM(P). In particular CM(P) is resolving
and contravariantly finite, and Y is coresolving. By Lemma V.1.1 and part (ii) we
also have that CM(P) is covariantly finite. The proof of part (v) is dual. �
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Note that in the literature the terminology Cohen-Macaulay modules over a ring
refers to Cohen-Macaulay modules which are finitely generated. In our working
setting of an abelian category with exact infinite (co)products, the above result
suggests to call the objects in CM(P) big Cohen-Macaulay objects. Also the results
of Chapters VI and VII suggest that the objects in Y provide a generalization of
the objects of finite projective dimension. Hence it is reasonable to introduce the
following terminology and notation.

Definition 2.5. Let C be an abelian category with infinite exact (co)products.
We call the objects in CM(P) big Cohen-Macaulay objects, and the objects
in CoCM(I) big CoCohen-Macaulay objects. We call the objects in P<∝ :=
CM(P)⊥ the objects with virtually finite projective dimension, and the objects
in I<∝ := ⊥CoCM(I) the objects with virtually finite injective dimension.

In this notation we have a resolving cotorsion pair
(
CM(P),P<∝

)
and a core-

solving cotorsion pair
(
I<∝,CoCM(I)

)
in C with P<∞ ⊆ P<∝ ⊇ I<∞ and P<∞ ⊆

I<∝ ⊇ I<∞. Moreover we have: P<∞ = P<∝ ∩ ĈM(P) and CM(P) ∩ P<∝ = P,

and dually I<∞ = I<∝ ∩ ˜CoCM(I) and CoCM(I) ∩ I<∝ = I.
We shall use heavily the above (co)torsion pairs in the next section for the

construction of Cohen-Macaulay cohomology theories in a Nakayama category.

3. Cohen-Macaulay Cohomology

Throughout this section we fix a Nakayama abelian category with exact prod-
ucts and coproducts, and we assume that C admits a set of compact projective
generators. Let (N+,N−) be the Nakayama functors of C, and we assume through-
out that the Nakayama functor N− preserves coproducts. The main result of the
previous section combined with the results of the previous chapter shows that we
can define new (complete) cohomology theories for C, based on Cohen-Macaulay
objects. In particular we can define such cohomology theories for any Artin algebra,
and more generally for any ring with Morita self-duality.

The following main result of this section, whose proof follows from our previous
results, summarizes the basic properties of these new cohomology theories.

Theorem 3.1. For any n ∈ Z, there are bifunctors

Êxt
n

CM (−,−) : Cop × C −→ Ab,

the projective Cohen-Macaulay bifunctor, and

Ẽxt
n

CM (−,−) : Cop × C −→ Ab,

the injective Cohen-Macaulay bifunctor. These are defined by

Êxt
n

CM (A,B) := C/P[ΩnR(A), B]
∼=−→ CM(P)[ΩnR(A),R(B)]

Ẽxt
n

CM (A,B) := C/I[A,ΣnT(B)]
∼=−→ CoCM(I)[T(A),ΣnT(B)]

and they satisfy the following properties.

(i) The functors Êxt
∗
CM (−,−) and Ẽxt

∗
CM (−,−) are homological in each

variable.
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(ii) Êxt
∗
CM (A,B) vanishes if A or B is an object of (virtually) finite projective

dimension and Ẽxt
∗
CM (A,B) vanishes if A or B is an object of (virtually)

finite injective dimension.

(iii) For any object C in C, the functor Êxt
∗
CM (C,−) is the completion of

Ext∗C(C,−) with respect to the full subcategory P∝ of objects with virtually

finite projective dimension. Moreover Êxt
∗
CM (C,−) is isomorphic to the

Eckmann-Hilton projective homotopy functor Π∗XC
of the special right big

Cohen-Macaulay approximation XC of C.

(iv) For any object A in C, the functor Ẽxt
∗
CM (−, A) is the completion of

Ext∗C(−, A) with respect to the full subcategory I∝ of objects with virtually

finite injective dimension. Moreover Ẽxt
∗
CM (−, A) is isomorphic to the

Eckmann-Hilton injective homotopy functor Π
∗
ZA of the special left big

CoCohen-Macaulay approximation ZA of A.
(v) For any object C, the P<∝-completion morphism ζ∗C,− : Ext∗C(C,−) −→

Êxt
∗
CM (C,−), factors uniquely through the P-completion morphism χ∗C,−

: Ext∗C(C,−) −→ Êxt
∗
TV (C,−). The resulting comparison morphism of

homological functors ρ∗C,− : Êxt
∗
TV (C,−) −→ Êxt

∗
CM (C,−) is invertible if

and only if C has finite projective Gorenstein (resolution) dimension.
(vi) For any object A, the I<∝-completion morphism η∗C,− : Ext∗C(−, A) −→

Ẽxt
∗
CM (−, A), factors uniquely through the I-completion morphism ψ∗−,A

: Ext∗C(−, A) −→ Ẽxt
∗
TV (−, A). The resulting comparison morphism of

homological functors τ∗−,A : Ẽxt
∗
TV (−, A) −→ Ẽxt

∗
CM (−, A) is invertible if

and only if A has finite injective Gorenstein (coresolution) dimension.
(vii) C is Gorenstein if and only if the comparison morphism

ρ∗−,− : Êxt
∗
TV (−,−) −→ Êxt

∗
CM (−,−)

is invertible if and only if the comparison morphism

τ∗−,− : Ẽxt
∗
TV (−,−) −→ Ẽxt

∗
CM (−,−)

is invertible.
(viii) There exists an infinite long exact sequence

0 −→ Ext1
CM(P)(−,−) −→ Ext1

C(−,−) −→ Êxt
1

CM (−,−) −→ · · ·

· · · −→ ExtnCM(P)(−,−) −→ ExtnC(−,−) −→ Êxt
n

CM (−,−) −→ · · ·
where Ext∗CM(P)(−,−) is the relative extension bifunctor induced by the
functorially finite subcategory of big Cohen-Macaulay objects.

(ix) There exists an infinite long exact sequence

0 −→ Ext1
CoCM(I)(−,−) −→ Ext1

C(−,−) −→ Ẽxt
1

CM (−,−) −→ · · ·

· · · −→ ExtnCoCM(I)(−,−) −→ ExtnC(−,−) −→ Ẽxt
n

CM (−,−) −→ · · ·
where Ext∗CoCM(I)(−,−) is the relative extension bifunctor induced by the
functorially finite subcategory of big CoCohen-Macaulay objects.
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Remark 3.2. Cohen-Macaulay cohomology provides a new cohomology the-
ory for Nakayama categories, in particular for Artin algebras. However when a
Nakayama category is Gorenstein, then, by Theorem 3.1, Cohen-Macaulay co-
homology degenerates to the well-known Tate-Vogel Cohomology. In particular
Cohen-Macaulay cohomology is trivial for Nakayama categories with finite global
dimension.

If the abelian category C is Gorenstein, then by the results of Chapters VI and
VII we know that there exist cotorsion pairs

(
CM(P),P<∞

)
and

(
I∞,CoCM(I)

)
in C and moreover we have:

P<∝ := CM(P)⊥ = P<∞ = I<∞ = ⊥CoCM(I) := I<∝

Hence it is natural to study the Nakayama categories for which in the cotorsion
pairs

(
CM(P),P<∝

)
and

(
I∝,CoCM(I)

)
we have an equality: P<∝ = I<∝. By

the above observations, these categories provide a natural generalization of Goren-
stein categories, so the following definition and terminology seems to be reasonable.
However we don’t know if in this way we obtain a strictly larger class of categories.

Definition 3.3. A Nakayama category C is called virtually Gorenstein if
we have an equality: P<∝ = I<∝.

The following result gives interesting characterizations of virtually Gorenstein
categories.

Theorem 3.4. For a Nakayama abelian category C the following are equivalent.

(i) C is virtually Gorenstein.
(ii) The projective and injective Cohen-Macaulay complete extension bifunc-

tors are isomorphic:

Êxt
∗
CM (−,−)

∼=−→ Ẽxt
∗
CM (−,−).

(iii) There exists a cotorsion triple
(
CM(P),P<∝ = I<∝,CoCM(I)

)
in C.

(iv) FCM(P) = FCoCM(I). That is, for any short exact sequence 0 −→ A
g−→

B
f−→ C −→ 0 in C, any morphism X −→ C with X ∈ CM(P) factors

through f if and only if any morphism A −→ Z with Z ∈ CoCM(I)
factors through g.

(v) The relative extension bifunctors with respect to the subcategories CM(P)
and CoCM(I), are isomorphic:

Ext∗CM(P)(−,−)
∼=−→ Ext∗CoCM(I)(−,−).

If this is the case then CM(P) -gl.dim C = CoCM(I) -gl.dim C and this common
dimension is finite if and only if C is Gorenstein.

Proof. Obviously (i) is equivalent to (iii). If C is virtually Gorenstein, then
the isomorphism in (ii) follows from Theorem IX.4.2. Conversely if (ii) holds, then
working as in the proof of Theorem IX.4.4 we infer that P<∝ = I<∝, hence C is
virtually Gorenstein. Now obviously (iv) is equivalent to (v), and (i) implies (v)
by Theorem IX.4.5. Finally if (v) holds then C is virtually Gorenstein by Corollary
IX.4.6. �
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It is not difficult to see that the category of big CoCohen-Macaulay objects is
closed under coproducts. Since the full subcategory of injective objects of C is closed
under coproducts, it follows that the stable category CoCM(I)/I is closed under
coproducts in the stable category C/I. Hence, using the terminology of Definition
III.1.1, the torsion pair

(
I<∝/I,CoCM(I)/I

)
is of finite type. We don’t know

if the torsion pair
(
CM(P)/P,P<∝/P

)
is always of finite type.1 The following

remark, which shows that this happens for virtually Gorenstein categories, gives
some interesting consequences of the finite type property.

Remark 3.5. Let C be a virtually Gorenstein Nakayama category. Since we
have a cotorsion triple

(
CM(P),P<∝ = I<∝,CoCM(I)

)
in C, it follows that P<∝ =

I<∝ is closed under coproducts. This implies that the torsion-free class P<∝/P is
closed under coproducts in C/P. Hence the torsion pair

(
CM(P)/P,P<∝/P

)
is of

finite type. By the Note after Lemma III.1.2, this implies that the inclusion functor
i : CM(P)/P ↪→ C/P preserves compact objects. Hence (CM(P)/P)b ⊆ (C/P)b.

Now let Λ an Artin algebra which is virtually Gorenstein, in the sense that
the Nakayama category Mod(Λ) is virtually Gorenstein. Then we always have
mod(Λ) ⊆ Mod(Λ)b. Hence if any compact object in the stable category Mod(Λ)
is induced by a finitely generated module, i.e. we have Mod(Λ)b ⊆ mod(Λ), then
Mod(Λ)b = mod(Λ). Now let CM(PΛ) be the category of big Cohen-Macaulay
modules and let CM(PΛ) be the stable category modulo projectives. It follows
from the above analysis that CM(PΛ)b ⊆ CM(PΛ) ∩ mod(Λ) = CM(Λ). Since
always have CM(Λ) ⊆ CM(PΛ)b, we conclude that CM(PΛ)b = CM(Λ). This
has some important consequences for the Artin algebra; we refer to [26] for more
information. In particular it is proved in [26] that for a virtually Gorenstein algebra
Λ, the condition Mod(Λ)b ⊆ mod(Λ) implies the existence of a cotorsion triple(
CM(PΛ),Y,CM(D(Λ))

)
in mod(Λ), where Y = P<∝

Λ ∩mod(Λ) = I<∝Λ ∩mod(Λ).
We don’t know if any compact object in the stable category Mod(Λ) is induced by
a finitely generated module. By [26] this is true for Gorenstein algebras.

We close the paper with an application of the above results to closed model
structures. Let C be a Nakayama abelian category. Since the categories P and I
are functorially finite, the results of Chapter VII can be applied for the cotorsion
pairs produced by Theorem 2.4. It follows that there are induced four compatible
model structures on C. For possible future use and for the convenience of the reader
we write down explicitly the closed model structures; we note only that the adjoint
pair (N+,N−) of Nakayama functors of C gives a Quillen equivalence, in the sense
of [64], between the contravariant projective CM-closed model structure and the
covariant injective CM-closed model structure.

1Added in proof: For a detailed analysis of this and related questions, for instance those of

Remark 3.5, in the context of Artin algebras, we refer the interested reader to [26].
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1. The contravariant projective CM-closed model structure: (CP ,FP ,WP)

Here CP is the class of monics with cokernel a big Cohen-Macaulay object. TCP
is the class of split monics with cokernel a projective object. FP is the class of epi-
morphisms. TFP is the class of epimorphisms with kernel an object of virtually finite
projective dimension. Finally WP is the class of morphisms A −→ B which induce
an isomorphism modulo projectives between the special right big Cohen-Macaulay
approximations of A and B. For the closed model structure (CP ,FP ,WP), CM(P)
is the class of cofibrant objects, all objects are fibrant, the trivially cofibrant objects
are the projective objects, and the objects of virtually finite projective dimension
are the trivially fibrant objects. The associated Quillen homotopy category of
(CP ,FP ,WP) is the stable triangulated category CM(P)/P.

2. The covariant projective CM-closed model structure: (CP ,FP ,WP)

Here CP is the class of P-monics. TCP is the class of monics with cokernel a
big Cohen-Macaulay object. FP is the class of epimorphisms with kernel an object
with virtually finite projective dimension. TFP is the class of split epimorphisms
with kernel a projective object. Finally WP is the class of morphisms A −→ B
which induce an isomorphism modulo projectives, between the special left P<∝-
approximations of A and B. For the closed model structure (CP ,FP ,WP), all
objects are cofibrant, CM(P) is the class of trivially cofibrant objects, the trivially
fibrant objects are the projective objects, and the fibrant objects are the objects of
virtually finite projective dimension. The associated Quillen homotopy category of
(CP ,FP ,WP) is the stable pretriangulated category P<∝/P.

3. The contravariant injective CM-closed model structure: (CI ,FI ,WI)

Here CI is the class of monics with cokernel an object of virtually finite injective
dimension. TCI is the class of split monics with injective cokernel. FI is the class
of I-epics. TFI is the class of epics with kernel a big CoCohen-Macaulay object.
Finally WI is the class of morphisms A −→ B which induce an isomorphism modulo
injectives, between the special left I<∝-approximations of A and B. For the closed
model structure (CI ,FI ,WI), the cofibrant objects are the objects of virtually
finite injective dimension, all objects are fibrant, the trivially cofibrant objects
are the injectives, and the trivially fibrant objects are the big CoCohen-Macaulay
objects. The associated Quillen homotopy category of (CI ,FI ,WI) is the stable
pretriangulated category I<∝/I.

4. The covariant injective CM-closed model structure: (CI ,FI ,WI)

Here CI is the class of monics. TCI is the class of monics with cokernel an object
of virtually finite injective dimension. FI is the class of epimorphisms with kernel a
big CoCohen-Macaulay object. TFI is the class of split epimorphisms with injective
kernel. Finally WI is the class of morphisms A −→ B which induce an isomorphism
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modulo injectives, between the special left big CoCohen-Macaulay approximations
of A and B. For the closed model structure (CI ,FI ,WI), all objects are cofibrant,
CoCM(I) is the class of fibrant objects, the trivially fibrant objects are the injective
objects, and the trivially cofibrant objects are the objects of virtually finite injective
dimension. The associated Quillen homotopy category of (CI ,FI ,WI) is the stable
triangulated category CoCM(I)/I.
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