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The Morava K-theory and Brown-Peterson
Cohomology of Spaces related to BP

By

Takuji Kashiwabara and W. Stephen Wilson∗

Abstract

We calculate the Morava K-theory of the spaces in the Omega spec-
tra for BP 〈q〉. They fit into an exotic array of short and long exact
sequences of Hopf algebras. We apply this to calculate the p-adically
completed Brown-Peterson cohomology, as well as all of the intermedi-
ary cohomology theories, E, of these spaces. We give two descriptions
of the answer, both of which turn out to be surprisingly nice. One part
of our first description is just the image in the E cohomology of the cor-
responding space in the Omega spectrum for BP , which is as big as it
could possibly be and which we show how to calculate. The other part
is just the E cohomology of several copies of Eilenberg-MacLane spaces,
something which is already known. Our second description is inductive
and gives us a new way of looking at the Brown-Peterson cohomology of
Eilenberg-Mac Lane spaces. The Brown-Comenetz dual of BP 〈q〉 shows
up in our calculations and so we take up the study of this spectrum as
well. It was already known that the Morava K-theory of the spaces in
the Omega spectrum for the Brown-Comenetz dual of BP 〈q〉 made it
look like a product of Eilenberg-Mac Lane spaces and we find, somewhat
to our surprise, that the same is true for the BP cohomology. In or-
der to state our answers we set up the foundations for the category of
completed Hopf algebras.

1. Introduction

The purpose of this paper is to understand, (in particular, to calculate)
various generalized cohomology theories of the spaces in the Omega spectra for
BP 〈q〉, where BP 〈q〉 is the spectrum with coefficient ring

BP 〈q〉∗ � Z(p)[v1, v2, . . . , vq],

and the degree of vi is 2(pi − 1), see [Wil75] and [JW73]. Recall BP ∗ �
Z(p)[v1, v2, . . . ], and let Im = (p, v1, . . . , vm−1). Most of our paper is spent
working with Morava K-theory but our main application is easy to state and
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gives various cohomologies of the spaces BP 〈q〉
r
. We usually work with the

p-adically completed version of BP cohomology, BPp̂
∗(−), so that we can avoid

the problems associated with phantom maps. We consider this theory, the the-
ories P (m)∗(−) with P (m)∗ � BP ∗/Im [JW75], and the theories E(m, n)∗(−),
with E(m, n)∗ � v−1

n BP 〈n〉∗/Im where 0 ≤ m ≤ n, 0 < n [RWY98]. When
m = 0 we always mean the p-adically complete version of the theory (unless
explicitly stated otherwise) and we can think of P (0) as BPp̂. Note that when
m = n, E(n, n) = K(n), the n-th Morava K-theory. We let E denote any of
these theories. For all of the spaces we consider, we show that there is an E-
cohomology Künneth isomorphism (using a completed tensor product). This is
not normally the case. Since all of our spaces are also homotopy commutative
H-spaces we have all of the maps associated with Hopf algebras (replacing ten-
sor product with completed tensor product). The topology (on the cohomology
groups) prevents this from being an abelian category but we can still talk about
kernels, cokernels and short exact sequences of completed Hopf algebras.

We let {G ∗} denote the spaces in the Omega spectrum for a spectrum
G. Let g(q) = 2(pq+1 − 1)/(p − 1) = 2(1 + p + p2 + · · · + pq) throughout the
paper where p is the prime associated with E and the spectrum BP 〈q〉. Let
I = (i1, i2, . . . , iq) with ik ≥ 0 and let d(I) =

∑
2ik(pk−1). We give two quite

different descriptions of E∗(BP 〈q〉 ∗) and we need to define a special map for
one of them. We have:

BP 〈q〉
r

∆q�
∏

0<i≤q

BP 〈q〉
r−|vi|

∆q−1�
∏

0<i1<i2≤q

BP 〈q〉
r−|vi1 |−|vi2 |

.

The first map is just
∏

(−1)1+ivi and the second map just jiggles the signs a bit,
as in a Koszul complex, so that vivj = vjvi makes the above composition trivial.
Using the product and H-space structures on the target space we need only
define the map on the individual terms. From BP 〈q〉

r−|vi| to BP 〈q〉
r−|vi1 |−|vi2 |

we use the trivial map unless i is i1 or i2. If i = i1 we use (−1)i2vi2 and if
i = i2 we use (−1)1+i1vi1 .

The main application of our work is the following. Recall that our kernel
and cokernel are as completed Hopf algebras.

Theorem 1.1. Let r = g(q) + k and kI = k − d(I). Let E be any
of BPp̂

∗(−), P (m)∗(−), or E(m, n)∗(−) where 0 ≤ m ≤ n and 0 < n. Then
E∗(BP 〈q〉

r
) is P (m)∗ flat for the category of P (m)∗P (m) modules which are

finitely presented over P (m)∗ and algebraically determined by its isomorphism
to both:

Description 1:

⊗̂
d(I)<k

E∗(K(Z(p), q + 2 + kI))
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⊗̂
Ker


E∗(BP r)

b⊗v∗
i�

⊗̂
i>q

E∗(BP r+|vi|)




and, when k > 0, Description 2:

E∗(K(Z(p), q + 2 + k))
⊗̂

Coker




⊗̂
0<i≤q

E∗(BP 〈q〉
r−|vi|)

∆∗
q−1←−−−−

⊗̂
0<i1<i2≤q

E∗(BP 〈q〉
r−|vi1 |−|vi2 |

)


 .

There are a number of observations to be made about this result. First,
note that E can be K(n). The Morava homology K-theory is just dual to
this result: use regular tensor products instead of completed tensor products,
change the direction of the arrows and switch Coker and Ker.

The flatness referred to in the theorem is Landweber flatness. Landweber
analyzes this flatness in [Lan76] for m = 0 and Yosimura [Yos76] and Yagita
[Yag76] do it for m > 0. They show it to be equivalent to vi being monomorphic
on M/(vm, . . . , vi−1)M for all m ≤ i (with v0 = p). Thus our E cohomology
behaves quite nicely.

There is no condition on k in the first description. When k ≤ 0 the first
term with the Eilenberg-Mac Lane spaces goes away and we are left with only
the second term which we knew anyway because BP 〈q〉

r
has no torsion and

splits off of BP r in this range. For arbitrary k, this second term is just the
image E∗(BP 〈q〉

r
)→ E∗(BP r) and we have

E∗(BP 〈q〉
r
) −→ E∗(BP r)

b⊗v∗
i�

⊗̂
i>q

E∗(BP r+|vi|)(1.2)

is “exact”, as completed Hopf algebras, at the middle term. Because BP r is
a space with no torsion, its E cohomology is as nice as can be and our second
part is contained in it. As for the actual evaluation of the kernel, in principle,
the work of [RW77] gives all necessary information. The formulas in [BJW95]
make that principle a reality. This second part of our first description might
reasonably be expected, or at least hoped for, because it makes some sense. In
fact, this shows that it is as big as possible because the composition

BP r+|vi|
vi� BP r

�BP 〈q〉
r

(1.3)

is trivial for i > q.
The first part of our first description is, however, a surprise. It is nice

because we know the E cohomology of these Eilenberg-Mac Lane spaces since
they are completely described in [RWY98, Theorem 1.14], where, together with
[Wil99a] and [Kasb], the ability to go from Morava K-theory to Brown-Peterson
cohomology was developed. This first part of this answer is intimately tied up
with the Brown-Comenetz dual of BP 〈q〉. Unstably it is a finite Postnikov
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system which maps to BP 〈q〉
r

and carries all of the homotopy of the first
part of our result. The Morava K-theory of such a space always splits up in
this manner, [HRW98], but one doesn’t get the same for the Brown-Peterson
cohomology and the others in general. In this special case, it does split and
although none of the homotopy from this space shows up in BP 〈q〉

r
, much

of its BP cohomology does. The homotopy of the first part shows up in a
second space which BP 〈q〉

r
maps to and which realizes the second part of

our first description. The point here is that there is some interesting topology
underlying the first description.

The second description is an inductive description. For k ≤ 0 we have
known the answer (second part of first description) for decades. The cokernel
part comes complete with a description of the maps v∗i and v∗i is trivial on the
Eilenberg-Mac Lane part. Related, we have a description of the cohomology
of Eilenberg-Mac Lane spaces.

Corollary 1.4. For k ≥ 0, and E as in Theorem 1.1,
(i)

E∗(K(Z(p), q + 2 + k)) � E∗(BP 〈q〉
g(q)+k

)/(v∗1 , v∗2 , . . . , v∗q ).

(ii)

E∗(K(Z/(pc), q + 1 + k)) � E∗(BP 〈q〉
g(q)+k

)/(pc∗, v∗1 , v∗2 , . . . , v∗q ).

This generalizes the k = 0 version of this from [RWY98, Theorem 1.14]
where the use of v1, v2, . . . , vq−1 was found to be unnecessary. For k > 0 they
become necessary.

Remark 1.5. If we are looking only at the theories E = E(m, n), then,
since K(n)∗(K(Z/(pc), q + 1 + k)) is finitely generated and free over K(n)∗,
the proofs in [RWY98] give us that E∗(K(Z/(pc), q + 1 + k)) is also finitely
generated and free over E∗. Although free algebraically, the topology on each
summand can be quite different.

To simplify our notation a bit we remind the reader that
g(q) = 2(pq+1 − 1)/(p− 1)= 2(1 + p + p2 + · · · + pq) and we let gδ(q) =
g(q) − (q + 1) =

∑q
i=0(|vi| − 1) and gv(q) = g(q) − 2(q + 1) =

∑q
i=0 2(pi − 1)

=
∑q

i=0 |vi|. These numbers are used throughout.
The spaces in the Omega spectrum for the Brown-Comenetz dual of BP 〈q〉,

IBP 〈q〉, arise naturally in our study and so we turn our attention towards them
now. The connection to our work is the existence of a stable cofibration:

Σ−gδ(q)IBP 〈q〉 −→ BP 〈q〉 −→ LqBP 〈q〉.(1.6)

Ln is Bousfield localization, [Bou79], with respect to the theory E(n) (our
E(0, n), from [JW73, Remark 5.13, p. 347]). This is explicit in Mahowald
and Rezk’s work, [MR]. In our preliminary Section 3, we review Ravenel’s
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functors, Nn and Ln on the stable category, [Rav84], Mahowald and Rezk’s
work, Mahowald and Sadofsky’s work, [MS95], and generalize this to fit our
needs. In traditional notation,

π∗IBP 〈q〉 � Σgv(q)BP 〈q〉∗/(p∞, v∞1 , v∞2 , . . . , v∞q ).(1.7)

Rephrased, the homotopy group π−jIBP 〈q〉 is a finite number of copies of
Q/Z(p). The number of copies of Q/Z(p) is the same as the Z(p) rank of
πjBP 〈q〉, which is zero, by “sparseness”, unless 2(p − 1) divides j. Strictly
for degree reasons we get a split short exact sequence:

0 −→ π∗BP 〈q〉 −→ π∗LqBP 〈q〉 −→ π∗Σ−gδ(q)+1IBP 〈q〉 −→ 0.(1.8)

For any space X (all of our spaces are infinite loop spaces), we let X(s)

denote the s-connected cover of X and let X [s] denote the corresponding space
with the same homotopy groups as X up to degree s so that we have a fibration
X(s) → X → X [s]. We also let X(t,s] be X(t)[s] = X [s](t). Observe that
πk(X(t,s]) = πk(X) if k ∈ (t, s] and 0 otherwise. Note that for r > s, BP 〈q〉

r

is the same as BP 〈q〉(s)
r

.
Because of this connection, equation (1.6), we have an interest in the

Brown-Comenetz dual of BP 〈q〉, in particular, with the spaces IBP 〈q〉
r

and

IBP 〈q〉(s)
r

. Note that since the top homotopy group of IBP 〈q〉
r

is in degree
r, it is a finite Postnikov system. As such, its Morava K-theory is the same
as if it were a product of Eilenberg-Mac Lane spaces with the same homo-
topy, [HRW98], and these are understood by [RW80]. What was unanticipated
is that the same is true for all of the other theories we use. The homology,
H∗(−; Z(p)), of these spaces is not of finite type over Z(p). Although that does
not really present a serious problem for us it is perhaps easier to use a finite
type approximation, i.e. the fibre of multiplication by pc, which gives us a
stable triangle:

IZ/(pc)BP 〈q〉 −→ IBP 〈q〉 pc

� IBP 〈q〉.(1.9)

This new spectrum is just the Brown-Comenetz dual of BP 〈q〉 modulo pc. This
gives us a short exact sequence on homotopy groups. Not only is IZ/(pc)BP 〈q〉

r
a finite Postnikov system but all of the homotopy groups are finite, i.e. we
replace each Q/Z(p) by a Z/(pc).

Much is known about our cohomology theories applied to finite Postnikov
systems.

Theorem 1.10. Let E be as in Theorem 1.1 and let X be a homotopy
commutative H space which has a finite Postnikov system. Then

E∗ ←− E∗(X(s))←− E∗(X)←− E∗(X [s])←− E∗

is a short exact sequence of completed Hopf algebras. In particular, the images
of the E∗(X [s]) filter E∗(X) with quotients given by the short exact sequences
of completed Hopf algebras:

E∗ ←− E∗(K(πs(X), s))←− E∗(X [s])←− E∗(X [s−1])←− E∗.
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Since our category is not abelian we need to explain what we mean by short
exact: the surjection is the cokernel and the injection is the kernel (see 6.7). For
E = K(n) this result is in [HRW98]. For our more general E the injections and
surjections are shown in [RWY98] as well as the (algebraic) cokernel part. This
follows from a general theorem which tells how Hopf algebra kernels in Morava
homology K-theory give rise to cokernels in E cohomology, a theorem used over
and over again in applications in [RWY98]. Results about the cokernel were
expanded in [Wil99a] and [Kasb] but applications in the three papers never
called for a general theorem about kernels. Here we show how Hopf algebra
cokernels in Morava homology K-theory give rise to kernels in E cohomology.
This is essential for the first description in Theorem 1.1 and, together with
the completed Hopf algebra language developed here, allows us to state the
above theorem. In [HRW98] it was further proved that the above short exact
sequences all split for Morava K-theory, i.e. the middle term is the completed
tensor product of the two end terms. It seems highly unlikely that this is true
for the more general E although to be honest we do not have a counter example.
Our intuition against such a splitting is also very much against the existence of
Theorem 1.10 and so is suspect. We are, however, able to prove such a splitting
in all the cases of interest to us in this paper.

Theorem 1.11. For r ≥ 0, q ≥ 0, and c > 0, let E be as in The-
orem 1.1, then the filtration of Theorem 1.10 for IZ/(pc)BP 〈q〉

r
(and also

IZ/(pc)BP 〈q〉(s)
r

) splits, i.e.

E∗(IZ/(pc)BP 〈q〉
r
) �

⊗̂
0≤i≤r

E∗(K(πi(IZ/(pc)BP 〈q〉
r
), i))

�
⊗̂

0≤d(I)≤r

E∗(K(Z/(pc), r − d(I)))

as completed Hopf algebras. (For the s-connected case the first tensor product
is over s < i ≤ r and the second over 0 ≤ d(I) < r− s.) The p-adic completion
of E is not necessary for this result since all of the homotopy groups are finite.

Remark 1.12. This result can be expanded to IBP 〈q〉
r

and IBP r.
First note that the last two spaces are the same when 2(pq+1−1) > r. Now we
observe that our space is the direct limit of the spaces IZ/(pc)BP 〈q〉

r
. Since

these spaces are torsion spaces the Brown-Peterson cohomology is the same as
the p-adically complete Brown-Peterson cohomology and so their inverse limit
is the same. Likewise, their lim1s must be the same but this is zero for the
p-adically completed version so it is zero for the non-completed version as well.

BP ∗(IBP 〈q〉
r
) � BPp̂

∗(IBP 〈q〉
r
) � lim0BP ∗(IZ/(pc)BP 〈q〉

r
)

and a similar splitting follows. There are no odd degree elements.

This theorem helps in Description 1 of Theorem 1.1 but it is really a side
interest for us in this paper. In fact, it is quite easy to prove from [RWY98]
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and to make it easy on readers only interested in the rather appealing Brown-
Comenetz dual we have separated the proof of this (and the proof of the next
result) out in its own Section 7 and made it reasonably self contained.

Related to the last theorem, and perhaps also of more general interest, is
a splitting for another class of spectra.

Using the Baas-Sullivan theory of manifolds with singularities, [Baa73]
(and now [EKMM96]), we can construct spectra which have a finite number
of homotopy groups. Let I = (i0, i1, . . . , iq) or (i1, . . . , iq) with ik > 0 for all
k ≤ q. The Baas-Sullivan theory gives us BP module spectra, BP 〈q〉I , with
homotopy

BP 〈q〉I∗ � BP 〈q〉∗/(pi0 , vi1
1 , . . . , viq

q )

(with no pi0 if i0 is not defined).

Theorem 1.13. Let E be as in Theorem 1.1. Then the filtration of
Theorem 1.10 splits for the spaces in the Omega spectrum for BP 〈q〉I . The
p-adic completion is not necessary if i0 is defined.

The BP cohomology is trivial stably because it is for Eilenberg-Mac Lane
spaces.

We say an algebraic object is completely algebraically determined if we can
give a purely algebraic construction of it. For example, in [RW77] the Hopf
ring E∗BP ∗ was constructed algebraically for all complex oriented homology
theories E∗(−). This includes the E of present interest. We note that when
r is even E∗BP r is a polynomial algebra on even degree generators and con-
centrated in even degrees. When r is odd, E∗BP r is an exterior algebra on
odd degree generators. Furthermore, because BP 〈q〉

r
splits off of BP r when

r ≤ g(q) ([Wil75], [BJW95] and [BWa]), E∗BP 〈q〉
r

is completely algebraically
determined in this case. All one needs to do is set the [vi] = [0] for i > q in
E∗BP ∗. The proper way to say this now is to use the Goerss-Hunton-Turner
generalized tensor product, [Goe99] and [HT98], to write

E∗[BP 〈q〉∗]⊗E∗[BP ∗]E∗BP r � E∗BP 〈q〉
r

when r ≤ g(q). By duality, since these are all free, we get an algebraic determi-
nation of E∗(BP 〈q〉 ∗). The Morava K-theory of Eilenberg-Mac Lane spaces is
completely algebraically determined in [RW80, Corollaries 11.3 and 12.2] and
then again in [RWY98, Proposition 1.16] by (1.26). The paper, [HRW98, The-
orem 2.1], gives a complete algebraic determination of the Morava K-theory of
all of the finite Postnikov systems which are homotopy commutative H-spaces.
The E cohomology of Eilenberg-Mac Lane spaces was algebraically determined
in [RWY98, Theorem 1.14]. Our terminology is a bit of a misnomer when we
are working with cohomology groups because they come with a topology on
them. When we say “algebraically determined” in this paper, we mean we
have all of the structure, including the topology. In [RWY98], cohomologies
were algebraically determined, but the topology was not proven to be deter-
mined. Our work in this paper is a significant improvement and allows us
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to upgrade the concept of “algebraically determined” to include the topology.
This is done mainly by our introduction of completed Hopf algebras and our
theorems about them. This work should have been made more prominent in
this paper. However, the depths of the problems created by the topology, and
our solutions to them, came late in the game. Consequently this work is buried
in Section 6.

The results of [RWY98], [Wil99a], [Kasb] and this paper have made cal-
culating our E∗(−) cohomology groups (including BP ∗(−)) possible for lots
of examples as corollaries of calculating the Morava K-theory (homology) of
related spaces. Morava K-theory is relatively easy to work with because it has
a Künneth isomorphism and because the category of Hopf algebras we work
in is abelian. Most of our work in this paper is done with Morava K-theory
(homology) and our other results are applications of these calculations.

Whenever possible in this paper we will use K∗(−) to denote the Morava
K-theory, K(n)∗(−), in order to suppress the n from our notation, i.e. K∗ =
K(n)∗ � Fp[vn, v−1

n ]. Much of the notation used in this paper is quite un-
pleasant. As we inherit some of it from the literature we are not entirely to
blame.

Our main computation is really to show the following result for Morava
K-theory. Note that the first space is trivial for r ≤ g(q).

Theorem 1.14. For q + 2 < r the fibration

IBP 〈q〉(q+1)

r−gδ(q)
−→ BP 〈q〉

r
−→ LqBP 〈q〉(q+2)

r

gives rise to a split short exact sequence of Hopf algebras in Morava K-theory

K∗ −→ K∗IBP 〈q〉(q+1)

r−gδ(q)
−→ K∗BP 〈q〉

r
−→ K∗LqBP 〈q〉(q+2)

r
−→ K∗.

The first term is always even degree and because it is a finite Postnikov system
splits up further. The last term is completely algebraically determined by the
Goerss-Hunton-Turner generalized tensor product :

K∗LqBP 〈q〉(q+2)

r
� image {K∗BP r → K∗BP 〈q〉

r
}

� K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP r

and so is in even degrees if r is even. This splitting gives a completely algebraic
determination for K∗BP 〈q〉

r
. When n ≤ q + 1 the first term is trivial and we

get the nice

K(n)∗[BP 〈q〉∗]⊗K(n)∗[BP ∗]K(n)∗BP r � K(n)∗BP 〈q〉
r
.

The proof of the above is a bit involved and requires a number of variations
on the Koszul complex. First, we start with the usual resolution of Z(p) over

BP 〈q〉∗ � Z(p)[v1, v2, . . . , vq].
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We define

KZBP 〈q〉∗
j �

⊕
0<i1<i2<...<ij≤q

∑∑
s 2(pis − 1)

BP 〈q〉∗.

We then define the maps

KZBP 〈q〉∗
j −→ KZBP 〈q〉∗

j−1

summand by summand using (−1)1+tvit
to map from the summand∑ P

s 2(pis − 1)
BP 〈q〉∗ in KZBP 〈q〉∗

j to the similar summand in KZBP 〈q〉∗
j−1 with

no it. This realizes the graded version of the Koszul complex. Its homology
is a Z(p) concentrated in degree zero of the zeroth homology. KZBP 〈q〉∗∗ is a
finite resolution of Z(p) by BP 〈q〉∗ with all maps split over Z(p). This con-
struction can now be mimicked with the spectrum BP 〈q〉 to obtain KZBP 〈q〉

∗ .
The homotopy groups of KZBP 〈q〉

∗ give the corresponding algebraic resolution,
KZBP 〈q〉∗∗ . If we take the Omega spectrum for all of the spectra in KZBP 〈q〉

∗
we get unstable versions KZBP 〈q〉 ∗∗ . The minus signs in the maps must be
interpreted as the H-space inverse. The indexing which we will use frequently

is KZBP 〈q〉
2(q+1)+k

j which is just∏
0<i1<i2<...<ij≤q

BP 〈q〉P
s 2(pis−1)+2(q+1)+k

.

Note that when we are working with the final space in this complex we have

KZBP 〈q〉
2(q+1)+k

q � BP 〈q〉
g(q)+k

(1.15)

which is convenient for us.
Since we are working with BP module spectra we can make similar defini-

tions for Koszul complexes KZLqBP 〈q〉
∗ and KZIBP 〈q〉

∗ . We can also make this

unstable with KZLqBP 〈q〉 ∗ , KZLqBP 〈q〉(s)
∗ , KZIBP 〈q〉 ∗ , and KZIBP 〈q〉(s)

∗ , etc.
We can then apply K∗(−) to all of these complexes, noting that −1 becomes
the Hopf algebra conjugation, and we have KZK∗LqBP 〈q〉 ∗ , etc. In this case
and in all others, when we have a sequence of K∗-Hopf algebras, all of the
undefined ones are assumed to be the trivial Hopf algebra, K∗. In addition, we
have Koszul complexes for Z/(pc), KZ/(pc)Z(−)

∗ , for all of the above. We just
index over 0 ≤ i0 < i1 < . . . < ij ≤ q and let the map v0 be pc. Note that the
length of the complex is now q + 1 and we give up our splittings.

Because vivj = vjvi, the composition of any two maps,

KZ(−)
j+1 −→ KZ(−)

j −→ KZ(−)
j−1

is always trivial which gives sense to the term “complex”. Since the category of
Hopf algebras we work in is abelian, [Bou96b], [Bou96a], [HRW98] and [SW98],
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we can talk about exactness and homology of complexes of Morava K-theory
Hopf algebras.

Recall the stable cofibration

Σ2(pn−1)BP 〈n〉 vn−→ BP 〈n〉 → BP 〈n− 1〉(1.16)

gives rise to the (BP module) boundary map

BP 〈n− 1〉 δ−→ Σ2pn−1BP 〈n〉.

Iterating these we have

(1.17) δ : K(Q/Z(p), 2(0) + q + 1)→ K(Z(p), 2(1) + q) � Σ2(1)+qBP 〈0〉 →
Σ2(1+p)+q−1BP 〈1〉 → Σ2(1+p+p2)+q−2BP 〈2〉 → · · · → Σg(q)BP 〈q〉.

We abuse notation a bit and allow δ to be any iterated boundary map. Which
it is will be uniquely determined by the source and target.

We will call EKZBP 〈q〉
∗ the extended Koszul complex when we tack on a

q + 1 term to KZBP 〈q〉
∗ , i.e.

(1.18) EKZBP 〈q〉
q+1 = K(Z(p),−q) δ−→

Σg(q)−2(q+1)BP 〈q〉 = KZBP 〈q〉
q = EKZBP 〈q〉

q .

Because δ is a BP module map and the vi act trivially on Eilenberg-Mac Lane
spaces, this is still a complex. (Note we are referring here to vi acting on
the spaces, not on BP cohomology.) We get corresponding unstable versions,

EKZBP 〈q〉 ∗∗ and EKZK∗BP 〈q〉 ∗∗ . We have a similar extended Koszul complex,
EKZ/(pc)ZBP 〈q〉

∗ , with corresponding unstable versions. Here,

EKZ/(pc)ZBP 〈q〉
q+2 = K(Z/(pc),−(q + 1)).

We also have EKZIBP 〈q〉
∗ with EKZIBP 〈q〉

q+1 = K(Q/Z(p), gv(q)) and of course
there is a Z/(pc) version as well. All of these definitions are leading up to our
next theorem, the proof of which is thoroughly linked to the proof of our short
exact sequence, Theorem 1.14, which is just the EKZq part of the following
with r = gv(q) + t.

Theorem 1.19. For t > 2(q+1) there is a short exact sequence of long
exact sequences with all maps split as algebra maps:

K∗ −→ EKZ
K∗IBP 〈q〉(q+1)

t−gδ(q)
∗ −→ EKZK∗BP 〈q〉

t∗

−→ KZK∗LqBP 〈q〉(q+2)
t∗ −→ K∗
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For the term on the right, this Koszul complex inductively determines the
last term K∗LqBP 〈q〉(q+2)

t+gv(q)
which is also determined by the generalized tensor

product in Theorem 1.14.
There is yet another way to view our results. In particular this gives an-

other perspective on the once mysterious way the Morava K-theory of
Eilenberg-Mac Lane spaces shows up in our answers.

We have used the Goerss-Hunton-Turner generalized tensor product to
describe our answer. Hunton and Turner go further with this and define the
derived functors which they call CTor where CTor0 is just this new tensor
product. In their paper, [HT98], they do precisely the algebra we need. This
is developed even further in [Kasa]. Our CTor is still a Hopf algebra in our
category and so it splits into an exterior algebra part and an even degree part,
[HRW98]. A more detailed statement will follow in the final section, but for
now we will just observe:

Theorem 1.20. Let Ej be the exterior algebra part of CTorj, then

K∗BP 〈q〉
r
� CTorK∗[BP ∗]

∗ (K∗[BP 〈q〉∗], K∗BP r+∗)/(Ej, j > 0).

We can calculate this by taking a Koszul resolution of BP 〈q〉∗ by BP∗, go-
ing to the ‘ring-rings’ K∗[BP ∗] and K∗[BP 〈q〉∗], taking the generalized tensor
product and computing the homology. Thus it is easy to see that

CTorK∗[BP ∗]
∗ (K∗[BP 〈q〉∗], K∗BP ∗) � H∗(KBP 〈q〉∗ZK∗BP ∗∗ ).(1.21)

The notation here accurately suggests the use of a Koszul type resolution of
BP 〈q〉∗ by BP∗ and similar versions on spectra and spaces. We show it is

equivalent to calculating the homology of KBP 〈q〉∗ZK∗BP 〈i〉 ∗∗ for i big. For
q = 0 it is enough to do the homology of KZK∗BP 〈i〉∗∗ , something we have
already studied. We use this and the obvious exact sequences to compute the
general case.

Such a result is not completely unexpected. Letting F (j) = KBP 〈q〉ZBP
j

and letting G(0) = BP 〈q〉 we can define G(j + 1) inductively (stably) where
G(j + 1) → F (j) → G(j) is a stable triangle. If, and this is a big if since it
doesn’t happen, we were lucky enough to get a long exact sequence in Morava
K-theory on the spaces in the Omega spectra

· · · → K∗G(j + 1)
i
→ K∗F (j)

i
→ K∗G(j)

i
→ K∗G(j + 1)

i+1
→ · · ·(1.22)

then we would have a spectral squence:

CTorK∗[BP ∗]
∗ (K∗[BP 〈q〉∗], K∗BP r+∗)⇒ K∗BP 〈q〉

r
.(1.23)

Our theory says that if we ignore the exterior part of CTorj , j > 0, we get the
correct answer.

The space LqBP 〈q〉(q+1)

r
, r > q+1, plays a crucial role in our study because

we can show the map LqBP 〈q〉
r
−→ LqBP 〈q〉(q+1)

r
gives a surjection in ALL
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Morava K-theories. The space LqBP 〈q〉(q+1)

r
thus arises for the age old reason

“because it works”. After this paper was submitted, some communication
with Pete Bousfield helped give us a partial, but not complete, step towards
understanding where this space comes from.

Theorem 1.24 (with A. K. Bousfield). When r > q, we have a homo-
topy equivalence:

LqBP 〈q〉
r
� LqBP 〈q〉(q)

r
.

Pete Bousfield made a very general conjecture which included the above
theorem. He had every step of the proof for this special case except for show-
ing the map is an isomorphism on the q-th Morava K-theory. (The map, in
general, is neither surjective nor injective for higher Morava K-theories.) This
isomorphism is easy to see from our work here. We had hoped he could put this
result in his paper, [Bou], so we could just quote it, but he claimed it didn’t
fit. This is not satisfactory for us because it still differs by one homotopy group
from the space important to us. However, it is a lot closer than we were before.

A word about motivation is probably appropriate here. Several times while
working on other projects, the question of the Morava K-theory of spaces in
the Omega spectrum for BP 〈q〉 has come up as possibly useful. Since the
answers were not known the questions have generally gone away. However,
they did serve to get us somewhat interested. With the discovery that many
spaces have computable Landweber flat Brown-Peterson cohomology, [RWY98],
[Kas98] and [Kasb], the question naturally arose for the spaces BP 〈q〉

r
. In

particular there are the spectra and maps:

S0 → T (1)→ · · · → T (q)→ · · ·BP · · · → BP 〈q〉 → · · · → BP 〈1〉 → K(Z(p)).
(1.25)

The T (q) are Ravenel’s ring spectra, from [Rav84], [Rav85] and [Rav86], which
were so important in the proof of his conjectures (from [Rav84]) in [DHS88].
The BP cohomology of the spaces in the Omega spectrum for BP has been
known explicitly since [RW77]. In [RWY98] the Eilenberg-Mac Lane spaces (on
the right) were done. Using [RWY98] and [Kas98] did all of the even spaces for
S0 and T (q). His work in [Kas98], together with either [Wil99a] or [Kasb] gets
all of the odd spaces as well. This paper completes our knowledge of the BP
cohomology of the spaces in the above sequence.

Two examples motivated us further. The first was the simple case of the
fibration (see [RWY98, Section 2.6])

F −→ BSU (2m−1) −→ BSU.

Here F is a finite Postnikov system. The Morava K-theory of this fibration
gives rise to a short exact sequence of Hopf algebras. As m gets bigger, the
Morava K-theory continues to see all of the space BSU and also all of the
missing homotopy groups! When we use K(1) it doesn’t see F at all. We
found this intriguing and pursued its generalization. Turning this example into



The Morava K-theory and Brown-Peterson Cohomology of Spaces related to BP 55

BP 〈1〉
k

and replacing F with the fiber of the rationalization of F , this example
is our q = 1 case. This example was almost more confusing than helpful since
it was not at all clear how to generalize it. It is only after the fact that we see
that the E(1) localization of bu is the correct object to have here instead of
BSU on the right, which works in this case but which does not generalize.

The Koszul complexes came about from the second example. In [RWY98,
Proposition 1.16], the exact sequence

K∗ −→ K∗K(Z(p), q + 2) −→ K∗BP 〈q〉
g(q)

vq∗−→ K∗BP 〈q〉
g(q)−2(pq−1)

−→ · · ·
(1.26)

was proven as well as the more likely exact sequence:

K∗ −→ K∗K(Z(p), q + 2) −→ K∗BP 〈q〉
g(q)

⊗vi∗� O

0<i≤q

K∗BP 〈q〉
g(q)−2(pi−1)

−→ · · ·
(1.27)

The lack of the necessity of the vi for i < q mystified us and is now explained
by the Koszul complexes; as we deloop, they become necessary to keep the
sequence exact, Corollary 2.8. It is these exact sequences which give us the
BP cohomology of Eilenberg-Mac Lane spaces in [RWY98, Theorem 1.14]. All
of the BP 〈q〉 spaces in the above case have no torsion and so it is the “easy”
case. The last sequence still holds when delooped and so still works for BP
cohomology, Corollary 1.4. The sequence (1.27) is the beginning point for all
of our calculations here and is used repeatedly in this paper.

Finally, we had proven many of the Morava K-theory exact sequences in
this paper purely algebraically where the only spaces involved were BP 〈q〉 ∗.
Because of the appearance of the Morava K-theory of Eilenberg-Mac Lane
spaces we had a strong feeling that there had to be topology underlying it
and that the topology would be interesting. Furthermore, we needed the topol-
ogy to go from Morava K-theory results to our results about Brown-Peterson
cohomology. We came up with our own version of topology but with the help of
Mark Mahowald, Douglas Ravenel, Charles Rezk and Hal Sadofsky, were able to
get the more interesting Ln localizations and Brown-Comenetz duals involved.
We wish to thank them for their help in this matter. In addition, the second
author wishes to thank the Centre de Recerca Matemàtica in Barcelona, Spain
and the Department of Mathematics at Kyoto University in Kyoto, Japan, for
their ideal work environments during the writing of this paper.

The work of Richard Kramer, [Kra90] and [BKW99], and the short exact
squence

K(n)∗ → K(n)∗K(Z/(p), r − 2pq + 1)→
K(n)∗k(q)

r
→ K(n)∗k(q)

r−2(pq−1)
→ K(n)∗

when r ≥ 2pq + q suggests that similar things happen with the spectra P (n, q)
of [RWY98], [BWa] and [BWb]. We found ourselves easily discouraged at the
thought of any more of this.
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At one time potential bases were written down for much of this work.
However, they are very difficult to prove. The present “coordinate free” version
is much nicer anyway.

Our next section is a more detailed statement of results. Section 3 does
the preliminary work we need for our proofs. Section 4 proves our core results
from which almost everything else follows. We finish up many of the rest of the
proofs in Section 5 except for the lifting of our results to BP . Those results are
proven in Section 6 (where we also set up completed Hopf algebras) except for
our isolation of the results on the E cohomology of the Brown-Comenetz dual
and the Baas-Sullivan spectra in Section 7 which are put here for ease of access
to readers only interested in them. Section 8 discusses our results on CTor and
our final Section 9 proves Theorem 1.24.

2. Detailed statement of results

For q < s < r−1 we consider diagram (2.1) in which all rows and columns
are fibration sequences.

IBP 〈q〉(q,s]

r−gδ(q)

�
IBP 〈q〉(s)

r−gδ(q)
� BP 〈q〉

r
� LqBP 〈q〉(s+1)

r

�
�

� �
IBP 〈q〉(q)

r−gδ(q)
� BP 〈q〉

r
� LqBP 〈q〉(q+1)

r

� � �
IBP 〈q〉(q,s]

r−gδ(q)
� ∗ � IBP 〈q〉(q+1,s+1]

r+1−gδ(q)

(2.1)

Theorem 2.2. If we apply Morava K-theory, K∗(−), to diagram (2.1)
for q < s < r−1, then we get a series of short exact sequences of Hopf algebras.

(i) The following short exact sequence is split as Hopf algebras. Each
space is a finite Postnikov system and the Morava K-theory is naturally iso-
morphic to that of a product of Eilenberg-Mac Lane spaces with the same homo-
topy and thus is completely algebraically determined and concentrated entirely
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in even degrees.

K∗−→K∗IBP 〈q〉(s)
r−gδ(q)

−→K∗IBP 〈q〉(q)

r−gδ(q)
−→ K∗IBP 〈q〉(q,s]

r−gδ(q)
−→ K∗

(ii) The following short exact sequence is split as Hopf algebras.

K∗ −→ K∗IBP 〈q〉(s)
r−gδ(q)

−→ K∗BP 〈q〉
r
−→ K∗LqBP 〈q〉(s+1)

r
−→ K∗.

When s = q + 1 the last term is completely algebraically determined by the
Goerss-Hunton-Turner generalized tensor product :

K∗LqBP 〈q〉(q+2)

r
� image {K∗BP r → K∗BP 〈q〉

r
}

� K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP r

and so is in even degrees if r is even. This splitting gives a completely algebraic
determination for K∗BP 〈q〉

r
. When n ≤ q + 1 (and s = q + 1) the first term

is trivial and we get the nice

K(n)∗[BP 〈q〉∗]⊗K(n)∗[BP ∗]K(n)∗BP r � K(n)∗BP 〈q〉
r
.

(iii) The following short exact sequence is split as algebras.

K∗ −→ K∗IBP 〈q〉(q)

r−gδ(q)
−→ K∗BP 〈q〉

r
−→ K∗LqBP 〈q〉(q+1)

r
−→ K∗.

When r is even, the last term is a polynomial algebra on even degree generators
and so K∗BP 〈q〉

r
is also concentrated in even degrees. When r is odd, the

last term is an exterior algebra on odd degree generators. This last term is
completely algebraically determined.

(iv) There is a short exact sequence of Hopf algebras which is split as
algebras.

K∗ → K∗IBP 〈q〉(q,s]

r−gδ(q)
→ K∗LqBP 〈q〉(s+1)

r
→ K∗LqBP 〈q〉(q+1)

r
→ K∗.

When s = q + 1 this is :

K∗ −→ K∗K(πq+1IBP 〈q〉
r−gδ(q)

, q + 1) −→
K∗[BP 〈q〉∗]⊗K∗[BP∗]K∗BP r −→ K∗LqBP 〈q〉(q+1)

r
→ K∗.

Part (ii) of this for s = q + 1 is Theorem 1.14 in the Introduction.
We have another exact sequence which does not come from the diagram.

We recall that there are maps BP 〈q〉 → BP 〈q − 1〉 and X → LqX and that
Lq−1LqX � Lq−1X.

Theorem 2.3. For r > q + 1 > 1 there is a four term exact sequence
of Hopf algebras,

K∗ −→ A(q, r) −→ K∗LqBP 〈q〉(q+1)

r+2(pq−1)

vq∗−→ K∗LqBP 〈q〉(q+1)

r
−→

K∗Lq−1BP 〈q − 1〉(q+1)

r
� K∗[BP 〈q − 1〉∗]⊗K∗[BP ∗]K∗BP r. −→ K∗,
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where A(q, r) is trivial, thus giving us a short exact sequence, except when

r + 2(pq − 1) = g(q)− 1 + 2(p− 1)t, t ≥ 0.

In this case A(q, r) is an exterior algebra with TorA(q,r)(K∗, K∗) an associated
graded object for

K∗K
(
πq+1IBP 〈q − 1〉

r−gδ(q−1)
, q + 1

)
.

In particular, note that when r is even, vq∗ injects.

Theorem 1.19 is just one of many Koszul complex type theorems we have.
It is the s = q + 1 case of part (iii) below.

Theorem 2.4. (i) There is a short exact sequence of long exact se-
quences of Hopf algebras with all maps split as Hopf algebra maps:

K∗ → EKZ
K∗IBP 〈q〉(s)

∗∗ → EKZK∗IBP 〈q〉 ∗∗ → EKZK∗IBP 〈q〉[s]
∗∗ → K∗.

(ii) There is a short exact sequence of long exact sequences of Hopf alge-
bras :

K∗ −→ EKZ/(pc)ZK∗IBP 〈q〉(s)
∗∗ −→ EKZ/(pc)ZK∗IBP 〈q〉 ∗∗

−→ EKZ/(pc)ZK∗IBP 〈q〉[s]
∗∗ −→ K∗.

(iii) For 2(q + 1) + k = t, k ≥ 0, and q ≤ s < t− (q + 1) there is a short
exact sequence of long exact sequences with all maps split as algebra maps :

K∗ −→ EKZ
K∗IBP 〈q〉(s)

t−gδ(q)
∗ −→

EKZK∗BP 〈q〉
t∗ −→ KZK∗LqBP 〈q〉(s+1)

t∗ −→ K∗.

The right side long exact sequence gives an inductive algebraic determination
of the final term, i.e. K∗LqBP 〈q〉(s)

g(q)+k
.

(iv) For 2(q + 1) + k = t, k ≥ 0, and q ≤ s < t− (q + 1) there is a short
exact sequence of long exact sequences :

K∗ −→ EKZ/(pc)Z
K∗IBP 〈q〉t−gδ(q)

(s)

∗∗ −→

EKZ/(pc)ZK∗BP 〈q〉
t∗ −→ KZ/(pc)ZK∗LqBP 〈q〉(s+1)

t∗ −→ K∗.

(v) For 2(q + 1) + k = t, k ≥ 0, and q < s < t− (q + 1) there is a short
exact sequence of long exact sequences which is split as algebras :

K∗ −→ KZ
K∗IBP 〈q〉(q,s]

t−gδ(q)
∗ −→

KZK∗LqBP 〈q〉(s+1)
t∗ −→ KZK∗LqBP 〈q〉(q+1)

t∗ −→ K∗.
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The restrictions on s in the theorem are just to avoid degenerate cases.

This, in (iii), calculates the homology of the complex EKZK∗BP 〈q〉
t∗ when t ≥

2(q + 1). We return to this in Corollary 8.10 where we compute the homology
for t < 2(q + 1) as well. The homology of the other Koszul complexes follows
from this.

For r ≤ g(q), the spaces BP 〈q〉
r

split off of the BP spaces and have no
torsion and so their Morava K-theory is described by [RW77]. We have given
one algebraic determination of K∗BP 〈q〉

r
for r > g(q) above in Theorem 2.2

(ii) (the s = q + 1 version). The Koszul complexes give us yet another way to
do this (the s = q +k version of Theorem 2.2 (ii)). For the extended complexes
the only thing missed is the extension itself, which happens to split off in this
range anyway. This splitting is part of the following corollary. Let k > 0 and
recall the identifications and iterated boundary map

(2.5) K∗BP 〈q〉
g(q)+k

= KZK∗BP 〈q〉
2(q+1)+k

q
δ−→

K∗BP 〈q + k〉
g(q+k)

= KZK∗BP 〈q+k〉
2(q+k+1)

q+k .

An algebraic determination of K∗BP 〈q〉
g(q)+k

follows from the corollary which
splits off the extension.

Corollary 2.6. For k > 0 and r = g(q) + k, we have the Hopf algebra
decomposition

K∗K(Q/Z(p), q + 1 + k)
⊗

K∗LqBP 〈q〉(q+k+1)

r
� K∗BP 〈q〉

r

coming from the exact sequence

K∗ −→ KZ
K∗BP 〈q〉

2(q+1)+k
q −→
KZK∗BP 〈q+k〉

2(q+k+1)

q+k

⊗
KZK∗BP 〈q〉

2(q+1)+k

q−1

−→ KZK∗BP 〈q+k〉
2(q+k+1)

q+k−1

⊗
KZK∗BP 〈q〉

2(q+1)+k

q−2 −→ · · ·

which inductively algebraically determines K∗BP 〈q〉
g(q)+k

as well as the maps
vi∗.

Remark 2.7. This follows immediately from Theorem 2.4 (iii). How-
ever, we need a little more than this for future reference. We need that the
composition of the two geometric maps in the corollary are trivial. The second
one is easy since it is just the Koszul complex. In the first one, the maps can
be taken in any order since they commute. We need to show that vi ◦ δ � δ ◦ vi

is trivial, but the delta from the lower space on the right side of this equation
must be trivial because it factors through the range of the splitting Theorem
3.29.
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The final part of the extended Koszul complex (the middle term of Theo-
rem 2.4 (iii)) gives another algebraic determination of the Morava K-theory of
Eilenberg-Mac Lane spaces.

Corollary 2.8. For k ≥ 0, v0 = pc, c ≤ ∞ the exact sequence of Hopf
algebras,

K∗ −→ K∗K(Z/(pc), q + 1 + k) δ∗−→ K∗BP 〈q〉
g(q)+k

⊗vi∗�
⊗

K∗BP 〈q〉
g(q)+k−|vi| −→ · · · ,

algebraically determines K∗K(Z/(pc), q + 1 + k).

The k = 0 case of this was done in [RWY98] and we rely on it extensively
in this paper.

The fact that the extension splits off K∗BP 〈q〉
r

when r > g(q) can be
generalized significantly. The algebraic splitting of Theorem 2.2 (ii) comes
from geometric maps. Let vI = vi1

1 vi2
2 . . . v

iq
q with d(I) = |vI | = ∑

2(pj − 1)ij .
Let r = g(q) + k, k > 0. The top homotopy group of IBP 〈q〉(s)

r−gδ(q)
, s > q, is

in degree r +(q +1)− g(q) = (q +1)+k and the bottom is in degree s+1. The
Q/Z(p) summands in homotopy can be indexed over 1/vI , d(I) ≤ k − (s − q)
with the 1/vI summand in degree (q+1)+k−d(I) = (q+1)+kI where kI > 0.
By this definition of kI we have k − kI = d(I) and we see that kI > 0 because
s > q and so the lowest homotopy group is always in degree greater than s, i.e.
definitely greater than q + 1. We can map all of our spaces with a vI followed
by an iterated δ to get:

IBP 〈q〉(s)
r−gδ(q)

−→ BP 〈q〉
r=g(q)+k

vI−→ BP 〈q〉
g(q)+kI

δ−→

BP 〈q + kI〉 g(q+kI)
� KZ

BP 〈q+kI〉 2(q+kI+1)

q+kI
.

Note that with this last space we are in the range of torsion free spaces and are
at the first exact extended Koszul complex. The image of the Morava K-theory
of our left hand space is just the image of the Morava K-theory of our chosen
Q/Z(p) summand which is precisely the kernel of the Morava K-theory of the
last space mapped to the (q + kI − 1)-th term of its Koszul complex. Thus we
get:

Theorem 2.9. Let r = g(q) + k, k > 0, kI = k − d(I) and q < s <
(q + 1) + k. We have the Hopf algebra decomposition

K∗BP 〈q〉
r
� K∗LqBP 〈q〉(s+1)

r

O

d(I)≤k−(s−q)

K∗K(Q/Z(p), (q + 1) + kI)
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coming from the maps

BP 〈q〉
r
−→

LqBP 〈q〉(s+1)

r

∏
d(I)≤k−(s−q)

KZ
BP 〈q+kI〉 2(q+kI+1)

q+kI

−→ ∗
∏

d(I)≤k−(s−q)

KZ
BP 〈q+kI〉 2(q+kI+1)

q+kI−1

which gives the exact sequence

K∗ −→ K∗BP 〈q〉
r
−→

K∗LqBP 〈q〉(s+1)

r

O

d(I)≤k−(s−q)

KZ
K∗BP 〈q+kI〉 2(q+kI+1)
q+kI

−→ K∗(pt)
O

d(I)≤k−(s−q)

KZ
K∗BP 〈q+kI〉 2(q+kI+1)
q+KI−1 −→ · · · .

This is a more geometric version of our Theorem 2.2 (ii) and gives us the
Hopf algebra splitting there. The interesting cases are the two extremes. On
the one extreme, for s = q +1 this is the version of Theorem 2.2 (ii) which uses
the Goerss-Hunton-Turner tensor product and which is particularly useful for
the proof of Theorem 1.1, Description 1. The other extreme, with s = k + q
(i.e. Corollary 2.6), will give us Description 2.

When we started this project an obvious approach was to look at the
spectral sequences which come from the fibration sequence

· · · −→ BP 〈q − 1〉
r−1
−→ BP 〈q〉

r+2(pq−1)
(2.10)

−→ BP 〈q〉
r
−→ BP 〈q − 1〉

r
−→ · · · .

This approach turned out to not be productive. However, it is a sequence which
should be understood now that we know more. The Morava K-theory does not
give an exact sequence but we can measure how far it deviates from that by
taking its homology. In fact, it turns out to be exact mostly and its homology
is moderately well understood.

Theorem 2.11. Taking the homology of the complex we obtain by tak-
ing the Morava K-theory of the sequence of fibrations (2.10) we find that it is
an exact sequence everywhere but at

K∗BP 〈q − 1〉
r−1
−→ K∗BP 〈q〉

r+2(pq−1)
−→ K∗BP 〈q〉

r
.

The homology at this point is trivial except when r + 2(pq − 1) = g(q) − 1 +
2(p− 1)t, t ≥ 0. In this case the homology is just the A(q, r) of Theorem 2.3.

Having come this far it is reasonable to ask what the Morava K-theory
of the spaces in the Omega spectrum for LqBP 〈q〉 are. This is easy for us to
answer for the even spaces but not so easy, and not pursued, for the odd spaces.
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Theorem 2.12. There is a short exact sequence of Hopf algebras :

K∗−→K∗LqBP 〈q〉(q+1)

2r
−→ K∗LqBP 〈q〉

2r
−→ K∗IBP 〈q〉[q+1]

2r+1−gδ(q)
−→ K∗.

3. Preliminaries

Remark 3.1 (Morava homology Hopf algebras). We will denote by
K∗(−) the Morava K-theory, K(n)∗(−). It has a Künneth isomorphism which
makes it particularly amenable to calculations. We use Hopf algebras over K∗,
see [Bou96b], [Bou96a], [HRW98] and [SW98]. The Hopf algebras we use form
an abelian category so a short exact sequence of complexes gives rise to a long
exact sequence in homology. In particular, if two of them are long exact, i.e.
have trivial homology, then so does the third. When we just have a map of two
short exact sequences this degenerates into the snake lemma giving a six term
exact sequence relating the kernels, H1(−), with the cokernels, H0(−).

Remark 3.2 (Finite Postnikov systems). All of our spaces are infinite
loop spaces and all of our maps are infinite loop maps. The spaces IBP 〈q〉 ∗,
as well as their X(s) and X [s] versions, are all finite Postinikov systems, i.e.
they have only a finite number of non-trivial homotopy groups. The work in
[HRW98] tells us that the Morava K-theory is the same as if it was a product of
Eilenberg-Mac Lane spaces with the same homotopy. This splitting is natural
and so when such spaces give a short (or long) exact sequence on homotopy
we get a short exact (or long) exact sequence of Hopf algebras. If the maps on
homotopy are split then the Hopf algebra maps are too.

Remark 3.3 (The Goerss-Hunton-Turner tensor product (GHT)). We
will use the Goerss-Hunton-Turner generalized tensor product, [Goe99] and
[HT98]

K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP ∗
and abuse the language slightly by writing

K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP r

when we mean the r-th part of it. In this case it amounts to setting the element
[vs] = [0−2(ps−1)], s > q, where this last is the Hopf algebra unit in the same
space as [vs].

We make frequent use of the bar spectral sequence. It will be helpful to
write down some of the things we use over and over again.

Theorem 3.4 (Folk). Given a fibration of infinite loop spaces and maps,

F
i−→ E −→ B,

(i) then there is a spectral squence of Hopf algebras

TorK∗F
∗,∗ (K∗E, K∗)⇒ K∗B
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(ii) with E2 term isomorphic to

TorKer i∗∗,∗ (K∗, K∗)⊗ Coker i∗

with Coker i∗ � TorK∗F
0,∗ (K∗E, K∗) � K∗E ⊗K∗F K∗.

(iii) If i∗ is injective we get a short exact sequence of Hopf algebras:

K∗ −→ K∗F
i∗−→ K∗E −→ K∗B −→ K∗.

(iv) K∗K(Q/Z(p), i) is even degree and the spectral sequence

TorK∗K(Q/Z(p),i)(K∗, K∗)⇒ K∗K(Q/Z(p), i + 1)

for the fibration

K(Q/Z(p), i) −→ ∗ −→ K(Q/Z(p), i + 1)

is all in even degrees and collapses.
(v) Tor of an exterior algebra is a divided power algebra and Tor of a

polynomial algebra is an exterior algebra.

Proof. See [HRW98, pp. 144–5] and [RW80, pp. 704–705] for a discussion
of this spectral sequence. Part (iii) follows from the previous part. Part (iv)
follows from [RW80, Theorem 12.3]. Part (v) is standard.

Remark 3.5 (The Brown-Comenetz dual). In [Rav84, Section 5],
Ravenel inductively constructs functors, Nn and Mn on the stable category
with the stable cofibration:

NnX −→MnX −→ Nn+1X(3.6)

using N0X = X and LnNnX = MnX where Ln is Bousfield’s localization with
respect to the theory E(n), [Bou79]. In Section 5 he defines Cn as the fibre of
X → LnX and in Theorem 5.10 he shows that NnX =

∑n
Cn−1X giving us

the stable cofibration

Σ−n−1Nn+1X −→ X −→ LnX(3.7)

for all X. He then goes on, Theorem 6.1, to calculate the homotopy groups
of all of these functors when X = BP . We are interested in the same results
for X = BP 〈q〉 and it appears that the same proof works in this case when
n ≤ q. The proof is a bit scanty and seriously nested. However, improvements
in technology since that paper have made this much easier. Special thanks to
Doug Ravenel and Hal Sadofsky for helping us work through this and to Mark
Hovey who would have done it if they hadn’t. As part of the calculation of
the homotopy groups, Ravenel shows that NnBP and MnBP are BP module
spectra, something we need for our case as well. This is now easy due to the
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smash product theorem, [Rav92, Theorem 7.5.6], which says LnX � X∧LnS0.
If X is a BP module spectrum, then all one has to do is take the fibration

CnS0 −→ S0 −→ LnS0(3.8)

for the sphere and smash it with BP ∧ X → X. This gives the BP module
structures we need.

Specializing to BP 〈q〉, we want our homotopy groups to be

π∗NnBP 〈q〉 � NnBP 〈q〉∗ π∗MnBP 〈q〉 �MnBP 〈q〉∗(3.9)

where we start with N0BP 〈q〉∗ = BP 〈q〉∗ and define MnBP 〈q〉∗ =
v−1

n NnBP 〈q〉∗ and Nn+1BP 〈q〉∗ inductively using the short exact sequence:

0→ NnBP 〈q〉∗ →MnBP 〈q〉∗ → Nn+1BP 〈q〉∗ → 0(3.10)

for n ≤ q. To do this it is enough to show:

Lemma 3.11. If X is a BP module spectrum with π∗X all In torsion,
then π∗LnX � v−1

n π∗X.

Proof. Theorem 1 of [Rav87] states that if BP∗X is all In torsion, then
BP∗LnX is just v−1

n BP∗X. The fact that π∗X is In torsion implies BP∗X is
also In torsion. Since we have maps Y → BP ∧ Y → Y for Y = X and LnX
this result follows from the BP homology result.

We are assured that the identification of Nq+1BP 〈q〉 with the Brown-
Comenetz dual of BP 〈q〉 can be done directly from here but since we have
a concrete reference in the literature we will use it. In [MR, Corollary 9.3]
Mahowald and Rezk construct a stable cofibration (using the p-adic completion
of BP 〈q〉):

Σ−gδ(q)IBP 〈q〉 −→ BP 〈q〉 −→ LqBP 〈q〉(3.12)

where IBP 〈q〉 is the Brown-Comenetz dual and the identification

Σ−gv(q)Nq+1BP 〈q〉 � IBP 〈q〉(3.13)

follows.
When we look at the spaces in the Omega spectra for the spectra above

we run into some problems, namely, the spaces for IBP 〈q〉 and LqBP 〈q〉 are
not of finite type. This presents no problems as long as we are working with
Morava K-theory, but when we try to lift our results to the other theories such
as BP , then we rely on the work of [RWY98] which requires finite type.

We present two ways of working around this problem. The first, and
easiest came to us last because we did not know about the Brown-Comenetz
dual identification. However, using it, we can take the dual of the sequence

BP 〈q〉 −→M0BP 〈q〉 ( = p−1BP 〈q〉) −→ N1BP 〈q〉(3.14)
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to get another stable cofibration

IM0BP 〈q〉 −→ IBP 〈q〉 −→ ΣIN1BP 〈q〉.(3.15)

The map

IM0BP 〈q〉 −→ IBP 〈q〉 −→ Σgδ(q)BP 〈q〉(3.16)

is trivial and so the map IBP 〈q〉 −→ Σgδ(q)BP 〈q〉 factors through ΣIN1BP 〈q〉.
We can now define L′

qBP 〈q〉 and we have maps

Σ−gδ(q)IBP 〈q〉 −→ BP 〈q〉 −→ LqBP 〈q〉

� � �
Σ−gδ(q)+1IN1BP 〈q〉 −→ BP 〈q〉 −→ L′

qBP 〈q〉.
(3.17)

The spaces in our new Omega spectra now have lots of p-adics in them but we
can handle that since their homology is of finite type over the p-adics. Unstably,
the above maps induce isomorphisms on the Morava K-theories.

We want to explore an alternative approach. This is what we had done
before we learned about the Brown-Comenetz dual identification. It leads to
a collection of finite Postnikov systems each with BP cohomology which splits
as if it were just a product of Eilenberg-Mac Lane spaces. Furthermore, it
allows us to identify the iterated boundary map we use with the map of the
top homotopy group in (3.12). We doubt if this is original but we don’t know
of any reference to anyone else doing it this way. There is something similar in
[MS95].

We use the Baas-Sullivan theory of manifolds with singularities, [Baa73],
to construct spectra. Let In = (i0, i1, . . . , in−1) with ik > 0 for all k. The
Baas-Sullivan theory gives us BP module spectra and maps of BP module
spectra

Σ|vin
n |BP 〈q〉In

vin
n � BP 〈q〉In

−→ BP 〈q〉In+1(3.18)

for n < q and where BP 〈q〉In∗ � BP 〈q〉∗/(pi0 , vi1
1 , . . . , v

in−1
n−1 ). Ravenel’s spec-

trum Nn+1BP 〈q〉 is just the direct limit of this taken over the various In+1

but we must prove that. We do this by first constructing maps of stable BP
module cofibrations.

Σ|vin
n |BP 〈q〉In

vin
n � BP 〈q〉In

� BP 〈q〉In+1

�
j1

�
j2

�
j3

NnBP 〈q〉 f � MnBP 〈q〉 � Nn+1BP 〈q〉.

(3.19)
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We understand that some large desuspension has to be applied to the top row to
make sense of this. We can, by induction, define our maps. Since MnBP 〈q〉 is
known to be localization with respect to vn we can define j2 = v−in

n ◦f◦j1. Since
we know all of the homotopy groups the rest follows and we have an injection
of homotopy from the top row to the bottom row. Taking an appropriate limit
over the Iq+1 we see

lim
Iq+1

BP 〈q〉Iq+1 � Nq+1BP 〈q〉.(3.20)

Iterated boundary maps give the analog of

Σ−(q+1)Nq+1BP 〈q〉 −→ BP 〈q〉(3.21)

To see that this is the iterated boundary map defined in the introduction, just
let i1 = i2 = . . . = 1. We can take the cofibre of our map for use in all of our
theorems.

However, we need something of finite type or we wouldn’t bother with this
at all. We modify our construction by using I ′n = (i1, i2, . . . , in−1), ik > 0 for
all k. We construct BP 〈q〉I′

n
just as above observing that we have a stable

cofibration

BP 〈q〉I′
n

pi0
� BP 〈q〉I′

n

�BP 〈q〉In
(3.22)

which gives us the boundary map

Σ−1BP 〈q〉In
−→ BP 〈q〉I′

n
.(3.23)

This, in turn, has a boundary map to some suspension of BP 〈q〉. Take the
limit of this for n = q + 1 and we get

Σ−1Nq+1BP 〈q〉 −→ N ′
q+1BP 〈q〉(Σ−gv(q)I ′BP 〈q〉)(3.24)

whose cofibre is rational. Consequently, we have a Morava K-theory isomor-
phism between the spaces in the Omega spectrum for these two. The stable
cofibre of

Σ−qN ′
q+1BP 〈q〉 −→ BP 〈q〉(3.25)

is our replacement, L′
qBP 〈q〉, for LqBP 〈q〉. In the Omega spectrum we have

to replace s connectivity with s + 1 connectivity of our new spaces. We get
Morava K-theory isomorphisms of short exact sequences:

IBP 〈q〉(s)
r−gδ(q)

� BP 〈q〉
r

� LqBP 〈q〉(s+1)

r

� �
�

�
I ′BP 〈q〉(s+1)

r−gδ(q)+1
� BP 〈q〉

r
� L′

qBP 〈q〉(s+2)

r
.

(3.26)

We can replace spaces accordingly with new spaces with finite type.
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Remark 3.27 (Another useful fibration). We find it convenient, but
not necessary, to have

Σ|vq |LqBP 〈q〉
vq� LqBP 〈q〉 −→ Lq−1BP 〈q − 1〉(3.28)

be a fibration and it is. Ravenel points out that it is enough to show that the
map LqBP 〈q − 1〉 −→ Lq−1BP 〈q − 1〉 is an equivalence and has kindly given
us the proof of this fact. Since both are BP module spectra it is enough to
show that the fibre, MqBP 〈q − 1〉 is BP acyclic. Since

BP ∧MqBP 〈q − 1〉 � BP 〈q − 1〉∧MqBP

which is Bousfield equivalent to BP 〈q − 1〉∧K(q) which is contractible because
K(q)∗BP 〈q − 1〉 is trivial.

We rely heavily on the theorem which splits the spaces in the BP Omega
spectrum:

Theorem 3.29 ([Wil75], see also [BJW95] and [BWb]).
(i) For r ≤ g(q), BP 〈q〉

r
splits off of BP r.

(ii) For r ≤ g(q − 1) = g(q)− |vq| − 2,

BP 〈q〉
r
� BP 〈q − 1〉

r
×BP 〈q〉

r+|vq|

Remark 3.30. We need to point out that although the Morava K-
theory at p = 2 is not a communtative ring theory these results all still hold.
For details, see [JW85, appendix] and [Wil84, pp. 1030–31]. When we go
to lift the results to E cohomology, the same comments apply when we are
working modulo 2. However, due to the work of Strickland, the theory E(n)
is a commutative ring spectrum if the higher v’s which are killed are chosen
carefully enough [Str]. Indeed, since these theories (P (0) and E(n)) surject to
all of the other theories, their commutativity is forced.

4. The main computation

We begin with the rather simple results on finite Postnikov systems.

Proof of Theorem 2.2 (i). This follows automatically from the discussion
Remark 3.2 about [HRW98].

Proof of Theorem 2.4 (i) and (ii). If we can show that the maps which
give rise to these Koszul complexes in (i) are split exact on homotopy, then
the results of [HRW98] will give the exactness and splittings as Hopf algebras,
Remark 3.2. This is not a hard result. One way to see it is to observe that the
Koszul complex KZπ∗IBP 〈q〉

∗ , is given by

KZπ∗
P−gv(q)IBP 〈q〉

q−j � Hom(KZBP 〈q〉∗
j , Q/Z(p)).
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Since Q/Z(p) is injective, our split exactness is preserved. There is a little worry
about the extension but that is easy. Since this is split exact degree by degree
all of the cases of interest follow. (ii) is done similarly just using exactness on
homotopy.

We prove several of our main results at once and get the others from them
or using similar proofs. We start with the following double induction.

Theorem 4.1. (i) For k > q + 1 − g(q) there is a short exact se-
quence of K∗-Hopf algebras which is split as algebras. The right hand term is
polynomial if k is even and exterior if k is odd.

K∗ −→ K∗IBP 〈q〉(q)
k+q+1

−→ K∗BP 〈q〉
g(q)+k

−→ K∗LqBP 〈q〉(q+1)

g(q)+k
−→ K∗.

(ii) For k ≥ 0 the complex EKZK∗BP 〈q〉
2(q+1)+k

∗ is exact in the category
of K∗-Hopf algebras.

(iii) For k ≥ 0 the complex KZ
K∗LqBP 〈q〉(q+1)

2(q+1)+k
∗ is exact in the cat-

egory of K∗-Hopf algebras and splits as algebras.
(iv) The bar spectral sequence for the Morava K-theory of the fibration

BP 〈q〉
g(q)+k−1

−→ ∗ −→ BP 〈q〉
g(q)+k

collapses.
(v) For k ≥ 0 we have a short exact sequence of long exact sequences

with all maps split as algebra maps:

K∗ → EKZ
K∗IBP 〈q〉(q)

k+2(q+1)−gδ(q)
∗ → EKZK∗BP 〈q〉

2(q+1)+k
∗

→ KZ
K∗LqBP 〈q〉(q+1)

2(q+1)+k
∗ → K∗.

Proof. The proof is by double induction. When q = 0 all of the statements
are trivial or vacuous except for (iv) which was proven in [RW80, Theorem 12.3,
p. 743].

For q > 0 and k < 0, (i) is true because the first space in the fibration is
trivial. (iv) is true for k ≤ 0 by [Wil75].

We prove (ii) for k = 0 assuming both (i) and (ii) for q − 1. According to
Theorem 3.29 we have homotopy equivalences

BP 〈q〉
g(q)−α−|vq |

∼= BP 〈q〉
g(q)−α

× BP 〈q − 1〉
g(q)−α−|vq|

if α ≥ 2. The map ±vq

BP 〈q〉
g(q)−α

−→ BP 〈q〉
g(q)−α−|vq |
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induces a homotopy equivalence on the first factor and thus an isomorphism of
Hopf algebras. Filtering out by these maps we are left with showing that the
following sequence of spaces induces a long exact sequence of Hopf algebras:

∗ → K(Z(p), q + 2)→ BP 〈q〉
g(q)

±vq� BP 〈q〉
g(q)−|vq| →∏

i<q

BP 〈q − 1〉
g(q)−|vq |−|vi| −→

∏
0<i1<i2<q

BP 〈q − 1〉
g(q)−|vq |−|vi1 |−|vi2 |

−→ · · · .

The terms on the right give an exact sequence by the q − 1 version of (ii).
According to [RWY98, sections 8.3.1–2] the sequence

∗ → K(Z(p), q + 2)→ BP 〈q〉
g(q)

±vq� BP 〈q〉
g(q)−|vq|

induces an exact sequence of Hopf algebras in Morava K-theory, (1.26). That
leaves only exactness at

K∗BP 〈q〉
g(q)−|vq| and K∗

∏
i

BP 〈q − 1〉
g(q)−|vq|−|vi|

to prove. The kernel at

K∗
∏

i

BP 〈q − 1〉
g(q)−|vq |−|vi|

is known to be the cokernel of

K∗K(Z(p), q + 3) −→ K∗BP 〈q − 1〉
g(q)−|vq |

by induction on q using (ii). To complete our proof we will show that this is
precisely the cokernel of

K∗BP 〈q〉
g(q)

±vq∗� K∗BP 〈q〉
g(q)−|vq|

as well.
Consider the bar spectral sequence associated to the fibration

BP 〈q〉
g(q)
→ BP 〈q〉

g(q)−|vq| → BP 〈q − 1〉
g(q)−|vq|.

By [RWY98, Section 8.3.2], the kernel of K∗(±vq) is K∗K(Z(p), q + 2). Thus
we have, by Theorem 3.4 (ii),

E2
∼= E∞ ∼= Coker(K∗(±vq))⊗ TorK∗K(Z(p),q+2)(K∗, K∗),

which collapses because it is even degree. This Tor part is the K∗K(Z(p), q +
3) factor in K∗BP 〈q − 1〉

g(q)−|vq |, and the rest is just the cokernel discussed
above. This concludes our proof.
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We prove (i) and (iii) for k = 0. The map

K∗K(Q/Z(p), q + 1) −→ K∗K(Z(p), q + 2)

is an isomorphism. Recall that IBP 〈q〉(q)
q+1

= K(Q/Z(p), q + 1). This, together
with the injection of (1.26) and Theorem 3.4 (iii) give the short exact portion of
(i). The exactness (ii) is just (iii) for k = 0 spliced together with the short exact
sequence (i). The term K∗LqBP 〈q〉(q+1)

g(q)
is the last term in the Koszul complex

(iii) (for k = 0) and therefore injects into a polynomial algebra. By [Bou96b,
Theorem B.7], which says a subHopf algebra of a polynomial Hopf algebra is
polynomial too, it must be polynomial. Since K∗LqBP 〈q〉(q+1)

g(q)
is polynomial,

we get (i) with the splitting for k = 0 from [Bou96b, Theorem B.9], which says
that a short exact sequence of Hopf algebras which ends with a polynomial
algebra is split as algebras. Combining these two results of Bousfield’s we see
that all the maps in (iii) must split.

There is little content to (v) for k = 0.
We now do our induction on k. Assume all parts of the theorem for

(k − 1) ≥ 0. We show (ii) and (iv) simultaneously. Taking the bar spectral

sequenceon all of EKZK∗BP 〈q〉
2(q+1)+k−1

∗ we have a spectral sequence converg-

ing to EKZK∗BP 〈q〉
2(q+1)+k

∗ . By induction we know that all of it collapses except
possibly the q-th term, i.e. (iv) for k. Furthermore, everything in sight which
we use in our induction is split as algebras, see (v). Because all of the maps split
as algebras before we take Tor, we have exactness for the E2 term of the bar

spectral sequence on EKZK∗BP 〈q〉
2(q+1)+k−1

∗ after we take Tor. Since we know

that all but one of these collapses, we get exactness for EKZK∗BP 〈q〉
2(q+1)+k

∗
except at the point

K∗K(Z(p), q + 2 + k)→ K∗BP 〈q〉
g(q)+k

→ EKZK∗BP 〈q〉
2(q+1)+k

q−1

recalling that K∗BP 〈q〉
g(q)+k

= EKZK∗BP 〈q〉
2(q+1)+k

q . We have exactness as
Hopf algebras on the Tor level of the spectral sequence so if we can show that
the spectral sequence collapses, i.e. (iv), then we will also have our exactness
(ii). We want to remind the reader that our induction is on k. We are assuming
that we know everything for k − 1. We could start this induction because we
have already shown k = 0. In particular, we know the Morava K-theory of all
spaces involved for k−1 as algebras, which is all it takes to determine Tor. We
want to emphasize that we are not doing induction on degrees. If k is even then
everything (all of the Tor groups) is in even degrees and the spectral sequence
collapses. If k is odd then all generators must be either odd degree in the first
filtration, in which case they have no differentials, or in even degrees, in which
case their target must be an odd degree element in the first filtration. By the
exactness of the spectral sequence, and the fact that the first term above is even
degree, we see that all of these odd elements must map to the next term which



The Morava K-theory and Brown-Peterson Cohomology of Spaces related to BP 71

is part of a collapsing spectral sequence and therefore these elements cannot be
targets of differentials. This concludes the proof for (ii) and (iv).

We now do the induction for (i) and (v). The left hand term of (v) is
already known to be long exact and to split as Hopf algebras by Theorem
2.4 (i). We have just proven the center term, (ii), is exact. By induction,
we have the injection from the left to the center except for the q-th term of
the complex. So, in the diagram (4.2), the vertical columns are exact, the
top horizontal arrow is an isomorphism and the third horizontal arrow is an
injection. This is enough to force an injection on the second horizontal arrow.
By Theorem 3.4 (iii), we get our exact sequence (i). We now have a short
exact sequence for (v) with the first two sequences long exact. This forces the
third to be long exact and gives us (iii). Because all of the terms in (iii) are
either polynomial or exterior, Bousfield’s results tell us that all maps are split
as algebra maps. Likewise the splitting for (i) follows too. All of the splittings
together give us the splittings for (v).

We have proven our basic results about short and long exact sequences
now, namely, we have proven Theorem 2.2 (i) and (iii), and Theorem 2.4 (i),
(ii), and the s = q version of (iii). We still have a number of such sequences to
verify. We do this mostly from the ones we know or with similar techniques.

K∗ K∗

� �

K∗K(Q/Z(p), q + 1 + k)
	 � K∗K(Z(p), q + 2 + k)

� �
K∗IBP 〈q〉(q)

q+1+k
� K∗BP 〈q〉

g(q)+k

� �

EKZK∗IBP 〈q〉(q)
q+1+k−gv(q)

q−1

�
� � EKZK∗BP 〈q〉

2(q+1)+k

q−1

� �

(4.2)

5. Proofs of odds and ends

Proof of the short exact sequence part of Theorem 2.2 (ii). We map the
three term sequence of (ii) to the known short exact sequence (iii). We know
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that the left hand term of (ii) injects to the left hand (iii) and the middle term
is an isomorphism. This forces the injection of the left hand term of (ii) into
the middle. By Theorem 3.4 (iii) we have the short exact sequence of (ii). The
splitting and identification with the Goerss-Hunton-Turner generalized tensor
product will come later.

Proof of Theorem 2.2 (iv) and Theorem 2.4 (v). Now we have a map
of short exact sequences of Theorem 2.2 (ii) to (iii) and we get a six term
exact sequence relating the kernels with the cokernels (the snake lemma, see
Remark 3.1) except that since the middle term gave an isomorphism we have
an isomorphism from the kernel of the right hand map to the cokernel of the
left hand map. This gives an algebraic version of (iv) but not one that we know
comes from the geometric map! When r < g(q) the left hand term is trivial
and the other two are isomorphic. For r = g(q), (iv) is just the sequence (iii).
When s ≥ r+gδ(q) this sequence is just (iii). To get the correct version coming
from the geometric map we have to go back and use our previous little trick
with the Koszul complexes. We can turn all three terms into the non-extended
Koszul complexes of Theorem 2.4 (v). For r > g(q) we want our short exact
sequence to be the q-th term of our Koszul complexes. By induction we have
short exact on all the lower terms of the complex. We also have split exact on
the homotopy of the left terms so that Koszul complex is long exact. We have
already covered the case above when we are in the range when the extension
is there. The right hand side is already known to be long exact from Theorem
4.1 (v), s = q (Theorem 4.1 (iii)). The left hand term of (iv) injects into the
(q−1)-th term of its Koszul complex which in turn injects into the middle. This
forces injection of (iv) and thus the short exact sequence (iv) coming from the
geometry. Because we have a short exact sequence of complexes with both left
and right long exact, the middle must be long exact too, Theorem 2.4 (v).

Proof of Theorem 2.4 (iii). The s = q case is done already. The short
exact sequence of Theorem 2.2 (ii) gives Theorem 2.4 (iii) as a short exact
sequence of complexes. However, all three terms are already known to be long
exact.

Proof of Theorem 2.4 (iv). We want to prove the Z/(pc) version of the
exactness of the Koszul complex now, the middle term of Theorem 2.4 (iv),

i.e. for EKZ/(pc)ZK∗BP 〈q〉
2(q+1)+k

∗ . There is an obvious injection of Koszul
complexes

KZK∗BP 〈q〉
2(q+1)+k

∗ −→ KZ/(pc)ZK∗BP 〈q〉
2(q+1)+k

∗ .

Note that these are the unextended versions. The quotient is just another copy

of KZK∗BP 〈q〉
2(q+1)+k

∗ shifted by one in the Koszul degree. We get a long exact
sequence in the homology of the short exact sequence of Koszul complexes.
We know that the homology of the first one is just K∗K(Z(p), q + 2 + k) in
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homological degree q + 1. The homology of the quotient is just K∗K(Z(p), q +
2+k) in homological degree q +2. The boundary homomorphism is easily seen
to be pc

∗ which is known to be surjective, [RW80, Corollary 13.1], with kernel
K∗K(Z/(pc), q + 1 + k) in homological degree q + 2. Thus we have the proper

Hopf algebra for the extension of KZ/(pc)ZK∗BP 〈q〉
2(q+1)+k

∗ which it takes to
make it exact. We get the fact that it comes from the geometric map from the
commutativity of the diagrams geometrically.

We get the short exactness from Theorem 2.2 (iii) plus the extension. We
already know the first two are long exact so the short exactness gives us the
third one is long exact too.

Remark 5.1. We wish to mention here that for any of the Koszul com-
plexes which are long exact and which are not extended, the last term is com-
pletely algebraically determined inductively. In particular this gives us part of
the statement of Theorem 2.4 (iii).

Proof of the GHT tensor product identification of Theorem 2.2 (ii), The-
orem 2.3, and Theorem 2.11. Most of the remaining Morava K-theory results
rely on an understanding of the various spectral sequences associated with the
sequence of fibrations (2.10). We can analyze them one at a time using the fact
that we already know all of the answers.

Since we need to use it soon we take a break to prove the vq injection for
r even in Theorem 2.3. When r ≤ g(q − 1) (and even) we have the splitting
Theorem 3.29 and get the injection easily. when r > g(q) and even we use the
Koszul long exact sequence on the right hand side of Theorem 4.1 (v). We know
that the last term injects in the second to last term but we know by induction
that all of the terms in that product inject into the preceeding one except the
one which our last term maps to by vq, so it must be an injection too. (This
argument fails for r odd because when r = g(q − 1) + 1 we are neither in the
range of the splitting nor in the range of the Koszul complexes.)

Let r′ = r + 2(pq − 1) in the commuting diagram (5.2) of short exact
sequences of Hopf algebras.

All of the horizontal and vertical maps are induced by the corresponding
fibrations. The right one comes from Remark 3.27. We are interested in the
bar spectral sequence of the middle vertical column and so we take three rows
at a time. The bar spectral sequence of the left hand side is always even degree
and collapses, Theorem 3.4 (iv). It maps to the bar spectral sequence for the
middle and so there can be no differentials on any of these elements by natu-
rality.

We start with the first three rows. We know the top left vertical map is
surjective on homotopy and so it is surjective as Hopf algebras since the left
side is all finite Postnikov systems. The kernel of the homotopy is just the
homotopy of the delooping of the lower left space. The bar spectral sequence
for the left vertical fibration is in even degrees and therefore collapses. Our
concern of course is with the bar spectral sequence for the vertical fibration
in the middle. We start with r even. We know from above that the right top
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K∗ → K∗IBP 〈q〉(q)
r′−gδ(q)

→ K∗BP 〈q〉
r′ → K∗LqBP 〈q〉(q+1)

r′ → K∗

�
vq∗ �

vq∗ �
vq∗

K∗ → K∗IBP 〈q〉(q)
r−gδ(q)

→ K∗BP 〈q〉
r
→ K∗LqBP 〈q〉(q+1)

r
→ K∗

� � �
K∗ → K∗IBP 〈q − 1〉(q+1)

r−gδ(q−1)
→ K∗BP 〈q − 1〉

r
→ K∗Lq−1BP 〈q − 1〉(q+2)

r
→ K∗

� � �
K∗ → K∗IBP 〈q〉(q+1)

r′−gδ(q)+1
→ K∗BP 〈q〉

r′+1
→ K∗LqBP 〈q〉(q+2)

r′+1
→ K∗

�
vq∗ �

vq∗ �
vq∗

K∗ → K∗IBP 〈q〉(q+1)

r−gδ(q)+1
→ K∗BP 〈q〉

r+1
→ K∗LqBP 〈q〉(q+2)

r+1
→ K∗

(5.2)

vertical map is injective and that everything in sight is even degree. Thus, the
E2 term of the spectral sequence from Theorem 3.4 (iii) is all even degree and
collapses. This gives exactness at K∗BP 〈q〉

r
for Theorem 2.11 if r is even. If r

is odd, then the top two on the right hand side are known to be exterior Hopf
algebras and the short exact sequences they are part of split as Hopf algebras.
If there is a kernel, and sometimes there is, then it too must be exterior as is
the cokernel. The E2 term of the spectral sequence has two parts as usual, see
Theorem 3.4 (ii). One part is the Tor of the kernel. This comes in two parts,
one part from the left hand side which we have already noticed has trivial
differentials because the spectral sequence for the left hand side collapses. The
second part will come from whatever kernel there is on the right hand side.
Since it is exterior the Tor will be a divided power algebra all concentrated in
even degrees. We have no obvious restrictions on differentials on this part. We
also have the cokernal part of E2. This will be exterior and if we can show
that all of these elements exist in K∗BP 〈q − 1〉

r
then there will be no place for

differentials to land. These exterior classes are in the zeroth filtration so they
have no differentials and the even stuff can only land on an odd class and these
are our only odd classes. So, our goal is to show that these exterior elements
in the cokernel all survive. Then we must identify the exterior kernel part if
there is one.

Our proof here uses some techniques which we have not yet had to invoke
for this paper and we doubt the necessity of having to do this now but we need
to prove the result. For r even we found the right vertical maps to give a short
exact sequence. The Milnor-Moore theorem about exactness of indecompos-
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ables still holds in the category of Hopf algebras we are working in, namely we
get an exact sequence:

(5.3) · · · −→ QK∗LqBP 〈q〉(q+1)

r′ −→ QK∗LqBP 〈q〉(q+1)

r

−→ QK∗Lq−1BP 〈q − 1〉(q+2)

r
−→ 0.

There are some dramatic differences however and for the presently perplexed
we should point some of these out. The top two terms of our vertical short
exact sequence on the right side are both polynomial algebras (recall r is tem-
porarily even). The bottom one is split as algebras and is part polynomial and
sometimes has the Morava K-theory of an Eilenberg-Mac Lane space in it (to
be identified soon). So, we can have a non-trivial extension here. All iterated
p-powers in the Morava K-theory of Eilenberg-Mac Lane spaces either go to
zero or become cyclical, see [RW80]. One way to achieve this as a quotient of
two polynomial algebras would be to take a sequence of generators mapped as
follows:

x0 → yp
0 , x1 → y0 + yp

1 , x2 → y1 + yp
2 , etc.

Note that there are no indecomposables for the Morava K-theory of Q/Z(p)

Eilenberg-Mac Lane spaces! An easy example of this is to consider a little
Hopf algebra generated by x with xp = x. Its module of indecomposables is
trivial. So, Milnor-Moore’s exact sequence is not as useful for us as it is in
the graded case. A serious failing is that a surjection of indecomposables does
not imply a surjection of Hopf algebras (map the trivial Hopf algebra to the
example just given). However, we are still going to extract the information we
need from the exact sequence for the indecomposables. The polynomial part
of the lower right hand part splits off, as algebras, from both the lower right
and the middle right terms. Let us call this P1. Thus the middle term is just
the tensor product of two polynomial algebras, P1 and P2, one isomorphic to
the polynomial part of the lower right term and the other in the middle of a
short exact sequence starting with the upper right polynomial algebra, P3, and
ending with the Morava K-theory of an Eilenberg-Mac Lane space part of the
lower right. Since the indecomposable module of the last one is trivial, the exact
sequence gives a surjection from the indecomposables of the top right onto the
indecomposables of the part of the middle right term involved in our short exact
sequence, QP3 → QP2 → 0. We have some understanding of the behavior of
the generators of the top two terms on the right row. We know that the bar
spectral sequence for their delooping collapses. We know this because Tor of
a polynomial algebra is just an exterior algebra with generators in filtration 1
and so there can be no differentials. For the bottom term we have to worry
a little about the Eilenberg-Mac Lane part but we know that differentials on
those elements are also trivial because they come from our finite Postnikov
systems which always collapse. Thus, the Tor of the middle term is the tensor
product of two exterior algebras. One maps isomorphically to the corresponding
exterior algebra in the lower right hand term because of the splitting off of the
polynomial algebra. Because of our surjection of indecomposables from P3 to
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P2, we get that the exterior generators P2 creates when we take Tor are all in
the image of our map from the top. The point here is that we have shown that
our exterior cokernel all survives and so the spectral sequence we care about
collapses, and, we have also shown that we have exactness at the middle term,
K∗BP 〈q〉

r
for r odd.

Assuming we have a kernel for r odd, then it is easy to identify as having
to have a Tor which gives the Eilenberg-Mac Lane part of the lower right hand
term. At first glance, looking at all our results in Theorem 2.2, it appears
that it should have all of the Morava K-theory of the q and q + 1 homotopy
of IBP 〈q − 1〉(q−1)

r−gδ(q−1)
, i.e. of a two stage Postnikov system. However, we

know from sparseness that there are never two non-trivial homotopy groups in
adjacent degrees. In fact there are other restrictions and we can now see that
it must be in degree q + 1 or not at all. The only degrees that the homotopy
can be in are: r − gδ(q − 1)− 2t(q + 1). Recalling that r is odd, mod 2 this is
(1 + q). Thus we can have (q + 1) degree homotopy but not q.

This particular spectral sequence argument, which shows that the cokernel
of vq∗ always injects, gives us the identification of the Goerss-Hunton-Turner
tensor product in Theorem 2.2 (ii), which was the last remaining thing to prove
in that theorem. We also have finished the proof of Theorem 2.3.

We pursue our calculations with these short exact sequences in order to
prove Theorem 2.11.

We move now to the next spectral sequence, for the fibration:

BP 〈q〉
r
−→ BP 〈q − 1〉

r
−→ BP 〈q〉

r′+1
.

Going back to our diagram (5.2) we consider now rows two through four. We
have already analyzed the maps needed for the spectral sequence. The upper
left map is zero and we see right off that the spectral sequence for it collapses.
Let us first just look at the case for r even. The kernel of the right hand map is
known to be K∗LqBP 〈q〉(q+1)

r′ which is known to be polynomial. We also know
the map is surjective. Thus we have the Tor part comes in two parts. One is
from the finite Postnikov system and we know that it has no differentials in
it by naturality from the left hand spectral sequence. The second is from the
polynomial part and it gives an exterior part and so has no differentials and
there is nothing which can be a source of differentials which can hit it. Thus
the spectral sequence collapses and we see we have exactness at the middle
term.

Now we let r be odd. We know that the kernel on the right is exterior
so the E2 is concentrated in even degrees and the spectral sequence collapses
giving us exactness again at the middle space.

We are ready for our third and final spectral sequence. This comes from
our middle vertical term of the last three rows of the big diagram and we only
consider these last three rows. This time the upper left vertical map injects
and so the left spectral sequence collapses and is even degree as usual. Let’s
start with r odd this time. The kernel of the right hand top map is exterior
and perhaps some Eilenberg-Mac Lane stuff. In any case it has even degree Tor
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so the spectral sequence collapses and we get exactness at the middle term.
For r even, the upper right corner is two parts, (1) polynomial and (2) the

(q + 1) Eilenberg-Mac Lane part if there is any and the map to the next term
is trivial. Because we are now working with odd degree spaces in the second
and third rows, we recognize from our previous calculation that these spaces are
really equivalent to the q connected one on the left and (q+1) connected one on
the right. Tor of the kernel is all even degree and in E2 we end up with too much
odd degree stuff because we know we do not have injectivity of the middle right
hand side to the lower right hand side. We also know the kernel as A(q, r + 1).
This must all be hit by differentials then, i.e. this spectral sequence does not
collapse when A(q, r + 1) �= 0. There can be no differentials coming from
elements on the left because their spectral sequence collapses. We must then
look at Tor of the kernel on the right. First, there is the polynomial part which
gives rise to exterior elements. These must all survive. We know they survive
in the spectral sequence for delooping and so by naturality any differential
which hit them in the spectral sequence for BP 〈q〉

r+1
would have to map to a

differential which hit them in the spectral sequence for BP 〈q − 1〉
r+1

. However,

the Tor of the Eilenberg-Mac Lane part, K∗K(πq+1IBP 〈q − 1〉(q−1)

r−gδ(q−1)
, q+1)

fits nowhere in our known answer. We know how this Tor looks from [RW80,
Theorem 12.3]. It is a divided power algebra on transpotence elements in the
second filtration. Since it must disappear the only possibility is a d2 which
takes these transpotence elements isomorphically to the exterior generators of
A(q, r + 1), thus killing off all of A(q, r + 1) tensored with the Tor of this
Eilenberg-Mac Lane part. Exactness fails here.

This finishes our description of the behavior of the spectral sequences and
also of our proof of Theorem 2.11. It is now easy to see why this approach to
the original problem failed us so badly.

Proof of Theorem 2.12. We look at the bar spectral sequence for the
fibration

IBP 〈q〉[q]
r+1−gδ(q)

−→ LqBP 〈q〉(q+1)

r
−→ LqBP 〈q〉

r
.(5.4)

The first map is trivial in Morava K-theory. At first glance this is not so obvi-
ous. We know the target to be either an exterior algebra on odd generators or a
polynomial algebra on even generators. The Hopf algebra splittings of [HRW98]
tell us that if it is exterior then there are no maps. To do the even case you
have to know something explicit about the Morava K-theory of the Eilenberg-
Mac Lane spaces. The Dieudonné modules are written down in [SW98] and
they are p-divisible groups. Polynomial algebras have no p-divisible elements
in their Dieudonné modules so there can be no maps. Thus the E2 term of the
bar spectral sequence is

K∗LqBP 〈q〉
r
� K∗LqBP 〈q〉(q+1)

r

⊗
K∗IBP 〈q〉[q+1]

r+1−gδ(q)
.

When r is even this is even degree and so collapses. It doesn’t always collapse
when r is odd.
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6. The BP results

Remark 6.1 (The Künneth isomorphism). We use freely two previous
results throughout. If E∗(X) and E∗(Y ) are both Landweber flat, then

E∗(X × Y ) � E∗(X)
⊗̂

E∗(Y )

[RWY98, Theorem 1.11] and is also Landweber flat [Wil99a, Theorem 1.8].

In [RWY98, Theorem 1.19] it was proven that if you had maps of H-spaces

X1

f1 � X2

f2 � X3(6.2)

with the compositon trivial and all spaces having even Morava K-theory and
giving an exact sequence of bicommutative Hopf algebras for all Morava K-
theories

K∗ −→ K∗X1 −→ K∗X2 −→ K∗X3 −→(6.3)

then we got

E∗(X1) � E∗(X2)/(f∗
2 ).(6.4)

The statement in [RWY98] is only for E = P (m) but the proof starts assuming
the result for E = K(n) and then proves it for all of our E on the way to P (m).

Another theorem is that spaces with even Morava K-theory have Landwe-
ber flat E cohomology concentrated in even degrees, [RWY98, Theorem 1.8].
After this paper it was noticed that the theorem of (6.4) was true even if you
drop the even Morava K-theory assumption and replaced it with the weaker
Landweber flat assumption, [Kasb] and [Wil99a]. In fact one does not need
even this assumption on the space X1 to conclude the result and the fact that
it too is Landweber flat. This is made explicit in [Wil99a] and is implicit in
[Kasb]. What is really proven is that E∗(−) for the sequence of spaces Xi is
coexact in the category of algebras. This coexactness is just the definition of a
cokernel, or, equivalently, (6.4).

In order to prove Theorem 1.1 we need a dual version of (6.4), something
not to be found in any of [RWY98], [Wil99a] or [Kasb], caused principally, we
suppose, by never having had a need for it before.

Remark 6.5 (Completed Hopf algebras). We need to remind the reader
that E∗(X) always comes equipped with a topology on it which is an important
part of the structure. If X and Y both have Landweber flat Brown-Peterson
cohomology, then so does their product, and it is just the completed tensor
product of the two, Remark 6.1. This means, in particular, that if X is an
H-space, we get a “completed coalgebra” structure

E∗(X) −→ E∗(X)
⊗̂

E∗(X).(6.6)
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The dual result would then say something about kernels in this category. How-
ever, if we combine the two structures, topologized algebra and completed
coalgebra we get “completed Hopf algebras” and our cokernel of algebras and
kernel of coalgebras become cokernel and kernel of completed Hopf algebras.
If we begin with our completed coalgebras and note that the completed tensor
product for this category is the product, then the Hopf algebra maps give us
a group object in the category, i.e. a completed Hopf algebra. Our category
of completed Hopf algebras is not abelian but we define a short exact sequence
anyway. In our category we say

A
f� B

g� C(6.7)

is short exact if f is an injection, g is a surjection, A is the kernel of g, and C
is the cokernel of f .

We need to state our theorems explicitly. We assume our spaces are all of
finite type, i.e. H∗(−; Z(p)) is of finite type over Z(p).

Theorem 6.8. Let E be as in Theorem 1.1. Given a sequence of maps
as in (6.2) with the composition trivial and an exact sequence of bicommutative
Hopf algebras (6.3) for all Morava K-theories with the last two spaces hav-
ing Landweber flat E cohomology, then the first does too and E∗(X1) is the
completed Hopf algebra cokernel of f∗

2 .

As noted above, this was known to be an algebra cokernel. We will put
the topology in it so it really is the cokernel in the correct category.

The dual result then is:

Theorem 6.9. Let E be as in Theorem 1.1. Given a sequence of maps
as in (6.2) with the composition trivial and an exact sequence of bicommutative
Hopf algebras

−→ K∗X1 −→ K∗X2 −→ K∗X3 −→ K∗

for all Morava K-theories with the first two spaces having Landweber flat E
cohomology, then the third does too and E∗(X3) is the completed Hopf algebra
kernel of f∗

1 .

Corollary 6.10. Let E be as in Theorem 1.1. Given a sequence of
maps as in (6.2) with the composition trivial and a short exact sequence of
bicommutative Hopf algebras

K∗ −→ K∗X1 −→ K∗X2 −→ K∗X3 −→ K∗

for all Morava K-theories with the middle space having Landweber flat E co-
homology, then the other two spaces have Landweber flat E cohomology and we
get a short exact sequence of completed Hopf algebras

E∗ ←− E∗X1 ←− E∗X2 ←− E∗X3 ←− E∗.



80 Takuji Kashiwabara and W. Stephen Wilson

Proof. This follows at once from Theorems 6.8 and 6.9 after we get the
flatness for the two ends. This flatness follows at once from the injection and
the surjection, see [Wil99a] or [Kasb].

The proof of Theorem 1.10 now follows immediately from the Corollary
and the corresponding result from [HRW98] on Morava K-theory.

It would be nice to be able to say that the proof of this is just dual to the
proof of the dual theorem, but that isn’t quite true and so we must delve into
some detail here to show the difference and how to patch it up. The proof is
dual once the following dual to [RWY98, Theorem 1.18] has been proven and
so this is all we need to do.

Proposition 6.11. Let E be as in Theorem 1.1. Given a sequence of
maps as in (6.2) with the composition trivial and a short exact sequence of
K(n)∗ modules for all Morava K-theories :

← K(n)∗(X1)← K(n)∗(X2)← K(n)∗(X3)← 0,

if the first two spaces have Landweber flat E cohomology then we get an exact
sequence of E∗ modules:

← E∗(X1)← E∗(X2)← E∗(X3)← 0

and E∗(X3) is also Landweber flat.

Proof. The proof really differs little from being the dual proof of the
related theorem. We start off with the cofibre of f2, C(f2), but in order to
get our short exact sequences on our cohomology theories, we have to suspend
everything. The maps

C(f2) −→ ΣX2 −→ ΣX3

now get a short exact sequence on all the cohomology theories used in the
proof of the dual, in particular, all E∗(−). If we stabilize, then we see that,
by our assumptions, our map X1 → X2 must factor through Σ−1C(f2). The
map X1 → Σ−1C(f2) gives an injection on Morava cohomology and so on E
cohomology. We find ourselves working with spectra using theorems which only
work for spaces. However, these are suspension spectra and so the cohomology
theories work the way they are supposed to. The only thing stable is the map
and we use it just to get an algebraic factorization. All else, except this little
trick making things stable, is the same (i.e. dual).

Proof of Theorem 1.1. First we recall the maps and isomorphisms of
(3.26). These are all BP module spectra and so we can replace our old spaces
with our new spaces throughout the paper for all of our Morava K-theory
results, in particular, our Theorem 2.6 (where we need to replace K(Q/Z(p), q+
1 + k) with K(Z(p), q + 2 + k)). Remark 2.7 gives us our final hypothesis for
Theorem 6.8 and our Description 2 follows by induction and Remark 6.1.
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Description 1 is a little different. The composition of the two maps in
Theorem 2.9 is not zero so we have to do something different. We have the
short exact sequence from Theorem 1.14 with the spaces replaced so we have
finite type:

K∗ −→ K∗I ′BP 〈q〉(q+2)

r+1−gδ(q)
−→ K∗BP 〈q〉

r
−→ K∗L′

qBP 〈q〉(q+3)

r
−→ K∗.

This gives us, by Corollary 6.10, a short exact sequence of completed Hopf
algebras:

E∗ ←− E∗(I ′BP 〈q〉(q+2)

r+1−gδ(q)
)←− E∗(BP 〈q〉

r
)←− E∗(L′

qBP 〈q〉(q+3)

r
)←− E∗.

We have, by our identification of the Goerss-Hunton-Turner generalized tensor
product, an exact sequence:

· · · −→
⊗
i>q

K∗BP r+|vi|
⊕vi∗� K∗BP r −→ K∗L′

qBP 〈q〉(q+3)

r
−→ K∗.

(6.12)

This gives us the identification of the right hand term in Theorem 1.1, using
Theorem 6.9.

We use Theorem 6.9 again to show

E∗(BP 〈q〉
r
) � E∗(I ′BP 〈q〉(q+2)

r+1−gδ(q)
)
⊗̂

E∗(L′
qBP 〈q〉(q+3)

r
).(6.13)

We just use the maps

∗ ×
∏
i>q

BP r+|vi| −→ I ′BP 〈q〉(q+2)

r+1−gδ(q)
×BP r −→ BP 〈q〉

r
.(6.14)

This is right exact in K∗(−) so our completed Hopf algebra splitting follows.
Thus we are only left with identifying E∗(I ′BP 〈q〉(q+2)

r+1−gδ(q)
) with the left

side of Theorem 1.1 and Description 1. That will be done in the next section.

Proof of Corollary 1.4. In [RWY98] we use the theorem of (6.3) with
the sequences (1.26) and (1.27), [RWY98, Proposition 1.16], to calculate the
Brown-Peterson cohomology of Eilenberg-Mac Lane spaces, [RWY98, Theorem
1.14]. This sequence shows up as the extension and the last two terms of the
lowest case of the Koszul complexes in the middle terms of Theorem 2.4 (iii)
and (iv). The exactness for the higher cases sets us up for the use of Theorem
6.8 if we have flatness. We have already calculated the E cohomology of the
spaces in the Omega spectrum for BP 〈q〉 and we know they are flat so we are
done.



82 Takuji Kashiwabara and W. Stephen Wilson

Remark 6.15 (The forgotten topology). When you look back to
[RWY98], [Wil99a] and [Kasb], the proof of (6.4) was just as algebras. Al-
though there is nothing wrong with the statements and proofs in those papers,
that is not really the category we are working in. We work with topologized
algebras and so the cokernel of algebras must have a topology on it and it is
possible to put a topology on it so that it is not the cokernel stated in our
Theorem 6.8. Likewise for our Theorem 6.9. This is the sort of problem which
prevents our category of completed Hopf algebras from being abelian. For an
oversimplified example, let us look at the map R→ R′ where R = Fp[vn] with
the discrete topology and R′ is Fp[vn] where we use the ideals (vk

n) as open sets.
This map is continuous, injective and surjective, but not an isomorphism. If
such things were to happen to us in our Theorems 6.8 and 6.9, then we really
wouldn’t have cokernels and kernels, something we want to use, for example in
defining short exactness in our category of completed Hopf algebras. Injectivity
and surjectivity would be unaffected. So, straightening out the problems with
the topology is important for our results to work properly in the category of
completed Hopf algebras. Thus, we have some nontrivial work yet to do on
these theorems.

Below when we complete the proofs, we find that for the injection we don’t
really need our exact sequence but for our surjection we do. That is because
our oversimplified example above almost does exist. In particular, let us look
at the surjection

E(q, q + 1)∗(BP 〈q〉
g(q)

) −→ E(q, q + 1)∗(K(Z/(pc), q + 1)).

By Remark 1.5 we know the right hand side is finitely generated and free.
The left hand side has no torsion in standard homology and so any finitely
generated submodule has the discrete topology on it. Thus every generator is
also a generator of the q-th Morava K-theory whereas there is no q-th Morava
K-theory for the Eilenberg-Mac Lane space. The vq part of the topology of the
Eilenberg-Mac Lane spaces is always nontrivial, but it is always trivial for the
other space, much like our oversimplified example (but not the same). It is
worth the trouble to make sense out of this since we claim our result produces
the correct topology. We need the third term to do this so that we are really
working with a cokernel. What happens is, roughly, there is a sequence of
generators {xi} in E(q, q + 1)∗(BP 〈q〉

g(q)
). x1 may map to a generator of

E(q, q + 1)∗(K(Z/(pc), q + 1)) which, although vq acts freely on it, doesn’t
support a Morava K-theory generator. So, there must be a generator y1 which
comes and hits something like vt1

q x1 + x2. And then another y2 must come
and hit vt2

q x2 + x3. This must go on indefinitely with the xi in higher and
higher filtration. This produces the desired result of having our topology be
both nontrivial and determined.

The rest of this section is devoted to dealing with the topology in the
proofs of Theorems 6.8 and 6.9.

Completion of the proofs of Theorems 6.8 and 6.9. We first look at our
new case, Theorem 6.9, as it is slightly easier but contains all of the ideas.
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There is only one place the topology was ignored which matters. In [RWY98],
(only for even degree Morava K-theories), [Wil99a] and [Kasb], it is proven
that if X → Y gives an injection in all Morava cohomology K-theories then it
does also for all of our E cohomology theories of Theorem 1.1. What we didn’t
concern ourselves with in those papers was to show that our injection gives
a homeomorphism of E∗(Y ) to the image with the inherited topology. If we
can show this then the our topological concerns for the health of Theorem 6.9
will be over. From [RWY98, Corollary 4.8] we know that there are never any
phantom maps for any of the E which we use, so we always have the topology
on E∗(−) complete and Hausdorf. The topology comes from our open sets
F s+1E∗(Z), the kernel of the map E∗(Z)→ E∗(Zs) where Zs is the s-skeleton
of Z and we have E∗(Z) � lim0 E∗(Z)/F sE∗(Z). To prove our result we must
see that the image of F sE∗(Y ) contains some F tE∗(X) for some large t. An
equivalent way of looking at this is that for every s there is a t such that if
x ∈ E∗(Y )/F sE∗(Y ) is nontrivial then there is a lift, x′ ∈ E∗(Y ) such that its
image in E∗(X)/F tE∗(X) is nontrivial. Another equivalent way to say it is
that there is a bound on how high the map can raise filtration on elements in
E∗(Y )/F sE∗(Y ). We can use a couple of facts discussed in [RWY98]. First,
E∗(Z)/F sE∗(Z) is always finitely presented [RWY98, Corollaries 3.13 and 4.8].
Second, it always has a finite Landweber filtration, so that the quotients look
like E∗/(vm, . . . , vk) where k ≤ n, see [RWY98, Theorem 3.10]. (We are using
the E of Theorem 1.1 (and a few others in a minute) and when n isn’t defined
the last condition is k finite.) If n is defined then the Landweber filtration is
just the tensor product of E∗ with the Landweber filtration for P (m) (because
all of our coefficient rings are Landweber flat, [RWY98, Corollary 4.8]).

We begin by showing the result for Morava K-theory and anything which
behaves like Morava K-theory, namely theories with coefficient rings v−1

m P (m)∗,
v−1

m v−1
n P (m)∗, or v−1

m E(m, n)∗. In this case, E∗(Y )/F sE∗(Y ) is always a
finitely generated free module over E∗ by our Landweber filtration. None of
our generators for Morava K-theory get mapped to the infinite filtration since
there are no phantom maps. Since we only have a finite number of generators
it is easy to see we have our result. All of the other theories behave exactly the
same, with the same generators.

We now do a downward induction on m for E = E(m, n) and v−1
n P (m).

Recall from our previous papers that we have a short exact sequence:

0 −→ E(m, n)∗(Y )
vm� E(m, n)∗(Y ) −→ E(m + 1, n)∗(Y ) −→ 0(6.16)

which maps injectively into a similar short exact sequence for X. The same
proofs work for the theory v−1

n P (m) as well. Inductively all of the elements
in E(m + 1, n)∗(Y )/F s are detected in E(m + 1, n)∗(X)/F t for some big t. If
elements in E(m, n)∗(Y )/F s are vm torsion, then since it is finitely generated,
there can only be a finite number of them to worry about and since nothing
goes to the infinite filtration we can easily handle a finite situation. Our prob-
lems only come up if we have an element in E(m, n)∗(Y )/F s (the same proof
works for v−1

n P (m)) which is vm torsion free, but which maps to an element in
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E(m, n)∗(X)/F s which is vm torsion and changes filtration indefinitely as you
multiply more and more times by vm. This is precisely the situation we had
in our oversimplified example in the previous remark. In that example, if we
invert vn, one ring, R, becomes K∗ and the other, R′, goes away, and we lose
our injection on Morava K-theory. We must use our Morava K-theories in the
same way here. If we have our vm torsion free element x ∈ E(m, n)∗(Y )/F s

(where the topology is discrete) then it will still be nontrivial if we invert vm

and we have already handled the case of v−1
m E(m, n) and by naturality our

x and the powers of vm times it cannot raise filtration any higher than in
v−1

m E(m, n)∗(X). Since we are finitely generated, there can only be a finite
number of these torsion free elements to worry about so we can deal with them
all at once.

To get our result up to P (m) we need only use the fact that P (m)∗(Y )/F s

injects into v−1
n P (m)∗(Y )/F s for some high n. (The ring v−1

n P (m)∗ is Landwe-
ber flat so we can tensor the Landweber filtration for P (m) with it to get the
Landweber filtration of it. Since the Landweber filtration is finite we can find
an n big enough so there is no vn torsion and our localization is injective.)
Having already solved this case we are done.

We should make some noises about the m = 0 case here. When we are
working over the p-adics, then there is more to the topology than just the
skeletal filtration and in this topology everything is p torsion modulo an open
set so our arguments still work ([RWY98, Just before Theorem 3.8]). When we
do not need the p-adics, then we do need the injection on rational homology,
usually considered Morava’s zeroth K-theory, a hypothesis we have normally
not needed.

Theorem 6.8 is a little more complicated because you wouldn’t expect a
surjection in Morava cohomology K-theory to imply the quotient topology is
the same as the topology of what we are mapping onto. Our oversimplified
example illustrates the point. For this we need extra information. We need the
setup of (6.2) where we have not just a surjection but an exact sequence:

0←− K∗(X1)←− K∗(X2)←− K∗(X3)←− · · · .(6.17)

This will prevent us from having our oversimplified example show up. If it tries
to, we can use X3 to make it right. Otherwise the proof is quite similar.

7. The Brown-Comenetz dual

We want this section to be as self contained as possible for readers inter-
ested in just this part of our work. The simplest case is the one we need the
most, namely

E∗(I ′BP 〈q〉
r
),

where this is just an “integral” version of the Brown-Comenetz dual of BP 〈q〉.
The proof is the same for the highly connected case and needs only a minor
modification for the Z/(pc) case. The finite spectra of Theorem 1.13 will still
need a little discussion.
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Theorem 7.1. As completed Hopf algebras,

E∗(I ′BP 〈q〉
r
) �

⊗̂
d(I)≤r

E∗(K(Z(p), r − d(I)))

and is Landweber flat.

Proof. First, note that whenever we have r < 2(pq − 1) we can replace
our space with the q − 1 version. We always do this when given a chance.
Then, we study the map I ′BP 〈q〉

r
−→ BP 〈q〉

g(q)+r−q−2
from our section on

preliminaries where we discuss the Brown-Comenetz dual, Remark 3.5. We
know that r ≥ q + 2 by the previous remark. We can continue with iterated
boundary maps (from the introduction) until we have

I ′BP 〈q〉
r
−→ BP 〈q〉

g(q)+r−q−2
−→ BP 〈r − 2〉

g(r−2)
.(7.2)

Note that this is independent of q! Mapping K(Z(p), r) → I ′BP 〈q〉
r

and
composing, we get a sequence

K(Z(p), r) −→ BP 〈r − 2〉
g(r−2)

vr−2� BP 〈r − 2〉
g(r−2)−2(pr−2−1)

.(7.3)

This is the sequence which gives rise to the exact sequence of Hopf algebras in
Morava K-theory (1.26). For d(I) < r we have a map

(7.4) I ′BP 〈q〉
r

vI

� I ′BP 〈q〉
r−d(I)

= I ′BP 〈q′〉
r−d(I)

−→
BP 〈q′〉

g(q′)+r−d(I)−q′−2
−→ BP 〈r − d(I)− 2〉

g(r−d(I)−2)
.

Here we might have to replace I ′BP 〈q〉
r−d(I)

using a smaller q, i.e. q′. The
maps

(7.5) I ′BP 〈q〉
r

×δvI

�

∏
d(I)≤r

BP 〈r − d(I)− 2〉
g(r−d(I)−2)

×vr−d(I)−2�

∏
d(I)≤r

BP 〈r − d(I)− 2〉
g(r−d(I)−2)−2(pr−d(I)−2−1)

give us an exact sequence

(7.6) K∗ −→ K∗I ′BP 〈q〉
r
−→⊗

d(I)≤r

K∗BP 〈r − d(I)− 2〉
g(r−d(I)−2)

−→
⊗

d(I)≤r

K∗BP 〈r − d(I)− 2〉
g(r−d(I)−2)−2(pr−d(I)−2−1)

−→ · · · .
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We are almost ready to use our Theorem 6.8. Since all of our spaces on the
right are torsion free spaces with even homology, we only need the version
from [RWY98]. There is one remaining thing to do. We must check that
the composition of maps in (7.5) is trivial. Since the iterated boundary maps
commute with multiplication by vi it is enough to check our generic map (7.2)
composed with multiplication by vr−2 is trivial. By the commutativity with
the boundary map, it is enough to see that the map

I ′BP 〈q′〉
r−2(pr−2−1)

−→ BP 〈r − 2〉
g(r−2)−2(pr−2−1)

(7.7)

is trivial. From Theorem 3.29 we know that

BP 〈q′〉
g(q′)

−→ BP 〈q′ + 1〉
g(q′+1)−1

(7.8)

is trivial and our map of concern factors through this. One has to worry a little
about the low dimensional cases, but when q′ = 0 we don’t have a composition
because there is no v0 in what we are doing.

If we want to do the case of E∗(I ′BP 〈q〉(s)
r

) the same proof works, we
just don’t have to use as many maps. The only difference in the proof for
Theorem 1.11 in the introduction and this is we must also use the maps pc to
get exactness from [RWY98]. Showing the composition is trivial is easy since
pc on our space is trivial. The connected case is similar.

Proof of Theorem 1.13. From Remark 3.5 we know we have a map of
BP 〈q〉I to either I ′BP 〈q〉 or IZ/(pc)BP 〈q〉 which is split injective on homotopy.
We need only restrict to the maps in the above proof which correspond to the
homotopy here.

8. CTor

We have given our motivation for looking at CTor in the introduction and
so we can get to work on the calculations immediately. We can start assuming
equation (1.21) in the introduction.

Proposition 8.1.

dir limKBP 〈q〉∗ZK∗BP 〈m〉 ∗∗ � KBP 〈q〉∗ZK∗BP ∗∗ .

Since homology respects direct limits it will be enough to compute

H∗

(
KBP 〈q〉∗ZK∗BP 〈m〉 ∗∗

)

for big m.

Proof. It isn’t even clear that we have a map to begin with. We look at

KBP 〈q〉∗ZK∗BP 〈m〉
r∗
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where r < g(q) + 2m− 2q and show that there is a map

KBP 〈q〉∗ZK∗BP 〈m〉
r∗ → KBP 〈q〉∗ZK∗BP r∗ .

Let I = (iq+1, iq+2, . . . , im) where each ik is 0 or 1, �(I) =
∑

ik, and let
d(I) =

∑
2ik(pik − 1). Then

KBP 〈q〉∗ZK∗BP 〈m〉
r

j �
⊗

�(I)=j

K∗BP 〈m〉
r+d(I)

.(8.2)

We have r + d(I) < g(q) + 2(m− q) + d(I) ≤ g(m). In this range we have an
H-space splitting (Theorem 3.29) of all of the spaces and so we also get a Hopf
algebra splitting and have maps K∗BP 〈q〉

r+d(I)
→ K∗BP r+d(I). This is all

we need.

We can use the above proposition to calculate with because of the following.
Note that we always have a map (m ≥ q):

KBP 〈q〉∗ZK∗BP 〈m+1〉
r∗ −→ KBP 〈q〉∗ZK∗BP 〈m〉

r∗ .(8.3)

Proposition 8.4. For r ≤ g(q) + 2m − 2q, the map (8.3) induces an
isomorphism on homology.

Proof. Again, by the splitting Theorem 3.29 we can see what the kernel of
the map (8.3) is. For each I with im+1 = 1 we have a copy of K∗BP 〈m + 1〉

r+d(I)

and if im+1 = 0 we have:

K∗BP 〈m + 1〉
r+d(I)

� K∗BP 〈m + 1〉
r+d(I)+2(pim+1−1)

⊗
K∗BP 〈m〉

r+d(I)

(8.5)

and our kernel is K∗BP 〈m + 1〉
r+d(I)+2(pim+1−1)

. This makes it easy to cal-
culate the homology since vm+1 maps the first kind of term with an im+1 = 1
isomorphically to the second kind of term with the same I except with im+1 = 0.
Thus the homology is trivial and since we are taking the homology of a com-
plex in a short exact sequence of complexes, the other two (i.e. the two in our
proposition) must have isomorphic homologies.

From Theorem 2.4 (iii), we have the homology of KZK∗BP 〈m〉
2m+2∗ is given

by the extension, i.e.

Hi

(
KZK∗BP 〈m〉

2m+2∗

)
� K∗ i �= m

� K∗K(Q/Z(p), m + 1) i = m.(8.6)

Before we proceed we must insert a previously unstated theorem. We

would like to know the homology of the complex KZK∗BP 〈m〉
2m+1∗ .
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Proposition 8.7.

Hi

(
KZK∗BP 〈m〉

2m+1∗

)
� K∗ i �= m

� A(m, g(m− 1) + 1) i = m

where A(m, g(m−1)+1) is an exterior algebra with TorA(m,g(m−1)+1)(K∗, K∗)
an associated graded object for K∗K(Q/Z(p), m + 1).

These A have already shown up in Theorems 2.3 and 2.11. To simplify
notation, we will denote this special A, A(m, g(m − 1) + 1) by Am. It is the
first nontrivial A in the sense that A(m, i) = K∗ when i ≤ g(m− 1).

Proof. Most of the work has already been done, it is just a matter of
reinterpreting it. In particular, we go back to the proof of Theorem 4.1 (ii) for
k = 0. It works just as well for k = −1 if we ignore the extension and use the
fact that the kernel of

K∗BP 〈m〉
g(m)−1

vm∗� K∗BP 〈m〉
g(m−1)+1

(8.8)

is just our Am. This last fact we know from the proof of the identification of
the GHT tensor product in Section 5. The proof is quite degenerate in the case
we need since this is the first nontrivial A.

We have, using Propositions 8.1, 8.4, 8.7 and equation (8.6) completed the
following calculation.

Corollary 8.9. CTorK∗[BP ∗]
m (K∗[BP 〈0〉∗], K∗BP i) �

K∗K(Q/Z(p), m + 1) i = 2m + 2
Am i = 2m + 1
K∗ i �= 2m + 1 or 2m + 2.

This completes the answer to a previously unasked question. Namely, we

have already calculated the homology of KZK∗BP 〈m〉
r∗ when r ≥ 2m + 2 in

Theorem 2.4. We can compute the homology for lower r now. We have, using
Propositions 8.1, 8.4 and Corollary 8.9 completed the following calculation.

Corollary 8.10.

Hj

(
KZK∗BP 〈m〉

r∗

)
� K∗K(Q/Z(p), r −m− 1) j = m and r ≥ 2m + 2

� K∗K(Q/Z(p), j + 1) r = 2j + 2 < 2m + 2
� Aj r = 2j + 1 < 2m + 2
� K∗ r and j otherwise.
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Our goal is to calculate CTorK∗[BP ∗]
∗ (K∗[BP 〈q〉∗], K∗BP ∗). We have done

the q = 0 case now. By Propositions 8.1 and 8.4, and equation (1.21) in the
introduction, we see that

CTorK∗[BP ∗]
∗ (K∗[BP 〈q〉∗], K∗BP r) � H∗

(
KBP 〈q〉∗ZK∗BP 〈q〉

r∗

)
(8.11)

when r ≤ g(q). However, KBP 〈q〉∗ZK∗BP 〈q〉
r∗ is just K∗BP 〈q〉

r
which we know

to be CTor0, i.e. K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP r. So, we can begin our induction
with the lemma:

Lemma 8.12. For r ≤ g(q), CTorK∗[BP ∗]
j (K∗[BP 〈q〉∗], K∗BP r)

� K∗BP 〈q〉
r

j = 0

� K∗[BP 〈q〉∗]⊗K∗[BP ∗]K∗BP r

and

� K∗ j > 0.

The exterior algebras, A, which come into the calculations above are not
of much interest to us. It makes calculations a lot easier to work modulo exte-
rior algebras for the higher CTor groups. The Morava K-theory of Eilenberg-
Mac Lane spaces, the part we are interested in, never contains exterior gener-
ators as it is concentrated in even degrees. These Hopf algebras are known to
split into even degree parts and exterior Hopf algebras and there are never any
maps between them, see [HRW98].

We are now ready to prove Theorem 1.20 from the Introduction. We always
work modulo exterior algebras now in our CTorj when j > 0. We denote this
by CTorE. Working modulo the exterior part simplifies Corollary 8.9 and gives
the q = 0 version of Theorem 1.20 which grounds our induction.

Theorem 8.13. Let r − g(q) − j > 0, the only possible positive degree
nontrivial CTorE groups are,

CTorEK∗[BP ∗]
r−g(q)−j(K∗[BP 〈q〉∗], K∗BP r+r−g(q)−j)

� K∗K(πr−gδ(q)−jIBP 〈q〉
r−gδ(q)

, r − gδ(q)− j).

Proof of Theorem 1.20. We compare the answer in Theorem 1.14 to what
we have here. First, we are not working modulo exterior algebras in CTor0 and
we have the right side of Theorem 1.20 is just the GHT tensor product, which
is our CTor0. The left side of Theorem 1.20 is precisely given by Theorem 8.13
above, which is written just as in Theorem 1.20.
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Proof of Theorem 8.13. We do this by induction on q having grounded
our induction with the q = 0 case in Corollary 8.9. Our induction proceeds
using a Böckstein spectral sequence which comes from the exact sequence

BP 〈q + 1〉∗
vq+1� BP 〈q + 1〉∗ �BP 〈q〉∗.

This goes over to

K∗ �K∗[BP 〈q + 1〉∗]
[vq+1]� K∗[BP 〈q + 1〉∗] �K∗[BP 〈q〉∗] �K∗.

From this we get a long exact sequence in CTorE. (Moding out by our exte-
rior algebras does not destroy exactness because the category of Hopf algebras
splits.) Assuming by induction that we know the q version of our CTorE we
can attempt to use our Böckstein spectral sequence. First we must note that
all elements of CTorE for the q + 1 case are [vq+1] torsion. This is because
they must eventually land up in the groups of Lemma 8.12 which are all trivial.
Now note that the j of CTorEj for the q case is the same number used for
the Eilenberg-Mac Lane space. Thus, any differential in the Böckstein spectral
sequence must be a map of Morava K-theory of Eilenberg-Mac Lane spaces
which are in different degrees. All such maps are trivial by [HRW98]. Thus our
spectral sequence collapses. In principle there are two possibilities. The first
is that an element in the q case comes from the q + 1 case and the element it
comes from is [vq+1] torsion free. However, we have shown that there are no
such elements. Thus, all elements must map nontrivially around the boundary.
The image of each of these elements must then be infinitely [vq+1] divisible.
Another way to say this is that the long exact sequence of CTorE relating the
q+1 case to the q case is short exact in that the reduction of CTorE for q+1 to
q is always trivial (remember that we are only dealing with CTorEj for j > 0).
The maps on CTorE precisely mimic the stable maps on homotopy which also
give a short exact squence:

IBP 〈q〉 −→ IBP 〈q + 1〉
vq+1� Σ−2(pq+1−1)IBP 〈q + 1〉.

The details are left to the reader.

9. Unstable Bousfield localization

In this section we prove Theorem 1.24.

Proof of Theorem 1.24. We begin by showing that LqBP 〈q〉(q)
r

is E(q)
local. First we note that LqBP 〈q〉

r
is E(q) local by [Bou82, Proposition 1.3].

Next, we want LqBP 〈q〉[q]
r

to be E(q) local. This follows from Bousfield’s most
recent [Bou] where he shows that the E(q) localization of a connected p-local
Postnikov H-space preserves the j-th homotopy group for j < q + 1, divides
the q + 1 group by its torsion subgroup and rationalizes the higher groups.
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Then the fiber, the space we are concerned with, is also E(q) local by [Bou75,
Theorem 12.9].

All that remains to be shown is that our map LqBP 〈q〉
r
−→ LqBP 〈q〉(q)

r
is an E(q) equivalence. This is true if it is a rational equivalence and an
isomorphism on all Morava K-theories, K(n)∗(−), 0 < n ≤ q, or, by [Bou99], a
rational equivalence and an isomorphism on K(q)∗(−) (we cannot use [Wil99b]
because our spaces are not of finite type). Since we know the homotopy of the
spaces, the rational equivalence is obvious.

From Theorem 2.2 (iii) we know LqBP 〈q〉
r
−→ LqBP 〈q〉(q+1)

r
gives an

isomorphism on all K(n)∗(−), n ≤ q. All we need now is just to show there
is a K(n)∗(−) isomorphism for n ≤ q between the spaces: LqBP 〈q〉(q+1)

r
−→

LqBP 〈q〉(q)
r

. To see this we look at the bar spectral sequence for the fibration:

K(G, q) −→ LqBP 〈q〉(q+1)

r
−→ LqBP 〈q〉(q)

r
.(9.1)

Here, G is the missing homotopy group (which by sparseness is frequently zero).
We use Theorem 3.4 to get our isomorphism. K(n)∗K(G, q), n < q, is trivial,
so we easily get an isomorphism of the other two spaces. For n = q this is not
trivial. However, if we can show the map from it is trivial then since Tor of
K(q)∗K(G, q) is trivial by [RW80], the result follows from Theorem 3.4. All we
need to do is show that the map

K(q)∗K(G, q) −→ K(q)∗LqBP 〈q〉(q+1)

r

is trivial. From Theorem 2.2 (iii) we know that this second Hopf algebra is
either a polynomial algebra or an exterior algebra. Since our first Hopf algebra
is even degree, we cannot have a nontrivial map to an exterior algebra. We also
cannot have a map to a polynomial Hopf algebra but this is more difficult to
see. The easy way for us is to note that the Dieudonné module ([SW98]) of a
polynomial algebra has no elements which are p-divisible. However, all of the
elements in the Dieudonné module for K(q)∗K(G, q) are p-divisible ([SW98,
Theorem 1.3]) (because G is a finite sum of Q/Z(p)) and therefore all maps are
trivial from the first Hopf algebra to the second.
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