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Abstract
Using the formalism of Grothendieck’s derivators, we construct the universal localiz-
ing invariant of differential graded (dg) categories. By this we mean a morphism Ul

from the pointed derivator HO(dgcat) associated with the Morita homotopy theory
of dg categories to a triangulated strong derivator Mloc

dg such that Ul commutes
with filtered homotopy colimits, preserves the point, sends each exact sequence of dg
categories to a triangle, and is universal for these properties.

Similarly, we construct the universal additive invariant of dg categories, that is,
the universal morphism of derivators Ua from HO(dgcat) to a strong triangulated
derivator Madd

dg that satisfies the first two properties but the third one only for split exact
sequences. We prove that Waldhausen’s K-theory becomes corepresentable in the
target of the universal additive invariant. This is the first conceptual characterization
of Quillen and Waldhausen’s K-theory (see [34], [43]) since its definition in the
early 1970s. As an application, we obtain for free the higher Chern characters from
K-theory to cyclic homology.

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3. Derived Kan extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4. Localization: Model categories versus derivators . . . . . . . . . . . . . 136
5. Filtered homotopy colimits . . . . . . . . . . . . . . . . . . . . . . . . 143
6. Pointed derivators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7. Small weak generators . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8. Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9. dg quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
10. The universal localizing invariant . . . . . . . . . . . . . . . . . . . . . 170
11. A Quillen model in terms of presheaves of spectra . . . . . . . . . . . . 178

DUKE MATHEMATICAL JOURNAL
Vol. 145, No. 1, c© 2008 DOI 10.1215/00127094-2008-049
Received 30 June 2007. Revision received 21 January 2008.
2000 Mathematics Subject Classification. Primary 18G55, 18F20, 18E30; Secondary 19D35, 19D55.
Tabuada’s work supported in part by SFRH/BD/144035/2003 scholarship from Fundação para a Ciência e a

Tecnologia, Lisboa, Portugal.

121
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1. Introduction
Differential graded (dg) categories enhance our understanding of triangulated cate-
gories appearing in algebra and geometry (see [21]). They are considered noncom-
mutative schemes by Drinfeld [9], [10] and Kontsevich [23], [24] in their program
of noncommutative algebraic geometry (i.e., the study of dg categories and their
homological invariants).

In this article, using the formalism of Grothendieck’s derivators, we construct the
universal localizing invariant of dg categories (cf. [22]). By this, we mean a morphism
Ul from the pointed derivator HO(dgcat) associated with the Morita homotopy theory
of dg categories (see [37], [38]) to a triangulated strong derivator Mloc

dg such that Ul

commutes with filtered homotopy colimits, preserves the point, sends each exact
sequence of dg categories to a triangle, and is universal for these properties. Because
of its universality property reminiscent of motives (see Kontsevich’s preprint [25,
Section 4.1]), we call Mloc

dg the (stable) localizing motivator of dg categories.
Similarly, we construct the universal additive invariant of dg categories (i.e.,

the universal morphism of derivators Ua from HO(dgcat) to a strong triangulated
derivator Madd

dg that satisfies the first two properties but the third one only for split
exact sequences. We call Madd

dg the additive motivator of dg categories.
We prove that Waldhausen’s K-theory spectrum appears as a spectrum of mor-

phisms in the base category Madd
dg (e) of the additive motivator. This shows us that

Waldhausen’s K-theory is completely characterized by its additive property. Intu-
itively, Waldhausen’s K-theory is the universal construction with values in a stable
context which satisfies additivity.

To the best of the author’s knowledge, this is the first conceptual characterization
of Quillen and Waldhausen’s K-theory (see [34], [43]) since its definition in the early
1970s. This result gives us a completely new way of thinking about algebraic K-theory
and furnishes us for free with the higher Chern characters from K-theory to cyclic
homology (see [26]).

The corepresentation of K-theory as a spectrum of morphisms extends our results
in [37], where we corepresented K0 using functors with values in additive categories
rather than morphisms of derivators with values in strong triangulated derivators.
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For example, the mixed complex construction (see [20]), from which all variants
of cyclic homology can be deduced, and the nonconnective algebraic K-theory (see
[35]) are localizing invariants and factor through Ul and through Ua . The connective
algebraic K-theory (see [43]) is an example of an additive invariant that is not a
localizing one. We prove that it becomes corepresentable in Madd

dg (see Theorem 15.10).
Our construction is similar in spirit to those of Meyer and Nest [31], Cortiñas and

Thom [8], and Garkusha [12]. It splits into several general steps and also offers some
insight into the relationship between the theory of derivators (see [7], [13], [14], [19],
[29]) and the classical theory of Quillen model categories (see [33]). Derivators allow
us to state and prove precise universal properties and to dispense with many of the
technical problems one faces in using model categories.

In Section 2, we recall the notion of the Grothendieck derivator and point out
its connection with that of small homotopy theory in the sense of Heller [14]. In
Section 3, we recall Cisinski’s theory of derived Kan extensions (see [4]), and in
Section 4, we develop Cisinski’s ideas on the Bousfield localization of derivators
(see [6]). In particular, we characterize the derivator associated with a left Bousfield
localization of a Quillen model category by a universal property (see Theorem 4.4).
This is based on a constructive description of the local weak equivalences.

In Section 5, starting from a Quillen model category M satisfying some compact-
ness conditions, we construct a morphism of prederivators

HO(M)
Rh−→ L�HotMf

which commutes with filtered homotopy colimits, has a derivator as a target, and is
universal for these properties. In Section 6, we study morphisms of pointed derivators,
and in Section 7, we prove a general result that guarantees that small weak genera-
tors are preserved under left Bousfield localizations. In Section 8, we recall Heller’s
stabilization construction (see [14]) and we prove that this construction takes finitely
generated unstable theories to compactly generated stable theories. We establish the
connection between Heller’s stabilization and Hovey and Schwede’s stabilization (see
[17], [36]) by proving that if we start with a pointed Quillen model category that
satisfies some mild generation hypotheses, then the two stabilization procedures yield
equivalent results. This allows us to characterize Hovey and Schwede’s construction
by a universal property and, in particular, to give a very simple characterization of the
classical category of spectra in the sense of Bousfield and Friedlander [2]. In Section 9,
by applying the general arguments from Sections 3 – 8 to the Morita homotopy theory
of dg categories (see [37], [38]), we construct the universal morphism of derivators

Ut : HO(dgcat) −→ St(L�,P Hotdgcatf )
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which commutes with filtered homotopy colimits, preserves the point, and has a strong

triangulated derivator as a target. For every inclusion A K
↪→ B of a full dg subcategory,

we have an induced morphism

SK : cone
(
Ut (A

K
↪→ B)

) → Ut (B/A),

where B/A denotes Drinfeld’s dg quotient. By applying the localization techniques
of Section 4 and using the fact that the derivator St(L�,P Hotdgcatf ) admits a stable
Quillen model, we invert the morphisms SK and finally obtain the universal localizing
invariant of dg categories

Ul : HO(dgcat) −→ Mloc
dg .

We establish a connection between the triangulated category Mloc
dg (e) and Wald-

hausen’s K-theory by showing that Waldhausen’s S•-construction corresponds to the
suspension functor in Mloc

dg (e). In Section 11, we prove that the derivator Mloc
dg admits a

stable Quillen model given by a left Bousfield localization of a category of presheaves
of spectra. In Section 12, we introduce the concept of an upper triangular dg category
and construct a Quillen model structure on this class of dg categories, which satisfies
strong compactness conditions. In Section 13, we establish the connection between
upper triangular dg categories and split short exact sequences, and we use the Quillen
model structure of Section 12 to prove an approximation result (see Proposition 13.2).
In Section 14, by applying the techniques of Section 4, we construct the universal
morphism of derivators

Uu : HO(dgcat) −→ Munst
dg

which commutes with filtered homotopy colimits, preserves the point, and sends each
split short exact sequence to a homotopy cofiber sequence. We prove that Waldhausen’s
K-theory space construction appears as a fibrant object in Munst

dg . This allows us to
obtain the weak equivalence of simplicial sets

Map
(
Uu(k), S1 ∧ Uu(A)

) ∼−→ |N.wS•Af |

and the isomorphisms

πi+1Map
(
Uu(k), S1 ∧ Uu(A)

) ∼−→ Ki(A), ∀i ≥ 0

(see Proposition 14.12).
In Section 15, we stabilize the derivator Munst

dg using the fact that it admits a
Quillen model and finally obtain the universal additive invariant of dg categories

Ua : HO(dgcat) −→ Madd
dg .
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Connective algebraic K-theory is additive and so factors through Ua . We prove that
for a small dg category A, its connective algebraic K-theory corresponds to a fibrant
resolution of Ua(A)[1] (see Theorem 15.9). Using the fact that the Quillen model for
Madd

dg is enriched over spectra, we prove our main corepresentability theorem.
Let A and B be small dg categories with A ∈ dgcatf .

THEOREM 1.1 (see Theorem 15.10)
We have the following weak equivalence of spectra:

HomSpN(
Ua(A), Ua(B)[1]

) ∼−→ Kc
(
repmor(A, B)

)
,

where Kc(repmor(A, B)) denotes Waldhausen’s connective K-theory spectrum of
repmor(A, B).

In the triangulated base category Madd
dg (e) of the additive motivator, we have the

following.

PROPOSITION 1.2 (see Proposition 16.1)
We have the following isomorphisms of abelian groups:

HomMadd
dg (e)

(
Ua(A), Ua(B)[−n]

) ∼−→ Kn

(
repmor(A, B)

)
, ∀n ≥ 0.

Remark 1.3
Note that if, in Theorem 1.1 (resp., Proposition 1.2), we consider that A = k, we have

HomSpN(
Ua(k), Ua(B)[1]

) ∼−→ Kc(B),
respectively,

HomMadd
dg (e)

(
Ua(k), Ua(B)[−n]

) ∼−→ Kn(B), ∀n ≥ 0.

This shows that Waldhausen’s connective K-theory spectrum (resp., groups) becomes
corepresentable in Madd

dg (resp., in Madd
dg (e)).

In Section 16, we show that our corepresentability theorem furnishes us for free with
the higher Chern characters from K-theory to cyclic homology.

THEOREM 1.4 (see Theorem 16.3)
The corepresentability theorem (Theorem 15.10) furnishes us with the higher Chern
characters

chn,r : Kn(−) −→ HCn+2r (−), n, r ≥ 0.
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In Section 17, we point out some questions that deserve further investigation.

2. Preliminaries
In this section, following [7, Definition 1.11], we recall the notion of the Grothendieck
derivator.

Notation 2.1
We denote by CAT (resp., Cat) the 2-category of categories (resp., small categories).
The empty category is written ∅, and the 1-point category (i.e., the category with one
object and one identity morphism) is written e. If X is a small category, Xop is the
opposite category associated to X. If u : X → Y is a functor, and if y is an object of
Y , one defines the category X/y as follows: the objects are the couples (x, f ), where
x is an object of X, and f is a map in Y from u(x) to y; a map from (x, f ) to (x ′, f ′)
in X/y is a map ξ : x → x ′ in X such that f ′u(ξ ) = f . The composition law in
X/y is induced by the composition law in X. Dually, one defines y\X by the formula
y\X = (Xop/y)op. We then have the canonical functors

X/y → X and y\X → X

defined by projection (x, f ) 	→ x. One can easily check that one gets the following
pullback squares of categories:

X/y ��

u/y

��

X

u

��

y\X
y\u

��

�� X

u

��

Y/y �� Y y\Y �� Y

If X is any category, we let pX : X → e be the canonical projection functor. Given
any object x of X, we write x : e → X for the unique functor that sends the object of
e to x. The objects of X (or, equivalently, the functors e → X) are called the points
of X.

If X and Y are two categories, we denote by Fun(X, Y ) the category of functors
from X to Y . If C is a 2-category, one writes Cop for its dual 2-category: Cop has the
same objects as C, and for any two objects X and Y , the category FunCop (X, Y ) of
1-arrows from X to Y in Cop is FunC(Y, X)op.

Definition 2.2
A prederivator is a strict 2-functor from Catop to the 2-category of categories

D : Catop −→ CAT.
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More explicitly, for any small category X ∈ Cat, one has a category D(X). For any
functor u : X → Y in Cat, one gets a functor

u∗ = D(u) : D(Y ) −→ D(X).

For any morphism of functors

X

u

��

v

��⇓ α Y

one has a morphism of functors

D(X) α∗ ⇑ D(Y )

v∗

��

u∗

��

Of course, all these data have to verify some coherence conditions, namely, the
following.
(a) For any composable maps in Cat, X

u→ Y
v→ Z,

(vu)∗ = u∗v∗ and 1∗
X = 1D(X).

(b) For any composable 2-cells in Cat,

we have

(βα)∗ = α∗β∗ and 1∗
u = 1u∗ .

(c) For any 2-diagram in Cat,

X

u

��

u′

��⇓ α Y

v

��

v′

��⇓ β Z

we have (βα)∗ = α∗β∗.
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Example 2.3
Let M be a small category. The prederivator M naturally associated with M is defined
as

X 	→ M(X),

where M(X) = Fun(Xop, M) is the category of presheaves over X with values in M .

Example 2.4
Let M be a category endowed with a class of maps called weak equivalences (e.g., M
can be the category of bounded complexes in a given abelian category, and the weak
equivalences can be the quasi isomorphisms). For any small category X, we define the
weak equivalences in M(X) to be the morphisms of presheaves which are termwise
weak equivalences in M. We can then define DM(X) as the localization of M(X) by
the weak equivalences. It is clear that, for any functor u : X → Y , the inverse image
functor

M(Y ) → M(X),

F 	→ u∗(F ) = F ◦ u

respects weak equivalences, so that it induces a well-defined functor

u∗ : DM(X) −→ DM(X).

The 2-functoriality of localization implies that we have a prederivator DM.

Let X be a small category, and let x be an object of X. Given an object F ∈ D(X),
we write Fx = x∗(F ). The object Fx is called the fiber of F at the point x.

For a prederivator D, define its opposite to be the prederivator Dop given by the
formula Dop(X) = D(Xop)op for all small categories X.

Definition 2.5
Let D be a prederivator. A map u : X → Y in Cat has a cohomological direct image
functor (resp., a homological direct image functor) in D if the inverse image functor

u∗ : D(Y ) −→ D(X)

has a right adjoint (resp., a left adjoint)

u∗ : D(X) −→ D(Y ) (resp., u! : D(X) → D(Y )),

called the cohomological direct image functor (resp., homological direct image func-
tor) associated to u.
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Notation 2.6
Let X be a small category, and let p = pX : X → e. If p has a cohomological
direct image functor in D, one defines, for any object F of D(X), the object of global
sections of F as

�∗(X, F ) = p∗(F ).

Dually, if p has a homological direct image in D, then for any object F of D(X), one
sets

�!(X, F ) = p!(F ).

Notation 2.7
Let D be a prederivator, and let

X′ v
��

u′

��

X

u

��

⇓α

Y ′
w

�� Y

be a 2-diagram in Cat. By 2-functoriality, one obtains the 2-diagram

D(X′) D(X)
v∗

��

D(Y ′)

u′∗

��

⇑α∗

D(Y )
w∗

��

u∗

��

If we assume that the functors u and u′ both have cohomological direct images in D,
then one can define the base change morphism induced by α,

β : w∗u∗ → u′
∗v

∗,

D(X′)

u′
∗

��

D(X)
v∗

��

u∗
��

D(Y ′) D(Y )
w∗

��

⇑β
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as follows. The counit u∗u∗ → 1D(X) induces a morphism v∗u∗u∗ → v∗ and, by
composition with α∗u∗, a morphism u′∗w∗u∗ → v∗. This gives β by adjunction.

This construction is used in the following situation: let u : X → Y be a map
in Cat, and let y be a point of Y . According to Notation 2.1, we have a functor
j : X/y → X, defined by the formula j (x, f ) = x, where f : u(x) → y is a
morphism in Y . If p : X/y → e is the canonical map, then one obtains the 2-diagram
below, where α denotes the 2-cell defined by the formula α(x,f ) = f :

X/y

p

��

j
�� X

u

��

⇓α

e
y

�� Y

Using Notation 2.6, the associated base change morphism gives rise to a canonical
morphism

u∗(F )y → �∗(X/y, F/y)

for any object F ∈ D(X), where F/y = j ∗(F ). Dually, one has canonical morphisms

�!(y\X, y\F ) → u!(F )y,

where y\F = k∗(F ) and k denotes the canonical functor from y\X to X.

Notation 2.8
Let X and Y be two small categories. Using the 2-functoriality of D, one defines a
functor

dX,Y : D(X × Y ) → Fun
(
Xop, D(Y )

)
as follows. Setting X′ = X × Y , we have a canonical functor

Fun(Y, X′)op −→ Fun
(
D(X′), D(Y )

)
which defines a functor

Fun(Y, X′)op × D(X′) −→ D(Y )

and then a functor

D(X′) −→ Fun
(
Fun(Y, X′)op, D(Y )

)
.
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Using the canonical functor

X → Fun(Y, X × Y ), x 	→ (
y 	→ (x, y)

)
,

this gives the desired functor.
In particular, for any small category X, one gets a functor

dX = dX,e : D(X) → Fun
(
Xop, D(e)

)
.

If F is an object of D(X), then dX(F ) is the presheaf on X with values in D(e) defined
by

x 	→ Fx.

Definition 2.9
A derivator is a prederivator D with the following properties.
(Der1) (Nontriviality axiom) For any finite set I and any family {Xi, i ∈ I } of

small categories, the canonical functor

D

( ∐
i∈I

Xi

)
−→

∏
i∈I

D(Xi)

is an equivalence of categories.
(Der2) (Conservativity axiom) For any small category X, the family of functors

x∗ : D(X) → D(e),

F 	→ x∗(F ) = Fx

corresponding to the points x of X is conservative. In other words, if
ϕ : F → G is a morphism in D(X), so that for any point x of X the map
ϕx : Fx → Gx is an isomorphism in D(e), then ϕ is an isomorphism in
D(X).

(Der3) (Direct image axiom) Any functor in Cat has a cohomological direct image
functor and a homological direct image functor in D (see Definition 2.5).

(Der4) (Base change axiom) For any functor u : X → Y in Cat, any point y of
Y , and any object F in D(X), the canonical base change morphisms (see
Notation 2.7)

u∗(F )y → �∗(X/y, F/y) and �!(y\X, y\F ) → u!(F )y

are isomorphisms in D(e).
(Der5) (Essential surjectivity axiom) Let I be the category corresponding to the

graph

0 ← 1.
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For any small category X, the functor

dI,X : D(I × X) → Fun
(
I op, D(X)

)
(see Notation 2.8) is full and essentially surjective.

Example 2.10
By [3], any Quillen model category M gives rise to a derivator denoted HO(M).

We denote by Ho(M) the homotopy category of M. By definition, it equals
HO(M)(e).

Definition 2.11
A derivator D is strong if, for every finite free category X and every small category
Y , the natural functor

D(X × Y ) −→ Fun
(
Xop, D(Y )

)
(see Notation 2.8) is full and essentially surjective.

Note that a strong derivator is the same thing as a small homotopy theory in the sense
of Heller [14]. Note also that by [5, proposition 2.15], HO(M) is a strong derivator.

Definition 2.12
A derivator D is regular if, in D, sequential homotopy colimits commute with finite
products and homotopy pullbacks.

Notation 2.13
Let X be a category. Remember that a sieve (or a crible) in X is a full subcategory U

of X such that for any object x of X, if there exists a morphism x → u with u in U ,
then x is in U . Dually, a cosieve (or a cocrible) in X is a full subcategory Z of X such
that for any morphism z → x in X, if z is in Z, then so is x.

A functor j : U → X is an open immersion if it is injective on objects, fully
faithful, and if j (U ) is a sieve in X. Dually, a functor i : Z → X is a closed immersion
if it is injective on objects, fully faithful, and if i(Z) is a cosieve in X. One can easily
show that open immersions and closed immersions are stable by composition and
pullback.

Definition 2.14
A derivator D is pointed if it satisfies the following property.
(Der6) (Exceptional axiom) For any closed immersion i : Z → X in Cat, the

cohomological direct image functor

i∗ : D(Z) −→ D(X)
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has a right adjoint

i! : D(X) −→ D(Z)

called the exceptional inverse image functor associated to i. Dually, for any
open immersion j : U → X, the homological direct image functor

j! : D(U ) −→ D(X)

has a left adjoint

j ? : D(X) −→ D(U )

called the coexceptional inverse image functor associated to j .

Let � be the category given by the commutative square

(0, 0) (0, 1)��

(1, 0)

��

(1, 1)��

��

We are interested in two of its subcategories. The subcategory is

(0, 1)

(1, 0) (1, 1)��

��

and is the subcategory

(0, 0) (0, 1)��

(1, 0)

��

We thus have two inclusion functors

σ : → � and τ : → �
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(σ is an open immersion, and τ is a closed immersion). A global commutative
square in D is an object of D(�). A global commutative square C in D is thus locally
of shape

C0,0 ��

��

C0,1

��

C1,0 �� C1,1

in D(e).

A global commutative square C in D is Cartesian (or a homotopy pullback square) if,
for any global commutative square B in D, the canonical map

HomD(�)(B, C) −→ HomD(�)

(
σ ∗(B), σ ∗(C)

)
is bijective. Dually, a global commutative square B in D is co-Cartesian (or a homotopy
pushout square) if, for any global commutative square C in D, the canonical map

HomD(�)(B, C) −→ HomD(�)

(
τ ∗(B), τ ∗(C)

)
is bijective.

As � is isomorphic to its opposite �op, one can see that a global commutative
square in D is Cartesian (resp., co-Cartesian) if and only if it is co-Cartesian (resp.,
Cartesian) as a global commutative square in Dop.

Definition 2.15
A derivator D is triangulated or stable if it is pointed and satisfies the following axiom.
(Der7) (Stability axiom) A global commutative square in D is Cartesian if and

only if it is co-Cartesian.

THEOREM 2.16 (see [30])
For any triangulated derivator D and small category X, the category D(X) has a
canonical triangulated structure.

Let D and D′ be derivators. We denote by Hom(D, D′) the category of all morphisms of
derivators; we denote by Hom!(D, D′) the category of morphisms of derivators which
commute with homotopy colimits [4, Remark 3.25]; and we denote by Homflt(D, D′)
the category of morphisms of derivators which commute with filtered homotopy
colimits.
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3. Derived Kan extensions
Let A be a small category, and let Fun(Aop, Sset) be the Quillen model category of
simplicial presheaves on A endowed with the projective model structure (see [42]).
We have at our disposal the functor

A
h−→ Fun(Aop, Sset),

X 	−→ HomA(?, X),

where HomA(?, X) is considered as a constant simplicial set.
The functor h gives rise to a morphism of prederivators

A
h−→ HO

(
Fun(Aop, Sset)

)
.

Using the notation of [4], we denote by HotA the derivator HO(Fun(Aop, Sset)).
The following results are proved in [4]. Let D be a derivator.

THEOREM 3.1
The morphism h induces an equivalence of categories

Hom( A, D)

ϕ

��

Hom!(HotA, D)

h∗

��

Proof
This theorem is equivalent to [4, corollaire 3.26] since we have

Hom( A, D) � D(Aop). �

LEMMA 3.2
We have an adjunction

Hom(HotA, D)

�

��

Hom!(HotA, D)
��

inc

��

where

�(F ) := ϕ(F ◦ h).
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Proof
We construct a universal 2-morphism of functors

ε : inc ◦ � −→ Id.

Let F be a morphism of derivators belonging to Hom(HotA, D). Let L be a small
category, and let X be an object of HotA(L). Recall from [4, section 1] that we have
the diagram

∇
∫

X

π

		��
��

��
�� 





��

��
��

�

Lop A

Now, let p be the functor πop, and let q be the functor 
 op. By the dual of [4,
proposition 1.15], we have the functorial isomorphism

p!q
∗(h)

∼−→ X.

Finally, let εL(X) be the composed morphism

εL(X) : �(F )(X) = p!q
∗F (h) = p!F (q∗h) → F (p!q

∗h)
∼→ F (X),

and note, using Theorem 3.1, that ε induces an adjunction. �

4. Localization: Model categories versus derivators
Let M be a left proper, cellular Quillen model category (see [15]).

We start by fixing a frame on M (see [15, Definition 16.6.21]). Let D be a small
category, and let F be a functor from D to M. We denote by hocolim F the object of
M, as in [15, Definition 19.1.2]. Let S be a set of morphisms in M, and denote by
LSM the left Bousfield localization of M by S.

Note that the Quillen adjunction

M

Id
��

LSM

Id

��

induces a morphism of derivators

γ : HO(M)
L Id−→ HO(LSM)
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which commutes with homotopy colimits.

PROPOSITION 4.1
Let WS be the smallest class of morphisms in M satisfying the following properties.
(a) Every element in S belongs to WS .
(b) Every weak equivalence of M belongs to WS .
(c) If, in a commutative triangle, two out of three morphisms belong to WS , then

so does the third one. The class WS is stable under retractions.
(d) Let D be a small category, and let F and G be functors from D to M. If η is

a morphism of functors from F to G such that for every object d in D, F (d)
and G(d) are cofibrant objects and the morphism η(d) belongs to WS , then so
does the morphism

hocolim F −→ hocolim G.

Then the class WS equals the class of S-local equivalences in M (see [15, Defini-
tion 3.1.4]).

Proof
The class of S-local equivalences satisfies properties (a) – (d). Properties (a) and (b)
are satisfied by definition, [15, Propositions 3.2.3, 3.2.4] imply property (c), and [15,
Proposition 3.2.5] implies property (d).

Let us now show that, conversely, each S-local equivalence is in WS . Let

X
g→ Y

be an S-local equivalence in M. Without loss of generality, we can suppose that X is
cofibrant. Indeed, let Q(X) be a cofibrant resolution of X, and consider the diagram

Q(X)

π ∼
��

g◦π

����
��

��
��

X
g

�� Y

Note that since π is a weak equivalence, g is an S-local equivalence if and only if
g ◦ π is also.
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By [15, Theorem 4.3.6], g is an S-local equivalence if and only if the morphism
LS(g) appearing in the diagram

X
g

��

j (X)

��

Y

j (Y )

��

LSX
LS (g)

�� LSY

is a weak equivalence in M. This shows that it is enough to prove that j (X) and j (Y )
belong to WS . Apply the small-object argument to the morphism

X −→ ∗

using the set �̃(S) (see [15, Proposition 4.2.5]). We have the factorization

X ��

j (X) ����
���

��
�

∗

LS(X)



��������

where j (X) is a relative �̃(S)-cell complex.
We now prove the two following stability conditions concerning the class WS .

(S1) Consider the pushout

W0
��

��

f

��

�

W2

f∗
��

W1
�� W3

where W0, W1, and W2 are cofibrant objects in M and f is a cofibration that
belongs to WS . Observe that f∗ corresponds to the colimit of the morphism of
diagrams

W0
��

f

��

W0
�� W2

W1 W0
��

f

�� �� W2
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Now, both [15, Proposition 19.9.4] and property (d) imply that f∗ belongs to
WS .

(S2) Consider the diagram

X : X0
��
f0

�� X1
��

f1
�� X2

��
f2

�� X3
�� �� . . .

in M, where the objects are cofibrant and the morphisms are cofibrations
that belong to the class WS . Observe that the transfinite composition of X
corresponds to the colimit of the morphism of diagrams

X0 X0
��

f0

��

X0
��

f1◦f0

��

. . .

X0
��

f0

�� X1
��

f1

�� X2
�� �� . . .

Now, since X is a Reedy cofibrant diagram on category with fibrant constants
(see [15, Definition 15.10.1]), [15, Theorem 19.9.1] and property (d) imply that
the transfinite composition of X belongs to WS . Note that the above argument
can be immediately generalized to a transfinite composition of a λ-sequence,
where λ denotes an ordinal (see [15, Section 10.2]).

Now, the construction of the morphism j (X) and the stability conditions (S1) and (S2)
show us that it is enough to prove that the elements of �̃(S) belong to WS . By [15,
Proposition 4.2.5], it is sufficient to show that the set

�(S) = {
Ã ⊗ �[n] �

Ã⊗∂�[n]
B̃ ⊗ �[n]

�(g)−→ B̃ ⊗ �[n]
∣∣ (A

g→ B) ∈ S, n ≥ 0
}

of horns in S is contained in WS . Recall from [15, Definition 4.2.1] that g̃ : Ã → B̃
denotes a cosimplicial resolution of g : A → B and g̃ is a Reedy cofibration. We
have the diagram

Ã ⊗ ∂�[n]

1⊗i

��

g̃⊗1
�� B̃ ⊗ ∂�[n]

1⊗i

��

Ã ⊗ �[n]
g̃⊗1

�� B̃ ⊗ �[n]
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Observe that the morphism

Ã ⊗ �[n]
g̃⊗1−→ B̃ ⊗ �[n]

identifies with

Ãn g̃n

−→ B̃n,

and so it belongs to WS . Now, the morphism

corresponds to the induced map of latching objects

LnÃ −→ LnB̃,

which is a cofibration in M by [15, Proposition 15.3.11].
Now, by [15, Propositions 15.10.4, 16.3.12; Theorem 19.9.1], we have the com-

mutative diagram

hocolim
∂(

→
�↓[n])

Ã ��

∼
��

hocolim
∂(

→
�↓[n])

B̃

∼
��

LnÃ �� LnB̃

where the vertical arrows are weak equivalences and ∂(
→
�↓ [n]) denotes the category

of strictly increasing maps with target [n]. By property (d) of the class WS , we
conclude that g̃ ⊗ 1∂�[n] belongs to WS .

We have the diagram

Note that the morphism I belongs to WS by the stability condition (S1) applied to the
morphism

Ã ⊗ ∂�[n]
g̃⊗1−→ B̃ ⊗ ∂�[n],
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which is a cofibration and belongs to WS . Since the morphism g̃ ⊗ 1 belongs to WS ,
so does �(g).

This proves the proposition. �

Let D be a derivator, and let S be a class of morphisms in D(e).

Definition 4.2 (see Cisinski [6] )
The derivator D admits a left Bousfield localization by S if there exists a morphism of
derivators

γ : D → LSD

which commutes with homotopy colimits, sends the elements of S to isomorphisms
in LSD(e), and satisfies the universal property: for every derivator D′, the morphism
γ induces an equivalence of categories

Hom!(LSD, D′)
γ ∗

−→ Hom!,S(D, D′),

where Hom!,S(D, D′) denotes the category of morphisms of derivators which commute
with homotopy colimits and send the elements of S to isomorphisms in D′(e).

LEMMA 4.3
Suppose that D is a triangulated derivator, suppose that S is stable under the loop-
space functor �(e) : D(e) → D(e) (see [7]), and suppose that D admits a left
Bousfield localization LSD by S.

Then LSD is also a triangulated derivator.

Proof
Recall from [7, Remark 1.19] that since D is a triangulated derivator, we have the
following equivalence:

D

�

��

D

�

��

Note that both morphisms of derivators, � and �, commute with homotopy colimits.
Since S is stable under the functor �(e) : D(e) → D(e) and D admits a left Bousfield
localization LSD by S, we have an induced morphism

� : LSD → LSD.
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Let s be an element of S. We now show that the image of s by the functor γ ◦ � is
an isomorphism in LSD(e). For this, consider the category (see Section 2) and the
functors

(0, 0) : e → and p : → e.

Now, recall from [14, Section 7] that

�(e) := p! ◦ (0, 0)∗.

This description shows us that the image of s under the functor γ ◦� is an isomorphism
in LSD(e) because γ commutes with homotopy colimits. In conclusion, we have an
induced adjunction

LSD

�

��

LSD

�

��

which is clearly an equivalence. This proves the lemma. �

THEOREM 4.4 (see Cisinski [6])
The morphism of derivators

γ : HO(M)
L Id−→ HO(LSM)

is a left Bousfield localization of HO(M) by the image of the set S in Ho(M).

Proof
Let D be a derivator.

The morphism γ admits a fully faithful right adjoint

σ : HO(LSM) −→ HO(M).

Therefore, the induced functor

γ ∗ : Hom!

(
HO(LSM), D

) −→ Hom!,S

(
HO(M), D

)
admits a left adjoint σ ∗, and σ ∗γ ∗ = (γ σ )∗ is isomorphic to the identity. Therefore,
γ ∗ is fully faithful. We now show that γ ∗ is essentially surjective. Let F be an object
of Hom!,S(HO(M), D). Note that since D satisfies the conservativity axiom, it is
sufficient to show that the functor

F (e) : Ho(M) → D(e)
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sends the images in Ho(M) of S-local equivalences of M to isomorphisms in D(e).
The morphism F then becomes naturally a morphism of derivators

F : HO(LSM) → D,

so that γ ∗(F ) = F . Now, since F commutes with homotopy colimits, the functor

M → Ho(M) → D(e)

sends the elements of WS to isomorphisms. This proves the theorem since, by Propo-
sition 4.1, the class WS equals the class of S-local equivalences in M. �

5. Filtered homotopy colimits
Let M be a cellular Quillen model category with I the set of generating cofibrations.
Suppose that the domains and codomains of the elements of I are cofibrant, ℵ0-
compact, ℵ0-small, and homotopically finitely presented (see [41, Definition 2.1.1]).

Example 5.1
Consider the quasi-equivalent (resp., quasi-equiconic; resp., Morita) Quillen model
structure on dgcat constructed in [37] and [38].

Recall that a dg functor F : C → E is a quasi equivalence (resp., quasi-equiconic;
resp., a Morita dg functor) if it satisfies one of the following conditions.
(C1) The dg category C is empty, and all the objects of E are contractible.
(C2) For every object c1, c2 ∈ C, the morphism of complexes from HomC(c1, c2)

to HomE(F (c1)), F (c2)) is a quasi isomorphism, and the functor H0(F ) (resp.,
H0(pre-tr(F )); resp., H0(pre-tr(F ))�) is essentially surjective.

Observe that the domains and codomains of the set I of generating cofibrations in
dgcat satisfy the conditions above for all the Quillen model structures.

The following proposition is a simplification of [41, Proposition 2.2].

PROPOSITION 5.2
Let M be a Quillen model category that satisfies conditions (C1) and (C2) in Example
5.1. Then we have the following.
(1) A filtered colimit of trivial fibrations is a trivial fibration.
(2) For any filtered diagram Xi in M, the natural morphism

hocolim
i∈I

Xi −→ colim
i∈I

Xi

is an isomorphism in Ho(M).
(3) Any object X in M is equivalent to a filtered colimit of strict finite I -cell

objects.
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(4) An object X in M is homotopically finitely presented if and only if it is equiv-
alent to a retract of a strict finite I -cell object.

Proof
The proof of (1) – (3) is exactly the same as [41, proof of Proposition 2.2]. The proof of
(4) is also the same once we observe that the domains and codomains of the elements
of the set I are already homotopically finitely presented by hypothesis. �

In everything that follows, we fix
(i) a cosimplicial resolution functor(

�(−) : M → M�, i
)

in the model category M (see [15, Definition 16.1.8]), which means that for
every object X in M, �(X) is cofibrant in the Reedy model structure on M�

and that

i(X) : �(X)
∼−→ c∗(X)

is a weak equivalence on M�, where c∗(X) denotes the constant cosimplicial
object associated with X;

(ii) a fibrant resolution functor (
(−)f : M → M, ε

)
in the model category M (see [15, Definition 8.1.2]).

Definition 5.3
Let Mf be the smallest full subcategory of M such that
(i) Mf contains (a representative of the isomorphism class of ) each strictly finite

I -cell object of M; and
(ii) the category Mf is stable under the functors (−)f and �(−)n, n ≥ 0.

Remark 5.4
Note that Mf is a small category, and note that every object in Mf is weakly equivalent
to a strict finite I -cell.

We have the inclusion

Mf

I
↪→ M.
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Definition 5.5
Let S be the set of preimages of the weak equivalences in M under the functor i.

LEMMA 5.6
The induced functor

Mf [S−1]
Ho(I )−→ Ho(M)

is fully faithful, where Mf [S−1] denotes the localization of M by the set S.

Proof
Let X, Y be objects of Mf . Notice that (Y )f is a fibrant resolution of Y in M which
belongs to Mf , and notice that

�(X)0
∐

�(X)0

d0 ∐
d1

��

�� �(X)0

�(X)1

s0

�������������

is a cylinder object for �(X)0 (see [15, Proposition 16.1.6]). Since Mf is also stable
under the functors �(−)n, n ≥ 0, this cylinder object also belongs to Mf . This implies
that if, in the construction of the homotopy category Ho(M), as in [15, Theorem 8.35],
we restrict ourselves to Mf , we recover Mf [S−1] as a full subcategory of Ho(M).
This implies the lemma. �

We denote by Fun(Mop
f , Sset) the Quillen model category of simplicial presheaves

on Mf endowed with the projective model structure (see Section 3). Let � be the
image in Fun(Mop

f , Sset) by the functor h (see Section 3) of the set S in Mf . Since
the category Fun(Mop

f , Sset) is cellular and left proper, its left Bousfield localization
by the set � exists (see [15, Definition 3.1.1]). We denote it by L�Fun(Mop

f , Sset).
We have a composed functor that we still denote by h:

h : Mf → Fun(Mop
f , Sset)

Id→ L�Fun(Mop
f , Sset).

Now, consider the functor

h : M −→ Fun(Mop
f , Sset),

X 	−→ Hom
(
�(−), X

)
|Mf

.
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We also have a composed functor that we still denote by h:

h : M → Fun(Mop
f , Sset)

Id→ L�Fun(Mop
f , Sset).

Now, observe that the natural equivalence

i(−) : �(−) −→ c∗(−)

induces, for every object X in Mf , a morphism �(X) in L�Fun(Mop
f , Sset),

�(X) : h(X) = Hom
(
c∗(−), X

) −→ Hom
(
�(−), X

) =: ( h ◦ I )(X),

which is functorial in X.

LEMMA 5.7
The functor h preserves weak equivalences between fibrant objects.

Proof
Let X be a fibrant object in M. We have an equivalence

Hom
(
�(Y ), X

) ∼−→ MapM(Y, X)

(see [15, Definition 17.4.1]). This implies the lemma. �

Remark 5.8
Lemma 5.7 implies that the functor h admits a right derived functor

Rh : Ho(M) −→ Ho
(
L�Fun(Mop

f , Sset)
)
,

X 	−→ Hom
(
�(−), Xf

)
|Mf

.

Since the functor

h : Mf → L�Fun(Mop
f , Sset)

sends, by definition, the elements of S to weak equivalences, we have an induced
morphism

Ho(h) : Mf [S−1] → Ho
(
L�Fun(Mop

f , Sset)
)
.

Remark 5.9
Note that [42, Lemma 4.2.2] implies that for every X in Mf , the morphism �(X),

�(X) : Ho(h)(X) −→ (
Rh ◦ Ho(I )

)
(X),

is an isomorphism in Ho(L�Fun(Mop
f , Sset)).
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This shows that the functors

Ho(h), Rh ◦ Ho(I ) : Mf [S−1] → Ho
(
L�Fun(Mop

f , Sset)
)

are canonically isomorphic, and so we have the diagram

Mf [S−1]
Ho(I )

��

Ho(h)
��

Ho(M),

Rh�������������������

Ho
(
L�Fun(Mop

f , Sset)
)

which is commutative up to isomorphism.

LEMMA 5.10
The functor Rh commutes with filtered homotopy colimits.

Proof
Let {Yi}i∈I be a filtered diagram in M. We can suppose, without loss of generality,
that Yi is fibrant in M. By Proposition 5.2, the natural morphism

hocolim
i∈I

Yi −→ colim
i∈I

Yi

is an isomorphism in Ho(M) and colimi∈I Yi is also fibrant. Since the functor

Ho
(
Fun(Mop

f , Sset)
) L Id−→ Ho

(
L�Fun(Mop

f , Sset)
)

commutes with homotopy colimits that, in Ho(Fun(Mop
f , Sset)), are calculated ob-

jectwise, it is sufficient to show that the morphism

hocolim
i∈I

Rh(Yi)(X) −→ Rh(colim
i∈I

Yi)(X)

is an isomorphism in Ho(Sset) for every object X in Mf . Now, since every object X

in Mf is homotopically finitely presented (see Proposition 5.2), we have the following
equivalences:

Rh(colim
i∈I

Yi)(X) = Hom
(
�(X), colim

i∈I
Yi

)
� Map

(
�(X), colim

i∈I
Yi

)
� colim

i∈I
Map(X, Yi)

� hocolim
i∈I

Rh(Yi)(X).

This proves the lemma. �
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We now denote by L�HotMf
the derivator associated with L�Fun(Mop

f , Sset), and
we denote by Mf [S−1] the prederivator Mf localized at the set S (see Examples 2.3,
2.4).

Observe that the morphism of functors

� : h −→ h ◦ I

induces a 2-morphism of derivators

� : Ho(h) −→ Rh ◦ Ho(I ).

LEMMA 5.11
The 2-morphism � is an isomorphism.

Proof
For the terminal category e, the 2-morphism � coincides with the morphism of
functors of Remark 5.9. Since this one is an isomorphism, so too is � by conservativity.
This proves the lemma. �

As before, we have the diagram

Mf [S−1]
Ho(I )

��

Ho(h)

��

HO(M)

Rh����������������

L�HotMf

which is commutative up to isomorphism in the 2-category of prederivators. Note that
by Lemma 5.10, Rh commutes with filtered homotopy colimits.

Let D be a derivator.

LEMMA 5.12
The morphism of prederivators

Mf [S−1]
Ho(h)−→ L�HotMf

induces an equivalence of categories

Hom!(L�HotMf
, D)

Ho(h)∗−→ Hom(Mf [S−1], D).
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Proof
The category Hom!(L�HotMf

, D) is equivalent, by Theorem 4.4, to the category
Hom!,�(HotMf

, D). This last category identifies, under the equivalence

Hom!(HotMf
, D) → Hom(Mf , D)

given by Theorem 3.1, with the full subcategory of Hom(Mf , D) consisting of the
morphisms of prederivators which send the elements of S to isomorphisms in D(e).
Now, observe that this last category identifies with Hom(Mf [S−1], D) by definition

of the localized prederivator Mf [S−1]. This proves the lemma. �

Recall from [11, Section 9.5] that the cosimplicial resolution functor �(−) which we
fixed in the beginning of this section allows us to construct a Quillen adjunction:

M

h=sing
��

Fun(Mop
f , Sset).

Re

��

Since the functor Re sends the elements of � to weak equivalences in M, we have
the Quillen adjunction

M

h

��

L�Fun(Mop
f , Sset)

Re

��

and a natural weak equivalence

η : Re ◦ h
∼−→ I

(see [11, Theorem 2.3]).
This implies that we have the diagram

which is commutative up to isomorphism.
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We now claim that L Re ◦ Rh is naturally isomorphic to the identity. Indeed,
by Proposition 5.2, each object of M is isomorphic in Ho(M) to a filtered colimit
of strict finite I -cell objects. Since Rh and L Re commute with filtered homotopy
colimits and L Re ◦ Ho(h) � Id, we conclude that L Re ◦ Rh is naturally isomorphic
to the identity. This implies that the morphism Rh is fully faithful.

Now, observe that the natural weak equivalence η induces a 2-isomorphism, so
we obtain the diagram

which is commutative up to isomorphism in the 2-category of prederivators. Note
that L Re ◦ Rh is naturally isomorphic to the identity (by conservativity), and so the
morphism of derivators Rh is fully faithful.

Let D be a derivator.

THEOREM 5.13
The morphism of derivators

HO(M)
Rh−→ L�HotMf

induces an equivalence of categories

Hom!(L�HotMf
, D)

Rh∗
−→ Homflt

(
HO(M), D

)
,

where Homflt(HO(M), D) denotes the category of morphisms of derivators which
commute with filtered homotopy colimits.

Proof
We have the adjunction

Hom
(
HO(M), D

)
L Re∗

��

Hom(L�HotMf
, D)

Rh∗
��

with Rh
∗ a fully faithful functor.
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Now, note that the adjunction of Lemma 3.2 naturally induces an adjunction

Hom(L�HotMf
, D)

�

��

Hom!(L�HotMf
, D)

��

��

This implies that the composed functor

Rh
∗ : Hom!(L�HotMf

, D) −→ Homflt

(
HO(M), D

)
is fully faithful.

We now show that this functor is essentially surjective.
Let F be an object of Homflt(HO(M), D). Consider the morphism

L Re∗(F ) := F ◦ L Re.

Note that this morphism does not necessarily commute with homotopy colimits. Now,
by the above adjunction, we have a universal 2-morphism

ϕ : �
(
L Re∗(F )

) −→ L Re∗(F ).

Consider the 2-morphism

Rh
∗ : Rh

∗((� ◦ L Re∗)(F )
) −→ (Rh

∗ ◦ L Re∗)(F ) � F.

Now, we show that this 2-morphism is a 2-isomorphism. By conservativity, it is
sufficient to show this for the case of the terminal category e. For this, observe that
Rh

∗(ϕ) induces an isomorphism

�
(
L Re∗(F )

) ◦ Rh ◦ Ho(I ) −→ F ◦ Ho(I ).

Now, each object of M is isomorphic, in Ho(M), to a filtered colimit of strict finite
I -cell objects. Since F and �(L Re∗(F )) commute with filtered homotopy colimits,
Rh

∗(ϕ) induces an isomorphism. This shows that the functor Rh∗ is essentially
surjective.

This proves the theorem. �

6. Pointed derivators
Recall from Section 5 that we have constructed a derivator L�HotMf

associated with
a Quillen model category M satisfying suitable compactness assumptions.
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Now, suppose that Ho(M) is pointed; that is, suppose that the morphism

∅ −→ ∗

in M, where ∅ denotes the initial object and ∗ the terminal one, is a weak equivalence.
Consider the morphism

P : ∅̃ −→ h(∅),

where ∅̃ denotes the initial object in L�Fun(Mop
f , Sset).

Observe that since Rh admits a left adjoint, h(∅) identifies with the terminal
object in

Ho
(
L�Fun(Mop

f , Sset)
)

because

h(∅) = Ho(h)(∅)
∼→ Rh ◦ Ho(I )(∅)

∼→ Rh(∗).

We denote by

L�,P Fun(Mop
f , Sset)

the left Bousfield localization of L�Fun(Mop
f , Sset) at the morphism P .

Note that the category

Ho
(
L�,P Fun(Mop

f , Sset)
)

is now a pointed one.
We have the morphisms of derivators

Ho(M)

Rh

��

L�HotMf

L Re

��

�

��

L�,P HotMf

By construction, we have a pointed morphism of derivators

HO(M)
�◦Rh−→ L�,P HotMf

which commutes with filtered homotopy colimits and preserves the point.
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Let D be a pointed derivator.

PROPOSITION 6.1
The morphism of derivators � ◦ Rh induces an equivalence of categories

Hom!(L�,P HotMf
, D)

(�◦Rh )∗−→ Homflt,p

(
HO(M), D

)
,

where Homflt,p(HO(M), D) denotes the category of morphisms of derivators which
commute with filtered homotopy colimits and preserve the point.

Proof
By Theorem 4.4, we have an equivalence of categories

Hom!(L�,P HotMf
, D)

�∗−→ Hom!,P (L�HotMf
, D).

By Theorem 5.13, we have an equivalence of categories

Hom!(L�HotMf
, D)

Rh∗
−→ Homflt

(
HO(M), D

)
.

We now show that under this last equivalence, the category Hom!,P (L�HotMf
, D)

identifies with Homflt,p(HO(M), D). Let F be an object of Hom!,P (L�HotMf
, D).

Since F commutes with homotopy colimits, it preserves the initial object. This implies
that F ◦ Rh belongs to Homflt,p(HO(M), D).

Now, let G be an object of Homflt,p(HO(M), D). Consider, as in the proof of
Theorem 5.13, the morphism

�
(
L Re∗(G)

)
: L�HotMf

−→ D.

Since �(L Re∗(G)) commutes with homotopy colimits, by construction it sends
∅̃ to the point of D. Observe also that h(∅) is sent to the point of D because

�
(
L Re∗(G)

)(
h(∅)

) � G(∅).

This proves the proposition. �

7. Small weak generators
Let N be a pointed, left proper, compactly generated Quillen model category, as in [41,
Definition 2.1]. Observe that, in particular, this implies that N is finitely generated, as
in [16, Section 7.4]. We denote by G the set of cofibers of the generating cofibrations I

in N. By [16, Corollary 7.4.4], the set G is a set of small weak generators for Ho(N)
(see [16, Definitions 7.2.1, 7.2.2]). Let S be a set of morphisms in N between objects
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that are homotopically finitely presented (see [41, Definition 2.1]), and let LSN be
the left Bousfield localization of N by S. We have an adjunction

Ho(N)

L Id
��

Ho(LSN)

R Id

��

LEMMA 7.1
The image of the set G under the functor L Id is a set of small weak generators in
Ho(LSN).

Proof
The previous adjunction is equivalent to

Ho(N)

(−)f
��

Ho(N)S

� �

��

where Ho(N)S denotes the full subcategory of Ho(M) formed by the S-local objects
of N and (−)f denotes a fibrant resolution functor in LSN (see [15, Definition
4.3.2]). Clearly, this implies that the image of the set G under the functor (−)f is a set
of weak generators in Ho(LSN).

We now show that the S-local objects in N are stable under filtered homotopy
colimits. Let {Xi}i∈I be a filtered diagram of S-local objects. By Proposition 5.2, we
have an isomorphism

hocolim
i∈I

Xi

∼−→ colim
i∈I

Xi

in Ho(N). We now show that colimi∈I Xi is an S-local object. Let g : A → B be an
element of S. We have at our disposal the following commutative diagram:

Map(B, colim
i∈I

Xi)
g∗

�� Map(A, colim
i∈I

Xi)

colim
i∈I

Map(B, Xi)

∼
��

colim
i∈I

g∗
i

�� colim
i∈I

Map(A, Xi)

∼
��
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Now, observe that since A and B are homotopically finitely presented objects, the
vertical arrows in the diagram are isomorphisms in Ho(Sset). Since each object Xi is
S-local, the morphism g∗

i is an isomorphism in Ho(Sset) and so is colimi∈I g∗
i . This

implies that colimi∈I Xi is an S-local object. This shows that the inclusion

Ho(N)S ↪→ Ho(N)

commutes with filtered homotopy colimits, so the image of the set G under the functor
(−)f consists of small objects in Ho(LSN).

This proves the lemma. �

Recall from Section 6 that we have constructed a pointed derivator L�,P HotMf
. We

now construct a strictly pointed Quillen model category whose associated derivator is
equivalent to L�,P HotMf

. Consider the pointed Quillen model category

∗ ↓ Fun(Mop
f , Sset) = Fun(Mop

f , Sset•).

We have the Quillen adjunction

Fun(Mop
f , Sset•)

U

��

Fun(Mop
f , Sset)

(−)+

��

where U denotes the forgetful functor.
We denote by L�,P Fun(Mop

f , Sset•) the left Bousfield localization of
Fun(Mop

f , Sset•) by the image of the set � ∪ {P } under the functor (−)+. We denote
by L�,P HotMf • the derivator associated with L�,P Fun(Mop

f , Sset•).

Remark 7.2
Since the derivators associated with L�,P Fun(Mop

f , Sset) and L�,P Fun(Mop
f , Sset•)

are characterized by the same universal property, we have a canonical equivalence of
pointed derivators

L�,P HotMf

∼−→ L�,P HotMf •.

Note also that the category Fun(Mop
f , Sset•) endowed with the projective model

structure is pointed, left proper, compactly generated, and note that the domains and
codomains of the elements of the set (� ∪ {P })+ are homotopically finitely presented
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objects. Therefore, by Lemma 7.1, the set

G = {FX
�[n]+/∂�[n]+ | X ∈ Mf , n ≥ 0}

of cofibers of the generating cofibrations in Fun(Mop
f , Sset•) is a set of small weak

generators in Ho(L�,P Fun(Mop
f , Sset•)).

8. Stabilization
Let D be a regular pointed strong derivator.

Heller [14, Section 8] constructs a universal morphism to a triangulated strong
derivator

D
stab−→ St(D)

which commutes with homotopy colimits.
This construction is done in two steps. First, consider the ordered set

V := {
(i, j )

∣∣ |i − j | ≤ 1
} ⊂ Z × Z

naturally as a small category. We denote by

·
V := {

(i, j )
∣∣ |i − j | = 1

} ⊂ V

the full subcategory of points on the boundary.
Now, let Spec(D) be the full subderivator of DV (see [7, Definition 3.4]) formed

by the objects X in DV(L) whose image under the functor

DV(L) = D(V × L) −→ Fun
(
Vop, D(L)

)
is of the form

∗ �� X(1,1) · · ·

∗ �� X(0,0) ��

��

∗

��

· · · X(−1,−1)

��

�� ∗

��

(see [14, Section 8]). We have an evaluation functor ev(0,0) : Spec(D) → D which
admits a left adjoint L[0, 0].
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Finally, let St(D) be the full reflexive subderivator of Spec(D) consisting of the
�-spectra, as defined in [14, Section 8].

We have the following adjunctions:

D

L[0,0]
��

stab

��

Spec(D)

ev(0,0)

��

loc
��

St(D)
� �

��

in the 2-category of derivators.
Let T be a triangulated strong derivator. The following theorem is proved in [14,

Corollary 10.1].

THEOREM 8.1
The morphism stab induces an equivalence of categories

Hom!

(
St(D), T

) stab∗
−→ Hom!(D, T).

LEMMA 8.2
Let G be a set of objects in D(e) which satisfies the following conditions.
(A1) If, for each g in G, we have

HomD(e)(g, X) = {∗},

then X is isomorphic to ∗, where ∗ denotes the terminal and initial object in
D(e).

(A2) For every set K and each g in G, the canonical map

colim
S⊆K

S finite

HomD(e)

(
g,

∐
α∈S

Xα

) ∼→ HomD(e)

(
g,

∐
α∈S

Xα

)

is bijective.
Then the set {

�nstab(g)
∣∣ g ∈ G, n ∈ Z

}
of objects in St(D)(e), where � denotes the suspension functor in St(D)(e), satisfies
conditions (A1) and (A2).
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Proof
Let X be an object of St(D)(e). Suppose that for each g in G and n in Z, we have

HomSt(D)(e)

(
�nstab(g), X

) = {∗}.

Then by the isomorphisms

HomSt(D)(e)

(
�nstab(g), X

) � HomSt(D)(e)

(
stab(g), �nX

)
� HomD(e)(g, ev(0,0)�

nX )

� HomD(e)(g, ev(n,n)X ),

we conclude that for all n in Z, we have

ev(n,n)X = ∗.

By the conservativity axiom, X is isomorphic to ∗ in St(D)(e). This shows condition
(A1). Now, observe that condition (A2) follows from the isomorphisms

HomSt(D)(e)

(
�nstab(g),

⊕
α∈K

Xα

)
� HomSt(D)(e)

(
stab(g), �n

⊕
α∈K

Xα

)
� HomSt(D)(e)

(
stab(g),

⊕
α∈K

�nXα

)
� HomD(e)

(
g, ev(0,0)

∐
α∈K

�nXα

)
� HomD(e)

(
g,

∐
α∈K

ev(0,0)�
nXα

)
� colim

S⊆K

S finite

HomD(e)

(
g,

∐
α∈S

ev(0,0)�
nXα

)
� colim

S⊆K

S finite

HomD(e)

(
g, ev(0,0)

∐
α∈S

�nXα

)
� colim

S⊆K

S finite

HomSt(D)(e)

(
stab(g),

⊕
α∈S

�nXα

)
� colim

S⊆K

S finite

HomSt(D)(e)

(
�nstab(g),

⊕
α∈S

Xα

)
. �

LEMMA 8.3
Let T be a triangulated derivator, and let G be a set of objects in T(e) which satisfies
conditions (1) and (2) of Lemma 8.2.

Then for every small category L and every point x : e → L in L, the set{
x!(g)

∣∣ g ∈ G, x : e → L
}

satisfies conditions (1) and (2) in the category T(L).
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Proof
Suppose that

HomT(L)

(
x!(g), M

) = {∗}

for every g ∈ G and every point x in L. Then by adjunction, x∗M is isomorphic to
∗ in T(e), and so by the conservativity axiom, M is isomorphic to ∗ in T(L). This
shows condition (A1). Condition (A2) follows from the following isomorphisms:

HomT(L)

(
x!(g),

⊕
α∈K

Mα

)
� HomT(e)

(
g, x∗

⊕
α∈K

Mα

)
� HomT(e)

(
g,

⊕
α∈K

x∗Mα

)
�

⊕
α∈K

HomT(e)(g, x∗Mα)

�
⊕
α∈K

HomT(L)

(
x!(g), Mα

)
. �

Remark 8.4
Note that if D is a regular pointed strong derivator and we have at our disposal a set G
of objects in D(e) which satisfies conditions (A1) and (A2), then Lemmas 7.1 and 8.3
imply that St(D)(L) is a compactly generated triangulated category for every small
category L.

Relation with Hovey and Schwede’s stabilization
We now relate Heller’s construction in [14] with the construction of spectra as it is
done by Hovey [17] and Schwede [36].

Let M be a pointed, simplicial, left proper, cellular, almost finitely generated
Quillen model category (see [17, Definition 4.1]), where sequential colimits commute
with finite products and homotopy pullbacks. This implies, in particular, that the
associated derivator HO(M) is regular.

Example 8.5
Consider the category L�,P Fun(Mop

f , Sset•) defined in Section 7. Note that the cate-
gory of pointed simplicial presheaves Fun(Mop

f , Sset•) is pointed, simplicial, left
proper, cellular, and even finitely generated (see [17, Definition 4.1]). Since limits and
colimits in Fun(Mop

f , Sset•) are calculated objectwise, we conclude that sequential
colimits commute with finite products. Now, by [15, Theorem 4.1.1], the category
L�,P Fun(Mop

f , Sset•) is also pointed, simplicial, left proper, and cellular.
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Now, observe that the domains and codomains of each morphism in �((�∪{P })+)
(see [15, Definition 4.2.1]) are finitely presented since the forgetful functor

Fun(Mop
f , Sset•) → Fun(Mop, Sset)

commutes with filtered colimits and homotopy pullbacks. Now, by [15, Proposition

4.2.4], we conclude that a morphism A
f→ B in L�,P Fun(Mop

f , Sset•), with B a local
object, is a local fibration if and only if it has the right lifting property (RLP) with
respect to the set

J ∪ �
(
(� ∪ {P })+

)
,

where J denotes the set of generating acyclic cofibrations in Fun(Mop
f , Sset•). This

shows that L�,P Fun(Mop
f , Sset•) is almost finitely generated.

Recall from [36, Section 1.2] that since M is a pointed, simplicial model category,
we have a Quillen adjunction

M

�(−)

��

M

�(−)

��

where �(X) denotes the suspension of an object X , that is, the pushout of the diagram

X ⊗ ∂�1 ��

��

X ⊗ �1

∗
Recall also that Hovey [17] and Schwede [36] construct a stable Quillen model
category SpN(M) of spectra associated with M and with the left Quillen functor
�(−). We have the Quillen adjunction (see [17])

M

�∞

��

SpN(M)

ev0

��

and thus a morphism to a strong triangulated derivator

HO(M)
L�∞−→ HO

(
SpN(M)

)
which commutes with homotopy colimits.
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By Theorem 8.1, we have at our disposal a diagram

HO(M)

stab
��

L�∞

�������������

St
(
HO(M)

)
ϕ

�� HO
(
SpN(M)

)
which is commutative up to isomorphism in the 2-category of derivators.

Now, suppose also that we have a set G of small weak generators in Ho(M), as in
[17, Definitions 7.2.1, 7.2.2]. Suppose also that each object of G considered in M is
cofibrant, finitely presented, homotopy finitely presented, and has a finitely presented
cylinder object.

Example 8.6
Observe that the category Fun(Mop

f , Sset•) is pointed and finitely generated. By [16,
Corollary 7.4.4], the set

G = {FX
�[n]+/∂�[n]+ | X ∈ Mf , n ≥ 0}

is a set of small weak generators in Ho(Fun(Mop
f , Sset•)). Since the domains and

codomains of the set

(� ∪ {P })+
are homotopically finitely presented objects, Lemma 7.1 implies that G is a set of
small weak generators in Ho(L�,P Fun(Mop

f , Sset•)). Clearly, the elements of G are
cofibrant, finitely presented, and have a finitely presented cylinder object. They are
also homotopically finitely presented.

Under the hypotheses above on the category M, we have the following comparison
theorem.

THEOREM 8.7
The induced morphism of triangulated derivators

ϕ : St
(
HO(M)

) −→ HO
(
SpN(M)

)
is an equivalence.

The proof of Theorem 8.7 consists in verifying the conditions of the following general
proposition.
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PROPOSITION 8.8
Let F : T1 → T2 be a morphism of strong triangulated derivators. Suppose that the
triangulated categories T1(e) and T2(e) are compactly generated, and suppose that
there is a set G ⊂ T1(e) of compact generators which is stable under suspensions and
satisfies the following conditions:
(a) F (e) induces bijections

HomT1(e)(g1, g2) → HomT2(e)(Fg1, Fg2), ∀g1, g2 ∈ G;

(b) the set of objects {Fg | g ∈ G} is a set of compact generators in T2(e).
Then the morphism F is an equivalence of derivators.

Proof
Conditions (a) and (b) imply that F (e) is an equivalence of triangulated categories
(see [32, Section 4]).

Now, let L be a small category. We show that conditions (a) and (b) are also
verified by F (L), T1(L), and T2(L). By Lemma 8.3, the sets{

x!(g)
∣∣ g ∈ G, x : e → L

}
and

{
x!(Fg)

∣∣ g ∈ G, x : e → L
}

consist of compact generators for T1(L) (resp., T2(L)) which are stable under suspen-
sions. Since F commutes with homotopy colimits F (x!(g)) = x!(Fg), the isomor-
phisms

HomT1(L)

(
x!(g1), x!(g2)

) � HomT1(e)

(
g1, x

∗x!(g2)
)

� HomT2(e)

(
F (g1), F (x∗x!(g2))

)
� HomT2(e)

(
Fg1, x

∗F (x!(g2))
)

� HomT2(L)

(
x!F (g1), x!F (g2)

)
imply the proposition. �

Let us now prove Theorem 8.7.

Proof of Theorem 8.7
Let us first prove condition (b) of Proposition 8.8. Since the set G of small generators
in Ho(M) satisfies the conditions of Lemma 8.2, we have a set{

�nstab(g)
∣∣ g ∈ G, n ∈ Z

}
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of compact generators in St(HO(M))(e) which is stable under suspensions. We now
show that the set {

�nL�∞(g)
∣∣ g ∈ G, n ∈ Z

}
is a set of compact generators in Ho(SpN(M)). These objects are compact because
the functor R ev0 in the adjunction

Ho(M)

L�∞

��

Ho
(
SpN(M)

)R ev0

��

commutes with filtered homotopy colimits. We now show that they form a set of
generators. Let Y be an object in Ho(SpN(M)) which we can suppose, without loss
of generality, to be an �-spectrum (see [17, Definition 3.1]). Suppose that

Hom
(
�nL�∞(gi), Y

) � colim
m

Hom(gi, �
mYm+p) = {∗}, n ≥ 0.

Since Y is an �-spectrum, we have

Yp = ∗, ∀p ≥ 0.

This implies that Y is isomorphic to ∗ in Ho(SpN(M)).
We now show condition (a). Let g1 and g2 be objects in G. Observe that we have

the following isomorphisms (see [14, Proposition 8.2]):

HomSt(HO(M))(e)

(
stab(g1), stab(g2)

)
� HomHo(M)

(
g1, (ev(0,0) ◦ loc ◦ L[0, 0])(g2)

)
� HomHo(M)

(
g1, ev(0,0)(hocolim (L[0, 0](g2) → �σL[0, 0](g2) → · · · ))

)
� HomHo(M)

(
g1, hocolim ev(0,0)(L[0, 0](g2) → �σL[0, 0](g2) → · · · )

)
� colim

j
HomHo(M)

(
g1, �

j�j (g2)
)
.

Now, by [17, Corollary 4.13], we have

HomHo(SpN(M))

(
L�∞(g1), L�∞(g2)

) � HomHo(SpN(M))

(
�∞(g1), (�∞(g2))f

)
� colim

m
HomHo(M)

(
g1, �

m(�m(g2))f
)
,

where (�∞(g2))f denotes a levelwise fibrant resolution of �∞(g2) in the category
SpN(M).
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Now, note that since g2 is cofibrant, so is �m(g2), and so we have the isomorphism

�m
(
�m(g2)

)
f

∼−→ (R�)m ◦ (L�)m(g2)

in Ho(SPN(M)). This implies that for j ≥ 0, we have an isomorphism

�j�j (g2)
∼−→ �j

(
�j (g2)

)
f

in Ho(SpN(M)), and so

HomSt(HO(M))(e)

(
stab(g1), stab(g2)

) = HomHo(SpN(M))

(
L�∞(g1), L�∞(g2)

)
.

Now, let p be an integer. Note that

HomSt(HO(M))(e)

(
stab(g1), �pstab(g2)

) = colim
j

HomHo(M)

(
g1, �

j�j+p(g2)
)
,

and note that

HomHo(SpN(M))

(
L�∞(g1), �pL�∞(g2)

) = colim
m

HomHo(M)

(
g1, �

m(�m+p(g2))f
)
.

This proves condition (a), and so the theorem is proved. �

Remark 8.9
If we consider, for M, the category L�,P Fun(Mop

f , Sset•), we have equivalences of
derivators

ϕ : St(L�,P HotMf •)
∼−→ HO

(
SpN(L�,P Fun(Mop

f , Sset•))
) ∼← St(L�,P HotMf

).

Let D be a strong triangulated derivator.
Now, by Theorem 8.1 and Proposition 6.1, we have the following proposition.

PROPOSITION 8.10
We have an equivalence of categories

Since the category Sset• satisfies all the conditions of Theorem 8.7, we have, after
Bousfield and Friedlander [2, Definition 2.4], the following characterization of the
classical category of spectra, by a universal property.
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PROPOSITION 8.11
We have an equivalence of categories

Hom!

(
HO(SpN(Sset•)), D

) ∼−→ D(e).

Proof
By Theorems 8.7 and 3.1, we have the following equivalences:

Hom!

(
HO(SpN(Sset•)), D

) � Hom!

(
HO(Sset•), D

)
= Hom!(Hot•, D)

� Hom!(Hot, D)

� D(e).

This proves the proposition. �

Remark 8.12
An analogous characterization of the category of spectra, but in the context of stable
∞-categories, is proved in [27, Corollary 17.6].

9. dg quotients
Recall from [37] that we have at our disposal a Morita Quillen model structure on
the category of small dg categories dgcat (see Example 5.1). As shown in [37], the
homotopy category Ho(dgcat) is pointed. In the following, we consider this Quillen
model structure. We denote by I its set of generating cofibrations.

Notation 9.1
We denote by E the set of inclusions of full dg subcategories

G ↪→ H,

where H is a strict finite I -cell.

Recall that we have a morphism of derivators

Ut := (stab) ◦ � ◦ Rh : HO(dgcat) −→ St(L�,PHotdgcatf )

which commutes with filtered homotopy colimits and preserves the point.
Let us now make some general arguments.
Let D be a pointed derivator. We denote by M the category associated to the graph

0 ← 1.

Consider the functor t = 1 : e → M . Since the functor t is an open immersion (see
Notation 2.8) and the derivator D is pointed, the functor

t! : D(e) → D(M)
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has a left adjoint

t ? : D(M) → D(e)

(see [7, Definition 1.13]). We denote it by

cone : D(M) → D(e).

Let F : D → D′ be a morphism of pointed derivators. Note that we have a natural
transformation of functors

S : cone ◦ F (M) → F (e) ◦ cone.

PROPOSITION 9.2

Let A R
↪→ B be an inclusion of a full dg subcategory, and let R

A � � R
��

��

B

0

be the associated object in HO(dgcat)( ), where 0 denotes the terminal object in
Ho(dgcat). Then there exist a filtered category J and an object DR in HO(dgcat)( ×
J ) such that

p!(DR)
∼−→ R,

where p : × J → denotes the projection functor. Moreover, for every point
j : e → J in J, the object (1 × j )∗ in HO(dgcat)( ) is of the form

0 ← Yj

Lj→ Xj,

where Yj

Lj→ Xj belongs to the set E.

Proof
Apply the small-object argument to the morphism

∅ −→ B
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using the set of generating cofibrations I , and obtain the factorization

∅ ��
��

i ��								 B

Q(B)

∼
p



 

��������

where i is an I -cell. Now, consider the following fiber product:

p−1(A)

∼
����

� � ��

�

Q(B)

p∼
����

A � � J
�� B

Note that p−1(A) is a full dg subcategory of Q(B).
Now, by Proposition 5.2, we have an isomorphism

colim
j∈J

Xj

∼−→ Q(B),

where J is the filtered category of inclusions of strict finite sub-I -cells Xj into Q(B).
For each j ∈ J , consider the fiber product

Yj

��

� � ��

�

Xj

��

p−1(A) ��� � �� Q(B)

In this way, we obtain a morphism of diagrams

{Yj }j∈J ↪→ {Xj }j∈J

such that for each j in J , the inclusion

Yj ↪→ Xj

belongs to the set E and J is filtered.
Consider now the diagram DI ,

{0 ← Yj ↪→ Xj }j∈J
,
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in the category Fun( × J, dgcat). Now, note that we have the isomorphism

colim
j∈J

{0 ← Yj ↪→ Xj } ∼−→ {
0 ← p−1(A) ↪→ Q(B)

}
in Fun( , dgcat) and the weak equivalence

{
0 p−1(A)��

∼
��

� � �� Q(B)
}

∼
��

{0 A�� � � �� B}

in Fun( , dgcat) when endowed with the projective model structure (see [15, The-
orem 11.6.1]). Since Fun( , dgcat) is clearly also compactly generated, we have an
isomorphism

hocolim
j∈J

(0 ← Yj → Xj )
∼−→ colim

j∈J
(0 ← Yj → Xj ).

Finally, note that DR is an object of HO(dgcat)( × J ), and note that p!(DR),
where p : × J → J denotes the projection functor, identifies with

hocolim
i∈J

(0 ← Yj → Xj ).

This proves the proposition. �

Notation 9.3
We denote by Est the set of morphisms SL, where L belongs to the set E.

Let D be a strong triangulated derivator.

THEOREM 9.4
If

G : St(L�,P Hotdgcatf ) → D

is a morphism of triangulated derivators commuting with arbitrary homotopy colimits
and is such that G(e)(SL) is invertible for each L in E, then G(e)(SK ) is invertible for
each inclusion K : A ↪→ B of a full dg subcategory.

Proof

Let A K
↪→ B be an inclusion of a full dg subcategory. Consider the morphism

ϕK := ϕ( K ) : (i! ◦ UT )( K ) −→ (UT ◦ i!)( K )

in St(L�,P Hotdgcatf )(�).
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Let DK be the object of HO(dgcat)( × J ) constructed in Proposition 9.2. In
particular, p′

!(DK )
∼→ K , where p′ : × J → denotes the projection functor.

The inclusion i : ↪→ � induces a commutative square

HO(dgcat)(� × J )

(i×1)∗

��

UT (�×J )
�� St(L�,P Hotdgcatf )(� × J )

(i×1)∗

��

HO(dgcat)( × J )
UT (�×J )

�� St(L�,P Hotdgcatf )( × J )

and a morphism

� :
(
(i × 1)! ◦ UT ( × J )

)
(DK ) −→ (

UT (� × J ) ◦ (i × 1)!

)
(DK ).

We now show that

p!�
∼−→ ϕK,

where p : � × J → � denotes the projection functor.
The fact that we have the commutative square

� � × J
p

��

i

��

× J

i×1

��

p′
��

and the fact that the morphism of derivators UT commutes with filtered homotopy
colimits imply the equivalences

This shows that

p!(�)
∼−→ ϕK.
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We now show that � is an isomorphism. For this, by conservativity, it is enough to
show that for every object j : e → J in J , the morphism

(1 × j )∗(�)

is an isomorphism in St(L�,P Hotdgcatf )(�). Recall from Proposition 9.2 that (1 ×
j )∗(DK ) identifies with

{ 0 ← Yj

Lj

↪→ Xj },

where Lj belongs to E. We now show that (1 × j )∗(�) identifies with ϕLj
, which, by

hypothesis, is an isomorphism.
Now, the commutative diagram

�
1×j

�� � × J

i

��

1×j

�� × J

i×i

��

and the dual of [4, proposition 2.8] imply that we have the following equivalences:

Since, by hypothesis, ϕLj
is an isomorphism and the morphism G commutes with

homotopy colimits, the theorem is proved. �

10. The universal localizing invariant
Recall from Theorem 8.7 and Remark 8.9 that if we consider for the category M the
category L�,P Fun(dgcatop

f , Sset•) (see Example 8.6), then we have an equivalence
of triangulated derivators

ϕ : St(L�,P Hotdgcatf )
∼−→ HO

(
SpN(L�,P Fun(dgcatop

f , Sset•))
)
.

Now, stabilize the set Est defined in Section 9 under the functor loop space, and
choose for each element of this stabilized set a representative in the category
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SpN(L�,P Fun(dgcatop
f , Sset•)). We denote the set of these representatives by Ẽst.

Since SpN(L�,P Fun(dgcatop
f , Sset•)) is a left proper, cellular Quillen model category

(see [17, Definition 12.1.1]), its left Bousfield localization by Ẽst exists. We denote
it by LẼst

SpN(L�,P Fun(dgcatop
f , Sset•)). By Lemma 4.3, it is a stable Quillen model

category.

Remark 10.1
Since the localization morphism

γ : St(L�,P Hotdgcatf )
L Id−→ HO

(
LẼst

SpN(L�,P Fun(dgcatop
f , Sset•))

)
commutes with homotopy colimits and inverts the set of morphisms Est, Theorem 9.4
allows us to conclude that it inverts all morphisms SK for each inclusion A ↪→ B of
a full dg subcategory.

Definition 10.2
(i) The localizing motivator of dg categories Mloc

dg is the triangulated derivator
associated with the stable Quillen model category

LẼst
SpN

(
L�,P Fun(dgcatop

f , Sset•)
)
.

(ii) The universal localizing invariant of dg categories is the canonical morphism
of derivators

Ul : HO(dgcat) → Mloc
dg .

We sum up the construction of Mloc
dg in the following diagram:

dgcatf [S−1] ��

Ho(h)

��

HO(dgcat)

Rh��













Ul

��

L�Hotdgcatf

�

��

L Re
��













L�,P Hotdgcatf

stab
��

St(L�,P Hotdgcatf )

γ

��

Mloc
dg
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Observe that the morphism of derivators Ul is pointed, commutes with filtered homo-
topy colimits, and satisfies the following condition:

(Dr) for every inclusion A K
↪→ B of a full dg subcategory, the canonical morphism

SK : cone
(
Ul(A

K
↪→ B)

) → Ul(B/A)

is invertible in Mloc
dg (e).

We now give a conceptual characterization of condition (Dr). Let us now denote
by I the category associated with the graph 0 ← 1.

LEMMA 10.3
The isomorphism classes in HO(dgcat)(I ) associated with the inclusions A K

↪→ B of
full dg subcategories coincide with the classes of homotopy monomorphisms in dgcat
(see [40, Section 2]).

Proof

Recall from [40, Section 2] that in a model category M, a morphism X
f→ Y is

a homotopy monomorphism if, for every object Z in M, the induced morphism of
simplicial sets

Map(Z, X)
f∗→ Map(Z, Y )

induces an injection on π0 and isomorphisms on all πi for i > 0 (for all base
points).

Now, by [40, Lemma 2.4], a dg functor A F→ B is a homotopy monomorphism
on the quasi-equivalent Quillen model category in dgcat if and only if it is quasi-
fully faithful; that is, for any two objects X and Y in A, the morphism of complexes
HomA(X, Y ) → HomB(FX, FY ) is a quasi isomorphism.

Recall that by [37, corollaire 5.10], the mapping space functor Map(A, B) in
the Morita Quillen model category identifies with the mapping space Map(A, Bf )
in the quasi-equivalent Quillen model category, where Bf denotes a Morita fibrant

resolution of B. This implies that a dg functor A F→ B is a homotopy monomorphism

if and only if Af

Ff→ Bf is a quasi–fully faithful dg functor.
Now, note that an inclusion A ↪→ B of a full dg subcategory is a homotopy

monomorphism. Conversely, let A F→ B be a homotopy monomorphism. Consider
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the diagram

Ãf
� � �� Bf

Af

π

��

Ff

�� Bf

A

∼
��

F

�� B

∼
��

where Ãf denotes the full dg subcategory of Bf whose objects are those in the image
by the dg functor Ff . Since Ff is a quasi–fully faithful dg functor, the dg functor π

is a quasi equivalence. This proves the lemma. �

Remark 10.4
Lemma 10.3 shows that condition (Dr) is equivalent to the following:

(Dr′) for every homotopy monomorphism A F→ B in HO(dgcat)(I ), the canonical
morphism

cone
(
Ul(A

F→ B)
) → Ul

(
cone(F )

)
is invertible in Mloc

dg (e).

Let D be a strong triangulated derivator.

THEOREM 10.5
The morphism Ul induces an equivalence of categories

Hom!(Mloc
dg , D)

U∗
l−→ Homflt, Dr, p

(
HO(dgcat), D

)
,

where Homflt, Dr,p(HO(dgcat), D) denotes the category of morphisms of derivators
which commute with filtered homotopy colimits, satisfy condition (Dr), and preserve
the point.

Proof
By Theorem 4.4, we have the following equivalence of categories:

Hom!(Mloc
dg D)

γ ∗
−→ Hom!,Ẽst

(
St(L�,P Fun(dgcatop

f , Sset•)), D
)
.
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We now show that we have the following equivalence of categories:

Hom!,Ẽst

(
St(L�,P Fun(dgcatop

f , Sset•)), D
)

∼→ Hom!,Est

(
St(L�,P Fun(dgcatop

f , Sset•)), D
)
.

Let G be an element of Hom!,Est

(
St(L�,P Fun(dgcatop

f , Sset•)), D
)
, and let s be

an element of Est. We show that the image of s under the functor G(e) ◦ �(e) is
an isomorphism in D(e). Recall from the proof of Lemma 4.3 that the functor G(e)
commutes with �(e). Since the suspension and loop-space functors in D(e) are inverse
from each other, we conclude that the image of s under the functor G(e) ◦ �(e) is
an isomorphism in D(e). Now, simply observe that the category on the right-hand
side of the above equivalence identifies with Homflt, Dr,p(HO(dgcat), D) under the
equivalence

Hom!

(
St(L�,P Hotdgcatf ), D

) (stab◦�◦Rh )∗−→ Homflt,p

(
HO(dgcat), D

)
of Proposition 8.10.

This proves the theorem. �

Notation 10.6
We call an object of the right-hand-side category of Theorem 10.5 a localizing invariant
of dg categories.

We now present some examples.

Hochschild and cyclic homology
Let A be a small k-flat k-category. The Hochschild chain complex of A is the complex
concentrated in homological degrees p ≥ 0 whose pth component is the sum of the

A(Xp, X0) ⊗ A(Xp, Xp−1) ⊗ A(Xp−1, Xp−2) ⊗ · · · ⊗ A(X0, X1),

where X0, . . . , Xp range through the objects of A, endowed with the differential

d(fp ⊗ · · · ⊗ f0) = fp−1 ⊗ · · · ⊗ f0fp +
p∑

i=1

(−1)ifp ⊗ · · · ⊗ fifi−1 ⊗ · · · ⊗ f0.

Via the cyclic permutations

tp(fp−1 ⊗ · · · ⊗ f0) = (−1)pf0 ⊗ fp−1 ⊗ · · · ⊗ f1,

this complex becomes a precyclic chain complex and thus gives rise to a mixed complex
C(A), that is, a dg module over the dg algebra � = k[B]/(B2), where B is of degree
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−1 and dB = 0. All variants of cyclic homology only depend on C(A) considered
in D(�). For example, the cyclic homology of A is the homology of the complex

C(A)
L⊗� k (see [18, Theorem 1.3]).

If A is a k-flat differential graded category, its mixed complex is the sum-
total complex of the bicomplex obtained as the natural reinterpretation of the above
complex. If A is an arbitrary dg k-category, its Hochschild chain complex is defined
as that of a k-flat (e.g., a cofibrant) resolution of A. The following theorem is proved
in [20, Theorem 1.5].

THEOREM 10.7
The map A 	→ C(A) yields a morphism of derivators

HO(dgcat) → HO(� − Mod),

which commutes with filtered homotopy colimits, preserves the point, and satisfies
condition (Dr).

Remark 10.8
By Theorem 10.5, the morphism of derivators C factors through Ul and so gives rise
to a morphism of derivators

C : Mloc
dg → HO(� − Mod).

Nonconnective K-theory
Let A be a small dg category. Its nonconnective K-theory spectrum K(A) is defined
by applying Schlichting’s construction (see [35, Theorem 3]) to the Frobenius pair as-
sociated with the category of cofibrant perfect A-modules. (To the empty dg category,
we associate zero.) Recall that the conflations in the Frobenius category of cofibrant
perfect A-modules are the short exact sequences that split in the category of graded
A-modules.

THEOREM 10.9
The map A 	→ K(A) yields a morphism of derivators

HO(dgcat) → HO(Spt)

to the derivator associated with the category of spectra which commutes with filtered
homotopy colimits, preserves the point, and satisfies condition (Dr).
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Proof
Note that [35, Proposition 11.15], which is an adaptation of [39, Theorem 1.9.8],
implies that we have a well-defined morphism of derivators

HO(dgcat) → HO(Spt).

Also, [35, Lemma 6.3] implies that this morphism commutes with filtered homotopy
colimits, and [35, Theorem 11.10] implies that condition (Dr) is satisfied. �

Remark 10.10
By Theorem 10.5, the morphism of derivators K factors through Ul and so gives rise
to a morphism of derivators

K : Mloc
dg → HO(Spt).

We now establish a connection between Waldhausen’s S•-construction (see [43, Sec-
tion 1.3]) and the suspension functor in the triangulated category Mloc

dg (e). Let A be a
Morita fibrant dg category (see [37, remarque 5.4]). Note that Z0(A) carries a natural
exact category structure obtained by pulling back the graded-split structure on Cdg(A)
along the Yoneda functor

h : Z0(A) −→ Cdg(A),

A 	→ Hom•(?, A).

Notation 10.11
Note that the simplicial category S•A, obtained by applying Waldhausen’s S•-
construction to Z0(A), admits a natural enrichment over the complexes. We denote
by S•A the simplicial Morita fibrant dg category obtained.

Recall that � denotes the simplicial category, and recall that p : � → e denotes the
projection functor.

PROPOSITION 10.12
There is a canonical isomorphism in Mloc

dg (e),

p!Ul(S•A)
∼→ Ul(A)[1].

Proof
As in [28, Section 3.3], we consider the sequence in HO(dgcat)(�),

0 → A• → PS•A → S•A → 0,
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where A• denotes the constant simplicial dg category with value A and PS•A
denotes the path object of S•A. For each point n : e → �, the nth component of the
above sequence is the following short exact sequence in Ho(dgcat):

0 → A I→ PSnA = Sn+1A Q→ SnA → 0,

where I maps A ∈ A to the constant sequence

0 → A
Id→ A

Id→ · · · Id→ A

and Q maps a sequence

0 → A0 → A1 → · · · → An

to

A1/A0 → · · · → An/A0.

Since the morphism of derivators Ul satisfies condition (Dr), the conservativity axiom
implies that we obtain a triangle

Ul(A•) → Ul(PS•) → Ul(S•) → Ul(A•)[1]

in Mloc
dg (�). By applying the functor p!, we obtain the following triangle:

p!Ul(A•) → p!Ul(PS•A) → p!Ul(S•A) → p!Ul(A•)[1]

in Mloc
dg (e). We now show that we have natural isomorphisms

p!Ul(A•)
∼→ Ul(A)

and

p!Ul(PS•A)
∼→ 0

in Mloc
dg (e), where 0 denotes the zero object in the triangulated category Mloc

dg (e). This
clearly implies the proposition. Since the morphisms of derivators �, stab, and γ

commute with homotopy colimits, it is enough to show that we have isomorphisms

p!Rh(A•)
∼→ Rh(A)

and

p!Rh(PS•A)
∼→ ∗
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in Hotdgcatf (e), where ∗ denotes the terminal object in Hotdgcatf (e). Note that since
A and PSnA, n ≥ 0, are Morita fibrant dg categories, we have natural isomorphisms

h(A•)
∼→ Rh(A•)

and

h(PS•A)
∼→ Rh(PS•A)

in Hotdgcatf (�).
Now, since homotopy colimits in Fun(dgcatop

f , Sset) are calculated objectwise
and since h(A•) is a constant simplicial object in Fun(dgcatop

f , Sset), [15, Corollary
18.7.7] implies that we have an isomorphism

p!Rh(A•)
∼→ Rh(A)

in Mloc
dg (e).

Note also that since PS•A is a contractible simplicial object (see [28, Section
3.3]), so is h(PS•A). Since homotopy colimits in Fun(dgcatop

f , Sset) are calculated
objectwise, we have an isomorphism

p!Rh(PS•A)
∼→ ∗

in Hotdgcatf (e).
This proves the proposition. �

11. A Quillen model in terms of presheaves of spectra
In this section, we construct another Quillen model category whose associated deriva-
tor is the localizing motivator of dg categories Mloc

dg .
Consider the Quillen adjunction

Fun(dgcatop
f , Sset•)

�∞

��

SpN
(
Fun(dgcatop

f , Sset•)
)
.

ev0

��

Recall from Section 7 that we have a set of morphisms (� ∪ {P })+ in the cate-
gory Fun(dgcatop

f , Sset•). Now, stabilize the image of this set by the derived func-

tor L�∞ under the functor loop space in Ho
(
SpN(Fun(dgcatop

f , Sset•))
)
. For each

one of the morphisms thus obtained, choose a representative in the model category
SpN(Fun(dgcatop

f , Sset•)).



HIGHER K-THEORY VIA UNIVERSAL INVARIANTS 179

Notation 11.1
Let us denote this set by G, and let us denote by LGSpN(Fun(dgcatop

f , Sset•)) the
associated left Bousfield localization.

PROPOSITION 11.2
We have an equivalence of triangulated strong derivators

HO
(
SpN(L�,P Fun(Mop

f , Sset•))
) ∼−→ HO

(
LGSpN(Fun(Mop

f , Sset•))
)
.

Proof
Observe that Theorems 4.4 and 8.7 imply that both derivators have the same universal
property. This proves the proposition. �

Remark 11.3
Note that the stable Quillen model category

SpN
(
Fun(Mop

f , Sset•)
)

identifies with

Fun
(
Mop

f , SpN(Sset•)
)

endowed with the projective model structure.

The above considerations imply the following proposition.

PROPOSITION 11.4
We have an equivalence of derivators

HO
(
LẼst,G

Fun(dgcatop
f , SpN(Sset•))

) ∼−→ Mloc
dg .

12. Upper triangular dg categories
In this section, we study upper triangular dg categories using the formalism of Quillen’s
homotopical algebra. In Section 13, we relate this important class of dg categories
with split short exact sequences in Ho(dgcat).

Definition 12.1
An upper triangular dg category B is given by an upper triangular matrix

B :=
(

A X

0 C

)
,

where A and C are small dg categories and X is an A-C-bimodule.
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A morphism F : B → B′ of upper triangular dg categories is given by a triple
F := (FA, FC, FX), where FA (resp., FC) is a dg functor from A to A′ (resp., from
C to C′) and FX is a morphism of A-C-bimodules from X to X′. (We consider X′

endowed with the action induced by FA and FC.) The composition is the natural one.

Notation 12.2
We denote by dgcattr the category of upper triangular dg categories.

Let B ∈ dgcattr.

Definition 12.3
Let |B| be the totalization of B, that is, the small dg category whose set of objects is
the disjoint union of the set of objects of A and C and whose morphisms are given by

Hom|B|(x, x ′) :=

⎧⎪⎪⎨
⎪⎪⎩

HomA(x, x ′) if x, x ′ ∈ A,

HomC(x, x ′) if x, x ′ ∈ C,

X(x, x ′) if x ∈ A, x ′ ∈ C,

0 if x ∈ C, x ′ ∈ A.

We have the adjunction

dgcattr

|−|
��

dgcat

I

��

where

I (B′) :=
(

B′ HomB′(−, −)
0 B′

)
.

LEMMA 12.4
The category dgcattr is complete and cocomplete.

Proof
Let {Bj }j∈J be a diagram in dgcattr. Observe that the upper triangular dg category

⎛
⎝colim

j∈J
Aj colim

j∈J
|Bj |(−, −)

0 colim
j∈J

Cj

⎞
⎠,
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where colimj∈J |Bj |(−, −) is the colimj∈J Aj -colimj∈J Cj -bimodule naturally as-
sociated with the dg category colimj∈J |Bj |, corresponds to colimj∈J Bj . Observe
also that the upper triangular dg category⎛

⎝lim
j∈J

Aj lim
j∈J

Xj

0 lim
j∈J

Cj

⎞
⎠

corresponds to limj∈J Bj . This proves the lemma. �

Notation 12.5
Let p1( B ) := A, and let p2( B ) := C.

We have at our disposal the adjunction

dgcattr

p1×p2

��

dgcat × dgcat

E

��

where

E(B′, B′′) :=
(

B′ 0
0 B′′

)
.

Recall from [37, théorème 5.3] and [38, théorème 5.3] that dgcat admits a structure
of cofibrantly generated Quillen model category whose weak equivalences are the
Morita dg functors. This structure clearly induces a componentwise model structure
on dgcat × dgcat which is also cofibrantly generated.

PROPOSITION 12.6
The category dgcattr admits a structure of cofibrantly generated Quillen model cat-
egory whose weak equivalences (resp., fibrations) are the morphisms F : B → B′

such that (p1 × p2)( F ) are quasi equivalences (resp., fibrations) in dgcat × dgcat.

Proof
We show that the previous adjunction (E, p1 × p2) verifies conditions (1) and (2) of
[15, Theorem 11.3.2].

(1) Since the functor E is also a right adjoint to p1 × p2, the functor p1 × p2

commutes with colimits, and so condition (1) is verified.
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(2) Let J (resp., J ×J ) be the set of generating trivial cofibrations in dgcat (resp.,
in dgcat × dgcat). Since the functor p1 × p2 commutes with filtered colimits, it is
enough to prove the following. Let G : B′ → B′′ be an element of the set E(J × J ),
let B be an object in dgcattr, and let B′ → B be a morphism in dgcattr. Consider
the pushout in dgcattr:

B′ ��

G

��

�

B

G ∗
��

B′′ �� B′′∐
B′

B

We now prove that (p1 × p2)( G ∗) is a weak equivalence in dgcat × dgcat. Observe
that the image of the previous pushout under the functors p1 and p2 corresponds to
the following two pushouts in dgcat:

A′ ��

��

GA′ ∼
��

�

A

GA′∗
��

C′ ��

��

GC′ ∼
��

�

C

GC′∗
��

A′′ �� A′′∐
A′

A C′′ �� C′′∐
C′

C

Since GA′∗ and GC′∗ belong to J , the morphism

(p1 × p2)( G ∗) = (GA′∗, GC′∗)

is a weak equivalence in dgcat × dgcat. This proves condition (2).
The proposition is then proved. �

Let B, B′ ∈ dgcattr.

Definition 12.7
A morphism F : B → B′ is a total Morita dg functor if FA and FC are Morita
dg functors (see [37, section 5], [38, section 5]), and FX is a quasi isomorphism of
A-C-bimodules.

Remark 12.8
Notice that if F is a total Morita dg functor, then |F | is a Morita dg functor in dgcat,
but the converse is not true.
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THEOREM 12.9
The category dgcattr admits a structure of cofibrantly generated Quillen model cate-
gory whose weak equivalences W are the total Morita dg functors and whose fibrations
are the morphisms F : B → B′ such that FA and FC are Morita fibrations (see [37])
and FX is a componentwise surjective morphism of bimodules.

Proof
The proof is based on enlarging the set E(I × I ) (resp., E(J × J )) of generating
cofibrations (resp., generating trivial cofibrations) of the Quillen model structure of
Proposition 12.6.

Let Ĩ be the set of morphisms in dgcattr,(
k Sn−1

0 k

)
↪→

(
k Dn

0 k

)
, n ∈ Z,

where Sn−1 is the complex k[n − 1] and Dn is the mapping cone on the identity of
Sn−1. The k-k-bimodule Sn−1 is sent to Dn by the identity on k in degree n − 1.

Consider also the set J̃ of morphisms in dgcattr,(
k 0
0 k

)
↪→

(
k Dn

0 k

)
, n ∈ Z.

Observe that a morphism F : B → B′ in dgcattr has the RLP with respect to the set J̃
(resp., Ĩ ) if and only if FX is a componentwise surjective morphism (resp., surjective
quasi isomorphism) of A-C-bimodules.

Define I := E(I × I ) ∪ Ĩ as the set of generating cofibrations in dgcattr, and
define J := E(J × J ) ∪ J̃ as the set of generating trivial cofibrations. We now prove
that conditions (1) – (6) of [16, Theorem 2.1.19] are satisfied; this is clearly the case
for conditions (1) – (3).

(4) We now prove that J -cell ⊂ W (see [15]). Since, by Proposition 12.6, we have
E(J × J )-cell ⊂ W′, where W′ denotes the weak equivalences of Proposition 12.6,
it is enough to prove that pushouts with respect to any morphism in J̃ belong to W.
Let n be an integer, and let B be an object in dgcattr. Consider the following pushout
in dgcattr:

(
k 0
0 k

)
T

��

� �

��

�

B

R

��(
k D n

0 k

)
�� B′
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Notice that the morphism T corresponds to specifying an object A in A and an object
C in C. The upper triangular dg category B′ is then obtained from B by gluing a
new morphism of degree n from A to C. Observe that RA and RC are the identity dg
functors, and observe that RX is a quasi isomorphism of bimodules. This shows that
R belongs to W, and so condition (4) is proved.

(5), (6) We now show that RLP(I ) = RLP(J ) ∩ W. The proof of Proposi-
tion 12.6 implies that RLP(E(I × I )) = RLP(E(J × J )) ∩ W′. Let F : B →
B′ be a morphism in RLP(Ĩ ). Clearly, F belongs to RLP(J̃ ), and FX is a
quasi isomorphism of bimodules. This shows that RLP(I ) ⊂ RLP(J ) ∩ W.
Now, let F : B → B′ be a morphism in RLP(J̃ ) ∩ W. Clearly, F be-
longs to RLP(Ĩ ), and so RLP(J ) ∩ W ⊂ RLP(I ). This proves conditions (5)
and (6).

This proves the theorem. �

Remark 12.10
Notice that the Quillen model structure of Theorem 12.9 is cellular (see [15, Definition
12.1.1]), and notice that the domains and codomains of I (the set of generating cofibra-
tions) are cofibrant, ℵ0-compact, ℵ0-small, and homotopically finitely presented (see
[41, Definition 2.1.1]). This implies that we are in the conditions of Proposition 5.2,
so any object B in dgcattr is weakly equivalent to a filtered colimit of strict finite
I -cell objects.

PROPOSITION 12.11
If B is a strict finite I -cell object in dgcattr, then p1( B ), p2( B ), and |B| are strict
finite I -cell objects in dgcat.

Proof
We consider the following inductive argument.

(A) Note that the initial object in dgcattr is(∅ 0
0 ∅

)
,

and notice that it is sent to ∅ (the initial object in dgcat) by the functors p1, p2, and
| − |.

(B) Suppose that B is an upper triangular dg category such that p1( B ), p2( B ),
and |B| are strict finite I -cell objects in dgcat. Let G : B′ → B′′ be an element of
the set I in dgcattr (see the proof of Theorem 12.9), and let B′ → B be a morphism.
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Consider the following pushout in dgcattr:

B′ ��

G

��

�

B

G ∗
��

B′′ �� PO

We now prove that p1(PO), p2(PO), and |PO| are strict finite I -cell objects in dgcat.
We consider the following two cases.

(1) G belongs to E(I × I ). Observe that p1(PO), p2(PO), and |PO| correspond
exactly to the following pushouts in dgcat:

Since GA′ and GC′ belong to I , this case is proved.
(2) G belongs to Ĩ . Observe that p1(PO) identifies with A, p2(PO) identifies

with C, and |PO| corresponds to the following pushout in dgcat :

C(n) ��

S(n)

��

�

|B|

��

P(n) �� |PO|

where S(n) is a generating cofibration in dgcat (see [38, section 2]). This proves this
case.

The proposition is proved. �

13. Split short exact sequences
In this section, we establish the connection between split short exact sequences of dg
categories and upper triangular dg categories.
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Definition 13.1
A split short exact sequence of dg categories is a short exact sequence of dg categories
(see [21, Theorem 4.11]) which is Morita equivalent to one of the form

0 �� A
iA

�� B
R

��

P

�� C
iC

��
�� 0

where we have P ◦ iA = 0, R is a dg functor right adjoint to iA, iC is a dg functor
right adjoint to P , and we have P ◦ iC = IdC and R ◦ iA = IdA via the adjunction
morphisms.

To a split short exact sequence, we can naturally associate the upper triangular dg
category

B :=
(

A HomB
(
iC(−), iA(−)

)
0 C

)
.

Conversely, to an upper triangular dg category B such that C admits a zero object
(e.g., if C is Morita fibrant), we can associate a split short exact sequence

0 �� A
iA

�� |B|
R

��

P

�� C
iC

��
�� 0

where P and R are the projection dg functors. Moreover, this construction is func-
torial in B and sends total Morita equivalences to Morita-equivalent split short exact
sequences. Note also that by Lemma 12.4, this functor preserves colimits.

PROPOSITION 13.2
Every split short exact sequence of dg categories is weakly equivalent to a filtered
homotopy colimit of split short exact sequences whose components are strict finite
I -cell objects in dgcat.

Proof
Let

0 �� A
iA

�� B
R

��

P

�� C
iC

��
�� 0

be a split short exact sequence of dg categories. We can suppose that A, B, and C are
Morita-fibrant dg categories (see [37, remarque 5.4]). Consider the upper triangular
dg category

B :=
(

A HomB
(
iC(−), iA(−)

)
0 C

)
.



HIGHER K-THEORY VIA UNIVERSAL INVARIANTS 187

Now, by Remark 12.10, B is equivalent to a filtered colimit of strict finite I -cell objects
in dgcattr. Consider the image of this diagram by the functor, described following
Definition 13.1, which sends an upper triangular dg category to a split short exact
sequence. By Proposition 12.11, the components of each split short exact sequence of
this diagram are strict finite I -cell objects in dgcat. Since the category dgcat satisfies
the conditions of Proposition 5.2, filtered homotopy colimits are equivalent to filtered
colimits, and so the proposition is proved. �

14. Quasi additivity
Recall from Section 10 that we have at our disposal the Quillen model category
L�,P Fun(dgcatop

f , Sset) which is homotopically pointed; that is, the morphism ∅ →
∗, from the initial object ∅ to the terminal one ∗, is a weak equivalence. We now
consider a strictly pointed Quillen model.

PROPOSITION 14.1
We have a Quillen equivalence

∗ ↓ L�,P Fun(Mop
f , Sset)

U

��

L�,P Fun(Mop
f , Sset)

(−)+

��

where U denotes the forgetful functor.

This follows from the fact that the category L�,P Fun(dgcatop
f , Sset) is homotopically

pointed and from the following general argument.

PROPOSITION 14.2
Let M be a homotopically pointed Quillen model category. We have a Quillen equiv-
alence

∗ ↓ M

U

��

M

(−)+

��

where U denotes the forgetful functor.
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Proof
Clearly, the functor U preserves cofibrations, fibrations, and weak equivalences by
construction. Let now N ∈ M, and let M ∈ ∗ ↓ M. Consider the following commu-
tative diagram in M:

N � ∅ ∐
N

f
��

∼

i�1 ������������
U (M)

∗ ∐
N

f �

�����������

where f � is the morphism that corresponds to f , considered as a morphism in M under
the adjunction, and i : ∅ ∼→ ∗. Since the morphism i �1 corresponds to the homotopy
colimit of i and 1, which are both weak equivalences, Proposition 4.1 implies that
i � 1 is a weak equivalence. Now, by the two-out-of-three property, the morphism f

is a weak equivalence if and only if f � is also. This proves the proposition. �

Notation 14.3
Let A and B be small dg categories. We denote by repmor(A, B) the full dg subcate-
gory of Cdg(Aop

c ⊗ B), where Ac denotes a cofibrant resolution of A whose objects
are the bimodules X such that X(?, A) is a compact object in D(B) for all A ∈ Ac

and which are cofibrant as bimodules. We denote by wA the category of homotopy
equivalences of A, and we denote by N.wA its nerve.

Now, consider the morphism

Ho(dgcat) → Ho
(∗ ↓ L�,P Fun(Mop

f , Sset)
)
,

A 	→
⎧⎨
⎩

Homdgcat
(
�(?), Af

)
+

� Mapdgcat(?, A)+
� N.w repmor(?, A)+

which by Sections 5 and 6 and Proposition 14.1 corresponds to the component (� ◦
Rh )(e) of the morphism of derivators

� ◦ Rh : HO(dgcat) −→ L�,P Hotdgcatf

(see Proposition 6.1). Observe that the simplicial presheaf N.w repmor(?, A) is already
canonically pointed.
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PROPOSITION 14.4
The canonical morphism

� : N.w repmor(?, A)+ → N.w repmor(?, A)

is a weak equivalence in ∗ ↓ L�,P Fun(Mop
f , Sset).

Proof
Observe that N.w repmor(?, A) is a fibrant object in ∗ ↓ L�,P Fun(Mop

f , Sset), and
observe that the canonical morphism � corresponds to the counit of the adjunction of
Proposition 14.1. Since this adjunction is a Quillen equivalence, the proposition is
proved. �

Recall now from Remark 7.2 that we have a canonical equivalence of pointed derivators

L�,P Hotdgcatf
∼−→ L�,P Hotdgcatf •,

where L�,P Hotdgcatf • is the derivator associated with the Quillen model category
L�,P Fun(dgcatop

f , Sset•). For the remainder of this article, we consider this Quillen
model. We have the morphism of derivators

� ◦ Rh : HO(dgcat) −→ L�,P Hotdgcatf •,

which commutes with filtered homotopy colimits and preserves the point.

Notation 14.5
(i) We denote by Es the set of retractions of dg categories

G
iG

�� H
R

��

where G and H are strict finite I -cell objects in dgcat, iG is a fully faithful dg
functor, R is a right adjoint to iG, and R ◦ iG = IdG.

(ii) We denote by Es
un the set of morphisms SL in L�,P Hotdgcatf •(e) (see Section 9),

where L belongs to the set Es .

Now, choose for each element of the set Es
un a representative in the category

L�,P Fun(dgcatop
f , Sset•). We denote this set of representatives by Ẽs

un. Since
L�,P Fun(dgcatop

f , Sset•) is a left proper, cellular Quillen model category (see [15,

Definition 12.1.1]) its left Bousfield localization by Ẽs
un exists. We denote it by

LẼs
un

L�,P Fun(dgcatop
f , Sset•), and we denote by LẼs

un
L�,P Hotdgcatf • the associated

derivator. We have the morphism of derivators

� : L�,P FunHotdgcatf • → LẼs
un

L�,P FunHotdgcatf •.
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Remark 14.6
(i) Notice that by construction, the domains and codomains of the set Ẽs

un are
homotopically finitely presented objects. Therefore, by Lemma 7.1, the set

G = {FX
�[n]+/∂�[n]+ | X ∈ Mf , n ≥ 0}

of cofibers of the generating cofibrations in Fun(Mop
f , Sset•) is a set of small

weak generators in Ho(LẼs
un

L�,P Fun(Mop
f , Sset•)).

(ii) Notice also that Proposition 13.2 implies that variants of Proposition 9.2 and
Theorem 9.4 are also verified: simply consider the set Es instead of E and a
retraction of dg categories instead of an inclusion of a full dg subcategory. The
proofs are exactly the same.

Definition 14.7
(i) The unstable motivator of dg categories Munst

dg is the derivator associated with
the Quillen model category

LẼs
un

L�,P Fun(dgcat op
f , Sset•).

(ii) The universal unstable invariant of dg categories is the canonical morphism
of derivators

Uu : HO(dgcat) → Munst
dg .

Let M be a left proper, cellular model category, let S be a set of maps in M, and
let LSM be the left Bousfield localization of M with respect to S (see [15, Defini-
tion 12.1.1]). Recall from [15, Theorem 4.1.1] that an object X in LSM is fibrant
if X is fibrant in M and if, for every element f : A → B of S, the induced
map of homotopy function complexes f ∗ : Map(B, X) → Map(A, X) is a weak
equivalence.

PROPOSITION 14.8
An object F ∈ LẼs

un
L�,P Fun(dgcatop

f , Sset•) is fibrant if and only if it satisfies the
following conditions:
(1) F (B) ∈ Sset• is fibrant for all B ∈ dgcatf ;
(2) F (∅) ∈ Sset• is contractible;
(3) for every Morita equivalence B ∼→ B′ in dgcatf , the morphism F (B′)

∼→
F (B) is a weak equivalence in Sset• ;
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(4) every split short exact sequence

0 �� B′
iB′

�� B
R

��

P

�� B′′
iB′′

��
�� 0

in dgcatf induces a homotopy fiber sequence

F (B′′) → F (B) → F (B′)

in Sset.

Proof
Clearly, condition (1) corresponds to the fact that F is fibrant in Fun(dgcatop

f , Sset•).
Now, observe that Fun(dgcatop

f , Sset•) is a simplicial Quillen model category with
the simplicial action given by

Sset × Fun(dgcatop
f , Sset•) → Fun(dgcatop

f , Sset•),

(K, F ) 	→ K+ ∧ F,

where K+∧F denotes the componentwise smash product. This simplicial structure and
the construction of the localized Quillen model category LẼs

un
L�,P Fun(dgcatop

f , Sset•)
(see Section 7) allow us to recover conditions (2) and (3). Condition (4) follows from
the construction of the set Ẽs

un and from the fact that the functor

Map(?, F ) : Fun(dgcatop
f , Sset•)op → Sset

transforms homotopy cofiber sequences into homotopy fiber sequences.
This proves the proposition. �

Let A be a Morita fibrant dg category. Recall from Notation 10.11 that S•A denotes
the simplicial Morita fibrant dg category obtained by applying Waldhausen’s S•-
construction to the exact category Z0(A) and by remembering the enrichment in
complexes.

Notation 14.9
We denote by K(A) ∈ Fun(dgcatop

f , Sset•) the simplicial presheaf

B 	→ |N.wS• repmor(B, A)|,

where | − | denotes the fibrant realization functor of bisimplicial sets.
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PROPOSITION 14.10
The simplicial presheaf K(A) is fibrant in LẼs

un
L�,P Fun(dgcatop

f , Sset•).

Proof
Observe that K(A) satisfies conditions (1) – (3) of Proposition 14.8. We now prove
that Waldhausen’s fibration theorem [43, Theorem 1.6.4] implies condition (4). Apply
the contravariant functor repmor(?, A) to the split short exact sequence

0 �� B′
iB′

�� B
R

��

P

�� B′′
iB′′

��
�� 0

and obtain a split short exact sequence

0 �� repmor(B′′, A) �� repmor(B, A)
��

�� repmor(B′, A)
��

�� 0

Now, consider the Waldhausen category v repmor(B, A) := Z0(repmor(B, A)),
where the weak equivalences are the morphisms f such that cone(f ) is contractible.
Consider also the Waldhausen category w repmor(B, A), which has the same cofi-
brations as v repmor(B, A) but in which the weak equivalences are the morphisms
f such that cone(f ) belongs to repmor(B′′, A). Observe that we have the inclu-
sion v repmor(B, A) ⊂ w repmor(B, A) and an equivalence repmor(B, A)w �
Z0(repmor(B′, A)) (see [43, Section 1.6]). The conditions of [43, Theorem 1.6.4]
are satisfied, and so we have a homotopy fiber sequence

|N.wS• repmor(B′′, A)| → |N.wS• repmor(B, A)| → |N.wS• repmor(B′, A)|

in Sset. This proves the proposition. �

Let p : � → e be the projection functor.

PROPOSITION 14.11
The objects

S1 ∧ N.w repmor(?, A) and |N.wS• repmor(?, A)| = K(A)

are canonically isomorphic in Ho(LẼs
un

L�,P Fun(dgcatop
f , Sset•)).
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Proof
As in [28, Section 3.3], we consider the sequence in HO(dgcat)(�),

0 �� A•
I

�� PS•A
Q

�� S•A �� 0,

where A• denotes the constant simplicial dg category with value A and PS•A
denotes the path object of S•A. By applying the morphism of derivators Uu to this
sequence, we obtain the canonical morphism

SI : cone
(
Uu(A•

I→ PS•A)
) → Uu(S•A)

in Munst
dg (�). We now prove that for each point n : e → �, the nth component of SI

is an isomorphism in LẼs
un

L�,P Fun(dgcatop
f , Sset•). For each point n : e → �, we

have a split short exact sequence in Ho(dgcat),

0 �� A
In

�� PSnA = Sn+1A
Rn

��

Qn

�� SnA
Sn

��
�� 0

where In maps A ∈ A to the constant sequence

0 → A
Id→ A

Id→ · · · Id→ A,

Q maps a sequence

0 → A0 → A1 → · · · → An

to

A1/A0 → · · · → An/A0,

Sn maps a sequence

0 → A0 → A1 → · · · → An−1

to

0 → 0 → A0 → · · · → An−1,

and Rn maps a sequence

0 → A0 → A1 → · · · → An−1
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to A0. Now, by construction of LẼs
un

L�,P Fun(dgcatop
f , Sset•), the canonical mor-

phisms

SIn
: cone

(
Uu(A In→ PSnA)

) → Uu(SnA), n ∈ N

are isomorphisms in Munst
dg (e). Since homotopy colimits in the model category

LẼs
un

L�,P Fun(dgcatop
f , Sset•) are calculated objectwise, the nth component of SI

identifies with SIn
, and so by the conservativity axiom, SI is an isomorphism in

Munst
dg (�). This implies that we obtain the homotopy co-Cartesian square

p!Uu(A•)

��

�� p!

(
Uu(PS•A)

)

��

∗ �� p!

(
Uu(S•A)

)
.

As in the proof of Proposition 10.12, we show that p!Uu(A•) identifies with
N.w repmor(?, A) = Uu(A) and that p!(Uu(PS•A)) is contractible. Since we have
the equivalence

p!

(
Uu(S•A)

) = p!

(
N.w repmor(?, S•A)

) ∼→ |N.wS• repmor(?, A)|

and N.w repmor(?, A) is cofibrant in LẼs
un

L�,P Fun(dgcatop
f , Sset•), the proposition

is proved. �

PROPOSITION 14.12
We have the following weak equivalence of simplicial sets:

Map
(
Uu(k), S1 ∧ Uu(A)

) ∼→ |N.wS•Af |

in LẼs
un

L�,P Fun(dgcatop
f , Sset•). In particular, we have the isomorphisms

πi+1Map
(
Uu(k), S1 ∧ Uu(A)

) ∼→ Ki(A), ∀i ≥ 0.

Proof
This follows from Propositions 14.10 and 14.11 and from the weak equivalences

Map
(
Uu(k), S1 ∧ Uu(A)

) � Map
(
Rh(k), K(A)

)
� (

K(A)
)
(k)

� |N.wS•Af |. �
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15. The universal additive invariant
Consider the Quillen model category LẼs

un
L�,P Fun(dgcatop

f , Sset•) constructed in

Section 14. The definition of the set Ẽs
un and the same arguments as those of Examples

8.5 and 8.6 allow us to conclude that LẼs
un

L�,P Fun(dgcatop
f , Sset•) satisfies the condi-

tions of Theorem 8.7. In particular, we have an equivalence of triangulated derivators

St(Munst
dg )

∼→ HO
(
SpN(LẼs

un
L�,P Fun(dgcatop

f , Sset•))
)
.

Definition 15.1
(i) The additive motivator of dg categories Madd

dg is the triangulated derivator
associated with the stable Quillen model category

SpN
(
LẼs

un
L�,P Fun(dgcatop

f , Sset•)
)
.

(ii) The universal additive invariant of dg categories is the canonical morphism of
derivators

Ua : HO(dgcat) → Madd
dg .

Remark 15.2
Observe that Remarks 14.6 and 8.4 imply that Madd

dg is a compactly generated trian-
gulated derivator.

We sum up the construction of Madd
dg in the diagram

dgcatf [S−1] ��

Ho(h)

��

HO(dgcat)

Rh��













Ua

��

Uu

��

L�Hotdgcatf

�

��

L Re
��













L�,P Hotdgcatf •

�

��

Munst
dg

ϕ

��

Madd
dg
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Observe that the morphism of derivators Ua is pointed, commutes with filtered ho-
motopy colimits, and satisfies the following condition:
(A) for every split short exact sequence

0 �� A
iA

�� B
R

��

P

�� C
iC

��
�� 0

in Ho(dgcat), we have a split triangle

Ua(A)
iA

�� Ua(B)
R

��

P

�� Ua(C)
iC

��
�� Ua(A)[1]

in Madd
dg (e). This implies that the dg functors iA and iC induce an isomorphism

Ua(A) ⊕ Ua(C)
∼→ Ua(B)

in Madd
dg (e).

Remark 15.3
Since the dg category B in the above split short exact sequence is Morita equivalent
to the dg category E(A, B, C) (see [43, Section 1.1]), condition (A) is equivalent to
the additivity property stated by Waldhausen in [43, Proposition 1.3.2].

Let D be a strong triangulated derivator.

THEOREM 15.4
The morphism Ua induces an equivalence of categories

Hom!(Madd
dg , D)

U∗
a−→ Homflt, (A), p

(
HO(dgcat), D

)
,

where Homflt, (A),p(HO(dgcat), D) denotes the category of morphisms of derivators
which commute with filtered homotopy colimits, satisfy condition (A), and preserve
the point.

Proof
By Theorem 8.1, we have an equivalence of categories

Hom!(Madd
dg , D)

∼−→ Hom!(Munst
dg , D).
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By Theorem 4.4, we have an equivalence of categories

Hom!(Munst
dg , D)

∼−→ Hom!,Es
un

(L�,P Hotdgcatf •, D).

Now, we observe that since D is a strong triangulated derivator, the category
Hom!,Es

un
(L�,P Hotdgcatf •, D) identifies Homflt, (A), p(HO(dgcat), D). This proves the

theorem. �

Notation 15.5
We call an object of the right-hand-side category of Theorem 15.4 an additive invariant
of dg categories.

Example 15.6
(i) The Hochschild and cyclic homology and the nonconnective K-theory defined

in Section 10 are examples of additive invariants.
(ii) Another example is given by the classical Waldhausen’s connective K-theory

spectrum

Kc : HO(dgcat) → HO(Spt)

(see [43]).

Remark 15.7
By Theorem 15.4, the morphism of derivators Kc factors through Ua and so gives rise
to a morphism of derivators

Kc : Madd
dg → HO(Spt).

We now prove that this morphism of derivators is corepresentable in Madd
dg .

Let A be a small dg category.

Notation 15.8
We denote by K(A)c ∈ SpN(LẼs

un
L�,P Fun(dgcatop

f , Sset•)) the spectrum such that

K(A)cn := |N.wS(n+1)
• repmor(?, A)|, n ≥ 0,

endowed with the natural structure morphisms

βn : S1 ∧ |N.wS(n+1)
• repmor(?, A)| ∼−→ |N.wS(n+2)

• repmor(?, A)|, n ≥ 0

(see [43]).
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Note that Ua(A) identifies in Ho(Madd
dg ) with the suspension spectrum given by(

�∞|N.w repmor(?, A)|)
n

:= Sn ∧ |N.w repmor(?, A)|.

Now, Proposition 14.11 and the fact that the morphism of derivators ϕ commutes with
homotopy colimits imply that we have an isomorphism

Ua(A)[1]
∼→ p!Ua(S•A).

In particular, we have a natural morphism

η : Ua(A)[1] → K(A)c

in SpN(LẼs
un

L�,P Fun(dgcatop
f , Sset•)) induced by the identity in degree zero.

THEOREM 15.9
The morphism η is a fibrant resolution of Ua(A)[1].

Proof
We prove first that K(A)c is a fibrant object in SpN(LẼs

un
L�,P Fun(dgcatop

f , Sset•)).
By [16] and [36], we need to show that K(A)c is an �-spectrum, that is, that K(A)cn
is a fibrant object in LẼs

un
L�,P Fun(dgcatop

f , Sset•) and that the induced map

K(A)cn → �K(A)cn+1

is a weak equivalence. By Waldhausen’s additivity theorem (see [43]), we have weak
equivalences

K(A)cn
∼→ �K(A)cn+1

in Fun(dgcatop
f , Sset•). Now, observe that for every integer n, Kc(A)n satisfies

conditions (1) – (3) of Proposition 14.10. Condition (4) follows from Waldhausen’s
fibration theorem (as in the proof of Proposition 14.11) applied to the S•-construction.
This shows that K(A)c is an �-spectrum.

We now prove that η is a (componentwise) weak equivalence in the model structure
SpN(LẼs

un
L�,P Fun(dgcatop

f , Sset•)). For this, we prove first that the structural mor-
phisms

βn : S1 ∧ N.wS(n+1)
• repmor(?, A)

∼−→ |N.wS(n+2)
• repmor(?, A)|, n ≥ 0

(see Notation 15.8), are weak equivalences in LẼs
un

L�,P Fun(dgcatop
f , Sset•). By con-

sidering the same argument as in the proof of Proposition 14.11 and using S(n+1)
• A
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instead of A, we obtain the homotopy co-Cartesian square

K(A)cn

��

�� p!

(
Uu(PS(n+2)

• A)
)

��

∗ �� K(A)cn+1

in LẼs
un

L�,P Fun(dgcatop
f , Sset•) with p!(Uu(PS(n+2)

• A)) contractible. Since
K(A)cn+1 is fibrant, [43, Proposition 1.5.3] implies that the previous square is also
homotopy Cartesian, and so the canonical morphism

β�
n : K(A)cn → �K(A)cn+1

is a weak equivalence in LẼs
un

L�,P Fun(dgcatop
f , Sset•). We now show that the structure

morphism βn, which corresponds to β�
n by adjunction (see [43]), is also a weak equiv-

alence. The derived adjunction (S1 ∧ −, R�(−)) induces the commutative diagram

S1 ∧ K(A)cn

S1∧Lβ
�
n ��������������

�� K(A)cn+1

S1 ∧L �K(A)cn+1

∼
��

in Ho(LẼs
un

L�,P Fun(dgcatop
f , Sset•)), where the vertical arrow is an isomorphism

since the previous square is homotopy bi-Cartesian. This shows that the induced
morphism

S1 ∧ K(A)cn −→ K(A)cn+1

is an isomorphism in Ho(LẼs
un

L�,P Fun(dgcatop
f , Sset•)), and so βn is a weak equiva-

lence.
Now, to prove that η is a componentwise weak equivalence, we proceed by

induction. Observe that the zero component of the morphism η is the identity. Now,
suppose that the n-component of η is a weak equivalence. The (n + 1)-component of
η is the composition of βn+1, which is a weak equivalence, with the suspension of the
n-component of η, which by Proposition 4.1 is also a weak equivalence.

This proves the theorem. �

Let A and B be small dg categories with A ∈ dgcatf . We denote by HomSpN

(−, −)

the spectrum of morphisms in SpN(LẼs
un

L�,P Fun(dgcatop
f , Sset•)).
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THEOREM 15.10
We have the weak equivalence of spectra

HomSpN(
Ua(A), Ua(B)[1]

) ∼→ Kc
(
repmor(A, B)

)
,

where Kc(repmor(A, B)) denotes Waldhausen’s connective K-theory spectrum of
repmor(A, B).

In particular, we have the weak equivalence of simplicial sets

Map
(
Ua(A), Ua(B)[1]

) ∼→ |N.wS• repmor(A, B)|,
and so the isomorphisms

πi+1Map
(
Ua(A), Ua(B)[1]

) ∼→ Ki

(
repmor(A, B)

)
, ∀i ≥ 0.

Proof
Notice that Ua(A) identifies with the suspension spectrum

�∞|N.w repmor(?, A)|
which is cofibrant in SpN(LẼs

un
L�,P Fun(dgcatop

f , Sset•)). By Theorem 15.9, we have
the equivalences

HomSpN(
Ua(A), Ua(B)[1]

) � HomSpN(
Ua(A), Kc(B)

)
� Kc(B)(A)
� Kc

(
repmor(A, B)

)
.

This proves the theorem. �

Remark 15.11
Note in Theorem 15.10 that if we consider A = k, we have

HomSpN(
Ua(k), Ua(B)[1]

) ∼→ Kc(B).

This shows that Waldhausen’s connective K-theory spectrum becomes corepre-
sentable in Madd

dg . To the best of the author’s knowledge, this is the first conceptual
characterization of Quillen and Waldhausen’s K-theory (see [34], [43]) since its def-
inition in the early 1970s. This result gives us a completely new way to think about
algebraic K-theory.

16. Higher Chern characters
In this section, we apply our main corepresentability throrem, Theorem 15.10, in the
construction of the higher Chern characters (see [26, Section 11.4.3]).

Let A and B be small dg categories with A ∈ dgcatf .
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PROPOSITION 16.1
We have the isomorphisms of abelian groups

HomMadd
dg (e)

(
Ua(A), Ua(B)[−n]

) ∼−→ Kn

(
repmor(A, B)

)
, ∀n ≥ 0.

Proof
In the first place, note that the abelian group

HomMadd
dg (e)

(
Ua(A), Ua(B)[−n]

)
identifies with

π0Map
(
Ua(A), Ua(B)[−n]

)
,

where Map denotes the mapping space in SpN(LẼs
un

L�,P Fun(dgcatop
f , Sset•)). By

Theorem 15.9, the morphism

η : Ua(B)[1] −→ K(B)c

is a fibrant resolution of Ua(B)[1]. This implies that in Madd
dg (e), Ua(B)[−n] identifies

with the spectrum �n+1(Kc(B)). Since Ua(A) is cofibrant and

�n+1
(
Kc(B)

)
0
= �n+1|N.wS• repmor(?, B)|,

we conclude that

π0Map
(
Ua(A), Ua(B)[−n]

) � π0�
n+1|N.wS• repmor(A, B)|.

Finally, note that

π0�
n+1|N.wS• repmor(A, B)| � πn+1|N.wS• repmor(A, B)|

� Kn

(
repmor(A, B)

)
.

This proves the proposition. �

Remark 16.2
Note that if, in Proposition 16.1, we consider A = k, then we have the isomorphisms

HomMadd
dg (e)

(
Ua(k), Ua(B)[−n]

) ∼−→ Kn(B), ∀n ≥ 0.

This shows that the algebraic K-theory groups Kn(−), n ≥ 0, are corepresentable in
the triangulated category Madd

dg (e).
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Now, let

Kn(−) : Ho(dgcat) −→ Mod-Z, n ≥ 0,

be the nth K-theory group functor (see Theorem 10.7), and let

HCj (−) : Ho(dgcat) −→ Mod-Z, j ≥ 0,

be the j th cyclic homology group functor (see Theorem 10.9).

THEOREM 16.3
The corepresentability theorem, Theorem 15.10, furnishes us with the higher Chern
characters (see [26, Section 11.4.3])

chn,r : Kn(−) −→ HCn+2r (−), n, r ≥ 0.

Proof
By Theorem 10.9, the morphism of derivators

C : HO(dgcat) −→ HO(�-Mod)

is an additive invariant and so descends to Madd
dg and induces a functor (still denoted

by C)

C : Madd
dg (e) −→ D(�).

By [18, Theorem 1.3], the cyclic homology functor HCj (−), j ≥ 0, is obtained by
composing C with the functor

H−j (k
L⊗� −) : D(�) −→ Mod-Z, j ≥ 0.

Now, by Proposition 16.1 and Remark 16.2, the functor

Kn(−) : Madd
dg (e) −→ Mod-Z

is corepresented by Ua(k)[n]. This implies, by the Yoneda lemma, that

Nat
(
Kn(−), HCj (−)

) � HCj

(
Ua(k)[n]

)
.
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Since we have the isomorphisms

HCj

(
Ua(k)[n]

) � H−j
(
k

L⊗� C(Ua(k)[n])
)

� H−j
(
k

L⊗� C(k)[n]
)

� H−j+n
(
k

L⊗� C(k)
)

� HCj−n(k)

and since

HC∗(k) � k[u], |u| = 2,

we conclude that

HCj

(
Ua(k)[n]

) =
{

k if j = n + 2r, r ≥ 0,

0 otherwise.

Finally, note that the canonical element 1 ∈ k furnishes us with the higher Chern
characters, and so the theorem is proved. �

17. Concluding remarks
By the universal properties of Uu, Ua , and Ul , we obtain the following diagram:

HO(dgcat)
Uu

��

Ua

������������

Ul

��
��

��
��

��
��

��
��

��
��

�
Munst

dg

��

Madd
dg

�

��

Mloc
dg

Note that Waldhausen’s connective K-theory is an example of an additive invariant
which is not a derived one (see [21]). Waldhausen’s connective K-theory becomes
corepresentable in Madd

dg by Theorem 15.10.
An analogous result should be true for nonconnective K-theory, and the morphism

� : Madd
dg

�� Mloc
dg

should be thought of as corepresenting the “passage from additivity to localization.”
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