
Kontsevich’s Swiss Cheese Conjecture
Justin D. Thomas

We prove a conjecture of Kontsevich which states that if A is an Ed−1
algebra then the Hochschild cochain object of A is the universal Ed algebra
acting on A. The notion of an Ed algebra acting on an Ed−1 algebra was
defined by Kontsevich using the swiss cheese operad of Voronov. The degree
0 and 1 pieces of the swiss cheese operad can be used to build a cofibrant
model for A as an Ed−1 − A module. The theorem amounts to the fact that
the swiss cheese operad is generated up to homotopy by its degree 0 and 1
pieces.

18D50, 13D03; 18G55

1 Introduction

In [9] Gerstenhaber showed that the Hochschild cohomology HH∗(A) of an
associative algebra A is a graded Lie algebra and a graded commutative algebra,
and the two structures are compatible. Any graded vector space with this
algebraic structure is now called a Gerstenhaber algebra. In [6] Cohen showed
that the homology of the little disks operad, H∗(E2), is the Gerstenhaber operad.
Sinha also has shown this in [20]. Deligne later asked if the action of H∗(E2) on
HH∗(A) descends from a natural action at the level of chains. In other words, is
there a natural algebra structure on CH∗(A) of Chains(E2) which recovers the
structure discovered by Gerstenhaber after passing to (co)homology?

Already, this question is evidently in the realm of homotopy theory. So let
us replace the associative algebras by E1 algebras. This makes it clear that
the question is fundamentally one about the relationship between the operads
E1 and E2 . Indeed, we can generalize to consider the relationship between Ed

and Ed−1 algebras. For any Ed−1 algebra in a sufficiently rich homotopical
category C we can make sense of its Hochschild cochains as an object of C . The
Hochschild cochain object of A is denoted Hoch(A) and is an object of the same
category to which A belongs. This terminology is based on the case where C is
the category of differential graded vector spaces and A is an associative algebra.
In that case, Hoch(A) is the usual Hochschild cochain complex of A.
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The original Deligne conjecture where A is an E1 algebra in the category of
chain complexes has been solved by Tamarkin [22], Kontsevich-Soibleman [17],
Voronov [26], McClure-Smith [19], Berger-Fresse [2], and Kaufmann-Schwell
[15]. A cyclic version is also due to Kaufmann [14]. Vallette [24] generalized the
theorem to include certain other Koszul operads. The generalized version where
A is an Ed algebra in a general category like C has been proven by Hu-Kriz-
Voronov [13] and in the ∞-operad setting by Lurie [18]. We show here that
Hoch(A) is not just an Ed algebra, but comes equipped with a universal property.
It is the universal Ed algebra acting on the Ed−1 algebra A. This universal
property is shown in the case d = 2 in a paper of Dolgushev-Tamarkin-Tsygan
[8].

The notion of an Ed algebra acting on an Ed−1 algebra was introduced by
Kontsevich in [16]. This notion uses the swiss cheese operad SCd of Voronov
[25]. This is a two-colored operad which interpolates between Ed and Ed−1 . A
swiss cheese algebra is a pair (B,A) where B is an Ed algebra, A is an Ed−1
algebra, and there is some extra structure compatible with these as seen in
definition 2.1.9. We refer to this extra structure as an action of B on A.

The case d = 1 is enlightening. For simplicity, let us work in the category of
vector spaces. A (non-unital) E0 algebra A in vector spaces is just a vector
space with no extra data. The Hochschild object in this case is hom(A,A). If B
is an associative algebra, it is in particular an E1 algebra. An SC1 structure on
the pair (B,A) then amounts to the choice of a B-module structure on A.

In this case, the swiss cheese conjecture merely states that hom(A,A) is an
associative algebra, and giving an SC1 structure on (B,A) is equivalent to giving
a map of associative algebras B→ Hoch(A) = hom(A,A). We prove the analog
of this when B is an Ed algebra and A is an Ed−1 algebra, d ≥ 1.

Joseph Hirsh brought to the attention of the author the following helpful
characterization of the results of this paper. Given a bifibrant Ed−1 algebra A
the functor from Ed algebras to spaces,

B 7→ {the space of swiss cheese actions of B on A}

is represented by the Hochschild cochain object of A.
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1.2 Outline of the paper

In section 2 we define the Ed and SCd operads, and give both an imprecise and
precise statement of the theorem we will prove. We also outline the idea of the
proof. In section 3 we define the Hochschild cochain object for Ed−1 algebras
and show that we can use the swiss cheese operad to construct a model for the
Hochschild cochain object. We use this model in section 4 to prove a “universal
cheese” theorem which applies to an arbitrary operad acting on Hochschild
cochains. In section 5 we show that Ed does indeed act, up to homotopy, on
Hochschild cochains, and the “universal cheese” theorem specializes to the main
theorem of this paper. Finally, in section 6 we prove the main theorem which
allows the homotopy Ed action: the swiss cheese operad is freely generated up
to homotopy by its degree 0 and 1 pieces.

2 The swiss cheese operad

We will define K -colored operads in general, and the swiss cheese operad in
particular. We also describe algebras over the swiss cheese operad and state the
main theorem of this paper.

2.1 The colored operad swiss cheese

Fix a set K . A K -colored set is a pair (I, col) where I is a set and col : I → K
is a map of sets, called the coloring. We will often denote such a colored set
simply by I , leaving the coloring implicit. Let aut(I) be the group of bijections
on the set I which preserve its coloring. Since we have left the coloring implicit,
we use the notation I# to refer to the underlying uncolored set.

Let (S,⊗) be a symmetric monoidal category. We can speak of categories
enriched over S . In particular, suppose O is a category enriched over S and
suppose the objects of O are finite K -colored sets. We let O(I; J) denote the S
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object of morphisms in O from I to J . If we further suppose that disjoint union
of finite K -colored sets extends to an S -enriched symmetric monoidal structure
on O , then each O(I; J) is a right aut(I) and left aut(J) module in a natural way.
In addition, if S contains finite coproducts, the symmetric monoidal structure
on morphisms in O is specified by equivariant maps

(1)
∐

f : I#→J#

⊗
j∈J

O(f−1{j}; {j})→ O(I; J).

The following definition follows Boardman-Vogt [5].

2.1.1 Definition Let (S,⊗) be a symmetric monoidal category containing all
finite coproducts where ⊗ distributes over finite coproducts. Let K be a set.
The data of a K -colored operad O in the symmetric monoidal category S is a
symmetric monoidal category, denoted O , which is enriched over S and whose
objects are K -colored finite sets, I → K . This data must satisfy the following
conditions. First, on objects, the symmetric monoidal structure of O is the
disjoint union of sets over K . Second, the map in (1) must be an isomorphism
for every I and J .

2.1.2 Remark We will use the unmodified noun operad to mean K -colored
operad when the coloring set K is clear from context. The reader should note
that this differs from an equally plausible convention where operad is always
used to denote {∗}-colored operads.

2.1.3 Notation Let n to denote the finite set {1, . . . , n}. Typically K will be
K = {f, h}, where f stands for full disk and h stands for half disk. In this case
we use (n,m) to denote the K -colored set which is the disjoint union of

n→ {f} and m→ {h}.

If K ' {∗}, then a K -colored operad will simply be called a 1-colored operad.
Any 1-colored operad E gives for each m,m′ ∈ Z≥0 , objects E(m′; m) ∈ S . We
denote E(m′; m) simply by E(m′; m) and E(m; 1) simply by E(m).

Any {f, h}-colored operad O gives for each n,m, n′,m′ ∈ Z≥0 , objects

O(n′,m′; n,m) := O((n′,m′); (n,m)) ∈ S.

We denote O(n,m; 0, 1) by Oh(n,m) and we denote O(n,m; 1, 0) by Of(n,m).

2.1.4 Definition Let (Top,×) denote the symmetric monoidal category of
compactly generated Hausdorff topological spaces with the cartesian product.



Kontsevich’s Swiss Cheese Conjecture 5

2.1.5 Example Let K be the one-point set {f} and let (S,⊗) = (Top,×).
The operad Ed is an {f}-colored operad in the category Top. Let D̄d be the
closed unit disk inside Rd . Call a map f : D̄d → D̄d a little full-disk (or little d
disk or simply little disk) if f is of the form f (x) = rx + c for some 0 < r ≤ 1
and c ∈ Rd . Given a finite set I , the underlying set of Ed(I; f) is the set of
embeddings

f :
∐
i∈I

D̄d → D̄d,

where each restriction fi : D̄d → D̄d is a little full-disk. Using notation 2.1.3, any
isomorphism I → n induces an isomorphism Ed(I; f) ' Ed(n), and the latter can
naturally be considered as a subset of Rn+dn . This gives each Ed(I; f) a topology.
The operadic structure is given by composing little d disks as maps D̄d → D̄d .
The identity of Ed is the little full-disk id : D̄d → D̄d . This is the unital version
of Ed , so Ed(0) = ∗ and Ed(1) consists of more than just the identity.

2.1.6 Example Let K = {f, h}. The K -colored operad SCd is called the (d-
dimensional) swiss cheese operad and is the principal subject of this paper. Like
example 2.1.5 it is an operad in (Top,×).

Let {f} and {h} denote the evident singleton K -colored sets. By definition 2.1.1
and formula (1), we only need to define the spaces SCd(I; f) and SCd(I; h) for
every K -colored set (I, col : I → K). First, we define the “full-disk output” part
of SCd ,

SCd(I; f) =

Ed(I; f) col−1(f) = I

∅ else.

To define the “half-disk output” part of SCd , that is SCd(I; h), we first need the
notion of little half-disks. Let D̄d

+ be the closed d -dimensional half-disk,

D̄d
+ = {(x1, . . . , xd) ∈ Rd | |x| ≤ 1 and xd ≥ 0}.

A little half-disk is defined to be a map f : D̄d
+ → D̄d

+ of the form f (x) = rx + c
for some 0 < r ≤ 1 and c ∈ Rd−1 × {0}. As a set, we define SCd(I; h) to consist
of embeddings

f :
∐
i∈I

D̄d
i → D̄d

+

where each restriction fi : D̄d
i → D̄d

+ is a little full disk (example 2.1.5) if
col(i) = f or a little half-disk if col(i) = h. It is clear that if

∣∣col−1(f)
∣∣ = n

and
∣∣col−1(h)

∣∣ = m, then SCd(I; h) can be naturally embedded inside RN where
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N = (d + 1)n + dm. We give SCd(I; h) the subspace topology inherited from such
an embedding.

Following notation 2.1.3, a point in SCh
d (n,m) is given by n labeled full-disks

and m labeled half-disks in the unit half-disk where none of the disks intersect
and the half-disks all lie on the bottom. We allow the degenerate configuration
when (n,m) = (0, 1) which is the unit half-disk contained in itself. Note that
we have SCh

d (0, 0) = ∗ and SCh
d (1, 0) contains more than one point. Thus we

are using the unital swiss cheese operad. This differs from Kontsevich [16] and
Voronov [25].

Composition in SCd is given by substituting full-disks and half-disks into each
other . More precisely, we have maps

(2) Ed(n)× Ed(k1)× · · · × Ed(kn)→ Ed(k1 + · · ·+ kn)

and

(3) SCh
d (n,m)× Ed(k1)× · · · × Ed(kn)× SCh

d (kn+1, `1)× · · · × SCh
d (kn+m, `m)

−→ SCh
d (k1 + · · ·+ kn+m, `1 + · · ·+ `m).

Notice that we can identify SCh
d (0,m) with Ed−1(m) so that the restriction of

SCd to the spaces SCh
d (0, •) is isomorphic to the operad Ed−1 . We say that

Ed−1 is the h color of SCd and Ed is the f color of SCd . We think of SCd as
interpolating between Ed and Ed−1 .

2.1.7 Definition Suppose O is a K -colored operad in S and C is a symmetric
monoidal category enriched over S . An algebra over O in the category C is
a strong symmetric monoidal functor O → C . A morphism of O algebras is
a monoidal natural transformation. The category of O algebras in C will be
denoted AlgO(C).

2.1.8 Example If C is a symmetric monoidal category enriched over Top, we
can consider algebras over SCd in C . Such an algebra gives the data of a pair
(B,A) of objects in C together with maps of topological spaces

Ed(n)→ mapC(B⊗n,B)

and
SCh

d (n,m)→ mapC(B⊗n ⊗ A⊗m,A),
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where mapC(C,C′) is the topological space of maps between two objects C,C′

in C . These data must satisfy conditions guaranteeing they assemble into a
strong symmetric monoidal functor SCd → C .

The object B corresponds to the object {f} of SCd and the object A corresponds
to {h}. Together these form a K -colored operad End(B,A) in Top where, using
notation 2.1.3,

Endf(B,A)(n,m) = map(B⊗n ⊗ A⊗m,B)(4)
Endh(B,A)(n,m) = map(B⊗n ⊗ A⊗m,A).(5)

The collection of SCd algebra structures on a fixed pair (B,A) is the collection
of strong symmetric monoidal functors

SCd → End(B,A),

which restrict to the identity on the set of objects. Simply put, a swiss cheese
algebra (B,A) is an Ed algebra B, an Ed−1 algebra A, and some chosen mixing of
these structures. We refer to this mixing as an action of B on A. The following
definition is due to Kontsevich [16].

2.1.9 Definition Let B be an Ed algebra and A an Ed−1 algebra. A swiss
cheese action of B on A is the structure of a swiss cheese algebra on the pair
(B,A) extending the given Ed and Ed−1 structures. We may also simply call
this “an action of B on A”.

2.2 Statement of main theorem

Now we can informally state the conjecture proven in this paper.

Theorem (Informal statement of Swiss Cheese Conjecture) The Hochschild
cochain object Hoch(A) of an Ed−1 algebra A is the universal Ed algebra acting
on A. In other words, for any Ed−1 algebra A, there is an Ed algebra structure
on Hoch(A) such that for any Ed algebra B, giving a map of Ed algebras
B→ Hoch(A) is equivalent to giving the structure of an SCd algebra on the pair
(B,A) extending the given Ed and Ed−1 structures.

The basic structure of the proof is outlined in diagram (6). The categories
of operads shown in the diagram are defined precisely in section 2.3. The
category TopΣ consists of symmetric sequences of topological spaces. Informally,
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Op(TopΣ) consists of K -colored operads whose f -colored output is trivial, and
Op(TopΣ≤1) further restricts to those pieces whose f -colored inputs total 0 or
1. The forgetful functors are presented below as straight arrows; there is a left
adjoint shown as a bent arrow.

Boardman and Vogt’s W construction [5] is an explicit cofibrant replacement
functor, which we apply to SCd , to get an equivalent cofibrant operad SCd :=
WSCd . The W construction does not strictly commute with the forgetful functors
in (6). In particular W(SCh

d ) is not isomorphic to (WSCd)h , but they are
homotopy equivalent. We will let SCh

d denote W(SCh
d ) and SCh1

d = W(SCh1
d ).

(6)
OpK Op(TopΣ) Op(TopΣ≤1)

SCd SCh
d SCh1

d

SCh∞
d o E SCh∞

d
transfer of
structure

Proposition 3.2.7 shows that we can use SCh1
d to construct a model for the

Hochschild cochain object. This allows us to prove a weak version of the swiss
cheese theorem in proposition 4.1.9 taking place in the context of Op(TopΣ≤1).
Next, we will take the free extension of SCh1

d ∈ Op(TopΣ≤1) to an operad in
Op(TopΣ), to get SCh∞

d . This immediately gives a version of the swiss cheese
theorem in the context of Op(TopΣ), see corollary 4.1.11. Then we use the fact
that SCh∞

d is freely generated by its degree 0 and 1 pieces to prove a version of
the swiss cheese theorem in the context of OpK . None of these three versions
of the swiss cheese theorem make any use of Ed . One can think of this last
“universal cheese” theorem (proposition 4.1.16) as a construction of the universal
K -colored operad built from Ed−1 and controlling Ed−1 -linear actions on A.

To bring Ed back in to the story, we use a technical result, 5.1.17, which shows
that the canonical map SCh∞

d → SCh
d is an equivalence. Observe that one

can view SCd as SCh
d equipped with the extra structure of a right action of

Ed . Now use a transfer of structure argument to construct an operad E which
is equivalent to Ed and which acts on the right on SCh∞

d . This allows us to
define SCh∞

d o E, which we show is equivalent to SCd in 5.1.22. The universal
property of SCh∞

d o E with respect to the Hochschild cochain object is stated in
theorem 2.2.1 and follows from proposition 4.1.16.

2.2.1 Theorem (Precise version of Kontsevich’s Swiss Cheese Conjecture) Let
C be a symmetric monoidal model category tensored over Top and satisfying
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the conditions in notation 3.1.9. Let A ∈ AlgEd−1
(C) be cofibrant and fibrant

using the projective model structure (3.1.8). There is a model of SCd , called
SCh∞

d o E where E ' Ed . There is also a model for the Hochschild cochain
object of A, called Hoch(A), such that Hoch(A) is the universal E algebra acting
on A through SCh∞

d o E. That is, Hoch(A) is an E algebra and this structure,
together with the Ed−1 algebra structure on A, can be extended to an SCh∞

d oE
algebra structure on (Hoch(A),A) in such a way that there is an isomorphism
of categories

AlgA
(SCh∞

d oE)(C) ∼= AlgE(C)/Hoch(A).

The category on the left consists of E algebras B together with an action of B
on A. The category on the right consists of E algebras B together with an E
algebra map B→ Hoch(A).

Lemma 5.1.22 shows that SCh∞
d o E is equivalent to SCd . Lemma 5.1.21 shows

that E is equivalent to Ed . Proposition 3.2.7 sets up our choice of model of
Hoch(A). Proposition 4.1.16, together with the construction of the operad
SCh∞

d o E in section 5 shows the desired isomorphism of categories.

2.3 Defining SCh
d and SCh1

d

Recall that C is a symmetric monoidal category enriched over S , our basic
category in which our operads live. We will assume that both C and S have
all coproducts and that tensor products distribute over finite coproducts. In
the case of operads from OpK we have (S,⊗) = (Top,×), the symmetric
monoidal category of compactly generated topological spaces with cartesian
product. In the case of operads such as SCh

d and SCh
d from Op(TopΣ), we have

(S,⊗) = (TopΣ,⊗) from definition 2.3.1. Finally, for SCh1
d and SCh1

d we use
S = TopΣ≤1 as in definition 2.3.2.

2.3.1 Definition Let Σ denote the opposite of the category of finite sets with
morphisms given by bijections, and let (D,⊗D) be any symmetric monoidal
category. The category of functors Σ→ D , denoted DΣ , is usually called the
category of symmetric sequences in D . We endow DΣ with the usual symmetric
monoidal structure given by left Kan extension of Σ× Σ→ D ×D → D along
disjoint union of sets Σ× Σ→ Σ. Specifically, if X,Y ∈ DΣ , then X ⊗ Y ∈ DΣ

satisfies
(X ⊗ Y)(n) =

∐
n=n1+n2

Indaut(n)
aut(n1)×aut(n2)(X(n1)⊗D Y(n2)),
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See Harper [11, definition 3.3] for more details.

2.3.2 Definition Let Σ≤1 denote the full subcategory of Σ consisting of
finite sets of size 0 or 1 together with bijections as morphisms. Let DΣ≤1

denote the symmetric monoidal category of functors Σ≤1 → D , with monoidal
structure inherited from DΣ . Call these the degree 0-1 symmetric sequences in
D . Concretely, DΣ≤1 is just the category D ×D endowed with the symmetric
monoidal structure
(7) (C0,C1)⊗ (D0,D1) = (C0 ⊗D D0, (C0 ⊗D D1)

∐
(C1 ⊗D D0)).

The braiding isomorphism (C0,C1)⊗ (D0,D1)→ (D0,D1)⊗ (C0,C1) is induced
from the braiding isomorphism on D .

2.3.3 Definition Let OpK denote the category of K = {f, h}-colored operads
in Top. There is a forgetful functor OpK → Op(TopΣ). This functor takes
O ∈ OpK to the operad Oh whose arity m component is the symmetric sequence
n 7→ Oh(n,m) (see notation 2.1.3). We forget the spaces Oe(n,m), and think of
elements of Oh(n,m) as degree n, arity m elements of Oh .
The functor Op(TopΣ) → Op(TopΣ≤1) is induced by the symmetric monoidal
forgetful functor TopΣ → TopΣ≤1 . Denote the image of O in Op(TopΣ≤1) as
Oh1 .

2.3.4 Example We outline the structure of SCh
d as an operad in Op(TopΣ).

Think of SCh
d(•,m) as the symmetric sequence n 7→ SCh

d(n,m). In (8), ⊗ is the
tensor product of symmetric sequences. The operad composition law is
(8) SCh

d(•,m)⊗ SCh
d(•, `1)⊗ · · · ⊗ SCh

d(•, `m)→ SCh
d(•, `),

where ` =
∑

i `i . The degree n component of the right hand symmetric sequence
is SCh

d(n, `). The degree n component of the left hand symmetric sequence is∐
n0+···+nm=n

Ind SCh
d(n0,m)× SCh

d(n1, `1)× · · · × SCh
d(nm, `m),

where Ind is the induction functor giving the correct symmetric group action.
The point is that if we delete all appearances of Ed from (3) then it provides
exactly the data of (8).

2.3.5 Example We outline the structure of SCh1
d as a 1-colored operad in

TopΣ≤1 . For each m′,m, define an object SCh1
d (m′; m) ∈ TopΣ≤1 ,

SCh1
d (m′; m) = (SCh

d (0,m′; 0,m), SCh
d (1,m′; 0,m))

∼= (Ed−1(m′; m), SCh
d (1,m′; 0,m)).(9)
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Using the symmetric monoidal structure from definition 2.3.2 and the identifica-
tion in equation (9) we can write the operad structure maps on SCh1

d as a triple
of morphisms. The map of degree 0 pieces,

Ed−1(m′′; m)× Ed−1(m′; m′′)→ Ed−1(m′; m),

and the maps of degree 1 pieces,

Ed−1(m′′; m)× SCh
d (1,m′; 0,m′′)→ SCh

d (1,m′; 0,m),

and
SCh

d (1,m′′; 0,m)× Ed−1(m′; m′′)→ SCh
d (1,m′; 0,m).

3 Hochschild cohomology from swiss cheese

For the remainder of the paper we replace Ed−1,Ed, and SCd by cofibrant models
given by the Boardman-Vogt W construction [5]. A proof that this gives a
cofibrant replacement for certain operads can be found in Berger-Moerdijk [1].
We will denote these cofibrant replacements by Ed−1,Ed, and SCd . We also
want to restrict our attention to swiss cheese algebras in categories where we
can do homotopy theory. In the proper context the Hochschild cochain object
of an Ed−1 algebra A has a natural model constructed from A and the degree
0-1 parts of SCh

d . This is the content of proposition 3.2.7.

3.1 Homotopy theoretic context

3.1.1 Definition From [12, definition 4.2.6], a symmetric monoidal model
category S is a closed symmetric monoidal category whose monoidal structure
⊗ : S × S → S is a Quillen bifunctor, and where the cofibrant replacement
Q1→ 1 of the monoidal unit induces weak equivalences Q1⊗ X → X for every
cofibrant X .

3.1.2 Example The category (Top,×) of compactly generated spaces with
the cartesian product and Serre model structure is a symmetric monoidal model
category.

3.1.3 Definition Let S be a symmetric monoidal model category. A symmetric
monoidal model category tensored over S is a closed symmetric monoidal model
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category C , together with a symmetric monoidal Quillen functor S → C . For
more details see Hovey [12, definition 4.2.20].

In particular, C comes equipped with functors

⊗ : C × C → C ⊗ : S × C → C.
homC : Cop × C → C mapC : Cop × C → S

The mapping spaces mapC(A,B) give C the structure of a category enriched
over S , so we can speak of Ed−1,Ed and SCd algebras in C .

For any object A of C , the functor −⊗A has right adjoints homC(A,−) : C → C
and mapC(A,−) : C → S . This data satisfies Quillen’s SM7 axiom (Hovey [12,
section 4.2]).

3.1.4 Example The category CΣ≤1 from definition 2.3.2 is tensored over the
symmetric monoidal category TopΣ≤1 with

TopΣ≤1 ⊗ CΣ≤1 → CΣ≤1

given by the analogue of equation (7),

(X0,X1)⊗ (C0,C1) = (X0 ⊗ C0,X0 ⊗ C1
∐

X1 ⊗ C0),

where Xi ∈ Top and Ci ∈ C .

3.1.5 Example The symmetric monoidal functor Top→ TopΣ≤1 sending X to
(X, ∅) makes both TopΣ≤1 and CΣ≤1 into symmetric monoidal model categories
tensored over Top. Note that for a topological 1-colored operad O , we can
consider algebras over O in C as well as algebras over O in CΣ≤1 .

The category of degree 0-1 symmetric sequences is naturally home to O -algebras
A and O-A modules M .

3.1.6 Definition Suppose O is a 1-colored operad in Top, and let (A,M) be
an object of CΣ≤1 . The structure of an O algebra on the degree 0-1 symmetric
sequence (A,M) is the structure of an O algebra on A together with the data
of maps

O(m)⊗M ⊗ A⊗m−1 → M,

satisfying certain conditions (see diagram (16)). We call this data the structure
of an O-A module on M . Given a fixed O algebra A ∈ C , the category ModA

O(C)
of O-A modules has objects M ∈ C together with the structure of an O algebra
on (A,M) ∈ CΣ≤1 extending the given O algebra structure on A.
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We can enrich ModA
O(C) over C and over Top. Indeed, given O-A modules M′

and M , we can define the hom-object of O-A module morphisms from M′ to M
as the equalizer

homA
O(M′,M) eq−→ homC(M′,M) ⇒ homC(FA

O(M′),M).

Here FA
O : C → C is the free O-A module monad on C . One can define this using

the monad FO on C × C which sends (A,M) to (F0
O(A),F1

O(A,M)), where F0
O is

the free O -algebra monad and

F1
O(A,M) =

∐
m
O(m)⊗Sm

( m∐
i=1

A⊗i−1 ⊗M ⊗ A⊗m−i
)
.

The natural transformation F1
O(F0

O(−),F1
O(−,−)) → F1

O(−,−) is given by
composition in O . This, along with F0

OF0
O → F0

O , defines the monad structure
FOFO → FO . Finally, we define the free O-A algebra monad via the coequalizer

F1
O(F0

O(A),F1
O(A,M)) ⇒ F1

O(A,M) coeq−−−→ FA
O(M).

It is clear that every O-A module M is equipped with a canonical map FA
O(M)→

M . The two parallel arrows in the equalizer are given by the two maps FA
O(M′)→

M′ and FA
O(M) → M . The topological space mapA

O(M′,M) is defined as an
equalizer in exactly the same manner.

3.1.7 Example Let A ∈ C be an Ed−1 algebra, then the degree 0-1 symmetric
sequence (A,A) is naturally an Ed−1 algebra. That is, A is naturally an Ed−1-A
module.

3.1.8 Definition Recall from example 2.3.5 that SCh1
d is an operad in TopΣ≤1 .

Let SCh1
d ∈ TopΣ≤1 be W(SCh1

d ). Since CΣ≤1 is enriched over TopΣ≤1 by exam-
ple 3.1.4, we can consider SCh1

d algebras in CΣ≤1 . In addition, by example 3.1.5
we can consider Ed−1 algebras in CΣ≤1 . There are adjunctions

C � AlgEd−1
(C) C � ModA

Ed−1(C)

C × C � AlgEd−1
(CΣ≤1) � AlgSCh1

d
(CΣ≤1)

We describe the right adjoints only. On the top left the Ed−1 algebra A is sent
to the underlying object A of C . The top right functor sends the Ed−1-A module
M to the underlying object M of C . In the pair of composable adjunctions, an
SCh1

d algebra (A,M) can be considered as an Ed−1 algebra by forgetting the
structure maps in equation (13). For the final adjunction, any Ed−1 algebra in
CΣ≤1 has an underlying pair of C -objects (A,M).



14 Justin D. Thomas

3.1.9 Notation Throughout the remainder of this paper C will be a cofibrantly
generated symmetric monoidal model category tensored over Top such that the
adjunctions in definition 3.1.8 are Quillen adjunctions.

3.1.10 Remark In [21, theorem 6], Spitzweck shows that ModA
O(C) � C

is a Quillen adjunction if A is cofibrant in C . In addition Berger-Moerdijk
show in [3, proposition 4.1] that if D is a symmetric monoidal model category
which is cofibrantly generated, has a cofibrant unit, and a symmetric monoidal
fibrant replacement functor, then the category AlgO(D) has the projective model
structure induced from the forgetful functor to D . The operad O in this theorem
is an operad in D . However, their result is more general, as seen in remark
4.6.4 of the same article. Their argument extends without change to show that
AlgO(D) has the desired model structure in the case that O is an operad in
Top and D is tensored over Top as in definition 3.1.1, and the generating trivial
cofibrations of D are cofibrant. The condition that the monoidal unit of D is
cofibrant is not necessary in this situation. The cofibrance of the monoidal unit
in Top is enough. Taking O = Ed−1 or O = SCh1

d and D = C or D = CΣ≤1 ,
we conclude that the assumptions in notation 3.1.9, and in the main theorem
of this paper, hold when C is the category of compactly generated Hausdorff
spaces (Top), or spectra, or chain complexes.

We use the model structure on the category of Ed−1-A modules to define the
Hochschild cochain object.

3.1.11 Definition Given an Ed−1 algebra A ∈ C , let the Hochschild cochain
object of A be

Hoch(A) = homA
Ed−1(Ac,Af ),

where homA
Ed−1

is given by the equalizer in definition 3.1.6. The Ed−1-A modules
Ac and Af are cofibrant and fibrant replacements for A respectively. Note that
Hoch(A) is an object of C .

We will use the degree 0 and 1 pieces of the swiss cheese operad to build a
cofibrant replacement for A as an Ed−1-A module.

3.2 Swiss cheese in degrees zero and one

An SCh1
d algebra (see definition 3.1.8 and example 2.3.5) is a pair (A,M) of

objects of C together with maps in CΣ≤1 for every m,
(10)

(
Ed−1(m),SCh

d(1,m)
)
⊗ (A,M)⊗m → (A,M),
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where we have used the isomorphism SCh
d(0,m) ' Ed−1(m). Alternatively, we

can view the morphism in equation (10) as three separate maps in C .

Ed−1(m)⊗ A⊗m → A(11)
Ed−1(m)⊗M ⊗ A⊗m−1 → M(12)
SCh

d(1,m)⊗ A⊗m → M(13)

The condition that the maps in equation (10) define an SCh1
d structure on the pair

(A,M) is the condition that the diagram (14) commutes in the TopΣ≤1 -enriched
category CΣ≤1 .

(14)
SCh1

d (m′)⊗ SCh1
d (m; m′)⊗ (A,M)⊗m SCh1

d (m)⊗ (A,M)⊗m

SCh1
d (m′)⊗ (A,M)⊗m′ (A,M)

In terms of equations (11), (12), and (13), diagram (14) splits into four diagrams.
Each diagram is determined by the degrees of the three tensor factors in the
upper left hand corner of diagram (14). In the first the degrees are 0, 0, 0; in
the second the degrees are 0, 0, 1; in the third, 1, 0, 0; and in the fourth, 0, 1, 0.

(15)
Ed−1(m′)⊗ Ed−1(m; m′)⊗ A⊗m Ed−1(m)⊗ A⊗m

Ed−1(m′)⊗ A⊗m′ A

The above diagram, (15), commutes for all m′,m if and only if A is an Ed−1
algebra. Diagram (16) below commutes if and only if M is an Ed−1-A module.

(16)
Ed−1(m′)⊗ Ed−1(m; m′)⊗M ⊗ A⊗m−1 Ed−1(m)⊗M ⊗ A⊗m′−1

Ed−1(m)⊗M ⊗ A⊗m−1 M

Diagram (17) shows a compatibility condition between the degree 0 and degree
1 structures.

(17)
SCh

d(1,m′)⊗ Ed−1(m; m′)⊗ A⊗m SCh
d(1,m)⊗ A⊗m

SCh
d(1,m′)⊗ A⊗m′ M
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Diagram (18) presents another compatibility condition between the degree 0
and degree 1 structures.

(18)
Ed−1(m′)⊗ SCh

d(1,m; 0,m′)⊗ A⊗m SCh
d(1,m)⊗ A⊗m

Ed−1(m′)⊗M ⊗ A⊗m′−1 M

3.2.1 Example In this example we construct the universal extension of an
Ed−1 algebra A to an SCh1

d algebra. We denote this universal pair by (A,Asc).
The composite forgetful functor

AlgSCh1
d

(CΣ≤1)→ AlgEd−1
(CΣ≤1)→ AlgEd−1

(C),

has a left adjoint which sends the Ed−1 algebra A to the pair (A,Asc) where Asc ,
which may be read as “A swiss cheese”, is a quotient of

(19) Āsc =
∐
m≥0

SCh
d(1,m)⊗Sm A⊗m,

where Sm = aut(m). We can think of Āsc heuristically as SCh
d(1, •)⊗ A⊗• . Now

both A and SCh
d(1, •) carry an action of Ed−1 , so we can form the quotient

Asc := SCh
d(1, •)⊗Ed−1 A⊗• . More precisely, Asc is defined as the coequalizer

(20)
∐
m,m′

SCh
d(1,m)⊗ Ed−1(m′; m)⊗ A⊗m′ ⇒ Āsc coeq−−−→ Asc,

where one of the arrows is given by the operadic composition on swiss cheese
and the other by the Ed−1 structure on A. Figure 1 shows the relation ∼ such
that Asc = Āsc/∼ .

a3 a4 a5

= a

t1
∞ t2

∼

a1 a2 a3 a4 a5 a6

t1
t2

a1 a2

a

a6

Figure 1: The relations in Asc come from the Ed−1 algebra structure of A. If m is the
map A⊗3 → A given by the swiss cheese element in SCh

d(0, 3) ' Ed−1(3) in the figure,
set a = m(a1, a2, a3). The edges t1 and t2 are less than ∞, so the relation does not
apply to the vertices on the left and right.
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Verifying that (A,Asc) is an SCh1
d algebra is a matter of using the commuting

left and right actions of Ed−1 on SCh1
d . By this we mean the morphism below

uses both left and right actions, and can be obtained by performing the left
action first, then the right, or vice versa,

Ed−1(m′′)× SCh
d(1,m′; 0,m′′)× Ed−1(m; m′)→ SCh

d(1,m).

The left action defines a map

(21) Ed−1(m)⊗ Āsc ⊗ A⊗m−1 → Āsc,

using the the ◦1 operad composition. Since the left and right Ed−1 actions on
SCh1

d commute, the arrow in (21) descends to give the data of a Ed−1-A module
structure on Asc , i.e. equation (12) for M = Asc . Of course, the maps from
equation (13) with M = Asc are simply given by Āsc → Asc .

Now let us observe that the four diagrams (15)-(18) commute for (A,Asc). The
first diagram, (15), is trivial since A is an Ed−1 algebra. The second diagram,
(16), commutes since the left action of Ed−1 on SCh1

d is indeed an action. That
is, it is compatible with composition in Ed−1 . The third diagram, (17), clearly
commutes. Indeed, this diagram is the reason the coequalizer Āsc → Asc in
equation (20) was defined in the first place. Finally, the fourth diagram, (18),
certainly commutes if M = Āsc . In this case, note that the bottom map in
diagram (18) corresponds to equation (21). Thus if we pass from Āsc to Asc this
last diagram still commutes since, by definition, the Ed−1-A module structure
on Asc is defined using the quotient map Āsc → Asc together with equation (21).

3.2.2 Lemma Fix an Ed−1 algebra A and consider Asc as an Ed−1-A module,
then there is an isomorphism of categories

ModA
SCh1

d
(C) ∼= ModA

Ed−1(C)Asc/,

where ModA
SCh1

d
(C) is the fiber over A of the forgetful functor AlgSCh1

d
(CΣ≤1)→

AlgEd−1
(C)

Proof Let (A,M) be an SCh1
d algebra extending the existing Ed−1 algebra

structure on A. Then M ∈ ModA
Ed−1

(C) and the structure maps in equation (13),
when combined for all m, give a map Āsc → M . This descends to an Ed−1-A
module map Asc → M .

On the other hand if M is an Ed−1-A module, then M is already equipped with
the data of equation (12). If Asc → M is a morphism of Ed−1-A modules, then
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M is equipped with the data of equation (13). The diagram (14) commutes
because of relation defining Asc in equation (20) and because Asc → M is a
morphism of Ed−1-A modules.

3.2.3 Corollary Let A be a cofibrant Ed−1 algebra, then Asc is a cofibrant
Ed−1-A module.

Proof The forgetful functor AlgSCh1
d

(C) → AlgEd−1
(C) preserves fibrations

(see definition 3.1.8). Thus the left adjoint of this forgetful functor, applied
to the cofibrant object A, gives a cofibrant SCh1

d algebra (A,Asc). Thus Asc

is cofibrant in ModA
SCh1

d
(C). Lemma 3.2.2 shows that the forgetful functor

ModA
SCh1

d
(C)→ ModA

Ed−1
(C) preserves pushouts. The model structures here are

cofibrantly generated, so Asc is also cofibrant as an object of ModA
Ed−1

(C).

3.2.4 Definition Let p(m) : SCh
d(1,m) → SCh

d(0,m) ' Ed−1(m) be the pro-
jection which forgets the single full disk. We can make p = (p(m))m≥0 into a
morphism of operads in the following way. For each m consider the degree 0-1
symmetric sequence (Ed−1)≤1(m) := (Ed−1(m),Ed−1(m)). The structure of Ed−1
as an operad in Top can be used to make (Ed−1)≤1 an operad in TopΣ≤1 . This
makes (id, p) : SCh1

d → (Ed−1)≤1 into a morphism of operads.

If A is an Ed−1 algebra we can define a morphism in C ,

Āsc =
∐
m≥0

SCh
d(1,m)⊗Sm A⊗m →

∐
m≥0

Ed−1(m)⊗Sm A⊗m → A,

where the first arrow uses p and the second arrow uses the Ed−1 algebra structure
on A. This map factors to give a morphism of Ed−1-A modules pA : Asc → A.

3.2.5 Remark By [21, section 5] we can conclude that Op(TopΣ≤1) is tensored
over Top. If O = (O0,O1) is an operad in degree 0-1 symmetric sequences of
topological spaces, and K ∈ Top, then K ⊗O is defined to be the coequalizer

F(F(K ⊗O)) ⇒ F(K ⊗O) coeq−−−→ K ⊗O,

where K ⊗ O , is the symmetric sequence of degree 0-1 symmetric sequences
whose arity m, degree i component is K × Oi(m), and F is the free operad
functor.

If O is a cofibrant operad in TopΣ≤1 , then [0, 1]⊗O is a cylinder object, and a
homotopy h : [0, 1]⊗O → P gives the data of maps hi(m) : [0, 1]×Oi(m)→ P i(m),
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which assemble into hi(m′; m) : [0, 1] × Oi(m′; m) → P(m′; m) for i = 0, 1 and
m′,m ≥ 0. The homotopy h is compatible with operad composition in the sense
that if α ∈ Oi(m) and β ∈ Oj(m′; m), i + j ≤ 1, and t ∈ [0, 1], then

hi(m)(t, α) ◦ hj(m′; m)(t, β) = hi+j(m′)(t, α ◦ β).

3.2.6 Lemma For any Ed−1 algebra A ∈ C , the map Asc → A is a weak
equivalence of Ed−1-A modules.

Proof Abusing notation we write p := (id, p) for the morphism of operads
from definition 3.2.4. One can show that p is a weak equivalence of fibrant
and cofibrant operads in degree 0-1 symmetric sequences of topological spaces.
Therefore there is a map of operads ι : (Ed−1)≤1 → SCh1

d and there are homo-
topies h : idSCh1

d
' ιp, and g : id(Ed−1)≤1 ' pι. Since [0, 1] ⊗ − distributes over

coequalizers, we can use h to define a homotopy hA : [0, 1]⊗ Asc → Asc ,∐
m

[0, 1]⊗ SCh
d(1,m)⊗ A⊗m [0, 1]⊗ Asc

∐
m

SCh
d(1,m)⊗ A⊗m Asc,

th1(m)⊗ id⊗m
A hA

where h1(m) is defined from h as in remark 3.2.5. When t = 1, hA(1,−) factors
as ∐

m
SCh

d(1,m)⊗ A⊗m Asc

∐
m

Ed−1(m)⊗ A⊗m A

∐
m

SCh
d(1,m)⊗ A⊗m Asc,

pAs

ιA

where pA is the map from definition 3.2.4, and ιA is the evident composite in
the diagram using s. The map s is a section of the middle horizontal arrow,
defined using the identity of the operad Ed−1 ,

A ' {1Ed−1} ⊗ A→ Ed−1(1)⊗ A→
∐
m

Ed−1(m)⊗ A⊗m.

The map ιA is a map of Ed−1-A modules, and hA is a homotopy idAsc ' ιApA .
Similarly, g defines a homotopy gA : idA → pAιA .
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The precise sense in which Hochschild cohomology can be obtained from the
degree 0-1 pieces of the swiss cheese operad is contained in the following propo-
sition.

3.2.7 Proposition Let A be a fibrant and cofibrant Ed−1 algebra. Then the
Hochschild cochain object of A can be computed as

Hoch(A) ' homA
Ed−1(Asc,A).

Proof We are using the projective model structure from definition 3.1.8, so A
is fibrant as an object of C and thus as a Ed−1-A module. By corollary 3.2.3
and lemma 3.2.6, Asc is a cofibrant replacement for A as an Ed−1-A module. By
definition 3.1.11, this proves the proposition.

4 The universal cheese theorem

In the one-colored operad SCh1
d the single full disk was never considered as

input, only as a marker of degree one. Allowing the single disk to be considered
as giving an input means viewing SCh1

d as a partially defined 2-colored operad.
Rather than making the notion partially defined precise, we simply set up the
notion of a 2-colored algebra over SCh1

d in definition 4.1.8. Proposition 4.1.9 is
a version of the swiss cheese theorem for the operad SCh1

d . That is, a 2-colored
SCh1

d structure on the pair (B,A) is equivalent to a C -morphism, B→ Hoch(A).
In other words, Hoch(A) is the universal object of C acting on the Ed−1 algebra
A through SCh1

d . This result is generalized twice, first in corollary 4.1.11, then
in proposition 4.1.16. We refer to proposition 4.1.16 as the universal cheese
theorem since it replaces Ed in the swiss cheese theorem with an arbitrary
operad.

4.1.8 Definition Let A be an Ed−1 algebra. Let C/Hoch(A) denote the over
category of Hoch(A) ∈ C . More precisely, the objects are C -morphisms B →
Hoch(A) and the morphisms are C morphisms B→ B′ commuting with the maps
to Hoch(A). In addition, let AlgA

SCh1
d

(C) denote the category of SCh1
d algebras

of the form (B,A) where the induced Ed−1 structure on A is the one given.
Morphisms are maps of SCh1

d algebras which are identity on A.

Given a pair of objects (B,A) of C , we let Endh1(B,A) denote the operad obtained
by applying the forgetful functor OpK → Op(TopΣ≤1) to End(B,A) from (4) and
(5).
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Let AlgA
SCh1

d
(C) denote the category of objects B ∈ C together with a morphism

in Op(TopΣ≤1), SCh1
d → Endh1(B,A) extending the Ed−1 structure on A. A

morphism B → B′ in C induces a map of operads Endh1(B′,A) → Endh1(B,A).
Such a morphism gives a map in AlgA

SCh1
d

(C) if this induced map respects to
maps from SCh1

d .

4.1.9 Proposition There is an isomorphism of categories

AlgA
SCh1

d
(C) ∼= C/Hoch(A).

Proof The data of an algebra on the left hand side is an object B ∈ C together
with maps

SCh
d(1,m)⊗ B⊗ A⊗m → A,(22)

for each m ≥ 0. The conditions on (22) are that diagrams (23) and (24)
commute.

(23)
Ed−1(m′)⊗ SCh

d(1,m; 0,m′)⊗ B⊗ A⊗m Ed−1(m′)⊗ A⊗m′

SCh
d(1,m)⊗ B⊗ A⊗m A,

(24)
SCh

d(1,m′)⊗ Ed−1(m; m′)⊗ B⊗ A⊗m SCh
d(1,m)⊗ B⊗ A⊗m

SCh
d(1,m′)⊗ B⊗ A⊗m′ A.

Equivalently, we can use the hom-tensor adjunction and assemble the maps
in (22) to a single map B → homC(Āsc,A) (see (19)). The commutativity of
diagram (24) is equivalent to this map lifting to

(25) B→ homC(Asc,A).

Note that, dual to (20), homC(Asc,A) is given by the equalizer

homC(Asc,A) eq−→ homC(Āsc,A) ⇒ homC(
∐
m,m′

SCh
d(1,m′)⊗ Ed−1(m; m′)⊗ A⊗m,A).

With this observation we can now rewrite diagram (23) as

(26)
B⊗ FA

Ed−1
(Asc) FA

Ed−1
(A)

B⊗ Asc A.
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Recall that FA
Ed−1

: C → C is the free Ed−1-A module functor from definition 3.1.6.
Clearly, diagram (23) commutes if and only if diagram (26) commutes and if and
only if the map (25) factors through Hoch(A) = homA

Ed−1
(Asc,A). We conclude

that the data of an SCh1
d algebra structure on (B,A) is the data of an Ed−1

algebra structure on A together with a C -morphism B→ Hoch(A).

It is clear that a map (B,A)→ (B′,A) which is identity on A gives an SCh1
d algebra

morphism if and only if the map B → B′ commutes with the corresponding
morphisms to Hoch(A).

4.1.10 Definition Define SCh∞
d ∈ Op(TopΣ) as the image of the left adjoint

of Op(TopΣ)→ Op(TopΣ≤1) applied to SCh1
d . Following definition 4.1.8, define

AlgA
SCh∞

d
(C) as the category of objects B ∈ C together with a morphism in

Op(TopΣ), SCh∞
d → Endh(B,A) extending the Ed−1 structure on A.

4.1.11 Corollary There is an isomorphism of categories

AlgA
SCh∞

d
(C) ∼= C/Hoch(A).

Proof The adjunction isomorphism puts operad maps SCh1
d → Endh1(B,A) in

one-to-one correspondence with operad maps SCh∞
d → Endh(B,A). This gives

an isomorphism between AlgA
SCh∞

d
(C) and AlgA

SCh1
d

(C). Now apply proposition
4.1.9.

4.1.12 Definition For each n ≥ 0, let SCh∞
d (n, •) denote the operad in

Op(TopΣ≤1) whose arity m component is the degree 0-1 symmetric sequence
(Ed−1(m),SCh∞

d (n,m)). One may think of SCh∞
d (n, •) as a bimodule over Ed−1 .

Let End(SCh∞
d ) be the symmetric sequence whose nth space is Ed−1 bimodule

maps
End(SCh∞

d )(n) := mapEd−1(SCh∞
d (1, •), SCh∞

d (n, •)).

4.1.13 Lemma Operadic composition in SCh∞
d induces the structure of an

operad on the symmetric sequence End(SCh∞
d ).

Proof Define an operad E ∈ Op(TopΣ) by setting

E(n,m) = mapTopΣ

(
End(SCh∞

d )(•; n), SCh∞
d (•,m)

)
.
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Let n0 + · · · + nm = n and `1 + · · · + `m = `. The monoidal structure ⊗ on
symmetric sequences gives a map from E(n0,m)×

∏m
i=1 E(ni, `i) to

(27) mapTopΣ

( m⊗
i=0

End(SCh∞
d )(•; ni), SCh∞

d (•,m)⊗
( m⊗

i=1
SCh∞

d (•, `i)
))
.

Now push forward from (27) via the operad structure on SCh∞
d ,

SCh∞
d (•,m)⊗

( m⊗
i=1

SCh∞
d (•, `i)

)
→ SCh∞

d (•, `),

and pull back from (27) by

(28) End(SCh∞
d )(•; n)→

m⊗
i=0

End(SCh∞
d )(•; ni).

This defines

E(n0,m)×
m∏

i=1
E(ni, `i)→ E(n, `).

The morphism in (28) comes from the sequence of maps

End(SCh∞
d )(k; n) =

∐
f : k→n

n∏
i=1

End(SCh∞
d )(f−1(i))

=
∐

f : k→n

∏
j∈0tm

∏
i∈g−1(j)

End(SCh∞
d )(f−1(i))

→
∐

f̃ : k→0tm

∏
j∈0tm

End(SCh∞
d )(f̃−1(j); nj).

The first equality holds by definition, the second is a regrouping. The decom-
position

∑m
i=0 ni = n defines a map g : n → 0 t m where

∣∣g−1(i)
∣∣ = ni . The

third map sends the component corresponding to f : k → n to the component
corresponding to fg : k→ 0 t m. For each n,m there is a map,

(29) SCh∞
d (n,m)→ E(n,m).

When n = 0, 1, the map (29) is canonical. Restricting to degrees 0 and 1 gives
a map of Op(TopΣ≤1) operads SCh1

d → E1 , where E1 is the degree 0-1 part of
E . Since SCh∞

d is freely generated by its degree 0 and 1 pieces, we get (29) for
all n, assembling into a map of operads in Op(TopΣ). This guarantees that (30)
can be used to define an operadic composition law on End(SCh∞

d ),

(30) SCh∞
d (n,m)× End(SCh∞

d )(k1)× · · · × End(SCh∞
d )(kn)→ SCh∞

d (k,m).
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4.1.14 Definition Let O be any 1-colored topological operad, and let ρ : O →
End(SCh∞

d ) be a map of operads. Define the K -colored operad SCh∞
d oρ O by

setting

(SCh∞
d oρ O)h(n,m) = SCh∞

d (n,m) (SCh∞
d oρ O)f(n,m) =

O(n) m = 0
∅ m > 0

Composition in SCh∞
d oρ O uses composition in O , composition in SCh∞

d , and
the action of O on SCh∞

d defined by ρ,

SCh∞
d (n,m)×O(k; n)→ SCh∞

d (n,m)× End(SCh∞
d )(k; n)→ SCh∞

d (k,m),

where the right arrow above is the one in (30).

4.1.15 Lemma Let O be a topological operad and let ρ : O → End(SCh∞
d )

be a map of operads, then the SCh∞
d structure on (H,A) naturally extends to

a SCh∞
d oρ O structure on (H,A). In particular, H = Hoch(A) inherits an O

algebra structure.

Proof We only need to show there is a map of operads End(SCh∞
d )→ End(H)

compatible with the action of End(SCh∞
d ) on SCh∞

d and the action of SCh∞
d on

H . Indeed, the map

(31) End(SCh∞
d )(n)⊗ H⊗n → H

is adjoint to the maps, for all m ≥ 0,

SCh∞
d (1,m)⊗ End(SCh∞

d )(n)⊗ H⊗n ⊗ A⊗m → SCh∞
d (n,m)⊗ H⊗n ⊗ A⊗m → A,

where the first arrow is (30) and the second arrow is the SCh∞
d structure on

(H,A). To check that (31) is compatible with composition in End(SCh∞
d ) observe

that there are two morphisms of operads in Op(TopΣ),

SCh∞
d ⇒ Endh(End(SCh∞

d )(H),A),

where End(SCh∞
d )(H) is the free End(SCh∞

d ) algebra generated by H . One of
the arrows uses the action of End(SCh∞

d ) on SCh∞
d , while the other uses the

map End(SCh∞
d )(H)→ H defined by (31). To check that these arrows agree, we

only need to check that they agree out of SCh∞
d (n,m) when n = 0, 1. This is

because SCh∞
d is freely generated in degrees 0 and 1. When n = 0, the maps

are obviously the same. When n = 1, the maps are the same by definition of
the SCh1

d structure on (H,A).
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4.1.16 Proposition (The universal cheese theorem) Let O be a topological
operad and let ρ : O → End(SCh∞

d ) be a map of operads. Then using the induced
SCh∞

d oρ O structure on (Hoch(A),A) from lemma 4.1.15 gives an isomorphism
of categories

AlgA
(SCh∞

d oρO)(C) ∼= AlgO(C)/Hoch(A).

Proof Given any C morphism B→ H we can form the following diagram. For
brevity, we have deleted appearances ⊗.

(32)

SCh∞
d (1,m)O(n)BnAm SCh∞

d (n,m)BnAm

SCh∞
d (1,m)BAm A

SCh∞
d (1,m)O(n)HnAm SCh∞

d (n,m)HnAm

SCh∞
d (1,m)HAm A

=

Let (B,A) be a SCh∞
d oρO algebra extending the given Ed−1 structure on A, then

by corollary 4.1.11 we get a C morphism B→ H = Hoch(A) making the right face
of the cube (32) commute. The front face commutes by lemma 4.1.15. The back
face commutes by assumption. The bottom face commutes by definition, and
the top face commutes trivially. This implies that, after composition with the
maps whose codomain is A, the left face of the cube commutes. By adjointness,
the two maps O(B) ⇒ H agree, implying that B→ H is indeed an O algebra
morphism.
On the other hand, given an O algebra B together with an O algebra map
B→ H , we get an SCh∞

d structure on (B,A) from the underlying C morphism.
We only need to check that the O structure on B and the SCh∞

d structure on
(B,A) are compatible via ρ. Indeed, since SCh∞

d is freely generated in degrees
0 and 1, it is enough to check that the back face of the cube commutes. But
this holds because all other faces commute. Most importantly, the left face
commutes because B→ H is an O algebra map.
It is easy to see that each of these constructions are natural in B and are inverse
to one another.

5 The homotopy Ed structure on Hoch(A)

In light of proposition 4.1.16, to prove the swiss cheese theorem, 2.2.1, we need
to construct E ' Ed and an operad morphism E→ End(SCh∞

d ) in such a way



26 Justin D. Thomas

that the corresponding K -colored operad SCh∞
d o E is equivalent to SCd . While

SCh∞
d has no obvious action of Ed , it is equivalent to something that does have

an Ed action. The following theorem is proven in section 6.

5.1.17 Theorem The natural map SCh∞
d → SCh

d is an acyclic cofibration of
operads in Op(TopΣ).

In this section, we define the precise sense in which theorem 5.1.17 gives us our
Ed action on SCh∞

d up to homotopy. First, we have a lift p in the following
diagram,

SCh∞
d SCh∞

d

SCh
d

id

ι
p

We know that SCh
d is cofibrant since it is obtained as the W construction applied

to a Σ-cofibrant, well-pointed operad SCh
d so it fits into the context covered

by Berger-Moerdijk [1, 4]. In Spitzweck [21] we see that the corner axiom (or
Quillen’s SM7) for monoidal model categories tensored over topological spaces
applies to categories of operads in topological spaces. Thus we have an acyclic
fibration

map(SCh
d, SCh

d) ι∗→ map(SCh∞
d ,SCh

d)

given by pre-composing with ι. Since both ιp and id live over ι, they must
be homotopic. Let h : [0,∞] ⊗ SCh

d → SCh
d be a homotopy with h0 = id and

h∞ = ιp.

We will use this h to define a homotopy right Ed module structure on SCh∞
d .

For this we will use a homotopy equivalent version of Ed which sits inside the
W construction. For simplicity we denote it by E. First we define the category
LEd . This category is not monoidal, but will be used to build E. The letter L
stands for level trees. The objects of the topological category LEd are finite sets,
and the morphism space LEd(n, n′) is defined to be a quotient of∐

k≥0
n1,...,nk

Ed(n1, n′)× Ed(n2, n1)× · · · × Ed(n, nk)× [0,∞]k

A point of the space above is given by a sequence αi ∈ Ed(ni, ni−1) for 1 ≤ i ≤ k+1
and ti ∈ [0,∞] for 1 ≤ i ≤ k . For convenience of notation, we set n0 = n′ ,
nk+1 = n, t0 =∞, and tk+1 =∞. We impose the following relations
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5.1.18 Relations If ti = 0, then we can delete ti and replace (. . . , αi, αi+1, . . .)
by the composition (. . . , αi ◦ αi+1, . . .). If ni = ni−1 and αi is the identity, and
ti−1 =∞ = ti , then we can delete αi from the sequence and delete ti from the
sequence.

5.1.19 Remark In the W construction, we could always delete the appearance
of an identity and sum the lengths of the surrounding edges. We do not allow
that here since we do not have hs+t = hs ◦ ht .

Composition in the category LEd is given by concatenating sequences, setting
the new coordinate in the factor [0,∞] between the two sequences to be ∞.

We can use the action of Ed on SCh
d as well as the maps ht, p, ι to define

(33) LEd(n, n′)→ map(SCh∞
d (n′,m),SCh∞

d (n,m)).

To do this, represent α ∈ LEd(n, n′) with a sequence n′ = n0, n1, . . . , nk, nk+1 = n
together with αi ∈ Ed(ni, ni−1) for 1 ≤ i ≤ k + 1 and ti ∈ [0,∞] for 1 ≤ i ≤ k .
This gives a chain of maps

(34) SCh∞
d (n′,m) ι−→ SCh

d(n0,m) α1−→ SCh
d(n1,m)

ht1−→ SCh
d(n1,m) α2−→ · · ·

· · ·
htk−→ SCh

d(nk,m) αk+1−−−→ SCh
d(nk+1,m) p−→ SCh∞

d (n,m).

The maps SCh
d(ni,m) αi−→ SCh

d(ni+1,m) are defined by the action of Ed on SCh
d ,

SCh
d(ni,m)× Ed(ni+1, ni)→ SCh

d(ni+1,m).

Let us check that the relations 5.1.18 in LEd are satisfied and that composition
in Ed corresponds to composition of maps of SCh∞

d . Suppose ti = 0 for some i.
Then h0 = id so our chain of arrows contains

SCh
d(ni−1,m) αi−→ SCh

d(ni,m) αi+1−−−→ SCh
d(ni+1,m).

The composition of these two is equal to the map given by αiαi+1 ∈ Ed(ni+1, ni−1).
This is because SCh

d(−,m) is a right Ed module.

If ni = ni−1 , αi is identity, and ti−1 = ti =∞, then the composition hti−1 ◦αi ◦hti
is equal to hti−1 = h∞ , so we are justified in deleting αi and ti from the sequence.

Now suppose we have some ti =∞, so that α ∈ LEd(n, n′) decomposes as β1β2
for some β1 ∈ E(ni, n′) and β2 ∈ E(n, ni). The chain of compositions defining
the action of α from SCh∞

d (1,m) to SCh∞
d (n,m) contains the following segment.

· · · SCh
d(ni,m) h∞−−→ SCh

d(ni,m)→ · · ·
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The composite of the actions of β1 and β2 is computed by joining the chains
for β1 and for β2 . This joined chain agrees with the chain for α except for the
segment above, which is replaced with the segment

· · · → SCh
d(ni,m) p−→ SCh∞

d (ni,m) ι−→ SCh
d(ni,m)→ · · ·

Since h∞ = ιp, these chains of maps have the same composition.
The maps (33) define a functor
(35) LEd → End(SCh∞

d ).
There is no obvious operad structure on LEd so we take the smallest operad
containing LEd . More precisely, (35) is a morphism of topological categories
whose objects are finite sets. There is a forgetful functor from operads to the
category of such topological categories. The operad E is defined to be the result
of applying the left adjoint of this forgetful functor to the category LEd .

5.1.20 Definition Let F(LEd) be the free one-colored operad generated by
the symmetric sequence n 7→ LEd(n, 1). For each n, n′ ≥ 0 let E(n, n′) be the
topological space given by the coequalizer∐

n′′
LEd(n′′, n′)× LEd(n, n′′) ⇒ F(LEd)(n, n′) eq−→ E(n, n′),

where the two maps are given by composition in either F(LEd) or LEd and the
inclusion of LEd into F(LEd).

5.1.21 Lemma The category E is an operad and is equivalent to Ed .

Proof Given a tree with its internal edges labeled by lengths [0,∞], call it a
level tree if edges equidistant from the root vertex have the same length. Every
morphism in LEd(n, 1) can be represented by a level tree with vertices labeled by
Ed . We can represent a point of F(LEd) with a tree whose vertices are labeled
by level trees in LEd . The relation defining F(LEd)→ E allows us to break up a
level tree with at least one level of length ∞ into several level trees all of whose
levels have finite length. We conclude that E consists of trees labeled by Ed

on the vertices, and [0,∞] on the internal edges, satisfying the condition that
every maximal finite subtree is level.
There is an operad morphism E→ Ed which collapses all edge lengths to 0. On
the level of symmetric sequences, there is a homotopy inverse Ed → E. The
homotopy gt : E→ E first collapses lengths of the edges furthest from the root
to zero. This preserves the condition that every maximal finite subtree is level.
Continuing in this way, we collapse all edge lengths to zero.
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The adjoint to (35) is an operad morphism E → End(SCh∞
d ), which by defini-

tion 4.1.14 we can use to define the K -colored operad SCh∞
d o E.

5.1.22 Lemma The {f, h}-colored operad SCh∞
d o E is weakly equivalent to

the swiss cheese operad.

Proof First, note that SCd is equivalent to the semi-direct product of SCh
d and

Ed where the action of Ed factors through the map Ed → Ed which sends all
lengths of internal edges to zero. This is because the map SCh

d → SCh
d which

collapses trees is a weak equivalence and respects the action of Ed .

The action of E on SCh∞
d can be extended to an action on all of SCh

d . The
sequence α1, t1, · · · , tk, αk+1 acts via the composition

(36) SCh
d(n0,m) α1−→ SCh

d(n1,m)
ht1−→ SCh

d(n1,m)→ · · · → SCh
d(nl−1,m)

htl−→ SCh
d(nl−1,m) αl−→ SCh

d(nl,m) h∞−−→ SCh
d(nl,m).

Define for each s ∈ [0,∞] a homotopy h[0,s] : [0,∞] ⊗ SCh
d → SCh

d by setting
h[0,s]

t = hmin(s,t) . We have h[0,s]
0 = id and h[0,s]

∞ = hs , therefore we can define an
action of E on [0,∞]s ⊗ SCh

d by replacing hti in (36) with h[0,s]
ti . Then, when

s = 0 each h[0,0]
ti is the identity, so the action factors through the map E→ Ed

collapsing all edges to 0. When s =∞ we have h[0,∞]
ti = hti so the action of E

on SCh
d is 36. Thus we have a diagram of equivalences

SCd ← SCh
d os=0 E→ ([0, 1]⊗ SCh

d) o E← SCh
d os=∞ E→ SCh∞

d o E,

where the map on the left collapses all edge lengths to 0.

6 The equivalence SCh∞
d → SCh

d

This section is dedicated to proving theorem 5.1.17. The proof uses a recasting
(6.1.4) of definition 2.1.1 which is equivalent when considering operads in Top [10].
First we set the context for this new definition, then we prove that SCh∞

d → SCh
d

is a cofibration. Finally, we show that it is a weak equivalence.
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6.1 The category of Forests

The following definition is an amalgamation of those found in [17], [7] and [10].

6.1.1 Definition Fix a set K . A K -colored young forest is an uncolored map
of finite K -colored sets x : Ix → Jx . A K -colored forest f : x → y is a color-
preserving isomorphism f : Iy t Jx → Jy t Ix such that for every i ∈ Ix there is a
k ≥ 0 such that (f ◦ x)k(i) ∈ Jy and for every i ∈ Iy there is an ` ≥ 0 such that
(f ◦ x)` ◦ f (i) = y(i).

6.1.2 Definition Given a K -colored forest f : x→ y we call V(f ) := Jx the set
of internal vertices of f . We call in(f ) := Iy the set of input vertices of f and
rt(f ) := Jy the set of root vertices of f . In addition, Edge(f ) = Jx t Iy ∼= Jy t Ix

is called the set of extended edges of f and E(f ) := Jx ×f Ix is the set of internal
edges of f .

6.1.3 Definition If g : x → y and f : y → z are forests, we can define a
composite forest fg : x→ z. We use concatenation to denote this composition
and ◦ to denote composition of maps of finite sets. The forest fg, as a map
Iz t Jx → Jz t Ix , is defined by the following rule. If i ∈ Iz , then there is a k ≥ 0
and an ε ∈ {0, 1} such that gε(f ◦ g)k(i) ∈ Jz t Ix . Similarly, if i ∈ Jx there
is a k and ε such that f ε(g ◦ f )k(i) ∈ Jz t Ix . In [23], it is shown that forest
composition is associative. This, together with disjoint union, makes young
forests the objects and forests the morphisms of a symmetric monoidal category
denoted For .

6.1.4 Definition A K -colored operad O is a strong symmetric monoidal func-
tor (ForK ,t)→ (Top,×). The category of operads is the category Fun⊗(ForK ,Top)
of symmetric monoidal functors and natural transformations. We denote this
category by OpK just as in definition 2.3.3.

6.1.5 Remark The category of K -colored operads OpK as defined in 2.3.3 is
naturally isomorphic to the functor category Fun⊗(ForK ,Top). Indeed, given
O from 2.1.1 as in definition 2.3.3 we define O(x) for a young forest x to be⊗

j∈Jx
O(x−1(j); j).

6.1.6 Remark When the set of colors K is understood, we often drop it from
the notation. Forests and young forests are always K -colored, for some set K .
The category ForK will be abbreviated For , and OpK will be denoted Op.



Kontsevich’s Swiss Cheese Conjecture 31

6.1.7 Definition Let (C,⊗) be a symmetric monoidal category. Call an object
c ∈ C indecomposable if it cannot be written as a tensor product c ∼= c1 ⊗ c2
for any c1, c2 ∈ C . Let Fun⊗(C,Top) denote the category of strong symmetric
monoidal functors (C,⊗) → (Top,×). We call a morphism ψ : O → P in
Fun⊗(C,Top) a fibration (respectively weak equivalence) if ψ(c) : O(c)→ P(c)
is a fibration (respectively weak equivalence) for every indecomposable c ∈ C .
Define the class of cofibrations in the usual manner (see Hovey [12]).

For every symmetric monoidal category C we consider in this paper we will
use 6.1.7 to define cofibrations, fibrations, and weak equivalences regardless of
whether or not these form a model structure.

6.1.8 Remark A young forest x is indecomposable (definition 6.1.7) if Jx ' ∗.
In this case we say x is a young tree. We say a forest f : y→ x is a tree if x is a
young tree.

6.1.9 Definition For a category C , let C× denote the category with the
same objects as those of C , but only invertible morphisms. Let Cindec denote
the full subcategory (not monoidal) of C consisting indecomposable objects.
Let C×indec = (Cindec)× . The functor category TopC×indec is called the category of
C-symmetric sequences, denoted C-sSeq.

6.1.10 Remark A forest f : x → y is invertible if and only if f (Jx) = Jy and
f (Iy) = Ix . Thus an invertible forest gives a pair of isomorphisms of K -colored
finite sets Jf : Jx → Jy and If : Iy → Ix which are compatible with the maps
x : Ix → Jx and y : Iy → Jy . We conclude that the category For×indec is isomorphic
to the opposite of the category of K -colored finite sets and bijections. In the
case K ' {∗} we get For×indec

∼= Σ where Σ is as in definition 2.3.1. Moreover, in
this case the category of For-symmetric sequences is isomorphic to the category
TopΣ of symmetric sequences.

6.1.11 Notation If C → For is any symmetric monoidal functor, we will
denote the category Fun⊗(C,Top) of strong symmetric monoidal functors by
C-Op unless we say otherwise (for example, we do not use this notation in
definition 6.3.4). We call the objects of C-Op C-operads. In all cases we
consider, the functor C→ For will be apparent from the category C so we leave
the functor out of the notation. If C→ D→ For is a pair of symmetric monoidal
functors we denote the forgetful functor D-Op→ C-Op by UD

C , and denote its
left adjoint by FC

D .
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6.2 The W construction

We show how the W construction of Boardman and Vogt [5] can be realized as
a coend construction using For . In nice situations the W construction gives a
cofibrant replacement for an operad, as shown in [1]. We use [0,∞] as our edge
labels as in [16].

Given any young forest z there is a contravariant functor W : For/z → Top from
the over category of z to topological spaces. For any object g : y → z of this
over category, set W(g) = map(E(g), [0,∞]). If f : x → y is a forest, the map
W(g)→ W(gf ) is denoted WΣ(f ). This map uses the sum operation on [0,∞].
This is an extension of + on [0,∞) such that t +∞ =∞ =∞+ t for all values
of t . Concretely, g and gf define maps of sets

E(g) g̃−→ Jz t Ix
g̃f←− E(gf )

We can turn a function t ∈ W(g) to a function WΣ(t) ∈ W(gf ) by pushing
forward along g̃, then pulling back along g̃f . Pushing forward means summing
over fibers, which is well-defined since all the sets we are considering are finite.

If h : z→ w is a forest there is a morphism W∞(h) : W(g)→ W(hg) which uses
the maps E(g) ↪→ Iy ←↩ E(hg). In this case we do not push forward and pull
back functions. Rather we extend a function t : E(g)→ [0,∞] to a function on
E(hg) by setting t(ε) = ∞ if ε 6∈ E(g). This defines a natural transformation
W∞(h) : W → Wh∗ where h∗ : Forop

/z → Forop
/w is induced by h : z → w. In other

words, diagram (37) commutes for all composeable triples h, g, and f .

(37)
W(g) W(gf )

W(hg) W(hgf )

WΣ(f )

W∞(h) W∞(h)
WΣ(f )

Consider an operad O as a collection of functors Oz : For/z → Top by setting
Oz(g) := O(y) for g : y→ z. For a young forest z the topological space WO(z)
is the coend

(38) WO(z) = W ⊗For/z Oz =

( ∐
g : y→z

W(g)×O(y)
)
/∼

where (WΣ(f )t, α) ∼ (t,O(f )α) for every f : x → y, t ∈ W(g) and α ∈ O(x).
Now a forest h : z→ w with the natural transformations above gives us a map

(39) WO(z) = W⊗For/zOz
W∞(h)⊗id−−−−−−→ Wh∗⊗For/zOz → W⊗For/wOw = WO(w).
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This defines WO as a functor For→ Top. This functor is symmetric monoidal,
so WO is a K -colored operad.

6.2.1 Remark The space WO(z) consists of labeled forests f : y → z. A
labeled forest is one whose internal edges each have a length in [0,∞] and whose
vertices j ∈ Jx have a corresponding label in O(x−1(j); j).

In the sequel, we will define several variants on the category For . Each of these
variants admits a functor to For and we want a corresponding W construction
for each.

6.2.2 Definition Suppose O is an operad For→ Top and C is any symmetric
monoidal category equipped with a symmetric monoidal functor G : C → For .
From this data we can construct an operad WCO ∈ C-Op using formulas analo-
gous to (38) and (39). Specifically, let WC be the composite W ◦ Gc : (C/c)op →
(For/G(c))op → Top where c ∈ C . We define

(40) WCO(c) = WC ⊗C/c (G∗O)c =

 ∐
f : b→c

W(G(f ))×O(G(y))

 /∼
We define WCO(c)→ WCO(d) for a C-morphism g : c→ d just as in (39).

6.2.3 Example Define the full subcategory D ↪→ For to be given by those
young forests x where Jx has only color h. Restricting the swiss cheese operad
to this full subcategory gives the operad SCh

d as WDSCd . To get SCh1
d , we use

C ↪→ For , the full subcategory of young forests x where Jx has color h and for
each j ∈ Jx , there is at most one element of x−1(j) of color f .

It should be clear that D-Op ' Op(TopΣ). Indeed, the forgetful functor
OpK → Op(TopΣ) from definition 2.3.3 is given by pulling back along the
symmetric monoidal functor D→ ForK . Finally, note that SCh∞

d as defined in
definition 4.1.10 is FC

DSCh1
d , where FC

D is defined in notation 6.1.11

6.3 Weighted Forests

We need to define the category of weighted forests to prove the following half of
theorem 5.1.17.

6.3.1 Theorem The natural map SCh∞
d → SCh

d is a cofibration in Op(TopΣ).
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The proof follows closely the work of Berger-Moerdijk [1]. From an operad O
they construct an increasing chain of symmetric sequences

(41) W0O → W+
0 O → W1O → W+

1 O → W2O → · · ·

The symmetric sequence W0O is just the underlying symmetric sequence of
O . If O is cofibrant as a symmetric sequence O is said to be Σ-cofibrant. If
the operadic unit maps of O are cofibrations, O is said to be well-pointed.
In the case O is well-pointed and Σ-cofibrant, Berger-Moerdijk show that
WO := colimk WkO is a cofibrant replacement of O as an operad. In the course
of the proof, they show that WkO is a k-operad, which is a partial operad in a
certain sense. This partial operad structure will be encoded here in the category
Opk from definition 6.3.4. Each W+

k O is an operad in Opk+1 , and in our context,
is given by the left adjoint to a forgetful functor Opk+1 → Opk applied to WkO .
Concretely, the points of WkO are given by trees with at most k internal edges
whose vertices are labeled by O and whose internal edges are labeled by [0,∞].
This section mimics this work of Berger-Moerdijk to prove theorem 6.3.1.

6.3.2 Definition Let f : x→ y be a forest. Let (f |x) denote the endomorphism
of Iy t Jy t Ix t Jx which is f on Iy t Jx , x on Ix , and the identity on Jy . By
assumption that f is a forest, there is a k ≥ 0 such that for every i we have
(f |x)k(i) ∈ Jy . Let [f |x] denote (f |x)∞ .

6.3.3 Definition For I ⊂ Iy t Ix t Jx and j ∈ Jy let I(j) denote I ∩ [f |x]−1(j),
the set of elements of I living over j. A weighted young forest is a pair (x, ωx)
where x is a young forest and ωx : Jx → Z≥0 is any function, called the weight
of x. A weighted forest f : (x, ωx)→ (y, ωy) is a forest f : x→ y such that for all
j ∈ Jy ,

(42) ωy(j) ≥ #E(f ) +
∑

i∈Jx(j)
ωx(i).

If g : (y, ωy) → (z, ωz) is a weighted forest. then one can show that gf : x → z
defines a weighted forest gf : (x, ωx)→ (z, ωz).

6.3.4 Definition Disjoint union of forests extends to disjoint union of weighted
forests. Let Forω denote the symmetric monoidal category of weighted forests.
For each k ≥ 0, let Fork denote the full subcategory of Forω generated by
objects of the form (x, ωx) such that ωx(j) ≤ k for every j ∈ Jx . Let Opk denote
the category of (K -colored) weight k operads, which are strong symmetric
monoidal functors Fork → Top. Note that there is a symmetric monoidal functor
Forω → For which forgets the weights.
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6.3.5 Remark If a forest f : x→ y has no internal edges then f is a disjoint
union of isomorphisms and maps of the form [∅ → ∅] → [{κ} → {κ}], where
κ ∈ K . The restriction of an operad O to For0 remembers only

• the spaces O(I;κ) for each K -colored set I and each color κ, together
with the right aut(I) action on O(I;κ), and

• the operadic unit maps ∗ → O(κ;κ) for each color κ ∈ K .

Thus O is cofibrant (definition 6.1.7) as an object of Fun⊗(For0,Top) if and
only if it is well-pointed and Σ-cofibrant as in [1, section 3].

Proof of theorem 6.3.1 In example 6.2.3 we constructed categories C and
D such that SCh1

d = WCSCd , SCh
d = WDSCd and the map SCh∞

d → SCh
d is

FC
DWCSCd → WDSCd . Lemma 6.3.12 applies since C is a full subcategory of D

which is a full subcategory of For , and SCd : For→ Top is cofibrant as a functor
For0 → Top (see remark 6.3.5).

6.3.6 Definition Let C be any full subcategory of For . Define Cω to be the
full subcategory of Forω given by young weighted forests (x, ωx) such that x ∈ C .
The functor Forω → For induces a functor Cω → C .

If C ↪→ For is a full subcategory, there is a map of Cω operads WCω → UC
CωWCO .

Concretely, for each weighted young forest (x, ωx) we have a map

(43)
∐

f : (y,ωy)→(x,ωx)
W(f )×O(y)→

∐
f : y→x

W(f )×O(y),

defined in the obvious way. This descends to give a morphism

(44) WCωO → UC
CωWCO

6.3.7 Lemma For any full subcategory C ↪→ For , the left adjoint of (44),

FCω
C WCωO → WCO,

is an isomorphism.

Proof The left adjoint FCω
C WCωO can be computed at a young tree x as

colimk→∞(WCωO)(x, k). For each k , a point of (WCωO)(x, k) is given by a
labeled tree (6.2.1) f : y→ x with at most k internal edges. Taking the colimit
as k goes to ∞, we get all labeled trees over x, which is WCO(x).
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6.3.8 Lemma Let C be any symmetric monoidal full subcategory of Forω .
Suppose ψ : O → P is a morphism of operads in C-Op which is a cofibration
of C-symmetric sequences. Further suppose that for every young forest x ∈ C
such that there is a tree f : x→ y in C with at least one internal edge we have
that ψ(x) : O(x)→ P(x) is an isomorphism. These conditions imply that ψ is a
cofibration of C-operads.

Proof Suppose Q → Q′ is an acyclic fibration of C-operads. By definition 6.1.7
this means that for every young tree x ∈ C , Q(x)→ Q′(x) is an acyclic fibration
of topological spaces. Suppose we have a commutative diagram of C-operads

(45)
O Q

P Q′.

By assumption, there is a lift ρ : P → Q of C-symmetric sequences. We claim
that ρ is automatically a morphism of C-operads. To prove this claim, it is
enough to show that the square on the right in diagram (46) commutes for every
tree f : x→ y in C .

(46)
P(x) Q(x)

P(y) Q(y)

O(x)

O(y)

ρ(x)

P(f ) Q(f )
ρ(y)

ψ(x)

O(f )
ψ(y)

Suppose f is an isomorphism. Then we know the square commutes because ρ is
a map of C-symmetric sequences. Suppose f is not an isomorphism and has no
internal edges. Since f is a tree it must be of the form [∅ → ∅]→ [{c} → {c}] for
some c ∈ K . In this case we have O(x) = P(x) = Q(x) = ∗, in particular ψ(x)
is an isomorphism. Thus our assumption shows that if f is not an isomorphism
then ψ(x) is an isomorphism. We can deduce that the square on the right
commutes in this case from the fact that the square on the left and the outer
square commute.

Given a full subcategory D ↪→ For and a full subcategory C ↪→ D, we can
interpolate between Cω and Dω with a sequence of subcategories of Forω . For
each k ≥ 0, let Dk be the full subcategory of Forω given by disjoint unions of
young weighted trees (x, ωx) where either x ∈ C or x ∈ D and ωx ≤ k . Note
that D−1 = Cω . We have left the inclusion C ↪→ D implicit in the notation Dk .
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We have a commutative diagram of symmetric monoidal functors

(47)
C

Cω = D−1 D0 · · · Dω.

D

The bottom row consists of successively larger full subcategories of Forω and
the top row consists of full subcategories of For .

From the symmetric monoidal functors in (47) we get the categories and forgetful
functors in (48).

(48)
C-Op

Cω-Op = D−1-Op D0-Op · · · Dω-Op

D-Op

6.3.9 Remark The forgetful functor Dk-Op→ D`-Op for k ≥ `, where k, ` ∈
{−1, 0, 1, . . .} t {ω} clearly preserves fibrations (definition 6.1.7), thus the left
adjoint FD`

Dk
preserves cofibrations.

6.3.10 Lemma For each k ≥ 0 there is a natural map in Dω-Op,

FDk
DωWDkO → WDωO.

The colimit of these maps as k→∞ is an isomorphism.

Proof For each young tree x and each weight ωx = ` ∈ Z≥0 , the space
(FDk

DωWDkO)(x, `) can be described as the subspace of (WDωO)(x, `) given by
labeled trees f : y → x with at most ` internal edges such that, after cutting
apart f at the edges labeled ∞, each remaining subtree of f has ≤ k internal
edges. Taking the colimit as k →∞ we get all labeled trees f : x→ y with at
most ` internal edges. That is, we get all of (WDωO)(x, `).

6.3.11 Lemma Suppose O ∈ Op is cofibrant as an object of Fun⊗(For0,Top)
(see remark 6.3.5). Then, for each k ≥ 0 the natural map ιk : FDk−1

Dk
WDk−1O →

WDkO is a cofibration in Dk-Op.

Proof Observe that if f : x→ y is a tree in Dk with at least one internal edge,
then x ∈ Dk−1 , so ιk(x) is an isomorphism. By lemma 6.3.8 we only need to
show that ιk is a cofibration of Dk -symmetric sequences.

In the case k = 0, if x is a tree in C = D−1 then ι0(x, 0) is an isomorphism. If
x is in D − C then ι(x, 0) is the map ∅ → O(x) . The assumption that O is
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cofibrant as a functor Fun⊗(For0,Top) implies in particular that each O(x) is
aut(x)-cofibrant. That is, O is cofibrant as a For-symmetric sequence, so ι0 is a
cofibration of D0 -symmetric sequences. We now consider the case k > 0. We
follow [1, lemma 5.4]. For a young tree z ∈ Fork and g : y → z a tree in Fork ,
let (W ×O)+

k (g) be W(g)×O(y) if g has ≤ k− 1 internal edges. Otherwise let
(W ×O)+

k (g) ⊂ W(g)×O(y) be the set of (t, α) such that t(ε) = 0 or t(ε) =∞
for some ε ∈ E(g) or α(j) = id for some j ∈ V(g). Using the techniques of Berger
and Moerdijk [1, section 2] one can also show that O cofibrant as an object of
Fun⊗(For0,Top) (see remark 6.3.5) then (W ×O)+

k (g)→ W(g)×O(dom g) is an
aut(g)-cofibration, where aut(g) is the automorphism group of g as an object
of the category Fork/z . Define the map (W × O)+

k (g) → FDk−1
Dk

WDk−1O(z) by
collapsing any edge labeled 0 and deleting any vertex labeled with the identity.

In the diagram below, π0Fork/z is the set of isomorphism classes of forests
g : y→ z in Fork . The domain, y, of a forest g : y→ z is denoted dom g.

(49)

∐
[g]∈π0Fork/z

((W ×O)+
k (g))aut(g) (FDk−1

Dk
WDk−1O)(z)

∐
[g]∈π0Fork/z

(W(g)×O(dom g))aut(g) (WDkO)(z)

The square in diagram (49) is a pushout. By remarks above, we know the map
on the left in (49) is an aut(z)-cofibration. We conclude FDk−1

Dk
WDk−1O → WDkO

is a cofibration of Dk -symmetric sequences.

6.3.12 Lemma If C is a full subcategory of D and D is a full subcategory of
For , and O is an operad For→ Top which is cofibrant as a functor For0 → Top,
then the natural map FC

DWCO → WDO is a cofibration of D-operads.

Proof By lemma 6.3.7 we have

WCO ∼= FCω
C WCωO = FC

CωWD−1O.

The commutative diagram (48) shows that FC
DFCω

C = FDω
D FD−1

Dω . This gives the
first equality below.

FC
DFCω

C WCωO = FDω
D FD−1

Dω WD−1O
→ FDω

D colim
k

FDk
DωWDkO

= FDω
D WDωO

∼= WDO.
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The equality in the third line above comes from lemma 6.3.10 and the fourth from
lemma 6.3.7. The arrow above is a cofibration. Indeed, by repeated application
of lemma 6.3.11 together with the fact that each FDk−1

Dk
preserves cofibrations

(remark 6.3.9) we see that FDk−1
Dk
· · ·FD−1

D0 WD−1O → WDkO is a cofibration in
Dk-Op. Again, by remark 6.3.9 FDk

Dω and FDω
D preserve cofibrations. Thus the

arrow above is a cofibration in D-Op.

6.4 Weak equivalence proof

This section contains a proof of

6.4.1 Theorem The natural map SCh∞
d → SCh

d is a weak equivalence of
operads in Op(TopΣ).

The idea of the proof is to consider the maps p1 : SCh∞
d (n,m)→ SCh∞

d (n− 1,m)
and p : SCh

d(n,m)→ SCh
d(n−1,m) given by forgetting the nth disk. By induction,

we can suppose SCh∞
d (n − 1,m) → SCh

d(n − 1,m) is a weak equivalence. We
continue the induction by showing that p−1

1 (α)→ p−1(α) is a weak equivalence
for every α ∈ SCh∞

d (n− 1,m).

To make the computation of p−1
1 (α) and p−1(α) accessible, we will collapse the

nth disk of α ∈ SCh
d(n,m) to a point. Our goal in the next section is to make

this precise.

6.4.1 Defining SCd,•(k, `|n,m)

When we collapse the nth disk of α ∈ SCh
d (n,m) to its center, we think of the

result α̂ as living in a four-colored operad which we denote by SCd,• . We add the
colors f• and h• . Let K• = {f•, h•, f, h} be the set of colors for this new operad.
The color f• stands for collapsed full disks. It is convenient to also allow a
collapsed half disk, which we color with h• . Let (k, `|n,m) denote the K• -colored
finite set with k, `, n, and m elements of color f•, h•, f, and h respectively. Let
D• denote the full sub category of ForK•

with objects isomorphic to disjoint
unions of the young trees

(50) (0, 0|n,m)→ {h} (1, 0|n,m)→ {h} (0, 1|n,m)→ {h} (1, 0|0, 0)→ {h•}.

To define SCd,• : D• → Top we need the notion of the geometric realization of
β ∈ SCh

d (n,m).
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6.4.2 Definition Given β ∈ SCh
d (n,m), let |β| be its geometric realization.

This is the subset of Rd given by deleting the open discs and half-discs of β
from the closed unit half-disk. More precisely, if D̄d

+ is the closed unit half-disk
in Rd , {(Dd

f )j}m
j=1 are the open discs of β , and {(Dd

h)i}n
i=1 are the open half-discs

of β considered as open discs in Rd whose center lies in Rd−1 , then

|β| = D̄d
+ −

(( n⋃
i=1

(Dd
h)i

)
∪
( m⋃

j=1
(Dd

f )j

))
.

Let ∂h|β| := ∂(D̄d
+− (∪i(Dd

h)i)) be the h-colored boundary of |β|. Let ∂rt(|β|) be
the upper hemisphere Sd−1

+ ⊂ ∂D̄d
+ and let ∂i |β| be the upper hemisphere of

∂(Dd
h)i for 1 ≤ i ≤ n.

Now we can set

SCh
d,•(0, 0|n,m) = SCh

d (n,m)
SCh

d,•(1, 0|n,m) = {(α, q) | α ∈ SCh
d (n,m), q ∈ |α|}

SCh
d,•(0, 1|n,m) = {(α, q) | α ∈ SCh

d (n,m), q ∈ |α| ∩ Rd−1}
SCh•

d,•(k, `|n,m) = ∗

We think of the point q ∈ |α| as a collapsed disk and the point q ∈ |α| ∩
Rd−1 as a collapsed half-disk. Composition in SCd,• takes place in the half-
discs and collapsed half-discs only. The un-collapsed discs play no part in
composition. However the collapsed half-discs and collapsed discs only play a
part in composition when we plug a collapsed disk into a collapsed half-disk.
The result is a collapsed disk which happens to live on the boundary of the
geometric realization. See figure 6.4.1.

6.4.3 Definition Let C• denote the full sub category of D• with objects
isomorphic to disjoint unions of the young forests from (50) with n ≤ 1. Recall
from example 6.2.3 that we used D to denote the full subcategory of ForK whose
young trees are isomorphic to the trees in (50) with k = ` = 0. Likewise C is
the full sub category of D given by trees isomorphic to disjoint unions of forests
from (50) with k = ` = 0 and n ≤ 1. We write x ≤ 1 if x ∈ C or x ∈ C• . We
have that SCh1

d is the restriction of SCd to C , and SCh
d is the restriction of SCd

to D. Let SCh1
d,• denote the restriction of SCd,• to C• .

Let SCh
d,• and SCh1

d,• denote the W construction applied to the four-colored
operads SCd,• and SCh1

d,• via definition 6.2.2. Let F denote Kan extension along
C• → D• , that is, F = FC•

D•
using the notation from 6.1.11.
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∈

SCh
d,•(0, 0; 2, 3)

∈

SCh
d,•(1, 0; 1, 1)

∈

SCh
d,•(0, 1; 2, 3)

∈

SCh•
d,•(1, 0; 0, 0)

= =

Figure 2: The collapsed discs are denoted by dots and the collapsed half-discs by tick
marks. Collapsed discs are color f• input edges and collapsed half-discs are color h•

input edges. To keep the collapsed discs and half-discs from coinciding, we only allow
one or the other in any composition. Composition in SCd,• takes place only in the
half-discs and collapsed half discs. The only composition we can do in a collapsed
half-disk is given by plugging in a collapsed disk. The result is a collapsed disk replacing
the collapsed half-disk.

6.4.4 Definition Define p : D• → D by sending the K• -colored young forest
x : Ix → Jx to the K -colored forest px with

Ipx = (Ix)f,h Jpx = (Jx)f,h,

where for K′ ⊂ K• we set IK′ = col−1
I (K′), colI : I → K• . In (50) we see that

x(Ipx) ⊂ Jpx so that we can define px as the restriction of x to Ipx . Observe that
p(1, 0|n,m) = (n,m). If f : y→ x is a forest, then pf : py→ px is defined using
f . Since f preserves the colorings pf is indeed a forest from py to px. If f is a
morphism in C• then pf is a morphism in C .

If β ∈ SCd,•(z) for a K• -colored young forest z, then we get pβ ∈ SCd(pz). To
define pβ write β = (βj)j∈Jz where βj ∈ SCd,•(z−1(j); j). Each βj is of the form
(γj, qj) with qj ∈ |γj| or of the form γj ∈ SCd(z−1(j); j). Set pβ = (γj)j∈Jpz .

If t ∈ W(f ) and f ∈ D• , then E(pf ) ⊂ E(f ) and pt ∈ W(pf ) is defined to be the
pullback of t : E(f )→ [0,∞].

If (f : y→ x, t ∈ W(f ), α ∈ SCd,•(x)) represents a point in SCh
d,•(x) then (pf , pt, pα)

represents a point in SCh
d(x). This defines the map p : SCh

d,•(1, 0|n,m) →
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SCh
d(n,m). The restriction of p to F(SCh1

d,•)(1, 0|n,m) factors through the inclu-
sion SCh∞

d (n,m)→ SCh
d(n,m). Let p1 be the induced map F(SCh1

d,•)(1, 0|n,m)→
SCh∞

d (n,m).

Consider the commutative diagram of topological spaces where the horizontal
arrows do not assemble to operad maps,

SCh∞
d (n + 1,m) F(SCh1

d,•)(1, 0|n,m) SCh∞
d (n,m)

SCh
d(n + 1,m) SCh

d,•(1, 0|n,m) SCh
d(n,m).

∼ p1

∼ p
ι

The maps p1 and p delete the collapsed disk and, if necessary, a left over
collapsed half-disk. By induction on n we assume the right vertical arrow
is an equivalence. We will show that for each α ∈ SCh∞

d (n,m) the inclusion
p−1

1 (α) → p−1(ια) is an equivalence. Then by the long exact sequence of
homotopy groups we conclude that the middle vertical arrow is an equivalence.
The top left and bottom right maps collapse the nth full disk. One can show
that these are equivalences. We conclude that the left vertical arrow is also an
equivalence. This will prove theorem 6.4.1.

6.4.2 Computing p−1(ια) and p−1
1 (α).

We have shown that the proof rests on proposition 6.4.5 below. This section is
dedicated to the proof of this proposition.

6.4.5 Proposition Fix α ∈ SCh∞
d (n,m). The inclusion of the fiber p−1

1 (α)
into the fiber p−1(ια) is a weak equivalence.

Combining the W construction (38) and the left adjoint C-Op → D-Op (i.e.
Op(TopΣ≤1)→ Op(TopΣ)) we get

SCh∞
d (n,m) =

( ∐
g : z→y

f : y→(n,m)

W(g)× SCd(z)
)
/∼ ,

where y ≤ 1 (definition 6.4.3) . If α ∈ SCh∞
d (n,m) is represented by (f , g, t, α̃)

where f : y→ (n,m), g : zα → y, t ∈ W(g), and α̃ ∈ SCd(z), then ια ∈ SCh
d(n,m)

is represented by (fg,W∞(f )t, α̃). Let Tα = fg : zα → (n,m) and tα = W∞(f )t .
Without loss of generality, we may assume tα(i) > 0 for every i ∈ E(Tα) and
that α̃(j) 6= idSCd for any j ∈ Jzα .
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6.4.6 Definition Let Trees(1, 0|n,m) denote the over-category (D•)/(1,0|n,m) .
Similarly, let Trees(n,m) = D/(n,m) . Let p : Trees(1, 0|n,m)→ Trees(n,m) denote
the functor induced by p from definition 6.4.4.

Note that Tα ∈ Trees(n,m). Let (S, ν) ∈ Trees(1, 0|n,m)/Tα where S : x →
(1, 0|n,m) is any K• -colored tree and ν : zα → px is a forest such that (pS)ν = Tα .
Define functors Wα : Trees(1, 0|n,m)op

/Tα
→ Top and SCα : Trees(1, 0|n,m)/Tα →

Top via the pullbacks

(51)
SCα(S) SCd,•(x) Wα(S) W(S) W(pS)

∗ SCd(z) SCd(px) ∗ W(Tα).
p

α̃ SCd(ν)

p

WΣ(ν)
tα

We want to replace Trees(1, 0|n,m) by a much smaller category. First we need
the wedge operation on forests.

6.4.7 Definition Let f : x→ y be a Kf -colored forest and let g : z→ w be an
Kg -colored forest for some finite sets Kf ,Kg . Let τ : Jw → Jx be any map. Define
x ∨τ z to be the young Kf t Kg -colored forest (x, τ, z) : Ix t Jw t Iz → Jx t Jz and
define y∨τ w to be the young forest (y, [f |x]τw) : IytIw → Jy (see definition 6.3.2).
Finally, set f ∨τ g : x∨τ z→ y∨τ w to be the forest (f , g, f , τ) : Iy t Iw t Jx t Jz →
Ix t Jw t Iz t Jy .

6.4.8 Definition Let Γ0 be the tree with with no internal vertices and a single
input vertex of color f• . Let Γ1 be the tree with a single internal vertex of color
h• and a single input vertex of color f• .

For any edge i ∈ Edge(Tα)h define ν(i) : Tα → Tα(i) to be the morphism in
Trees(n,m) which inserts a unary vertex along i. Call this new vertex iv . Let
Si,k = Tα(i) ∨iv Γk . For any internal vertex j ∈ Jzα let Sj,k = Tα ∨j Γk . Note that
pSi,k = Tα(i) and pSj,k = Tα .

Let Treesα be the full subcategory of Trees(1, 0|n,m)/Tα given by the objects
Si,k = (Si,k, ν(i)) and Sj,k = (Sj,k, idTα) where i ∈ (Izα)h t {rt}, j ∈ Jzα and
k ∈ {0, 1}.

6.4.9 Remark The advantage of Tα is that it is easy to understand and
computes the space p−1α (lemma 6.4.10). There is a unique morphism S`,1 to
S`,0 for every ` and unique morphisms Si,k → ST−1

α (i),k and Si,k → Szα(i),k . See
figure 6.4.2 for an illustration.
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6.4.10 Lemma The fiber p−1(α) is given by the coend

Wα ⊗Treesα SCα.

Proof Let γ = [S, s, γ̃] ∈ SCh
d,•(1, 0|n,m) where S : x→ (1, 0|n,m) is a forest in

D• , s ∈ W(S), and γ̃ ∈ SCd,•(x). Let us assume that γ̃(j) 6= id for all j ∈ Jx and
s(i) > 0 for all i ∈ E(S). Observe that pγ ∈ SCh

d(n,m) is given by [pS, ps, pγ̃]. If
pγ = α there must be some ν : Tα → pS in Trees(n,m) such that SCd(ν)α̃ = pγ̃
and W(ν)ps = tα . The condition tα(i) > 0 for all i ∈ E(Tα) implies that
tα 6= WΣ(ν)(t′) for any t′ and any ν which collapses any edges. Moreover the
condition γ̃(j) 6= id for all j implies that pγ̃(j) 6= id for all j ∈ Jx such that
x−1(j)f•,h•

is not empty. We conclude that either ν = id or ν is the insertion of
the unique unary (in pS, not in S) vertex j such that x−1(j)f•,h•

is not empty. In
the former case we must have S = Sj,k for some vertex j ∈ Jx and some k ∈ {0, 1}
In the latter case we have S = Si,k for some edge i of Tα and some k . This
defines the map p−1(α)→ Wα ⊗Treesα SCα . The map in the other direction is
clear and the verification that they are inverses is left to the reader.

h•

e•

h•

e•

e•
e•

Si,1

Si,0

Sj,1

Sj,0

j
iTα =

h•

e•p

Figure 3: The edge i and vertex j of Tα give a commutative square in Treesα . The
input vertices are circles. The output vertex ends in an x . The internal vertices are
filled dots. The input and internal vertices of Γ0 and Γ1 are labeled with their colors.
In addition, the image of Si,1 under the functor p is shown. This makes it clear that
the map Tα → pSi,1 is given by inserting a single vertex.

In diagram (52) we have h-colored edges i1, i2 of Tα with zα(i1) = j = T−1
α (i2).

Thus we get the commutative diagram on the left. The image of this diagram
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under SCα is shown on the right.

(52)
Si1,1 Sj,1 Si2,1 |idh| ∩ Rd−1 |α̃(j)| ∩ Rd−1 |idh| ∩ Rd−1

Si1,0 Sj,0 Si2,0 |idh| |α̃(j)| |idh|

The geometric realization of the identity idh is just Sd−1
+ , the top half of the

(d − 1)-sphere. The input of α̃(j) corresponding to i1 is a half disk and the
map |idh| → |α̃(j)| corresponding to Si1,0 → Sj,0 is just ∂i1 |α̃(j)| → |α̃j| (see
definition 6.4.2). On the other hand the image of Si2,0 → Sj,0 is the inclusion of
the output boundary ∂rt |α̃(j)| → |α̃(j)|.

6.4.11 Definition Let ε• ∈ E(S`,1) be the unique internal edge of color h• .
If i ∈ Edge(Tα) (6.1.2), let iv denote the vertex inserted by ν : Tα → pSi,k .
Let iin and iout respectively denote the incoming and outgoing edges of iv
considered as internal edges of Si,k . For any object S`,k of Treesα , let Eα(S`,k) =

{ε•}k t ({iin, iout} ∩ E(S`,k)). This defines a functor Eα : Treesop
α → Set.

The image under Wα of the square in diagram (52) is in diagram (53).

(53)
[0,∞]2 [0,∞] [0,∞]2

[0,∞] ∗ [0,∞]

(id, 0) (id,∞)

(0, id) (0, id)0
0 ∞

More precisely,

(54) Wα(S) = {s : Eα(S)→ [0,∞] | s(iin) + s(iout) = tα(i)},

and Wα(S)→ Wα(S′) for a map S′ → S in Treesα is given by push forward of
functions along the map of finite sets Eα(S) ↪→ Eα(S′). There is no condition on
s(ε•), the length of the edge of color h• . The isomorphism Wα(Si,1)→ [0,∞]2
sends s to (s(ε•), r(s(iout), s(iin))) where

r(so, si) =
1− e−so

1− e−si
,

which lands in [0,∞] because so + si = tα > 0. Note that so = 0 if and only
if r(so, si) = 0 and so = tα if and only if r(so, si) = ∞. Since the morphism
Si1,1 → Sj,1 from diagram (52) collapses the edge (i1)out we get Wα(Sj,1) ∼=
{(r•, r) ∈ Wα(Si1,1) | r = 0}. In the same diagram, the morphism Si2,1 → Sj,1
collapses the edge (i2)in , so we have Wα(Sj,1) ∼= {(r•, r) ∈ Wα(Si2,1) | r = ∞}.
The unique morphism Si,1 → Si,0 collapses the edge i• so that Wα(Si,0) ∼=
{(r•, r) ∈ Wα(Si,1) | r• = 0}. The rest can be deduced from these cases.
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6.4.12 Lemma For any functor F : Treesα → Top the coend Wα ⊗Treesα F is
the homotopy colimit of F over Treesα .

Proof It is clear from diagrams (53) and (52) that Wα(S) is the geometric
realization of the nerve of the under category of S for each object S ∈ Treesα .
In addition the maps Wα(S)→ Wα(S′) for S′ → S agree with the maps obtained
from the nerves of under categories.

6.4.13 Lemma We can explicitly compute p−1(ια) as

p−1(ια) ' |SCd(Tα)α̃| ' (Sd−1)∨n,

where SCd(Tα)α̃ is the composition of all vertex labels from ια.

Proof Let Treesα,0 denote the full subcategory of Treesα consisting of objects
Sj,0 and Si,0 for internal vertices j and internal edges i. This category is
homotopy terminal, so by lemma 6.4.12 and lemma 6.4.10 we have p−1(ια) =

hocolimTreesα,0 SCα . This is the same as the homotopy colimit of the coequalizer
diagram ∐

i∈E(Tα)
|idh|⇒

∐
j∈V(Tα)

|α̃(j)| ,

where one arrow is given by including into output parts of the boundaries
of |α̃(j)|’s, and the other arrow is given by including into input boundaries.
These maps are cofibrations with disjoint images. Each space in the coequalizer
diagram is cofibrant. Thus the coequalizer diagram is already cofibrant as a
functor (· ⇒ ·) → Top. Thus we can compute the normal colimit. It is clear
that this is the same as composing the α̃(j)’s via Tα then taking the realization
of the result. In addition |β| is equivalent to a wedge of n spheres of dimension
d − 1 if β ∈ SCh

d (n,m).

6.4.14 Definition Let Treesα,1 denote the full subcategory of Treesα where
we discard the objects Sj,0 and Si,0 for j ∈ Jzα and i ∈ E(Tα). Define a functor
Wα,1 : Treesop

α,1 → Top by setting

Wα,1(S) = {s : Eα(S)→ [0,∞] |
∑

i∈Eα(S)
s(i) =∞}.

6.4.15 Lemma Suppose tα < ∞, and n = 1, then p−1
1 (α) is given by the

coend
Wα ⊗Treesα,1 SCα,
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where SCα is the functor in definition 6.4.6 restricted to Treesα,1 and Wα,1 is
defined in 6.4.14.

Proof Let γ ∈ F(SCh1
d,•)(1,m) such that p1(γ) = α. Pick a representative

(f , g, s, γ̃) where f : y→ (1, 0|1,m), y ≤ 1, g : z→ y, s ∈ W(g) and γ̃ ∈ SCd,•(z).
Consider ιγ ∈ SCh

d,•(1,m), which is represented by (fg,W∞(f )s, γ̃). Recall that
the condition y ≤ 1 means that each connected component of the young forest
y has at most one input whose color lives in {f, f•}. This implies that f has at
least one internal edge i ∈ E(f ). Thus W∞(f )s(i) =∞ when i is viewed as an
internal edge in fg.

We know pιγ = ια, so ιγ is represented by some triple (S, s′, γ̃) with S ∈ Treesα ,
s′ ∈ Wα(S), and γ̃ ∈ SCα(S). The relations in SCh

d,• preserve edges of length ∞,
so we must have s′(i) =∞ for some i ∈ E(S). We are assuming tα(i) <∞ for all
i ∈ E(Tα), so the infinite edge in S must be in Eα(S). This implies s′ ∈ Wα,1(S).
Moreover we cannot have such an infinite edge if S = Sj,0 for some vertex j or
S = Si,0 for some internal edge i. Thus S ∈ Treesα,1 . This defines the map from
p−1(α) to the coend. We leave the remainder to the reader.

6.4.16 Lemma For any functor F : Treesα,1 → Top the coend Wα,1 ⊗Treesα,1 F
is the homotopy colimit of F over Treesα,1 .

Proof The argument here is similar to the proof of lemma 6.4.12.

6.4.17 Corollary If tα < 0 and n = 1, then the fiber p−1
1 (α) is equivalent to

∂h |SCd(Tα)α̃| ' Sd−1 .

Proof By the same argument as in lemma 6.4.13, hocolimTreesα,1 SCα is equiv-
alent to colimTreesα,1 SCα . This is easily computed as the h-colored boundary of
the composite of α̃.

Proof of proposition 6.4.5 Recall α is represented by f : y→ (n,m), y ≤ 1,
g : zα → y, t ∈ W(g) and α̃ ∈ SCd(zα). By applying relations in SCh∞

d we
may assume 0 < t < ∞. We may think of (g, t) as representing an element
of SCh1

d (y) which we can write as (α(j))j∈Jy . If α(j) ∈ SCh
d(nj,mj) then nj ≤ 1.

Clearly p−1
1 (α(j)) ' p−1(α(j)) ' ∗ when nj = 0. Since tα(j) < ∞ we can use

corollary 6.4.17 to conclude p−1
1 (α(j)) ' ∂h |(SCd(g)(α))(j)|. The fiber p−1

1 (α) is
equal to the colimit of the diagram∐

i∈E(f )
|1h|⇒

∐
j∈V(f )

p−1
1 (α(j)),
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where one arrow is given by |1h| ' ∂i |α(y(i))| → ∂h |(SCd(g)(α))(y(i))| and the
other by |1h| ' ∂rt |α(f (i))| → ∂h |(SCd(g)(α))(y(i))|. This colimit is clearly
(Sd−1)∨n ' p−1(ια).

t ∞

∞

Figure 4: On the left is α ∈ SCh∞
d (2, 3). In the middle is p−1(α), and on the right is

p−1
1 (α). Both p−1(α) and p−1(α) have the homotopy type of a wedge of spheres, one

for each disk in α .
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