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COMMUNICATIONS IN ALGEBRA, 21(4), 1393-1420 (1993) 

ON MULTIPLICATIVE TRANSFER 

D. Tambara 

Department of Mathematics, Hirosaki University 

Hirosaki 036, Japan 

Introduction 

In representation theory and cohomology theory of finite groups there are 

two kinds of transfer maps: additive and multiplicative. The purpose of this 
paper is to study properties of multiplicative transfer in an abstract setting. 

Green and Dress introduced Mackey functors to give a unified treatment 
of various additive transfers ([a, [A). Fix a finite group G. A Mackey 
functor on the category of G-sets is a function S which assigns to each G-set 
X an abelian group S ( X )  and to each G-map f :  X  -+ Y homomorphisms 

f * : S ( Y )  -+ S ( X ) ,  f, : S ( X )  -, S ( Y )  satisfying certain axioms. 
We here consider a Mackey functor S with extra structure as follows. 

Each S ( X )  is a commutative ring, and for each G-map f :  X  -+ Y a multi- 

plicative map f, : S ( X )  + S ( Y )  is defined. We call f *, f,, f, a restriction, 
trace, norm map respectively, and call such S a TNR-functor. 

An example is the representation ring functor A. Fix a field k. For 
a subgroup H of G, A takes the G-set G/H to the representation ring of 

k[H], that is, the Grothendieck ring of k[H] with respect to direct sums. 
For a natural G-map f :  G/IC -, G/H with K 5 H _< G, the maps f*, 
f,, f, are induced by the restriction, ordinary induction, tensor induction of 
representations, respectively. 

Let us outline the contents of the paper. We give the definition of TNR- 
functors in Section 2, and some natural examples of them in Section 3. 

Copyright Q 1993 by Marcel Dekker, Inc. 
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1394 TAMBARA 

Fulton and MacPherson developed a formal calculus of multiplicative 
transfer ([I]) .  In Section 4 we discuss their addition formula for a norm map. 
In Section 5, using the mixed transfers introduced by them, we show that 
the restriction f*  : S(Y) -+ S(X) is an integral ring map . 

In a number of important cases, each S(X) is the Grothendieck ring of 
a certain category C ( X )  with $ and 8, and f, : S(X) + S(Y) is induced by 
a certain functor C(f): C(X) -r C(Y) preserving 8. But, since C(f) does not 
preserve $, it is not obvious how to define f* on differences of objects of C(X). 
Theorem 6.1 provides a method of extending a norm map between semi-rings 
to one between the associated rings. This is based on our reformulation of 
the addition formula. 

Let U be the category of TNR-functors. In Sections 7 and 8 we construct 

a category U so that U is isomorphic to the category of functors U -+ {sets) 
preserving finite products. This may be compared with Lindner's construc- 
tion for Mackey functors ([a). 

Notation and Conventions. A finite group G is fixed throughout. S 
denotes the category of sets. S: denotes the category of finite left G-sets. 
We simply say G-sets for finite left G-sets. A semi-ring is a set together 

with binary operations f, and elements O , 1  which satisfy the axioms of a 

ring except the existence of the inversion for (+, 0). Semi-rings and rings 

are assumed to be commutative. Homomorphisms of semi-rings and rings 

preserve 0 and 1. 

1. Direct images and exponential diagrams of G-sets 

Let X, Y be finite G-sets and f :  X -t Y a G-map. Denote by S ~ / X  the 

category of G-sets over X. The pullback functor 

has a right adjoint 
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MULTIPLICATIVE TRANSFER 1395 

where we make q  from p as follows. For each y  E Y, the fibre q - l ( y )  is the 

set of maps s :  f - ' ( y )  -+ A such that p ( s ( x ) )  = x  for all x E f - l ( y ) .  If 

a E G and s  E q - l ( y ) ,  the map " s :  f - ' ( u .  y) + A  taking x to u . s ( a - ' .  x) 
belongs to q - l ( a  . y) .  The operation (u, s )  H " s  makes TIjA a G-set and q 

a G-map. 

We have a commutative diagram 

where f' is the projection and e is the evaluation map (2 ,  s )  H ~ ( x ) .  A 
diagram in $7 which is isomorphic to this is called an exponential diagram. 

The following properties are easily verified. 

is an exponential diagram and 

are pullback diagrams, then 

is an exponential diagram. 
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MULTIPLICATNE TRANSFER 

is a pullback diagram, then 

is an exponential diagram. 

A semi-TNR-functor S is a function which assigns to each finite G-set X a 
semi-ring S(X) and to each G-map f : X -+ Y three maps f * : S(Y) -, S(X) ,  

f*: S(X) + S(Y), f,: S ( X )  -, S(Y) in such a way that the following 
conditions are satisfied. 

is a sum diagram of G-sets, then 

is a product diagram of sets. S(0) consists of a single element. 

(ii) f *, f,, and f, are homomorphisms of semi-rings, additive monoids 
and multiplicative monoids, respectively. 

(iii) If f :  X + Y, g :  Y -+ Z are G-maps, then 

( s f  I* = f *s*, (s f  )* = s*f* , ( s f  )* = s*f* 

and 

(iv) If 

PI l q  
X - Y  

f 
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TGMBARA 

is a pullback diagram, then 

is an exponential diagram, then 

If all S (X)  are rings, S is called a TNR-functor. A morphism 9: S -+ T 

of semi-TNR-functors consists of semi-ring maps Q ( X ) :  S ( X )  + T ( X )  for 
all G-sets X which commute with f *, f,, f* for all G-maps f .  We denote by 
U+ the category of semi-TNR-functors and by U the full subcategory of U+ 
consisting of TNR-functors. 

REMARK 2.2. The formulas of (iv) are often called Mackey double coset 
formulas. (v) is a generalization of the distributive law. See [I, Proposition 
8.61 and the proof of [s, Lemma 8.l(b)]. 

We notice some easy consequences of (2.1). 

(2.3) Let S be a semi-TNR-functor. 
(i) Let L :  0 4 X be the unique map. Then 

(ii) Let I :  X 4 X + Y, T :  Y -t X + Y be the canonical injections into 

the disjoint sum. Then the inverse of the bijection (I*, P*): S ( X  + Y) -, 
S ( X )  x S(Y) is given by 

and also by 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

oc
he

st
er

] 
at

 1
7:

53
 2

4 
A

ug
us

t 2
01

4 



MULTIPLICATIVE TRANSFER 1399 

(iii) Let V :  X + X 4 X be the canonical folding map. Then the fol- 

lowing diagrams are commutative. 

S (X  + X )  ('Y) S(X) x S(X) 

V* 1 J addition 
W) 

S(X + X)  ( Y )  S ( X )  x S(X) 
v J multiplication 

S ( W .  

(iv) (Projection formula) If f :  X -, Y is a G-map and a E S ( X ) ,  
b E S(Y), then 

f*(af *@)I = f*(a)b. 

PROOF. (i) S(0) = (0) = {I), and I,, L, preserve 0, 1, respectively. 
(ii) We shall prove that the second map is a section of (I*, T*). By the 

pullback diagram 
1 x x -0 

and (i), we have l*l,(a) = a,  18r,(b) = 1 for a E S(X),  b E S(Y). Similarly 

~* j* (a )  = 1, r9r,(b) = b. Hence 18(l,(a)r,(b)) = a, ~*(l,(a)T,(b)) = b. 
(iii) For a ,a l  E S(X),  we have V,(l,(a)~,(a')) = (Vl),(a)(Vr),(al) = 

aa'. By this and (ii) the second diagram commutes. 

(iv) We have an exponential diagram 

Hence V,(f + l),(c) = f8V,(l + f)*(c) for c E S(X + Y). By (ii) this is 
equivalent to the asserted formula. 
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1400 TAMBARA 

A semi-Mackey ring functor S is a function which assigns to each G-set X 
a semi-ring S(X)  and to each G-map f : X + Y two maps f * : S(Y) -, S(X), 

f,: S(X)  -, S(Y)  in such a way that they satisfy (2.l)(i)-(iv) (for f*,  f,) 
and (2.3)(iv). If all S(X) are rings, S is called a Mackey ring functor. 

Thus a semi-TNR-functor is a semi-Mackey ring functor, when f, are 
forgotten. 

3. Examples of TNR-functors 

(3.1) Invariant ring funciors. Let R be a G-ring, that is, a ring with G-action. 

For a G-set X, we put 

A(x) = MapG(X, R) = (G-maps X -+ R). 

This is a ring by pointwise addition and multiplication. If H is a subgroup 

of G, then R(GIH) is isomorphic to the invariant ring RH. For a G-map 
f :  X -+ Y, we define 

f * : R(Y) + &(XI 

f*: R(X) - &Y) 

f*: R(x) 3 h(Y) 

by the formulas 

for E R(x), 6 &Y). Then R(x), f ' ,  f., f* form a TNR-functor A. 
(3.2) The Burnside ring functor.  For Burnside rings we refer to [A, [a, [a, 
[u. Let X be a G-set. Let O+(X) be the set of isomorphism classes [A -+ X] 
of G-sets over X. The categorical sum and product in S ~ / X  give SZ+(X) a 

semi-ring structure. For a G-map f : X -+ Y, we define 
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MULTIPLICATIVE TRANSFER 

by the formulas 

f*[B + Y ]  = [X x y  B + X ]  

f*[A + XI = (A  -, X -, Y ]  

f*[A+X] = [II,A+ Y]. 

Then R+(X),  f *, f, , f, form a semi-TNR-functor R+. This readily follows 
from (1.1)-(1.3). One can complete the semi-rings R+ (X) into rings R(X) by 
adjoining additive inverses. For a subgroup H of G, Q ( G / H )  is the Burnside 

ring of H. One can define maps f * : R(Y) -, R(X), fa ,  f* : O ( X )  -, R(Y) 
so that Q(X), f* ,  f,, f* form a TNR-functor 0 and the canonical maps 

O+(X) -+ R(X) form a morphism R+ -+ R of semi-TNR-functors. This is 
well-known, and will be proved in a more general setting in Section 6. 

(3.3) Representaiion ~ i n g  functors. Let k be a field. The functor A in In- 
troduction is a TNR-functor. If we replace A(G/H) by the Grothendieck 
ring Ao(G/H) of k[H] with respect to exact sequences, we similarly obtain 
a TNR-functor Ao. 

(3.4) Cohomology ring functors. Let R be a G-ring. Then we have a TNR- 
functor h(R) as follows. If H is a subgroup of G, h(R)(G/H) is the cohomol- 
ogy ring BnZo H2"(H, R). I f f :  G/Ii' + G/H is the natural surjection with 
K < H _< G, then f*,  f,, f, are the restriction map, Eckmann's transfer, 
Evens' transfer ([a), respectively. 

4. Addition formula 

The addition formula of a norm map in cohomology was given by Fulton and 

MacPherson [a. In our context it is formulated as follows. 
Let f : X + Y be a G-map. Consider the G-set 

Then X x y V = U + U', where 

U = {(x,C) 1 x E X ,  C c f-'f(x),x E C} 

u' = {(x, C )  1 2 E X, C C f -If (z), x 4 C). 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

oc
he

st
er

] 
at

 1
7:

53
 2

4 
A

ug
us

t 2
01

4 



TAMBARA 

We have commutative diagrams of G-sets 

T T' 
X-U X - U' 

where s, T, T' are the projections, and t, t' take (x, C) to (f (x), C). By a T- 
diagram (resp. an F-diagram) we mean a diagram in S: which is isomorphic 
to the left (resp. right) one (T stands for true, F false). 

PROPOSITION 4.1. Let S be a semi-TNR-functor. Then 

f,(a + a') = s,(t,r*(a) - t:r'*(al)) 

for a, a' E S(X), and 

f@) = j*(l), 

where j :  Y - f (X) -, Y is the inclusion map. 

PROOF. We have the exponential diagram 

where V is the folding map. Let a" E S(X + X) be a unique element which 
restricts to  a on the left X and a' on the right X. Then 

By (2.3)(iii) we have 

hence the first formula follows. 
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MULTIPLICATIVE TRANSFER 

By the exponential diagram 

and (2.3)(i) we have 

We give another version of the addition formula. For this we first define 

a new product on S(V). Let v ( ~ )  be the G-set of triples ( y ,  Cl ,  C2) of y E Y 
and mutually disjoint subsets Cl , C2 of f Let pl , P O ,  m be the G-maps 

v ( ~ )  + V taking ( y ,  Cl, C2) to ( y ,  Cl), ( y ,  C2), ( y ,  Cl uC2),  respectively, and 
i :  Y -+ V the G-map taking y to ( y ,  0 ) .  

Let S be a semi-TNR-functor, or more generally, a semi-Mackey ring 

functor. For a, b E S(V) we put 

a v b = m, (p ;  (a) . p+,(b)). 

LEMMA 4.2. The additive monoid S(V) is a semi-ring with multiplication 

V and unit element i,(l). 

PROOF. We shall verify only the associativity of V. Let v ( ~ )  be the G-set 

of quadruples ( y ,  Cl ,  C2, C3) of y E Y and mutually disjoint subsets Cl,  C2, 

C3 of f (y).  Define G-maps pl2, p23, m12, m23 : v ( ~ )  + v(') and pl , p2, 

p3, m : v ( ~ )  -+ V by 
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1404 TAMBARA 

for 1 5 i _< j 5 3. Then we have a pullback diagram 

Now let a, b, c E S(V). By the Mackey formula (2.l)(iv) for the left 
square and the projection formula (2.3)(iv) for mlz, we compute 

Using the right square similarly, we find that a V (b V c) is the same. 

For n 2 0 we put 

Then U, V are the disjoint unions of Un, V,, respectively. We have commu- 
tative diagrams 

Tn 
X c--- Un 

with T,, s,, tn the restrictions of r ,  s,  t. 

The new semi-ring S(V) has a grading given by the decomposition 

S(V) 2 en S(Vn). If S is a semi-TNR-functor, the map t , ~ *  : S ( X )  --+ S(V) 
decomposes into the sum of the maps tn,r; : S ( X )  -+ S(Vn). Note also that 

t,,*r;(a) = 1. 

PROPOSITION 4.4. Let S be a semi-TNR-functor. We have 

t , ~ *  (a + a') = t*r* (a) V t,r* (a') 
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MULTIPLICATIVE TRANSFER 

for a, a' E S ( X ) ,  and 

t,r*(O) = i,(l). 

PROOF. Consider the following G-sets and G-maps for i = 1,2: 

Then 

are a T-diagram, an F-diagram, a pullback diagram, respectively. 

By the addition formula for t, we have 

t*r*(a + a') = rn,(nl,l;~*(a) . n2,l;~*(ar)) 

= m, (n1,qf r* (a) n2,qz r* (a')) 

= m,(p;t,r*(a) .plt,r8(a')) 

= t,r*(a) V t,r*(al). 

Since V - t ( U )  = i(Y), we have 

This proves the proposition. 

As an application of this proposition, we show that f, is an algebraic 

map in the sense of Dress [a]. Let K be an abelian monoid, L an abelian 

group and cp: K -, L a map. We say deg cp = 0 if cp is a constant map. For 

a E K let D,cp: K -+ L be the map x I+ p(x + a) - cp(x). Inductively, for 

n > 0 we say degcp 5 n if deg(D,cp) 5 n - 1 for all a E K. We say cp is 
algebraic if deg cp < oo. 
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1406 TAMBARA 

LEMMA 4.5. (i) Let cp, 11,: K -+ L be algebraic maps with K ,  L abelian 
groups. If p and 11, coincide on a submonoid generating K ,  then cp = $. 

(ii) Let cp: K -+ L and I j r  : L -, M be algebraic maps with L, M abelian 

groups. Then 11, o cp is an algebraic map. 

PROOF. See [a, Section 51. 

LEMMA 4.6. Let K be an abelian monoid and R = en,, R, agraded ring. - 
Let cp be a rnonoid map of I< into the multiplicative group 1 +nn,, R,, with 
components cp, : K + R,,. Then degcp, 5 n .  

PROOF. This follows inductively from 

The degree deg f of a G-map f : X -, Y is the function on Y given by 

(degf)(y) = # f ' - l ( y ) .  

PROPOSITION 4.7. Let S be a TNR-functor. Then f, : S ( X )  -, S ( Y )  is 
an algebraic map with respect to the additive structures of S(X), S(Y). If 

deg f 5 n, then deg f ,  < n .  

PROOF. We may assume Y has only one orbit. Then f has a constant 
degree, say, n. Applying Lemma 4.6 to the map 

we know that deg(tk,r;) 5 k for all k. Since tn*r; = f*, we have deg f ,  < n. 

5 .  Mixed transfers fin) 
In this section we introduce transfers f in ) :  S ( X )  -t S(Y)  for n > 0 after 

Fulton and MacPherson [a. We can imagine f in)(a)  as the nth elementary 
symmetric polynomial of the conjugates of a. In particular, f' is an integral 
ring map. We also give a direct proof of a formula of [I, Remark 10.10], 

which relates f, (am) with f in)(a) .  The later sections are independent of this 

sect ion. 
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MULTIPLICATIVE TRANSFER 1407 

We fix a TNR-functor S and a G-map f: X -+ Y. With the natation of 
(4.3) we put 

fin' = sn*tn*r;: S(X) --+ S(Y). 

Clearly f!O)(a) = 1 ,  fL1)(a) = f.(a) for all a E S(X). fin)(a) = f,(a) if f 
has a constant degree n ,  and fin)(aj = 0 if deg f < n.  

PROPOSITION 5.1. If deg f < n ,  then 

for all a E S(X) . In particular, S(X) is integral over the su bring f * (S(Y)) . 

LEMMA 5.2. Let fl' : X+X1 -+ Y be a G-map with components f : X -+ Y 
and f': X' -+ Y. I f  a" E S(X + XI) corresponds to (a, a') E S(X) x S(X1) 
through the natural bijection, then 

PROOF. Let 

r T I  
X-U X' - U' 

be T-diagrams. Then 

is a T-diagram, where 
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and p (resp. p') is the projection to the left (resp. right) factor. We have 

where the projections V x y  V' 4 V ,  V X Y  V' -+ V 1  are denoted by p, p' 

again. Define VA, s',, . . . , (V x y  V'), ,  s i ,  . . . similarly to V,, s,, . . . . Then 

(V X y V 1 ) ,  = u vj X y  q'. 
i+j=n 

Hence 

f p  = Sll  t l l  Tll*(a") 
n* n* n 

= C (3; X y (I$)* (p*ti*rf ( a )  + pl*t;*rr ( a ' ) )  
i+j=n 

= C si*ti*Tf ( a )  s;*t;*r7(af)  
i+j=n 

= C f ~ " ( a ) f ~ ( "  (a ' ) .  
i+j=n 

PROOF OF PROPOSITION 5.1. Let X' be the complement of the diagonal 

in X x y  X and g l ,  g2 : X' 4 X the projections. We have a pullback diagram 

( l , g 2 )  
X - x+x1 

f l  l ( L g 1 )  
Y - X .  

f 
Applying Lemma 5.2 t o  the map ( 1 ,  g l ) ,  we have 

for all k.  Hence , 
n k (k) ( n )  * 

C ( - 4  - r f* ( a )  = 91, g,(a). 
k = O  

If deg f 5 n, then deggl < n, so g!:)g;(a) = 0. This proves the proposition. 

We next consider f ,(an),  an analogue of the nth power sum. 
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MULTIPLICATIVE TRANSFER 

for a E S ( X ) ,  n 2 0. 

S is said to be cohomological if g,(l) = d for any G-map g of constant 

degree d (Green [a). For example, the functors of (3.1), (3.4) are cohomo- 

logical. In this case the above formula takes the following form. 

COROLLARY 5.4. JYS is cohomological, then 

Fulton and MacPherson deduced this formula from a general principle 
relating symmetric polynomials with transfers [I, Section 101. We shall give 

a direct proof. 

LEMMA 5.5. Set b, = r,,t;t,*r:(a) for n > 0. Then 

for n > 0. 

PROOF. Let W be the complement of the diagonal in 

q l ,  qz : W -+ Un the projections. By the pullback diagram 

we have t*, tn,(x) = x . ql*q;(x) for all x E S(Un) .  Hence 

Un x v,, Un and 
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1410 TAMBARA 

The set W consists of triples (xl,x2,C) such that x1,xz E X, X I  # ~ 2 ,  

f (xi) = f (x2), C c f -'f (e l ) ,  X I ,  2 2  E C. We have a commutative diagram 

with the left square cartesian, where I, m are given by 

Hence 

By the pullback diagram 

we have ~*S , -~ , (X)  = rn-l,t*,-l(x) + rn*1*(x) for all x E S(Vn-l). Hence 

PROOF OF PROPOSITION 5.3. From Lemma 5.5 we obtain 

Applying f, to the both sides, we have 
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MULTIPLICATIVE TRANSFER 

On the other hand, 

This proves the proposition. 

REMARK 5.6. Proposition 5.1 is trivial if f is normal, that is, if f is a 

natural surjection GIK -, GIH with K 5 H  < G  and K is normal in 
H. Indeed, let r,: GIK -+ GIK be the right multiplication by u E HIK. 
Then f" f i n ) (a )  is the nth elementary symmetric polynomial of ?:(a) for all 

u E HIK. Moreover, in this case the ring map f' : S(G/H)  -t S ( G / K )  is 

HI I<-normal in the sense of Dress [ p .  
REMARK 5.7.  For the representation ring functor A of (3.3), the integrality 
of C @ f*  was proved by a different method in [A. For the other functors of 

Section 3, the integrality of f * is well-known. 

For an abelian monoid M there exists a universal abelian group yM with 

monoid map kM : M  -, yM. yM is an abelian group with generators kM(m)  
for m  E M and relations k ~ ( m  + m') = kM(m)  + kM(ml) for m, m' E M .  If 
M is a semi-ring, the group yM made from the additive monoid of M has a 

unique ring structure such that k~ is a semi-ring map. 

THEOREM 6.1. Let S  be a semi-TNR-functor. Then the function which 

assigns the set 7 S ( X )  to each G-set X has a unique structure of a TNR- 

functor such that the maps k s ( x )  form a rnorphism of semi- TNR-functors. 

PROOF. We give the above ring structure to each 7 S ( X ) .  Let f :  X  + Y  
be a G-map. It is clear that f * ,  f ,  of S  uniquely extend to  additive maps 

f" : yS(Y)  4 yS(X) ,  f, : yS(X)  -+ yS(Y) ,  respectively. We claim that 

there exists also a unique algebraic map f,: 7 S ( X )  -, yS(Y)  extending 

f* of S. The uniqueness is guaranteed by Lemma 4.5(i). In Section 4 we 

constructed the homomorphism x := t,r* from the additive monoid S ( X )  
into the monoid S ( V )  with multiplication V .  Its image lies in l+nn,o S(Vn), 
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1412 TAMBARA 

and if j :  Y  + V  denotes the map y H (y, f - l ( y ) ) ,  then j * ~  = f*. Since 

1 + n,,, yS(V,) is a group, there exists a unique monoid map 2 : 7 S ( X )  -+ 

YS(V)  extending X. Then f ,  := j*g:  yS(X)  -t Y S ( Y )  is an extension of 

f,: S ( X )  -t S(Y) .  It is algebraic by the proof of Proposition 4.7. 

By Lemma 4.5 we know that the maps f *, f,, f ,  for yS( ) satisfy (2.1). 
This proves the theorem. 

Let us denote by yS the TNR-functor constructed above and by KS the 
morphism S  -+ yS with components k s ( x ) .  The following is clear. 

PROPOSITION 6.2. KS : S -r yS is a universal morphism from S  to a TNR- 
functor. 

REMARK 6.3. There is a lemma of Dress stating that any algebraic map 

y, from an abelian monoid K to an abelim group L extends to  an algebraic 

map $ : yK -+ L ([a, 15, Lemma 5.6.151). In the above proof we did not use 
the lemma because the direct construction was available . 

7 .  Category U+ 

Lindner observed that Mackey functors are precisely additive functors from 
the category of spans [Y t A  + XI of G-maps to the category of abelian 
groups ([gJ). We aim to give a similar interpretation to TNR-functors. In 

this section we construct a category U+ such that U+ is isomorphic to the 
category of functors U+ -, S preserving finite products. 

We say two diagrams Y t B c A  -r X and Y  c B' + A' 4 X in 
S? are isomorphic if there are G-isomorphisms A  -+ A', B + 8' making the 
diagram 

Y - B - A - X  

Y - B 1 - A ' - X  

commutative. Let U+(X,Y) be the set of the isomorphism classes [Y +- 

B c A -+ XI of diagrams Y t B e A  -+ X .  We define an operation 

0 : U+ (Y,  Z )  x U+ ( X ,  Y )  -t U+ ( X ,  2) by 
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MULTIPLICATIVE TRANSFER 1413 

where the maps in the right side are composites of the maps in the diagram 

d + Z I c A U  

J 1 1  
Z t D c C t B J c A '  

1 1 1  
Y t B t A  

1  
X. 

Here the three squares are pullback diagrams and the pentagon is an expo- 

nential diagram. 

For a G-set X we put 

PROPOSITION 7.1. The operation o is associative. The element Ix satisfies 

the unit condition with respect to 0 .  

PROOF. The unit condition is easy to see. The associativity is a consequence 

of (1.1)-(1.3). We omit the detail. 

We define a category U+ as follows. The objects of U+ are precisely the 

finite G-sets. For G-sets X  and Y we put Homv,(X,Y) = U+(X,Y).  The 
composition of morphisrns is the operation o and the identity morphisrns are 

Ix . 
We associate with a G-map f : X -+ Y three morphisms 

PROPOSITION 7.2. (i) [Y B  8 A  f, X] = Th o Ng o Rf. 
(ii) If f : X -, Y, g : Y  -+ C are G-maps, then 
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(iii) If 

TAMBARA 

X - Y  
f 

is a pullback diagram, then 

(iv) If 

is an exponential diagram, then 

PROOF. Easy and omitted. 

PROPOSITION 7.3. The category U+ has a presentation by generators Rf, 
Tf , N j  and relations in Proposition 7.2(ii)-(iv). 

PROOF. It is enough to observe that one can reduce any word of Rj ,  Tj , 
Nj to a word of the form Th o Ng o Rf, using the relations in Proposition 
7.2(ii)-(iv). 

REMARK 7.4. If one defines U+ by the above presentation, then one will 

have to prove the uniqueness of the normal form Th o N, o Rj. 

We next aim to make U+(X, Y) into a semi-ring. 

PROPOSITION 7.5. (i) If 
i l  i2  

XI -+X +-X2 

is a sum diagram in s ~ O ,  then 

is a product diagram in U+. 0 is a final object in U+. 
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MULTIPLICATIVE TRANSFER 1415 

(ii) Let X be a G-set and V: X + X -+ X the folding map, L :  0 -t X 
the unique map. Then X has a structure of a semi-ring object of U+ with 

addition Tv , additive unit T,, multiplication Nv , multiplicative unit N, . 
(iii) If f :  X Y is a G-map, then the morphisms R f ,  Tf, Nf of U+ 

preserve the above structures of semi-rings, additive monoids, multiplicative 

monoids on X and Y, respectively. 

PROOF. (i) For any G-set Y, the map 

is bijective because 

where 

X - B - A  
are pullback diagrams for v = 1,2. 

U+ (Y, 0) consists of the single element [0 +- 0 t 0 -+ Y]. 

(ii) The associative, commutative, and unit conditions are easily verified. 

We prove only the distributivity. We have an exponential diagram 

where 7: X+X -+ X+X is the twisting map. Hence we have acornmutative 

diagram in U+ 

This means the distributive law. 
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1416 TAMBARA 

(iii) It is clear that Tf (resp. Nf) preserves the additive (resp. multi- 
plicative) structure. The Mackey formulas for the pullback diagrams 

X - Y  
f 

X - Y  
f 

show that Rr preserves the both structures. This finishes the proof. 

Let X, Y be G-sets. The semi-ring structure of Y as an object of U+ 
makes the horn-set U+ (X, Y) a semi-ring. Explicitly: 

PROPOSITION 7.6.  The semi-ring structure of U+ ( X ,  Y) is given as follows. 

PROOF. We prove only the last half. We have 

with V: Y + Y -r Y the folding map. The diagram 

gives the third formula. 
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MULTIPLICATIVE TRANSFER 

We have 1 = N, o [0 + 0 + 0 -, XI. The diagram 

gives the last formula. 

Let us denote by [U+, SIo the category of functors U+ -, S preserving 
finite products, where S is the category of sets. 

PROOF. Objects S E U+ and F E [U+,S]o correspond to each other if 

Indeed, given S E U+, these formulas determine a functor F: U+ -+ S by 
Proposition 7.3, and F preserves finite products by (2.l)(i) and Proposition 

7.5(i). 
Conversely, given F E [U+, SJo, the functions S(  ), ( )*, ( ),, ( ), deter- 

mined by the above formulas satisfy (i), (iii), (iv), (v) of (2.1). Since each 

G-set X is a semi-ring object of U+ and F preserves finite products, F(X)  
becomes a semi-ring. By Proposition 7.5(iii), f *, f,, f, are homomorphisms 
of semi-rings, additive monoids, multiplicative monoids, respectively. Thus 
we obtain an object S E U+. 

8. Category U 

In this section we construct a category U such that U is isomorphic to the 
category of functors U -+ S preserving finite products. 

Let X, Y be G-sets. With the notation of Section 6, we make from the 

semi-ring U+ (X, Y) the ring 

together with the canonical semi-ring map 

k :  U+(X, Y) -r U(X, Y). 
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1418 TAMBARA 

PROPOSITION 8.1. There exists a unique category U satisfying the following 
conditions: 
(i) Obj(U) = ~ b j ( ~ f G ) .  
(ii) Homu(X, Y) = U(X, Y). 

(iii) The maps k: U+(X,Y) -t U(X, Y) and the identity on 0bj(sfG) form 
a functor k : U+ -, U. 

(iv) This functor k preserves finite products. 

PROOF. We identify U+ = [U+, SIo by Proposition 7.7. Let X be a G-set. 
Applying Theorem 6.1 to the hom-functor U+(X,?) E [U+, SIo, we obtain a 
unique functor U(X, ?) E [U+, SIo such that it assigns to each G-set Y the set 
U(X, Y) and such that the maps k :  U+(X, Y) -, U(X, Y) form a morphism 
K :  U+(X, ?) -t U(X, ?) in [U+, SIo. This functor U(X, ?) takes the semi-ring 
structure of Y E U+ to the original ring structure of U(X, Y). 

Let a E U(X,Y). By Yonede'a lemma a corresponds to a morghism 

at : U+(Y, ?) -, U(X, ?) in [U+, SIo. By Proposition 6.2 there exists a unique 
morphism crb in [U+, S]o making the triangle 

commute. 
Now we define the category U. The objects and morphisms of U are 

given by (i) and (ii). The composition o: U(Y, 2 )  x U(X, Y) -, U(X, 2 )  is 

given by p o a = ah(P). The identity morphisms are k(Ix). 
One can easily verify that U is a category and the maps k: U+(X,Y) + 

U(X, Y) form a functor k : U+ -+ U. Since U(X, ?) : U+ -t S preserves finite 
products for each X, so does k: U+ -t U. 

The uniqueness of U can be seen by reversing the above argument. This 
finishes the proof. 

Since k: U+ -t U preserves finite products, each object X of U has the 
semi-ring structure k(Tv), k ( T , ) ,  k(NV), k(N,). This induces the original 
ring structure on U(Y, X) for every Y. Hence X is a ring object of U. The 
additive inversion morphism is - k(Ix ). 
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MULTIPLICATIVE TRANSFER 1419 

Let us denote by [U, SIo the category of functors U -+ S preserving finite 
products. 

PROOF. We shall show that we have a commutative diagram 

where a is the isomorphism of Proposition 7.7 and the right arrow is the 
restriction by k: U+ -, U. 

Let F' E [U, Slo. Each G-set X is a ring object of U, so F i (X)  is a ring. 
Hence F' o b E a(U). 

Conversely, let F E a(U). Write S(A, B) = Homs(A, B). For each G-set 

X, the functor S(F(X) ,  F(?)) E [U+ , $10 belongs to u(U),  and F induces a 
morphism Fx : U+(X, ?) -+ S(F(X) ,  F(?)) in [U+,S]o. Then, by Proposition 
6.2 there exists a unique morphism Ffi in [U+, S]o such that the diagram 

commutes. The maps FjY(Y): U(X, Y) -+ S(F(X) ,  F(Y)) for all X, Y form 
a functor F': U -r S such that F = F' o k. This proves the theorem. 
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