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TATE COHOMOLOGY LOWERS CHROMATIC

BOUSFIELD CLASSES

MARK HOVEY AND HAL SADOFSKY

(Communicated by Tom Goodwillie)

Abstract. Let G be a finite group. We use recent results of J. P. C. Greenlees
and H. Sadofsky to show that the Tate homology of E(n) local spectra with
respect to G produces E(n−1) local spectra. We also show that the Bousfield
class of the Tate homology of LnX (for X finite) is the same as that of Ln−1X.

To be precise, recall that Tate homology is a functor from G-spectra to
G-spectra. To produce a functor PG from spectra to spectra, we look at a
spectrum as a naive G-spectrum on which G acts trivially, apply Tate homol-
ogy, and take G-fixed points. This composite is the functor we shall actually
study, and we’ll prove that 〈PG(LnX)〉 = 〈Ln−1X〉 when X is finite.

When G = Σp, the symmetric group on p letters, this is related to a
conjecture of Hopkins and Mahowald (usually framed in terms of Mahowald’s
functor RP−∞(−)).

1. Introduction

We briefly recall the spectra that occur in Lin’s proof of the Segal conjecture for
the group Z/(2). Embed Z/(p) into S1 and look at the pullback of the tautological
(complex) line bundle over BS1 as a bundle over BZ/(p). Call this bundle ξ.

We denote by P−2k the spectrum given by the Thom spectrum (BZ/(p))−kξ

when p = 2, or when p is odd the summand of that spectrum corresponding to
BΣp. (We refer the reader to [20] for the definition of a Thom spectrum associated
to a virtual bundle.) P−2k has a cell in every dimension ≥ −2k and is the spectrum
frequently called RP∞−2k when p = 2. When p is odd, P−2k has a cell in every
dimension congruent to 0 or −1 modulo q = 2p− 2 and ≥ −2k. P−2k is the same
as the spectrum denoted P∞−2k in [19], and constructed there by James periodicity
rather than via Thom spectra.

Lin’s theorem [10] (Gunarwardena’s theorem when p > 2 [1]) states that

lim←−
k

(P−2k ∧X) = Σ−1Xp̂(1)

when X is a finite spectrum. This inverse system of spectra (with some minor
alterations) is also what is used to define the root invariant (see [11] for p = 2, or
more generally, [13, 19]). As shorthand, we write P−∞(X) for lim←−k (P−2k ∧X).

Mahowald and Ravenel [12] have conjectured a relationship between chromatic
periodicity and Mahowald’s root invariant. There is a related conjecture by Hopkins
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and Mahowald that is more closely related to our concerns in this paper. Denote
Bousfield localization with respect to E(n) by Ln. They conjecture that

P−∞(LnX) = Σ−2Ln−1Xp̂ ∨ Σ−1Ln−1Xp̂(2)

for X finite. (A word to the experts: this conjecture is connected with Hopkins’s
chromatic splitting conjecture (see [7]) and at the time (2) was conjectured the
chromatic splitting conjecture was in too simple a form. In light of its current
corrected form as in [7], (2) is probably also too optimistic, though we expect it is
true as stated when X has type n− 1.)

Greenlees and May put the P−∞ construction in a more general context in [4].
There they define the Tate G-spectrum associated to a G-spectrum X , tG(X).
We are not concerned with equivariant spectra here, but we use tG to construct
a functor from (ordinary) spectra to spectra. We abuse notation and write i∗ for
the functor which is the composite of the inclusion of ordinary spectra into the
category of naive G-spectra (as the objects on which G acts trivially) with the left
adjoint of the forgetful functor from G-spectra to naive G-spectra. So i∗ is a functor
from ordinary spectra to G-spectra. Our other functor is the G-fixed point functor,
(−)G, which goes from G-spectra to spectra. We refer the reader to [9] for details.
We define

PG(X) = tG(i∗X)G.

Then [4, 16.1] shows that

PΣp(X) = P−∞(ΣX)

(the left-hand side needs to be localized at p when p is odd).
Henceforth we will only be concerned with the case where G is a finite group.

We now have a family of functors, one for each finite group G, and we assume (to
guarantee non-triviality of our functors) that p divides the order of G. Our main
theorem is the following.

Theorem 1.1. Let X be a finite spectrum. Then 〈PG(LnX)〉 = 〈Ln−1X〉.

Here 〈X〉 means the Bousfield class of the spectrum X as given in [2].
We also give a result about complex oriented vn-periodic spectra.

Theorem 1.2. If E is Landweber exact and vn-periodic, then PZ/(p)E is Landwe-
ber exact and vn−1-periodic. It follows generally that 〈PG(E(p))〉 = 〈E(n− 1)〉.

Our proofs rely on [5, Theorem 1.1], which implies that PG(K(n)) ' ∗. We also
use two other results that are relatively well known. We use Ravenel’s Proposi-
tion 1.34 from [16]:

〈X〉 = 〈C(f)〉 ∨ 〈Tel(f)〉(3)

where f is a self-map of X , C(f) is the cofiber and Tel(f) is the mapping tele-
scope. Finally, we use a theorem of Hopkins and Ravenel from [18] to show that
PG(K(n)) ' ∗ implies PG(LnX) ' ∗ when X is finite type n.

Using the interesting results of Mahowald and Shick in [15] one can show that
PZ/(2)(Tel(X)) ' ∗ where X is finite type n and Tel(X) is the mapping telescope
of X under a vn map. One can use this to deduce our theorems in the special case
G = Z/(2). Chun-Nip Lee has done this independently [8].

The authors would like to thank Neil Strickland for pointing out various places
where we failed to say what we meant or to mean what we said in a previous draft.
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2. There is a finite type n spectrum F with LnF K(n)-nilpotent

Recall that X is said to be E-prenilpotent if LEX is E-nilpotent; that is if
LEX can be built up in finitely many stages from spectra of the form E ∧ Z by
taking cofibrations and retracts. Note that N is E-nilpotent implies N ∧ M is
E ∧M -nilpotent. By [18, 8.3] there is a finite type 0 spectrum Y that is LnBP -
prenilpotent.

By [18, Lemma 8.1.4]

〈LnBP 〉 = 〈v−1
n BP 〉,

which is in turn equal to 〈E(n)〉 by [16]. So LnY is LnBP -nilpotent. Now let M
be a finite type n spectrum with

BP∗M = BP∗/(p
i0 , . . . , v

in−1

n−1 )

and such that M is a ring spectrum. (See [3] for the existence of such ring spectra.)

Then BP ∧M = BP/(pi0 , . . . , v
in−1

n−1 ), so by [17, Theorem 1],

LnBP ∧M = v−1
n BP ∧M.

But v−1
n BP ∧M is made out of finitely many cofibrations with cofiber v−1

n BP/In =
B(n). Now by [21, Remark 6.19], B(n) = K(n) ∧B for some B, so it follows that
LnBP ∧M is K(n)-nilpotent.

Since LnY ∧M is LnBP∧M -nilpotent, it follows that LnY ∧M isK(n)-nilpotent.

Lemma 2.1. There is a finite type n spectrum F with LnF K(n)-nilpotent.

Proof. Take F = Y ∧M .

3. PG(LnX ∧ F ) ' ∗ if F is type n

We recall from [5] that tG(i∗K(n)) ' ∗ as a G-spectrum. It follows that
PG(K(n)) ' ∗. We record the following lemma.

Lemma 3.1. If X is K(n)-nilpotent, then PG(X) ' ∗.

Proof. First note that since PG takes cofibrations to cofibrations, it suffices to prove
that PG(K(n)∧Z) ' ∗ for any Z. But PG(R) is a ring spectrum when R is a ring
spectrum, and PG(N) is a module spectrum over PG(R) if N is a module spectrum
over R [4, Proposition 3.5]. It follows that PG(K(n) ∧ Z) ' ∗.

Remark. The same proof shows that tG(X) ' ∗ equivariantly if X is i∗K(n)-
nilpotent in the category of G-spectra.

Corollary 3.2. If F is finite type n, then PG(LnX ∧ F ) ' ∗ for any spectrum X.

Proof. Let C be the category of finite spectra F such that PG(LnX ∧F ) ' ∗ for all
spectra X . C is a thick subcategory in the sense of [6]. It follows that if C ∩Cn 6= ∅,
then Cn ⊆ C. We recall that if a spectrum Y is K(n)-nilpotent, so is X ∧ Y for
any spectrum X . Since LnX ∧ F = X ∧ LnF (Ln is smashing) by Lemma 3.1 and
Lemma 2.1, C ∩ Cn 6= ∅.

Remark. Since LnF = LK(n)F when F is finite type n, one might ask when
PG(LK(n)X) ' ∗. While we don’t know the most general answer, this does not
hold in general for X finite. Using the methods of this paper, one can easily check
that if X is finite, 〈PG(LK(n)X)〉 = 〈Ln−1X〉.
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4. PG(LnX) is E(n− 1)-local

We use equation (3) inductively. We get

〈PGLnX〉 = 〈p−1PGLnX〉 ∨ 〈PGLnX ∧M(pi0)〉
= 〈p−1PGLnX〉 ∨ 〈v−1

1 PGLnX ∧M(pi0)〉 ∨ · · ·
∨〈v−1

n−1PGLn ∧M(pi0 , . . . , v
in−2

n−2 )〉 ∨ 〈PGLnX ∧M(pi0 , . . . , v
in−1

n−1 )〉.

Now since the PGLnX ∧M(pi0 , . . . , v
in−1

n−1 ) ' ∗ by Corollary 3.2, we get

〈PGLnX〉 = 〈p−1PGLnX〉 ∨ 〈v−1
1 PGLnX ∧M(pi0)〉 ∨ · · ·

∨〈v−1
n−1PGLn ∧M(pi0 , . . . , v

in−2

n−2 )〉.
Since PGLnX is an LnS

0 module, it follows that

v−1
j PGLnX ∧M(pi0 , . . . , v

ij−1

j−1 ) = PGLnX ∧ v−1
j LnM(pi0 , . . . , v

ij−1

j−1 )

= (PGLnX) ∧ LjM(pi0 , . . . , v
ij−1

j−1 ).

(The last equality follows from [14, Proposition 6.1].) Since 〈LjM(pi0 , . . . , v
ij−1

j−1 )〉 =

〈K(j)〉, we see that

〈PGLnX〉 ≤ 〈K(0)〉 ∨ · · · ∨ 〈K(n− 1)〉 = 〈E(n− 1)〉.(4)

Now since LnX is an LnS
0 module, PGLnX is a PGLnS

0 module [4, Proposi-
tion 3.5]. But PGLnS

0 is self-local since it is a ring spectrum [16], so by equation
(4) PGLnS

0 is E(n− 1)-local, hence so is PGLnX .
To finish the proof of Theorem 1.1 it remains to show the inequality in equa-

tion (4) is actually an equality when X = S0. In section 6 we use Theorem 1.2 to
do this.

5. PG of Landweber exact vn-periodic theories

In this section we prove Theorem 1.2. We will suppose that E is a complex
oriented homology theory. We also assume that E is p-local (PG(E) = PG(E(p))
if G happens to be a p-group). Then we can assume E is oriented by a map from
BP , so that we can consider vi as an element of E∗. We remind the reader that
Ij = (p, v1, . . . , vj−1), and that for BP (and hence for any spectrum oriented from
BP ),

[p](x) = px+F v1x
p +F v2x

p2

+F · · ·+F vix
pi +F · · ·

where +F is the sum in the formal group law on E∗.
We begin by remarking that for complex oriented E in which the leading coeffi-

cient of [p](x) is not a 0-divisor,

π∗PZ/(p)E = E∗((x))/([p](x))

where |x| = −2, E∗((x)) denotes the ring of Laurent series over E∗ which have only
finitely many terms involving negative powers of x, and [p](x) is the p-series. It
follows that when [p](x) is not a zero divisor, we have a short exact sequence

E∗((x))
·[p](x)
−−−−→E∗((x))→ π∗PZ/(p)E.

We now assume that E is vn-periodic Landweber exact. We define vn-periodic
almost as in [5, Definition 1.3]; E is vn-periodic if vn is a unit on E∗/In and in
addition E∗/In 6= 0.
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For each j ≤ n, we know that E∗/Ij → v−1
j E∗/Ij is injective by the hypothesis

of Landweber exactness. It follows that

E∗((x))/Ij = E∗/Ij((x))→ (v−1
j E∗/Ij)((x))

is injective also. Now [p](x) is a unit in (v−1
j E∗/Ij)((x)) since it is a power series

with leading term vjx
pj , which is a unit. It follows that

E∗((x))/Ij → (v−1
j E∗/Ij)((x))

·[p](x)
−−−−→(v−1

j E∗/Ij)((x))

is injective, hence

E∗((x))/Ij
·[p](x)
−−−−→E∗((x))/Ij

is also.
We examine the diagram of short exact sequences below, in which the bottom

row is the cokernel of the map between the top two rows.

0 −−−−→ E∗((x))/Ij
·[p](x)−−−−→ E∗((x))/Ij −−−−→ (π∗PZ/(p)E)/Ij −−−−→ 0

·vj
y y·vj y·vj

0 −−−−→ E∗((x))/Ij
·[p](x)−−−−→ E∗((x))/Ij −−−−→ (π∗PZ/(p)E)/Ij −−−−→ 0y y y

0 −−−−→ E∗((x))/Ij+1
·[p](x)−−−−→ E∗((x))/Ij+1 −−−−→ (π∗PZ/(p)E)/Ij+1 −−−−→ 0

By the snake lemma applied to the first two rows (together with the observa-
tion that the first two vertical maps are injective) we see that vj is injective on
(π∗PZ/(p)E)/Ij .

We can also see that [p](x) is not a unit in E∗((x))/Ij unless vj is a unit in
E∗/Ij , therefore (π∗PZ/(p)E)/Ij 6= 0 unless j = n, and this last observation tells us
that vn−1 is a unit on (π∗PZ/(p)E)/In−1.

We conclude that PZ/(p)E is Landweber exact, and that

π∗(PZ/(p)E)/In−1 6= 0

while π∗(PZ/(p)E)/In = 0. It follows by using (3) as before (see [7, Corollary 1.12])
that

〈PZ/(p)E〉 = 〈E(n− 1)〉.

By using the maps of complex oriented ring spectra

E → PGE → PZ/(p)E

(when Z/(p) ⊆ G) we also deduce that

〈PGE〉 = 〈E(n− 1)〉.

6. Proof of Theorem 1.1

We recall from section 4 that v−1
j PGLnS

0 ∧M(pi0 , . . . , v
ij−1

j−1 ) has the Bousfield

class of either a point or of K(j). So to show it has the class of K(j), we need only
show that it is not contractible.
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We pick i0, . . . , ij−1 so that M(pi0 , . . . , v
ij−1

j−1 ) is a ring spectrum. Then we
observe that the map

S0 → v−1
j PGLnS

0 ∧M(pi0 , . . . , v
ij−1

j−1 )→ v−1
j PZ/(p)LnS

0 ∧M(pi0 , . . . , v
ij−1

j−1 )→

v−1
j PZ/(p)E(n) ∧M(pi0 , . . . , v

ij−1

j−1 )
=

−−−−→v−1
j PZ/(p)E(n)/(pi0 , . . . , v

ij−1

j−1 )→

v−1
j PZ/(p)E(n)/(p, . . . , vj−1)

is the unit of the ring spectrum v−1
j PZ/(p)E(n)/(p, . . . , vj−1). This is non-zero if

j < n by Theorem 1.2. So none of the intervening spectra are contractible either.
For arbitrary finite X (instead of S0) just smash with X . Note that 〈−〉, PG(−),

and localization commute with smashing with a finite spectrum.

Remark. The same proof can be iterated to draw the obvious conclusions about
P kG(LnS

0).
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