


ON DEGENERATION OF ONE-DIMENSIONAL FORMAL GROUP LAWS
AND APPLICATIONS TO STABLE HOMOTOPY THEORY

By TAKESHI TORII

Abstract. In this note we study a certain formal group law over a complete discrete valuation ring
F[[un−1]] of characteristic p > 0 which is of height n over the closed point and of height n− 1 over
the generic point. By adjoining all coefficients of an isomorphism between the formal group law
on the generic point and the Honda group law Hn−1 of height n− 1, we get a Galois extension of
the quotient field of the discrete valuation ring with Galois group isomorphic to the automorphism
group Sn−1 of Hn−1. We show that the automorphism group Sn of the formal group over the closed
point acts on the quotient field, lifting to an action on the Galois extension which commutes with
the action of Galois group. We use this to construct a ring homomorphism from the cohomology of
Sn−1 to the cohomology of Sn with coefficients in the quotient field. Applications of these results
in stable homotopy theory and relation to the chromatic splitting conjecture are discussed.

1. Introduction. The ring MU∗(MU) of co-operations in complex cobor-
dism theory has a well-known interpretation in terms of one-dimensional commu-
tative formal group laws. The category C of p-local comodules over MU∗(MU)
has a filtration

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · ·

by categories of submodules supported on formal group laws of height n over
p-local rings. In [15] the quotient category Cn/Cn+1 is related to a category
of discrete modules over some complete ring En with action of some profinite
group Gn. Motivated by this work, Miller, Ravenel and Wilson [14] established a
framework for organizing systematically the periodic phenomena on the E2-term
of the Adams-Novikov spectral sequence based on the cobordism theory MU.
Then Ravenel [16] formulated his conjectures on the reflection of the algebraic
structure of the Adams-Novikov E2-term on the actual stable homotopy category.
Devinatz, Hopkins and Smith [3, 7] have verified all of these conjectures ex-
cept for the telescope conjecture. From these works, we get a filtration of full
subcategories in the stable homotopy category C of p-local finite spectra

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · ·
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where n is related to the height of formal group laws. From Morava’s point of
view, the K(n)-local category of p-local finite spectra, which is in some sense the
analogue of the quotient associated to the filtration, is studied through the Adams-
Novikov spectral sequence by some algebraic category. This category consists of
the discrete modules over the function ring En of the deformation space of the
Honda group law Hn of height n, with compatible action of the automorphism
group Gn of Hn. The next step to understand the stable homotopy category of
p-local finite spectra may be to understand the “extensions,” and for that it may
be helpful to study the relation between formal group laws of neighboring height.
In this note we study a certain one-dimensional commutative formal group law
over a complete discrete valuation ring which is of height n over the closed point
and of height n− 1 over the generic point.

Let F be an algebraic extension of the prime field Fp which contains Fpn and
Fpn−1 . There is the Honda group law Hn of height n over F. The nth Morava
stabilizer group Sn is the automorphism group of Hn which is isomorphic to
the unit group of the maximal order of the central division algebra over the
p-adic number field Qp with invariant 1/n. There is a universal deformation
Fn of Hn. The formal group law Fn is defined over the formal power series ring
En = W(F)[[u1, . . . , un−1]] where W(F) is the ring of Witt vectors with coefficients
in F. Then the action of Gn = Sn �Γ on Hn lifts to the action on Fn which induces
a continuous action of Gn on W(F)[[u1, . . . , un−1]] where Γ is the Galois group
of F over Fp . Since the ideal generated by p, u1, . . . , un−2 is invariant under the
action of Gn, there is an induced action of Gn on the quotient ring F[[un−1]].
We denote by K the quotient field F((un−1)). We consider that the formal group
law Fn is defined over F[[un−1]]. Then the formal group law Fn is of height
n on the closed point F and of height n − 1 on the generic point K. By the
result of Lazard [10], the formal group laws over a separably closed field of
characteristic p > 0 are classified up to isomorphism by their height. Hence
there is an isomorphism between Fn and the Honda group law Hn−1 of height
n − 1 over the separable closure Ksep of K. In [1] Ando, Morava and Sadofsky
showed that there is a unique isomorphism between Fn and Hn−1 over Ksep which
satisfies certain conditions motivated from a geometric point of view. We would
like to consider the above situation with the action of the nth Morava stabilizer
group Gn.

Let Φ be an isomorphism between Fn and Hn−1 over the separable closure
Ksep. Let L be an extension of K obtained by adjoining all the coefficients of Φ.
Hence we have a morphism of formal group laws from (Fn, L) to (Hn−1, F). The
main theorem of this note is as follows.

THEOREM 1.1. (cf. Theorem 2.9) The group (Sn × Sn−1) � Γ acts on (Fn, L)
where the action of Sn �Γ is a lift of the action on (Fn, K) and the subgroup Sn−1 �Γ
is identified with the Galois group of the extension L/Fp((un−1)). If we consider that
the group (Sn×Sn−1)�Γ acts on (Hn−1, F) such that the subgroup Sn acts trivially,
then there is a (Sn × Sn−1) � Γ equivariant morphism from (Fn, L) to (Hn−1, F).
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In geometric terms Spec(F[[un−1]]) is an Sn-invariant 1-dimensional sub-
space of the formal deformation space of the Honda group law Hn. Let U =
Spec(F[[un−1]])− Spec(F) which is an analogue of a punctured disk. Then there
is a Galois covering of U with Galois group isomorphic to Sn−1. The action of Sn

lifts to the Galois covering which commutes with the action of the Galois group.
Furthermore, if we consider that the product group Sn×Sn−1 acts on Hn−1 where
the action of Sn is trivial, then there is an Sn × Sn−1-equivariant morphism from
the lift of Fn on the Galois covering to Hn−1 on the point Spec(F).

The main application to the stable homotopy theory is as follows. By using
Theorem 1.1, we construct as some kind of correspondence a ring homomorphism
Θ from the cohomology of Sn−1 with coefficients in F[w±1] to the cohomology
of Sn with the coefficient in K[u±1]:

Θ: H∗c (Sn−1; F[w±1])Γ −→ H∗c (Sn; K[u±1])Γ

where w satisfies w−(pn−1−1) = vn−1 (cf. (3.3)). If the Smith-Toda spectrum V(n−
2) exists, then H∗c (Sn−1; F[w±1])Γ is the E2-term of the Adams-Novikov spectral
sequence converging to π∗Ln−1V(n − 2), and H∗c (Sn; K[u±1])Γ is the E2-term of
some Adams type spectral sequence converging to π∗Ln−1LK(n)V(n − 2), where
Ln−1 (resp. LK(n)) is the Bousfield localization functor with respect to K(0) ∨
K(1) ∨ · · · ∨K(n− 1) (resp. K(n)). There is a natural map from Ln−1V(n− 2) to
Ln−1LK(n)V(n − 2) and the chromatic splitting conjecture contains the statement
that this map is a split monomorphism. We show that the natural map lifts to a
morphism of the spectral sequences and the morphism on E2-term is given by Θ.

The organization of this note is as follows. In §2 we recall Lubin and Tate’s
deformation theory of one-dimensional formal group law of finite height over a
field of characteristic p > 0. Then we recall a generalization of homomorphisms
between formal group laws over possibly different ground rings. We study iso-
morphisms between two formal group laws Fn and Hn−1 over the separable
closure Ksep of K. We define an extension L of K by adjoining all coefficients
of an isomorphism between Fn and Hn−1. Then we show that L is stable under
any action on Ksep which is an extension of the action of nth Morava stabilizer
group Gn on K. In particular, L is a Galois extension over K. We recall the re-
sult of Gross [4] that the Galois group of L/K is isomorphic to Sn−1, which is
obtained as monodromy representation of Fn restricted to U. Then we define a
group G which consists of all lifts of the action of Gn on K to the action on L.
We prove that G is isomorphic to the profinite group (Sn×Sn−1) � Γ and this is a
reformulation of the main theorem. In §3 we study the group cohomology based
on continuous cochains and consider inflation maps under some conditions. Then
we define quotient groups G(i) of the profinite group G which acts on the graded
field Li[u±1] where Li is a subfield of L obtained by adjoining some coefficients
of an isomorphism between Fn and Hn−1. Then we show that the cohomology
group H∗c (G(i− 1); Li−1[u±1]) is isomorphic to H∗c (G(i); Li[u±1]) through the in-
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flation map. Then we construct a ring homomorphism Θ from the cohomology
of Gn−1 with coefficients in F[w±1] to the cohomology of Gn with coefficients in
K[u±1]. In §5 we recall the cohomology of comodules over the Hopf algebroid
BP∗(BP). In particular, we recall the relation between the cohomology of the
comodule M1

n−1 and the cohomology of Gn with coefficients in F[[un−1]][u±1].
Then we introduce a filtration on the cohomology group H∗c (Gn−1; F[w±1]) using
the homomorphism Θ and define a homomorphism Ξ of Bockstein type from the
associated graded module of the filtration to some quotient of H∗c (Gn; F[u±1]).
In §6 we compute the homomorphism Θ on some elements of H1 and show
the non-triviality of the image by using the homomorphism Ξ. In §7 we study
the relation between the ring homomorphism Θ and the chromatic splitting
conjecture.

Acknowledgments. The author would like to thank Professor Morava for
discussions on the subject and Professor Wilson for his support during my stay at
the Johns Hopkins University. He also would like to thank the referees for many
valuable comments.

2. Isomorphisms between Fn and Hn−1. In this section we investigate
isomorphisms between two formal group laws Fn and Hn−1 over a separable
closure Ksep and some Galois extension L of K = F((un−1)). First, we recall
basic facts on formal group laws and their deformation theory. Then we define
a profinite group G which consists of all lifts of the action of Gn on (Fn, K) to
(Fn, L) and prove the main theorem (Theorem 2.9).

2.1. Deformation of formal group laws. Let R be a complete Noetherian
local ring with maximal ideal I such that the residue field k = R/I is of charac-
teristic p > 0. Let G be a one-dimensional commutative formal group law over
k of height n < ∞. In this subsection we recall Lubin and Tate’s deformation
theory of formal group laws [11].

For a formal power series f (X) over a ring A1 and a ring homomorphism
α: A1 → A2, we denote by α∗f (X) the formal power series over A2 obtained by
the base change α. For a local homomorphism α between local rings, we denote
by α the induced homomorphism on the residue fields.

Let A be a complete Noetherian local R-algebra with maximal ideal m. We
denote by ι the canonical inclusion of residue fields k ⊂ A/m induced by the
R-algebra structure. A deformation of G to A is a formal group law G̃ over A
such that ι∗G = π∗G̃ where π: A→ A/m is the canonical projection. Let G̃1 and
G̃2 be two deformations of G to A. We define a ∗-isomorphism between G̃1 and
G̃2 as an isomorphism ũ: G̃1 → G̃2 over A such that π∗ũ is the identity map
between π∗G̃1 = ι∗G = π∗G̃2.

LEMMA 2.1. (cf. [11]) There is at most one ∗-isomorphism between G̃1 and G̃2.
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We denote by D(R) the category of complete Noetherian local R-algebras
with local R-algebra homomorphisms as morphisms. For an object A of D(R), we
let DEF(A) be the set of all ∗-isomorphism classes of the deformations of G to
A. Then DEF defines a functor from D(R) to the category of sets.

Let R[[t]] = R[[t1, . . . , tn−1]] be a formal power series ring over R with n −
1 indeterminates. Note that R[[t]] is an object of D(R). There is a one-to-one
correspondence between a local R-algebra homomorphism from R[[t]] to A and
an (n − 1)-tuple (a1, . . . , an−1) of elements of the maximal ideal m of A. Lubin
and Tate showed that there is a formal group law F(t) = F(t1, . . . , tn−1) over R[[t]]
which satisfies the following conditions:

(1) π∗F(0, . . . , 0)(X, Y) = G(X, Y) where π: R→ k is the projection.

(2) For each i (1 ≤ i ≤ n− 1),

F(0, . . . , 0, ti, . . . , tn−1)(X, Y) ≡ X + Y + tiCpi(X, Y) mod deg (pi + 1)

where Cpi(X, Y) = (Xpi
+ Ypi − (X + Y)pi

)/p.

We say that a formal group law F(t) satisfying the above conditions is a universal
deformation of G due to the following theorem.

THEOREM 2.2. (Lubin and Tate [11]) Let A be an object of D(R). For ev-
ery deformation G̃ of G to A, there is a unique local R-algebra homomorphism
α: R[[t]] → A such that α∗F(t) is ∗-isomorphic to G̃. Hence the functor DEF is
represented by R[[t]]:

DEF(A) ∼= HomD(R)(R[[t]], A)

and F(t) is a universal object.

Let F be an algebraic extension of the prime finite field Fp . We consider the
height n Honda formal group law Hn defined over F. The formal group law Hn

is p-typical with p-series

[p]Hn(X) = Xpn
.

Let En be a formal power series ring over W(F) with (n− 1) indeterminates

En = W(F)[[u1, . . . , un−1]]

where W(F) is the ring of Witt vectors with coefficients in F. The ring En is a
complete Noetherian local ring with residue field F. There is a p-typical formal
group law Fn defined over En with p-series

[p]Fn(X) = pX +Fn u1Xp +Fn u2Xp2
+Fn · · · +Fn un−1Xpn−1

+Fn Xpn
.
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The formal group law Fn is a deformation of Hn to En. The following lemma is
well known.

LEMMA 2.3. The formal group law Fn is a universal deformation of Hn.

2.2. Homomorphisms of formal group laws. In this subsection we recall
a generalization of homomorphisms between formal group laws over possibly
different ground rings considered by several authors (cf. [24]).

Let A1 and A2 be two (topological) commutative rings. Let F1 (resp. F2) be a
formal group law over A1 (resp. A2). We understand that a homomorphism from
F1 to F2 is a pair (α, f ) of a (topological) ring homomorphism α: A2 → A1 and
a homomorphism of formal group laws f : F1 → α∗F2 in the usual sense. The
composition of two homomorphisms (α, f ): F1 → F2 and (β, g): F2 → F3 is
defined by (α ◦ β,α∗g ◦ f ): F1 → F3:

F1
f−→ α∗F2

α∗g−→ α∗(β∗F3) = (α ◦ β)∗F3.

A homomorphism (α, f ): F1 → F2 is an isomorphism if there exists a homomor-
phism (β, g): F2 → F1 such that (α, f )◦(β, g) = (id, id) and (β, g)◦(α, f ) = (id, id).
Then a homomorphism (α, f ): F1 → F2 is an isomorphism if and only if α is
an isomorphism of (topological) rings and f is an isomorphism of formal group
laws in the usual sense.

Let F be an algebraic extension of Fp which contains Fpn . Let Sn be the
automorphism group of Hn over F in the usual sense. We denote by Gn the
automorphism group of Hn over F in the above generalized sense. The following
lemma is easy.

LEMMA 2.4. Gn is isomorphic to the semidirect product Γ � Sn where Γ is the
Galois group Gal(F/Fp).

Proof. An automorphism of Hn consists of a ring isomorphism α: F → F
and an isomorphism of formal group laws f : Hn → α∗Hn. Then α ∈ Γ. Since Hn

is defined over the prime field Fp , α∗Hn = Hn. Hence we get f ∈ Sn. We regard
Sn as the subset of the power series ring F[[X]]. Then the action of the Galois
group Γ induces an action on Sn. The semi-direct product Γ � Sn with respect to
this action is isomorphic to the automorphism group of Hn over F.

Let G̃n be the automorphism group of the universal deformation Fn of Hn

in the generalized sense. There is a natural homomorphism G̃n → Gn. Then we
obtain the following proposition by Lemma 2.1 and Theorem 2.2.

PROPOSITION 2.5. The natural homomorphism G̃n → Gn is an isomorphism.

2.3. Galois extension L/K. In this subsection we define a Galois extension
L of K obtained by adjoining all coefficients of an isomorphism between Fn and
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Hn−1 on Ksep. Then we recall that the Galois group of L/K is identified with
Sn−1 (cf. [4]).

Let n ≥ 2. Let F be an algebraic extension of Fp which contains Fpn and Fpn−1 .
We denote by V the quotient ring of the universal deformation ring En by the ideal
(p, u1, . . . , un−2). Then V = F[[un−1]] is a complete discrete valuation ring. Let
K = F((un−1)) be the quotient field of V . There is a W(F)-algebra homomorphism
θ: En → V given by θ(ui) = 0 for i = 1, . . . , n− 2 and θ(un−1) = un−1. Then we
get a p-typical formal group law θ∗Fn over V . We abbreviate θ∗Fn to Fn. The
formal group law Fn is p-typical with p-series

[p]Fn(X) = un−1Xpn−1
+Fn Xpn

.

Let Ksep be a separable closure of K. Then there is an isomorphism between Fn

and Hn−1 over Ksep, since the height of Fn is n − 1 (cf. Appendix 2 [17]). We
fix an isomorphism Φ from Fn to Hn−1. Since Φ is a homomorphism between
p-typical formal group laws, Φ has the following form

Φ(X) =
∑
i≥0

Hn−1ΦiX
pi

.

We define a subfield Li = K(Φ0, Φ1, . . . , Φi) for i ≥ −1 and L = ∪i≥−1Li.
We recall that Sn is isomorphic to the unit group of the maximal order of the

central division algebra over the p-adic number field Qp with invariant 1/n. We

write an element h ∈ Sn by h = h0 + h1T + h2T2 + · · · where hi ∈ W(Fpn), hpn

i = hi

for i ≥ 0 and h0 �= 0. Then h corresponds to the automorphism

h(X) =
∑
i≥0

HnhiX
pi

where hi is the image of hi under the reduction W(Fpn)→ Fpn . Let S(0)
n = Sn. We

define the subgroups S(i)
n for i ≥ 1 by

S(i)
n = {h ∈ Sn | h0 = 1, h1 = 0, . . . , hi−1 = 0}.

Then S(i+1)
n is a normal subgroup of Sn and the quotient group Sn/S(i+1)

n is finite
of order (pn − 1)pni for i ≥ 0. The canonical homomorphism Sn →lim

←−
Sn/S(i+1)

n

is an isomorphism. Hence Sn and Gn = Γ � Sn are profinite groups.
For g ∈ G̃n, we obtain a continuous automorphism of V and hence an auto-

morphism of K. We abbreviate this automorphism by g. We note that this is a
right action of G̃n on K. We denote by f g(X) the base change of a power series
f (X) ∈ K[[X]] by g. Also, we obtain an isomorphism t(g) from Fn to Fg

n for
g ∈ G̃n. Let ĝ be a continuous automorphism of the separable closure Ksep which
is an extension of the automorphism g on K. Then we obtain a commutative



1044 TAKESHI TORII

diagram:

Fn
t(g)−→ Fg

n

Φ
� �Φĝ

Hn−1
h(g,̂g)−→ Hn−1.

(2.1)

Note that Fĝ
n = Fg

n (resp. Hĝ
n−1 = Hn−1), since Fn is defined over Fp[[un−1]] (resp.

Fp).

LEMMA 2.6. For every ĝ (g ∈ G̃n) and i, Li
ĝ = Li. In particular, Li/Fp((un−1))

is a Galois extension.

Proof. From the commutative diagram (2.1), we have

Φĝ(t(g)(X)) = h(g, ĝ)(Φ(X)).(2.2)

Here t(g)(X) =
∑

i≥0
Fg

n ti(g)Xpi
and ti is a continuous function from Sn to V for

all i ≥ 0. Since the automorphism h(g, ĝ): Hn−1 → Hn−1 is an element of Sn−1,
h(g, ĝ)(X) has the form h(g, ĝ)(X) =

∑
i≥0

Hn−1hi(g, ĝ)Xpi
where hi(g, ĝ) ∈ Fpn−1 .

From the left-hand side of (2.2), we get

∑
i,j≥0

Hn−1Φj
ĝti(g)pj

Xpi+j
.

From the right-hand side of (2.2), we get

∑
i,j≥0

Hn−1hj(g, ĝ)Φi
pj

Xpi+j
.

By comparing the coefficients of X, we obtain Φ0
ĝt0(g) = h0(g, ĝ)Φ0. Since

h0(g, ĝ) ∈ Fpn−1 , we get Φ0
ĝ = h0(g, ĝ)Φ0t0(g)−1 ∈ K(Φ0) = L0. We assume

that Φ0
ĝ, . . . , Φi−1

ĝ ∈ Li−1. Then by comparing the coefficients of Xpi
, we obtain

Φi
ĝt0(g)pi−h0(g, ĝ)Φi ∈ Li−1. Hence we get Φi

ĝ ∈ Li−1(Φi) = Li. This completes
the proof.

For σ ∈ Gal(L/Fp((un−1))), we consider the following diagram:

Fn
id
= Fn

σ

Φ
� �Φσ

Hn−1
h′(σ)−→ Hσ

n−1.
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We note that Fn
σ = Fn and Hσ

n−1 = Hn−1. This diagram defines a homomorphism

h′: Gal(L/Fp((un−1)))→ Gn−1.

THEOREM 2.7. (Gross [4]) The homomorphism h′ is an isomorphism.

Proof. There is a commutative diagram of exact sequences

1→ Gal(L/K) −→ Gal(L/Fp((un−1))) −→ Gal(K/Fp((un−1))) → 1� �h′

�
1→ Sn−1 −→ Gn−1 −→ Γ → 1.

Since K/Fp((un−1)) is an unramified extension, the right vertical arrow is an
isomorphism. From Theorem 3.5 1) a) of [4] and its proof, the left vertical arrow
is also an isomorphism.

Let� be the set of all isomorphisms from Fn to Hn−1 over Ksep. For Φ′ ∈ �,
we consider the following commutative diagram

Fn
Φ ❅

❅❘
Φ′�

�✠

Hn−1
h

−−−−−−−−→ Hn−1.

Since the isomorphism h: Hn−1 → Hn−1 is defined over Fpn−1 , we see that Φ′
is defined over L. Then the Galois group Gal(L/K) acts on �. The following
corollary is easy.

COROLLARY 2.8. The action of Gal(L/K) on� is simply transitive.

2.4. Extension G of Gn. In this subsection we define a group G which
consists of all lifts of the action of Gn on the formal group law (Fn, K) to (Fn, L)
and show that G is isomorphic to the profinite group Γ � (Sn × Sn−1).

Let Aut(K) be the automorphism group of the topological field K. Suppose
that Aut(K) acts on K from the right. Note that there is a homomorphism G̃n →
Aut(K). Let Aut(L) be the automorphism group of the topological field L. We
denote by A(L/K) the subgroup of Aut(L) consisting of automorphisms which
preserve the subfield K: A(L/K) = {θ ∈ Aut(L)| θ(K) = K}. Then we have a
restriction homomorphism A(L/K)→ Aut(K). We define G = G̃n×Aut(K) A(L/K)
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to be the fibre product

G p−→ G̃n� �
A(L/K) −→ Aut(K).

By Lemma 2.6, the natural projection p: G → G̃n is surjective. It is clear that
the kernel of p is the Galois group Gal(L/K). Hence we have an exact sequence

1 −→ Gal(L/K) −→ G p−→ G̃n −→ 1.

Let Gn−1(L) be the automorphism group of Hn−1 over L in the generalized sense.
By the same way as Lemma 2.4, we have an isomorphism Gn−1(L) ∼= Aut(L) �

Sn−1. Let A(L/K) � Sn−1 be the subgroup of Gn−1(L). For (g, ĝ) ∈ G, we have
the commutative diagram (2.1). This diagram defines a homomorphism f : G →
A(L/K) � Sn−1 by (g, ĝ) �→ (ĝ, h(g, ĝ)).

There are homomorphisms A(L/K) → Aut(K) → Γ where the first is re-
striction and the second is obtained by considering the induced automorphism
on the residue field. These homomorphisms are compatible with the action on
Sn−1. Hence we get a homomorphism f ′: A(L/K) � Sn−1 → Gn−1. There are

homomorphisms G f ′◦f−→ Gn−1 −→ Γ. By Proposition 2.5, we have a natural
isomorphism G̃n

∼= Gn. We identify G̃n with Gn by this isomorphism. Then we
have homomorphisms G p−→ Gn −→ Γ. We verify that the following diagram is
commutative

G p−→ Gn

f ′◦f

� �
Gn−1 −→ Γ.

Then we get a commutative diagram of exact sequences

1→ Gal(L/K) −→ G p−→ Gn → 1� f ′◦f

� �
1→ Sn−1 −→ Gn−1 −→ Γ → 1.

The left vertical arrow is an isomorphism by Theorem 2.7. Hence we get the
following theorem.

THEOREM 2.9. There are isomorphisms

G ∼= Gn ×Γ Gn−1
∼= Γ � (Sn × Sn−1).
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The profinite group G acts on the formal group law (Fn, L) in the generalized
sense. Then the natural homomorphism (Fn, L) → (Fn, K) is compatible with
the projection G → Gn. The inclusion Gn ⊂ G gives a lift of the action of Gn

on (Fn, K) to (Fn, L) such that the action of the subgroup Sn commutes with
the action of Galois group Gal(L/K) = Sn−1. Also, the natural homomorphism
(Fn, L)→ (Hn−1, F) is compatible with the projection G → Gn−1.

3. Continuous cohomology. In this section we study the group cohomol-
ogy based on continuous cochains. First, we consider inflation maps under some
conditions. Then we define quotient groups G(i) of the profinite group G and
show that inflation maps between the cohomology groups of G(i) are
isomorphisms.

3.1. Inflation maps. Let G be a Hausdorff topological group and let J be
a finite normal subgroup. We denote by H the quotient group G/J and π: G→
H the quotient map. In this subsection we assume that there is a continuous
section χ: H → G such that χ(e) = e. Note that χ is not necessarily a group
homomorphism. For example, if G is a profinite group, then there is such a
section (cf. [20]). Let M be a topological G-module. The fixed submodule MJ is
naturally a topological H-module. In this subsection we study the inflation map
H∗c (H; MJ)→ H∗c (G; M) under some conditions.

A normalized continuous n-cochain for G in M is a continuous function
f : Gn → M such that f (γ1, . . . , γn) = 0 if γi is equal to the identity e for some
i (1 ≤ i ≤ n). We denote by An = An(G; M) the abelian group of all normal-
ized continuous n-cochains for G in M. The coboundary map d: An → An+1 is
given by

df (γ1, . . . , γn+1) = γ1 · f (γ2, . . . , γn+1)

+
n∑

i=1

(− 1)if (γ1, . . . , γiγi+1, . . . , γn+1)

+ (− 1)n+1f (γ1, . . . , γn).

It is easy to verify that A∗ is a cochain complex. The continuous cohomology of G
with coefficients in M based on continuous cochains is defined as the cohomology
group of the cochain complex A∗(G; M). We denote by H∗c (G; M) the continuous
cohomology of G with coefficients in M.

We define a filtration on the cochain complex A∗ = A∗(G; M). For j = 0, we
set F0An = An. For 0 < j ≤ n, FjAn is defined as a subgroup of An consisting of
f ∈ An such that f : Gn → M factors through a continuous map f ′: Gn−j×Hj → M.
For j > n, we set FjAn = 0. Hence we get a filtration of An:

An = F0An ⊃ F1An ⊃ · · · ⊃ FnAn ⊃ Fn+1An = 0.
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It is easy to verify that d(FjAn) ⊂ FjAn+1. Hence (FjA∗)j≥0 is a filtration of the
cochain complex A∗:

A∗ = F0A∗ ⊃ F1A∗ ⊃ · · · ⊃ FnA∗ ⊃ · · · .

The normalized continuous n-cochain group An(J; M) is naturally isomorphic
to a direct product of finite many copies of M since J is finite. We introduce a
topology on An(J; M) by using this isomorphism and the product topology. Let
N be a topological module on which J acts trivially. Then the tensor product
N⊗Z[J] is naturally a topological J-module. We say that a topological J-module
M is a regular representation over N if M is isomorphic to N⊗Z[J] as topological
J-modules. Then we have a natural isomorphism A∗(J; M) ∼= A∗(J; Z[J])⊗ N as
cochain complexes of topological modules. In the following we assume that the
topological G-module M is a regular representation of J as topological J-module.
Let Aj(G; Ai(J; M)) be the abelian group of all normalized continuous j-cochains
of G in Ai(J; M). We define a homomorphism rj: FjAi+j → Aj(H; Ai(J; M)) by

rj( f )(σ1, . . . ,σj)(τ1, . . . , τi) = f ′(τ1, . . . , τi,σ1, . . . ,σj)

where f ′: Gi × Hj → M is a continuous map such that

f (γ1, . . . , γn) = f ′(γ1, . . . , γn−j,π(γn−j+1), . . . ,π(γn)).

It is easy to see that rj( f ) = 0 if f ∈ Fj+1Ai+j. Hence we get a homomorphism

rj: FjAi+j/Fj+1Ai+j −→ Aj(H; Ai(J; M)).

We note that rj: FjAj/Fj+1Aj → Aj(H; M) is an isomorphism. Let d be the
coboundary operator of FjA∗/Fj+1A∗. The coboundary operator of A∗(J; M) in-
duces a homomorphism dJ: Aj(H; A∗(J; M))→ Aj(H; A∗+1(J; M)). Then we obtain
that dJ ◦ rj = rj ◦ d.

LEMMA 3.1. H(Aj(H; A∗(J; M)), dJ) = Aj(H; MJ) for all j.

Proof. This follows from the fact that the sequence 0→ Z ε→ A0(J; Z[J]) d→
A1(J; Z[J]) d→ · · · is split exact where ε(1) =

∑
j∈J j ∈ Z[J].

LEMMA 3.2. rj induces an isomorphism Hj(FjA∗/Fj+1A∗)
∼=−→ Aj(H; MJ).

Proof. Let f ∈ FjAj such that df ∈ Fj+1Aj+1. Then dJ(rj( f )) = 0. By
Lemma 3.1, rj( f ) ∈ Aj(H; MJ). Conversely, let f̃ ∈ Aj(H; MJ) ⊂ Aj(H; M). We
define f ∈ FjAj by f (γ1, . . . , γj) = f̃ (π(γ1), . . . ,π(γj)). Then for any τ ∈ J, we
easily see that df (γ1τ , γ2, . . .) = df (γ1, γ2, . . .).
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LEMMA 3.3. Hn(FjA∗/Fj+1A∗) = 0 for all n > j.

Proof. Put i = n − j − 1 ≥ 0. Let f ∈ FjAn such that df ∈ Fj+1An+1. Since
dJ ◦ rj = rj ◦d, we have dJ(rj( f )) = 0. By Lemma 3.1, there is u ∈ Aj(H; Ai(J; M))
such that dJu = rj( f ). We define a continuous function g: Ji × Gj → M by
g(σ1, . . . ,σi, γ1, . . . , γj) = u(π(γ1), . . . ,π(γj))(σ1, . . . ,σi). Set g0 = g. We define a
sequence of continuous functions g1, . . . , gi such that gk is defined on Gk×Ji−k×
Gj with its values in M and gk is an extension of gk−1 for all 1 ≤ k ≤ i. We write
ρt

s = (ρs, . . . , ρt) ∈ Gt−s+1, γt
s = (γs, . . . , γt) ∈ Gt−s+1 and σt

s = (σs, . . . ,σt) ∈
Jt−s+1 for 1 ≤ s ≤ t. We denote by ρ∗ the element χ(π(ρ)) ∈ G and by ρ∨

the element χ(π(ρ))−1ρ ∈ J. Note that the functions ρ �→ ρ∗ and ρ �→ ρ∨ are
continuous. Let

g1(ρ,σi
2, γj

1) = ρ∗ · g(ρ∨,σi
2, γj

1)− f (ρ∗, ρ∨,σi
2, γj

1).

For k > 1, we define the gk’s recursively by

gk(ρk
1,σi

k+1, γj
1) = gk−1(ρk−2

1 , ρk−1ρ
∗
k , ρ∨k ,σi

k+1, γj
1)

+(− 1)kf (ρk−1
1 , ρ∗k , ρ∨k ,σi

k+1, γj
1).

Then we can show that f − dgi ∈ Fj+1An as in the proof of Theorem 2.2.1 of [5].

Therefore, we get the E1-term of the spectral sequence associated with the
filtration (FjA∗)j≥0 of the cochain complex A∗:

Ep,q
1
∼=
{

Ap(H; MJ) if q = 0,
0 if q �= 0.

It is easy to verify that the differential d1 is given by the coboundary map of the
normalized continuous cochain complex A∗(H; MJ). Hence we get the E2-term

Ep,q
2
∼=
{

Hp
c (H; MJ) if q = 0,

0 if q �= 0.

The spectral sequence collapses from E2-term and converges to the cohomology
group H∗(A) = H∗c (G; M). It is easy to verify that the edge homomorphism Ep,0

2 →
Hp(A) is identified with the inflation map Hp

c (H; MJ)→ Hp
c (G; M). Hence we get

the following proposition.

PROPOSITION 3.4. Let G be a Hausdorff topological group, J a finite normal
subgroup and H = G/J the quotient group. We assume that there is a continuous
sectionχ: H → G. Let M be a topological G module such that M is a regular repre-
sentation as topological J-module. Then the inflation map H∗c (H; MJ)→ H∗c (G; M)
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is an isomorphism

H∗c (H; MJ)
∼=−→ H∗c (G; M).

3.2. Cohomology of G(i). We consider a graded field L[u±1] and its subfield
Li[u±1] where the degree of u is −2. In this subsection we define quotient groups
G(i) of the profinite group G which act on Li[u±1]. Then we show that the
cohomology groups of G(i) with coefficients in Li[u±1] are isomorphic to each
other through the inflation maps.

We recall that G is a fibre product G̃n ×Aut(K) A(L/K) where G̃n is the
automorphism group of the universal deformation Fn over En, Aut(K) is the
automorphism group of the local field K, and A(L/K) is the subgroup of the
automorphism group of L consisting of elements preserving K. By Theorem 2.9,
there is an isomorphism G ∼= Γ � (Sn×Sn−1) where Γ = Gal(F/Fp). Hence G is a
profinite group. There is an action of G on L through the projection G → A(L/K).
In the following we assume that F is a finite field which contains Fpn and Fpn−1

for simplicity.
We define an action of G on L[u±1] as automorphisms of graded field which

is an extension of the action of G on the degree 0 part L. An element g of G̃n is
identified with a pair (g, t(g)) where g is an automorphism of V and t(g) is an
isomorphism t(g): Fn → Fg

n over V . The isomorphism t(g) has the form

t(g)(X) =
∑
i≥0

Fg
n ti(g)Xpi

.

For (g, ĝ) ∈ G = G̃n ×Aut(K) A(L/K), we set

u(g,̂g) = t0(g)−1u.

This defines a continuous action of G on L[u±1] as automorphisms of graded field.
We note that under the isomorphism G ∼= Γ � (Sn × Sn−1), the subgroup Gn−1 =
Γ � Sn−1 acts on u trivially and on L as the Galois group Gal(L/Fp((un−1))).

We recall that there is an open normal subgroup S(i+1)
n−1 of Sn−1. Under the

isomorphism G ∼= Γ � (Sn × Sn−1), we see that S(i+1)
n−1 is a normal subgroup of G.

We denote by G(i) the quotient group G/S(i+1)
n−1 . In particular, G(−1) = Gn. Hence

there is an exact sequence of profinite groups

1 −→ S(i+1)
n−1 −→ G −→ G(i) −→ 1.

By Lemma 2.6, the action of G on L[u±1] induces an action of G on the subfield
Li[u±1]. Then it is easy to verify that the action of G on Li[u±1] factors through
the quotient group G(i).



DEGENERATION OF FORMAL GROUP AND STABLE HOMOTOPY 1051

There is an exact sequence

1 −→ S(i+1)
n−1 /S(i+2)

n−1 −→ G(i + 1) −→ G(i) −→ 1.

By Theorem 2.7 and its proof of [4], the kernel S(i+1)
n−1 /S(i+2)

n−1 is identified with the
Galois group of the extension Li+1/Li. Hence the invariant subring of the action
of S(i+1)

n−1 /S(i+2)
n−1 on Li+1[u±1] is Li[u±1]. We consider the inflation map

H∗c (G(i); Li[u
±1]) −→ H∗c (G(i + 1); Li+1[u±1]).

For the finite Galois extension Li/Li−1, the existence of a normal basis implies
that the topological Gal(Li+1/Li)-module Li+1 is a regular representation over the
discrete valuation field Li. By Proposition 3.4, we obtain the following theorem.

THEOREM 3.5. The inflation map

H∗c (G(i); Li[u
±1]) −→ H∗c (G(i + 1); Li+1[u±1])

is an isomorphism for all i ≥ −1.

3.3. Construction of the ring homomorphism Θ. In §2.4 we showed that
there is an isomorphism G ∼= Γ � (Sn × Sn−1). In this subsection we construct a
ring homomorphism from the cohomology of Gn−1 with coefficients in F[w±1]
to the cohomology of Gn with coefficients in K[u±1] by using two inflation maps
induced by the projections G → Gn and G → Gn−1.

Let F[w±1] be the graded field where the degree of w is −2. The profinite
group Gn−1 acts on F[w±1] from the right as follows. We recall that we have
an expression of h ∈ Sn−1 as h = h0 + h1T + h2T2 + · · · where hi ∈ W(Fpn−1 ),

hpn−1

i = hi and h0 �= 0. The subgroup Sn−1 of Gn−1 acts on F[w±1] as F-algebra
automorphisms by

wh = h
−1
0 w, h ∈ Sn−1(3.1)

where h0 ∈ Fpn−1 is the reduction of h0 ∈ W(Fpn−1 ) to the residue field. The
subgroup Γ acts on F[w±1] by

(awn)σ = aσwn, σ ∈ Γ, a ∈ F, n ∈ Z.(3.2)

Then we obtain an action of Gn−1 on F[w±1] compatible with the above actions
of the subgroups Sn−1 and Γ.

We denote by Gn−1(i) the quotient group Gn−1/S(i+1)
n−1 for i ≥ −1. The action

of Gn−1 on F[w±1] factors through Gn−1(i) for all i ≥ 0. The following lemma
is well known on the cohomology of profinite groups.
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LEMMA 3.6. (cf. [20]) H∗c (Gn−1; F[w±1]) ∼=lim
−→

i

H∗c (Gn−1(i); F[w±1]).

The action of G on L[u±1] induces the action of the quotient group G(i) on
the subfield Li[u±1]. We identify F[w±1] as the subfield of L[u±1] by the relation

w = Φ−1
0 u.

LEMMA 3.7. F[w±1] is stable under the action of G. The subgroup Sn of G acts
trivially on F[w±1]. The action of the subgroup Gn−1 of G coincides with the action
defined in (3.1) and (3.2).

Proof. For g ∈ Sn, we have Φg
0 = t0(g)−1Φ0 and ug = t0(g)−1u. Hence Sn

acts on w trivially. For h ∈ Sn−1, we have Φh
0 = h0Φ0 and uh = u. Hence we

obtain wh = h
−1
0 w. Since the action of Γ on Φ0 and u is trivial, the action on w

is also trivial. This shows that F[w±1] is stable under G and the action of Gn−1

is the same as defined in (3.1) and (3.2).

Remark 3.8. By Lemma 5.10, the invariant ring of K[u±1] under the action
of Sn is F[v±1

n−1]. Since L is totally ramified over K, the invariant ring of L[u±1]
is F[w±1].

By Lemma 3.7, we see that the inclusion F[w±1] ↪→ Li[u±1] is compatible
with the projection map G(i)→ Gn−1(i) for all i ≥ 0. Hence we get an inflation
map

H∗c (Gn−1(i); F[w±1]) −→ H∗c (G(i); Li[u
±1]).

We consider the following homomorphism of systems

· · · → H∗c (Gn−1(i− 1); F[w±1]) → H∗c (Gn−1(i); F[w±1]) → · · ·� �
· · · → H∗c (G(i− 1); Li−1[u±1]) → H∗c (G(i); Li[u±1]) → · · · .

By Theorem 3.5, the homomorphisms in the bottom sequence are all isomor-
phisms and we have a compatible isomorphism

H∗c (Gn; K[u±1])
∼=−→ H∗c (G(i); Li[u

±1])

for all i ≥ 0. By passing to the direct limits of the systems, we obtain a ring
homomorphism

Θ: H∗c (Gn−1; F[w±1]) −→ H∗c (Gn; K[u±1]).(3.3)
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LEMMA 3.9. Let vn−1 = un−1u−(pn−1−1). Then w−(pn−1−1) = vn−1 and
H0

c (Gn−1; F[w±1]) = Fp[v±1
n−1]. The homomorphism Θ is a morphism of Fp[v±1

n−1]-
algebras.

Proof. Since Φ is an isomorphism from Fn to Hn−1, we have Φ([p]Fn(X)) =
[p]Hn−1 (Φ(X)). By comparing the leading coefficients, we see that Φ0un−1 =

Φpn−1

0 . This implies that w−(pn−1−1) = un−1u−(pn−1−1) = vn−1. Then the lemma
follows from Proposition 3.18 (b) of [14].

Remark 3.10. In Lemma 5.10 we show that H0
c (Gn; K[u±1]) = Fp[v±1

n−1] and
Θ is the identity map on H0.

4. Graded modules over k[X]. Let k be a field and let k[X] be a polynomial
algebra with one variable X. We define a grading on k[X] by |X| = 1. Then k[X]
is a discrete valuation ring in the graded sense. For a Z-graded module M, we
denote by Mt the homogeneous component of degree t in M. In this section we
study Z-graded modules over k[X] satisfying some finiteness condition.

4.1. Torsion modules over k[X]. We say that a Z-graded module over k[X]
is of finite type if the dimension over k of Mt is finite for all t. Let M be a Z-
graded torsion k[X]-module, that is, for every m ∈ M, there is a natural number
n = n(m) such that Xnm = 0. Let Mn be the kernel of multiplication by Xn for
n ≥ 0:

0 −→ Mn −→ M Xn
−→ M.

Note that M = ∪nMn since M is a torsion module. In this subsection we study a
Z-graded torsion module over k[X] such that M1 is of finite type. In the following
we assume that M1 is of finite type.

LEMMA 4.1. The submodule Mn is of finite type for all n ≥ 0.

Proof. By induction on n, the lemma follows from the exact sequence 0 −→
M1 −→ Mn

X−→ Mn−1.

We say that a torsion module M is divisible if the multiplication by X is
surjective, and finite torsion if ∩n>0XnM = 0. First, we study a divisible module
M.

LEMMA 4.2. The multiplication by X on a divisible module M induces an iso-
morphism

X·: Mn+1/Mn
∼=−→ Mn/Mn−1

for all n ≥ 1.
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Proof. This is easy.

We take a basis B1 of M1 over k. Then there is a subset B2 of M2 such that
the multiplication by X induces a bijection X: B2 → B1. By Lemma 4.2, we see
that B1 ∪ B2 is a basis of M2. By induction, we can take a subset Bn of Mn such
that the multiplication by X induces a bijection X: Bn → Bn−1 for all n > 0.
Then we see that ∪nBn is a basis of M over k. Hence we obtain the following
proposition.

PROPOSITION 4.3. A divisible module M is isomorphic to a direct sum of copies
of k[X±1]/k[X].

Remark 4.4. In the proposition it is not necessary to assume that M1 is of
finite type.

Second, we study a finite torsion module M. We define a submodule Mn,i of
Mn by Mn,i = (Mn ∩XiM) + Mn−1. Then we get a sequence of submodules of Mn:

Mn = Mn,0 ⊃ Mn,1 ⊃ · · · ⊃ Mn−1.

In the degree t component, the k-module Mt
n is of finite dimension by Lemma 4.1.

Since M is finite torsion, there is a non-negative integer i such that Mt
n∩XiM = 0.

Hence we have Mt
n,i = Mt

n−1.

LEMMA 4.5. The multiplication by X induces an isomorphism

X·: Mn+1,i/Mn+1,i+1
∼=−→ Mn,i+1/Mn,i+2

for all n ≥ 1 and i ≥ 0.

Proof. This is easy.

For every n, we take a subset Bn,0 of Mn such that Bn,0 gives a basis of
Mn,0/Mn,1. We define a subset Bn,1 of Mn to be the image of Bn+1,0 under the
multiplication by X. By Lemma 4.5, we see that Bn,1 gives a basis of Mn,1/Mn,2.
Inductively, we get Bn,i for all n and i such that Bn,i gives a basis of Mn,i/Mn,i+1.
Then we see that ∪n,iBn,i gives a basis of M over k. The k[X]-submodule of M
generated by Bn,0 is isomorphic to a finite direct sum of copies of k[X]/(Xn).
Hence we obtain the following proposition.

PROPOSITION 4.6. A finite torsion module M is isomorphic to a direct sum of
copies of various k[X]/(Xn).

Finally, we study a general torsion module M. We recall that we assume that
M1 is of finite type. We define the submodule D by ∩nXnM and the quotient T
by M/D.
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LEMMA 4.7. The submodule D is divisible and the quotient T is finite torsion.

Proof. First, we show that D is divisible. We take an element m ∈ D with a
degree t + 1. Then there is a positive integer n such that m ∈ Mn−1. We define a
submodule Mt

n,i
′ of Mt

n by Mt
n,i
′ = Mt

n ∩XiM = XiMt−i
n+i . Then we get a decreasing

filtration

Mt
n = Mt

n,0
′ ⊃ Mt

n,1
′ ⊃ · · · ⊃ Mt

n,i
′ ⊃ · · · .

We define Mt
n,∞
′ = ∩iMt

n,i
′. Then D∩Mt

n = Mt
n,∞
′. By Lemma 4.1, the dimension

of Mt
n is finite. Hence there is a non-negative integer j such that Mt

n,j
′ = Mt

n,∞
′.

Let a ∈ Mt−j such that Xj+1a = m. Define b = Xja. Then we have Xb = a and
b ∈ Mt

n,j
′ = Mt

n,∞
′ ⊂ D. This shows that the multiplication by X is surjective

on D.
Second, we show that T is finite torsion. We take a ∈ ∩iXiT . Then there is

ai ∈ T such that Xiai = a for all i. We take a lift m of a and a lift mi ∈ M of ai

for all i. Then we have m− Ximi ∈ D. Since D is divisible, there is bi such that
m− Ximi = Xibi. This shows that m ∈ ∩iXiM = D. Hence a = 0.

By Lemma 4.7, we obtain a natural exact sequence 0 −→ D −→ M −→
T −→ 0 where D is divisible and T is finite torsion. We take a basis B of T . Let
b ∈ B such that b ∈ Tn−Tn−1. We take a lift b′ ∈ M of b. Then Xnb′ ∈ D. Since
D is divisible, there is d ∈ D such that Xnb′ = Xnd. Then b′ − d ∈ M is a lift
of b and satisfies Xn(b′ − d) = 0. Hence we obtain a splitting of the above exact
sequence.

PROPOSITION 4.8. Let M be a Z-graded torsion k[X]-module such that the kernel
M1 of the multiplication by X is of finite type. Then there is a natural exact sequence

0 −→ D −→ M −→ T −→ 0

where D is divisible and T is finite torsion. There is a (non-canonical) splitting on
the exact sequence. Hence M is isomorphic to the direct sum D⊕ T.

4.2. Complete modules over k[X]. We say that M is complete if the natural
map M →lim

←−
i

M/XiM is an isomorphism. Let nM be the cokernel of multiplication

by Xn on M:

M Xn
−→ M −→ nM −→ 0.

In this subsection we study a complete k[X]-module M such that 1M is of finite
type. In the following we assume that 1M is of finite type.

LEMMA 4.9. If 1M is of finite type, then nM is also of finite type for all n > 0.
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Proof. By induction on n, this follows from the exact sequence n−1M X−→
nM −→ 1M −→ 0.

We say that a complete k[X]-module is torsion free if the multiplication by
X is injective. For a submodule N of a complete k[X]-module M, we denote by
N the closure of N in M, that is,

N =
⋂

i

(N + XiM) =lim
←−

i

(N + XiM)/XiM.

A submodule N is said to be dense if N = M. We say that a complete k[X]-module
M is essentially torsion if there is a dense torsion submodule in M.

Let M be a complete k[X]-module such that 1M is of finite type. For s ∈ Z,
we denote by P(s) the Z-graded k[X]-module given by

P(s)t =

{
1+t−sMt, t ≥ s,
0, t < s.

Note that P(s) is of finite type and bounded below for all s. Hence P(s) is
isomorphic to a direct sum of copies of k[X] and various k[X]/(Xn). We take a
basis of P(s) and let Bs be the subset of the basis in degree s. We take a lift
B′s of Bs in M. For b ∈ Bs, we let b′ ∈ B′s be the lift of b. If Xnb = 0 and
Xn−1b �= 0, then Xnb′ ∈ X1+nMs+n. Hence there is c ∈ M such that Xnb′ = X1+nc.
Then b′′ = b′ − Xc is a lift of b such that Xnb′′ = 0. Hence we can take a lift B′s
such that, if b′ ∈ B′s is a lift of b ∈ Bs and b generates k[X]/(Xn) in P(s), then
b′ ∈ Bs generates k[X]/(Xn) in M. Let B′ = ∪sB′s and M′ the submodule of M
generated by B′. Then M′ is isomorphic to a direct sum of copies of k[X] and
various k[X]/(Xn). Then it is easy to see that nM′ = nM for all n. Hence M is the
X-adic completion of M′.

PROPOSITION 4.10. Let M be a complete k[X]-module such that 1M is of finite
type. Then M is isomorphic to a direct product of copies of k[X] and various
k[X]/(Xn).

Remark 4.11. If M itself is of finite type, then we can replace the direct
product by the direct sum in the proposition.

We fix an isomorphism between M and a direct product of copies of k[X] and
k[X]/(Xn) for n > 0. Let T be the submodule of M which is the direct product of
all torsion components k[X]/(Xn) of M under the isomorphism. We denote by T ′

the torsion submodule of M. Then we have T ′ ⊂ T . Let T ′′ be the submodule of
M which is the direct sum of all torsion components k[X]/(Xn) of M under the
isomorphism. Then we see that T ′′ ⊂ T ′ and T ′′ = T . This implies that T ′ = T .
Hence T is independent of a choice of isomorphism and essentially torsion.
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COROLLARY 4.12. There is a natural exact sequence of complete k[X]-modules

0 −→ T −→ M −→ Q −→ 0

where T is essentially torsion and Q is torsion free. There is a (noncanonical)
splitting on the exact sequence.

4.3. Duality between torsion modules and complete modules. In this
subsection we study some kind of Pontrjagin duality between torsion modules
and complete modules over k[X].

Let D be the graded module k[X±1]/k[X]. We denote by D{s} the shifted
graded module such that the degree s − t component of D{s} is equal to the
degree −t component of D. We also denote by k[X]/(Xn){s} (resp. k[X]/(Xn){s})
the k[X]-module isomorphic to k[X]/(Xn) generated by a degree s (resp. s − n)
element. Hence we have

k[X]/(Xn){s} = k[X]/(Xn){s− n}, k[X]/(Xn){s} = k[X]/(Xn){s + n}.

Let k[X]{s} be the free k[X]-module of rank one generated by a degree s element.

LEMMA 4.13. There are isomorphisms

Homk[X](k[X]/(Xn){s}, D) ∼= k[X]/(Xn){−s},
Homk[X](k[X]/(Xn){s}, D) ∼= k[X]/(Xn){−s},

Homk[X](k[X]{s}, D) ∼= D{−s},
Homk[X](D{s}, D) ∼= K{−s}.

Proof. These are easy.

Let M be a torsion k[X]-module such that M1 is of finite type. Then we have
an isomorphism

M ∼=
⊕
i∈I

D{si} ⊕
⊕
j∈J

k[X]/(Xnj){sj}.

The condition that M1 is of finite type is equivalent to two conditions that the
number of i such that si = n is finite for all n and the number of j such that sj = n
is finite for all n. We consider Hom(M, D). Then there is an isomorphism

Homk[X](M, D) ∼=
∏
i∈I

k[X]{−si} ×
∏
j∈J

k[X]/(Xnj){−sj}.

Hence the k[X]-module Hom(M, D) is complete and the cokernel of multipli-
cation by X on Hom(M, D) is of finite type. Let T be the category of torsion
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modules over k[X] such that the kernel of multiplication by X is of finite type.
Let C be the category of complete modules over k[X] such that the cokernel of
multiplication by X is of finite type. Then we get a functor

Homk[X](−, D): T −→ C.

Let M be an object of the category of C. We regard M as a topological module
by the X-adic topology. Note that a k[X]-module homomorphism is continuous
with respect to the X-adic topology. Let Homc(M, D) be the set of all continuous
homomorphism from M to D. We have an isomorphism

M ∼=
∏
i∈I

k[X]{si} ×
∏
j∈J

k[X]/(Xnj){sj}.

Since the cokernel 1M of multiplication by X is of finite type, the number of i ∈ I
(resp. j ∈ J) such that si = n (resp. sj = n) is finite for all n. Then we have

Homc
k[X](M, D) ∼=

⊕
i∈I

D{−si} ⊕
⊕
j∈J

k[X]/(Xnj){−sj}.

Note that the kernel of multiplication by X on Homc(M, D) is of finite type. Hence
we get a functor

Homc
k[X](−, D): C −→ T .

It is easy to see that the functor Hom(−, D) is an inverse of Homc(−, D) and
vice versa.

PROPOSITION 4.14. The functor Hom(−, D): T → C induces an equivalence of
categories. A quasi-inverse is given by Homc(−, D): C → T .

5. H∗c (Gn; V[u±1]) and cohomology of the comodule M1
n−1. In this section

we study the relation between the cohomology H∗c (Gn; V[u±1]) and the Ext of
the comodule M1

n−1 over the Hopf algebroid BP∗(BP). First, we recall the coho-
mology groups of comodules over the Hopf algebroid BP∗(BP) and the Morava’s
change of rings theorem. Then we introduce a filtration on H∗c (Gn; F[w±1]) and
construct a homomorphism of Bockstein type.

5.1. Cohomology of comodules over BP∗(BP). Let BP be the Brown-
Peterson spectrum at the prime p. The coefficient ring of BP is given by

BP∗ = Z(p)[v1, v2, . . . , ], |vi| = 2(pi − 1).

The Hopf algebroid (BP∗, BP∗BP) is an affine groupoid scheme representing the
functor which associates to a p-local algebra A the category of p-typical formal
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group laws over A with strict isomorphisms as morphisms (cf. appendix 2 of
[17]). Since the category of comodules over the Hopf algebroid BP∗(BP) is an
abelian category with enough injective, we can define the derived functor Ext.
For a BP∗(BP)-comodule M, we abbreviate Ext∗∗BP∗BP(BP∗, M) to H∗∗(M). Let
M1

n−1 be a BP∗-module given by

M1
n−1 = BP∗/(p, v1, . . . , vn−2, v∞n−1)[v−1

n ].

Then there is a unique BP∗(BP)-comodule structure on M1
n−1 such that the nat-

ural map BP∗ → M1
n−1 is a comodule map [13]. Let M1

n−1(i) be the kernel of
multiplication by v i

n−1 on M1
n−1:

0 −→ M1
n−1(i) −→ M1

n−1

v i
n−1−→ M1

n−1.

Since ηR(vn−1) ≡ vn−1 mod (p, v1, . . . , vn−2), the multiplication by v i
n−1 on M1

n−1
is a comodule map and the kernel M1

n−1(i) is a subcomodule of M1
n−1 for all

i > 0. We put M0
n = M1

n−1(1).

5.2. Morava’s change of rings theorem. We recall Morava’s change of
rings theorem [15, 2]. Let M be a comodule over the Hopf algebroid BP∗(BP).
We assume that v−1

i M = 0 for 0 ≤ i < n where v0 = p. We define the graded
ring En∗ by

En∗ = W(F)[[u1, . . . , un−1]][u±1]

where |ui| = 0 for 1 ≤ i < n and |u| = −2. There is a ring homomorphism
BP∗ → En∗ which sends vi to uiu−(pi−1) for 1 ≤ i < n, vn to u−(pn−1) and vi to 0
for i > n. Morava showed that there is a natural continuous action of Gn on the
discrete module En∗ ⊗BP∗ M and proved the following change of rings theorem.

THEOREM 5.1 (Morava’s change of rings theorem). There is a natural isomor-
phism

H∗(v−1
n M) ∼= H∗c (Gn; En∗ ⊗BP∗ M).

COROLLARY 5.2. H∗(M1
n−1(i)) ∼= H∗c (Gn; V/(ui

n−1)[u±1]) for all i > 0.

5.3. H∗(M1
n−1) and H∗c (Gn; V[u±1]). In this subsection we recall the finiteness

result on H∗(M0
n) and study the relation between H∗(M1

n−1) and H∗c (Gn; V[u±1]).
We note that M0

n is a comodule algebra over BP∗(BP). Hence the cohomology
H∗(M0

n) has a ring structure.

LEMMA 5.3. (cf. Theorem 6.2.10 (a) [17]) The cohomology H∗(M0
n) is a finitely

generated algebra over Fp[v±1
n ]. In particular, Hs,t(M0

n) is a finite dimensional
vector space over Fp for all s and t.
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Since the multiplication by vn−1 on M1
n−1 is a comodule map, Hs(M1

n−1) is a
Z-graded torsion module over Fp[vn−1]. There is an exact sequence of comodules

0 −→ M0
n −→ M1

n−1
vn−1−→ M1

n−1 −→ 0.

The short exact sequence induces a long exact sequence

· · · −→ Hs(M0
n) −→ Hs(M1

n−1)
vn−1−→ Hs(M1

n−1)
δs−→ Hs+1(M0

n) −→ · · · .

Then we see that the kernel of multiplication by vn−1 on Hs(M1
n−1) is of finite

type. Let D be the divisible Fp[vn−1]-module Fp[v±1
n−1]/Fp[vn−1]. Let T(l) be a

finite torsion module Fp[vn−1]/(v l
n−1). We denote by D{a} (a ∈ Z) the shifted

module of D such that the degree a − t part of D{a} is the degree −t part of
D. Also, T(l){b} (b ∈ Z) is the shifted module of T(l) generated by a degree b
element. By Proposition 4.8, we have an isomorphism

Hs(M1
n−1) ∼=

⊕
α∈As

D{aα} ⊕
⊕
β∈Bs

T(lβ){bβ}.

We fix an isomorphism and let Ds = Ds(M1
n−1) be the divisible part and Ts =

Ts(M1
n−1) the finite torsion part of Hs(M1

n−1).
In order to relate H∗(M1

n−1) to H∗c (Gn; V[u±1]), we need the following lemma.

LEMMA 5.4. (cf. [6]) H∗c (Gn; V[u±1]) ∼=lim
←−

i

H∗c (Gn; V/(ui
n−1)[u±1]).

From the long exact sequence

· · · −→ Hs(M1
n−1(i)) −→ Hs(M1

n−1)
v i

n−1−→ Hs(M1
n−1) −→ · · · ,

we get a short exact sequence

0 −→ iT
s−1 −→ Hs(M1

n−1(i)) −→ Ds
i ⊕ Ts

i −→ 0

where iTs−1 is the cokernel of multiplication by v i
n−1 on Ts−1, and Ds

i (resp. Ts
i )

is the kernel of multiplication by v i
n−1 on Ds (resp. Ts). The natural projection

M1
n−1(i)→ M1

n−1(i− 1) induces an inverse system of short exact sequences

↓ ↓ ↓
0→ iTs−1 −→ Hs(M1

n−1(i)) −→ Ds
i ⊕ Ts

i → 0
↓ ↓ ↓

0→ i−1Ts−1 −→ Hs(M1
n−1(i− 1)) −→ Ds

i−1 ⊕ Ts
i−1 → 0

↓ ↓ ↓ .
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Note that 1Ts is of finite type. Hence iTs is also of finite type for all i > 0.
Then lim

←−
i

1
iTs−1 = 0. We denote by Q{b} a free Fp[vn−1]-module of rank one

generated by a degree b element. By passing to the inverse limit of the system,
we get a short exact sequence

0 −→ Ts−1 −→lim
←−

i

Hs(M1
n−1(i)) −→ Qs −→ 0

where

Ts−1 ∼=
∏
β∈Bs−1 T(lβ){bβ},

Qs ∼=
∏
α∈As Q{aα}.

Then we see that lim
←−

Hs(M1
n−1(i)) is a complete Fp[vn−1]-module. The short exact

sequence is naturally associated with it and there is a (non-canonical) splitting
by Corollary 4.12.

By Morava’s change of rings theorem (Theorem 5.1), we obtain the following
proposition.

PROPOSITION 5.5. The cohomology Hs
c(Gn; V[u±1]) is a complete module over

Fp[vn−1] for all s. We suppose that there is an isomorphism

Hs(M1
n−1) ∼=

⊕
α∈As

D{aα} ⊕
⊕
β∈Bs

T(lβ){bβ}.

Then we have an isomorphism

Hs
c(Gn; V[u±1]) ∼=

∏
β∈Bs−1

T(lβ){bβ} ×
∏
α∈As

Q{aα}.

COROLLARY 5.6. H0
c (Gn; V[u±1]) = Fp[vn−1].

Proof. This follows from Proposition 5.5 and Theorem 5.1 of [14].

Remark 5.7. If Hs
c(Gn; V[u±1]) is of finite type, we can replace the direct

product by the direct sum in the right hand side of the isomorphism. It is the
case when n = 2 by Shimomura [21, 23, 22].

Let r be the projection H∗c (Gn; V[u±1]) → H∗(M0
n). In §6 we need the fol-

lowing lemma.

LEMMA 5.8. r(Ts) = Im δs.
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Proof. We have a morphism of exact sequences

0→ Ts −→ Hs+1
c (Gn; V[u±1]) −→ Qs+1 → 0� �r

�
0→ Coker vn−1 −→ Hs+1(M0

n) −→ Ker vn−1 → 0.

Note that Coker vn−1 = Im δs. Then the lemma follows from the fact that the left
vertical arrow is surjective.

5.4. Homomorphism of Bockstein type. In this subsection we introduce
a filtration on the cohomology group H∗c (Gn−1; F[w±1]) and construct a homo-
morphism from the associated graded group to some quotient of the cohomology
group H∗c (Gn; F[u±1]).

In §3.3 we constructed a ring homomorphism Θ: H∗c (Gn−1; F[w±1]) →
H∗c (Gn; K[u±1]) (cf. (3.3)). There are ring homomorphisms

l: H∗c (Gn; V[u±1]) −→ H∗c (Gn; K[u±1])

r: H∗c (Gn; V[u±1]) −→ H∗c (Gn; F[u±1])

where l is induced by the inclusion V → K and r is induced by the reduction
V → F. So we get a diagram

H∗c (Gn; V[u±1]) r−→ H∗c (Gn; F[u±1])�l

H∗c (Gn−1; F[w±1]) Θ−→ H∗c (Gn; K[u±1]).

LEMMA 5.9. The vertical arrow l in the diagram is the localization inverting
the invariant element vn−1 ∈ H0

c (Gn; V[u±1]):

H∗c (Gn; K[u±1]) = H∗c (Gn; V[u±1])[v−1
n−1].

Proof. First we show that vn−1 = un−1u−(pn−1−1) is a Gn-invariant element
in V[u±1]. It is trivial that vn−1 is invariant with respect to the action of Γ. The
action of Sn on V[u±1] is given by

ug
n−1 = un−1t0(g)−(pn−1−1), ug = t0(g)−1u.

Hence vn−1 is invariant. Let C∗(Gn; V[u±1]) be the continuous cochain com-
plex for Gn in V[u±1]. Then the natural homomorphism C∗(Gn; V[u±1]) →
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C∗(Gn; K[u±1]) induces an injective homomorphism

C∗(Gn; V[u±1])[v−1
n−1] −→ C∗(Gn; K[u±1]).

For f ∈ C∗(Gn; K[u±1]), the compactness of Gn implies that f comes from
C∗(Gn; u−i

n−1V[u±1]) for some i. Since u−i
n−1V[u±1] = v−i

n−1V[u±1], this means that
the above natural homomorphism is surjective. Hence C∗(Gn; V[u±1])[v−1

n−1] =
C∗(Gn; K[u±1]). Since the (co)homology of a (co)chain complex commutes with
the localization, we get the lemma.

COROLLARY 5.10. For n ≥ 2, H0
c (Gn; K[u±1]) = Fp[v±1

n−1]. The ring homomor-
phism Θ is the identity on H0.

Proof. This follows from Corollary 5.6 and Lemma 5.9.

We define a filtration on H∗c (Gn−1; F[w±1]) by

Fs = FsH∗c (Gn−1; F[w±1]) = {f | v−s
n−1 ·Θ( f ) ∈ Im l}.

Then we get

H∗c (Gn−1; F[w±1]) ⊃ · · · ⊃ Fs ⊃ Fs+1 ⊃ · · · .

We note that H∗c (Gn−1; F[w±1]) = ∪sFs. Let T ⊂ H∗c (Gn; V[u±1]) be the vn−1-
torsion subgroup. There is a natural exact sequence

0 −→ T −→ H∗c (Gn; V[u±1]) −→ Q −→ 0

where T is the closure of T and Q is torsion free.

LEMMA 5.11. ∩sFs = Θ−1(l(T)).

Proof. Let a ∈ H∗c (Gn−1; F[w±1]) such that Θ(a) ∈ l(T). We take b ∈ T
such that Θ(a) = l(b). For s > 0, there is bs ∈ T such that b ≡ vs

n−1bs mod
T . Hence v−s

n−1Θ(a) = l(bs). This shows that a ∈ ∩sFs. Let a ∈ ∩sFs. There is
bs ∈ H∗c (Gn: V[u±1]) such that v−s

n−1Θ(a) = l(bs) for all s ∈ Z. Then b0 ≡ vs
n−1bs

mod T . Let c be the image of b0 in Q. Then we have c ∈ ∩svs
n−1Q = {0}. This

shows that b0 ∈ T and Θ(a) ∈ l(T).

LEMMA 5.12. The multiplication by vn−1 induces an isomorphism Fs/Fs+1 ∼=−→
Fs+1/Fs+2. Hence we have

Gr H∗c (Gn−1; F[w±1]) = ⊕sF
s/Fs+1 ∼= F0/F1 ⊗ Fp[v±1

n−1].

Proof. This is easy.
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LEMMA 5.13. r(T) = r(T).

Proof. It is sufficient to show that r(T) ⊂ r(T). The homomorphism r is
the projection to H∗(M1

n−1(1)) under the isomorphism H∗c (Gn; V[u±1]) ∼=lim
←−

H∗(M1
n−1(i)) (Lemma 5.4). Then r(T) is contained in the closure of r(T) in

H∗(M1
n−1(1)). Since H∗(M1

n−1(1)) is of finite type, it is discrete. Hence r(T) is
closed and r(T) ⊂ r(T).

For f ∈ Fs, there is f ′ ∈ H∗c (Gn; V[u±1]) such that l( f ′) = v−s
n−1Θ( f ). If

f ′′ ∈ H∗c (Gn; V[u±1]) is another lift of v−s
n−1Θ( f ), then f ′−f ′′ ∈ T . Hence we get a

homomorphism from Fs to H∗c (Gn; V[u±1])/T . It is clear that this homomorphism
induces a homomorphism from Fs/Fs+1 to H∗c (Gn; F[u±1])/r(T). Therefore we
get a homomorphism

Ξ: Gr H∗c (Gn−1; F[w±1]) −→ H∗c (Gn; F[u±1])/r(T).(5.1)

LEMMA 5.14. Let S be a subset of H∗c (Gn; V[u±1]) such that r(S) is linearly
independent over Fp in H∗c (Gn; F[u±1])/r(T). Then l(S) is linearly independent
over Fp[v±1

n−1] in H∗c (Gn; K[u±1]).

Proof. Let s1, . . . , si be elements in S such that
∑

ajsj = 0 in H∗c (Gn; K[u±1])
where aj ∈ Fp[v±1

n−1]. Then we can assume that aj ∈ Fp[vn−1] for all j and a1 ∈ F×p .
This implies that

∑
ajsj ∈ T in H∗c (Gn; V[u±1]). Hence we get

∑
ajr(sj) = 0 in

H∗c (Gn; F[u±1])/r(T) where aj is the image of aj under the reduction Fp[vn−1]→
Fp . Since a1 �= 0, this contradicts the assumption that r(S) is linearly independent.

COROLLARY 5.15. Let S be a subset of H∗c (Gn−1; F[w±1]) such that S∩(∩s Fs) =
∅. Let S be the subset of Gr H∗c (Gn−1; F[w±1]) determined by S. If Ξ(S) is linearly
independent over Fp, then Θ(S) is linearly independent over Fp[v±1

n−1].

Proof. We can assume that S ⊂ F0 − F1. Then there is a subset S′ of
H∗c (Gn; V[u±1]) such that l gives a bijection from S′ to Θ(S). Since the image
r(S′) is linearly independent over Fp in H∗c (Gn; F[u±1])/r(T), Θ(S) is linearly
independent over Fp[v±1

n−1].

6. Examples. In this section we study the behavior of the homomorphism
Θ constructed in (3.3) on the 1-dimension cohomology groups. We recall that
H0

c (Gn; F[u±1]) ∼= H0(M0
n) ∼= Fp[v±1

n ]. For a ring A of characteristic p > 0, let P
be the Frobenius operator on A given by P(x) = xp for x ∈ A. If a group G acts on
A as ring automorphisms, then P: A→ A is a G-module map. Hence P induces a
ring homomorphism on the cohomology ring H∗(G; A). We also denote by P this
ring homomorphism. For a homomorphism f : A1 → A2 of characteristic p rings,
we have P◦ f∗ = f∗ ◦P on cohomology. For a group homomorphism g: G1 → G2,
we also have P ◦ g∗ = g∗ ◦ P on cohomology.
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Let h0 be the continuous map from Sn to F[u±1] given by

h0(g) = g−1
0 g1u−(p−1)

where g = g0 + g1S + g2S2 + · · · ∈ Sn and gi is the reduction of gi ∈ W(Fpn) to the
residue field Fpn . It is easy to see that h0 ∈ H1,2(p−1)

c (Sn; F[u±1]). For σ ∈ Γ, we
have hσj (g) = hj(g). Hence we get

h0 ∈ H1,2(p−1)
c (Sn; F[u±1])Γ = H1,2(p−1)

c (Gn; F[u±1]).

We define

hj = Pj(h0) ∈ H1,2pj(p−1)
c (Gn; F[u±1]), j ≥ 0.

Remark 6.1. hj+n = v (p−1)pj
n hj for all j ≥ 0.

We recall that Sn is isomorphic to the unit group of the maximal order of
the central division algebra over the p-adic number field Qp with invariant 1/n.
Then we have the reduced norm map Sn → Z×p (cf. [26]). Note that there is an
isomorphism

Z×p ∼=
{

(Z/p)× × Zp if p is odd,

Z/2× Z2 if p = 2.
(6.1)

For p odd, we define a continuous map ζn from Sn to F by

ζn: Sn −→ Z×p −→ Zp −→ Fp ⊂ F

where the first map is the reduced norm, the second is the projection under the
isomorphism (6.1) and the third is the reduction. By properties of the reduced
norm [26], we see that

ζn ∈ H1,0
c (Sn; F[u±1])Γ = H1,0

c (Gn; F[u±1]), p: odd.

Note that P(ζn) = ζn and v1ζ1 = h0.
For p = 2, we define a continuous map ζn by

ζn: Sn −→ Z×2 −→ Z/2 ⊂ F

where the first map is the reduced norm and the second is the projection under
the isomorphism (6.1). We also define a map ρn by

ρn: Sn −→ Z×2 −→ Z2 −→ Z/2 ⊂ F
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where the first map is the reduced norm, the second is the projection and the
third is the reduction. By the same reason for p odd, we see that

ζn, ρn ∈ H1,0
c (Sn; F[u±1])Γ = H1,0

c (Gn; F[u±1]), p = 2.

Note that P(ζn) = ζn, P(ρn) = ρn and v1ζ1 = h0.

PROPOSITION 6.2. (cf. Proposition 3.18 (a),(c) [14]) Over the graded field
Fp[v±1

n ], we can take as a basis of H1
c (Gn; F[u±1]) the following elements

ζ1, if n = 1, p �= 2,
ζ1, ρ1, if n = 1, p = 2,
hj (0 ≤ j < n), ζn, if n > 1, p �= 2,
hj (0 ≤ j < n), ζn, ρn, if n > 1, p = 2.

6.1. Image of hj under Θ. In this subsection we consider the image of hj

under the homomorphism Θ: H1
c (Gn−1; F[w±1]) → H1

c (Gn; K[u±1]). By Corol-
lary 5.10, we have H0

c (Gn; K[u±1]) = Fp[v±1
n−1]. The ring homomorphism Θ is

an Fp[v±1
n−1]-algebra homomorphism and the identity on H0. We note that Θ

commutes with the Frobenius operator P. This follows from the fact that Θ
is the direct limit of the system of two inflation maps H∗c (Gn−1(i); F[w±1]) →
H∗c (G(i); Li[u±1])

∼=←− H∗c (Gn; K[u±1]).
We define a continuous map s0 from Sn to K[u±1] by

s0(g) = t0(g)−1t1(g)u−(p−1).

We recall that ti(g) (i ≥ 0) is the coefficient of the isomorphism t(g): Fn → Fg
n

over V given by the following form

t(g)(X) =
∑
i≥0

Fg
n ti(g)Xpi

.

We note that ti: Sn → V is Γ-equivariant for all i ≥ 0. This follows from the fact
that (t(g)(X))σ: Fσn → (α(g)∗Fn)σ is identified with t(gσ)(X): Fn → α(gσ)∗Fn

for σ ∈ Γ.

LEMMA 6.3. The continuous map s0 is a 1-cocycle for Sn in V[u±1].

Proof. We have t(gg′)(X) = t(g)g′(t(g′)(X)). Comparing the coefficients of X
and Xp, we get

t0(gg′) = t0(g)g′ t0(g′),

t1(gg′) = t0(g)g′ t1(g′) + t1(g)g′ t0(g′)p.
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Note that ug = t0(g)−1u. Then

s0(gg′) = (t0(g)g′ t0(g′))−1(t0(g)g′ t1(g′) + t1(g)g′ t0(g′)p)u−(p−1)

= (t0(g′)−1t1(g′) + (t0(g)−1t1(g))g′ t0(g′)p−1)u−(p−1)

= s0(g′) + s0(g)g′ .

This shows that s0 is a 1-cocycle.

Since ti is Γ-equivariant, sσ0 (g) = s0(g) for σ ∈ Γ. Hence we get

s0 ∈ H1,2(p−1)
c (Sn; V[u±1])Γ = H1,2(p−1)

c (Gn; V[u±1]).

We define

sj = Pj(s0) ∈ H1,2pj(p−1)
c (Gn; V[u±1]), j ≥ 0.

PROPOSITION 6.4. Θ(hj) = sj for all j ≥ 0.

Proof. For g′ = g′0 + g′1T + g′2T2 + · · · ∈ Sn−1, from the relation g′(Φ(X)) =
Φg′(X), we have

Φg′

0 = g′0Φ0

Φg′

1 = g′0Φ1 + g′1Φp
0.

Then we get

h0(g′) = g′0
−1g1w−(p−1)

= (Φ−1
0 Φ1)g′u−(p−1) − (Φ−1

0 Φ1)u−(p−1).

Note that ug′ = u for all g′ ∈ Sn−1. We put Y = Φ−1
0 Φ1u−(p−1) ∈ L1. Then

h0(g′) = Yg′ − Y for all g′ ∈ Sn−1. The cocycle Θ(h0) is given by Θ(h0)(g) =
Y − Yg (g ∈ Sn). For g ∈ Sn, from the relation Φ(X) = Φg(t(g)), we have

Φ0 = Φg
0t0

Φ1 = Φg
0t1 + Φg

1tp
0.

Then we obtain

Θ(h0)(g) = t−1
0 t1u−(p−1) = s0(g).

Since the Frobenius operator P commutes with Θ, we obtain Θ(hj) = sj for all
j ≥ 0.
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In order to show that sj (0 ≤ j < n − 1) are linearly independent in
H∗c (Gn; K[u±1]), we consider the homomorphism Ξ defined in (5.1). Recall that
r is the homomorphism from H∗c (Gn; V[u±1]) to H∗c (Gn; F[u±1]) induced by the
reduction map V → F.

LEMMA 6.5. r(sj) = hj for all j ≥ 0.

Proof. It is easy to show that r(s0) = h0. Since P commutes with r, we get
the lemma.

Remark 6.6. For hn−1 ∈ H1
c (Sn−1; F[w±1]), we have hn−1 = vp−1

n−1 h0. Then

sn−1 = vp−1
n−1 s0 in H1

c (Gn; K[u±1]). This means that sn−1−vp−1
n−1 s0 is a vn−1-torsion

element of H1
c (Gn; V[u±1]). Hence hn−1 = r(sn−1) ∈ r(T) = Im δ0 (cf. (5.9),

(5.16) and (5.18) of [14]).

LEMMA 6.7. r(hj) (0 ≤ j < n− 1) are linearly independent over Fp in H1
c (Gn;

F[u±1])/r(T).

Proof. By Lemma 5.8, we have H1
c (Gn; F[u±1])/r(T) = H1

c (Gn; F[u±1])/Imδ0.
The lemma follows from (5.9), (5.16) and (5.18) of [14].

By Lemma 5.14, we obtain the following proposition.

PROPOSITION 6.8. sj (0 ≤ j < n− 1) are linearly independent over Fp[v±1
n−1] in

H∗c (Gn; K[u±1]).

6.2. The case n = 2 and p odd. The 1st Morava stabilizer group S1 is
isomorphic to the unit group of the p-adic integer ring: S1

∼= Zp
×. If p is an odd

prime, then S1 is isomorphic to (Z/p)× × Zp. The subgroup isomorphic to Zp

acts on F[w±1] trivially. Hence we see that

H∗c (S1; F[w±1]) ∼= H∗c (Zp; F)⊗ H∗c ((Z/p)×; F[w±1])

∼= H∗c (Zp; F)⊗ F[v±1
1 ].

LEMMA 6.9. For p odd, H∗c (G1; F[w±1]) = Λ(ζ1)⊗ Fp[v±1
1 ].

From the results of Shimomura [21, 23] and Proposition 5.5, we have the
following lemma.

LEMMA 6.10. For p > 2, H∗c (G2; K[u±1]) = Λ(ζ2, s0)⊗ Fp[v±1
1 ].

Since ζ1 = v−1
1 h0, we have Θ(ζ1) = v−1

1 s0. Hence we obtain the following
proposition.

PROPOSITION 6.11. The Fp[v±1
1 ]-algebra homomorphism Θ: H∗c (G1; F[w±1])

→ H∗c (G2; K[u±1]) is given by Θ(ζ1) = v−1
1 s0. The ring homomorphism Θ induces

an isomorphism

Θ⊗ Λ(ζ2): H∗c (G1; F[w±1])⊗ Λ(ζ2)
∼=−→ H∗c (G2; K[u±1]).
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6.3. The case n = 2 and p = 2. If p = 2, then S1 is isomorphic to Z/2×Z2.
We note that the action of S1 on F[w±1] is trivial in this case. Hence we obtain
that H∗c (S1; F[w±1]) is isomorphic to H∗c (S1; F)⊗ F[w±1].

LEMMA 6.12. For p = 2, H∗c (G1; F[w±1]) = F2[ζ1]⊗ Λ(ρ1)⊗ F2[v±1
1 ].

Since ζ1 = v−1
1 h0, we have Θ(ζ1) = v−1

1 s0. For ρ1, we have the following
lemma.

LEMMA 6.13. We can take t−1
0 t1u−4

1 + t−1
0 t2u−3

1 + t−1
0 t1u−1

1 as a cocycle repre-
senting Θ(ρ1).

Proof. For g′ ∈ S1, we have ρ1(g′) = g′1 + g′2. From the relation g′(Φ(X)) =
Φg′(X), we have

Φg′

0 = Φ0,

Φg′

1 = Φ1 + g′1u2
1,

Φg′

2 = Φ2 + g′1(Φ2
1 + u2

1Φ1) + g′2u4
1.

We define Y ∈ L2 to be u−2
1 Φ1 + u−4

1 Φ2 + u−5
1 Φ1. Then we obtain that ρ1(g′) =

Yg′ − Y for all g′ ∈ S1.
For g ∈ S2, the cocycle representing Θ(ρ1) is given by Θ(ρ1)(g) = Y − Yg.

From the relation Φg(t(g)(X)) = Φ(X), we have

Φg
0 = t−1

0 Φ0,
Φg

1 = t−2
0 (Φ1 − t−1

0 t1u1),

Φg
2 = t−4

0 (Φ2 − (Φ1 − t−1
0 t1u1)(t−2

0 t2
1 + t−1

0 t1u1)− t−1
0 t2u1).

Note that we have a relation t1u2
1 + t0 = ug

1t2
1 + t4

0 from t(g)([p]F2 (X)) = [p]Fg
2

(t(g)(X)). Then we get Θ(ρ1) = t−1
0 t2u−3

1 + t−1
0 t1u−1

1 + t−1
0 t1u−4

1 .

We denote by µ the cocycle representing Θ(ρ1) given by Lemma 6.13. It is
clear that v4

1µ is a cocycle in V[u±1]. Then v4
1µ ≡ v2h0 mod (u1). By (5.16) of

[14], v2h0 = δ0(x2,1/v2
1 ). Hence there is a v1-torsion element x ∈ H1

c (G2; V[u±1])
such that v4

1 Θ(ρ1) − x is divisible by v1. Then v3
1 Θ(ρ1) ∈ Im l where l is the

localization map H1
c (G2; V[u±1])→ H1

c (G2; K[u±1]).

LEMMA 6.14. ρ1 ∈ F−3 − F−2 and Ξ(ρ1) = v2ζ2 �= 0 in H1
c (G2; F[u±1])/r(T).

Proof. Let τ be the continuous map (t6
0−1)u−2

1 u−4 from S2 to K[u±1]. From

the relation t(g)([p]F2 (X)) = [p]Fg
2 (t(g)(X)), we have

t0(g) ≡ g0 + g−1
0 g2

1u1 mod (u2
1),

t1(g) ≡ g1 + g−1
0 g2

2u1 mod (u2
1).
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Hence we see that τ is a map to V[u±1] and τ ≡ v2h0 mod (u1). By the relation
t0(gg′) = t0(g)g′ t0(g′), we see that τ is a 1-cocycle. We consider the continu-
ous map ν = (v4

1µ − τ )/v1 from S2 to V[u±1]. Then ν ≡ v2(g−1
0 g2 + g−2

0 g2
2 +

g3
1) mod (u1). The right hand side represents v2ζ2 ∈ H1

c (G2; F[u±1]). Then the
lemma follows from (5.16) of [14].

Remark 6.15. The cocycle (t6
0 − 1)u−2

1 u−4v1 represents ∂(v2
2 ) ∈ H1

c (G2;
V[u±1]) where ∂ is the connecting homomorphism H0

c (G2; F[u±1]) → H1
c (G2;

V[u±1]) induced by the short exact sequence 0 → V[u±1]
v1−→ V[u±1] −→

F[u±1]→ 0.

COROLLARY 6.16. Θ(ζ1) and Θ(ρ1) are linearly independent over F2[v±1
1 ] in

H1
c (G2; K[u±1]).

Proof. This follows from Corollary 5.15 and (5.16) of [14].

Remark 6.17. From the results of Shimomura [22], we see that

H1
c (G2; K[u±1]) = F2[v±1

1 ]{ζ2, ρ2, Θ(ζ1), Θ(ρ1)}.

7. Relation to the chromatic splitting conjecture. In this section we study
a relation between the ring homomorphism Θ and the chromatic splitting con-
jecture (cf. [8]). The conjecture contains the statement that the natural map
Ln−1S0

p → Ln−1LK(n)S0 is a split monomorphism. For a finite spectrum Z of type
n− 1, there are spectral sequences Er(1) and Er(2) which converge to π∗(Ln−1Z)
and π∗(Ln−1LK(n)Z), respectively, and there is a morphism fr of the spectral se-
quences which is a lift of the natural map Ln−1Z → Ln−1LK(n)Z. We show that
there are spectral sequences Er(3) and Er(4) which converge to the E2-terms of
the spectral sequences Er(1) and Er(2), respectively, and the morphism f2 lifts to
a morphism of the spectral sequences Er(3) → Er(4) which is isomorphic to a
sum of finite many copies of Θ on the E1-terms. In particular, if a Toda-Smith
spectrum V(n − 2) exists, then Er(3) and Er(4) collapse, and the morphism f2
coincides with Θ.

Let Ln and LK(n) be the Bousfield localization functors with respect to K(0)∨
K(1)∨ · · · ∨K(n) and K(n), respectively, where K(i) is the ith Morava K-theory.
Then there is a tower

· · · → LnX → Ln−1X → · · · → L1X → L0X,

which is called the chromatic tower of X. The layers of the tower, that is, the
fibres of LnX → Ln−1X are determined by LK(n)X’s and vice versa. There is a
natural map of towers from the constant tower {X} to the chromatic tower and
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the chromatic convergence theorem says that the induced map

X −→holim
n

LnX

is a homotopy equivalence for all p-local finite spectra X. So we may consider
that a finite spectrum X is recovered from the chromatic pieces LnX through the
tower and X is built up from the monochromatic pieces LK(n)X’s. The chromatic
splitting conjecture says that for understanding a finite spectrum X, it is not nec-
essary to reconstruct X from the chromatic tower and it is sufficient to understand
infinite many LK(n)X’s. In particular, the chromatic splitting conjecture contains
the following assertion.

CONJECTURE 7.1. The natural map Ln−1S0
p → Ln−1LK(n)S0 is a split monomor-

phism, where S0
p is the p-completion of the sphere spectrum S0.

We denote by BP∧s the s-fold smash product of BP: BP∧s =

s︷ ︸︸ ︷
BP ∧ · · · ∧ BP.

The ring spectrum structure of BP gives a cosimplicial structure on {BP∧s}s≥0

where BP∧0 = S0 and we obtain the associated cochain complex:

∗ → S0 → BP d−→ BP∧2 d−→ BP∧3 d−→ · · · ,

which is a BP-resolution of S0 in the sense of [12]. By smashing with a spectrum
X, we obtain a BP-resolution of X and a BP-Adams resolution of X, that is, a
sequence of exact triangles:

X = X0 i
←−−−−−−−− X1 i

←−−−−−−−− X2 i
←−−−−−−−− X3

❏
❏
❏❏

j

✡
✡
✡✡✣
k

❏
❏
❏❏

j

✡
✡
✡✡✣
k

❏
❏
❏❏

j

✡
✡
✡✡✣
k

. . . ,

BP ∧ X Σ−1BP∧2 ∧ X Σ−2BP∧3 ∧ X

(7.1)

where k have degree −1 and jk = d. By applying π∗ of the diagram, we obtain a
spectral sequence E∗∗r with E2-term Ext∗∗BP∗BP(BP∗, BP∗(X)). If X = Ln−1Z where
Z is a finite spectrum of type n− 1, then BP∗(X) ∼= BP∗(Z)[v−1

n−1] by Theorem 1
of [18]. Hence we have

E∗∗2
∼= Ext∗∗BP∗BP(BP∗, BP∗(Z)[v−1

n−1])

∼= H∗∗c (Gn−1; En−1∗(Z))

by the change-of-rings theorem. It is known that the spectral sequence con-
verges to π∗(Ln−1Z). For a finite spectrum Z of type n − 1, we denote by
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E∗∗r (1)(Z) the above spectral sequence converging to π∗(Ln−1Z) with E2-term
H∗∗c (Gn−1; En−1∗(Z)).

Let En be the Morava E-theory spectrum. Then En is complex oriented, the
coefficient ring En∗(pt) is En∗ = W(F)[[u1, . . . , un−1]][u±1], and the associated
degree 0 formal group law is the universal deformation Fn. Set E∧s

n the K(n)-

localization of s-fold smash product of En: E∧s
n = LK(n)(

s︷ ︸︸ ︷
En ∧ · · · ∧ En). As in

the case of BP, from the ring spectrum structure of En, we obtain a cosimplicial
spectrum {E∧s

n }s≥0, where E∧0
n = LK(n)S0. The associated cochain complex gives

a En-resolution of LK(n)S0 in the K(n)-local category. By smashing with a finite
spectrum X, we obtain an En-resolution of LK(n)X and the associated En-Adams
resolution implies a spectral sequence E∗∗r with E∗∗2

∼= H∗∗c (Gn; En∗(X)), which
strongly converges to π∗(LK(n)X). Note that the strong convergence follows from

the fact that i(s): LK(n)(

s︷ ︸︸ ︷
En ∧ · · · ∧ En)→ LK(n)S0 is null for s >> 0, where En is

the fibre of the unit S0 → En (cf. proof of Corollary 15 of [25]). Applying the
functor Ln−1 to the En-resolution of LK(n)X, we obtain a cochain complex:

∗ → Ln−1LK(n)X → Ln−1En ∧ X → Ln−1E∧2
n ∧ X → Ln−1E∧3

n ∧ X → · · ·

and a sequence of exact triangles:

(7.2)

Ln−1LK(n)X

= X0 i
←−−−−−−−− X1 i

←−−−−−−−− X2 i
←−−−−−−−− X3

❏
❏
❏❏

j

✡
✡
✡✡✣
k

❏
❏
❏❏

j

✡
✡
✡✡✣
k

❏
❏
❏❏

j

✡
✡
✡✡✣
k

. . . .

Ln−1En ∧ X Σ−1Ln−1E∧2
n ∧ X Σ−2Ln−1E∧3

n ∧ X

Hence we obtain a spectral sequence E∗∗r . Since i(s) = 0 for s >> 0 and E∗∗r is
obtained by applying Ln−1 on the En-Adams resolution, E∗∗r strongly converges
to π∗(Ln−1LK(n)X).

If Z is a (p-local) finite spectrum of type n− 1, then En∗(Z) is a finitely gen-
erated module over En∗ and v−1

i BP∗(Z) = 0 for 0 ≤ i < n− 1 by the Landweber
filtration theorem. Then BP∗(Ln−1Z) ∼= BP∗(Z)[v−1

n−1] by Theorem 1 of [18]. By
Proposition 8.4.(f) of [9], E∧s

n is Landweber exact for s ≥ 1. Hence E∧s
n∗ (Ln−1Z)

is E∧s
n∗ (Z)[v−1

n−1]. Let Fi be the image of Ii
nEn∗(Z) ↪→ En∗(Z) → En∗(Z)[v−1

n−1].
By taking {Fi}i≥0 as a basis of neighbourhoods of 0, we give a topology on
En∗(Ln−1Z). By Lemma 14 of [25], we have E∧s

n∗ (Z) ∼= CGn(Gs+1
n , En∗(Z)) for a

finite spectrum X. Then E1-term of the spectral sequence associated with (7.2) is

E∗∗1 ∼= C∗∗Gn(Gn, En∗(X))[v−1
n−1],
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if X is of type n − 1. As in the proof of Lemma 5.9, the right hand side is
isomorphic to C∗∗Gn(Gn; En∗(X)[v−1

n−1]). Then the E2-term of the spectral sequence
is identified with

E∗∗2 ∼= H∗∗c (Gn; En∗(Ln−1X)).

We denote by E∗∗r (2)(Z) the spectral sequence converging to π∗(Ln−1LK(n)Z) with
E2-term H∗∗c (Gn; En∗(Ln−1Z)), where Z is a finite spectrum of type n− 1.

PROPOSITION 7.2. There is a morphism of spectral sequences fr: E∗∗r (1)(Z) →
E∗∗r (2)(Z) which is a lift of the natural map π∗(Ln−1Z) → π∗(Ln−1LK(n)Z), where
Z is a finite spectrum of type n− 1.

Proof. The natural map BP → En induces a map of cochain complexes
{BP∧s ∧ Ln−1Z}s≥0 to {Ln−1E∧s

n ∧ Z}s≥0 which is a lift of the map Ln−1Z →
Ln−1LK(n)Z. Then we obtain a map of exact triangles from (7.1) for X = Ln−1Z
to (7.2) for X = Z which gives a morphism of spectral sequences from E∗∗r (1)(Z)
to E∗∗r (2)(Z).

Let R be a commutative Z(p)-algebra, and F a p-typical formal group law
over R. We suppose that a group Γ acts on (F, R) in generalized sense, and
we denote by f (γ) the isomorphism from F to Fγ for γ ∈ Γ. Let R[u±1] be a
graded ring such that |u| = −2 and F̃ a degree −2 formal group law given by
uF(u−1X, u−1Y). Extend an action of Γ on R[u±1] by γ · u = f (γ)0u where f (γ)0

is the leading coefficient of f (γ)(X). For γ ∈ Γ, let f̃ (γ)(X) = uf (γ)( f (γ)−1
0 u−1X).

Then f̃ (γ) gives a strict isomorphism from F̃ to F̃γ and we obtain an action of Γ on
(F̃, R[u±1]). Then we obtain a morphism of cosimplicial groups from BP∗(BP)⊗∗

to CΓ(Γ∗+1; R[u±1]) where CΓ(Γs+1; R[u±1]) is the set of all Γ-equivariant maps

from Γs =

s︷ ︸︸ ︷
Γ× · · · × Γ to R[u±1]. For (γ0, . . . , γs) ∈ Γs+1, the adjoint

ad(γ0, . . . , γs): BP∗(BP)⊗s −→ R[u±1]

is a ring homomorphism represented by p-typical formal group laws and strict
isomorphisms

F̃γ0
0 −→F̃γ1

1 −→F̃γ2
2 −→· · ·−→F̃γs

s

over R[u±1].
Let G be another p-typical formal group law over R. We assume that there

is an isomorphism Φ between F and G in usual sense. We set

G̃(X, Y) = Φ−1
0 uG(Φ0u−1X, Φ0u−1Y)
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and

Φ̃(X) = Φ−1
0 uΦ(u−1X),

where Φ0 is the leading coefficient of Φ(X). Then G̃ is a degree −2 p-typical
formal group law over R[u±1] and Φ̃ is a strict isomorphism between F̃ and G̃.
Note that Γ also acts on (G̃, R[u±1]) so that the following diagram is commutative

F̃
f̃ (γ)

−−−−−−→ F̃γ

Φ̃

� �Φ̃γ

G̃ −−−−−−→
g̃(γ)

G̃γ

for all γ ∈ Γ. We denote by F and G the morphisms of cochain groups from
BP∗(BP)⊗∗ to CΓ(Γ∗+1; R[u±1]) induced by F̃ and G̃ respectively.

LEMMA 7.3. There is a (co)chain homotopy between F and G.

Proof. We define a homomorphism hi: BP∗(BP)⊗(s+1) → CΓ(Γs+1; R[u±1])
for (0 ≤ i ≤ s) as follows. For γ0, . . . , γs ∈ Γ, the adjoint of hi is a ring
homomorphism BP∗(BP)⊗(s+1) → R[u±1] represented by the following string of
formal group laws and strict isomorphisms

F̃γ0 −→ F̃γ1 −→ · · · −→ F̃γi�Φ̃γi

G̃γi −→ G̃γi+1 −→ · · · −→ G̃γs .

Then we have the following relations

hidj = djhi−1 (0 ≤ j < i)
h0d0 = G
hidi = hi−1di (1 ≤ i ≤ s)

hsds+1 = F
hidj = dj−1hi (i + 1 < j)

Set H =
∑s

i=0 (− 1)ihi. By the above relations, Hd + dH = G− F.

If Z is a finite spectrum of type n − 1, then there is a finite filtration of
BP∗(Z) as BP∗(BP)-comodules whose associated graded objects are ΣiBP∗/Ij for
some i and j ≥ n − 1 by the Landweber filtration theorem. Then BP∗(Ln−1Z) =
BP∗(Z)[v−1

n−1] and En∗(Ln−1Z) = En∗ ⊗ BP∗(Z)[v−1
n−1] have induced filtrations

whose associated graded objects are ΣiBP∗/In−1[v−1
n−1] and ΣiEn∗/In−1[v−1

n−1] for
some i, respectively. Note that the natural map BP∗(Ln−1Z) → En∗(Ln−1Z) is
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compatible with the filtrations and the induced map on the associated graded
objects is a sum of finite many copies of the natural map BP∗/In−1[v−1

n−1] →
K[u±1].

The filtration of BP∗(Ln−1Z) (resp. En∗(Ln−1Z)) defines a spectral sequence
converging to H∗∗c (Gn−1; En−1∗(Z)) (resp. H∗∗c (Gn; En∗(LnZ))). The E1-term of
the spectral sequence is isomorphic to a sum of finite may copies of H∗∗c (Gn−1;
F[w±1]) (resp. H∗∗c (Gn; K[u±1])). We denote by E∗∗∗ (3) (resp. E∗∗∗ (4)) the spectral
sequence converging to H∗∗c (Gn−1; En−1∗(Z)) (resp. H∗∗c (Gn; En∗(Ln−1Z))). Since
the natural map BP∗(Ln−1Z) → En∗(Ln−1Z) is compatible with the filtrations, it
induces a morphism of spectral sequences gr: E∗∗r (3)→ E∗∗r (4).

The following theorem gives a relation between the chromatic splitting con-
jecture and the ring homomorphism Θ.

THEOREM 7.4. The natural map Ln−1Z → Ln−1LK(n)Z lifts to a morphism of
spectral sequences gr: E∗∗r (3) → E∗∗r (4) which coincides with a sum of copies of
Θ on E1-terms.

Proof. It is sufficient to show that the following diagram is commutative

Ext∗∗BP∗(BP)(BP∗, BP∗/In−1) −→ H∗∗c (Gn; En∗/In−1)�v−1
n−1

�v−1
n−1

Ext∗∗BP∗(BP)(BP∗, BP∗/In−1[v−1
n−1]) −→ H∗∗c (Gn; K[u±1])�∼= �∼=

H∗∗c (Gn−1; F[w±1]) h−→ lim
−→

i

H∗∗c (G(i); Li[u±1]),

where the top horizontal arrow is induced by the natural map BP→ En, the middle
horizontal arrow is obtained by inverting vn−1 from the top one. Hence the top
square is commutative. The bottom horizontal arrow h is an inflation map and Θ is

the composition of h with the inverse of the isomorphism H∗∗c (Gn; K[u±1])
∼=→lim
−→

i

H∗∗c (G(i); Li[u±1]).
Let C(1)∗ be the cochain complex {BP∗(BP)⊗∗/In−1[v−1

n−1]}, C(2)∗ the con-
tinuous cochain complex CGn(G∗+1

n ; K[u±1]) and C(3)∗ the direct limit of contin-
uous cochain complexes lim

−→
i

CG(i)(G(i)∗+1; Li[u±1]). By Theorem 3.5, the natural

map C(2)∗ → C(3)∗ induces an isomorphism on cohomology groups. The p-
typical formal group law (Fn, L) (resp. (Hn−1, L)) implies a cochain complex
map f (resp. g): C(1)∗ → C(3)∗. The isomorphism Φ between Fn and Hn−1

implies a cochain homotopy between f and g by the same argument in the con-
tinuous context of the proof of Lemma 7.3. Note that we may take the cochain
homotopy in C(3)∗ rather than in CG(G∗+1; L[u±1]) by considering the gradings.
This completes the proof.
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A Toda-Smith spectrum V(n) is defined to be a spectrum whose BP-homology
BP∗(V(n)) is isomorphic to BP∗/In+1. Then V(n) is a finite spectrum of type n+1.
It is known that there exists V(0), V(1) for p ≥ 3, V(2) for p ≥ 5 and V(3) for
p ≥ 7. But it is not known whether V(n) exists for n ≥ 4. If V(n−2) exists, then
the filtrations of BP∗(V(n− 2))[v−1

n−1] and En∗(V(n− 2))[v−1
n−1] are trivial, and the

spectral sequences E∗∗r (3) and E∗∗r (4) collapse. Hence we obtain the following
corollary.

COROLLARY 7.5. If there exists a Toda-Smith spectrum V(n − 2), then f2:
E2(1)(V(n− 2))→ E2(2)(V(n− 2)) coincides with Θ.
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[11] J. Lubin and J. Tate, Formal moduli for one-parameter formal Lie groups, Bull. Soc. Math. France 94

(1966), 49–59.
[12] H. R. Miller, On relations between Adams spectral sequences, with an application to the stable homo-

topy of a Moore space, J. Pure Appl. Algebra 20 (1981), 287–312.
[13] H. R. Miller and D. C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s E2-term,

Duke Math. J. 44 (1977), 433–447.
[14] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral

sequence, Ann. Math. (2) 106 (1977), 469–516.
[15] J. Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. (2) 121

(1985), 1–39.



DEGENERATION OF FORMAL GROUP AND STABLE HOMOTOPY 1077

[16] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106
(1984), 351–414.

[17] , Complex Cobordism and Stable Homotopy Groups of Spheres, Pure Appl. Math., vol. 121,
Academic Press, Inc., Orlando, Fla., 1986.

[18] , The geometric realization of the chromatic resolution, Algebraic Topology and Algebraic
K-theory (Princeton, NJ, 1983), Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton,
NJ, 1987, pp. 168–179.

[19] J. P. Serre, Local Fields, Grad. Texts in Math., vol. 67, Springer-Verlag, New York, 1979.
[20] , Galois Cohomology, Springer-Verlag, Berlin, 1997.
[21] K. Shimomura, On the Adams–Novikov spectral sequence and products of β-elements, Hiroshima

Math. J. 16 (1986), 209–224.
[22] , The Adams-Novikov E2-term for computing π∗(L2V(0)) at the prime 2, Topology Appl.

96 (1999), 133–152.
[23] , The homotopy groups of the L2-localized mod 3 Moore spectrum, J. Math. Soc. Japan 52

(2000), 65–90.
[24] N. P. Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997), 161–208.
[25] , Gross-Hopkins duality, Topology 39 (2000), 1021–1033.
[26] A. Weil, Basic Number Theory, Springer-Verlag, Berlin, 1995.


