arXiv:1211.3239v2 [math.AT] 14 May 2014

Commutative S-algebras of prime characteristics

and applications to unoriented bordism

Markus Szymik

February 2014

The notion of highly structured ring spectra of prime characteristic is made precise
and is studied via the versal examples S//p for prime numbers p. These can be
realized as Thom spectra, and therefore relate to other Thom spectra such as the
unoriented bordism spectrum MO. We compute the Hochschild and André-Quillen
invariants of the S//p. Among other applications, we show that S//p is not a
commutative algebra over the Eilenberg-Mac Lane spectrum HIF,, although the

converse is clearly true, and that MO is not a polynomial algebra over S//2.
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Introduction

In the world of ordinary rings, those of prime characteristic are of special importance,
and their algebras encode much of the elementary arithmetic of the ring Z of integers.
Let us recall: If A is a commutative ring, and p is a prime number, then A has charac-
teristic p (written char(A) = p) if the image of p under the unit Z — A is zero. Equiva-
lently, there is a unique ring map IF,, — A from the prime field IF,, with p elements. The

aim of this writing is to generalize and explore this notion of prime characteristic from



the setting of ordinary commutative rings in the context of commutative ring spectra in
the highly structured sense: E. ring spectra, or commutative S-algebras in more recent
terminology. This can be understood as an attempt to unveil some of the arithmetic

surrounding the sphere spectrum S.

There might be more than one way to achieve such a generalization. Clearly, the under-
lying ring mp(E) of a commutative S-algebra E of characteristic p should be of char-
acteristic p (in the ordinary sense), and the Eilenberg-Mac Lane spectrum HA of an
ordinary ring A of characteristic p should be a commutative S-algebra of characteris-

tic p. This is fulfilled in the present approach.

If E is a commutative ring spectrum (up to homotopy or E.), then we will say that £
has characteristic p and write char(E) = p if p is mapped to zero under the ring
map Z = m(S) — mo(E) induced by the unit S — E from the sphere spectrum S. In Sec-
tion 1 we briefly review the known results about commutative ring spectra of prime char-
acteristic. In Section 2 we define versal examples—commutative S-algebras S//p (one
for each prime number p) such that the category of commutative S//p-algebras is an
appropriate place to study commutative S-algebras of characteristic p. Section 3 con-
tains some homology and homotopy computations which are necessary for the later
applications. Section 4 contains a description of all the versal examples S//p as E
Thom spectra, see Theorems 4.5 and 4.6. This relates the spectra S//p to other Thom
spectra, and it also enables us to describe the topological Hochschild and André-Quillen
invariants of the spectra S//p.

The final Section 5 contains various applications with an emphasis on the unoriented
bordism spectrum MO. While MO is not an algebra under the Eilenberg-Mac Lane
spectrum HIF», it is an algebra under S//2. This in turn implies that S//2 is not an HF,-
algebra. More generally, we are able to show that S//p is not an HFF ,-algebra for any
prime p, see Theorem 5.3, although the converse is clearly true. It is shown in [Szy]
that higher bordism spectra, such as Spin and String bordism, can be treated analo-
gously, once one is willing to work chromatically, and once one has set up a theory of

characteristics in that context.



Conventions

Throughout the text, commutative S-algebras will be used as the chosen model for ring
spectra with an E., multiplication, see [EKMM97], in particular Chapter VII. The cat-
egory of S-modules has a Quillen model structure such that all objects are fibrant.
The cofibrations are the retracts of relative cell S-modules. If R is a commutative S-
algebra (such as R = S and later R =S // p), then the category of commutative R-algebras
has a model structure where the equivalences and fibrations are created on underlying
spectra. The cofibrations are the retracts of relative cell commutative R-algebras. This
has the effect that R is always cofibrant as a commutative R-algebra, even if is is not

cofibrant as a spectrum.

There are by now various other models for structured ring spectra, most of them dis-
cussed and shown to be equivalent in [MMSSO01], and each of them serves our purposes
equally well. We will also continue to employ the more generic E. terminology to
emphasize this fact. The notation &, and .., will be used for the category of & ring
spectra/commutative S-algebras, and the category of S-modules/spectra, respectively.
We write S for the sphere spectrum as a commutative S-algebra, and S” = ¥"S for the
suspension spectra. The notation S” will also be used for the usual euclidean spheres.
We will sometimes abbreviate HF, to H when the prime is clear from the context.
Also, unless otherwise specified, all rings, algebras, ring spectra, and algebra spectra
are assumed to be commutative from now on. While this will be our default, we may

nevertheless use the word ‘commutative’ for emphasis.

1 Examples and counterexamples

In this section, we will recall some known results on commutative ring spectra E

with char(E) = p in the following sense.

Definition 1.1. If £ is a commutative ring spectrum (up to homotopy or E.), and p
is a prime number, then we will say that £ has characteristic p, if the ordinary com-
mutative ring my(E) has characteristic p in the usual sense. We will also use the nota-
tion char(E) = p.



Remark 1.2. In the E. setting, it may be worthwhile noting that any cofibrant replace-
ment of a commutative S-algebra of characteristic p has characteristic p as well: An
equivalence E°°f — E of commutative S-algebras is an equivalence of underlying spec-
tra, so that p € 7S goes to 0 € mHE°! under the unit S — EF if and only if it does so
in myE.

We can now discuss some examples and counterexamples: graded Eilenberg-Mac Lane
spectra, Morava K-theory spectra, and Moore spectra. See also [Rud98] for a treatment

of some of the topics discussed here.

1.1 Graded Eilenberg-Mac Lane spectra

We will say that a spectrum E is additively a graded Eilenberg-Mac Lane spectrum
if it is equivalent as a spectrum to HM, for some graded group M,. We will say that
a ring spectrum E (up to homotopy) is multiplicatively a graded Eilenberg-Mac Lane
spectrum if it is equivalent as a commutative ring spectrum (up to homotopy) to HA,

for some graded commutative ring A..

Note that HA, is not only a ring spectrum up to homotopy, but has a preferred E.. struc-
ture, Boardman’s multiplication [Boa80]. In fact, Richter has shown more generally
that for a differential graded commutative algebra A,, the graded Eilenberg-MacLane
spectrum HA, is an E.-monoid in the category of HZ-module spectra. See [Ric03,
Proposition 6.1], and [Ric06, Theorem 5.6.1]. Here, we only need the case where the
differential is trivial, so that we have a graded commutative ring. Then the forgetful
functor from HZ-modules to S-modules gives rise to an E., ring spectrum HA, that is a
commutative HAp-algebra. This E. structure is essentially unique if A, is concentrated
in dimension 0, so that HA, is discrete. We will see, in Theorem 5.6, that it is not unique
in general.

1.2 Results for the mod-p case

Let us start with a result which reduces the more difficult multiplicative question to the

easier additive question.



Theorem 1.3. ([Boa80, Theorem 1.1]) Suppose E is a commutative ring spectrum (up to
homotopy) which additively is a graded Eilenberg-Mac Lane spectrum, and char(E) = p
for some prime number p. Then E is multiplicatively a graded Eilenberg-Mac Lane

spectrum (up to homotopy).

The following result shows that in the case p = 2 the Eilenberg-Mac Lane hypothesis is

superfluous: there are no other examples.

Theorem 1.4. ([Wiir86, Theorem 1.1], [PR85]) Suppose E is a commutative ring spec-
trum (up to homotopy) with char(E) = 2. Then E is multiplicatively an Eilenberg-Mac

Lane spectrum (up to homotopy).

Versions of this theorem are also attributed to unpublished work of Hopkins and
Mahowald, see [Yan92, Theorem 5], [Yan94, Theorem 5.1] as well as [Rud98, Theo-
rem [X.5.5], for example.

As mentioned above, we will see later, in Theorem 5.6, that both theorems become false
when the weak up to homotopy notion is replaced by the strong E. notion of a ring
spectrum. In this latter setting, using Dyer-Lashof operations, Steinberger has obtained

the following result.

Theorem 1.5. ([(BMMSS86, 111.4.1]) If E is a commutative S-algebra of finite type
with mo(E) =T, for some prime number p, then E is additively a graded Eilenberg-

Mac Lane spectrum.

1.3 Results for the p-local case
Let us add some results on the p-local situation. These will not be used in the following.
For odd primes, the situation is fairly rigid.

Theorem 1.6. ([Boa80, Theorem 1.2]) Let p be an odd prime. Suppose the ring spec-
trum E is additively a graded Eilenberg-Mac Lane spectrum with 7, (E) a free module
over Zp). Then E is multiplicatively a graded Eilenberg-Mac Lane spectrum.

For the even prime, there are exotic examples.
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Theorem 1.7. ([Boa80, Theorem 1.3]) There exist ring spectra up to homotopy E
with w.(E) a free ZL3)-module and which are additively graded Eilenberg-Mac Lane

spectra, but not multiplicatively.

Boardman’s result for the prime 2 is complemented by the following result of Astey’s,
which characterizes the 2-local ring spectra which are graded Eilenberg-Mac Lane spec-
tra. It involves a 3-cell complex which is build using the stable Hopf map n: S' — S°
as well as another map ¢ in the homotopy nz(S(z) Un e?) = Zy) of its cone: The col-
lapse map induces an injection (S ) U e?) — m(S?) = Z with image consisting of
the subgroup of even numbers, and ¢ is defined as the (unique) pre-image of 2. The
cone [ = (S(z) Un e?) U, e’ is often called an inverted question mark complex—from the

point of view of the action of the Steenrod algebra on its mod 2 cohomology.

Theorem 1.8. ([Ast97, Theorem 1.2]) A 2-local ring spectrum up to homotopy E is
additively a graded Eilenberg-Mac Lane spectrum if and only if the unit map extends

over the inverted question mark complex 1.

Again, there are also results for commutative S-algebras E that satisfy m(E) = Ly
see [BMMSS86, 111.4.2 and II1.4.3].

p)

1.4 Morava K-theory spectra

Recall that the Morava K-theory spectra K (1) have m.K(n) = F,[v:F!] with an element v,,
of degree 2(p" — 1). For p odd, these are homotopy commutative ring spectra of charac-
teristic p. But, it is known that neither the spectra K(n) nor their connective covers k(n)
admit an E., structure. See Lemma 5.6.4 in [Rog08], for example, where this is proven
for the k(n) with the help of Dyer-Lashof operations. And, by [BROS], it suffices to
prove the result for these. Of course, the non-existence of E. multiplications also fol-

lows from Steinberger’s Theorem 1.5.



1.5 Moore spectra

To conclude this section, let me comment upon multiplications on the Moore spec-
tra S°/p. These are the cofibers of the p-multiplication on S°. Additional information
is contained in [AT65] and [AT66].

At the prime 2, the Moore spectrum SY/2 is not a commutative S-algebra. In fact, it
is not even a ring spectrum up to homotopy. One reason is that m,(S°/2) = Z/4 is
not a module over 7(S°/2) = 7 /2. Another reason is that there is clearly no ring map
from 7y (S° /2) 22 Z./2 to myMap(S° /2,8 /2) = Z/4. And of course, it also follows from
Theorem 1.4, because S°/2 is not an Eilenberg-Mac Lane spectrum, since multiplication
by the Hopf map 7 is non-trivial on the homotopy groups. In fact, the element 1 itself

would have to be zero, because it is the power operation on 2 = 0 in 7(S°/2).

For other primes, one may use the power operation SP: 7y(E) — m,—3(E) for com-
mutative S-algebras E to show that there is no E. structure on S°/p: One the one
hand BP!(0) =0, but on the other hand BP!(p) is a non-trivial multiple of «,
see [BMMSS86, V.1.13], for example. This implies that the unit of a commutative S-
algebra E of characteristic p must map ¢ to zero. But this is not the case for S°/p.

The Moore spectrum S°/p is known to have an A, -multiplication which is not A,
see [Ang08, Example 3.3].

2 Versal examples

If A is an ordinary ring of characteristic p, then every A-algebra is also of character-
istic p, and I, is the initial object. However, as it turns out, there is no commuta-
tive S-algebra of characteristic p which is initial in the homotopical sense, see Propo-
sition 3.11. The reason is that the existence of a homotopy p ~ 0 does not imply the
uniqueness of such a homotopy. Therefore, we will instead turn our attention to com-

mutative S-algebras which come with a chosen homotopy p ~ 0.



2.1 The commutative S-algebras S//p

Let p be a prime number. As a motivation for the following definition, consider the
description of the corresponding prime field I, as a pushout

7T 122,

Z
T—0 l

7 ——TF

b

in the category of rings. This can be built as a tensor product
]Fp =7 ®Z[T] 7z

using the structure maps indicated in the diagram. The tensor product is already the

derived tensor product: the higher Tor-terms vanish, since p is not a zero-divisor on Z.

We will imitate this now in the category of commutative S-algebras. Let us agree to
write & (E, F) for the derived mapping space of E., maps E — F, i.e. we tacitly assume
that E has been replaced by an equivalent commutative S-algebra that is cofibrant before
computing the actual space of maps. (Similarly for .7, and spectra.) Let [P be the left
adjoint to the forgetful functor. In other words, PX is the free commutative S-algebra
on X. If X is cofibrant as a spectrum, then PX is cofibrant as an E. ring spectrum. There
is an adjunction
Ew(PX,E) = Yw(X,E)

for commutative S-algebras E, induced by the unit X — PX of the adjunction. The E.
map corresponding to x: X — E will be denoted by ev(x): PX — E; it is the E. map
which evaluates to x on the generator X.

Definition 2.1. The commutative S-algebra S//p is the homotopy pushout

pso W g

o]

S——S//p

in commutative S-algebras.



For the honest construction of the homotopy pushout we will have to replace the
map ev(0): PS? — S = Px by an equivalent cofibration, for example by P(S® — CS°).
In other words, the commutative S-algebra S// p is obtained from the sphere spectrum S
by attaching an E.-cell so as to ensure p ~ 0. In particular, the commutative S-
algebra S//p is cofibrant. It has the property, in analogy with the above description
of F, as Z[T]/(0=T = p), that an E. map S//p — E is the same as a null-homotopy
from p to 0 in E. In particular, there might be more than one such map, in contrast to
the discrete case, where a ring map IF, — A is unique if it exists. We will discuss spaces

of E. maps out of S//p in more detail later, see Section 2.3.

A p-local commutative S-algebra Q is called nuclear if it is a colimit of commuta-
tive S-algebras Q,, where Qp = S and, inductively, the commutative S-algebra Q. |
is obtained from the commutative S-algebra Q, by coning off (in the E. sense)
finitely many elements in 7,(Q,) in such a way that the kernel of the corresponding
map 7,(VS") — m,(Q,) consists of multiples of p. See [HKMO1, Definition 2.7].

Proposition 2.2. For all primes p, the commutative S-algebra S// p is nuclear.

Proof. SetS//p = Q = Q;. By Definition 2.1, this is obtained from Qyp =S by coning
off (in the E., sense) the element p € my(Qp) = 7 (S) = Z. The assumption on the kernel
is satisfied, because the corresponding map 7o (S°) — mo(S) that sends the identity to p

is even injective. O

The following observation will be useful later, in Section 4, when we relate the spec-

tra S//p to Thom spectra.

Proposition 2.3. The commutative S-algebra S//p may be described as the following

iterated homotopy pushout in commutative S-algebras.

PSO P(p) PSO ev(1) S

o T

S——P(S°/p) —S//p

This statement is analogous to the description of IF,, as Z[T']/(p = 0,T = 1). Note that

the left hand square is a pushout because the left adjoint P commutes with colimits.
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Proof. This follows immediately from the fact that the map ev(p): PS? — S factors
as the composition of P(p) and 1: PS? — S, as can be seen by composition with the
unit S — PSP, O

2.2 The underlying ring of components

At this point, one might wish to compute the homology and homotopy of S//p directly
or with the help of the Hurewicz homomorphism. This will be done later, in Section 3,

see in particular Proposition 3.8. For a start, only the following result will be needed.

Proposition 2.4. We have my(S//p) = F),.

Proof. Because the spectrum S//p is connective, it suffices to compute the inte-
gral homology of it. Smashing the defining homotopy pushout diagram for S//p
with the integral Eilenberg-Mac Lane spectrum yields another homotopy pushout dia-
gram, and the integral Eilenberg-Moore spectral sequence then implies that 7y must
be Z[T]/(0=T = p) =F), as in the motivation given for the definition of S//p at the
beginning. ]

This result implies that we have

char(S//p) = p,

as it should be.

2.3 Spaces of E., maps out of S//p
The following result identifies the space of E. maps S//p — E into any commutative S-
algebra E.

Proposition 2.5. Let E be a commutative S-algebra. If char(E) = p, then there is an

equivalence
u(S//p,E) = Q7T(E)

of spaces. Otherwise, the left hand side is empty.

10



Proof. The definition of S//p as a homotopy pushout implies that there is a homotopy
pullback

Ew(S)/p,E) — w(S,E)

| |

6(S,E) ——— &4 (PSYE).

Now use that the spaces & (S, E) are contractible, and that their images in &.(PS°, E)

can be connected by a path if and only if p ~ 0. The result then follows using the
adjunction &, (PS, E) 2 .7,,(S°,E) and the definition .7 (S?,E) = Q(E). O

Example 2.6. If E = HA for some discrete commutative ring A of characteristic p, then
the space & (S//p,HA) ~ Q=+1HA is contractible. The following result states that the
converse also holds in the connective case.

Proposition 2.7. If E is a connective commutative S-algebra, with the property that the
space &w(S//p,E) is contractible, then E ~ Hmy(E) is discrete.
Proof. 1If Q“*l(E ) is contractible, then the higher homotopy groups of E vanish, so

that E is an Eilenberg-Mac Lane spectrum. [

Example 2.8. Let us consider the unoriented bordism spectrum MO. Since the under-

lying ring is 7o(MO) = [F,, this spectrum satisfies
char(MO) = 2.

Because 1 (MO) is trivial, it admits an E. map from S//2 which is unique up to homo-
topy (of E. maps). However, since m(MO) # 0, the space of all such maps is not
contractible.

Corollary 2.9. There is an equivalence &0(S//p,S//p) ~ Q>T1(S//p).

We will see later, in Proposition 3.8, that 7 (S//p) = 0, but that S//p has non-trivial
higher homotopy groups, so that the space &.(S//p,S//p) is connected but not con-
tractible.

11



2.4 Commutative S // p-algebras

Let us begin by recalling the following definition.

Definition 2.10. A commutative S//p-algebra is a commutative S-algebra E together
with an E. map sg: S//p — E, the structure map. The space &w.(S//p,E) is the space
of S// p-algebra structures on E.

Proposition 2.5 and the examples which follow it show that being a commutative S// p-
algebra is not a property of commutative S-algebras, but an extra structure, which if it
exists, need not be unique. And if it is unique, it need not be canonically so. In more
conceptual terms, the property char(E) = p defines a full subcategory of the category
of commutative S-algebras. Rather than work in this full subcategory defined by a
property, it seems better to keep track of the choice of a structure map sg: S//p — E,

gf//[’

and work in the category of commutative S// p-algebras.

If E and F are commutative S// p-algebras, then there is a homotopy fibration square

&SP (E,F) —=— &.(E,F)

l |

{57} —=— 6a(S//p.F)

for the derived mapping spaces. Therefore, Proposition 2.5 also describes the difference

between the space of all E. maps and that of S// p-algebra maps.

For example, in contrast to Corollary 2.9, it is clear that there is an essentially unique
map S//p — S//p of algebras over S//p. Compare with Proposition 3.11.

3 Homology and homotopy of the versal examples

In this section, we will give some basic information on the homotopy type of S//p and

the associated algebraic invariants: its homology and homotopy groups.
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Proposition 3.1. For each prime p, the spectrum S // p is a graded Eilenberg-Mac Lane

spectrum.

Proof. Since m(S//p) = F, by Proposition 2.4, this is a consequence of Steinberger’s
result, see Theorem 1.5. O]

As a consequence, the homotopy type of S// p can be read off from its homotopy groups,
and the homotopy groups of S//p will be computable once the (mod p) homology is

known.

3.1 The homology of S//p

The backbone of the homology computation is the following result.

Proposition 3.2. If A is a commutative S-algebra of characteristic p, then there exists

an equivalence
AAS//p~ANPS!

of commutative A-algebras.

Proof. Both A-algebras are homotopy pushouts of diagrams

AAPSO Y L aas

|

ANS,

where the left arrow is A Aev(p) and A Aev(0), respectively. The space of maps of A-
algebras from A APS” to A A'S ~ A is, by the adjunctions

EAANPSY A) = £.,(PSY,A) =2 .7, (S°,A) = Q7A,

equivalent to the underlying infinite loop spaces of A. (Note that A APS° is cofibrant
as a commutative A-algebra.) Since p and O are in the same component by hypothesis
on A, these maps of commutative A-algebras are homotopic. As a result, the homotopy

pushouts are equivalent. ]
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Corollary 3.3. If A is a commutative S-algebra with char(A) = p, then there is an
isomorphism

A(S//p) = A.(PS")
of A-algebras.

We hasten to point out that neither the equivalence in Proposition 3.2, nor the isomor-
phism in Corollary 3.3 can be induced by a map between S//p and PS'. If it were, then
the isomorphism would be compatible with the natural A-homology operations for all A.

Example 3.4 below shows that this need not be the case.

The preceding results can be applied in the case A = S // p itself, and in the case A = MO
when p = 2. We will mostly be interested in the case A = HIF,, when the preceding
corollary shows the existence of an isomorphism

H.(S//p) = H,(PS"). (3.1)

The right hand side is the free algebra over the Araki-Kudo-Dyer-Lashof algebra on one
generator in degree 1, see [CLM76, 11.4] and [Bak’]. In particular,

Hi(S//p) 2 Hi(PS') = Z/p. (3.2)
The consequences for the uniqueness of the isomorphism (3.1) will be discussed below.

Example 3.4. The natural A-homology operations on A, (S//p) and A, (PS') differ in
the case A = HIF, of the Eilenberg-Mac Lane spectrum. To see this, note that on the one
hand we have an isomorphism HZ((IPS!) = Z, while on the other hand we have an iso-
morphism HZy(S//p) = F,,. Consequently, the homology Bockstein from dimension 1
to 0 is zero on the homology of PS', but an isomorphism on the homology of S// p.

In the case p = 2, the homology of the cell commutative S-algebra S//2 can also be
obtained as a special case of Baker’s calculations in [Bak].

Let us now address the question of the uniqueness of the equivalence in Proposition 3.2
in the specific case A = HF,.

Proposition 3.5. There exist precisely p — 1 homotopy classes of equivalences

HF, APS' — HF, AS//p

of commutative HF ,-algebras.

14



Proof. There are adjunctions
ESANPS ANS//p) = E.(PS', ANS//p) = .Fu(S',ANS//p),

so that the homotopy classes of maps A APS! — AAS//p of commutative A-algebras
are parametrized by

T (ANS//p) =A1(S//p).

In the present case A = HIF, this means that there are precisely p homotopy classes of
maps HF, A PS! — HF, AS//p of commutative HFF ,-algebras, and one of them (the

zero) is not an equivalence. [

Clearly, for p = 2, we have p — 1 = 1, so that there is in fact a unique equivalence
HF, APS! ~ HF, AS//2

of HIF;-algebras! The non-uniqueness at the odd primes p comes from the IF; -action
on the 1-dimensional I ,-vector space H; (S1). It seems fair to say that this is well under

control.

3.2 Applications to lifts of HZ /p

It may be worthwhile to point out that the same process that produces S//p from S does
not lead to HZ/p when applied to HZ. More precisely, if we kill p in Z = myHZ to form
the E ring spectrum

HZ//p ~HZ NS //p

then there is an E.. map

but this is not an equivalence:

Proposition 3.6. The spectra HZ// p and HZ/ p are not equivalent.
Proof. Let us apply the functor HZ /p HAZ ? to both sides. By Proposition 3.2, we get
HZ/plg\Z(HZ/\S//p) ~HZ/pAS//p ~HZ/p ANPS!
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on the left hand side, and the spectrum HZ/p I—{\Z HZ/p with

7.(HZ/p A\ MZ/p) =Tor(Z/p,Z/p)

on the right, and these are clearly different. O]

It follows that the unit S — S//p is not a lift of the ‘extension” Z — Z/p in the sense
of [SVW98, Definition 1]. In fact, such a lift cannot exist: If R were a connective E.,
ring spectrum such that HZ A R ~ HZ/ p, then R would have to be a Moore spectrum, in

contradiction to the results in Section 1.5.

3.3 Some homotopy groups of S//p

The following is our device for passing from homology to homotopy.

Proposition 3.7. The Hurewicz map 7.(S//p) — H.(S//p) is injective, and there is an
isomorphism H.(S//p) = n.(S//p) @ H.(HF ).

Proof. This follows immediately from the fact that S//p is a graded Eilenberg-Mac
Lane spectrum. O

As a consequence of Proposition 3.7, the Poincaré series of the homotopy of S//p is
the quotient of the Poincaré series of the homology of S//p by the Poincaré series of
the dual Steenrod algebra. The Poincaré series of the (dual) Steenrod algebra is well-
known, and the Poincaré series of H,(S//p) = H,(PS') is a matter of combinatorics,
because this algebra is free on admissible generators of prescribed excess. However, a
closed formula does not seem to be in the literature, and we will not pursue this here,
either. For our purposes, it will be sufficient to determine the homotopy groups in low

dimensions.
Proposition 3.8. In low dimensions, the homotopy groups of S// p are as follows.
Z/p ifn=0
Ta(S//p) =<0 if0<n<4(p—1)
Zlp ifn=4(p—1)
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Proof. Let me explain this for odd primes p. The case p = 2 is similar but easier; see
the proof of Proposition 5.8 for hints.

In degrees at most 4(p — 1), the additive generators of the (dual) Steenrod algebra are

1,7, &1, 70E1, 71, T0T1, EF.

In the free algebra over the Dyer-Lashof algebra on one generator a in dimension 1, the

corresponding generators are

1,a,Q'a,aB0'a,0'a,a0'a,(BQ'a)>.

But, these are not the only classes in degrees at most 4(p — 1): in degree 4(p — 1) itself,
there is not only (8Q'a)? but also BQ?a, and these two are linearly independent. [

3.4 An application to E., self-maps of S//p

The equivalence &.(S//p,S//p) ~ Q=+1(S//p) from Corollary 2.9 implies that there
are isomorphisms 7,6.(S//p,S//p) = m,+1(S//p) for all n > 0. In particular, we
have mé%(S//p,S//p) = m1(S//p) = 0 by the preceding Proposition 3.8, which also
yields the non-triviality of some higher homotopy groups.

Corollary 3.9. Every E.. self-map of S//p is Ew homotopic to the identity. But, the
space of E self-map of S//p is not contractible: The first non-trivial homotopy group

is in dimension 4p — 5.

In particular, there is an essential 3-sphere in the space of E.. self-map of S //2.

In [HKMO1, Definition 2.8], a connective commutative S-algebra E whose unit S — E
induces an isomorphism on underlying rings is called atomic if every self-map of S-
algebras E — E is a weak equivalence. This property is already useful in the case when
the unit is only surjective, and the following statement uses that terminology in this
broader sense.

Corollary 3.10. For each prime p, the commutative S-algebra S// p is atomic.
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3.5 Initial commutative S-algebras of prime characteristic

These do not exist! While the ordinary commutative ring I, is initial among commu-
tative rings of characteristic p, there is no commutative S-algebra of characteristic p

which is initial in the homotopical sense. This is the content of the following result.

Proposition 3.11. If p is a prime number, then there is no commutative S-algebra T
with char(T) = p such that the derived space of commutative S-algebra maps T — E is

contractible for all commutative S-algebras A with char(E) = p.

Proof. Assume that there were such a commutative S-algebra 7. Because we have
assumed char(7T') = p, there is a structure map s: S//p — T. We will first prove that

this is an equivalence. By hypothesis, the mapping spaces
w(T,S//p) ~ * (3.3)

and
Eoo(T,T) ~ (3.4)

are contractible. We will use (3.3) to pick a map t: T — S//p of commutative S-
algebras. This is an inverse (up to homotopy) of s: By (3.4) and Corollary 3.9, both com-
positions st and ts are homotopic to the identities via maps of commutative S-algebras.
This implies that (7°f and then) T is equivalent to S//p.

Thus, if T exists, then T ~ S//p. But, we have already seen that S//p does not satisfy
the strong uniqueness as in the statement of the proposition. For example, the derived
space of commutative S-algebra maps of S//p — E is not contractible for E =S//p
itself, by Corollary 3.9 above. []

4 The versal examples as Thom spectra

The aim of this section is to identify the spectra S//p for the various primes with cer-
tain Ew Thom spectra. This is clearly useful, as it will allow us to relate the spectra S // p
to other Thom spectra, such as the unoriented bordism spectrum MO if p = 2, and it
will also allow for the description of the Hochschild and André-Quillen invariants of the

versal examples.
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4.1 Thom spectra

There is a Thom spectrum M7 associated with every stable spherical fibration, classified
by amap f: X — BGL(S), on a connected space X. In order to deal with the S//p for
odd primes p, we also require the generalized Thom spectra of [Blu10], and [ABGHR],
where S can be replaced by the p-local or p-adic sphere.

Example 4.1. The original and most prominent example of a Thom spectrum is cer-
tainly given by the embedding BO — BGL,(S) of the linear isomorphisms into the
homotopy equivalences: This gives rise to the spectrum MO for unoriented bordism.

Example 4.2. If X is a point, then the Thom spectrum My is equivalent to the sphere
spectrum S. More generally, if f is null-homotopic, so that it classifies the trivial bundle,
then the Thom spectrum is equivalent to the suspension spectrum S A X .

Example 4.3. The generator of 71;BGL(S) = Z /2 classifies the (stable) Mbius bundle,
and the associated Thom spectrum is the Moore spectrum S°/2 at the prime p = 2.

If X is an infinite loop space and f is an infinite loop map, then the Thom spectrum My
is an E. ring spectrum. See [LMS86, IX.7]. This applies in Example 4.1 as well as in
Example 4.2. But, if X is only a two-fold loop space and f is a two-fold loop map, then
we can only infer that My is a commutative ring spectrum up to homotopy.

Example 4.4. We may apply this to the two-fold delooping Q?S® — BO of the previous
Example 4.3. The resulting Thom spectrum is known to be the Eilenberg-Mac Lane
spectrum HIF,. See [Mah79]. Note that this turns out to admit an E.. multiplication, but

this 1s not clear from its construction as a Thom spectrum.

4.2 The examples S//2 and S//p

We are now able to show that the examples S//2 and S//p can be realized as Thom
spectra.

Theorem 4.5. The spectrum S//2 is the E Thom spectrum of the infinite delooping
Q(s') = BGL/(S)

of the classifying map of the Mobius bundle.
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Proof. The free Ew-spectrum on the Thom spectrum of f is the Thom spectrum of Q(f),
see [LMS86], Theorem 7.1 on page 444. Beware that the base cell acts as a unit. There-
fore, the identification of the Thom spectrum of the essential map S! — BO with the
Moore spectrum, and the description of S //2 as an iterated pushout from Proposition 2.3

immediately imply the result. [

An argument due to Hopkins, see [MRS01] or [Blu10], allows us to extend the preced-
ing result to odd primes. We need to know that, also for these primes p, the Moore

spectrum SY/p is the Thom spectrum of a map
f: 8! — BGL((S)), (4.1)

where the target now classifies stable p-adic spherical fibrations, and such an f is a class
in 711 (BGL4(Sp)) = Z,, the group of p-adic units. To obtain the Moore spectrum we
may chose f to be a representative of the unit 1 — p. Now a similar argument as above
implies that S //p can be obtained as the Thom spectrum of the infinite delooping of the
map (4.1).

Theorem 4.6. The spectrum S// p is the E« Thom spectrum of the infinite delooping
Q(S') — BGL(S))

of the map f such that My is the Moore spectrum.

4.3 The topological Hochschild homology of S//p

Recall that the topological Hochschild homology spectrum THHS (E) of a commuta-
tive S-algebra E is an important invariant of E, not the least because it is an approx-
imation to the algebraic K-theory of E. We will now determine it for S//2 and S//p,
based on the identification of these spectra as E. Thom spectra, and general results due
to Blumberg [Blu10] which apply for this class.

Theorem 4.7. For each prime number p there is an equivalence

THH®(S//p) ~S//p AQ(S?)+

of spectra.
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Proof. The topological Hochschild homology of commutative S-algebras which are
Thom spectra has been determined by Blumberg, see [Blu10, Theorem 1.5]. He shows
that, if f: X — BGL;(S) is a map of E. spaces which is good (a fibration, for example)
and such that X is a cofibrant and group-like E.-space, then there is a weak equivalence

of commutative S-algebras as follows.
THH® (M) ~ M/ ABX,

If X is only a group like E»-space, and f is only a good map of E,-spaces, then Blumberg
can still show that there is an equivalence of spectra as above, provided that a least the
homotopy commutative multiplication on M, admits an E. refinement, see [BlulO,
Theorem 1.6].

The spectra S//2 and S//p in question have been identified as Thom spectra in The-
orems 4.5 and 4.6. Once we have replaced the relevant map f by a fibration, we may
apply this theory, which works the same if S is replaced by S;,. We obtain an equivalence

THH®(S//p) ~S//p ABQ(S')+

of spectra, and it remains to note that BQ(S!) ~ Q(S?). O

An extra argument is needed to obtain an equivalence of commutative S-algebras in The-
orem 4.7: One has to ensure that the fibrant replacement is still sufficiently well-behaved
with respect to the smash product. However, this will not be used in the following.

To round off the discussion of topological Hochschild homology, let us also remind
ourselves that the Thom spectrum of the canonical map BO — BGL, (S) is MO, so that

Blumberg obtains equivalences

THH®(MO) ~ MO ABBO, ~ MOAU/O, (4.2)

—

of commutative S-algebras, where U/O is the universal cover of U/O. He also obtains
equivalences
THH®(HF,) ~ HF , A QS3 (4.3)

of spectra, which shed new light on Békstedt’s calculation of THHS (HF ).
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4.4 The cotangent complex of S//p

We will now determine the topological André-Quillen invariants of S//2 and S//p. As
with our calculation of the topological Hochschild invariants, this can be based on the
identification of these spectra as E. Thom spectra, and general results which apply for
this class, this time due to Basterra and Mandell [BMOS5]. However, we will also present

a more direct approach which leads to the same result.

Recall that the André-Quillen invariants of an extension F/E are defined using the F-
module contangent complex Qg (F) which classifies derivations. The result for S//2
and S//p (over S) is as follows.

Theorem 4.8. For each prime number p there is an equivalence

Qs(S//p) =~ZS//p

of S// p-modules.

Proof of Theorem 4.8 for p =2 using Thom technology. In general, if T is a connective
spectrum, and if f: Q*(T) — BGL(S) is an E. map, then a corollary of [BMOS5,
Theorem 5] identifies the cotangent complex of the E., Thom spectrum M/ of f: There
is an equivalence

Qg (M f) ~M A T

of S-modules. We may apply this theory to the spectrum S//2, because is has been iden-
tified as a Thom spectrum of this type in Theorem 4.5. In this case, we may take T = S'
so that we obtain Q(T) = Q(S'), and the result follows. O

The preceding proof would immediately generalize to the case of odd primes p as soon
as the work of Basterra and Mandell would be extended to cover Thom spectra for p-
adic spherical fibrations as in Blumberg’s work. For the time being, we will here pro-
vide for another proof which uses more traditional techniques associated with cotangent

complexes.

Proof of Theorem 4.8 for all primes p using base change and transitivity. Since S//pis
defined as a homotopy pushout (Definition 2.1), the flat base change formula [Bas99,
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Proposition 4.6] applies to give an equivalence

Qs(S//p) = Qpso(S) Apgo S

of S//p-modules. Since it will be important to keep track of the maps PS? — S of E..
algebras involved, let us agree that we use ev(0) in Qpgo(S) and ev(p) in the base
change ? Apgo S.

In order to determine Qpgo(S), we may invoke the transitivity exact sequence [Bas99,
Proposition 4.2]. For the extensions S — PS? — S, it yields a fibration sequence

in spectra. Now the middle term Qg(S) is contractible. In general, the cotangent com-
plex Qs(PT) ~ PT AT of the free commutative S-algebra on 7T is the free PT-module
on T, see [Kuh06, Example 3.8], [BGROS8, Proposition 1.6], and the Appendix to [Bak’].
In particular, there is an equivalence Qg(PPS?) ~ PSY A S? ~ PS°. This shows

Q]pso (S) ~ Z(]PSO /\]psO S) ~ ZS
as PSY-modules, so that
QPSo (S) /\]pso S ~ Z(S /\Pso S) ~ ZS//p

as S//p-modules. As often before, we have used that the forgetful functor from com-
mutative S-algebras to spectra is a right adjoint, so that it commutes with limits. Here,
this determines the homotopy type of the pushouts involved. [

In [BGROS, Definition 3.1], a p-local commutative S-algebra with a CW structure is
called minimal if for each n the inclusion of the n-skeleton induces an isomorphism in
topological André-Quillen homology TAQS (% F,).

Corollary 4.9. For each prime p the commutative S-algebra S// p is minimal.

Proof. By Theorem 4.8, we have

TAQ®(S//p:Fp) = Qs(S//p) As)yp HF , =~ XS//p Asy, HF, =2 THF,
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so that
Z]/p n=1

n#1.

Since S//p, by definition, has a CW structure with only two E. cells, minimality is now

TAQS(S//p;Fp) = TTAQ (S// ;) =

easily checked. [

To round off the discussion of the cotangent complex, let us also note that Basterra and

Mandell obtain an equivalence
Qs(MO) ~ MO Abo, 4.4)

of MO-modules, where bo is the connective cover of the real topological K-theory spec-
trum that has Q*bo = BO. This is a corollary of [BMO0S5, Theorem 5], stated in loc.cit.
for the complex bordism spectrum, but the real case is similar.

5 Applications

In this section, we collect some applications, with an emphasis on the relationship to the
unoriented bordism spectrum MO.

5.1 Non-existence of E.. maps

The starting point for our applications is the following result.
Proposition 5.1. There does not exist an E. map HF, — MO.
According to [BR], this is shown in Gilmour’s thesis, generalizing an argument with

power operations by Hu, Kriz, and May [HKMO1]. See [Bak’] for a proof. Since there
does exit an E, map S//2 — MO by Example 2.8, we have the following corollary.

Corollary 5.2. There does not exist an E map HFy — S //2.
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Continuing the discussion in Example 4.4, the factorization of S! — Q(S!) over Q°S3
gives a map
HF, — S//2 (5.1)

of commutative ring spectra up to homotopy. The existence of such a map is also clear
from Theorem 1.4. The map (5.1) is a section of the truncation map S//2 — HIF,.

However, while the truncation map is E, this section can not have an E., representative.
The first aim of this section is to generalize the preceding corollary to all primes.

Theorem 5.3. There does not exist an Es., map HF , — S//p.

While we have already seen this to be true in the case p = 2, the following proof works
for all primes.

Proof. Suppose there were such a map. Then the composition
HF, — S//p — HF,

with the truncation to Hmy(S//p) = HF, would be E., and an equivalence, hence an
equivalence of commutative S-algebras. Therefore it would induce an equivalence in
topological André-Quillen homology TAQS(?;F,) = Qs(?) A» HF,. However, by The-
orem 4.8, we have

TAQ®(S//2;F2) = Qs(S//2) As 2 HF2 = £S//2 Ag j, HF, ~ EHF,

while TAQ®(HF,;TF5) is known to be non-trivial in other dimensions as well. In fact,
it has been completely computed in unpublished work of Kriz, and Basterra-Mandell.
See [Laz04] and [Bak’] for the precise statements. O

Remark 5.4. In light of the recent interest in E, genera [CM], the reader may wonder if
there are maps HF, — S//p that are somewhat compatible with the E.. multiplications,
but not entirely so. This would be E,, maps for some integer n such that 1 < n < co. And
indeed there are such maps: The E; maps Q2S®> — Q(S!) over BGL,(S,,) that extend
the inclusion S' — Q(S') induce E; maps on the level of Thom spectra, and these
are HF, and S//p, respectively, again by Hopkins’ extension of Mahowald’s theorem
and Theorems 4.5 and 4.6. In particular, there are maps HF, — S//p of homotopy

commutative ring spectra in the traditional sense of the words.
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Remark 5.5. According to the preceding Remark 5.4, there is an E; map HF, — S//p.
The composition with the E., map HZ — HF, gives rise to an E; map HZ — S//p. In
particular, the versal examples S//p are A algebras under the integral Eilenberg-Mac
Lane spectrum HZ. By work of Shipley [ShiO7], there is then a differential graded
algebra A (even one over IF,) such that S//p and HA are equivalent as Ao, ring spectra.
The homology of A is the homotopy of S//p. And, there is also a Quillen equivalence
between the category of S//p-module spectra and the category of differential graded
modules over that same differential graded algebra A. Unfortunately, the differential
graded algebra A that can be derived from the general results of [Shi07], while explicit,

is everything but small.

5.2 Exotic E. structures on graded Eilenberg-Mac Lane spectra

By Theorem 1.4, Theorem 1.3, and Theorem 1.5, the commutative S-algebras MO, S //2,
and S//p are equivalent, as homotopy commutative ring spectra, to graded Eilenberg-

Mac Lane spectra with the Boardman multiplication.

Theorem 5.6. The multiplications on the commutative S-algebras MO, S//2, and S//p

are not E. equivalent to the Boardman multiplications.

Proof. Otherwise, these spectra would be commutative HIF ,-algebras for suitable prime
numbers p, and they would receive an E.-structure map from HIF ,, contradicting Propo-
sition 5.1, Corollary 5.2, or Theorem 5.3, respectively. ]

We see again that, while E. structures on discrete Eilenberg-Mac Lane spectra are
unique, this is not the case for graded Eilenberg-Mac Lane spectra, no matter what

the prime in question is.

Proposition 5.7. For all primes p, the space GL{(S//p) of units in S // p is not a product
of Eilenberg-Mac Lane spaces.

Proof. Recall from Proposition 3.8 that the first non-trivial homotopy group of S//p
appears in dimension 4(p — 1) and is isomorphic to Z/p. Therefore, if GL;(S//p) were
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a product of Eilenberg-Mac Lane spaces, then there would be a splitting

GLi(S//p) ~K(Z/p,4(p—1)) X L

with one of the factors the corresponding Eilenberg-Mac Lane space, such that a
generator of the homotopy group 7(,_1)(S//p) corresponds to a fundamental class
of K(Z/p,4(p—1)). The H-spaces structure on the space of units that comes from the
multiplication on S//p induces an H-spaces structure on the retract K(Z/p,4(p —1)).
But, there is only one H-space structure on this Eilenberg-Mac Lane space, the standard
one. It is known from Cartan’s computation of the homology rings of Eilenberg-Mac
Lane spectra that H,(K(Z/p,4(p —1));Z/p) has a divided power structure. Since the
characteristic is prime, every element of positive degree has to be nilpotent. But, the

composition

XY (K(Z/p,4(p—1))) — I (CGLi(S//p)) — S//p

induces an isomorphism in homology in degree 4(p — 1), and it respects the multipli-
cations. Therefore, the image of a fundamental class would be a non-trivial nilpotent
element in even positive degrees, in contradiction to the fact that H.(S//p) is free. [

The analog of the preceding proposition also holds for MO, with essentially the same

proof, as explained to me by Tyler Lawson.

5.3 The structure map of unoriented bordism

Recall, from Example 2.8, that there is an E. map s: S//2 — MO which is unique up
to homotopy of E., maps.

Proposition 5.8. The structure map s: S//2 — MO is not injective in homology and
homotopy.

Proof. In [LMS86, 1X.7.4], Lewis has shown that the Thom isomorphism com-
mutes with the Araki-Kudo-Dyer-Lashof operations. This reduces the statement about

the homology to the same question about the map Q(S') — BO. The homology
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of Q(S') is the free algebra over the Araki-Kudo-Dyer-Lashof algebra on one gen-
erator, say a, in degree 1, see [CLM76, I1.4]. The homology of BO is polynomial
on generators ej,ep,... with dim(e;) = j, and the operations have been computed
in [Koc73, p. 133] and [Pri75]. In particular, we know that Q3el = e‘f. By definition
of s, we also have s.a = ey, so that the different elements Q3a and a* are both mapped

to the same element e‘l‘. The proves the non-injectivity of the map in homology.

The statement for homotopy follows from immediately from the statement for homology

and the fact that the homotopy embeds into the homology as the primitive elements. [

The preceding proof gives slightly more information: In positive dimensions, the first
non-trivial element in the higher homotopy of S//2, which lives in dimension 4 by
Proposition 3.8, is mapped to zero in m4(MO).

Corollary 5.9. The structure map S//2 — MO does not admit a retraction.
This is clearly true in the homotopy category spectra, and a fortiori in that of commuta-
tive S-algebras. In the latter, even more is true:

Proposition 5.10. There does not exist an E. map MO — S //2.
Proof. Otherwise, the composition with the structure map S//2 — MO would be an E..
self-map of S//2. By Corollary 3.9, this composition would be homotopic (even as E

maps) to the identity. Therefore, the hypothetical map would be a retraction for the

structure map, contradicting the preceding corollary. ]

In particular, the truncation MO — HIF, does not factor through S//2 as an E., map.
Here is another consequence of the preceding proposition.

Corollary 5.11. The commutative S //2-algebra MO is not free (or ‘polynomial’), i.e. it
is not equivalent to one of the form S//2 NPX for some spectrum X.

Proof. Otherwise X — % would induce an E. map
MO ~S//2 \NPX — S//2APx~S//2A\S ~§//2,

in contradiction to Proposition 5.10. ]
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All these results demonstrate that the picture suggested by Thom’s computation
7. (MO) = Fy[x2,X4,X5,X6,X8, - - - |

of the homotopy ring is misleading when it comes to understanding MO itself as an E.

ring spectrum.
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