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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
VolIme 347, Number 6, June 1995 

THE STRUCTURE OF MACKEY FUNCTORS 

JACQUES THEVENAZ AND PETER WEBB 

ABSTRACT. Mackey functors are a framework having the common properties of 
many natural constructions for finite groups, such as group cohomology, repre- 
sentation rings, the Bumside ring, the topological K-theory of classifying spaces, 
the algebraic K-theory of group rings, the Witt rings of Galois extensions, etc. In 
this work we first show that the Mackey functors for a group may be identified 
with the modules for a certain algebra, called the Mackey algebra. The study of 
Mackey functors is thus the same thing as the study of the representation theory 
of this algebra. We develop the properties of Mackey functors in the spirit of 
representation theory, and it emerges that there are great similarities with the 
representation theory of finite groups. In previous work we had classified the 
simple Mackey functors and demonstrated semisimplicity in characteristic zero. 
Here we consider the projective Mackey functors (in arbitrary characteristic), 
describing many of their features. We show, for example, that the Cartan ma- 
trix of the Mackey algebra may be computed from a decomposition matrix in 
the same way as for group representations. We determine the vertices, sources 
and Green correspondents of the projective and simple Mackey functors, as well 
as providing a way to compute the Ext groups for the simple Mackey functors. 
We parametrize the blocks of Mackey functors and determine the groups for 
which the Mackey algebra has finite representation type. It turns out that these 
Mackey algebras are direct sums of simple algebras and Brauer tree algebras. 
Throughout this theory there is a close connection between the properties of 
the Mackey functors, and the representations of the group on which they are 
defined, and of its subgroups. The relationships between these representations 
are exactly the information encoded by Mackey functors. This observation sug- 
gests the use of Mackey functors in a new way, as tools in group representation 
theory. 

INDEX OF NOTATION 

1G restriction of Mackey functors, G-sets, modules 
T^ induction of Mackey functors, G-sets, modules 

TH left adjoint of inflation 
M fright adjoint of inflation 
M(H) M(H)/ EJ<H IyM(J) 

FG(H) NG(H)/H 
(E) subfunctor generated by E 
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M* dual Mackey functor 
/R(G) Mackey algebra 
v map between Grothendieck groups 
P matrix of q 

w(G) intermediate category of definition for Mackey functors 
QR(G) category of definition for Mackey functors 
B(G) Burnside ring 
BG Burnside ring Mackey functor 
Brp Brauer morphism 
Cg conjugation 
ComackR(G) category of cohomological Mackey functors 
dsT decomposition map 
eH Burnside ring idempotents 
fj Burnside ring idempotents 
FPv fixed point Mackey functor 
FQV fixed quotient Mackey functor 
?G Hecke category 
MackR(G) category of Mackey functors over R 
MackR(G, J) category of Mackey functors for which fjM = M 
IH covariant Mackey functor operation IK 
Inff inflation of Mackey functors 
PH, V indecomposable projective Mackey functor 
R commutative ground ring 
RH contravariant Mackey functor operation 
SH, V simple Mackey functor 
T(H, K) carrier of H into K 
TMack Brauer tree of Mackey functors 
TMod Brauer tree of modules 
vx(M) vertex of M 

1. INTRODUCTION 

We study the structure of Mackey functors for a finite group G over a com- 
mutative ring R. We approach this in the spirit of representation theory of 
algebras and groups and our study here centres mainly around the projective 
Mackey functors. These are defined to be the projective objects in the category 
MackR(G) of Mackey functors over R. In a certain sense they encapsulate 
all information about Mackey functors since arbitrary Mackey functors may 
be constructed from them. In considering their properties we introduce the 
Mackey algebra PR (G) . This is an algebra of finite rank over R with the prop- 
erty that MackR(G) is equivalent to the category of IIR(G)-modules, so that in 
case R is a field, Mackey functors are the same thing as representations of a 
certain finite dimensional algebra. This immediately gives us the existence of 
projective covers, and allows us to talk about idempotents and so forth. 

In [20] we classified the simple Mackey functors, showing that they are param- 
eterised by pairs (H, V) where H is a subgroup of G taken up to conjugacy 
and V is an irreducible R[NG(H)/H]-module. The simple Mackey functor 
corresponding to this pair is denoted SH, v. We immediately obtain a parame- 
terisation of the indecomposable projective Mackey functors in case R is a field, 
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since they biject with the simples, and we write PH, v for the projective cover 
of SH, v . Ideally our goal would be a description of the subfunctor lattices of 
the PH, V. Usually this degree of information is too much to ask for, in just 
the same way as it is only possible in small cases for projective modules over a 
group algebra. The structure of the Mackey functors is in fact more complicated 
than with group algebras and the expectation of giving the subfunctor lattices 
becomes limited by the possibility of describing them in any reasonable way. 
We sidestep this complication by describing more general properties. There is a 
decomposition theory similar to that for group representations which shows that 
the Cartan matrix for Mackey functors is symmetric and non-singular. There 
are certain fundamental Mackey functors BK tG which are induced from the 
Burnside functor of a subgroup K. These are projective, although usually not 
indecomposable, but we can say exactly when PH, v is a summand of one of 
these, and with what multiplicity. Arising from this there is a connection with 
permutation representations and Hecke algebras for G, since it emerges that 
BK tG has an endomorphism ring which has as a homomorphic image the Hecke 
algebra EndRG(R tG), and the kernel is nilpotent. 

Mackey functors fall into blocks. As usual the word 'block' has multiple 
meaning, and we take it to mean either a two-sided direct summand of the 
Mackey algebra, or the representations of that summand. We describe the di- 
vision of the simple Mackey functors SH, v into blocks, using some general 
results giving information about the existence of non-trivial extensions of sim- 
ple Mackey functors. The result is that the blocks of Mackey functors biject 
with the ordinary blocks of G together with the blocks of certain sections of G. 
It may seem that Mackey functors, being defined on all subgroups, are rather 
ill-equipped to deal with blocks, but our result shows that this is not the case. 

We consider the question of when the Mackey algebra has finite representa- 
tion type (that is there are only finitely many isomorphism classes of indecom- 
posable Mackey functors), or when the Mackey algebra is self-injective (that 
is projective and injective objects coincide). The result is the same for both 
questions: when R is a field of characteristic p, we have finite representation 
type or self-injectivity if and only if G has a Sylow p-subgroup of order (at 
most) p. In this situation, we show that the blocks of the Mackey algebra 
are either matrix algebras or Brauer tree algebras, and that the Brauer trees are 
closely related to the ones occuring in the representation theory of the group 
algebra. 

Much of this work was done when we were visiting the ETH Zurich in sum- 
mer 1989 and we wish to thank the Forschungsinstitut fur Mathematik for its 
hospitality. We also wish to thank Dave Benson for helpful suggestions con- 
cerning Brauer trees and Markus Linckelmann for providing a positive answer 
to a question about higher decomposition numbers. 

2. PRELIMINARIES 

We recall the various equivalent definitions of a Mackey functor which we 
will find useful. We work with Mackey functors over a commutative ring R. 
The most elementary definition, which is due to Green [1 1], is that a Mackey 
functor over R is a mapping 

M: {subgroups of G } R-mod 
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with morphisms 
JK: M(K) M(H), 

RH: M(H) M(K), 

Cg: M(H) - M(9H) 

whenever K < H and g E G, such that 

(0) IHH, RH, Ch: M(H) -* M(H) are the identity morphisms for all subgroups 
H and hEH, 

(1) IfJRK IJ} for all subgroups J < K < H, 

(3) CgCh= Cgh for all g, h E G, 
(4) R gH =CRH 

( gK ' gK } for all subgroups K < H and g E G, 
gK g - CIK 

(6) RJHIKH=ZEXE[J\HIK] JjnxK CX RfXnK for all subgroups J, K < H. 

The morphism RK is called restriction, Cg is called conjugation, while IK is 
called induction or sometimes also transfer. Axiom (6) is called the Mackey 
axiom and explains the terminology. 

The definition given by Dress [9] is equivalent to this, provided we restrict to 
having the category of finite G-sets as the domain of definition. We denote by 
G-set the category whose objects are the finite G-sets, and where the morphisms 
are the G-equivariant maps. We may define a Mackey functor to be a bifunctor 

M = (M*, M*): G-set -* R-mod 

satisfying two conditions. Here a bifunctor means a pair consisting of a covari- 
ant functor M* and a contravariant functor M* which agree on objects; thus 
M* (X) = M* (X) for every G-set X. We write M(X) for this common value. 
The two conditions M must satisfy are 

(1) for every pullback diagram 
v a! 

X1 AX2 

X3 ) X4 

in G-set we have M* (3)M* (Y) = M* (f3)M* (a) . 
(2) The two mappings X -* X U Y *- Y into the disjoint union define an 

isomorphism M(XUY) _ M(X)DM(Y) via M* (or equivalently M* ). 
The connection between this and the previous definition is that we now write 
M(G/H) to denote the R-module associated to the subgroup H, and if ,rK 
G/H -) G/K denotes the quotient map of coset spaces where H < K we have 
M* (HK) = IHK and M* (7rK) = RK. The first axiom on pullbacks corresponds 
to the Mackey axiom in the first definition. 

Important examples of Mackey functors are naturally defined on subgroups 
as in the first definition (e.g., fixed point functors, Burnside functors, etc.). For 
this reason we shall often use the point of view of the first definition. However 
many conceptual developments (in particular induction and restriction) are best 
expressed in the language of the second definition. Thus we shall also use freely 
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this second approach. For completeness we mention also a third version of the 
definition of a Mackey functor which is due to Lindner [ 15] (see also [25]) and 
which is probably the most elegant one. Finally a module-theoretic approach 
will be developed in the next section. 

The third definition is based on the following construction. Let co(G) be the 
category whose objects are finite G-sets and where the morphisms from X to 
Y are the equivalence classes of diagrams of G-sets X +- V -* Y. We say that 
two such diagrams are equivalent if there is a commutative diagram 

V 

X {a Y 
K Y 

VI 

where a is an isomorphism of G-sets. To define the composition of morphisms 
we consider a morphism from X to Y represented by a diagram X - V -* Y 
and a morphism from Y to Z represented by a diagram Y +- W Z. We 
form the pullback 

U 

V w 

x Y Z 

which defines a diagram X +- U Z, hence a morphism from X to Z. The 
set of morphisms Homc,,(G)(X, Y) has a structure of monoid using the disjoint 
union of the intermediate G-sets as follows: 

(Xa V Y)+(X V'I Y)=(X allVuV'U Y). 

It is clear that the empty set gives rise to a zero element. Moreover it is not 
difficult to prove that the disjoint union of G-sets is both a product and a 
coproduct in co(G), so that co(G) is nearly an additive category. In fact, to 
make it additive, it suffices to turn the monoids Homw(G) (X, Y) into abelian 
groups Z Hom,,(G) (X, Y) by the usual universal construction. The situation is 
particularly easy here because by Proposition 2.2 below, the monoids are free 
abelian, so that the corresponding abelian groups are free on the same basis. 
Since we are working over a base ring R, we extend scalars to R and define the 
category nR(G) whose objects are finite G-sets and where the set of morphisms 
from X to Y is the (free) R-module HomQR(G) (X, Y) = R Homcl(G) (X, Y). 
Thus nR(G) is an R-additive category. 

Having defined nR(G), we can give the third definition of a Mackey functor 
over R: a Mackey functor is simply an R-additive functor 

M: nR(G) -* R-mod. 
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To recover the second definition of a Mackey functor from this, we note that M* 
(respectively M* ) is obtained by applying our additive functor to a morphism 

of the form X +- X -- Y (respectively Y +- X +X ). The requirement in 
the second definition that a Mackey functor preserves coproducts is replaced 
here by the condition that the functor is additive. The axiom on pullbacks in 
the second definition (that is the Mackey axiom in the first one) is incorporated 
here in the definition of the composition of morphisms in w(G) . The direct 
connection with the first definition of a Mackey functor is that again we write 
M(G/H) to denote the R-module associated to the subgroup H, and if H < K 

then M(G/K + G/H 1 
G/H) = iA and M(G/H 

1 G/H G/K) = RH. 
We now turn to the proof that Hom,(G)(X, Y) is a free abelian monoid. 

Since the disjoint union is a product and coproduct in w(G) , we can decompose 
both X and Y and it suffices to prove the claim when X and Y are transitive 
G-sets. So we consider morphisms from G/K to G/H. Such a morphism will 
be called basic if it is represented by a diagram of the form G/K +- V -+ G/H, 
where V is a transitive G-set (hence V G/L for some L). 

(2.1) Lemma. Every basic morphismfrom G/K to G/H in w(G) is represented 
by a diagram 

GIKgLc GILL GIH 

where L < H n Kg and g E G. Such a diagram is equivalent to 
K ~~~~7H 

7rg1ICgl 7rL 
G/K G/L1 GG/H 

if and only if KgH = Kg, H and L1 = XL for some x E H n gl lKg. 

Proof. The commutative squares 

K H 

G/K XL G/L - G/ H 

ltyy 
G/K GI/L -Y G/H 

show that the arbitrary diagram at the top is equivalent to one in standard form. 
Two standard forms are equivalent if and only if we have commutative squares 

KH 
G/K GIL GIH 

II {~~ ~~cx I 
K H 

G / K G/L 7r G/L1 G + G/H 

which immediately entails 7TKcg = 7L, cg1x and 7r H = 41 cx which we rewrite 
as cg 74 = Cg Kglx and 1H = CX7rHx. We use the property that ca = Cu 
if and only if A = U, aB = UV and ua-1 E aB. Thus our conditions are 

glxg-I = k for some elements k E K and x E H with L1 = XL. Thus 
g- = kgx-I for some k E K and x E H, i.e. KgH = KgIH, and also 
x = gj' kg is any element of H n g l Kg, which completes the proof. z 
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(2.2) Proposition. The set of morphisms Homc,,(G)(G/K, G/H) is a free abelian 
monoid, with basis represented by the diagrams 

G/K GL G/L-*G/H 

where g E [K\G/H] and L is a subgroup of H n Kg taken up to H n Kg- 
conjugacy. 

Proof. Since any finite G-set decomposes uniquely as a disjoint union of tran- 
sitive G-sets (each being isomorphic to some G/L), any morphism from G/K 
to G/H is clearly a sum in a unique way of basic morphisms. So the monoid is 
free. Now for the description of the basis it suffices to settle the question of the 
equiAvalence of diagrams representing the same basic morphism. This is clear 
by the lemma. 0 

To establish our notation we summarise some of the basic constructions on 
Mackey functors which are used, for example, in [20]. The category of Mackey 
functors (over R ) for G is denoted MackR(G). We denote by 

IG MackR(H) - MackR(G), 

1G MackR(G) - MackR(H), 

the induction and restriction of Mackey functors. Regarding Mackey functors 
as defined on G-sets, these operations are defined as M tG (X) = M(X IG) 
and NIG (Y) = N(Y tG), thus making use of the corresponding notions for 
G-sets. Induction of Mackey functors is both the left and the right adjoint 
of restriction, a fact which is a little surprising since the same is not true for 
G-sets. Conjugate Mackey functors are defined in a similar fashion: if M is a 
Mackey functor for a subgroup H of G and g E G, then we have a Mackey 
functor 9M for 9H defined by 9M(X) = M(g 'X). 

Whenever we have a normal subgroup N < G and a Mackey functor L for 
Q = G/N we can form the inflation InfG L which is a Mackey functor defined 
by 

InfQ L(K) = if K N 
{ L(K/N) i 

ifK DK with zero restriction and induction morphisms RK, IH unless N < H < K, 
in which case they are the mappings RKIN, IH/N for L, and similarly with 
conjugations. Inflation has a right adjoint and a left adjoint which we describe 
as follows. Starting with a Mackey functor M for G we obtain Mackey functors 
M+ and M- on Q by 

M+(K/N) = M(K)/ Z IJKM(J), 
J<K 
JiN 

M- (K/N) = n Ker Rj 
J<K 
JWN 

with induction, restriction and conjugation morphisms inherited from M. 
Then + is the left adjoint of InfG and - is the right adjoint [20, 5.1]. 
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If M is a Mackey functor for G we will write 

M(H) = M(H)/ E IHM(J). 

J<H 

Note that M(H) is an RNG(H) module, where we write NG(H) = NG(H)/H. 
In particular if N < G, then M+(N) = M(N) . 

Starting with a module V for G we have the fixed point and fixed quotient 
functors FPv and FQv, for which FPv(H) = VH and FQv(H) = VH. These 
satisfy an adjointness property. There is the functor MackR(G) -+ RG-mod 
which sends a Mackey functor M to the RG-module M( 1). Now FQ is left 
adjoint to this and FP is right adjoint [20, 6.1]. 

A useful property of fixed point functors is the following. 

(2.3) Proposition. The map EndMackR(G)(FPv) -- EndRG(V) given by evaluation 
at I is a ring isomorphism. Thus direct sum decompositions of FPv correspond 
to direct sum decompositions of V. Moreover if FPv = Ml @ M2 then Mi = 
FPwi where V= W1 W2 . 

Proof. The adjunction isomorphism gives 

HomMackR(G)(FPv, FPv) - HomRG(FPV(l), V) = EndRG(V). 

If FPv = M, E M2 then V = WI @ W2 as an RG-module, where Wi = 
Mi(1). Since all restriction maps in a fixed point functor are inclusions, we 
have Mi(H) C VH n Wi = WiH and it follows that Mi is a subfunctor of 
FPw i. But we have FPw1 I FPw2 = FPv = M1 @ M2 and this forces the 
equality FPwi = Mi * 1 

Using the above tools we construct the simple Mackey functors SH, v, which 
are parametrized by pairs consisting of a subgroup H determined up to con- 
jugacy, and a simple RNG(H)-module V taken up to isomorphism. First 
we describe the situation when H = 1 and V is a simple RG-module. It 
was shown in [20, 7.1] that FPv has a unique minimal subfunctor, which 
is necessarily simple, and this constructs Sl, v. This subfunctor Sl, v is de- 
scribed explicitly by S1,V(K) = IK (V) C VK, which may also be written as 
S1,v(K) = (EgEK g) V. Note in particular that SI, v (1) = FPv (1) = V. We 

occasionally write SH V instead of SH, v to emphasize that this is a Mackey 

functor for G. Now if H is any subgroup of G and V is a simple RNG(H)- 

module we define SH, v = (InfN(H) S N(H)) TG (H) and this is in fact a simple 

Mackey functor. The SH, v so constructed constitute a complete set of rep- 
resentatives for the isomorphism classes of simple Mackey functors [20, 8.3]. 
Another important property of the simple Mackey functors SH, v which we will 
use repeatedly is that SH, V(K) = 0 unless K >G H, and SH, v(H) = V. This 
is an easy consequence of the description of SH, v given above. 

Occasionally we will refer to the Mackey functor generated by a set of ele- 
ments. This will mean that we have a Mackey functor M and for each subgroup 
H < G there is specified a set of elements E(H) C M(H). We put 

(E) = n{N I N is a subfunctor of M, E(H) C N(H) for all subgroups H}, 

and this is the subfunctor generated by E. If we do not explicitly specify E(H) 
for some subgroup H then we take E(H) = 0. We now quote Proposition 2.1 
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of [20], which gives an explicit description of this construction in an important 
special case. 

(2.4) Proposition. Let M be a Mackey functor for G. Let Z be a family of 
subgroups of G, closed under conjugation and taking subgroups, and for each 
X E 2, let E(X) be an R-submodule of M(X) such that 

IjY(E(Y)) c E(X), RX(E(X)) C E(Y), cg(E(X)) = E(9X) 
for all Y < X E Z and g E G (so that E is a "Mackeyfunctor defined on " 
Then for each subgroup H of G 

(E) (H) = E IxH(E(X)). 

X<H 

Moreover if HeE i then (E)(H) = E(H). 

3. THE MACKEY ALGEBRA 

The category of Mackey functors for G over R is equivalent to the category 
of modules for an R-algebra ,uR(G) of finite rank which we call the Mackey 
algebra. We define ktR(G) in this section and develop its elementary properties. 
It can be convenient to think of Mackey functors in these terms because one 
may be more familiar with modules than with functors. For example one may 
be concerned about the existence of projective covers, or of blocks of Mackey 
functors. The quickest way to deal with these questions is to put them into the 
standard setting of modules. 

We define the Mackey algebra in two ways, the first being intuitively appealing 
and the second useful in computation. For the first definition we consider the 
quiver whose vertices are the subgroups of G and where we have edges 

sK RK 

H. IH, IK H . H . K 

for each pair of subgroups H < K, and also an edge 

H. - . H 

for each pair (g, H) with g E G, H < G. Because the notation gets very 
cumbersome otherwise, we write cg instead of cg, H when there is no confusion. 
We define the Mackey algebra ktR(G) to be A/J where A is the path algebra 
over R of this quiver and J is the 2-sided ideal of A generated by the relations 
(1) - (6) in the definition of a Mackey functor, together with 

(0') For all H < G and h E H, IHH= R HH = Ch,H is the path of length zero 
at H. 

It is apparent that a Mackey functor in the sense of the first definition is 
precisely a representation over R of the above quiver with relations, since it 
consists of the specification of an R-module for each vertex of the quiver, with 
morphisms between these modules for each arrow of the quiver. These mor- 
phisms must satisfy exactly the relations we put on the quiver. We thus see 
that Mackey functors over R may be identified as YuR(G)-modules, the corre- 
spondence being that from a Mackey functor M we may construct the IuR(G)- 
module eH<G M(H), and conversely given a IR(G)-module A we recover the 
Mackey functor M by setting M(H) = IHH* A. 
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It is clear that MR(G) is finitely generated as an R-module. We shall see 
below that it is actually a free R-module, a fact which is not obvious from the 
definition. In case R is a field, MR(G) is a finite dimensional R-algebra and 
so we automatically have the existence of projective covers, the Krull-Schmidt 
theorem and so forth for these Mackey functors. 

It is convenient to give another definition of the Mackey algebra using the cat- 
egory QR(G) which was introduced in the third definition of Mackey functors. 
We define an algebra 

R(G)= e HomOR(G)(GIH , GIK) 
H, K<G 

which we will show in 3.3 is isomorphic to MR(G) . The multiplication in It'(G) 
is defined on components in the direct sum by composition of morphisms in 
the category QR(G), or zero if two morphisms cannot be composed. After 3.3 
we will identify It (G) with MR(G), but for the moment we retain the separate 
notations. 

(3. 1) Proposition. The category of Mackey functors (i.e. additive functors QR(G) 
- R-mod) is isomorphic to It'(G)-mod. 

Proof. The correspondence is the same as the one between representations of 
a quiver and modules for its path algebra. Given an additive functor M we 
may construct the M' (G)-module eDH<GM(G/H); conversely givena a' (G)- 
module V we recover the additive functor M by setting M(G/H) = idG/H V 
and extending the definition of M to an arbitrary G-set X - Ui G/Hi by 
means of a direct sum formula M(X) = ei M(G/H) . 0 

It is immediate from Proposition 2.2 that It'(G) is free as an R-module and 
is of finite rank, with an explicit basis given by 2.2: 

(3.2) Proposition. The algebra It'(G) is free as an R-module with basis repre- 

sented by the elements GIK gGILGIH where H, K are arbitrary sub- 
groups of G, g represents a double coset in K\G/H and L < H n Kg is taken 
up to H n Kg-conjugacy. 

This last result provides a mechanical, if tedious, way to compute the rank 
of It,'(G) 

(3.3) Proposition. The two algebras MR(G) and It'(G) are isomorphic. 

Proof. Recall that MR(G) = A/J where A is the path algebra of a quiver and J 
is an ideal of relations. We define an algebra homomorphism g : A/J -A I' (G) 
by defining a homomorphism g: A - It'(G) which is zero on J. The typical 
basis element of A can be written as a product of elements I, c and R of the 
form 

IHn+I C RHn...IH2 c R Hi 
9gnL, IgnRLn Igl g1 RLi 

provided we allow the possibility to put symbols RLI ILI etc. which represent Li' Li ' 

the identity path at LI . Apart from such extra identity paths, the definition of 
the path algebra says that this expression is unique. We define 4 : A -- It (G) 
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on these basis elements by putting 

1CRHn RIH2 c R (GlHn+l GILn GlHn) 

(G/H2 C1 H 

*. (GIH2 ( G/L, 1 G/HH). 

The set of paths in the quiver (together with 0) is closed under multiplication 
and the above assignment preserves this structure, so it extends by linearity to 
an algebra homomorphism 4 defined on all of A. This vanishes on J since the 
category QR (G) is constructed precisely so that the Mackey functor relations 
are satisfied there. 

We construct now an R-linear homomorphism f: It',(G) -- A/J by defining 
it on the basis of It (G) . We define 

K H 

f(GI/K G/L-7L+G/H) = IK C RH + J. 

This definition is independent of the choice of representative of the basis ele- 
ment of this form, since if 

K ~~~7H 
G/K *- G/L1I4G/H 

is in the same equivalence class, then, using the notation in Lemma 2.1, its 
image under f is 

igK c RLHl + J= IK XLCcxRH + J 

= c RHC HC+ 

= k-lIkgLcRxx +1 J 

IgLK tglcxRLH + J 

=IK IcRLH + J gL g L 

where x = g lkg and LI = XL, since these transformations are all obtained 
by applying the Mackey functor relations. It is immediate that f and g are 
mutually inverse. 0 

We shall from now on identify the two algebras MuR(G) and ItR(G) . Although 
it was useful to introduce I4' (G) to make it clear that the Mackey algebra is 
free as an R-module, it is usually more convenient to write elements of MtR(G) 
as sums of products of symbols IKH, RKH, Cg, H using the quiver definition of 
the algebra, rather than as sums of diagrams as in the second definition. With 
this notation the statement of 3.2 becomes that MR(G) is a free R-module with 
a basis over R consisting of the elements 

{IIKCgRH I H K < G g E [K\G/H], L < H n Kg up to H n Kg-conjugacy}. 

The fact that MR(G) is a free R-module is fundamental in our discussion of 
decomposition theory in Section 7. 

(3.4) Proposition. For each subgroup H < G, the elements cg H with g ranging 
over a set of representatives for NG(H) span a subalgebra of #R(G) isomorphic 
to the group algebra RNG(H). 
Proof. These elements certainly multiply together in the manner of the elements 
of NG(H). In particular their span is a subalgebra of ILR(G) and the only 
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question is whether these elements are linearly independent. This is guaranteed 
by the description of the basis of ,UR(G), of which they form part. o 

In view of this result we immediately obtain certain idempotents in ,uR(G), 
namely the group ring idempotents in RNG(H) for each subgroup H of G. 
We will see in later sections that primitive idempotents in RNG(H) do not 
remain primitive in ILR(G), and in fact (by an extension of Theorem 8.6) we 
can give the exact decomposition into primitive idempotents of ,uR(G) . For the 
moment we can at least say when R is a field that since conjugacy classes of 
idempotents biject with simple modules there is for each simple ,R (G)-module 
SH, v a primitive idempotent eH, v determined up to conjugacy by the fact that 
eH, V * SH, v :#O. Then PH, V = AR(G) * eH, V is the projective cover of SH, V . 

We have various reasons for introducing the Mackey algebra. One of them 
is that it allows us to borrow standard constructions and results from mod- 
ule theory without formality, such as the existence of projective covers, tensor 
products and the fact that the Krull-Schmidt theorem holds. Another is that it 
provides us with our first example of a projective Mackey functor, namely the 
regular representation. In fact this might be termed a free Mackey functor, and 
it satisfies a universal property associated with this usage. 

We now interpret a known result in terms of the Mackey algebra. 
(3.5) Theorem. Let k be a field in which IGI is invertible. Then ,uk(G) is a 
semisimple k-algebra. 
Proof. In this situation every Mackey functor is a direct sum of simple Mackey 
functors, by one of the main results of [20]. o 

A new proof of this theorem will be given in Section 14. 
(3.6) Theorem. Let k be a field, Then k is a splitting field for 1k(G) if and 
only if k is a splitting field for the representations of NG(H) for every subgroup 
H< G. 
Proof, We apply Theorem 3.1 of [20] which characterizes simple Mackey func- 
tors S by the property that if H is a minimum subgroup of S (that is, 
S(H) / 0 and S(K) - 0 if K < H) then 

(1) n Ea KerR4H0=? for all subgroups K < G, 
(2) E, g9q KmIg - S(K) for all subgroups K < G, 

gH<X 

(3) S(H) is a simple kNG(H)-module. 
Conditions (1) and (2) remain intact on extension of scalars, and if k is a 
splitting field for NG(H) then so does (3), so S remains simple. Thus if k is 
a splitting field for every group NG(H), it is a splitting field for /k(G). 

On the other hand, if k is not a splitting field for some Nc(HI) then there is 
a simple kNG(H)-module V and a field extension k' D k so that k' k V is not 
simple. If SH, v is the corresponding simple Mackey functor then k' ?k SH, v 
fails condition (3) of the characterization, so is not simple, and so k is not a 
splitting field for P,k(G). o 

4. DUALITY FOR MACKEY FUNCTORS 

For simplicity in this section we will work throughout with a field k as 
our base ring. We define the dual of a Mackey functor M to be the Mackey 
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functor M* , where M* (H) is the k-module dual DM(H) = Homk (M(H), k) 
for each subgroup H, and with 

IHK= D(R K) R K= D(IHK), cg = D(cg 

where on the right-hand side we have the mappings induced on the dual spaces 
by the restriction, induction and conjugation for M. Thus as far as the conju- 
gations are concerned, M* (H) is the contragredient representation of the group 
NG(H). 

It is convenient to interpret duality in terms of the Mackey algebra. Mackey 
functors may naturally be regarded as left jtk(G)-modules. One readily sees 
that right /1k(G)-modules may be regarded in the same way as what one might 
call 'contravariant Mackey functors'. In terms of the third Mackey functor 
definition we mean by this a contravariant additive functor Qk(G) -- k-mod. 
There are two ways in which starting with a left jtk(G)-module we can obtain 
a right /1k(G)-module and vice versa. The first is by taking k-module duals. If 
M is a left jtA(G)-module then 

DM = Homk(M, k) 

acquires the structure of a right Iuk(G)-module in the usual way via 

(fx)(m) = f(xm), f eDM, X Euk(G), meM. 

The second comes from the observation that Auk(G) has an antiautomorphism 
specified by 

IK CgRf I" ICg-iRK 

Thus R's and I's are interchanged, cg is replaced by cg-i and the order 
of multiplication is reversed. The fact that this gives an antiautomorphism 
follows either from the fact that Qk(G) has a similar antiautomorphism, or 
else by verifying that the ideal of relations in the path algebra is preserved. In 
particular, the Mackey decomposition formula is left unchanged. Let us denote 
this antiautomorphism by x X x, x E Jtk(G). If M is a left gtk(G)-module 
we denote by M0P the right /1k(G)-module with the same elements as M and 

mx=ym, xEIk(G), mEM. 

In a similar way if M is a right /1k(G)-module we obtain left modules DM 
and MOP. It is apparent that OP gives an isomorphism of categories between 
left and right Auk(G)-modules, and D provides a contravariant duality between 
these categories. Thus, for example, OP preserves the classes of projectives and 
injectives and D interchanges them. 

In these terms we can now define define M* DM0P, and this coincides 
with the previous definition. It is apparent that it does not matter in which 
order we apply D and OP, so we do not need parentheses. Now * is a duality 
on Mackey fulnctors whose square is the identlty. It preserves exact sequences 
and interchanges projectives and injectives, This proves parts (i) and (ii) of the 
next proposition. 

(4. 1) Proposition. Let k be a field. Then 
(i) the Mackey functor P is projective if and only if P* is injective, 
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(ii) the composition factors of a dual Mackey functor M* are the duals of 
the composition factors of M, 

(iii) for every kG-module V, (FPv)* = FQv*, and 
(iv) for every subgroup H and kNG(H)-module V, SH,V SH,V* 

Proof. (iii) The functor V |-4 (FPv* )* is left adjoint to evaluation at the iden- 
tity, as is seen from the following sequence of natural bijections: 

Hom((FPv*)*, M) *-* Hom(M*, FPv*) 

?-*Hom(M*(1), V*) 

Hom(M(1)*, V*) 

Hom(V, M(1)). 

Since we already know that FQv is the left adjoint, we obtain the desired 
isomorphism of functors. 

(iv) For H = 1 this follows from the construction of SI, v as the unique 
simple Mackey functor appearing in an exact sequence 0 -+ SI, v -+ FPv. 
Applying * gives an exact sequence FQv* >- S* v 0, but the unique simple 
quotient of FQv* is SI, v*, so we have the desired isomorphism. For an 

arbitrary H, remember that SH, v = (InfN"(H). SN(H)) tG 
NV(H) I,V~ 'N(H) 'It is easy to check 

that taking the dual commutes with both inflation and induction. This reduces 
to the case of a simple functor S1, v which we have just seen. El 

(4.2) Lemma. Let eH, v E ,Uk (G) be a primitive idempotent for which eH, VSH, v 
$& 0 . Then eH, v is a primitive idempotent for which eH, vSH, v* $ . 
Proof. Evidently eH, V is a primitive idempotent if and only if eH, V is a prim- 
itive idempotent. On the assumption that eH, VSH, V : 0 we have 

eH,VSH,V* =eH,VSH,V 

= eH,VD(SH, V) 

= (DSH,v)eH,V 
= D(eH, VSH, V) 

$0. 

In the last equality, one has to interpret a linear form on SH, v lying in 

(DSH, V)eH V as a linear form on SH, V vanishing on (1 - eH, V)SH, v 

We step ahead of ourselves for a moment to deduce a corollary which would 
also find a fitting place when we come to consider the Cartan matrix in Section 7. 
We use the notation PH, v to denote the projective cover of SH, v. Since we 
are working over a field k and Mackey functors are modules for the finite 
dimensional k-algebra Yuk(G), these projective covers always exist. In fact 
PH, v corresponds to the ,Uk (G)-module ktk (G) * eH, v . 

(4.3) Corollary. The multiplicity of SH, v as a composition factor of PK, w 
equals the multiplicity of SK, w* as a composition factor of PH, v*. 

Proof. The antiautomorphism induces an isomorphism of vector spaces 

eH, vl(G)eK, W -eeK, w(G)eH, v 
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which we can write as eK, w*.u(G) eH, v* . These vector spaces thus have the 
same dimension, which is what we need. El 

5. RELATIONS WITH SUBGROUPS AND QUOTIENTS 

There are certain properties of induction and restriction of Mackey functors 
and also of the fixed point and fixed quotient functors which follow immediately 
from their adjointness properties. Thus a functor which has both a left and a 
right adjoint is exact [13, II.7.7], the left adjoint sends projectives to projectives 
and the right adjoint sends injectives to injectives [13, II.10.2]. We know that 
if H < G then the induction functor TG is both the left and right adjoint of 
the restriction functor 1GH. Also the functor (1): MackR (G) -+ RG-mod which 
sends a Mackey functor M to the evaluation M(1) has left adjoint FQ and 
right adjoint FP. We summarise the consequences of this situation in the next 
result, which can also be proved in a direct fashion. 
(5.1) Proposition. Let H < G. Then 

(i) induction TG: MackR(H) -+ MackR(G) and restriction 1G are both 
exact functors, 

(ii) both functors TG and 1G send projectives to projectives and injectives to 
injectives, and 

(iii) if V is a projective RG-module then FQv is a projective Mackey func- 
tor; if V is an injective RG-module then FPv is an injective Mackey 
functor. 

Induction and restriction of Mackey functors are related to induction and 
restriction of RG-modules in the following way. We use the notation TG and 

G for induction and restriction of modules, as well as of Mackey functors. 
(5.2) Proposition. Let H < G. Let M be a Mackey functor for G and N a 
Mackeyfunctorfor H. Let V bean RG-moduleand W an RH-module. Then 

(i) NTG (1) N(1)TG and M G (1) M(1)14G 
(ii) FPwTG-IFPWTG and FPv1G- FPVIG 

(iii) FQw ,-.FQWTG and FQv 1G FQQV1G 

Proof. (i) Using G-set notation we have 

N TG (G/1) = N((G/1) 1H) = N( U H/ 1) = ( N(H/ 1) . 
gE[G/H] gE[G/H] 

One sees that the group G permutes the summands transitively and that the 
action of H on the first summand comes from the Mackey functor structure 
of N. Thus we obtain the induced module N(1) TG. The second claim is 
trivial. 

(ii) We have a series of adjunctions 

HomMackR(G)(M, FPw TG) HomMackR(H) (MG 1, FPw) 
-HOmRH(M(1 (1), W) 

= HomR(M(l()(M, FPG W) 

-HmG(M(l 5 ) W TG ) 
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and the first result follows. The second is proved in a similar fashion. 
(iii) The proof is analogous to the proof of (ii), using this time the fact that 

FQ is left adjoint of the evaluation at 1. El 

Another useful result is that the Mackey decomposition formula holds for 
induction and restriction of Mackey functors. 

(5.3) Proposition. Let H, K < G and let M be a Mackey functor for H. Then 

M tG1G_ @ (gM) Kn HKn gH 

gE[K\G/H] 

Proof. This is an easy consequence of the corresponding result for G-sets. For 
a K-set X, we have 

MTGIG (X) = M(XTGKG) M( U (g X) jI -KnHt H) 
gE[K\G/H] 

- @ M((g X) lg-lKn g- KnH) 

gE[K\G/H] 

- @ g(M 1H IKnHt g- IKnH) (X) 

gE[K\G/H] 

= @ (gM) Kn gHKn gH (X) 

gE[K\G/H] 

Details are left to the reader. El 

It is interesting to express the above operations on Mackey functors in terms 
of the Mackey algebra. In the situation where we have a morphism of rings 

f:A -,B, 

which we do not require to map 1A to 1B, we use the notation 

fl: B-mod -+ A-mod 

for the functor given by restricting the action along f . We. do here require that 
modules be unital modules and so if M is a B-module then f! (M) = fl( A) -M 
by definition, with the A-action given via f . We use fJ: A-mod -- B-mod to 
denote the functor f (M) = B ?A M, which is left adjoint to f! . 

If H is a subgroup of G, induction of H-sets gives a functor 

IH: QR(H) -- QR(G). 

We therefore have an R-algebra homomorphism 

a: IR (H) ` PR (G), 

which in terms of symbols is a(IK) = IK, a(Rk) = RK and a(Ch,K) = Ch,K. 

This morphism is generally not injective as can be seen from the description 
of the basis elements of PiR(G), since basis elements in PuR(H) may become 
identified by conjugation within G. 

Similarly, if N is a normal subgroup of G with quotient Q = G/N then 
there is a functor QR(Q) ` QR(G) by which we regard a Q-set as a G-set using 
the epimorphism G -- Q. Thus there is an R-algebra homomorphism 

/3: PR(Q) 1U PR(G) 
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given by /(JJIN) -k I f (RJi4) = RJ and /(ChN, K/N) = Ch,K. Since K 

should contain N here, the latter conjugation is well-defined independently of 
thl choip of h within the coset hN, 

The third ring homomorphism we will consider is 

: RG- UR(G) 

given by y(g) 1 

(5.4) Lmnma, When we identify jMackey functors with /IR(G)-modules we have 

(i) HA M| and a, (L) = LTG 
(ii) 13!(M) is the Mackey functor for which /3!(M)(H/N) = M(H) with 

induction, restriction and conjugation morphisms inherited from those 
for M, and 

(iii) yl(M) M(1) and Yl!(V) = FQv. 

Proof. We readily identify the restrictions a! f! and y! as being the stated 
operations, Now it follows that a! and Y! are as stated because these are 
known to be the left adjoints of a! and y! . 

From the known adjointness properties of induction, restriction and fixed 
point functors, we deduce the following corollary. 

(5.5) Corollay. (i) a! is both right and left adjoint to a . 
(ii) Y2 has a right adjoint, namely V ?-4 FPv. 

The left adjoint f8! of fi! is less easy to describe in terms of values on sub- 
groups, Note simply that fi! is exact and so ,6! sends projectives to projectives. 
Finally we also have: 

(5,6) Proposition. Assume that R = k is a field and consider the duality of 
Section 4f Then fi! has a right adjoint, namely L I 4 (l! (L*))*. 

Proof, There is a chain of natural bijections 

Hom(M, (13!(L*))*) Hom(/3!(L*), M*) 

Hom(L*, 13!(M*)) 

Hom(L*, 13!(M)*) 

Hom(f3!(M), L). 

The result follows. a 

We emphasize that fi! and its adjoints are not equal to the other functors 

relating MackR(G) and MackR(Q), namely InfG and its adjoints + and -. 

6. DETERMINING THE COMPOSITION FACTORS OF A MACKEY FUNCTOR 

In this section we consider Mackey functors over a field k, so that the 
Grothendieck group Go(Mackk(G)) has as a basis the isomorphism types of 
simple Mackey functors over k. We may define a map 

V: Go(Mackk(G)) -* @ Go(kNG(H)) 
H<G 

up to conjugacy 
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by M --* (M(H))H. Here we use the symbol M to denote also the element of 
Go(Mackk(G)) determined by M, and likewise M(H) denotes the element of 
Go(kNG(H)) which this kNG(H)-module determines. 

(6.1) Proposition. V is an isomorphism. 
Proof. On the left we have the SH, v as a basis, and on the right we have a 
basis aH,V, where CH,V = V E Go(kNG(H)) is allowed to range over the 
isomorphism classes of irreducible kNG(H)-modules. Order both bases in the 
same way so that the subgroups H appear in non-decreasing order. Then the 
matrix of V is triangular with l's down the diagonal. Indeed the construction 
of SH,V = (InfG (H) S V) tNG(H) implies that SH, v(K) = 0 if K ;G H, and 

SH,V(H)=V. O 

The above elementary result gives rise to an algorithm for finding the com- 
position factors of some given Mackey functor M, which really amounts to 
computing the inverse of V. We suppose we know the modules M(H), and 
hence the value of V (M). Choose a minimal subgroup H for which the com- 
ponent Vg(M)H is non-zero, say 

YJ(M)H = E AV V. 
irreducible V 

Then Eirreducible V AVSH, V occurs in the list of composition factors of M, and 
V (M - Eirreducible V A VSH, v) has zero component at H . We repeat this process 
with M replaced by M - Zirreducible V iVSH, V, gradually working upwards in 
the poset of subgroups of G. This procedure will be demonstrated in Section 
15, where we work with some particular examples. 

If we do not need a complete list of composition factors of M we may 
identify certain composition factors with less work. We recall from Section 2 
the notation M(H) = M(H)/ ZK<H IKHM(K). 

(6.2) Proposition. Let H < G and let V be an irreducible NG(H)-module. 
Then SH, v occurs as a composition factor of M at least as many times as the 
multiplicity of V as a composition factor of M(H) . 
Proof. Let M1 be the subfunctor of M generated by the modules M(K) for 
all K < H. Then for J < H, we have M1(J) = EK<H, K<JIK(M(K)) by 2.4 
so that the functor M2 = M/M1 has M2(H) = M(H) and M2(K) = 0 if 
K <G H. The only composition factors SK,w which are non-zero on H 
have K <G H, but these cannot occur as composition factors of M2 unless 
K =G H, since they are non-zero at K. In order to account for all the module 
composition factors of M2 (H) we must have a composition factor SH, v every 
time V is a composition factor of M2(H). These composition factors of M2 
are also composition factors of M. 0 

Closely related to the last result is the following proposition, which will fre- 
quently be used. 

(6.3) Proposition. V is a composition factor of M(1) with multiplicity m if 
and only if SI, v is a composition factor of M with multiplicity m . 
Proof. Since SH, w (1) = 0 if H :$ 1, only the composition factors indexed by 
the trivial subgroup can contribute to the evaluation at 1. But since SI, v (1) = 
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V, such a simple Mackey functor must occur in M exactly as many times as 
V occurs in M(1). a 

In this work we are mainly interested in developing techniques which apply 
when there may be non-split extensions of Mackey functors, and the methods 
just presented work in this general situation. To conclude this section we wish 
to point out that if we happen to be dealing with Mackey functors which are 
completely reducible (i.e., direct sums of simple Mackey functors) then the bar 
construction gives complete information. The basis for this is the next lemma. 

(6.4) Lemma. Let SH, v be a simple Mackey functor. Then 

SH, v(K) V if H and K are conjugate, 
O otherwise. 

Proof. SH,V(K) = 0 unless K >G H, and if K >G H, then since SH,V is 
generated by SH, v(H) (by Proposition 2.3 of [20]), we have 

SH, v(K) = I v (J), 
J<K 

using 2.4. It follows that SH,V(K) = 0. Finally SH, V(H) = SH,V(H) = V 
since SH, v vanishes on proper subgroups of H. 0 

The first part in the next corollary works for any completely reducible Mackey 
functor M. 

(6.5) Corollary. Suppose M is a Mackey functor over a field k in which I GI is 
invertible. Then 

(i) M eD nH,VSH,V where nH, denotes the multiplicity of V as a 
(H, V) 

composition factor of M(H) when regarded as a kNG(H)-module. 

(ii) M _ (Inf ) FPMW(H)) SN(H) 
H up to conjugacy N(H) 

Proof. (i) Certainly there is some isomorphism of the type claimed, since M 
is completely reducible by 3.5, and it remains to determine the multiplici- 
ties nH, V. Taking the bar of both sides of the isomorphism at H, all terms on 
the right disappear except for the simples associated to H, and for each of those 
we obtain a contribution V. Thus M(H) - v nH, V V for each subgroup H, 
and hence nH, V is the multiplicity as claimed. 

(ii) We group together all the terms of the direct sum in (i) which correspond 
to a fixed subgroup H. When I GI is invertible each simple has the form 

SH,v = (InffN() FPV) N(H) 

by [20], and when we take the direct sum of these over the simple summands 
of M(H) we obtain the desired result. 0 

There is no mention of any map which will achieve the isomorphism in the 
last result, and we now go some way to set this right, recovering a result of the 
first author [ 19]. For any Mackey functor M and subgroup H of G the Brauer 
morphism /H is defined to be the composite 

AH: M(G)>M(H) -+ M(H) 
where the last morphism is the natural quotient map. 
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(6.6) Theorem (Thevenaz [19]). Let M be a Mackeyfunctor over afield in which 
IGI is invertible. Then 

P H: HM(G) D M(HI)NG(H) 
H<G 

uptoconjugacy 

is an isomorphism. 
Proof. Notice first that since all conjugations act as the identity on M(G), the 
image of each 1BH is indeed contained in the fixed points under NG(H). 

We replace M by its decomposition M E E3 nH, VSH, v. Since each /AH iS 
compatible with this direct sum decomposition, it suffices to prove the result 
when M = SH, v. Now SH, v is non-zero only on the subgroup H, so it 
suffices to show that IBH: SH, v(G) -- SH, v(H)NG(H) is an isomorphism. We 
defined 1BH as the composite 

/H: SH, v(G) -L%SH, v(H) -*SH V(H) 

but in this case the final quotient map is an isomorphism, so we are reduced to 
showing that 

RSG : S, V (G) -+ SH, V (H) NG(H) 

is an isomorphism. In G-set notation this map is 

S, v(G/G) - SH, v (G/H) 

and since SH, v is induced from NG(H) this is the same as 
N G(H) G G N SN(H) GHG 
H, V NG I (H)) ' H, V ( tNG(H) 

Using the decomposition of the final term above, this is 

@ NG(H)n-H SH, V)(NG() 
xE[NG(H)\G/H] 

@ sNC(HN (HG) n xH). 

xE[NG(H)\G/IH] 

There is only one non-zero term on the right, namely SN(H) (H). We identify 
SNG(TH) as Inf:!G(H) FPv, and now the restriction map becomes v NG(H). 

RHN(H) Inf?IN(H) FPV(NG(H)) - InfN (H) FPv(H)X H NG(H) NG(H) 

which is the inclusion of fixed points. This establishes the desired isomorphism 
for the simple functor SH1 v, thus completing the proof. O 

As an example of how the theory we have developed may be applied, we give 
the Mackey functor decomposition of the character ring of G, thus extending 
the result due to Puig which is presented in [19]. We let R(G) denote the ring 
of complex characters of G, taken with rational coefficients. For each cyclic 
subgroup H < G we let 4IHI denote a primitive complex IHI root of unity. By 
identifying the cyclic group (4' HI) with the group of characters of H, we obtain 
an action of NG(H) on Q(C1H1), so that Q(C1H1) becomes a QNG(H)-module. 
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(6.7) Example. (i) As a Mackey functor we have the decompositions 

R - nH, VSH, V- (Inf ) FPQ(CIHJ)) tN(H) 
(H, V) cyclic H < G 
H cyclic up to conjugacy 

where nH, v is the multiplicity of V in Q(CIHI) as a QNG(H)-module. 
(ii) (Puig) The Brauer morphisms give an isomorphism 

9fH: R(G) Q(CIHI 
) NG (H). 

cyclic H < G 
up to conjugacy 

Proof. As explained in [19], R(H) = 0 if H is not cyclic, by Artin's induction 
theorem, and if H is cyclic then R(H) - Q(CIHI) (a result of Puig). The result 
follows from 6.5 and 6.6. 0 

It is interesting to note in the above example that if we are only interested 
in the group structure of R(G) then the trivial summands of Q(4IHI) give 
sufficient information, whereas the structure of R as a Mackey functor requires 
information about all the summands. 

7. DECOMPOSITION THEORY 

Let a be a complete discrete valuation ring with quotient field K of charac- 
teristic 0 and residue field k of characteristic p. In this situation the Mackey 
algebra 1u&(G) is an <-order in the finite dimensional semisimple K-algebra 
1uK(G), because it is free as an f-module by 3.2. There is a decomposition 
theory exactly analogous to the one for group representations which relates the 
decomposition map to the Cartan matrix of /1k(G). We summarise the ingre- 
dients in this theory, for which a possible reference is [8, Section 48]. Although 
we are really dealing with Mackey functors, to make it clear how the results 
here are instances of the existing theory we will refer to the Mackey functors as 
JK(G)-modules, ,u(G)-modules, etc. 

Every YuK(G)-module M contains a ,u(G)-lattice Me whose K-span is M. 
It is a theorem of Brauer that the set of composition factors of k ?& Me (taken 
with multiplicities) is independent of the choice of lattice Me, and so we may 
define for each simple YuK(G)-module S the numbers 

dST = the multiplicity of the simple 1uk(G)-module T 

as a composition factor in k 0g Se. 

These numbers are the entries in the decomposition matrix D = (dST). For 
each simple Yuk(G)-module T let PT denote the projective cover of T. The 
Cartan matrix of Yuk(G) is the square matrix C = (CTU) with entries indexed 
by simple 1Uk (G)-modules T, U, where 

CTU = the multiplicity of T as a composition factor in Pu . 

We denote by PT the projective cover as a ,u(G)-module of the simple module 
T, so the reduction of PT modulo Rad(6) is PT. We now quote the following 
result of Brauer. 
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(7. 1) Theorem. Suppose that K is a splittingfieldfor p!K(G) and k is a splitting 
field for ,Uk(G). Then 

(i) C = DTD, where DT denotes the transpose of D, 
(ii) K ?& PT is a direct sum of simple p!K(G)-modules in which S appears 

with multiplicity dsT. 

(7.2) Corollary. The Cartan matrix of Mackey functors over k is symmetric. 

We now show how to compute the Mackey functor decomposition matrix 
in a practical way by relating it to the decomposition theory for group repre- 
sentations using the work of the last section. In the process we show that the 
decomposition map for Mackey functors is surjective, and hence that the Car- 
tan matrix is non-singular. The method depends on the observation that the 
mapping V which we introduced in Section 6 is compatible with decomposi- 
tion in the following sense. We regard the decomposition for Mackey functors 
as a homomorphism 

d: Go(MackK(G)) -- Go(Mackk(G)). 

We also have for each subgroup H < G the group-theoretic decomposition 

d: Go(KNG(H)) + Go(kNG(H)). 

(7.3) Proposition. The square 

GO(MackK(G)) - 3 Go(KNG(H)) 
H up to conjugacy 

d {d 

Go(Mackk(G)) - @ Go(kNG(H)) 
H up to conjugacy commutes. 

Proof. On applying the composite around either side of the square to an el- 
ement in Go(MackK(G)) represented by a Mackey functor M, we obtain as 
component at the subgroup H the term k ?& M(H)e . 5 

To compute the decomposition map in particular cases using this approach 
one first determines the two mappings V, for Mackey functors over K and 
over k. Now to compute the decomposition of a Mackey functor M over K 
one finds the decomposition of the module M(H) for each subgroup H < G. 
This gives a set of simple kNG(H)-modules as composition factors, and now by 
inverting V for Mackey functors over k we obtain a set of simple Mackey func- 
tors whose direct sum evaluated at H also has these simple kNG(H)-modules 
as composition factors. These simple Mackey functors are the composition fac- 
tors of the decomposition of M. The tables we give of decomposition matrices 
were all computed in this way. 

Before deducing a corollary we remind the reader of the following elementary 
fact from linear algebra. 

(7.4) Lemma. For any matrix D we have rank DTD = rankD. 
Proof. We show that the bilinear form associated to DTD has rank equal to 
the rank of D. This form is defined on column vectors by (x, y) = xTDTDy. 
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Evidently its rank can be no greater than that of D. On the other hand the 
restriction of the bilinear form to any complement of the kernel of D is non- 
singular, which proves the result. Ol 

(7.5) Corollary. The decomposition map for Mackey functors is surjective; hence 
the Cartan matrix is non-singular. 
Proof. Surjectivity follows from the proposition because t' is an isomorphism 
and the decomposition maps for the group rings are known to be surjective 
[6, (21.16)]. Non-singularity of the Cartan matrix now follows, using the last 
lemma and Theorem 7.1. 5 

Contrary to the case of group algebras, it should be noted that the determinant 
of the Cartan matrix is usually not a power of p. 

8. BURNSIDE MACKEY FUNCTORS 

In /uR(G) we have an obvious expression 
H 

H<G 
up to conjugacy 

which gives the identity as a sum of mutually orthogonal idempotents. We thus 
have a decomposition 

,UR(G)= Y AR(G) * IH 
H<G 

up to conjugacy 

where the 1uR(G) * IH are projective YuR(G)-modules. In this section we iden- 
tify the projective Mackey functors to which they correspond in terms of the 
Bumside ring. 

We denote by B (G) the Burnside ring (over R ) of G. Recall that this is the 
free R-module with basis the G-sets G/H where H is taken up to conjugacy. 
By means of induction, restriction and conjugation of G-sets this gives rise to a 
Mackey functor denoted BG, which we call the Burnside Mackey functor for G 
(or just Burnside functor). Its definition is that BG(H) = B(H), and it should 
not be confused with the Burnside ring, since it is a Mackey functor. In fact, 
BG has more than just the structure of a Mackey functor, it is a Green functor, 
meaning that each BG(H) is a ring satisfying certain axioms [9]. 

In the next result we will use the fact that BG is generated as a Mackey 
functor by the single element G/G E BG(G), since any H/K E BG(H) may be 
written H/K - IHRG (G/G). 

(8.1) Proposition. The pR(G)-module which corresponds to BG is isomorphic to 
YUR(G) * IgG. This has as an R-basis the symbols IKHRG where K is a subgroup 
of H determined up to H-conjugacy, and H ranges over subgroups of G. In 
particular, BG is a projective Mackey functor. 
Proof. We first verify that 1UR(G) * Ig has the stated basis. For a typical basis 
element IKcgRKg of 1uR(G) the product with IG on the right is zero unless 
J = G and then If/cgRGgIsG = IKHRGCg = IKHRG since cg acts trivially at the 
level of G. Thus puR(G) * IG is the R-span of the stated elements, and they are 
linearly independent because they form part of the basis of 11R(G). 
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By abuse of notation we will use the same symbol BG to denote both the 
Burnside Mackey functor, and also the ILR(G)-module which corresponds to it. 
There is a unique map of ILR(G)-modules /LR(G) - BG which sends IG' F- 

G/G, IHHF* 0 if H #& G. This is surjective since G/G generates BG . A basis 
element IKHRG is mapped to IKHRG(G/G) = H/K, and since these images are 
linearly independent the map is an isomorphism on restriction to IR(G).IGG El 

We can interpet this identification of BG with ILR(G) * IGG in terms of an 
adjointness property. Consider the composite functor 

MackR(G) -* R-mod -* Set 

where we first evaluate a Mackey functor M at G, and then forget the R- 
module structure to obtain a set. We have also a functor in the opposite direc- 
tion: for any one-point set * , we may speak of the Burnside Mackey functor gen- 
erated by *, this being a copy of BG with * corresponding to G/G e BG(G). 

(8.2) Corollary. (i) Let M be a Mackey functor and m e M(G). Then there 
exists a unique morphism of Mackey functors BG -* M whose evaluation at 
G maps G/G to m. Thus thefunctor Set -* MackR(G) which sends a set to 
the direct sum of the BG generated by its elements is left adjoint to the functor 
MackR(G) -* Set which sends M ,-* M(G). 

(ii) EndMackR(G)(BG) rB (G). 

Proof. (i) In terms of the ILR(G)-module ILR(G) * IGG the morphism is the one 
which extends the assignment IGG ?- m. 

(ii) For each X e B(G) let X BG ,- BG be the unique endomorphism 
of BG which sends G/G to X. For any G-set G/H we may write G/H = 

IHGRG(G/IG) so that 

X(G/H) = X(IGRG(G/G)) = IHGRGX(G/G) = IHGRG (X) = X. G/H, 

this last product being the multiplication in B(G). By extending this to combi- 
nations of the basis elements in B(G) we see that for any Y e B(G) we have 
X(Y) = X -Y. Now 

XY(G/G) = X(Y) = X.Y = X.Y(G/G) 

so that XY = XY. Thus : B(G) EndMackR(G)(BG) is a ring homomor- 
phism. It has a 2-sided inverse given by the assignment 

EndMackR(G)(B G) B(G),' 

0 O(G)(GIG) 

which we may see by using the fact that an endomorphism q is completely 
determined by the value of q(G)(G/G). O 

We now come to the general description of the projective Mackey functors 
given by the idempotents IHH. First we note that regarding Mackey functors as 
additive functors QR(G) -* R-mod we may consider the representable functors 
HomDR(G)(G/H, ), which are projective by Yoneda's lemma. 
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(8.3) Theorem. The projective Mackey functors given (in different notations) by 
BH 'G, AR(G) * IH and HomQ,,(G)(G/H, ) are isomorphic. 
Proof. One first sees that AR(G) * IH and HomQR(G)(G/H, ) give the same 
Mackey functor because their evaluation at a subgroup K is 

IKK ,u!(G) * IHH= the R-span of {IKLcgRL g E G, L < HnKg} 

for /LR(G) * IH, and for Hom,R(G)(G/H, ) it is the R-span of all diagrams 

GK gGLGH 

These R-modules are seen to be isomorphic using the isomorphisms introduced 
in 3.3. Furthermore these isomorphisms are natural, that is they commute 
with the operations of induction, restriction and conjugation, so we have an 
isomorphism of Mackey functors. 

We show that BH I Gand HomQR(G)(G/H, ) give the same Mackey functor 
by first observing that HomQR(G)(G/H, ) is induced from H. In fact, for a 
G-set X we have 

HomQR(G)(G/H, X) - HomQR(H)(H/H, X 1H) 
which is the same as (HomQR(H) (H/H, )) IH evaluated at X. Thus it suffices 
to show that BH ' 

HomQR(H)(H/H, ). But we already know from 8.1 that 
BH gives the same Mackey functor as 1R (H) * IHH, and we just showed that this 
is the same as HomQR(H)(H/H, ) . O 

(8.4) Corollary. (i) There is an isomorphism of Mackey functors 

?R(G) BH IH 
H up to conjugacy 

(ii) Any Mackey functor is isomorphic to a quotient of a direct sum of induced 
Burnside functors. 

(8.5) Corollary. dimBHIG (K) = dimBKIG (H). 

Proof. The left-hand side is the dimension of IKK * R(G) * IHH, which has a basis 

{IIKcgRfH I g e [K\G/H], L < H n Kg up to H n Kg-conjugacy}. 

Evidently IHH *,PR(G) * IKK has a similar basis with H and K reversed. There 
is a bijection between these two bases. o 

For the rest of this section we specialize to the case where the coefficient ring 
R is a field k. The Burnside functors are in general not themselves indecom- 
posable projectives. To recall our notation, we denote by PH, v the projective 
cover of the simple Mackey functor SH, v. There is then a primitive idem- 
potent eH, v e [k(G) for which PH, V - Pk(G)eH, v. We now give the exact 
decomposition of BH IG into indecomposable projectives. 

(8.6) Theorem. Let k be a field which is a splitting field for /P?k(G) . Then the 
multiplicity of PH, V as a summand of BK IK is dim SH, v(K); that is 

BK &G dimSH, v(K) * PH, v. 
(H, V) 
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Proof. We may write' IfK as a sum of orthogonal idempotents 1K - Z EH, v 
where each EH, v is an orthogonal sum of primitive idempotents all conjugate 

to eH,V. Since BKG |K-k(G)IKK, we have to show for each pair (H, V) that 

the number of idempotents in this decomposition of EH, v is dim SH, v (K). 
We use the fact that dim eH, VSH, v = 1, while dim eJ, wSH, v = 0 if (J, W) #& 
(H, V) . This number of idempotents is dim EH, VSH, v = dim IKKSH, v = 

dim SH, v (K), as required. 5 

Remark. By lifting idempotents, or by lifting projective modules, the theorem 
also holds over a coefficient ring which is a complete local ring. 

(8.7) Corollary. Let k be a field which is a splitting field for tk (G). Then 

(i) PH, V cannot be a summand of BK IK unless H is conjugate to a 
subgroup of K, and 

(ii) for every simple kNG(K)-module V, PK, v is a summand of BK IK 
with multiplicity dim V. 

Proof. (i) SH, v(K) = 0 unless H is conjugate to a subgroup of K. 
(ii) SK,V(K) = V. o 

The numbers dim SH, v (K) in Theorem 8.6 may be computed quite explicitly 
in terms of the simple module V and the fusion within G. We now show how 
this may be done and draw some corollaries. We use the notion of the carrier 
of H into K, which is the set T(H, K) = {g e G I 9H C K}. 

(8.8) Proposition. SH, v(K) = trNKg(H)/H(V) 
gE[K\T(H, K)ING(H)I 

The indexing set in the sum bijects with the set of G-conjugates 9H con- 
tained in K, taken up to K-conjugacy. If we are interested in dim SH, v (K) 

only, then we may express dim tr ()/H(V) as the rank of EhE[NKg (H)/H] h 
acting on V, and this equals the multiplicity of Pk as a summand of V, 
where Pk is the projective cover of k as a k[NKg (H)/H]-module. 

Proof. From [20] we have SH, V = SH V = SNG(I) IG(H) and so 

SH, V (K) QNSG (v ) (Kg n NG (H)) - 
gE[K\G/NG(H)] 

Now the terms in the sum are zero unless H C Kg, so g e T(H, K), and 

SHG(f )(Kfl NG(H)) =l )(NKg(H)H) 

is the image of the trace from the identity as stated. O 

(8.9) Corollary. Let k be a field which is a splitting field for Ak (G). 

(i) If char k = 0 then 

BG BGH u PH,u k 
H<G, UP to conjugacy 
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(ii) If chark = p then 

BG PH,k. 
H up to conjugacy 
pJiNG(H): HI 

In particular BG is indecomposable if and only if G is a p-group, in 
which case BG is the projective cover of SG, 1. 

Proof. We first prove (ii). Here the multiplicity of PH, V is dim trNG(H)(V), 

which is the number of times Pk as a NG(H)-module is a summand of the 
simple module V. If this number is non-zero then Pk must itself be simple 
and equal to V, so V = k and this is a projective module. This means that 
NG(H) is a p'-group and the multiplicity is 1. 

(i) The argument is the same as with (ii), except that now k is always a 
projective module and so every subgroup H occurs. 5 

Combining 8.9 with 8.2(ii) this turns out to give a proof of part of a well- 
known result, which we quote later as 9.3. In characteristic 0 this is due to 
Burnside and Solomon, and to Dress in the case of characteristic p. 

(8.10) Corollary. If char k = 0 the primitive idempotents in B(G) biject with the 
conjugacy classes of all subgroups of G. If char k = p the primitive idempotents 
in B(G) biject with the conjugacy classes of subgroups H for which NG(H) is 
a p'-group. 

9. DECOMPOSITIONS INDUCED BY THE BURNSIDE RING 

It is well-known that the Burnside ring B(G) acts as a ring of endomorphisms 
of every Mackey functor for G. Explicitly, if M is a Mackey functor and Z 
is a G-set, then the action of Z is defined as the natural transformation 

M(X) M Pr2) M(Z x X) MPr2) X) 

where X is an arbitrary G-set and pr2: Z x X - X is the second projection. 
Using the axiom on pullbacks in the second definition of Mackey functors, it 
easy to see that the action of B(G) on M is indeed as a ring of Mackey functor 
endomorphisms. 

In the special case where Z = G/H, we have an isomorphism 

G/H x X GxHX HX I 

mapping (gH, x) to (g, g-lx). Moreover the map pr2 corresponds to the 
natural map 

a: G XHX -*X, a(g, x) = gx. 

Thus if we set OH = M* (a) and OH = M* (a) , then in the action of the Burnside 
ring on M, the transitive G-set G/H acts as OH OH 

We may describe this action of the Burnside ring in yet another way which 
uses the induction and restriction maps. On evaluation at the subgroup K (i.e. 
at the G-set G/K), the map 

OH(K): & M(K n 9H) M(K) 
gE[K\G/H] 
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is equal to the sum of the inductions IKffOHand similarly 6H is the sum of 
the restrictions RKngH. Therefore the action of G/H on x E M(K) is 

G/H*X= E IKKngHRKKngH(X) 
gE[K\G/H] 

and this assignment at the level of the subgroup K gives a natural transfor- 
mation of Mackey functors M -* M. One may describe this by saying that if 
x e M(G) then G/H acts as IGRG, and if x E M(K) then G/IH acts as the 
K-set G/H?G . This action is closely related to the structure of M as a Green 
module over the Green functor BG, although the two should not be confused 
since the Burnside ring regarded as BG(G) acts only on M(G) in the Green 
module structure, whereas in the action we are now describing B(G) acts on 
every R-module M(K). The connection between these two structures is that 
the Green module structure provides us with actions of B(K) on M(K) for 
every K < G. Now composing with the restriction B(G) -* B(K), which is a 
ring homomorphism, gives the action of B(G) on M(K). 

As a consequence of the action of the Burnside ring we have the following 
well-known result. 

(9.1) Proposition. Every expression in B(G) of the identity as a sum of orthog- 
onal idempotents 

1= Ee 
i 

gives rise to a decomposition M = e ei * M of every Mackey functor M. 

Here we wrrite ei X M for the image of M under the endomorphism ei. 
It is an immediate interpretation of the above decomposition that it provides 

a partial separation of Mackey functors into different blocks. To make it trans- 
parent that the notion of block we have in mind is the same as the usual one 
in the representation theory of algebras, we interpret the action of the Burnside 
ring in terms of the Mackey algebra. To do this we observe that B(G) acts 
via clements of the Mackey algebra, and since the action commutes with all the 
Mackey functor operations these elements must be central. This is the basis of 
the proof of the following result. 

(9.2) Proposition. There is a central subring of IR (G) isomorphic to the Burnside 
ring 1(G) and which contains the identity. Specifically, this subring has a basis 
consisting of elements 

bH =v nE Z H -KrxH- 
K<G xE[K\G/H] 

Proof. In the action of the Burnside ring on a Mackey functor M the G-set 
G/H acts precisely as bH. Indeed since M(J) = IjJ M, the only term in 
the first sum which does not act by zero on M(J) is the one corresponding to 
K = J, and we have seen in our preliminary remarks that the action is as stated. 
In particular this holds for the action on the regular representation UR(G) and 
so the assignment 

B(G) AIiR(G), G/H bH 
does extend by linearity to a ring homomorphism. It is injective since the bH 
are linearly independent, which follows from the fact that the action of the 
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span of these elements on B(G) = BG(G) _(,cR(G))G IG/1R(G) IGG is the 
regular representation of the Burnside ring on itself, namely bH acts as G/H. 
In this action the bH are independent. Finally the bH are central since in the 
regular representation of /-R(G) they act as Mackey functor endomorphisms 
of /1R(G), and so commute in their action with all of /1R(G) . Since the regular 
representation is faithful, the bH must themselves be central. 0 

In view of this result every idempotent of B(G) gives a central idempotent 
of /1R(G), and hence a decomposition of the Mackey algebra into ring direct 
summands. We will see later that we do not in general obtain primitive central 
idempotents of /IR(G) in this way, so that we have a decomposition into unions 
of blocks, rather than blocks themselves. For the moment we can at least say 
that if some Burnside idempotent is non-zero on one indecomposable Mackey 
functor and zero on another then the two Mackey functors lie in different blocks. 
Later on in Section 17 we will give the exact decomposition into blocks. It will 
follow also that the centre of /1R(G) is bigger than B(G) because primitive 
idempotents of the Burnside ring decompose further as orthogonal sums of 
central primitive idempotents in /1R(G). 

We now examine more closely the particular structure of the Burnside ring 
idempotents and quote the following result. We say that a group J is p- 
perfect if there is no proper normal subgroup N of J with J/N a p-group, 
that is, OP(J) = J. It is evident that for any group H, the only normal p- 
perfect subgroup of H with p-power index is OP (H), and given a p-perfect 
subgroup J of a group G, the subgroups H < G with OP (H) = J are precisely 
the subgroups H < NG(J) with J < H and H/J a p-group. 

(9.3) Theorem. 

(i) (Burnside, Solomon) Let Z[ 1/I GI ] be the subring of Q in which only the 
prime divisors of IGI are inverted. Then in the Burnside algebra B(G) 
over Z[1/[G]] we have 

1= Z eH 
H< G up to conjugacy 

where the eH are orthogonal primitive idempotents and each eH is a 
linear combination of elements G/K with K < H, If L contains no 
conjugate of H then eH G/L = O and eH IG=. 

(ii) (Dress) Let R denote the subring of Q in which all the prime divisors 
of IGI are inverted except p . Then in the Burnside algebra B(G) over R 
we have 

1= Z fi 
J < G up to conjugacy 

J p-perfect 

where the fj are primitive orthogonal idempotents in bijection with the 
conjugacy classes of p-perfect subgroups of G. For each p-perfect sub- 
group J let P < G be such that J a P and P/J is a Sylow p-subgroup 
of NG(J)/J. Then fj is a linear combination of elements G/K with 
K < P. If L contains no conjugate of J then fj * G/L = 0, and 
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fj tG= 0. In the Burnside ring over Z[1/IGI] we have 

fi= eK. 
J<K<P 

K up to conjugacy 

We refer to [23, Lemma 3.4] for details. In fact the idempotents eH remain 
primitive in the Burnside algebra over a ring R in which every prime divisor of 
I GI is invertible, e.g., a field of characteristic 0. Similarly the idempotents fj 
remain primitive in the Burnside algebra over a ring R in which every prime 
divisor of I GI is invertible except p, e.g., a field of characteristic p or a local 
ring with residue field of characteristic p . 

In studying the unions of blocks given by these Burnside idempotents, for 
each p-perfect subgroup J of G we introduce the notation MackR(G, J) to 
denote the full subcategory of MackR(G) whose objects are the Mackey functors 
M for which fj * M = M. This definition works in situations where, for 
example, R is a field of characteristic 0 or p, or a discrete valuation ring, 
because the fj are defined and so they act on Mackey functors over all of these 
coefficient rings. Our principal aim in the remainder of this section is to give 
various characterisations of the Mackey functors in MackR(G, J), in 9.5, 9.6, 
9.7 and 9.14. We should mention that a theory closely related to 9.7 and 9.13 is 
developed by Oliver [16, Chapter 1 1] in the special case of subgroups J which 
are cyclic of order prime to p . 

Remark. All this analysis holds more generally for a set i of prime divisors of 
I GI rather than a single prime p. One has to consider a 7z-perfect subgroup J 
and the corresponding idempotent fj of the Burnside algebra over a ring R 
in which all prime divisors of IGI are invertible except those in 7. As Ve are 
mainly concerned with fields of characteristic 0 or p (and their relationship 
appearing in the decomposition theory), we only develop the case of a single 
prime. The interested reader can easily modify the arguments. 

(9.4) Lemma. Let M be a Mackey functor and L a subgroup of G such that 
M(H) = 0 for all subgroups H of L. Then G/L * M = 0. 

Proof. (G/L. M)(K) EXE[K\G/L] KnxL RKnxLM(K). But these terms are 
images of M(K n XL)=0. El 

(9.5) Theorem. 
(a) Let R be a ring in which I GI is invertible. Let K be a subgroup of G 

and let M be an indecomposable Mackey functor over R. The following 
are equivalent: 

(i) eK * M = M, 
(ii) all subgroups H minimal such that M(H) $ 0 are conjugate 

to K, 
(iii) K is a minimal subgroup on which M is non-zero. 

(b) Let R be a ring in which every prime divisor of I GI is invertible, except 
for p which is not invertible. Let J be a p-perfect subgroup of G and 
let M be an indecomposable Mackey functor over R. The following are 
equivalent: 

(i) MEMackR(G,J), 
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(ii) for all subgroups H minimal such that M(H) : 0, OP (H) G J, 
(iii) there exists a subgroup H minimal such that M(H) $ 0, for which 

OP(H) G J. 
In particular it follows that for every Mackey functor M E MackR(G, J), 
M(H) = 0 unless H>G J. 

Proof. We prove only (b), the proof of (a) being obtained similarly by omitting 
references to OP. 

We show first that (i) = (ii), so suppose that M = fj * M and that H is 
minimal such that M(H) $ 0. We have M(H) = fj 9G .M(H). But fj 1G= 0 
unless H >G J, so OP(H) >G J since J is p-perfect. On the other hand 
fj is a linear combination of terms G/K with K < P in the notation of 9.3, 
and so fj 4G is a linear combination of terms H/K1 with K1 <G P. If 
0P(H) >G J then all these subgroups K1 would be proper subgroups of H, 
and by minimality of H we would deduce fj $G *M(H) = 0 by 9.4. From this 
contradiction we deduce that OP(H) -G J. 

It is clear that (ii) =* (iii), and so it remains to prove that (iii) =* (i). But 
this follows also from the argument we have just given. In order to see this, 
suppose that H is minimal such that M(H) =$ 0. Since M is indecomposable, 
M does lie in Mack(G, J1) for some p-perfect subgroup J1, and we have to 
show that J1 -G H. But this was exactly the implication (i) => (ii). El 

For the rest of this section, we specialize to a coefficient ring which is either 
a field k or a complete discrete valuation ring &. In 9.6 and 9.7 we give two 
further descriptions of the functors in MackR(G, J). 

(9.6) Proposition. Let SK, w be a simple Mackey functor over a field k. 
(i) If IGI is invertible in k then eH * SK,W = 0 unless H and K are 

conjugate, in which case eK * SK, W = SK, W . Thus the simple Mackey 
functors belonging to the blocks of Mackey functors determined by eH 
are precisely the SH, w. 

(ii) If k is a field of characteristic p then fj * SK, w = 0 unless J and 
OP (K) are conjugate, in which case fj * SK, w = SK, w. Thus the simple 
Mackey functors in Mackk(G, J) are precisely the SK, w with J = 
OP(K) . An arbitrary Mackey functor lies in Mackk(G, J) precisely if 
all its composition factors do. 

Proof. This is immediate from 9.5 since K is (up to conjugacy) the unique 
subgroup H of G minimal such that SK, w(H) =$ 0. El 

As an application of this (with J = 1 ), the Mackey functors in Mackk (G, 1) 
are precisely those which have all their compositions factors indexed by p- 
subgroups. Also if we have an indecomposable Mackey functor which has a 
composition factor SH, v where H is a p-group, then all of its composition 
factors are SK, w where K is a p-group. Thus, for example, if H is a p- 
group then all composition factors of PH, V and of (Inf(H) FPv) TGH have 

NV(H) N(H) y 
minimum subgroups which are p-groups. 

We now give a different characterisation of the Mackey functors lying in 
MackR(G, J) in terms of their vertices. Working over either a field or a com- 
plete discrete valuation ring, we recall from [17] that every indecomposable 
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Mackey functor M has up to conjugacy a unique minimal subgroup relative to 
which it is projective. This is called a vertex of M, denoted vx(M). 

(9.7) Theorem. Assume that either R = k is afield of characteristic p or R = 

is a complete discrete valuation ring with residue field of characteristic p, and 
let J be a p-perfect subgroup of G. The indecomposable Mackey functors M 
in MackR(G, J) are precisely those for which OP(vx M) = J. 

The proof is based on the following lemma which will be also used in the 
next section. 

(9.8) Lemma. Let H be a subgroup of G and b E B(H). Let M be a Mackey 
functor for G. Let m(b) E EndMackR(H)G(M d) denote the multiplication by b, 
and similarly let m(b tG) E EndMackR(G)(M) denote the multiplication by the 
element btG of B(G). Then 

m(btG) = OHm(b)TH OH 

where OH: M -* M1GHTG and OH: M 4GHTG M are the canonical morphisms. 

Proof. We can assume that b is equal to a transitive H-set H/K. For every 
G-set X, the action of H/K on M1H (XtG) is equal to 

M1H (X1H) H M1 (H XK X 1H) HM1 (XH), 

where ,B: H XKX - X is the canonical map. Let also a: G XHX-* X be the 
analogous canonical map. Inducing to G the composite above and composing 
with OH and OH we obtain 

M(X)M*(a) ~ ~ M(IlxIJ) 
M(X)-*M(G XH X) M(G XH (H XK X)) 

- M(GXH X) -M(X). 

Identifying G XH (H XK X) with G XK X via the isomorphism 

G XH (H XKX) - G XKX (g, (h, x)) t-+ (gh, x), 

the composite a o (1 x ,B): G XH (H XK X) ` X is just equal to the natural map 
G XKX -- X and so we have M*(1 x JJ)M*(a) = OK at X. Similarly we have 
M* (a)M* (1 x ,B) = OK at X and this proves that the whole composite is equal 
to OK OK, which is the action of G/K = (H/K) tG . This proves the result. O 

Proof of Theorem 9.7. Let P be a subgroup such that J < P < NG(J) and 
P/J is a Sylow p-subgroup of NG(J)/J. We will show that M is projective 
relative to P. This will be sufficient to prove the result, since by 9.5 it will 
follow that there is a vertex of M with J < vx M < P. The deduction we 
make from this is that not only do the Mackey functors in MackR(G, J) have 
the prescribed form, but if M is any indecomposable Mackey functor, then 
the category MackR(G, J) in which it lies is determined by vx M since J = 

OP(vxM). 
To prove that M is projective relative to P we use Sasaki's criterion [17] 

that the identity endomorphism 1M has an expression as a composite 

M *MtG MP mtG PM 
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for some endomorphism x E EnldMackR(p) (M IG). Indeed this composite is 
equal to IG(x) in the Green functor 'nd(M) described by Sasaki (i.e., whose 
value at H is 'nd(M)(H) = EldmackR(H)(M4H)) 

Since fj * M = M, fj acts as the identity on M, and by 9.3 fj lies in the 
span of G-sets G/K with K < P. Thus we can write fJ = EAKG/K E B(G) 
for such K and coefficients AK . If we set X = EAKP/K E B(P), then xTG= 
fj and so by Lemma 9.8, 

id= m (fJ) = Op m (x) 6 G E EndMackR(G) (M). 

This completes the proof of the theorem. 0 

The following fact becomes easy in the light of 9.6 and 9.7. 

(9.9) Corollary. Let M be an indecomposable Mackey functor over afield k of 
characteristic p, and let SH, v be any composition factor of M. Then OP (H) = 
OP(vxM). 

For example, if M is indecomposable and M(H) =$ 0 for some p-subgroup 
H, then vx M is a p-group. 

We now apply Proposition 9.6 to the computation of the decomposition ma- 
trix. The effect of this division into a union of blocks is that in Proposition 7.3 
we need only consider at one time the SH, v where OP (H) is a fixed subgroup. 
To formalize this, suppose that R = a is a complete discrete valuation ring with 
field of fractions K of characteristic 0 and residue field k of characteristic p . 

(9.10) Corollary. Let J be a p-perfect subgroup of G. Then the square in 
Proposition 7.3 gives rise to a commutative square 

Go(MackK(G, J)) A @ Go(KNG(H)) 
H up to conjugacy 

OP(H)=J 

d {d 

GO(Mackk (G, J)) 2 Go(kNG(H)) 
H up to conjugacy 

OP (H)=J 

where -V denotes V followed by projection onto those summands which have 
OP(H) = J. The maps i are isomorphisms and the maps d are surjections. 
Proof. The argument is the same as was used in 6.1 and 7.3. The new aspects 
are that decomposition of Mackey functors does indeed send MackK(G, J) to 
Mackk(G, J), since these are the unions of blocks in characteristic 0 and p 
determined by the idempotent fj, and also that the new maps V are isomor- 
phisms. This is because the domain and codomain of 1/ have bases indexed by 
pairs (H, V) subject to the restriction that OP(H) = J and the matrix of 7 
is just the square submatrix of V consisting of the entries which correspond to 
these new basis elements. Since the matrix of V was triangular with l's down 
the diagonal, the matrix of -j has this property also. o 

We present two more corollaries of Proposition 9.6. It will help to notice that 
in any finite group G there is a bijection between conjugacy classes of p-perfect 
subgroups J and conjugacy classes of subgroups H such that p 4' ING(H): HI, 
given by J = OP (H) and H/J E Sylp (NG(J)/J) . 
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(9.1 1) Corollary. 
(i) If k is a,field in which IGI is invertible we have SH,k = eH * BG for 

every subgroup H. 
(ii) If k is a field of characteristic p we have PH, k = fj * BG for each 

subgroup H with p Jr ING(H): HI, where J = OP(H). 

Proof. (i) The indecomposable Mackey functor summands of BG are precisely 
the functors eK.BG by 8.2(ii) and 9.3, and also by 8.9 they have the form PH, k, 
which equals SH, k in this case. The idempotent which gives SH, k must be eH 

since by 9.6 this is the only one which acts in a non-zero fashion on SH,k . 
(ii) The proof is similar to (i) but now the indecomposable summands of 

BG are the fj * BG by 8.2 and 9.3, and also they have the form PH,k with 
P ING(H): HI by 8.9. The idempotent which gives PH k must be fj since by 
9.6 this is the only one which acts in a non-zero fashion on the top composition 
factor SH, k of PH, k El 

(9.12) Corollary. Let H be a subgroup of ,G for which p , ING(H): HI and 
let a be a complete discrete valuation ring with residue field k of characteristic 
p and quotient field K of characteristic 0. Then the decomposition number 
dsL, V, SH,k satisfies 

f 1 if OP(L) -GOP(H) and V =K, 
dsLV,SHk = k 0 otherwise. 

Proof. By 9.11 PHk = fj *BG where J = OP(H), and the lifting of this to a 

iS PH, k = fj * BG where now the Burnside functor is taken over a . By 7.1 (ii) 
the decomposition number is the multiplicity of SL, v in K 0R PH, k which is 

@ ex*BG = @ SX,K 
J<X<H J<X<H 

X up to conjugacy X uptoconjugacy 

using 9.3(ii) and 9.11 again. Thus SL, v occurs just once if we have V = K 
and OP(L) -G J, and does not occur otherwise. El 

Given some naturally occurring Mackey functor it is useful to know how 
one may break it apart into the summands given by Burnside idempotents. We 
conclude by showing how our approach here leads to a concrete identification 
of these summands. Let M be a Mackey functor and let J be a p-perfect 
subgroup of G. We define as a subfunctor of M 

MJ = (M(X) I OP(X) <G J)- 

Recall that by Proposition 2.4, we have 

MJ (H) = E: IXH (M (X)) 

OP(X)<GJ 

X<H 

(9.13) Theorem. Assume that either R = k is a field of characteristic p or 
R = a is a complete discrete valuation ring with residue field of characteristic p, 
let J be a p-perfect subgroup of G and let M be a Mackey functor over R. For 
every p-perfect subgroup J of G, MJ is a direct summand of M. Furthermore, 

fj * M M_ MJ/ Z ML. 
p-perfect L< J 



THE STRUCTURE OF MACKEY FUNCTORS 1899 

Proof. Let us write 
N= A fLM, 

p-perfect L< J 
L up to conjugacy 

as a subfunctor of M. We show that MJ = N from which the result is 
immediate. Firstly we observe that N is projective relative to the subgroups X 
with OP (X) <G J, by 9.7. It is well-known [9] that this implies that 

N(H) = ,: IxH(N(X)). 
OP(X)<GJ 

X<H 

This follows for instance from the fact that IxH is surjective for all H > X in 
a functor induced from X, so that the same holds for any direct summand of 
such a functor. Thus N = (N(X) I OP(X) <G J) C M J. On the other hand 

M = @ fL.M, 
p-perfect L 

L up to conjugacy 

and if OP (X) <G J but L G J then (fL * M)(X) = 0 by 9.5 applied to fL * M. 
Thus M(X) C N(X) and so MJ C N. We conclude that N = MJ. o 

Remark. In case M is a Mackey functor over a field in which jGI is invertible 
there is a similar description of eH * M as 

(M(X)| X <G H) / (M(X)| X <G H). 
We leave it to the reader to make the necessary changes and simplifications. 

(9.14) Corollary. With the assumptions of 9.13, M lies in MackR(G, J) if and 
only if 

(i) M(H) = 0 unless H >G J, and 
(ii) M = (M(X)| OP(X) -G J). 

10. AN EQUIVALENCE OF CATEGORIES: THE REDUCTION TO P-SUBGROUPS 

In this section, we prove a result which reduces questions about arbitrary 
Mackey functors to ones associated with p-groups. Explicitly let J be a p- 
perfect subgroup of G and let N = NG(J), N = N/J. We work over a base 
ring R in which every prime divisor of IGI different from p is invertible. 
Thus the primitive idempotent fj of the Burnside algebra B(G) over R is 
defined (see Theorem 9.3). In order to emphasize the dependence on G, we 
write fG = fj. Recall that MackR(G, J) denotes the full subcategory of 
MackR(G) whose objects are the Mackey functors M such that fG M = M. 
Similarly we consider MackR(N, J) and MackR(N, 1). We are going to see 
that inflation Inf- maps MackR(N, 1) into MackR(N, J) and that induction 

TG maps MackR(N, J) into MackR(G, J). Our main result is the following 
theorem. A related result is Theorem C of Yoshida's paper [25]. 

(10.1) Theorem. The categories MackR(N, 1) and MackR(G, J) are equiva- 
lent. More precisely: 

(i) Thefunctor Inf-: MackR(N, 1) -* MackR(N, J) is an isomorphism 
of categories. 
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(ii) The functor tG: MackR(N, J) -* MackR(G, J) is an equivalence of cat- 
egories, whose inverse is the restriction functor followed by multiplication 
by the idempotent fN . 

(10.2) Remark. The theorem also holds for an arbitrary set of primes Xt rather 
than a single prime p. One has to work over a ring R in which every prime 
divisor of IGI outside X is invertible. One takes a 7r-perfect subgroup J and 
the corresponding primitive idempotent fj of B(G), as explained in [23]. The 
proof below applies without change. 

Proof of Theorem 10.1. The proof of the theorem is based on a detailed analysis 
of the idempotents fj and fj, and of their action on Mackey functors. We 
proceed in a series of lemmas. The first two deal with part (i). 

(10.3) Lemma. Let q: B(N) -* B(N) be the ring homomorphism which maps 
an N-set X to the N-set XJ of J-fixed points in X. 

(i) If S<N, then q(N/S)= N/S if J<S and (N/S)=O iif J : S. 

(ii) f (ffJ)=f{ 

Proof. (i) This is straightforward. 
(ii) Since the Burnside algebra over a localization of Z embeds into the 

Burnside algebra over Q, we can work over Q. If J < S < N, consider 
the ring homomorphism qs: B(N) -+ Q which maps an N-set X to the 
number IXSI of S-fixed points in X. Clearly Os factorizes as Os = k?q0. 
The primitive idempotent eKN of B(N) satisfies by definition bs(eKN) = 1 if 
K is N-conjugate to S and qs(eKN) = 0 if K is not N-conjugate to S. Thus 
fj is characterized by the property OS5(fjN) = 1 if and only if OP(S) = J. It 
follows that 0(fjN) is characterized by the property O$5(q(fjN)) = 1 if and only 
if OP(S) = 1, and this means that 0b(fjN) = fjN . 

(10.4) Lemma. 
(i) Let T be a Mackey functor in MackR (N, 1) . Then the Mackey functor 

L = Inf-(L) lies in MackR(N, J). 

(ii) Let L be a Mackey functor in MackR(N, J). Then L = Inf-(L) for 
some (unique) Mackey functor L, and L lies in MackR (N, 1 ). 

Proof. Write fj = f' + f" where f' lies in the R-linear span of the transitive 
N-sets N/S with S > J and f" lies in the R-linear span of the transitive 
N-sets N/S with S ; J. Then by Lemma 10.3, we have 0(f") = 0 and 

c(fr) = .f 
(i) The action of N/S on L(K) is equal to Ege[K\N/S] 'KqgS RKngs . Since 

L is inflated, it vanishes on subgroups not containing J and the action of N/S 
is zero if S ; J. If both K and S contain J, then all subgroups involved 
contain J, so that the action of N/S is obtained from the action of N/S 
on L. It follows that f" acts by zero and that the action of f' is obtained 
from that of 0(fl) = f1N which is the identity by assumption. Therefore fJN 
acts as the identity on L, as required. 

(ii) By Theorem 9.5, L vanishes on subgroups not containing J (because 
J is a normal subgroup of N ). Therefore L is obtained by inflation from a 
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unique Mackey functor L for N. Since L vanishes on subgroups not con- 
taining J, the argument above shows that f" acts by zero and so the action 
of f' is equal to the action of fN which is the identity. But since the action 
of f' on L corresponds to that of fN - q(f') on L, we see that fiN acts as 
the identity on L. n 

It is clear that Lemma 10.4 immediately implies part (i) of the theorem. The 
rest of this section is devoted to the proof of part (ii). 

(10.5) Lemma. 

(i) Let K1 and K2 be subgroups such that J < Ki < N and Ki/J is a 
p-group. If K2 = 9K1 for some g E G, then g E N. 

(ii) In B(G), we have fNtG=f G. 
(iii) In B(N), we have 

(iii)f 1N= B ) wegJ,v 

gE[N\TG(J, N)/N] 

where 
TG(J, N) = {g E GI gJ < N}. 

(iv) In B(N n fN), we have 

I fNngN if J E gN (i.e., g E TG(J, N)), 
)J lNn gN= 0 otherwise. 

Proof. (i) We have J = OP(K2) and J = OP(K1), so that gj = OP(9K1). 
Thus J = 9J, that is, g E N. 

(ii) Since the Burnside algebra over a localization of Z embeds into the 
Burnside algebra over Q, we can work over Q. By Theorem 9.3, we know that 

fN N j ~~eK, 
J<K<P 

K up to N-conjugacy 

where P/J is a Sylow p-subgroup of N/J and eKN denotes the primitive 
idempotent of B(N) corresponding to the subgroup K. Moreover it is well- 
known (see [23, 3.5]) that one has 

eNITG= ING(K): NN(K)I | eKG . 

But NG(K) < NG(OP(K)) = NG(J) = N so that NN(K) = NG(K) . Therefore 

fNZG-G j N-t G = E eK. 
J<K<P 

K upto N-conjugacy 

By the first part of this lemma, we know that N-conjugacy of such subgroups K 
coincides with G-conjugacy. Therefore we obtain the expression of fJ given 
by Theorem 9.3, as required. 

(iii) We use again the expression of fjG as a sum of primitive idempotents eKG 
in the Burnside algebra over Q. We have eKG 1G= Ei eN where the subgroups 
Ki are representatives of the N-conjugacy classes of subgroups of N which are 
conjugate to K in G. (Note that we are not in the situation of (i), because Ki 
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need not even contain J.) Now grouping together all subgroups with the same 
OP (which is necessarily a G-conjugate of J contained in N), we obtain 

fGtG= Z eN 

gE[N\G/N] gJ<K<N, OP(K)=gJ 
&J <N K upto N-conjugacy 

= E ~~~~fglJ 
gE[N\TG(J, N)/N] 

Note that the sum is over (N, N)-double cosets because we are considering the 
set of G-conjugates of J (in bijection with G/N) and taking only representa- 
tives of N-conjugacy classes. 

(iv) Once again, we work in the Burnside algebra over Q. If J S 9N and 
J < K < N, we have K S N n f N and so eKN tNn4gN= 0. It follows that 
fJN Ngy- 0. Assume now that J < 9N. Then since J is a normal subgroup 
of N n 9N, we have 

fN tN _ N tN _ Nn gN 
fJ NngN eK =Nn N Z,Ki 

J<K<N, OP(K)=J J<K<NnfgN OP(K)=J 
K up to N-conjugacy K upto N-conjugacy 

= , ~~eLNn 9N =fNn N, 
- L =fNflN 
J<L<NngN , OP(L)=J 
L upto(Nn 9N)-conjugacy 

where the inner sum runs over representatives Ki of the (N n 9N)-conjugacy 
classes of subgroups which are conjugate to K in N. 5 

(10.6) Lemma. Let H be a subgroup of G and g E G. Let b E B(G). 
(i) Let L be a Mackey functor for H. Under the identification L GH (X) = 

L(X tG), the action of b on L TG (X) is equal to the action of b tG on 
L(X tG). In particular if b 1t acts as the identity on L, then b acts as 
the identity on L TG . 

(ii) Let M be a Mackey functor for G. Under the identification M tG (Y) = 

M(Y TG), the action of btG on M1H (Y) is equal to the action of b 
on M(Y TG). In particular if b acts as the identity on M, then b 1t 
acts as the identity on M 1G 

(iii) Let L be a Mackey functor for H and a E B(H). Under the identi- 
fication 9L(Y) = L(g'Y), the action of ga on 9L(Y) is equal to the 
action of a on L(g'Y). In particular if a acts as the identity on L, 
then ga acts as the identity on 9L. 

Proof. (i) By linearity, we can assume that b is equal to some G-set Z. The 
action of Z on LTG (X) is the composite 

G()(LTG)* (Pr2) LTG (Z X X) (LT) (Pr) LTG (X) 

which, by definition of induction, is equal to 

L(XtG) L*(pr2)H) L((Z X X) tG) L* (prG)HL(XtG) 

This is the action of Z 1H, as required. 
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(ii) Again we can assume that b is equal to a G-set Z. The action of Z tG 
on MtG (Y) is the composite 

MtG (Y) (M (pr2) tG (Z tG X y) (HI M1H (y) 

which, by definition of restriction, is equal to 

M(y rG) HM((Z tG X y) TG) * 2H M(y TG) 

Now there is a canonical isomorphism of G-sets (Z tG x Y) TG 
r Z x y TG, and 

the map pr2 TG corresponds simply to the second projection pr2. Therefore 
the composite above is equal to 

M( yTG ) M*(pr2) M(Z X yTG ) 
I (pr2) My G 

which is the action of Z, as required. 
(iii) The proof is straightforward. 5 

Combining Lemma 10.6 with Lemma 10.5, we obtain the following result. 

(10.7) Lemma. 
(i) Let L be a Mackey functor lying in MackR (N, J). Then L TG lies in 

MackR(G, J). 
(ii) Let M be a Mackey functor lying in MackR(G, J). Then M 1t can 

be decomposed as a direct sum Mt1= g[N\TG(J N)/N] Mg where Mg 
is a Mlackey functor in MackR(N, 9J). 

(iii) Let L be a Mackey functor lying in MackR(N, J). Then 9L lies in 
MackR(9N, 9J). 

(iv) Let L be a Mackey functor lying in MackR(N, J). If g1 ? 

TG(J, N), then LtN14, - O, while LtNflgN lies in MackR(NfnlN, J) 
if g1 e TG(J, N). 

Proof. (i) Since fJN acts on L as the identity, fG 1N= t g[Nf\TG(J,N)/N]f 

also acts on L as the identity (because for g ? N, the idempotent fgj; is 
orthogonal to fjN, hence acts by zero). By Lemma 10.6 (i), this implies that 
fjG acts as the identity on L TNG 

(ii) Since fjG acts on M as the identity, fG 1N= Zg[N\TG(J N)/N] fgGJ acts 
as the identity on M 1N, by Lemma 10.6 (ii). The result follows by setting 
Mg = NfiM 4. 

(iii) This is straightforward by Lemma 10.6 (iii). 
(iv) This is immediate by Lemma 10.6 (ii) and Lemma 10.5 (iv). S 

(10.8) Remark. Part (i) holds more generally for an arbitrary subgroup H of G 
containing J: if L lies in MackR(H, J), then L TG lies in MackR(G, J) . 
The proof is similar and is based on the observation that fj appears necessarily 
as an orthogonal summand of the idempotent fJ H4 . 

We know now that the induction functor maps MackR(N, J) into 
MackR(G, J) and we have to show that this is an equivalence. Let us denote 
this induction functor by 

J: MackR(N, J) -+ MackR(G, J). 
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Now consider the functor 
: MackR(G, J) -+ MackR(N, J), 

defined as the composite of the restriction functor and the multiplication by the 
idempotent fjN. In the notation of Lemma 10.7 (ii), we have M(M) = M1. 
As the induction and restriction functors are adjoint on both sides, we also 
have that 3 is both the left and the right adjoint of >J. Indeed, for L 
in MackR(N, J), any morphism L -+ M 1G factorizes necessarily through 
fN * M tG = 3 (M), and similarly for a morphism M 1G -+ L (because any 
morphism commutes with the action of the central idempotent fjN). We shall 
prove the desired equivalence by showing that the units and counits of the 
adjunctions are isomorphisms. Thus we need to describe them explicitly. 

For a G-set X, let 

Px: XNN >X, (g, x) I- gx 
be the canonical map. (Via the identification X tG1G 

r G/N x X, the map Px 
is just the second projection.) For an N-set Y, let 

iy : y -- ytNGN y @- 0 (1 y) 

be the canonical map. Let M be a Mackey functor for G and L a Mackey 
functor for N. From Proposition 4.2 in [20], we know that the units and 
counits for the adjunctions between induction and restriction are the following 
morphisms: 

M*(px): MtNTG (X) = M(XGNTG) M(X), 

L*(iy): L(Y) L TIj (Y) =L(Y 

L* (iy): LIt (Y) = L(Y NtGI ) L(Y), 

M*(px): M(X) -, MNTI (X) = M(X1TN). 

The units and counits of the adjunctions between 3 and >J are obtained 
from the units and counits above by composing them either with one of the 
inclusions 

j(MtG) : M(M) __ M1N, (TGNtG): g TG) 
G 

LGN1 

or with one of the projections 

m(~~~_ fJN) M1 (M), m(N) : L SNt 
G __ L TG) 

where m(fJN) denotes the multiplication by fjN. Therefore we obtain the 
following four morphisms: 

eM: gY~(M) ('1?*N MGTI~NG M-(P) M, 
(ML M LTN1 S Z>L) 

L*: WE (LN) LT1 i 

7M : M (PIG M TI m(MfJN 

Of course M*(p) denotes the morphism which, on evaluation on a G-set X, 
is equal to the map M* (Px) described above (and similarly with M* (p), L* (i) 
and L*(i))N 

The following lemma summarizes our discussion. 
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(10.9) Lemma. The functor 

: MackR(G, J) -* MackR(N, J) 

is both the right and the left adjoint of the induction functor 

J: MackR(N, J) -* MackR(G, J). 

The units and counits of the adjunctions are given by the four morphisms EM, 

UL, 7XL and 7M. 

Our aim is to prove that the unit of each adjunction is the inverse of the 
counit of the other adjunction. This will establish that 3 and >J are inverse 
equivalences. 

(10. 10) Lemma. 7rL L = idL 

Proof. We have L*(i) = j(L 1GNtG) cL because L*(i): L -+ L TGNT factorizes 

through the inclusion j(LtNT$) GN J(L) -+ LTGN . Therefore 

L* (i) L* (i) = L* (i) j (L 4NGtG) iL = 7rL L , 

and it suffices to show that L* (i) L* (i) = idL. This is a general property of 
Mackey functors. By the Mackey decomposition formula 5.3, we have 

YIN]N U gNngNnN= Y U Y' 
gE[N\G/N] 

where Y' is the direct sum running over all non-trivial double cosets. Moreover 
the map ly Y - Y IN1T is just the inclusion into the first summand. By 
applying L*, we see that 

L*(iy): L(Y) -+ L(Y D Y') = L(Y) D L(Y') 

is the inclusion into the first summand. Similarly, 

L*(iy): L(Y E Y') = L(Y) E L(Y') -+ L(Y) 

is the first projection. Therefore L* (iy) L* (iy) = idL(y) as required. 5 

(10.1 1) Lemma. OL 7XL= idwZ(L) 

Proof. By Lemma 10.7, we know that LTG lies in MackR(G, J) and that 

LGtGf= e Lg 
gE[N\TG(J, N)/N] 

where Lg is a Mackey functor in MackR(N, 9J). Moreover LI = 3,J(L). 
On the other hand, by the Mackey decomposition formula, we have 

L TN1XN ( L gNnNT gNnN 
gE[N\G/N] 

Moreover the first term in this sum is isomorphic to L. Finally the inclusion 
of L into L TGNTG followed by the projection onto L, = 3,J(L) is precisely 
the natural morphism aL: L -+ L, which is a split injection by Lemma 10.10. 

We claim that the two decompositions of L GNt]G above coincide, in the sense 
that 

crrgN A N Lg if g E TG(J, N), 9LYt NnNTNnN= 10 otherwise. 
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This implies in particular that the split injection JL: L -+ L1 is an isomor- 
phism, which establishes the lemma. 

To prove the claim, we note that by Lemma 10.7 (iv), LtNfgl = 0 when- 

ever g ? TG(J, N), while L tN 1 lies in MackR(N n g'N, J) if g E 

TG(J, N). Conjugating by g and using Lemma 10.7 (iii), we obtain that 
gL Nn - 0 if g ? TG(J, N) and that 9LgNqN lies in MackR(9NnN, 9J) gNnN- ggNG(,NnN8r~N J 

if g E TG(J, N). Now 9N n N is the normalizer in N of the p-perfect 
subgroup gJ, so by Lemma 10.7 (i), we obtain that 9L gNqNIgNqN lies in 
MackR(N, 9J). This proves that every summand in the second decompositon 
of L tGNtG above either is zero (when g ? TG(J, N) ) or is exactly the sum- 
mand belonging to MackR(N, 9J) (when g E TG(J, N)). This completes the 
proof of the claim. 5 

(10.12) Lemma. eM 7M = idM 

Proof. We have to show that 

M TG Nj4 MTGNNN M 

is the identity. By Lemma 9.8, we know that this is equal to the action of the 
element f N Iy of B(G) . Now Lemma 10.5 (ii) asserts that fj Ny- fJG, which 
by assumption acts as the identity on M. S 

There remains to show that iM cM = idj-(M) . But this is a consequence of 
the following general lemma, because we already know that cM iM = idM and 
that JCL is an isomorphism. 

(10.13) Lemma. Let v and ~W be two categories. Let M : v W and 
J' : ~W -+ v be two functors such that M is the left adjoint of >J. Let 

: ids --+ JM and ir: -+ id_ be the unit and counit of the adjunction. 
Suppose that: 

(i) cM jM = idM for each M E X, where cM: JYi(M) -+ M is some 
morphism in X. 

(ii) 7JL is an isomorphism for each L E 6W. 

Then iM is an isomorphism for each M E v (and so the categories v and 
S7 are equivalent). 

Proof. One of the consequences of the existence of an adjunction is that for 
each M E X, the composite 

M (M(M) W((M) ) 

is the identity. Since 7rt1(M) is an isomorphism by assumption (ii), we also 
have that M(6M) Urs(M) is the identity (of ML7Z"(M) ). Since cM 7M = idM 
by assumption (i), we have M(cM) S(M) = ids(M) and therefore 

(10.14) M(CM) =M (M)M(qM) 7M(M) = 7M(M). 

The morphism imM cM :J[(M) --+ J[(M) corresponds by adjunction to the 
composite 

7W(M) ,X 
(7M CM) :gw (M) -+ (M), 
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which by 10.14 is equal to 

7tW(M) _W(7rM) 3W( EM) = 7( EM) = (= (M) R (idjw(m)) 

But this is the correspondent of id_W(M) by the adjunction, and it follows that 
rlM EM and idjR(M) are equal, since they correspond to the same morphism by 
adjunction. This shows that EM is the inverse of rlM. 5 

The proof of part (ii) of Theorem 10.1 is now complete. 

11. VERTICES, SOURCES AND GREEN CORRESPONDENTS OF PROJECTIVE 

AND SIMPLE MACKEY FUNCTORS 

In this section we will assume that the coefficient ring is a field k (or more 
generally a complete discrete valuation ring). Recall from Sasaki [17] that in 
this situation every indecomposable Mackey functor M has a vertex vx(M), 
namely a unique minimal subgroup (up to conjugacy) relative to which it is pro- 
jective. Sasaki also proved that Green correspondence works in this situation, 
so that if H = vx(M) and K is a subgroup containing NG(H) then MtG has 
a unique summand f(M) with vertex H, and if L is a Mackey functor for 
K with vertex H then L TG has a unique summand g(L) with vertex H, the 
correspondences f and g being mutually inverse. 

We will identify completely the vertices, sources and Green correspondents 
mentioned in the title. Coming from the background of group representation 
theory one would be inclined to think that the projective Mackey functors are 
the same as the Mackey functors which are projective relative to the identity 
subgroup, but this is not so. If M is 1-projective (over a field), then it is indeed 
the case that M is projective, but the converse does not hold. In fact for every 
subgroup H of G there is a projective Mackey functor whose vertex is H, as 
our first result shows. 

Throughout this section, we shall often use superscripts to indicate for which 
group a Mackey functor is considered. Thus for instance SK, V is the simple 
Mackey functor for K corresponding to the pair (H, V) . 

(l1.1) Proposition. Let H < G and let V be a simple kNG(H)-module. 
(i) The indecomposable projective PH, V has vertex H. 

(ii) Let J = OP (H) and let fj be the idempotent of the Burnside algebra 
B(H) corresponding to J (as in Theorem 9.3). Then PHH k = fj * BH 

is a source of PH, V . In particular, if H is a p-group, then BH is a 
source of PH,V 

Proof. (i) Since PH, V is a summand of BH TG by 8.7(ii), the subgroup H 
contains a vertex of PH,V. Suppose that PH,V is a summand of M TG for some 
Mackey functor M, where K < H. Then there exists a non-zero morphism 
M TG-+ SH, V and hence a non-zero morphism M -+ SH, V G by adjointness 
of induction and restriction. But from the description of the simple Mackey 
functors, SH, V tG is the zero Mackey functor, a contradiction. 

(ii) Since PH,V is a summand of BHTG , the source of PH, V has the form 
f * BH for some idempotent f of B(H), by 9.3. By the argument of (i), there 
is a non-zero morphism f *BH -+ SH, V 1 . But SH, V 1H vanishes below 
H, hence is a direct sum of copies of SH Therefore the projective Mackey 
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functor f BH must be the projective cover of SHk and this means that f = fj 
by 9.1 1. Finally, in case H is a p-group, then fi is already primitive in B (H), 
by 9.3 (or 8.10), and fi * BH = BH. 

Now we consider Green correspondents of projective Mackey functors. 

(11.2) Proposition. Let K be a subgroup of G which contains NG(H). The 
Green correspondent of PHG, v is PH, V 
Proof. We may write PKV -G g(PK, V) E M where M is a Mackey functor 
all of whose summands have smaller vertex than H. Since induction preserves 
projectives, by the last proposition these summands have the form PL, w with 
L < H. Applying induction to the epimorphism PH V SH V gives an epi- 
morphism g(P4 v) - M K PHK V * SHV using the fact that SH V is an 
induced functor. The only way we can have such an epimorphism to a simple 
Mackey functor is if PGf V is a summand, and since this has vertex H we must 
have g(PH,V) = PHG, ? 

We turn now to the vertices and sources of simple Mackey functors. We will 
need to quote Proposition 3.4.2 of [21], whose statement we now include. 

(1 1.3) Lemma. Suppose that M is a Mackey functor which is projective relative 
to a set of subgroups 2', and let 3< be a set of subgroups of G which is closed 
under taking subgroups and conjugation. Consider the Mackey functor N whose 
value at a subgroup H is defined to be N(H) = ZJ<H, JE IJHM(J). Then N 
is also projective relative to 2'. 

We also need to extend the notation SH, v to non-simple modules V. If V 
is an arbitrary kN(H)-module, define S (H)'(K) = trK(V) c VK = FPv(K). 
Thus S, v is a subfunctor of FPv . Then define 

SH, v = SH, V = (InfZ(H S1, NV) GN(H) 

It is not difficult to see that SH, v is generated by SH, v (H) = V. This follows 
exactly as in the proof of part (i) of Lemma 8.1 in [20]. A consequence of this 
fact is that SH, v is indecomposable if and only if V is an indecomposable 
kN(H)-module, using also Proposition 3.2 of [20]. 

(1 1.4) Proposition. 
(i) For any indecomposable kG-module W, the vertices of FPw, FQw 

and W are the same. 
(ii) Let SHG V be a simple Mackey functor, and let K be a subgroup of G 

with H < K < NG(H) such that K/H is a vertex of V. Then K is a 
vertex of SH, V. 

(iii) Let moreover U be a source of V. Then the indecomposable Mackey 
functor SH U is a source of SHG v. 

Proof. (i) We rely on the fact that induction of Mackey functors commutes with 
all of FP, FQ and evaluation at 1. Let K be a vertex of W. Then since 
W is a summand of W TG we have that FPw is a summand of FPWTG 
FPwTG . Hence K contains a vertex L of FPw . On the other hand, the split 
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epimorphism FPw TG-* FPw on evaluation at the identity subgroup is a split 
epimorphism WTG - W, and hence L must be K. The proof for FQw is 
similar. 

(ii) Since SHGv = (Inf~ N(H) S(v)) TG(H) is an induced functor, it follows that 

a vertex of InfN(H) S, N(H) as a Mackey functor for N(H) is also a vertex of 
G of SNN(H).1By H ,v . Evidently this will be the preimage in N(H) of a vertex of S1I. By 

this means we reduce to the case that H = 1, so we consider a simple Mackey 
functor Si, v. 

A vertex L of SI, v must always contain a vertex K of V since the split 
epimorphism Si, v tlGTG- SI, v on evaluation at 1 gives a split epimorphism 
V tlGTG V. On the other hand FPv is projective relative to K by part (i) and 
S1, v is constructed as in 1 1.3 on taking M = FPv, ' = {1} so it follows by 
11.3 that S1, v is also projective relative to K . Thus L = K . 

(iii) By the same reduction argument as in (ii), we are left with the case 
H = 1. Since V is a summand of U TG, FPvG is a summand of FPG - 

FPJU IK. Now by the definition of SG v, it is clear that SG v is a summand of 
SG ZG =S1K U SK. The detailed proof of the latter equality is left to the reader. 

Since we already know that K is a vertex of SG v, the argument suffices to 
guarantee that S1K U is a source of SG. n 

Finally we show that the Green correspondents of simple Mackey functors 
are determined by the Green correspondents of the corresponding modules. We 
first need a lemma. 

(1 1.5) Lemma. Let K be a normal subgroup of G and let K < J < G. Let 
M be an indecomposable Mackey functor for J with vertex K. Then every 
indecomposable summand of M IG has vertex K. 

Proof. Let N be a source of M. Since M is a summand of N TK, the functor 
M tJ is a summand of 

NIKtj= e hN. 

hE[J/K] 

Thus M 1t is a direct sum of conjugates of N. 
Now let L be an indecomposable summand of M tG. Then L tG is a 

summand of 
G I G- gm lgj= (M1) 

gE[K\G/J] gE[G/J] 

and so every summand of L {G is a conjugate of N. After conjugation, it 
follows that N is a summand of LI G . Since we also have that L is a summand 
of N IG and since N is its own source, N must be a source of L. In particular 
K is a vertex of L. El 

(11.6) Proposition. Let SH4 V be a simple Mackey functor for G and let K/H 
be a vertex of V. Let W be the Green correspondent of V, a module for 
NN(H)/H(K/H) = N(H, K)/H, where N(H, K) = N(H) n N(K). Then the 
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Mackey functor for N(K) which is the Green correspondent of SG4 v is equal 
to 5N(H,K) N(K) 

to' W I N(H, K) - 

Proof. The functor V -* SI, v from modules to Mackey functors is additive 
and the proof of 11.4 shows that it preserves vertices. It follows easily that 
5N(H, K)IH is the Green correspondent of SN(H)/H. Applying inflation from 

1, w ~~~~~~~~1, V Aplignfaonrm 
N(H)/H to N(H), one obtains that SN(H,K) is the Green correspondent 

of SN(H) Therefore 
5N(H, K) 1N(H) 5N(H) T 

X,' W TN(H,K)= ,' V E) 

where each summand of T has vertex smaller than K. 
Let M = sNHW K) IN(H,K) . Then 

MIG _ N(H,K)tG SHG v( TIG 
(*) I~~N(K)- ,W' IN(H, K)= V IN(H) 

By 11.5, every indecomposable summand of M has vertex K. By Green cor- 
respondence, each such summand corresponds to an indecomposable summand 
of MtIN(K) with vertex K. But we have just seen that SGf V is the only sum- 
mand of M IGN(K) with vertex K. It follows that M is indecomposable and 

(*) shows that M is the Green correspondent of SH . 

12. PROJECTIVE MACKEY FUNCTORS INDEXED BY p-SUBGROUPS 

In this section our coefficient ring will be a field k of characteristic p > 0. 
We analyse the relationship between the projective Mackey functors PH, v 
where H is a p-group, and their evaluations at the trivial subgroup 1. This pro- 
vides a bijection between these projectives and indecomposable trivial source 
modules, i.e., the indecomposable summands of permutation modules. Also 
there is a strong connection with Hecke algebras, by which we mean the k- 
algebras EndkG(klG). 

For completeness, we mention that the case of arbitrary projective Mackey 
functors reduces to the situation analysed in this section, thanks to the equiv- 
alence of categories 10.1. Indeed if PHGf V is the projective cover of SH V, 

then by 9.6, 5G v lies in Mackk(G, J) where J = OP(H) and therefore so 

does pfG F. By the equivalence 10.1, SG corresponds to SN)J) (because 

we have SH V = SJ$G? I (H)) and since N(H) < N(J), we obtain 

5G 5N(J) tG -IfN(J) SN(J) ) G 
SHX,V = H, V IN(j)= (In -j) HJ,) VN(J) 

Therefore PfG V corresponds to PN(J) under the equivalence and since H/J Therefore PH ,v -A H/J, V 
is a p-group, we are in the situation of this section. 

The following lemma is well known, but we give the proof for the sake of 
completeness. 

(12.1) Lemma. Let H be a p-group. Then FPktG(H) 
- kNG(H) as kNG(H)- 

modules. 
Proof. We have a decomposition k IGHH= =EX.[H\G/H] k IlHXH and each sum- 
mand has a 1-dimensional fixed point set which is spanned by trHXflH 1. In 
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FPktG (H) there remain only the terms which are not traces from proper sub- 
groups. These arise when HX n H = H, i.e., x E NG(H), so FPktG (H) = 

@XE[NG(H)/H] k and the action of NG(H)/H on these summands is to permute 
them regularly. o1 

(12.2) Corollary. Let H be a p-subgroup of G and V a simple kNG(H)- 
module. 

(i) The simple Mackey functor SH, v always occurs as a composition factor 
of FPkt G 

(ii) PH, V(1) # 0. There exists a simple kG-module W such that SI, w 
is a composition factor of PH, v. Equivalently, SH, v is a composition 
factor of P1, w 

Proof. (i) Every simple kNG(H)-module V is a composition factor of kNG(H) 
and so by applying Proposition 6.2 we obtain that SH, v is a composition factor 
of FPktG. 

(ii) By (i) there exists a non-zero morphism PH, v --* FPktG . By the adjoint 
property of the fixed point functor this means that there exists a non-zero mor- 
phism PH,v(1) --* k IG, and so we must have PH,v(1) $0 . Now if W is 
any composition factor of PH, V (1), it follows by 6.3 that SI, w is a compo- 
sition factor of PH, v. The final assertion follows by symmetry of the Cartan 
matrix. 51 

(12.3) Lemma. For any subgroup H there is an isomorphism 

B IHG (1) - k G 

as kG-modules. 
Proof. This is a consequence of the facts that B H(1) = B(1) - k and that 
induction commutes with evaluation at 1 by 5.2. 5 

(12.4) Lemma. For any projective Mackey functor P, the morphisms FQp(l) - 

P and P --* FPp(l) which extend the identity map at the level of the identity 
subgroup are, respectively, a monomorphism and an epimorphism. 
Proof. We prove that the first of these morphisms is a monomorphism. It 
suffices to assume P is indecomposable. Since P is a direct summand of one 
of the functors BH IGH, it suffices to prove the result when P = BH I H, and 
we will make this assumption. Now BH IG (1) = k IG and FQktG - FQk IG 

by 5.2, so the first of these morphisms is FQk IH ' BH IG . We claim that this 
morphism is (FQk -) BH) I . This is because both morphisms are uniquely 
determined by their effect at the identity subgroup, and at that level they are 
both the identity morphism. Because IG is an exact functor it suffices to show 
that the morphism FQk -+ BH of Mackey functors for H is a monomorphism. 
But at the level of a subgroup K < H this morphism is 

FQk(K) BH(K), 

I1 ,K/I 

since in the functor FQk we have JK (1) = 1 . This is evidently injective. 
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The argument that the second morphism is an epimorphism is similar. We 
reduce to showing that B H - FPk is an epimorphism of Mackey functors 
for H. At the level of a subgroup K < H this morphism is 

BH(K) FPk(K), 

KIJ IK/JI 

which is seen to be surjective because K/K maps to 1. a 

(12.5) Corollary. For every indecomposable projective Mackey functor P, the 
kG-module P( 1) is indecomposable. 
Proof. Suppose P(1) = A e B with A and B non-zero. Then FPp(1) = 
FPA e FPB . But P -* FPp(1) is epi and any image of P is indecomposable 
since it has a simple top. Hence P(1) cannot decompose. a 

Our aim at the moment is to prove Theorem 12.7, but as a preliminary we 
first prove a special case. 

(12.6) Lemma. Let PH, v be an indecomposable projective Mackey functor where 
H is a normal p-subgroup of G. Then PH, V (1) is the projective cover as a 
k[G/H]-module of V, inflated to G. In particular, PH, v and PH, v(1) both 
have vertex H. 
Proof. PH, v (1) is an indecomposable summand of 

BHIG (1) = k IG = k[G/H], 

and the summands of this module are exactly the projective covers over k[G/H] 
of the simple k[G/H]-modules, so PH, v (1) is one of these. We show that there 
is an epimorphism PH, v (1) -+ V as NG(H)/H-modules, and that will show that 
PH, v (1) is the projective cover of V. We do know from 12.4 that the unique 
simple image of PH, v as a Mackey functor is also an image of FPpH V(1), so 
we have an epimorphism FPPH V(1) - SH, V. Evaluating this at H we obtain 
an epimorphism 

PH, V(l) = PH, V(1) _ V 

as required. a 

(12.7) Theorem. Let PH, v be an indecomposable projective Mackey functor. 
(i) If H is not a p-group then PH, v(l) = 0. 

(ii) If H is a p-group then PH, v (1) is a non-zero indecomposable summand 
of k IG. In fact PH, V (1) is the trivial source module with vertex H 
which is the Green correspondent g(Pv), where Pv is the projective cover 
of V as a kNG(H)-module, which we regard as a kNG(H)-module by 
inflation. 

Proof. (i) The projective PH, v lies in Mackk(G, OP(H)) by 1.1(i) and 9.7, 
and so if H is not a p-group then PH, v(1) = 0 by 9.5. 

(ii) Since the Green correspondent of PHG V is pNG(H) by 11.2, we have 
pNG(H) G(H PHG, V EM where M is a Mackey functor all of whose summands 

have vertex smaller than H. Thus pNG(H) rG(H) (1) pG (1) e M(1) and 
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since induction commutes with evaluation at 1, M( 1) is a module all of whose 
summands have vertex smaller than H. Furthermore we may write the left- 
hand side of the last equation as (PNG(7H)(1)) ING(H) Because H is a normal 

p-subgroup of NG(H), Lemma 12.6 applies and we have pfNG 7)(1) = PV, the 
projective cover of V .Now Pv tGG(H)= g(Pv) E A, where A is a module all of 
whose summands have vertex smaller than H. Combining the above, we have 
an equation 

PG v(1) E M(1) = g(Pv) E A 
and equating the only two modules which have vertex H we obtain pH V (1) _ 

g(Pv) as required. 5 

(12.8) Corollary. Let H be a p-subgroup of G. 
(i) The vertices of PH, v and PH, v (1) are the same. 

(ii) PH,V - PK, W as Mackey functors if and only if PH, v(1) - PK, w(1) as 
kG-modules. 

Proof. (i) The vertex of PH, v (1) is H. By 1 1. 1 this is also the vertex of PH, V. 
(ii) If PH,v(1) - PK,w(l) as kG-modules then K and H are conjugate 

since they are vertices of the module concerned. Now V and W are deter- 
mined as the unique simple image of a Green correspondent of PH, v(1), and 
hence they are isomorphic. 51 

(12.9) Corollary. Let H be a p-subgroup of G. The indecomposable sum- 
mands of BH TG biject with the indecomposable summands of k t G. In fact 
if BH TG= E Pi is a direct sum decomposition into indecomposable projective 
Mackey functors then k 1G= E Gp(1) is a direct sum decomposition into inde- 
composable kG-modules. 
Proof. If PK, w is an indecomposable summand of BH TG then K is conjugate 
to a subgroup of H by 8.7(i), so is a p-group. Thus PK, W(1) is a non-zero 
indecomposable kG-module by 12.2 and 12.5, and the result follows. S1 

As an example of this connection between trivial source modules and Mackey 
functors we state a result due to Alperin, having to do with weights. In this 
context a weight is a pair (H, V) where H is a p-subgroup of G and V is a 
projective kNG(H)-module. 

(12.10) Proposition. Let k be a field of characteristic p and let Q be a Sylow 
p-subgroup of G. Suppose that (H, V) is a weight for G. Then 

(i) PH, V is a summand of BQ TG with non-zero multiplicity. 
(ii) ([2, Lemma 1]) Regarding V as a kNG(H)-module by inflation, the 

Green correspondent g(V) is a summand of k TG with non-zero multi- 
plicity. 

Proof. (i) By virtue of 8.6 we need to show that SH, v(Q) $& 0, which we do 
using 8.8. Since H is a p-subgroup, there exists g E G with Hg C Q and it 
suffices to show that tr NgQ(H)/IH(V) $& 0. But NgQ(H)/H is a p-group so, being 
projective, V is a direct sum of copies of k[NgQ(H)/H], from which it follows 
that the trace from the identity is non-zero. 
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(ii) follows from (i) by evaluation at 1 using 12.7(ii). a 

We now make the connection with Hecke algebras. 

(12.11) Theorem. Let H be a p-subgroup of G. The ring homomorphism 

s: EndMackk(G)(BH IG) - EndkG(k IG) 

given by evaluation at 1 is surjective. Its kernel lies in the radical of 
EndMackk(G)(BH IG) It follows that every idempotent of EndkG(k IG) lifts 
through s to an idempotent of EndMackk(G)(BH IG) 

Proof. Evidently every Mackey functor endomorphism of BH IG at the level 
of the subgroup 1 is a kG-module endomorphism of BH IG (1) k IG, and 
this gives the definition of s. 

We show that s is surjective. As abelian groups there is a decomposition 

Hom(BHIG BH I) -Hom(B , BH I1HG) 

~ @Hom(B H, cx(B HXqH ) IHqxH) 

xE[H\G/H] 

@ Hom(B Hd$XH, BH xH) 
xE[H\GIH] 

(3 Hom(BHI H A BHn XH) 
xE[H\G/H] 

There is a similar decomposition 

Hom(kH IG H, kH IGH)- Hom(k, k) 
xE[H\GIH] 

of EndkG(k IGH) which gives the basis for this endomorphism ring attributed to 
Schur. The ring homomorphism s respects the terms in these decompositions, 
and on each summand it is the surjection End(BHnxH) -+ End(k) which sends 
the identity mapping to the identity. Evidently this is surjective. 

We now show that the kernel of s is contained in the radical. This follows 
from the fact that the kernel contains no non-zero idempotent: for if the ker- 
nel did contain a non-zero idempotent, the idempotent would correspond to a 
summand of BH IGH with zero evaluation at 1. By 12.9 this cannot happen. a 

We conclude this section with a remark that the connection between trivial 
source modules and projective Mackey functors allows us to give a proof of the 
well-known fact that trivial source modules are liftable from characteristic p 
to characteristic 0. Namely, if a is a complete discrete valuation ring with 
residue field k of characteristic p, then any indecomposable trivial source kG- 
module T isasummandof k IG where H=vx(T). Thus T=PH, V(1) for 
V as specified by 12.7, and now PH, V (1) is an &G-module which lifts T, 
using the fact that projectives lift. 

13. PROJECTIVE MACKEY FUNCTORS INDEXED BY THE TRIVIAL SUBGROUP 

Throughout this section we will work with Mackey functors defined over a 
field k of characteristic p. Our main result asserts that for each simple kG- 
module V we have P1 v - 

FPpv 
- 

FQpv where Pv denotes the projective 
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cover of V as a kG-module. This immediately gives us a direct way to com- 
pute the structure of these Mackey functors, and we may also deduce some 
general facts, for example that P1,v is an injective. Mackey functor, as well 
as a projective one. This is not the case for arbitrary projectives PH,V as we 
shall see in Section 19. The result may be extended in two directions, the first 
being to the case when R = a is a complete discrete valuation ring with residue 
field k. We may conclude that P1, v - FPpv - FQpv using hats to denote the 
projective covers over the discrete valuation ring, since FPPV and FQPV are 
liftings to a of FPpV and FQpV . The other direction in which the result can 
be immediately extended is to a description of the projectives Pj, v where J 
is a p-perfect subgroup of G. We use the equivalence of categories given in 
10.1 to deduce that Pj,v = (Inf$(J)FPpv) TG(J) where now Pv denotes the 

projective cover of V as a kN(J)-module. 

(13.1) Proposition. Let k be a field, and let V be a kG-module. Conditions 
(i)-(vi) are equivalent. 

(i) V is a projective module (or equivalently an injective module). 
(ii) FPv-FQv. 

(iii) FPv is an injective Mackey functor. 
(iv) FQv is a projective Mackey functor. 
(v) FPv is a projective Mackey functor. 

(vi) FQv is an injective Mackey functor. 
If we suppose further that V is a simple module, then (i)-(vi) are equivalent to: 

(vii) SI, v = FPv . 
(viii) SI, v is a projective Mackey functor. 

(ix) SI, v is an injective Mackey functor. 

Proof. (i) =y (ii) There is an isomorphism v: FQv -+ FPV given at each 
subgroup H by VH = ZheH h : VH h VH . It is well known that VH iS 

an isomorphism for each subgroup H. Also one checks that v is a natural 
transformation of Mackey functors. 

(ii) => (i) There is nothing to prove unless k has characteristic p > 0, so 
we will assume this. The induction maps for FQv are all surjective, which 
means that if we have an isomorphism FPv - FQv then the induction map 
I1H = EHh for FPv is always surjective. In particular this holds when 
H is a Sylow p-subgroup of G so that, as is well-known, V is projective on 
restriction to a Sylow p-subgroup, and hence V is projective as a kG-module. 

(i) =r (iii) Suppose that 0: FPv -- M is a monomorphism of Mackey func- 
tors. We construct a splitting as follows. Evaluating at the identity subgroup 
gives a monomorphism V -+ M(1), which is split by some map i (1): M(1) -+ 

V since V is injective. By adjointness this extends to a map i : M -+ FPv 
such that the composite iO is the identity on V = FPv(1). But any endomor- 
phism of FPv is determined by its effect on V, so ,O = 1 . 

(iii) =* (i) Suppose we are given a module monomorphism V -+ W. This 
extends to a Mackey functor morphism FPv --* FPW which is a monomor- 
phism since for every subgroup H, VH -* WH is injective. Since FPv is 
injective the morphism of Mackey functors splits. At the level of the identity 
subgroup this gives a splitting of the monomorphism V -+ W. Hence V is 
injective, and also projective. 
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(i) X(iv) is similar to (i) X~- (iii). 
(i) X (v) Suppose we have an epimorphism of Mackey functors 0: M -* 

FPv. We construct a splitting as follows. Evaluating at the identity subgroup 
gives an epimorphism M(1) --* V, which is split by some map q(1) : V -+ M(1) 
since V is projective. By adjointness this extends to a map C: FQv M, 
and now by part (ii) we have an isomorphism v: FQv -* FPv which is also 
the identity at 1, so we have iv-1: FPv -* M such that the composite Oiv-1 
is the identity on V = FPv(1). But any endomorphism of FPv is determined 
by its effect on V, so 6qv-1 = 1. 

(v) =Q (i) Suppose that FPv is projective. The natural map FQv -+ FPv 
is injective by 12.4, so that FQv is isomorphic to a subfunctor of FPv. It 
follows that the restriction morphisms RH for FQv are injective for every 
subgroup H of G, since the same is true of FPv . But RH is the morphism on 
fixed quotients induced by EhEH h, and it is well-known that these morphisms 
are all injective if and only if V is projective. 

(i) X (vi) follows from (i) X (v) and duality. 
(i) X (vii) Both conditions are equivalent to the condition that the transfer 

map II : V _+ VH is surjective for all subgroups H. 
(i) =r (viii) follows by combining conditions (v) and (vii). 
(viii) =r (i) The epimorphism FQv -+ S, v must split and so FQv - 

S1, V e M for some Mackey functor M. Since FQv has a unique epimorphic 
image we have M = 0, and so FQv is projective. We now apply (iv) = (i). 

(i) X (ix) may be proved in a similar fashion, or else by using (i) X (viii) 
together with the isomorphism S* v S,1 v* and the fact that these functors 
are projective precisely when S1, v is injective. 5 

(13.2) Corollary. SH, v is a projective simple Mackey functor if and only if H 
is a p-perfect subgroup of G and V is a projective simple kNG(H)-module. 
Proof. Suppose first that SH, v is projective and let J = OP (H) . By 9.6 and the 
equivalence of categories 10. 1, we know that SH, v corresponds to a projective 
simple Mackey functor P for N(J). Since P(1) $& 0 by 12.2, it follows that 
SH,v (J) 5$ 0 and since H is a minimum subgroup of SH, v we deduce that 
H = J is p-perfect. Since SH, v = (Inf?N(H) sN(H)) IG the projective simple 

N(H) 1 N (H),thprjciesml 
Mackey functor P corresponding to SH, v is in fact SN(H). It follows now 
from 13.1 that V must be a projective module. 

For the converse, if H is a p-perfect subgroup and V is a projective simple 
kNG(H)-module then by 13.1 S(VH) is a projective Mackey functor for N(H). 
The equivalence of categories 10.1 tells us that SH, v is a projective Mackey 
functor for G. El 

An extension of result 13.2 will be given at the end of Section 17. 
(13.3) Theorem. Let V be a simple kG-module. The Mackey functor projective 
cover and injective envelope of S1 v coincide, and are isomorphic to both FPpv 
and FQpv , where Pv is the projective cover of V as a kG-module. In particular, 
Pi, v has a simple socle isomorphic to its unique simple quotient Si, v 
Proof. We first show that PI v -FPpv. By adjointness, the epimorphism 
FPpV (1) = Pv -_ V extends to a morphism of Mackey functors FPpV -+ FPV . 
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Since FPp, _ FQp, this Mackey functor has the property that the maps IHK 
are always surjective. Hence its image in FPv also has this property, so must 
be SI, v. We thus obtain an epimorphism FPpv ? SI, v. Since FPpv is 
projective by 13.1, it follows that the projective cover P1, v is a direct summand. 
At the identity subgroup this projective cover is a module which has V as an 
image and is a direct summand of FPpv (1) = Pv, which is indecomposable. 
Hence P1 v (1) = Pv. But since the maps IKHare always surjective in FQpv, 
this functor is generated by its value at the identity subgroup by 2.4. Thus 
P1, v = FPpv as claimed. 

The isomorphism of FPpv and FQpv is given by 13.1. To obtain the injec- 
tive envelope of Sl, v we dualize what we have proved so far, to obtain that 
the injective envelope of SI, v* is FQpv* . Interchanging V and V* gives the 
injective envelope as FQpv _ PI, v. D 

We may also extract from the last dualization argument the following state- 
ment. 

(13.4) Corollary. PI, v- P1, v. 

It follows from 13.3 that PI, v is a fixed point functor. We now empnasize 
that the converse holds. 

(13.5) Corollary. Let H be a p-group and let U = PH,v(l) be the trivial 
source module corresponding to the indecomposable projective PH, v . If H $& 1, 
then PH, v is not a fixed point functor. In particular the canonical epimorphism 
PH, v -* FPu (see 12.4) is not an isomorphism. 
Proof. If PH, v is a fixed point functor, then PH, V - FPU is an isomorphism 
and so U is a projective module by 13.1. But U has vertex H by 12.7, so 
H=1. a 

14. EXTENSIONS OF SIMPLE MACKEY FUNCTORS 

Throughout this section we will work over a field k. We present a major tool 
in determining the Loewy series of the projective Mackey functors, which is the 
calculation of the groups Ext(SH, v, SK, w) . By this notation we really mean 
Extik(G)(SH SK, w). The main result is 14.3 in which we show that in cer- 
tain cases this information may be obtained from the functor (InfFPw) IG(K) 

which has SK, w as its simple socle and was of importance in [20] in the con- 
struction of SK, w . It is a practical proposition to compute with this functor 
since everything about it is determined by the module W, so in principle it 
is known. On the other hand, to compute the Ext groups directly from PK, w 
is generally not possible since one does not have a priori sufficient information 
about this indecomposable projective. In the remaining cases which are not cov- 
ered by (InfFPw) TG(K) we have to consider (InfFPpw) TG(K) instead, where 

Pw denotes the projective cover of W as a kN(K)-module. 
We start with two lemmas, the first of which is the fundamental mechanism 

behind what is going on. 

(14.1) Lemma. Let 0 -- SK,w -W M -- L -O 0 be an extension of Mackey 
functors in which 

(a) Soc(M) = SK, W, and 
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(b) M(H) = 0 whenever H is a proper subgroup of K. 

Then M can be embedded as a subfunctor of (InfN(K) FPpw) IG(K)' where Pw 

is the projective cover of W as a kN(K)-module. If we suppose further that 

(c) M(K)= W, 
then M can be embedded as a subfunctor of (Inf(K) FPw) IN(K). 

Proof. We first assume conditions (a) and (b). Since M has a simple socle it 
suffices to show the existence of a map M -* (Inf (K) FPPW) 1G which is 

N(K) w N(K) 
Wihi 

non-zero on the socle. Consider the bijections of maps 

Hom(M, (Inf (K) FPPW) TGK) -Hom(M 1N()G Inf (K) FPpw) 

HomHmM N(K) , FPPW) 
n FPNHom(M N(K)) (K), PW) 

Hom(M(K), Pw) 
= Hom(M(K), Pw), 

and note that the latter equality is a consequence of (b). To ensure that a 
map M -* (InfK(K) FPPW) 1G is non-zero on Soc(M) it is sufficient that 

N(K) Pw N(K) 

the corresponding map M(K) -- Pw should have non-zero composite with the 
inclusion W -* M(K), since the image of W in M(K) is (Soc(M))(K). (In 
fact this condition is also necessary.) But we can certainly find such a map 
since Pw is the injective envelope of W. This completes the proof of the first 
assertion. 

For the second assertion we assume the extra condition (c). The argument 
is the same as the one we have just given, except that we replace Pw by W. 
At the end we need to find a map M(K) -* W which has non-zero composite 
with W -* M(K), but this is assured by condition (c). El 

(14.2) Lemma. Let H < G and let A be a kN(H)-module whose socle is simple. 
Then L = (InfN!(H) FPA)IS(H) has a simple socle as a Mackey functor. It is the 
subfunctor of L generated by Soc(A) C L(H) = A. 
Proof. By definition of induction (see also [20, 4.3]), we have 

L(H) = @ (Inf (H) FPA)(H n H9) = (Inf (H) FPA)(H) = A. 
N(H) N(H) 

gE[H\G/NG(H)] 

Let N be a non-zero subfunctor of L. It suffices to show that N(H) D Soc(A). 
Since N is non-zero there is a subgroup K for which N(K) :$ 0, and we may 
assume K > H. For the functor FPA the mappings RK are monomorphisms. 
After inflation and induction it is still true for these subgroups that RK is 
a monomorphism (see [20, 4.3]), so we deduce that the image RKN(K) is a 
non-zero submodule of L(H) = A. Therefore N(H) :$ 0 and we deduce the 
inclusion N(H) D Soc(A). El 

(14.3) Theorem. Let SH, v, SK, w be simple Mackey functors over a field k. 
(i) Ext(SH, v, SK, w) = 0 unless either H <G K or K <G H. 
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(ii) If H = K then 

dim Ext(SH, v, SH, W) =multiplicity of SH, V 

in the second socle layer of (InfFPpw) GN(H) 

=multiplicity of SH, W 

in the second Loewy layer of (Inf FQpV) GN(Hy 

The evaluation at H induces a morphism 

ExtPk (G)(SH, V, SH, W) -- 
ExtkT(H) (V 5 W) 

which is injective. In particular 

dim Ext(SH, v, SH, W) < dim ExtkT(H) (V, W). 

(iii) If K<GH then 

dim Ext(SH, v, SK, W) = multiplicity of SH, V 

in the second socle layer of (Inf FPw) GN(K) 

=multiplicity of SH, V* 

in the second Loewy layer of (InfFQw*) GN(Ky 

(iv) If H<GK then 

dim Ext(SH, v, SK, w) =multiplicity of SK, W 

in the second Loewy layer of (InfFQv) GN(H) 

= multiplicity of SK, W- 

in the second socle layer of (Inf FPv*) GN(Hy 

Proof. Suppose we have a non-split extension 0 -O SK, w -* M -* SH, v 0 
and that H ?G K. We will show that K <G H. This Mackey functor M sat- 
isfies conditions (a) and (b) of 14.1 and so M embeds in (InfN(K) FPpW) N(K). 

But this induced Mackey functor is only non-zero on subgroups containing K 
(up to conjugacy) and so K <G H. This proves part (i). 

We will use all the time the fact that dim Ext(SH, v, SK, w) = n if and only 
if n is the largest number r for which there is an extension 

(*) O _ SK, W _M (SH, V) r?_ 

in which Soc(M) = SK, W. 
We turn to the proof of part (ii). The statement about Loewy layers follows 

from the statement about socle layers by duality. Let L = (InfN(H) FPpw) GN(H. 

By 14.1, given an extension (*) then M must appear as a subfunctor of L 
and so SH, v appears at least r times in the second socle layer of L. Con- 
versely, if SH, v appears r times in the second socle layer of L, then because 
L has SH, w as its simple socle by 14.2 it has a subfunctor M appearing 
in such an extension (*). This proves the equality of dimExt(SH, v, SH, w) 
and the multiplicity of SH, v in the second socle layer of L. To show that 
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ExtpYk(G)(SH, v, SH, w) -f ExtkT(H)(V, W) is injective, suppose we have a non- 
split extension 

0 ` SH, W -- M -- SH, V . ? 

Evaluated at H this gives a short exact sequence of kN(H)-modules 

O ,-W M(H) -V -0 

which we show is non-split. For if this sequence were to split, the splitting 
M(H) -- W would extend uniquely to a morphism M -* (Inf(fH) FPw) NHG 

N(H) N(H 

using a sequence of adjunctions as in 14.1 and the fact that M(H) = M(H). 
The image of this morphism must be SH,w because the evaluation of the 
functor (Inf(fj FPw) TG(H) at H is equal to W (by an easy computation) 
and so SH, w is the only composition factor of M which can appear in the 
image. Hence we have a morphism M -) SH, w . It splits the original sequence 
since endomorphisms of SH, w are determined by their effect at the subgroup 
H, so the composite SH, W - M -- SH, w is the identity, since this is so at the 
level of H. We have thus shown that the morphism of Ext groups is injective, 
from which the inequality on dimensions immediately follows. Alternatively 
one can prove the fact that the extension 0 -- SH, W -* M -* SH, v -f 0 splits 
if its evaluation at H does by applying Proposition 3.2 of [20]. 

The second part of each of (iii) and (iv) follows from the first by duality. Also 
(iv) follows from (iii) by duality, for the reason that if we have an extension 
of Mackey functors 0 SK,W -+ M -* SH,V -* 0 with H <G K then the 
sequence 0 -- SH, v. M* - - SK, W -* 0 is an extension to which the 
condition of (iii) applies. Hence it will suffice to prove the first part of (iii), and 
we now do this. On the one hand, if we have an extension (*) then by 14.1 M 
embeds as a subfunctor of (Inff!(K) FPw) \G and therefore SH, v appears at 

N(K)W)N(Kad h 
least r times in the second socle layer of (InfN(K) FPw) TG(K). Conversely, if 

we have r copies of SH v in the second socle layer of (Inf!(K) FPw) TGI then 
N(K) enK 

there is a subfunctor M with an extension 0 __ SK, W __ M _ (SH, V)r ?_ 0 
and this establishes the desired equality. El 

Remark. In general we may have a strict inequality in case (ii) above when 
H = K, as happens, for example, with G the cyclic group of order 2 over 
the field of 2 elements and H = K = 1. Here Ext(Sl, k, SI k) = 0 but 
dim EXtkG(k, k) = 1. 

Our information about Ext groups gives another proof of the semisimplicity 
of /ik(G) over a field k in which IGI is invertible, a result proved in [20]. 

(14.4) Corollary. If I GI is invertible in the basefield k, then Ik (G) is semisim- 
ple. 
Proof. It suffices to show that all Ext groups of simple Mackey functors are 
zero. Let W be a simple kNG(K)-module. From the description of simple 

Mackey functors, we know that S (w) = FPw and so SKG W= (InfFPw)N(K) 
Also W = Pw since kNG(K) is semisimple. Therefore all Mackey functors 
appearing in 14.3 are simple, and in particular their second socle layers are 
zero. El 
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We will now improve on Theorem 14.3, but first we need a lemma. 

(14.5) Lemma. For a Mackey functor M the following are equivalent: 

(i) M is H-projective. 
(ii) Every morphism N - M which is split epi on restriction to H is split 

epi. 
(iii) every morphism M N which is split mono on restriction to H is split 

mono. 

Proof. We prove that (i) implies (ii). Suppose that M is H-projective, and let 
a: N -* M be a morphism such that its restriction NIG , M14G is split epi, 
split by a morphism ,l : M G ,- NIG . Then ,B tG splits the top arrow in the 
following commutative square: 

N I GHTG MIGHTG 

10 10 

N M. 

Since M is supposed to be H-projective, 0 : M ITGG , M is split by a map 
: M -* M1GHTG, and we claim that 6/? TG q splits a. We verify 

H SIT 1=f 1HTH|T 

The argument that (ii) implies (i) is straightforward, since the natural trans- 
formation M IGHTG M is always split epi on restriction to H. 

The equivalence of (i) and (iii) is similar. El 

Recall that by 11.4, a vertex vx(SH, v) of SH, v satisfies H< vx(SH, v) and 
vx(SH,v)/H = vx(V) . 

(14.6) Theorem. If EXt(SH,v, SK, w) :$ 0 then either 

H <G K <G VX(SH, V) 

or 
K <G H <G VX(SK, W) 

In particular there is an element g E G so that either H < 9K or K < 9H. 

Proof. We already know that to have a non-split extension we must have either 
H ?<GK or K<G H. Suppose that H <?GK and that 

0 -O SK,W -) M -- SH,V 0 

is a non-split extension. We show that K <G VX(SH, V). If not, then the 
restriction of the sequence to vx(SH, v) is the sequence 

0 )f 0 )f M 1VX(SH V) > SH, V VX(SH, V)* 0 

so that evidently the epimorphism shown here is split. Therefore by the last 
lemma the map M -* SH, v must be split epi, which is a contradiction. There- 
fore K<GVX(SH,V). 

The argument when K <G H is similar. El 
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(14.7) Corollary. If (H, V) is a weight, and if Ext(SH,v, SK,W) :$ 0 then 
K <G H. 
Proof. If K >G H then by 14.6, K =G H since vx(SH,v) = H. But by 14.3 
we have Ext(SH, v, SK, w) = 0 if K = H because its dimension is bounded by 
dim ExtkT(H) (V, W) which is zero since V is projective. The only remaining 
possibility allowed by 14.3 is K <G H. El 

15. THE COMPUTATION OF SUBFUNCTOR LATTICES 

We illustrate the techniques which we have so far assembled by using them to 
give the complete lattice of subfunctors of certain Mackey functors. In order to 
have non-split extensions we will work always over a field k of characteristic p . 
As our examples, we will mostly take the fixed point functors FPv, which we 
have seen play a fundamental role in the determination of Mackey functor 
structure. We now start with the most basic of these, namely FPk. 

(15.1) Lemma. Let k be a field of characteristic p, and let H be a p-subgroup 
of G. Then SH,k(K) = 0 unless some conjugate of H is a Sylow p-subgroup 
of K, in which case SH, k(K) = k. 
Proof. First notice that S1 ,k(K) = (ZXEK X) * k = IKI Ik, and this in non-zero 
precisely if p , IKI . Now 

SH k(K) - (InfH) Sj(kH)) GN(H)(K) 

= @ (InffH) S (Hf ))(N(H) n xK) 
XE[N(H)\G/K] 

and the only non-zero terms occur when XK D H, by the definition of inflation. 
Furthermore, p must not divide I(NG(H)fnXK): HI = INXK(H): HI . By a well- 
known property of p-groups this happens precisely if H is a Sylow p-subgroup 
of XK. Equivalently, HX must be a Sylow p-subgroup of K. We complete 
the argument by showing that there is at most one double coset of elements x 
for which this happens. For suppose Hx and Hy are both Sylow p-subgroups 
of K. Then Hxk = Hy for some k E K. Now xky-' = n E NG(H), so 
y = n-lxk E NG(H)xK. El 

We work with the map y constructed in Section 6, and we wish to refer 
to its matrix taken with respect to the two bases {SH, v } and {CH, v } of its 
domain and codomain. We denote this matrix by '. The columns of ' are 
given by the evaluations SH, v(K) E Go(kNG(K)) and may be computed using 
the explicit formula 8.8 for the simple Mackey functors. Several examples are 
given in Section 21. 

(1 5.2) Corollary. Let k be a field of characteristic p . The submatrix of ' with 
rows and columns corresponding to basis elements SH, k and CH, k where H is 
a p-group, is the identity matrix. 

(15.3) Corollary. Let k be a field of characteristic p. 
(i) The composition factors of the Mackey functor FPk are the simple func- 

tors SH, k, one for each conjugacy class of p-subgroups H. These are 
also the composition factors of FQk. 
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(ii) The Mackey subfunctors L of FPk are in bijection with the sets 2 of 
p-subgroups of G closed under conjugation and taking subgroups. The 
bijection is given as follows: if L C FPk we associate 

r = {H < G I H is a p-subgroup, L(H) $ O}, 

and if 2 is a set of p-subgroups closed under conjugation and taking 
subgroups we associate the subfunctor 

L= (FPk(H) I HE). 

Proof. (i) We have 

V(FPk) = E H, k = E (SH, k), 
H H a p-group 

up to conjugacy up to conjugacy 

using 15.1. The result for FPk follows from the fact that t is an isomorphism. 
Exactly the same argument works for FQk, but the composition factors may 
also be deduced from those of FPk by duality. 

(ii) Let us denote the mappings described in the statement by 

a: L | - {H < G I H is a p-subgroup, L(H) :$ 0} 

fl: F-* (FPk(H) HEr). 

It is evident that a(L) is closed under conjugation, and if K < H E a(L) then 
since RKH is the identity on FPk(H) we have L(K) $ 0, so K E a(L). We 
need not check anything like this in the definition of /B, since flQ() is by 
definition a subfunctor of FPk . 

To check that a and ,B are mutually inverse, observe that ,Ba(N) is a 
subfunctor of N, and it has at least as many composition factors as N since 
by our previous computations for FPk there is one for each p-subgroup H 
with fla(N)(H) $ 0. Hence fla(N) = N. 

On the other hand, given a family X of p-subgroups of G, if H is a p- 
subgroup then flA()(H) :$ 0 if and only if H E X. This follows from the 
formula 2.4, namely 

fl(r)(H) = Z IKHFPk(K), 
KE2' 
K<H 

and the fact that if K and H are p-groups then IKH = 0 unless K - H. Thus 
afl(X) = X. 5 

We may express 15.3(ii) by saying that FPk has a diagram (in the sense of 
Alperin [1]) whose vertices are the conjugacy classes of p-subgroups of G, and 
where one conjugacy class with representative K is placed below another with 
representative H if K is conjugate to a subgroup of H. 

A second example where we work out the full lattice of subfunctors is given 
at the beginning of Section 20, where we treat the indecomposable projective 
Mackey functors in the situation where G has a normal Sylow p-subgroup of 
order p. 

As we have already seen, we may find the composition factors of any Mackey 
functor by computing the matrix TI, but as far as deciding how the composition 
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factors should appear in the lattice of subfunctors we need to employ a further 
technique. To assist in this we bring in the bar construction 

M(H) = M(H)/ E IKHM(K), 
K<H 

which was of use in Section 6 in obtaining a sufficient condition for a simple 
Mackey functor to appear as a composition factor of a Mackey functor M, and 
in obtaining complete information in case M is completely reducible. We now 
refine this to obtain a necessary and sufficient condition that the simple Mackey 
functor should appear in the top of an arbitrary Mackey functor M, that is 
that it should be a homomorphic image of M. Since any non-zero map to a 
simple object is necessarily an epimorphism we are thus interested in the simple 
Mackey functors for which there exists a non-zero morphism M -f SH, w. 

Recall that if H < K and M is a Mackey functor for K, we have the Brauer 
morphism which is the composite 

RK 

AH: M(K)-'HM(H) -* M(H). 

(15.4) Proposition. There is a non-zero homomorphism M -- SH, u if and 
only if 

(i) there is an epimorphism of NG(H)-modules a: M(H) --+ U, and 

(ii) for all subgroups K with H < K < NG(H) the composite 

M(K) AlHM(H) a U 

has image contained in (ZgE[K/H] g) * U 

Proof. There is a non-zero map M - + SH, u if and only if there is a non- 
zero map of Mackey functors for G, M -- (InfNG(H) FPu) TG whose 

NG(H) NG() 

image lies in the socle of (Inf!G (H) FPu) ING(H) By adjointness of induc- 

tion and the description of the socle [20, 8.1], this happens if and only if 
there is a non-zero map of Mackey functors for NG(H), M -- InfNGG((H) FPu, 

NVG(H) 

whose image lies in the socle of Inf:!G(H) FPu. Again by adjointness this is 
NG(H) 

equivalent to requiring a non-zero map M+ FPU whose image is con- 
tained in Soc(FPu). At the identity subgroup H/H of NG(H), such a map 
gives rise to an epimorphism a: M+(H/H) = M(H) -* U, which is condi- 
tion (i). At an arbitrary subgroup K/H < NG(H) the map is the composite 

M+(K/H) R M+(H/H) a 
) U, by [20, 6.1]. Our requirement is that its image 

is contained in (Soc(FPu))(K/H), which equals (ZgE[K/H] g) *U by [20, 7.1]. 
This is equivalent to our condition (ii). 51 

In the next corollaries we apply 15.4 in the situation where M = FPv and V 
is a kG-module. The extra condition we require in 15.5, that VH be completely 
reducible as a kNG(H)-module, seems often to be satisfied in practice, and it 
allows us to restrict the possibilities for the top Loewy layer of FPv. It also 
indicates that simple Mackey functors parametrized by weights tend to occur 
there. 
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(15.5) Corollary. If there exists a non-zero homomorphism FPv -+ SH, u and 
if VH is a direct sum of simple kNG(H)-modules then U must be a projective 
kNG(H)-module. 

Proof. Since FPv(H) and hence FPv(H) are completely reducible, the epi- 
morphism a: FPv(H) -* U must arise from an isomorphism between an 
irreducible summand of VH and U. This therefore induces for each K an 
isomorphism between a summand of VK and UK, so that the composite map- 
ping in 1 5.4(ii) must be an epimorphism onto UK. The image of this map is 
contained in (Ege[K/H] g) U by 15.4, so we deduce that 

E g).U=UK 

gE[K/H] 

for all subgroups K with H < K < NG(H). This means that the kNG(H)- 
module U has the property that the trace from the identity is always surjective 
onto fixed points under arbitrary subgroups. Such a module is necessarily pro- 
jective. El 

(15.6) Corollary. If dim V = 1 then FPv has SQ, VEN(Q) as its unique simple 
image, where Q is a Sylow p-subgroup of G. 
Proof. Certainly there exists some simple Mackey functor SH, u which is an 
image of FPv. The last corollary applies since VH is simple, so we require a 
pair (H, U) where H is a p-subgroup, dim U = 1 and U is projective as a 
module for NG(H). The only possibility is that H = Q is a Sylow p-subgroup 
since otherwise p| ING(H)I and U could not be projective. It follows that 
U-VQ=V1N(Q). c 

The necessary and sufficient condition of 15.4 is not always easy to verify in 
practice, and so we now develop this into a further condition in 15.7(ii) which 
guarantees that certain simple Mackey functors will appear as quotients of M. 

(15.7) Proposition. Let M be a Mackey functor, and let H be a maximal sub- 
group such that M(H) :$ 0. 

(i) If H < K < G, the image of the Brauer morphism BH: M(K) -- M(H) 
is equal to (ZgE[NK(H)/H] g) . M(H). 

(ii) If U is any simple homomorphic image of M(H), there exists a non- 
zero homomorphism M -* SH, U. 

Proof. (i) If H = K the result is self-evident, so suppose that H < K. In this 
case since M(K) = 0 we have 

M(K) = E IjKM(J) 
J<K 

E IJKM(J) + IJKM(J). 
H<J<K H?CJ<K 

If for a subgroup J, H < J < K, then similarly M(J) = ZL<J ILJM(L), and 
on substituting such an expression into the first summand above we remove all 
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instances of that subgroup J. Eliminating such subgroups J by this means we 
obtain 

M(K) = IHKM(H) + E IjKM(J). 
H?gJ<K 

Now observe that 8K is zero on the second summand here, since it gives the 
image in M(H) of EH?J<K RIjKM(J), in which after applying the Mackey 
decomposition formula every term is the image of EL<H ILH . We deduce that 

IiHM(K) = fIHIHM(H) 

= (RK IHKM(H) + Ej ILHM(L) ) I/ E LHM(L) 
L<H L<H 

= ( Z IffgHnHCgR HngHM(H) + Z1 ILHM(L) )/ E ILHM(L) 
gE[H\K/H] L<H L<H 

= ( Z I1ftHCgRHM(H) + ZE ILHM(L) / E ILHM(L) 
gE[NK(H)/H] L<H L<H 

= ( Z g) .M(H). 
gE[NK(H)/H] 

(ii) We need only verify condition (ii) of 15.4. This follows from part (i) 
in view of the fact that the epimorphism a which appears in 15.4 is a module 
morphism and so carries (Zge[K/H] g) * M(H) into (Zge[K/H] g) ' U. 

(15.8) Example. Let G = GL(3, 2) and let R be the field with 2 elements. G 
has four simple modules over R, namely the trivial representation, the natural 
3-dimensional module, its dual, and the Steinberg module of dimension 8. We 
denote these modules by 1, 3, 3* and 8. The subfunctor structure of FP3 has 
a diagram (in the sense of Alperin [I]) 

SV2, 2 

SC2,1 

SC4, I SV', 1 

s1,3 

Proof. Our notation for the 2-subgroups of G is that we may take 

( 0 1 1 1 \ 

C2=( 0 1 01), C4=( 1 1) 
0 1/ 0 0 1/ 

and VJ, V2 to be representatives of the two conjugacy classes of subgroups 
C2 x C2, which we may take to be 

1 0 *) I( * *I 
VI 0 1 * ............................................................... ...10r 
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It is straightforward to compute the structure of FP3(H) and FP3(H): 

2-subgroup H dim FP3 (H) dim FP3 (H) 
1 3 3 

C2 2 1 
C4 1 0 
VI 1 0 
V2 2 2 

_ _ _ _ _ _ _ _ _I 0 

One computes also that the action of N(V2)/V2 - S3 on FP3(V2) is as the 
projective simple 2-dimensional module for S3 . We suppose that we have com- 
puted the matrix T, which is presented in Section 21. Using the method of Sec- 
tion 6 we conclude that FP3 has composition factors S, 3, SC2, 1, SC4,1 I SVI, 1I 

SV2, 2 . Note here that all the composition factors must necessarily be of the form 
SH, V with H a p-group, by Section 9. 

We now look for the semisimple quotient of FP3. The composition fac- 
tor Sv2 , 2 must certainly appear in this quotient since the condition of 15.7 is 
satisfied, but this is not sufficient to eliminate the possibility that some of the 
other composition factors might be in this quotient as well. We eliminate SC4, 1 

and Sv1, I by 15.5. Finally we show that Sc2, 1 is not a quotient of FP3, and 
we suppose to the contrary that there is an epimorphism FP3 - SC2, I . In 
that case by 15.4 the epimorphism FP3(C2) -* FP3(C2) = k has the prop- 
erty that the Brauer morphism FP3(V2) -* FP3(C2) has image contained in 
(ZgE[v2/c2] g) k = 0. But in fact FP3(V2) = FP3(C2) and the Brauer mor- 
phism is surjective, so the epimorphism cannot have this property. This shows 
that FP3 has a unique maximal subfunctor, and the largest semisimple quotient 
of FP3 is SV2,2. 

Let Ml denote the unique maximal subfunctor of FP3. We will show 
that Ml in turn has a unique maximal subfunctor M2A, and that the quotient 
is SC2 I . To demonstrate this we show that Sc4, 1 and Sv,, l are not images 
of Ml. Suppose to the contrary that SC4, 1 is an image of Ml . Then SC4,1 IG 

would be an image of Ml tG4, which equals FP3 1G4 since the extra compo- 
sition factor Sv2,2 restricts to zero on C4. But FP3 1G is just FP3 when 
we regard the 3-dimensional module as a module for C4, and this cannot have 
SC4, 1 1G as an image since FP3(C4) = 0 by 15.4. The argument which shows 
that Sv,, I is not an image of Ml is just the same, and we conclude that SC2, 1 
is the unique simple image. 

To complete the diagram which represents the subfunctor lattice of FP3 we 
use the fact that SI, 3 is the socle of FP3 and that there is no non-split extension 
of Sc4, I and Sv,, I . This is a consequence of 14.3(i). El 

16. COHOMOLOGICAL MACKEY FUNCTORS 

A Mackey functor for G is called cohomological if whenever K < H < G, 
one has IKH RK = H : KI, that is, multiplication by the index of K in H. 
These Mackey functors take their name because the restriction and corestriction 
of group cohomology satisfy this relationship. Our aim in this section is to show 
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that all cohomological Mackey functors are closely related to group cohomology 
in that they are precisely the Mackey functors which are quotients of fixed 
point functors. In the process we determine the simple cohomological Mackey 
functors and describe their projective covers when the ground ring is a field. 

We start this section with some elementary remarks. The cohomological 
Mackey functors form a full subcategory of MackR(G), which we denote 
ComackR(G). They may be regarded as the representations of a quotient of 
the Mackey algebra obtained by factoring out from ,UR(G) the ideal generated 
by the elements IKHRH _- H: KIIHH. An interesting description of the coho- 
mological Mackey functors which is due to Yoshida [24] is that they may be 
identified with the additive functors 

F :G-* R-mod 

where ?G is the full subcategory of RG-mod whose objects are the permutation 
modules over RG. Given such a functor one obtains a Mackey functor by 
composing with the functor 

G-set -* G 

which takes the G-set X to the permutation module RX. This gives the 
covariant part of a Mackey functor, and one obtains the contravariant part by 
defining RKH to be F applied to the relative trace map R[G/H] -* R[G/K] 
where K < H. 

The following two lemmas are elementary. 

(16.1) Lemma. Any subfunctor and any quotient functor of a cohomological 
Mackey functor is cohomological. 

One consequence of this result is that the simple objects in ComackR(G) are 
also simple in MackR(G), so they are a subset of the SH, v. 

(16.2) Lemma. If V is an RG-module, both FPv and FQv are cohomological 
Mackey functors. 

Another useful fact is the following characterisation of cohomological Mackey 
functors, which has been pointed out to us by Lluis Puig [private communica- 
tion]. Note that Yoshida proves a related (but different) result [24, 4.4]. 

(16.3) Proposition. Let FPR be the fixed point functor corresponding to the triv- 
ial RG-module R, viewed as a Green functor. A Mackey functor M is coho- 
mological if and only if it is a module (in the sense of Mackey functors) over the 
Green functor FPR. 

Proof. Since FPR is cohomological, it is clear that so is any module M over 
FPR . Indeed if x E M(H), 

IKHRK(X) = IKH RKH(1H X) = IKH(R H( 1H) RKH(X)) 
= IHRKH(1H) *X = IH: K * H lHX = IH: KI * x. 

Conversely assume that M is cohomological. Since FPR(H) = R, there is a 
unique way to define an FPR(H)-module structure over M(H). For A E R, 
x E M(H) and y E M(K), it is plain that we have 

RH(A *x) = RgH(A) * RH(X) 

9(A *x) = 9A * gx , 
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because R!(A) = A in the functor FPR . Finally our assumption implies that 
the last property in the definition of a module over FPR is satisfied: 

IKH(A * RH(X)) = IKHRH(A . x) = IH: KIA * x = IKH(A) * x. 

This completes the proof. El 

We have seen in Section 8 that in the case of arbitrary Mackey functors, 
the projective objects are obtained as direct summands of induced Burnside 
functors. We now show that the same result holds for cohomological Mackey 
functors, replacing the Burnside functor by the fixed point functor FPR. As 
a first step we establish the result analogous to 8.2, and give a direct argument 
since this is quite short. We should note also that this result is immediate from 
the work of Yoshida [24], using Yoneda's lemma, since the functors FPRtG are 
the representable functors on Yoshida's category 2G. We leave to the reader 
the task of expressing the result as an adjointness property, as in 8.2. 

(16.4) Lemma. Let M be a cohomological Mackey functor. 

(i) Let m e M(G). Then there exists a unique morphism f: FPR -* M 
whose evaluation at G maps IR to m. 

(ii) Let H < G and m e M(H). Then there exists a unique morphism 
f: FPRtG -* M whose evaluation at H maps 1 0 1R to m. (Here 

1 IR E (RG0&RHR)H). 

Proof. (i) There is no choice for the definition of f. Since RG( 1R) = R 

in FPR, we have to define the evaluation of f at H by 

f(H)(1R) = RG(m) 

and extend R-linearly. Now we have to check that f is a morphism of Mackey 
functors. Clearly f commutes with restriction and conjugation, so we have to 
consider only the induction maps IKH. But this follows immediately from the 
fact that M is cohomological: 

IK (f(K)(1R)) = IK RH(f(H)(1R)) = H: K|I f(H)(1R) 

= f(H)(IH: KI * IR) = f(H)(IKH(1R)). 

(ii) By part (i), there is a unique morphism f': FPR -* M tG whose eval- 
uation at H maps IR to m. By adjunction, this corresponds to a morphism 
(FPR) tG __ M, hence to a morphism f: FPRtG -* M using the isomorphism 
given in 5.2. If one traces the effect of this isomorphism and of the adjunction, 
one can check easily that the evaluation of f at H maps 1 0 1R to m . More- 
over the uniqueness of f' implies the uniqueness of f with this property. El 

(16.5) Theorem. 
(i) A Mackey functor M for G over R is cohomological if and only if it is 

isomorphic to a quotient of a fixed point functor FPv, where V is an 
RG-module which can be chosen to be a permutation module. 

(ii) A cohomological Mackey functor is projective in ComackR(G) if and 
only if it is isomorphic to a fixed point functor FPv where V is a 
permutation-projective module for G (i.e., a direct summand of a per- 
mutation module). 
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Proof. (i) By 16.1 and 16.2, we already know that quotients of fixed point 
functors are cohomological. Conversely suppose that M is cohomological. We 
choose a set (mi),iE of Mackey functor generators of M, such that mi E M(Hi) 
for some subgroup Hi . By 16.4, there is a morphism fi: FPv, -* M having 
mi in its image, where Vi = RtG . Therefore if we set V = Di Vi, then 

e f:eFPv = FPv-* M 
i i 

is an epimorphism. This proves the result since V is a permutation module. 
(ii) We first prove that FPRtG is projective. Let r: M -* 

FPRtG 
be 

an epimorphism, where M is cohomological. Let m E M(H) such that 
7r(H)(m) = 1 0 IR. By 16.4, there is a unique f: FPRtG -* M such that 
f(H)(1 0IlR)= m. Then 7rf: FPRtG -* 

FPRtG is the unique morphism whose 
evaluation at H maps 1 0 1 R to itself. Therefore 7rf = id, completing the 
proof of the projectivity of FPRtG. 

Since any permutation-projective module V is a direct summand of a direct 
sum of modules of the form R tG7, the same holds with the corresponding fixed 
point functors and we obtain that FPv is projective. 

Conversely let P be a projective cohomological Mackey functor. By (i) there 
exists an epimorphism FPv -- P where V is a permutation module. This 
splits since P is projective. By 2.3 this immediately implies that P - FPw for 
some permutation-projective module W. El 

(16.6) Corollary. If H is a subgroup of G and if M is a cohomological Mackey 
functor for H, then M tG is cohomological. 
Proof. Write M as a quotient of FPv and induce. Since induction is exact, 
M TG is a quotient of FPv TG FPVTG . E 

The spirit of the following result is completely opposite to that of group 
cohomology. 

(16.7) Corollary. Let V be an RG-module. Then there exists a resolution 

..'Vn . .'Vo 
'- V -- 

O 

where each Vi is a permutation module, such that the sequence offixed points 
... f ,+ .. , V o H__ V 

H 
__o 

is exact for every subgroup H of G. 
Proof. This is just a reformulation of the existence of a projective resolution in 
ComackR(G) for the functor FPv El 

Assume now that our base ring is a field R = k. We wish to describe the 
simple cohomological Mackey functors and their projective covers. First we 
consider the case of characteristic zero. 

(16.8) Proposition. Let SH, v be a simple Mackey functor for G over a field k 
whose characteristic is zero or prime to IGI. Then SH, v is cohomological if and 
only if H = 1. 
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Proof. Assume K < H. Then IH: KI is non-zero but the multiplication 
by IKHRH is zero since it factors through SH, v (K) = 0 . Thus SH, v cannot be 
cohomological. Conversely, SI, v is cohomological because it is FPv . El 

(16.9) Corollary. Assume k has characteristic zero or prime to IGI and let M 
be a Mackey functor for G over k. Then M is cohomological if and only if 
M = FPv for some kG-module V. 
Proof. By semi-simplicity of Mackey functors and the proposition, a cohomo- 
logical Mackey functor M is a direct sum of functors of the form SI, v = FPv 
Alternatively, use Theorem 16.5. El 

Now we move to characteristic p. So from now on k denotes a field whose 
characteristic is a prime divisor p of I GI . In the special case where G is a p- 
group, an analysis of the projective covers of the simple functors in Comackk (G) 
can be found in Section 5 of Tambara's paper [18]. Our next result answers 
this question in general. 

(16.10) Proposition. Let k be a field of characteristic p and let SH, v be a 
simple Mackey functor for G over k. Then 

(i) SH, v is cohomological if and only if H is a p-group. 
(ii) If H is a p-group, the projective cover of SH, v in Comackk (G) is 

FPu, where U is the trivial source module for G with vertex H and 
Green correspondent Pv. (Here Pv denotes the projective cover of V 
as a kNG(H)-module.) 

Proof. If H is not a p-group, then there exists a proper subgroup K of index 
prime to p. Then IH: KI is non-zero but the multiplication by IKHRH is 
zero since it factors through SH, v (K) = 0 . Thus SH, v is not cohomological. 
Assume now that H is a p-group and let PH, v be the projective cover of SH, V 
as a Mackey functor. Then we know by 12.4 and 12.7 that there is a surjective 
morphism PH, v -* FPu where U = PH, V (1) is the trivial source module 
of the statement. Therefore there is a surjective morphism FPu -* SH, V. 
This proves that SH, v is cohomological and that the projective cohomological 
Mackey functor FPU is its projective cover. El 

(16.1 1) Corollary. Comackk(G) is a subcategory of Mackk(G, 1). 
Proof. The composition factors of a cohomological Mackey functor have the 
form SH, v with H a p-group, and these belong to Mackk (G, 1). E 

Dualizing 16.10 we- obtain the injective objects in Comackk (G). Note that 
the dual of a trivial source module has again trivial source and that the Green 
correspondence commutes with taking duals. Thus using 4.1 we get: 

(16.12) Corollary. If H is a p-group, the injective hull in Comackk (G) of SH, v 
is the fixed quotient functor FQu , where U is the trivial source module for G 
with vertex H and Green correspondent Pv. 

We will need to know in Section 17 that some Mackey functors which play 
an important r6le in this paper are cohomological. We first need a lemma. 



1932 JACQUES THEVENAZ AND PETER WEBB 

(16.13) Lemma. Let P be a normal p-subgroup of a finite group L. If M is 
a cohomological Mackey functor for L/P, then InffLp M is a cohomological 
Mackey functor for L. 
Proof. Write Inf for InfLtp and let X < Y < L. We have to show that Ix Ry 
is multiplication by IY Xl . 

If P 4 Y, then (Inf M)(X) = 0 = (Inf M)(Y) and there is nothing to prove. 
If P < X, then (Inf M) (X) = M(X/P) and (Inf M) (Y) = M(Y/P). The 

result follows because M is cohomological. 
If P 4 X but P < Y, then (Inf M)(X) = 0 and (Inf M)(Y) = M(Y/P). 

The result follows because I Y: Xl is divisible by IXP = X P: X n PI which 
is a power of p. El 

(16.14) Proposition. Let k be a field of characteristic p. If H is a p-group, 

(InfNG(() FPv) tG (H) is a cohomological Mackey functor. 

Proof. By 16.6 and 16.13, the property of being cohomological is preserved by 
both inflation (with a normal p-subgroup) and induction. El 

We conclude by pointing out the relationship between the two categories 
MackR(G) and ComackR(G) in terms of the Mackey algebra, and what one 
might call the cohomological Mackey algebra. This latter algebra would be de- 
fined as the path algebra modulo an ideal of relations of the same quiver with 
relations which defined ,uR(G), together with the additional relations IKHRK = 

IH: KIIHH for all subgroups K < H < G. It is immediate that cohomologi- 
cal Mackey functors are identified as the modules for this quotient algebra of 
/AR(G). However, we should notice by the work of Yoshida [24] (used by Tam- 
bara [1 8]) that the algebra with these generators and relations is none other than 
the opposite of a Hecke algebra, ' = EndRG(DH<G R 1H)OP, and so we have 
a surjection a: AR(G) -- ', where ' is isomorphic to the cohomological 
Mackey algebra. Specifically, a(RH): R TG-K R TG is the natural projection, 

ca(IKH) R TG- RTG is X ?RH 1 he[H/K]xh0&RK 1 and a(cg): RTG ' RT4g 
is x 0 1 ~-4 xg 0 1, the effect of these maps on other components in the direct 
sum being zero. 

Another way to view this homomorphism is that ,uR(G) may be identified as 
the opposite of the endomorphism ring of its regular representation, which is 

H<G BH T G. Any such endomorphism yields an endomorphism of the evalua- 
tion at 1 of this regular representation, namely DH<G B H ( (1) - DH<G R tH 
and this defines the effect of a. 

Cohomological Mackey functors are viewed as Mackey functors by restriction 
along a; equally, given a Mackey functor M we may form ' @ (G) M, which 
is the largest quotient of M which is cohomological. Taking M = PH, V to be 
a projective, ' ?(gG) PH, V is again projective (in ComackR(G) ), and since the 
simples in ComackR (G) are a subset of the simples in MackR(G), F'?p(G) PH, V 
still has a unique simple quotient and so is indecomposable (or zero). In fact 
this quotient is ' ?p(G) SH, V, which equals SH, v if H is a p-group, and is 
O otherwise. Thus ' ?p(G) PH, V = FPu is the projective cover of SH, V in 
ComackR (G) when H is a p-group (here U = PH, V (1) ) and is zero otherwise. 
We conclude that the largest quotient of PH,V which is cohomological is FPu 
if H is a p-group, and is zero otherwise. 
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17. BLOCKS OF MACKEY FUNCTORS 

In this section, we describe how Mackey functors for G over a field k of 
characteristic p are distributed in blocks. The result appears also in a different 
form (and without proof) in Yoshida's paper [25, 3.4]. Recall that it suffices to 
describe the block distribution of simples and that this is obtained by consid- 
ering the transitive closure of the relation linking two simples when there is a 
non-split extension between them (one way or the other). 

We already know that the primitive idempotents of the Burnside algebra 
B(G) over k split Mackey functors and therefore it suffices to consider the 
block decomposition of each category Mackk(G, J) where J is a p-perfect 
subgroup of G. Recall that a simple functor SK, w belongs to Mackk (G, J) 
if and only if OP (K) =G J. Now by 10.1 we have an equivalence of categories 
Mackk(NG(J), 1) - Mackk(G, J) so that it suffices to treat the case J = 1. 
Thus we have to consider Mackk (G, 1) and its simple Mackey functors Sp, w 
indexed by p-subgroups P of G. 

We are going to prove that the blocks of Mackk (G, 1) correspond in a natural 
fashion to the ordinary blocks of kG. Let us first recall a few facts from block 
theory (see for instance [4] or [6, ?58]). By a block of G, we mean a primitive 
idempotent of the centre Z(kG) of kG. A kG-module V is said to belong to 
the block b if b. V = V. For every p-subgroup P of G, the Brauer morphism 
is a ring homomorphism 

Brp : Z(kG) -* Z(kCG(P))NG(P), 

where Z(kCG(P))NG(P) denotes the subring of Z(kCG(P)) consisting of NG(P)- 
fixed points. If b is a block of G, then Brp(b) breaks up as an orthogonal sum 
of primitive idempotents in Z(kCG(P))NG(P) . Each block e of NG(P) actually 
lies in Z(kCG(P))NG(P) , where it is the sum of conjugate primitive idempotents, 
and so there is a unique block b of G such that Brp(b) * e = e. This unique 
block will be written b = eG. 

Let P be a p-subgroup of G and NG(P) = NG(P)/P. Any simple kNG(P)- 
module V can be viewed as a kNG(P)-module, and as such, it belongs to a block 
e of NG(P) . Thus to every simple Mackey functor Sp, v , one can associate a 
block e of NG(P). 

(17.1) Theorem. Let Sp, v and SQ, w be two simple Mackey functors, where P 
and Q are p-subgroups of G. Let e be the block of NG(P) which V belongs to 
and f the block of NG(Q) which W belongs to. Then SP, v and SQ, w belong 
to the same block of Mackey functors if and only if the corresponding blocks eG 
and fG of G are equal. Thus the blocks of Mackk(G, 1) are in bijection with 
the blocks of kG, via the map sending the block containing Sp, v to the block eG 
of kG. 

Proof. Suppose that Sp,V and SQ,w belong to the same block of Mackey 
functors. As mentioned above, by transitivity of the relation linking simples in 
a block, one can assume that there is a non-split extension 

(*) O-+Sp,V-M - SQ,W -*. 
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If P =G Q, then one can assume that P = Q and by 14.3(ii) the sequence of 
kNG(P)-modules 

0 - V - M(P) - W - 0 

is not split. Therefore V and W belong to the same block of NG(P), that is 
e = f . Hence eG = fG. 

Now we claim that it suffices to treat the case P <G Q. Indeed the case 
Q <G P reduces to the other one by duality, because in the sequence of dual 
Mackey functors 

0 -* SQ,W* M* A Sp,V* 0 ?, 

the left-hand side is now indexed by the smaller of the two subgroups. Moreover 
V* belongs to the dual block e and the correponding block of G is eG = eG, 
the dual of eG. This last fact can be easily seen as follows: taking duals of 
blocks consists in applying the canonical involution - of the group algebra 
(which inverts group elements) and moreover the Brauer morphism commutes 
with this involution. 

Assume now that P <G Q. Without loss of generality, we can take P < 
Q. By Theorem 14.3(iii) we know that M is isomorphic to a subfunctor of 
(Inf!G( P)FPv) tGI(p) and therefore by Proposition 16.14, M is a cohomologi- 
cal Mackey functor. Let FPU be the projective cover of SQ, w as a cohomolog- 
ical Mackey functor; thus by Proposition 16.10, U is the trivial source module 
for G with vertex Q and Green correspondent Pw, the projective cover of W 
as kNG(Q)-module. Since the extension (*) is a non-split extension of coho- 
mological Mackey functors, M is isomorphic to a quotient of FPU . Notice 
incidentally that we have proved that the blocks of Mackk(G, 1) coincide with 
the blocks of Comackk(G) . 

For any kG-module X consider the quotient of the Q-fixed points 

XQ = XQ/ E trQL(X) 
L<Q 

and the canonical map BrQ : XQ- XQ. If X happens to be a G-algebra, 
then BrQ is an algebra homomorphism. If X is the G-algebra kG, then the 
Brauer morphism defined above is the restriction to Z(kG) of the morphism 
BrQ: kGQ -kGQ = kCG(Q). 

Now by [5], UQ = Pw, the projective cover of W as kNG(Q)-module. 
Therefore W is a quotient of UQ. Similarly we want to show that V is a 
quotient of UP. Since P < Q and since SQ, w(P) = 0, we have M(P) = 
Sp, v (P) = V. For similar reasons, M(L) = 0 for every proper subgroup L of 
P. Since M is a quotient of FPU, there is a commutative diagram 

UP - M(P)= V 

UL - M(L) =0 

and this proves that V is a quotient of UP. 
Let b be the block of G to which U belongs. Then there is a morphism of 

G-algebras kG* b Endk(U) mapping b to 1 and this induces a morphism 

(kG * b)Q = (kG)Q * BrQ(b) ) Endk (U)Q - Endk (UQ) . 
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Note the isomorphism on the right is proved in [5, (3.3)]. It follows that BrQ(b) 
acts as the identity on UQ, hence also on its quotient W. Since W belongs to 
the block f, this means that f appears in a decomposition of BrQ(b), that is, 
BrQ(b) * f = f . In other words fG = b. Similarly, Brp(b) acts as the identity 
on UP, hence also on V, and it follows that eG = b . Thus we have established 
that eG = fG, completing the first part of the proof. 

Assume now that eG = fG. Consider again the surjection FPU -- SQ, w 
that is the projective cover of SQ, w as a cohomological Mackey functor. The 
argument of the first part of the proof shows that the trivial source module U 
belongs to the block fG. Similarly let FPT -* Sp, v be the projective cover of 
Sp, v as a cohomological Mackey functor. Then T is an indecomposable trivial 
source module for G which belongs to the block eG. Since SQ, w belongs 
to the same block of Mackey functors as FPu , and since Sp, v belongs to 
the same block as FPT , it suffices to prove that FPU and FPT lie in the 
same block. But our assumption tells us that U and T lie in the same block 
eG = fG of G. Therefore we only have to prove that this relation is preserved 
by passage to fixed point functors. But this fact is easy, because if X and 
Y are indecomposable kG-modules having a common composition factor Z, 
then FPx and FPy have a common composition factor, namely SI, z . E 

A practical way of finding in which block lies a Mackey functor is the follow- 
ing. 

(17.2) Corollary. Let M be a Mackey functor such that M(1) :$ 0. If M lies 
in a single block B of Mackk (G, 1) (e.g., if M is indecomposable), then M( 1) 
lies in a single block b of kG, and the block B corresponds to b. 
Proof. Let V be any composition factor of M(1). By 6.3, S, v is a compo- 
sition factor of M, hence lies in B. By 17.1, B corresponds to the block b 
of kG containing V. Since this holds for every composition factor V of 
M(1), the whole module M(1) lies in b. E 

We can now improve the result 13.2 on projective simple Mackey functors. 

(17.3) Corollary. The following conditions on a simple Mackey functor SH, v 
are equivalent. 

(i) SH, v is a projective simple Mackey functor. 
(ii) SH, v is the only simple Mackey functor in its block. 

(iii) H is a p-perfect subgroup of G and V is a projective simple kNG(H)- 
module. 

Proof. (i) =* (ii) is clear. 
(ii) =* (iii) If J = OP (H), the equivalence of categories 10.1 allows us to 

assume that J = 1, so that H is a p-group. By Theorem 17.1 SH, v lies in 
the same block as some Sl, w and therefore H = 1 . Let b be the block of G 
to which V belongs. If P is a p-subgroup such that Brp(b) $ 0, then there 
exists a simple kNG(P)-module W such that Brp(b) * W $ 0. By the theorem 
Sp, w belongs to the same block as Sl, v and therefore P = 1 . This proves 
that Brp(b) = 0 for all non-trivial p-subgroups P, showing that b is a block 
of defect zero. Thus its simple module V is projective. 

(iii) =X (i) This follows immediately from 13.1, as in the proof of 13.2. E 
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18. THE REPRESENTATION TYPE OF MACKEY FUNCTORS 

We recall that an algebra is said to be of finite representation type if it has 
only finitely many isomorphism classes of finitely generated indecomposable 
modules. We also speak of the category of modules as being of finite represen- 
tation type in this case. If k is a field of characteristic p, it is well-known that 
kG-mod has finite representation type if and only if a Sylow p-subgroup of G 
is cyclic [12]. Our main result settles the analogous question for Mackk(G) . In 
the special case where G has a Sylow p-subgroup which is cyclic and normal, 
the result has been obtained independently by Wiedemann [22], who analyzes 
explicitly the quiver of the Mackey algebra in this case. 

(18.1) Theorem. Let k be a field of characteristic p and let C be a Sylow 
p-subgroup of G. The following conditions are equivalent. 

(i) Mackk(G) has finite representation type. 
(ii) Comackk(G) has finite representation type. 

(iii) TheHeckealgebra EndkG(eH<GktG) hasfinite representation type. 
(iv) ICI=1 or ICI =p (or in other words p2 tIGI). 

Proofs. It is clear that (i) implies (ii), and (ii) X (iii) is immediate from 
Yoshida's theorem [24]. 

Proof of (ii) =X (iv). We assume that p2 divides the order of G and we have 
to prove that Comackk(G) has infinite representation type. Thus G contains 
a subgroup H which is either isomorphic to the cyclic group Cp2 or to the 
elementary abelian group Cp x Cp . In the latter case, the category kG-mod 
of (finitely generated) kG-modules has infinite representation type [12]. Since 
there is a full and faithful functor 

kG-mod -* Comackk(G); V @ 4 FPv, 

it is clear that Comackk(G) has infinite representation type. 
Consider now the case H = Cp2. It suffices to show that Comackk (H) has 

infinite representation type. Indeed for each indecomposable N E Comackk (H) 
one can choose an indecomposable summand MN of N tG such that N is a 
direct summand of MN H (because N is a direct summand of N TlI ). Only 
finitely many indecomposable functors N can give rise to isomorphic functors 
MN because N is a direct summand of MN G . This proves that Comackk(G) 
has infinite representation type if so has Comackk(H). 

To show that Comackk (H) has infinite representation type, we simply exhibit 
infinitely many indecomposable cohomological Mackey functors for H = C 2. 
Let h be a generator of H and let K = (hP) be the subgroup of order p. For 
an arbitrary integer n let M( 1) be a 2n-dimensional k-vector space with basis 

Xo, yo, X1, y1 ... Xn- Yn- 

and with action of H given by 

(h - 1) xi =yi, (h - 1)yj = O. 

Let M(K) be a 2n-dimensional k-vector space with basis 
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and with action of H/K given by 

(h -1) ui =vi, (h -1) vij=O. 

Thus both M( 1) and M(K) are direct sums of n copies of the 2-dimensional 
indecomposable kH-module. If p = 2, then M(K) is a free k[H/K]-module 
and this forces us to introduce an n-dimensional vector space M(H) . Thus we 
set 

M(H) 
0 

~~~~~if p is odd, 
M(H)= {(WO Wn-1) if p-=2. 

Now define restriction and transfer in the following way. We define 

RK M(K) -* M(1) 

by 
RK(vi) = 0, Rr (Ui) = yi, 

and IK: M(1) - M(K) by 

{ ZO Ajvj if i n- n , 

where the elements Aj E k are such that the polynomial 

P(X) = Xn + An- Xn-1 + . . . + AO 

is a power of an irreducible polynomial over k. For the construction of in- 
finitely many indecomposables, it would suffice to choose Aj = 0 for all j, 
so that P(X) = Xn , but the general case does not require more effort. When 
p = 2, we also have to define restriction and transfer from and to M(H): 

RK: M(H) M(K); RH(W1) = v, 

IKH: M(K) M(H); IKH(Ui) = Wi,. IKH(Vi) = O. 

The proof that M is a Mackey functor for H is easy and is left to the reader. 
We only remark that the extra data when p = 2 are introduced in order to make 
the Mackey formula hold. Note that any restriction followed by a transfer is 
zero, so that M is cohomological. 

The Mackey functor M for p odd can be pictured in the following self- 
explanatory fashion, where R = RK, I = IK and a = h-1. 

Ul XI U2 Xn 
a R a I a R a I 

VI Yi V2 

The last arrow I on the right is understood to map xn to the linear combination 
n7I_ AJVj. 
We now recall a standard argument in the representation theory of finite 

dimensional algebras, showing that M is indecomposable. Let 

V = (VO, ... , Vn-1) = Soc(M(K)) 
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and define 
= IK[(h - 1)-'RK (h- 1)-i E Endk(V). 

Note that it is easy to see that both I[ (h - 1)-I and RK (h - 1)-I are well- 
defined. Thus V becomes a module over the polynomial ring k[X], with X 
acting via q$. 

(18.2) Lemma. The restriction to V defines a surjective ring homomorphism 
with nilpotent kernel 

7: EndMackk(H)(M) -- Endk[X](V); f F-+ f(K)Iv. 
Proof. We assume that p is odd. The necessary modifications when p = 2 are 
left to the reader. First it is clear that f(K) must preserve Soc(M(K)) = V, 
because f(K) commutes with the action of h. The fact that f(K) I v commutes 
with the endomorphism q of V is a straightforward consequence of the fact 
that f commutes with restriction, transfer and conjugation. Thus ir is well- 
defined. 

We now prove that ir is surjective. Let f(K) I v be a given endomorphism 
of V commuting with q. Extend f(K) to the whole of M(K) by defining 
f(K)(ui) to be some element in the inverse image under (h - 1) of f(K)(vi). 
Then define f(1)(yi) = R K f(K)(ui) and extend f(1) to the whole of M(1) 
by defining f(1)(xi) to be some element in the inverse image under (h.- 1) of 
f(1) (yi). By construction, f commutes with (h - 1) and with RK . Moreover 

IK f(1)(x,) = I[ (h- 1-)<f(l)(y1) = I[ (h - 1) 'RKf(K)(u ) 
= I[ (h - I)-'RI (h - I)-1f(K)(vi) = q(f (K) (vi)) 

= f(K)(q(vi)) = f(K)(IK (h - 1)`R (h -)-'(vi)) 

= f(K)(IK (xi)), 

and this proves that f commutes with I[K. Therefore ir is surjective. 
Finally suppose that f E Ker(7r). Then (h - 1)f(K)(ui) = f(K)(vi) 

= 0 so that f(K)(ui) E Ker(h - 1) = V and f(K)2 = 0. Now f(1)(yi) 
= Rr f(K)(ui) E RK (V) = 0. Thus f(1) is zero on (yo, ..., Yn-1) = 

Ker(h - 1) = Im(h - 1) and again f(1)2 = 0. This completes the proof of 
the lemma. 0 

Now we can show that M is indecomposable. We have to show that the 
ring EndMackk(H)(M) is local and by the lemma we only have to prove that 
Endk[X](V) is a local ring. But since 

0( i) JA .-olvj if i=n - 1, 

it is clear that V is generated as a k[X]-module by vo and that 

V _ k[X]/(P(X)) 

where P(X) = Xn + An- 1Xn- + * * * + Ao. Then Endk[x](V) _ k[X]/(P(X)) 
and this is a local ring because P(X) is a power of an irreducible polynomial 
by assumption. 

We have proved that M is an indecomposable cohomological Mackey func- 
tor for the cyclic group H of order p2 . Since M depends on the choice of n 
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(and P(X)), this completes the proof that Comackk(H) has infinite represen- 
tation type. 

Proof of (iv) =* (i) . If IC = 1, then p does not divide IGI and we know that 
Mackk(G) is semi-simple by 3.5 or 14.4, hence of finite representation type. So 
we assume now that C has order p. 

We use the decomposition given by the idempotents in the Burnside ring (9.1 
and 9.3(ii)) 

M= 3 fj.M 
{p-perfect J}/G 

for any Mackey functor M. Each summand lies in Mackk(G, J) and so it 
suffices to show that Mackk (G, J) is of finite representation type. By the 
equivalence of categories 10. 1 we reduce to showing that Mackk (G, 1) has finite 
representation type. Indeed since p2 does not divide IGI, a Sylow p-subgroup 
of NG(J) has order 1 or p and this applies for each p-perfect subgroup J. 

We use the fact that by 9.7 any M E Mackk(G, 1) is projective relative to a 
Sylow p-subgroup C of G. Now the argument of D.G. Higman shows that it 
suffices to prove that Mackk (C) has finite representation type, since on inducing 
to G the indecomposable Mackey functors for C we obtain only finitely many 
indecomposable summands. 

To show that Mackk (C) has finite representation type, we exhibit the quiver 
with relations corresponding to Mackk(C) and then we list the finite number 
of indecomposable representations of this quiver. 

Any Mackey functor for the cyclic group C = (h) of order p can be viewed 
as a representation of the following quiver with relations. Let R = RCj, I = IC 
and a = h - 1. Take two vertices 1 and C, three arrows 

I Ra 
1 C, 1( C, 1 )1, 

and three relations 

Ia = 0, aR = 0, RI = aP-1. 

In the following description of representations, we denote by Vk the k-dimen- 
sional indecomposable representation of the group C over the field k. This 
has a basis v, . ... , vk, so that a * vi = vi+I for i < k and a * Vk = . 

There are two simple representations SI, I and Sc, 1 with 

S1,(1)0=k, S,(C)Q=0, 

SC, I(1) = 0, SC, I(C) = k. 

Their projective covers (which coincide with their injective hulls) are PI, 1 = 

FPkc and Pc,I = BC defined explicitly as follows. First PI,I (1) = Vp and 
PI, l(C) = k with R(1) = vp and I(v1) = 1 (the value of I on all other basis 
elements being zero). On the other hand Pc, I(1) = k and Pc, (C) - = 

(x, y) with R(x) = 0, R(y) = 1 and I(1) =x. 
Then there are four families of indecomposable representations Ak , Bk, 

Ck and Dk . In each case the value of the representation at 1 is the module 
Vk and we have to specify the value at C as well as R and I. As before we 
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only give the definition of R and I on basis elements when it is non-zero. 

Ak(C) = k, I(V1) = 1 (1 < k < p- 1), 
Bk(C) = k, R(1)= Vk (1 < k < p-1), 

Ck(C)=k2-(x,y), I(vl)=x, R(y) =Vk (2< k<p-1), 
Dk(C) =0 (2 < k < p-i) 

This gives the complete list of all indecomposable Mackey functors for C 
over k. The proof of this either follows by direct calculation, or by using 
the fact that I'k(G) is a Brauer tree algebra as proved in Section 20, and the 
classification of indecomposables for such algebras. This completes the proof 
of the main theorem. E 

19. SELF-INJECTIVITY 

In this section we will assume that our base ring is a field k of charac- 
teristic p. Using the duality introduced in Section 4, every statement about 
projective Mackey functors has its counterpart for injective Mackey functors. 
Thus we do not need to develop a theory of injective Mackey functors over k. 
Our aim in this section is to show that, contrary to the case of group algebras, 
injectivity is rarely equivalent to projectivity, and we show in Theorem 19.2 
that it happens precisely if p2 t IGI. 
(19.1) Lemma. Let k be afield of prime characteristic p. Every projective Pc, v 
where ICI = 1 or p is also injective, and Soc(Pc, v) = Sc, v. 
Proof. In case C = 1 a proof of this result has already been given in 13.3. 
The proof we now give works in general, and we suppose ICI = 1 or p. Every 
projective Pc, v is a summand of BC tG by Section 8 and since injectivity 
is preserved by induction and taking direct summands, in order to prove that 
PC, v is injective it suffices to prove that the projective indecomposable Mackey 
functor BC is also injective. This is clear if C = 1 because Mackey functors 
for the trivial group are just vector spaces. If C is cyclic of order p, then we 
have seen in the proof of 18.1 that BC (written PC, 1 in the last section) is 
both the projective cover and the injective hull of SC, . In fact it is easy to 
see that this 3-dimensional Mackey functor is self-dual. 

Now to show that Soc(Pc, v) = Sc, v it suffices to show that (PC, v)* = 

Pc, v* since this has simple top Sc, v* . By the injectivity of Pc, v we know that 
(Pc, v)* is an indecomposable projective, and it has the form (PC, v)* = Pc, w 
since its vertex is C. Now W is identified as the simple quotient of the Green 
correspondent f((Pc, v)* (1)) by 12.7. We have 

f((PC, V)* (1)) = f((Pc, v(1))*) = (f(Pc, v(1)))* 
and the unique simple quotient is (Soc(f(Pc, v(1))))* = V* since f(Pc, v(1)) = 

Pv as kNG(C)-modules and the top and socle are isomorphic. 0 

Recall that an abelian category is called self-injective if projective and injective 
objects coincide. 

(19.2) Theorem. Let k be a field of prime characteristic p . Then Mackk (G) is 
self-injective if and only if a Sylow p-subgroup of G is cyclic of order 1 or p. 

Combining this with the main result of Section 18, we deduce the following 
corollary. 
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(19.3) Corollary. Mackk(G) is seif-injective if and only if it is offinite represen- 
tation type. 

We first need another lemma. 

(19.4) Lemma. Let H be a p-group and let RH: B(H) -* B(K) be the restric- 
tion map to a subgroup K < H, where B(H) is the Burnside algebra over k. 
If S is a normal subgroup of H, then 

RH S KlKnS ifKS=H, 
K 0 ~~~~~otherwise. 

Proof. This is an easy application of the Mackey formula. 

RjH(H/S)= E K/KfnS= E K/KnS= IH:KSI K/KfnS 
hE[K\H/S] hE[KS\H] 

and the result follows. 0 

Proof of Theorem 19.2. Assume first that a Sylow p-subgroup of G is of order 
1 or p. We use the decomposition given by the idempotents in the Burnside 
ring (Section 9). So it suffices to show that for each p-perfect subgroup J, 
the category Mackk(G, J) is self-injective. By the equivalence of categories 
10.1 we reduce to showing that Mackk(G, 1) is self-injective. Indeed a Sy- 
low p-subgroup of NG(J)/J is also of order 1 or p. Now the projectives in 
Mackk (G, 1) are precisely the PC, v where ICl = 1 or p, and these are also 
injective by 19.1. 

Assume now that a Sylow p-subgroup H of G has order a multiple of p2. 
We have to exhibit a projective Mackey functor which is not injective. Any 
projective indecomposable PH, V has vertex H and source BH, by 1 1.1. Since 
BH is a summand of PH, V [G and since injectivity is preserved by restriction, 
it suffices to prove that BH is not injective. Since it is indecomposable and the 
socle of an injective indecomposable is simple, it is enough to show that the 
socle of BH is not simple. In fact we prove that SHH k (which is 1-dimensional 
on evaluation at H and vanishes at proper subgroups) appears at least twice in 
the socle of BH. The proof divides into two cases. 

For the first case, assume that H is not elementary abelian and let ?D(H) be 
the Frattini subgroup of H, which is not trivial by assumption. Let J be any 
normal subgroup of H contained in 4;(H) (and there are at least two of them: 
J = 1 or J = ?D(H) ). There is a morphism of Mackey functors f: SHH k , BH 

defined on evaluation at H to be the map f(H) sending the generator 1 of 

SHH, k (H) = k to the H-set H/ J, viewed as an element of the Burnside algebra 
B(H) . In order to check that f is a morphism of Mackey functors, it suffices 
to see that f commutes with restriction from H to a proper subgroup K of 
H, because SHH k vanishes on proper subgroups of H. Thus we only have to 
check that RH(H/J) = 0. But this is clear by 19.4 because KJ is a proper 
subgroup of H (since J < 4;(H)). Thus we have constructed at least two 
linearly independent morphisms f: SHH k -- BH and this proves that the socle 
of BH is not simple. 

For the second case, we assume that H is elementary abelian (of rank > 2). 
Again we have a morphism f: SHH kH , BH defined on evaluation at H to be the 
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map f(H) sending the generator 1 of SH k(H) = k to the H-set H/I . Now 
we construct another morphism g: SHfk ' Bk which is linearly independent 
of f and this will prove that the socle of BH is not simple. Let ' be the set of 
all subgroups of H of order p (i.e., the lines in the vector space H). We define 
g(H): k -* B(H) to be the map sending 1 to the element X = Ec> e H/C . 
As above it suffices to prove that RH(X) = 0 for every proper subgroup K of 
H. By 19.4, we have 

HfT(X) CHK/I if K has index p, 
RH()K CEF, KC=H 

{ i0 otherwise. 
In the first case, we let 2 be the set of all subgroups of K of order p and we 
have 

RH(X) = (II-1-|I) * K/1 . 
Now if IHI= pn, then IFI = (pn - 1)/(p - 1) and Igl = (pn-1 - 1)/(p - 1) 
so that IWI -grl = pn-1 is a power of p. This shows that X restricts to zero 
and completes the proof. 0 

We may consider the injective objects in the category Comackk(G) of co- 
homological Mackey functors. We know by 16.12 that the injective indecom- 
posable cohomological Mackey functors are the functors FQv where V is as 
above. If the characteristic p of k does not divide IGI, then Comackk(G) 
is semi-simple and FPv = FQv for all V. Otherwise, in contrast with 19.2 
above, Comackk(G) is never self-injective. Indeed it suffices to take V = k, 
the trivial module: all restriction maps in FPk are isomorphisms and some of 
the induction maps are zero (as soon as p divides the index), while the opposite 
holds for FQk . Thus FPk cannot be injective and FQk cannot be projective. 

20. BRAUER TREES 

In this section we consider a complete discrete valuation ring & with quo- 
tient field K of characteristic 0 and residue field k of characteristic p. Recall 
from the previous two sections that Mackk(G) has finite-representation type if 
and only if it is self-injective, and that it happens precisely if p2 t IGI. We go 
on to show that in this case each block of the Mackey algebra over k is either 
a Brauer tree algebra or a matrix algebra, and that the Brauer tree may be cal- 
culated by decomposition in exactly the same way as for group representations. 
For the properties of Brauer tree algebras we refer to [3]. Since the Brauer trees 
give total information about the structure of projective modules [3] as well as 
decomposition, and since also there is a well-known classification of indecom- 
posable representations (and also the Auslander-Reiten quiver) in this situation, 
we use these trees to specify all this information when we give tables in Section 
21. 

We first start with the situation where G has a normal Sylow p-subgroup 
C of order p . We deal only with the projectives of the form P1, v and Pc, v 
since the other projectives may be reduced to this case using the equivalence of 
categories 10.1. Now these projectives are indexed by letting V range through 
the complete set of simple kG-modules, since the normal p-subgroup C must 
act trivially on such V and so we may regard V either as a kG-module or as 
a k[G/C]-module. 
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We obtain the structure of P1, v by means of the isomorphism PI, v - FPpv 
given in 13.3, where Pv is the projective cover of V as a kG-module. These 
modules Pv are uniserial, being given by a Brauer tree which is a star [3], and 
within any block we may number the simples VL, ... , V, so that 

Vi 

Vi+I 
PK 1 

Vi_ 

Vi 

with a cyclic ordering of the i's. We have FPpV (C) = Vi by [3, p. 37]. Thus the 
composition factors of FPpV are Si, , 51, +1, ... , ,- K, 5S1, K and Sc, v 
by 6.3, and by the method of Section 6 using the map V/. Here we use the 
fact that each of the SI, v vanishes at C. By 14.3 the only possible non-zero 
Ext groups between these simples are between SI, v, and Sc, v, , and between 
Sc, vi and Sl,1v , where the Ext groups have dimension 1, and also between 
S1, v, and S1, v,+1 for j = 1, ... , e, where the Ext group has dimension < 1 . 

We conclude that the top two Loewy layers of P1, v must be either 

Si, I VIor Si I vi 
Si, V+1 SC, V SC, V 

and we eliminate the second of these using the fact that P1, v, is also the injective 
hull of SI, v, by 13.3, and there must also be a subfunctor 

Sc,v, 
Si, VI. 

Now using the remaining restriction on Ext groups we obtain that P1, v, has a 
diagram 

Si IV 

Si, V+1 

Sc,v1 
SC, -I 

SI, ,V,_I 

Si, V 
We turn now to the indecomposable projectives PC, v, for which we use de- 

composition theory. We shall use superscripts K or k to indicate the field over 
which the simple Mackey functors are defined. Observe that Vi lifts to a simple 
KG-module also written Vi because p does not divide IG/CI. By 9.10, the de- 
composition of SK V and SK V is completely determined by the decomposition 
of their evaluations at p-subgroups, namely 1 and C. Since SK V vanishes 
at 1, we obtain dS(S ) = V . Now SK V = FPv has value Vi at both 1 
and C, and since Sk V vanishes at C, we obtain d(Sj ) = SV , +5C, . This 
works for every simple K[G/C]-module Vi . Moreover the other characteristic 
zero simple Mackey functors do not decompose with Sk v as a composition 
factor, because they all vanish at C, since C acts non-trivially on them. Using 
the fact that the Cartan matrix is the product of the decomposition matrix and 
its transpose, we deduce that the only composition factors of pk are Skc v C,v c,vI 
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with multiplicity 2 and Sk v with multiplicity 1. Returning to the situation 
where k is our sole field of definition (and thus omitting superscripts), we have 
Ext(Sc, v, Sc, v,) = 0 by 14.3. The only possibility is that Pc, vi has a diagram 

SC, vi 
Si , vi 

SC, Vi. 

We may now sum up the results of our calculations in the following way. 

(20.1) Theorem. Let k be afield of characteristic p and let G be a group with a 
cyclic normal Sylow p-subgroup of order p. Let b be a block of Mackey functors 
lying in Mackk(G, 1). Then b is a Brauer tree algebra with Brauer tree having 
the form of a star with arms of length 2. 

0 

ISC,VI 

SC, V2 51, V2 51, Ve SC, Ve 

The inner star is the Brauer tree of the corresponding block of kG-modules (with 
exceptional vertex in the center). 
Proof. We merely have to observe that the indecomposable projective Mackey 
functors have the structure determined by this tree, as described in [3]. El 

Now we can state the general result. 

(20.2) Theorem. Let k be a field of characteristic p and let G be a group for 
which p 2 t IGI. Then each block of 1uk(G) is either a matrix algebra over a 
division ring, or a Brauer tree algebra. 
Proof. Since the types of algebra mentioned are stable under Morita equiv- 
alence, by the equivalence of categories Mackk(N(J), 1) Mackk(G, J) it 
suffices to prove the result for blocks in Mackk(G, 1). We suppose we have a 
block b of Mackey functors of this form, which is associated by 17.1 to a block 
b of representations of G. By 17.3 b is a matrix algebra if and only if b is a 
block of defect zero. Thus we now suppose that b has defect C where C is a 
Sylow p-subgroup of order p. 

Let e be the unique block of NG(C) for which b = eG and let e be the 
corresponding block of Mackk(NG(C), 1). We claim that the Green corre- 
spondence provides a stable equivalence between b and e'. The arguments we 
use here are similar to the case of group representations, with some modifica- 
tions. We must show that Green correspondence provides a bijection between 
the (isomorphism classes of) indecomposable non-projective Mackey functors 
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in b and in e, and also that the corresponding groups of homomorphisms 
modulo projectives are isomorphic. We start by observing that by 9.7 all the 
indecomposables in these blocks which are not I-projective have C as a ver- 
tex, so the Green correspondence applies. Also the Green correspondent of a 
projective (with vertex C) is again a projective since the restriction and in- 
duction of projectives are projective. Thus the non-projective Mackey functors 
correspond. 

It is now necessary to prove that an indecomposable non-projective Mackey 
functor M is in b if and only if its Green correspondent f(M) is in e'. To 
do this, notice that if V is a simple kG-module in b so that 1, v E b, then 

f(SG v) = SN(C) by 11.6, and this lies in e by 17.2 since its evaluation at 1, 

namely f (V), lies in e . Thus there is at least one Mackey functor in b whose 
Green correspondent lies in e. Now observe that if L and M lie in b with 
vertex C then by the usual argument [3, Section 10] 

HOmMackk(G)(L, M)-HOmMackk(NG(C))(f(L), f(M)) 

where these groups denote homomorphisms modulo 1-projectives. We use again 
the fact that Green correspondence sends projectives to projectives to deduce 
that in fact we have an isomorphism 

HomMackk(G) (L , M) - HomMackk(NG(c)) (f(L), f (M)) 

where these groups denote homomorphisms modulo projectives. We deduce 
that 

Ext,ik(G)(L, M) - Ext /k(NG(C))(f(L) , f(M)) 

as in [14, II 5.9]. Since the closure of any non-projective object under the 
equivalence relation generated by the property of having a non-zero Ext group 
gives all non-projectives in the block, we deduce for non-projective Mackey 
functors that M is in b if and only if f(M) is in e'. At the same time we have 
also proved the desired isomorphism of homomoprhisms modulo projectives. 

To sum up these arguments, we have shown that Green correspondence gives 
a stable equivalence of b and e. By 20.1 e is a Brauer tree algebra. We 
finally quote the theorem of Gabriel and Riedtmann [10] which states that an 
algebra stably equivalent to a Brauer tree algebra is a Brauer tree algebra, and 
this completes the proof. 0 

For the rest of this section, we fix the following notation. We continue to 
suppose that G is a group whose order is divisible by p but not p2. Let 
b be a block of G-modules which is not a matrix algebra, and let b be the 
corresponding block of Mackey functors for G. Let TMod be the Brauer tree 
of b and let TMack be the Brauer tree of b. 

We want to show that TMod is naturally a subgraph of TMaCk . We first need 
an elementary property of graphs. Given a graph with edge set E, we define 
the neighbours of an edge e to be the set of edges 

N(e) = {f E E I f has a vertex in common with e}. 

Moreover an edge is called a twig if one of its vertices is the vertex of no other 
edge. 
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(20.3) Lemma. Let T be a finite graph which is a disjoint union of trees. Then, 
apart from isolated vertices, T is determined by knowing for every edge e the 
set of neighbours N(e). 
Proof. There may be edges e for which N(e) = {e}, namely components con- 
sisting just of e and its two end vertices. By removing these we may assume 
that N(e) $& {e} always. Now for each edge e we partition N(e) - {e} into 
(at most) 2 subsets by means of the equivalence relation el e2 X el E N(e2). 
The edges for which N(e) - {e} consists of just one equivalence class are pre- 
cisely the twigs. By removing such a twig from the situation, together with all 
occurrences of that twig in the neighbour sets, we reduce to a union of trees of 
smaller size. Now by induction we can reconstruct the smaller graph, and the 
twig e we removed is joined on to it at the common vertex of all the edges 
N(e). E1 

(20.4) Proposition. The edges in TMack labelled by simple Mackey functors of 
the form Si, v span a subtree isomorphic to TMod . The isomorphism is given by 
associating to an edge labelled Si, v the edge of TMod labelled V. 
Proof. Let T be the subgraph of TMaCk whose edges are the Si, v. Thus T 
is a union of trees and has no isolated vertices. To show that T and TMod 
are isomorphic it suffices by 20.3 to show that the neighbour sets of edges Vo 
and Si, v, correspond under the correspondence V ?-+ Si, v. According to 
the structure of a Brauer tree algebra, the neighbour sets of each edge of the 
Brauer tree are precisely the simples which occur as composition factors of the 
projective cover of the simple labelling that edge. Thus we need to show that 
W is a composition factor of Pv if and only if Si, w is a composition factor 
of P1, v. But by 13.3 P1, v = FPpv and the result is clear by 6.3. 0 

We move now to decomposition theory and for this we suppose that the fields 
K and k are both splitting fields for the respective Mackey algebras. From the 
known decomposition theory of blocks with cyclic defect group, we can label 
the vertices of TMod by the simple modules in characteristic zero in such a way 
that each simple decomposes according to the edges incident with that vertex 
(each non-zero decomposition number being equal to 1). In fact there is an 
exceptional vertex which is possibly labelled by several simple modules, but 
their decompositions are all equal. 

We analyse further the structure of the Brauer tree for Mackey functors in b, 
and show that its vertices may also be labelled by simple Mackey functors in 
characteristic zero in such a way that each simple decomposes according to 
the edges incident with that vertex. Thus the Brauer tree may be calculated 
from the decomposition map (and conversely) in the same way as for group 
representations. In the process we shall also see how TMack is constructed from 
TMod. First note that we can already label the vertices of TMack which belong 
to TMod, using the already existing labelling of TMod. Thus we have to find 
a labelling of the remaining vertices, using the simple Mackey functors Sc, w 
in characteristic zero which are indexed by C (where C still denotes a Sylow 
p-subgroup of order p ). 

As earlier in this section, we use superscripts K or k to indicate the ground 
field over which Mackey functors are defined. To simplify notation, we shall 
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use the letter U to denote simple KG-modules and the letter V for simple 
kG-modules. Moreover the simple modules for NG(C)/C will be written with 
the letter W. Since NG(C) / C has order prime to p, we can use the same 
letter W both over K and k (that is, we identify W and its decomposi- 
tion d(W) ). The letter d stands for the decomposition of both modules and 
Mackey functors. We are going to use repeatedly the following consequence of 
the fact that the Cartan matrix is the product of the decomposition matrix and 
its transpose. Given two simple Mackey functors SH V and SH, v, , the Cartan 
integer c(Sk k, S v) is non-zero (that is, the two edges SH v and Sk, vI 
of the Brauer tree are neighbours) if and only if there exists a simple Mackey 
functor SJ U over K whose decomposition contains both SH V and SH, vI. 

We proceed in a series of lemmas, starting with a general description of d. 

(20.5) Lemma. 
(i) If U is a simple KG-module and d(U) = ,2 Vi, then 

d(SK U) (S,) +Xu 

where Xu is a linear combination of simple Mackey functors Sk w 
indexed by C. 

(ii) d(SK, W) = SC,Wk 

Proof. (i) This is an immediate consequence of 9.10 (with J = 1 ), using 
also 6.3. Note that the map yi appearing in 9.10 involves only the two sub- 
groups 1 and C. 

(ii) This is again an immediate consequence of 9.10 using the fact that SCK W 
andSk wvanish at 1. 1i 

The first statement above implies that if U labels a vertex of TMod, so that 
it decomposes into the edges VJ emanating from that vertex, then the simple 
Mackey functors of the form Sk V appearing in d (SK u) are precisely the edges 
emanating from the vertex SK U which lie in TMod. 

We shall also need a technical lemma on exceptional characters, which we 
only prove under special assumptions (see 20.11 for a more general result). 

(20.6) Lemma. Let U1, , Um be the simple KG-modules labelling the ex- 
ceptional vertex of TMod 

(i) The dimension of the fixed points (Uj)c is independent of j. 
(ii) If only one simple Mackey functor Sk w indexed by C appears in the 

decomposition of each SK uj, then for 1 < j < m all of the decomposi- 
tion numbers d(SK uj, Sc w) are equal. Thus in the notation of 20.5, 
Xu, is independent of j. 

Proof. (i) Let X be the character of some Uj . We compute the dimension of 
fixed points by restricting x to C and taking the scalar product with the trivial 
character. If u denotes a generator of C, we have 

p-i p-i 

P (%, )C =O 1(U=) = %(1) + , d% . o(1) 
i=Oi=X 
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where du denotes the higher decomposition number and q runs over the set 
of all Brauer characters of CG(ui) = CG(C) belonging to the blocks correspond- 
ing to the block b of G. (In fact by Brauer's second main theorem, these blocks 
are conjugate in NG(C) and their sum is the block of NG(C) corresponding 
to b. Moreover each of them actually contains a single Brauer character.) Now 
it is known from the theory of blocks with cyclic defect group that the higher 
decomposition number du corresponding to an exceptional character is a sum 
of primitive p-th roots of unity (which depend on the exceptional character), 
up to a sign 3 which is independent of the exceptional character: 

d%,u,= 6(Cl+ + Ce) - 

(Here e is in fact the inertial index.) Moreover the decomposition number 
corresponding to a power u' of u is simply 

d% ? = 6(Ci + ...+ ei ) 

Therefore we obtain 
p-i 

P(% S lc = %(1) + E 0() a E(cli + *** + Se = %(1) - E ?(1) a e, 
X 1i=l 

because >jEi7-l 4" = _1 for any primitive pth root of unity 4'. Now the result 
is independent of the exceptional character, because x(1) is the same for all 
exceptional characters since they all decompose in the same way. 

(ii) Let aj = d(SKfu1, Sk w) so that d(SK, Uj) = (i Sk, vi)+aj Sk,W As 
an immediate consequence of 9.10, we have 

dim((Ui)C) = dim(SK,uj(C)) = (Zdim(Sk, V(C))) + aj dim(Sk ,w(C)) . 

Since dim((Uj)C) is independent of j by part (i), we see that aj is independent 
of j. o 

Now we establish the link between the tree and the simple Mackey functors 
Sk appearing in the (yet unknown) factor Xu of Lemma 20.5. 

(20.7) Lemma. 
(i) If Sk w appears in the decomposition of SK u, then Sk w is a neigh- 

bour of Sk v for all edges Vi emanating from U. 
(ii) If conversely Sk is a neighbour of Sk v then for one end U of 

the edge V of TMod, Sk W appears in the decomposition of SK u 
Moreover Sk is a neighbour Of Sk v for all edges Vi emanating 
from U. 

Proof. (i) Let Vi be any edge emanating from U. Then the decomposition 
number d(SK U, sk v) is non-zero. By assumption d(SK U, Sc w) $& 0 and 
so the Cartan integer c(Sk w S(k v) is non-zero. 

(ii) By assumption the Cartan integer c(SC w SSk v) is non-zero. Therefore 
there exists a simple Mackey functor SH U whose decomposition contains both 

W and Sv I Then H cannot be C by 20.5 (ii), so H = 1. Thus V 
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appears in a decomposition of U, and this means that U is one of the ends 
of the edge V of TMod. Moreover since Sk w appears in the decomposition 
of SK U, part (i) applies to deal with all edges Vi emanating from U. Dl 

We now refine our knowledge of the Mackey functor tree TMaCk and consider 
the remaining edges S W- 

(20.8) Lemma. Each edge SC W of TMack is a twig, the non-free end of which 
belongs to the subtree TMod. 

Proof. If Sk V is a neighbour of Sk for some V, then Sk W is fastened 
to TMOd. Assume now that S is a neighbour Of Sk W for some W'. Then 
there exists a simple Mackey functor SH, U whose decomposition contains both 
5k W and 5k . By 20.5 (ii), we must have H = 1 and by 20.7 (i), 5 

is a neighbour of Sk for all edges Vi emanating from U. Thus in all cases 
5k is fastened to TMod. Since TMaCk is a tree and TMod is connected, the 
end vertex of Sk W which does not lie in TMod cannot be connected to any 
other vertex, hence is free. This proves that 5k is a twig. Dl 

(20.9) Lemma. The free end of the twig Sk, is not an exceptional vertex of 
the Brauer tree. 
Proof. If it were, then by the structure of projective modules in a Brauer tree 
algebra, the heart Rad(Pc, w)/ Soc(Pc, w) of the projective cover Pc, w would 
be the direct sum of two uniserial modules, one of which having only Sk W as 
composition factors. Then there would be a non-trivial extension between SW 

and itself, contradicting 14.3, because ExtkT, (C) (W, W) = 0 since NG(C) has 
order prime to p. 

Another proof is the following. If TMod has an exceptional vertex, then it 
must remain exceptional in TMaCk and so the free end of the twig Sk W (which 
is not in TMod ) cannot be exceptional. So we can assume that TMod has no 
exceptional vertex, in which case we want to prove that TMack has no exceptional 
vertex. But this property is preserved by the stable equivalence between G and 
NG(C). This follows from the arguments of the last section of [3], using the 
determinant of the Cartan matrix. Thus we can assume that C is normal, but 
then the result is clear by 20.1. El 

We now sum up the situation as follows. 

(20.10) Theorem. Let TMack be the Brauer tree of a block of Mackey functors 
in a situation where G has a Sylow p-subgroup C of order p and we are 
working over a splitting p-modular system (k, 5', K). The vertices of TMack 

may be labelled with the simple Mackey functors over K, in such a manner that 
each simple decomposes to give the simple Mackey functors over k which label 
the surrounding edges (each simple Mackey functor over k appearing once). The 
edges and vertices of TMack labelled by the simples indexed by the trivial subgroup 
form a subtree isomorphic to the corresponding Brauer tree TMod for G-modules. 
Each remaining edge is a twig fastened to TMod. If e denotes the number of 
edges of TMod, then there are also e edges outside TMod. In particular the 
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number of vertices of TMaCk is 2e + 1 . The exceptional vertex is labelled with all 
of the simples SfK u for which the KG-modules U label the exceptional vertex 
of TMod 

Proof. Let us first compute the number of edges. It is known from the theory of 
cyclic defect groups that the number e of simple kG-modules in the block b is 
equal to the number of simple kNG(C)-modules W in the block b', where b' 
is the Brauer correspondent of b. Each such module W gives rise to a simple 
Mackey functor Sk W lying in the block b of Mackey functors corresponding 
to b. These simples S W are precisely the edges of TMaCk which do not lie 
in TMod. So there are e such edges, as required. 

We have already labelled the vertices in the subtree TMod, and for the remain- 
ing vertices we label the free end of the twig Sk W with its lifting to character- 
istic 0, namely SCK W- It only remains to show that each vertex decomposes to 
give the surrounding edges. This is clear for SCK W because d(SCK w) = Sk 

by 20.5 and SCK W is the free end of the twig Sk W. Consider now the de- 
composition of SfK . By 20.5 the terms in TMod are exactly the edges Vi 
in TMod surrounding U. So we only have to deal with the case of a simple 
5k w appearing in d(S1,U). 

We want to prove that the decomposition number d(SK u, SkS W) is non- 
zero if and only if Sk w is fastened to the vertex S[1 UI If the number of all 
edges Vi emanating from U is at least 2, then since we have a tree the result is 
clear by 20.7. But if there is a single edge V1 in TMod emanating from U, it 
could be (using again 20.7) that d(SKU, SkS W) is non-zero and that S W is 
fastened to the other end U2 of VI . We now wish to eliminate this possibility. 
We write U1 = U and assume that SC W appears in d(SfK u1) and that Sk W 
is fastened to U2 - 

First assume that there is another edge V2 in TMod emanating from U2, 
with end U2 and U3. Then TMaCk has a subtree of the following shape: 

sK sK sK 
1, U, 1, U2 1, U3 

0 00 

51, VI 51, V2 

sk, 
SC, W 

sK,w 
SC, W 

Let mi be the multiplicity of the vertex Ui in TMod and let Uil,..., Uimi be 
the simples in characteristic zero labelling the vertex U1 . Of course at most one 
of the vertices has multiplicity greater than 1, so at least two of ml, M2, m3 are 
equal to 1, but we do not know which ones. We are interested in the occurrence 
of Sk in the decomposition of SK so we write the decomposition numbers 

d(SK u" Sk,w) = aj , 1?j?< ml , 

d (SK iXsk, w)=b, 1<j< M2 , 

d(SK S,Ck, W) = Cj, < M3 
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By assumption at least one aj is non-zero. Since V1 appears only in the de- 
composition of UJ and U2J, we obtain the Cartan integer 

I 2~~~~~~m 

+Z Ed(S ),Sd2Sj 5 1 S)d(Sk, v SSK, w) 
j=I~~j= 

ml ~ ~M2 

=Eaj+Zbj 
j=1 j=1 

and similarly C( 2 5 W) = Ej bj + Ej cj. Also we have 

(sk S, ) = d(SK W, Sk, W) +E d(SK U E Sk, W)2 
I I u 

> I +Eaj2+Eb?2+Ec? 

On the other hand from the structure of Brauer tree algebras, we have 

C(SI, V1 S, w) = m2, c(S, V2 c W) = m2, c W SC,W) = m2 + 1, 

using for the last equality the fact that the vertex SCK W is not exceptional 
(by 20.9). Putting together these values of Cartan integers, we first obtain 

m3 mI 

Z cj = Ea 
j=1 j=1 

and it follows that at least one cj is non-zero. Thus we have 

m2=ZEaj+ZEbj < E a?2+EbJ < Z aj+ZEbJ+ZEc 2 < m2 

a contradiction. 
Now we assume that there is no other edge in TMod emanating from U2 , so 

that both U1 and U2 are ends of the tree TMod. This implies that TMod just 
consists in the two vertices U1 and U2 joined by the edge V1 = V. By the first 
part of the proof, we know that TMaCk has only one extra vertex, and the whole 
tree looks as follows: 

sK sK sK 
1, Ul 1, U2 C, W 

sk sk 
1, V JC, W 

Recall that the hypothesis we are trying to eliminate is that SC w appears in 
d(SfK u1). We can proceed as follows. 

Let mi be the multiplicity of U1 and write Uil, ... ., Uim for the simples in 
characteristic zero labelling the vertex U1 . Of course at most one of ml , M2 

is greater than 1. We set 
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Each of these numbers is independent of j by 20.6. Our assumption is that 
a $A 0. Then we immediately obtain the Cartan integers 

C(S(k V, Sk, W) = m1a +m2b, 

C(Sk W 5k W) = m1a2+ m2b2 + 1 

which by the structure of the Brauer tree algebra are also equal to 

I(l Sc,w = m2,5 C( "C,W5 CS, W) = m2 + 1,5 

using for the last equality the fact that the vertex Sc w is not exceptional 
(by 20.9). It follows that 

m1a +m2b= mla2 + m2b2 =M2 

which implies first that a and b are either 0 or 1, and then that b = 0 because 
a $ 0. Thus a = 1 and ml = M2 . But there is at most one exceptional 
vertex, so m1 = m2 = 1. Now we are in a situation where it is impossible to 
distinguish between the two vertices of TMod, so we can exchange them. Then 
the extra vertex SK w is fastened precisely to the vertex of TMod for which the 
corresponding decomposition number is non-zero, as required. 

Now we know that 5k, W is fastened to S1 u if and only if d (S1 u, SCW) 54 
0. We compute the Cartan integers from the decomposition numbers in order 
to show that each such non-zero decomposition number has to be equal to 1 
and that also it must be constantly equal to 1 for the exceptional vertex. Let m 
be the multiplicity of the vertex U and let U1, ... , Um be the simple KG- 
modules labelling this vertex. We assume that Sk W is fastened to SK u so 

that at least one of the decomposition numbers a1 = d(SKuj 5k W ) is non- 
zero. If V is some edge in TMod with end vertex U, then the decomposition 
number d (S1 uj S 5k V) is equal to one and so we obtain the Cartan integer 

m m 

C(sk,v, w = Zd(SK, U 5S, )d(SK, scw) = Z a 

j=1 j=1 

which is also equal to m by the structure of a Brauer tree algebra. Similarly 
m m 

C(Sk' W C SkC W) = 
k 

, S W)2 + (SK Uj E 
vk 

W2 = 1+Ea2 

j=1 j=1 

and this is equal to 1 + m by the structure of a Brauer tree algebra. It follows 
that 

m m 
m = Eaj = Ea2 

j=1 j=1 

and this implies that aj = 1 for all j, as required. This argument works of 
course if m = 1. The proof of Theorem 20.10 is now complete. 5 

(20.11) Corollary. Let U', ..., Um be the simple KG-modules labelling the 
exceptional vertex of TMod Then the K[NG(C)!C]-modules (Uj)c are all 
isomorphic. 
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Proof. We use the fact that all simple Mackey functors SK u decompose in 
the same way by the theorem above. By 9.10, we deduce that all K[NG(C)/C]- 
modules S[K u (C) = (UJ)C decompose in the same way. Since NG(C)/C has 
order prime to p, it follows that these modules are isomorphic. O 

21. APPENDIX: TABLES 

We present as examples the matrices ' introduced in Section 6, and also 
the decomposition matrices and Cartan matrices of Mackey functors for some 
small groups. We always give only the information relating to the blocks in 
Mackk(G, 1), which contain precisely the simple and projective Mackey func- 
tors indexed by p-groups. Thus, for instance, we only give the entries in P 
which are indexed by such simple Mackey functors, and this is sufficient to de- 
termine the composition factors of a Mackey functor in Mackk (G, 1) by 9.10. 
The Mackey functors in other blocks may be computed from this case using 
10.1. In situations where the behaviour of Mackey functors is described by a 
Brauer tree we give just the tree, and not the decomposition or Cartan matrices, 
which are deducible from it. 

We adopt an ad hoc notation for representations, mostly referring to them by 
their dimensions. If 4 is an nth root of unity, we denote by 4 a 1-dimensional 
representation in the group generated by 4. Generally co will be a primitive 
cube root of unity. 
Cp 

The matrices I: 

CP I SH,V 

characteristic 0 CP 
1 X ... Xp-l 1 

|K,W | 1 1 || = 
Xi1 

Xp- 1 1 0_O_1 

________ op11 0 0 

CP ~ ~ ~ 0 SH,V 
characteristic p Cp 

K,__________C 1 1 

p~~~~~~~~~~~ 

scp,l S1,1 

X ranges through the p - 1 non-identity characters Xl,.., Xp-1i 
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S3 

The matrices I: 

S3 SH,V 

characteristic 0 1 02 03 S3 
1 -1 2 1 l 

S3 SH, V 

characteristic 2 | 2 1 0 S3 

K, W 1 1 1 X 

21 2 _ 

L I Cs021 II 1 1 I 
_ _ _ _ _ _ _ S 3 1 _ _ _ _ 1 _ _ _ 

Brauer trees: 

SC271 S1,l Sl,-l SS3,1 SC371 SC3, 
o o 0 oo 

Sc2,1 S1,l Ss3,1 SC3,1 

Simple projective: S1,2 
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S3 

The matrix I: 

S3 SH,V 

characteristic 3 |1 2 03 S3 

| K,W | 1 1 1 -1 1 1 -ll 

K,W 1 1 

Klw~~l 

03 1 

Brauer tree: 

SC3,1 S1,1 S1,2 Si,.3 

Sc3,1 S1,l Si,-. SC3,-1 

Simple projectives: SC2,1X SS3,1 
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A5 

The matrices IQ: 

A5 SH,V 

characteristic 0 1 C2 C2 X C2 
1 3a 3b 4 5 1 -1 1 W 40 

K, 1 1 11= 

3a 1 

4 1 
51 

C2 1 1 1 2 1 

C~- 1111 

A5 SH,V 

characteristic 2 1 2 02 X 02 
1 2a 2b 4 1 1 400 

2a1 

41 

C2 11 1 2 
02 X02 11 
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A5 

Decomposition matrix: 

A5 SH,V 

characteristic 2 1 C2 C2 X C2 
1 2a 2b 4 1 1 w w 

SK,W 1 1 1 1 1 
3a 1 1 
3b 1 1 
41 

lC2X5C2 1 1 1 1 1 

Cartan matrix: 

A5 PH,V 

characteristic 2 1 C2 C2 x C2 
1 2a 2b 4 1 1 w w 

SK,W 1 4 2 2 2 1 1 1 
2a 221 1 11 
2b 2 1 2 1 1 1 
41 

C2 1 2 1 1 4 2 1 1 
02 X02 1 1 2 3 

w 11 1 ~ ~1 2 1 
____ ~~~~ 11 1 1 ~~~~1 2 
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GL(3,2) 

The matrices IQ: 

GL(3,2) SH,V 

characteristic 0 1 C2 C4 V1 V2 D8 
1 3 36 7 8 1 1a lb 1c 1 -1 1 -1 2 1 -1 2 1 

K, W 13 1 
3 1 

6 1 
71 

c 2 1 1 2 1 1 
la 11 131 1 

K,bW 1 1 1 
1c 111 1 4_1 

C4 1 1 2 1 11 

Vi 1 1 1 1 

V21 1 1 1 

D8 1 _1 2 13 1 11 1 1 1 1 1 

GL(3,2) SHyV 

characteristic 2 1 02 04 V1 V2 D 
1 338 1 1 1 2 1 2 

K,W 11 
31 

3~~~~~ 
81 

02 1 1 1 1 4 1 
04 1 2 1 _ _ _ _ 

Vii1 
21 

V2 1 
2_ _ 1 

___~~~ D81 1 ___ 
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GL(3, 2) 

Decomposition matrix: 

GL(3,2) SH,V 

characteristic 2 1 C2 C4 V1 V2 D8 
1 3 38 1 1 1 2 1 2 1 

SK,W 1 1 1 1 1 1 1 1 
3 1 1 

6 1 1 2 2 1 1 1 1 

7 111_ 11 1 1 1 

81 
C2 1 11 1 1 

la1 1 

l- 

Vi 3 3 8 1 1 1 

SK,W 1 -1 1 
2 < 1 _ _ _ _ 1 

V2 1 1 1 

-1 1 

Cartan matrix: 

GL(3,2) PH,V 

characteristic 2 1 02 04 V1 V2 D 
1 3 8 1 1 1 2 1 2 1 

SK,W 1 1 2 1 1 2 2 2 2 1 
3 1 32 3 4 2 1 2 1 

3 1 23 3 4 2 1 2 1 
81 

021 2 33 10 8 6 4 6 4 2 
041 2 44 8 12 5.3 5 3 3 
V1 1 2 22 6 5 7 3 4 2 3 

2 1 1 4 3 3 4 2 2 1 
V2 1 2 22 6 5 4 2 7 3 3 

2 1 1 4 3 2 2 3 4 1 
____ ~D8 11 1 2 3 3 1 3 1 6 
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PSL(2, 7) 

The matrices IF: 

L2(7) SH,V 

characteristic 0 1 C7 
1 3 36 7 8 1 a 

61 
71 
81 

071W 1 1 

w7 1 _ _ _ _ _ 1 

L2 (7) SH,V 

characteristic 7 1 C7 
1 3 5 7 1 w 

KlW 1 1 1 
31 
51 
71 

C7 11 1 

Brauer tree: 

SC7 ,w 
0 

SC7 lo Sl,l S1,6 S1,8 S13Il' 

SC7,1 Si,l S1,5 S, 

SC7j 

Simple projective: S1,7 
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