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Abstract To an Adams-type homology theory we associate the notion of a
synthetic spectrum; this is a product-preserving sheaf on the site of finite
spectra with projective E-homology. We show that the ∞-category SynE
of synthetic spectra based on E is in a precise sense a deformation of the
∞-category of spectra into quasi-coherent sheaves over a certain algebraic
stack, and show that this deformation encodes the E∗-based Adams spectral
sequence. We describe a symmetric monoidal functor from the ∞-category
of cellular motivic spectra over Spec(C) into an even variant of synthetic
spectra based on MU and show that it induces an equivalence between the
∞-categories of p-complete objects for all primes p. In particular, it follows
that the p-complete cellular motivic category can be described purely in terms
of chromatic homotopy theory.
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1 Introduction

Associated to a ring spectrum E such that E∗E is flat over E∗ we have an
algebraic1 stack

ME := lim−→[n]∈�op

Spec(π∗(E⊗[n]))

which encodes the self-intersections of “Spec(E)” over the sphere. For any
spectrum X , the homology E∗X has a canonical descent datum to a quasi-
coherent sheaf over ME which encodes more subtle algebraic information.

1 It’s “almost” algebraic: the quotient map Spec(E∗) → ME is affine and flat, but not neces-
sarily smooth.
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Of particular importance is the Adams spectral sequence of signature

Exts,tME
(E∗X, E∗Y ) ⇒ [X, Y ]t−s, (1)

which relates the homological algebra of quasi-coherent sheaves over ME
to homotopy classes of maps of spectra; this is the main calculational tool in
stable homotopy theory.

The main thesis of this paper is that the the relationship between alge-
braic geometry and stable homotopy theory is stronger than the mere spectral
sequence of (1): we show that the stable ∞-category Sp of spectra can be
deformed into the stable ∞-category IndCoh(ME ) of Ind-coherent sheaves
overME .

Informally, we construct a “derived ∞-category of spectra”, where the
derivation is performed with respect to the E-homology functor. The objects
of this ∞-category, which we call synthetic spectra,2 exhibit both topological
and algebraic features, bound together in a non-trivial way.

The passage between topology and algebra is controlled by an endomor-
phism of the identity denoted by τ , which should be thought of as a formal
parameter exhibiting Syn as an∞-categorical deformation. Through the latter,
the Adams spectral sequence becomes identified with the τ -Bockstein spectral
sequence, allowing a plethora of new computational techniques.

The features of the ∞-category we construct are similar to those of the
p-complete cellular motivic category over Spec(C), whose special fibre was
identified with Ind-coherent sheaves by Gheorghe, Wang and Xu [25]. In this
work, we extend their result by showing that in fact the whole p-complete cel-
lular motivic ∞-category can be identified with an even variant of MU-based
synthetic spectra. This equivalence is the first purely topological description
of an ∞-category of motivic origin, and it readily explains the mysterious
connection between cellular motives and chromatic homotopy theory.

While this article is concerned with the construction of synthetic spectra,
their deformation theoretic properties and the connection to motivic homotopy
theory, a plethora of other applications have been found since the preprint of
this article first appeared. As a guide to the literature and as motivation for the
main construction, we collect some of those in Sect. 1.2 below.

2 The terminology synthetic is motivated by the work of Hopkins and Lurie [38], where the
∞-category of synthetic K (n)-local E-modules is considered, E being the Morava E-theory.
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1.1 Statement of results

Let E be a homotopy associative and commutative ring spectrum.3 We say that
a spectrum P is finite E-projective if it is finite and E∗P is finitely generated
and projective over E∗, and denote the full subcategory of spectra spanned by
finite E-projectives by Sp f p

E .
We assume that E is Adams-type, in other words, that it is a filtered colimit

of finite E-projective spectra which satisfy universal coefficient isomorphism;
for example, E could be Landweber exact or a field. Any such homology
theory is flat so that we have the associated stack4

ME := lim−→[n]∈�op

Spec(π∗(E⊗[n]))

and a conditionally convergent Adams spectral sequence of signature

Exts,tME
(E∗X, E∗Y ) ⇒ [X, Y∧

E ]t−s,

where Y∧
E is a suitable completion of Y , due to Devinatz and Hopkins [17].

We equip the ∞-category Sp f p
E of finite E-projective spectra with a

Grothendieck topology generated by the covering families {Qi → P} con-
sisting of a single E∗-surjective map. We say a sheaf X : (Sp f p

E )op → Sp is

spherical or product-preserving if it takes sums in Sp f p
E to products of spectra.

A synthetic spectrum based on E is a spherical sheaf of spectra on Sp f p
E ;

we denote their ∞-category by SynE . By construction, the ∞-category of
synthetic spectra is stable and presentable; moreover, it admits a well-behaved
symmetric monoidal structure induced from the tensor product of finite E-
projective spectra.

If X is an ordinary spectrum, we show that the associated representable
sheaf of spaces y(X) on Sp f p

E admits a unique lift to a connective sheaf of
spectra and so defines a synthetic spectrum which we denote νX and call
the synthetic analogue of X . The resulting functor ν : Sp → SynE is lax
symmetric monoidal; in particular, it takes ring spectra to algebras in synthetic
spectra.

3 In themain body of the paper, we do not assume that E is homotopy commutative. In thismore
general case, the results hold as written, except that the stated equivalences are only monoidal
and not symmetric monoidal.
4 We warn the reader that only in the introduction do we use the language of quasi-coherent
sheaves over stacks, for the goal of making the outline understandable to a possibly large
audience. In the main body of the text, we use the language of Hopf algebroids and comodules
familiar to homotopy theorists—see Sect. 1.3 for a short explanation of our decision.
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Synthetic spectra 557

Thebigraded spheres are the synthetic spectra defined by St,w = �t−wνSw,
by construction S0,0 is the monoidal unit. This choice of spheres leads in
the usual way to the homology and homotopy groups of synthetic spectra;
moreover, it endows the ∞-category SynE with a bigrading.

Theorem 1.1. (4.16, 4.19). The ∞-category SynE admits a right complete
t-structure compatible with filtered colimits such that a synthetic spectrum X
is connective if and only if νEt,wX = 0 whenever t − w < 0. Moreover, there
exists a canonical equivalence Syn♥

E 
 QCoh♥(ME ) between the heart of
this t-structure and the abelian category of quasi-coherent sheaves.

As SynE is an∞-category of sheaves of spectra, for formal reasons it admits a
t-structure where coconnectivity is measured levelwise; this is the t-structure
of Theorem1.1, so that its existence is not surprising. The interesting part of the
result is a homological criterion for connectivity togetherwith the identification
of the heart with something purely algebraic, both of which are technically
quite involved.

The connection between synthetic spectra and quasi-coherent sheaves can
be made stronger. Since the ∞-category of finite E-projective spectra admits
suspensions, for any synthetic spectrum X we have a natural colimit-to-limit
map of the form X (�P) → �X (P), where P ∈ Sp f p

E . We show that this
morphism arises from a universal one τ : S0,−1 → S0,0 in the sense that it can
be identified with τ ⊗ X : �0,−1X → X .

Theorem 1.2. (Special fibre—4.46, 4.53). The synthetic spectrum

Cτ := cofib(τ : S0,−1 → S0,0)

admits a canonical structure of a commutative algebra. Morever, there exists
a canonical symmetric monoidal embedding

χ∗ : ModCτ (SynE ) ↪→ IndCoh(ME )

of the ∞-category of modules over Cτ into Ind-coherent sheaves over ME .
If E is Landweber exact, this is an equivalence.

The ∞-category of Ind-coherent sheaves is a thickening of the usual stable
∞-category of quasi-coherent sheaves QCoh(ME ) of comodules; its con-
struction is completely algebraic [7,28]. Informally, Theorem 1.2 shows that
after “killing τ”, SynE can be described purely in terms of algebraic geome-
try. To construct the needed embedding, we describe Ind-coherent sheaves as
spherical sheaves of spectra on a certain explicit site, a result which is perhaps
of interest in its own right.
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We now describe the relationship between synthetic spectra and spectra,
intuitively, one obtains the latter from the former by disregarding τ -torsion.
We say that a synthetic spectrum X is τ -invertible if τ : �0,−1X → X is an
equivalence.

Theorem 1.3. (Generic fibre—4.37, 4.40). The functor τ−1 : SynE → Sp
given by

τ−1X := lim−→�−k X (S−k)

is cocontinuous, symmetric monoidal and restricts to an equivalence
SynE (τ−1) 
 Sp between the ∞-categories of τ -invertible synthetic spectra
and spectra.

These two results taken together imply that the ∞-category of synthetic
spectra interpolates between Sp and IndCoh(ME ). In very informal words, if
we think of τ as a uniformizer, then SynE behaves like a deformation whose
special fibre (obtained by “setting τ = 0”) is IndCoh(ME ) and the generic
fibre (obtained by inverting τ ) is given by Sp. Thus, we have a span of stable,
symmetric monoidal ∞-categories

Sp SynE IndCoh(ME )
τ−1 Cτ ⊗ −

, (2)

where both of the functors are cocontinuous and symmetric monoidal. This
means that the Adams spectral sequence in SynE maps into the usual Adams
spectral sequence in spectra as well as an algebraic one which takes place in
IndCoh(ME ), this relationship can be used to relate the two spectral sequences
and perform computations.

The choice of the letter τ is not accidental, as the two above results show that
the ∞-category SynE behaves like the p-complete cellular motivic category
over Spec(C) as studied in this context by Gheorghe, Isaksen, Wang and Xu
[23, §3], [31, §1.5]. In the motivic world, τ : S0,−1

p → S0,0p is a map between
p-complete motivic spheres and similarly to the synthetic case we have an
identification betweenCτ -modules and even Ind-coherent sheaves overMMU
[25, Theorem 1.1]. Likewise, inverting the motivic τ yields the usual ∞-
category of p-complete spectra, so that one has a span of functors analogous
to (2).

The study of themotivic Adams spectral sequence and the relation it implies
between the topological Adams spectral sequence and the algebraic one in the
world of comodules is what we call in this note theCτ -philosophy, it has led to
dramatic advances of the knowledge of the stable homotopy groups at p = 2
[32].
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The above suggests that the p-complete cellular motivic category should be
related to synthetic spectra; we show this is indeed the case in the strongest
possible sense. Let us say that a synthetic spectrum based on MU is even if it
belongs to the localizing subcategory generated by the synthetic spectra of the
form νP , where P is a finite spectrumwithMU∗P projective and concentrated
in even degree; we denote their ∞-category by SynevMU.

Theorem 1.4. (7.34). There exists an adjunction


∗ � 
∗ : SpC � SynevMU

between the ∞-categories of cellular motivic spectra over Spec(C) and even
synthetic spectra based onMU which induces an adjoint equivalence

(SpC)∧p 
 (SynevMU)∧p

between the ∞-categories of p-complete objects at each prime p.

Oneway to interpret Theorem 1.4 is a categorification of the classical Suslin
rigidity, which in particular states that the canonical comparisonmap K (C) →
ku between algebraic and topological complex K -theory is an equivalence
after p-completion at any prime [57]. It gives a description of the p-complete
cellular motivic category which is concrete and well-adapted to explaining the
strong relation between motivic spectra and complex bordism [30,35].

To prove Theorem 1.4, we describe SpC itself as an ∞-category of spher-
ical sheaves of spectra, even before p-completion. This is of interest on its
own; for example, it implies a motivic analogue of Theorem 1.1, namely,
that SpC admits a right complete t-structure in which a cellular motivic spec-
trum X is connective if and only if MGL∗,∗X is concentrated in non-negative
Chow degrees, whose heart is equivalent to the abelian category of even quasi-
coherent sheaves overMMU.

To lend credibility to the idea of developing homotopy theory of synthetic
spectra, and to highlight their accessibility, we make a few fundamental calcu-
lations. To start with, we compute the homotopy groups of synthetic analogues
in a range and determine them completely in the case of homotopy E-modules.

Theorem 1.5. (4.58, 4.60). Let X be a spectrum. Then, the natural map
πt,wνX → πt X given by τ -inversion is an isomorphism when t − w ≥ 0. If
X is a homotopy E-module and t − w < 0, then πt,wνX vanishes.

In fact, the results we prove are stronger and concern not only homotopy
groups, but homotopy classes ofmaps between synthetic analogues of arbitrary
spectra. The proof of Theorem 1.5 makes crucial use of the relation between
synthetic spectra and quasi-coherent sheaves. A more precise form of the
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statement given in the text, see Proposition 4.57, shows that the failure of
τ to act isomorphically on the homotopy groups of synthetic analogues is
controlled by appropriate Ext-groups.

The second calculation we make was suggested to us by Dan Isaksen, and is
the synthetic analogue of Voevodsky’s calculation of themotivic dual Steenrod
algebra [58,59].

Theorem 1.6. (6.9, 6.10). Let p a prime, H the mod p Eilenberg-MacLane
spectrumand νH theassociated syntheticEilenberg-MacLane spectrumbased
onMU. Then, νH∗,∗ 
 Fp[τ ] and if p is odd, then there exists an isomorphism

νH∗,∗νH 
 Fp[b1, b2, . . . , τ ] ⊗Fp E(τ0, τ1, . . .)

of bigraded algebras between the synthetic dual Steenrod algebra and the
tensor product of polynomial and exterior algebras, where |bk | = (2pk −
2, 2pk − 2), |τl | = (2pl − 1, 2pl − 2) and |τ | = (0, −1). If p = 2, then there
exists an isomorphism

νH∗,∗νH 
 F2[b1, b2, . . . , τ, τ0, τ1, . . .]/(τ 2k = τ 2bk+1)

with generators in the same degrees.

Notice that after inverting τ , νH∗,∗νH coincides with the usual topological
dual Steenrod algebra extended to Fp[τ, τ−1]; this is a consequence of the
relation between synthetic spectra and spectra discussed above. Similarly, the
quotient νH∗,∗νH ⊗Fp[τ ] Fp can be identified with the dual Steenrod algebra
internal to IndCoh(MMU). Unlike in the motivic case, in synthetic spectra
these two constraints are known a priori and inform the proof of Theorem 1.6.

Note that through the correspondence of Theorem 1.4, the even weight part
of Theorem 1.6 recovers the computation of the cohomology of a point and
of the motivic dual Steenrod algebra due to Voevodsky [58,59]. However, our
arguments do not give an an independent proof of Voevodsky’s results, as the
latter are needed to establish the synthetic-motivic correspondence in the first
place. On the other hand, the synthetic calculations are substantially simpler,
largely reducing to the topological case, while the computation of the motivic
cohomology of a point alone is a form of the Bloch-Kato conjectures.

1.2 Applications of synthetic spectra

Asmentioned above, several applications of synthetic spectra have been found
in the short period since the preprint of this article first appeared. To provide
some motivation for the main construction of this paper, as well as a guide to
the reader, let us mention some of these recent developments.
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The idea of expressing an Adams-type homology theory in terms of finite
spectra with projective homology is due to Goerss and Hopkins, who use it to
put an exoticmodel structure on simplicial spectra in their work on realizations
of commutative ring spectra, famously culminating in anE∞-ring structure on
Morava E-theory [21,22]. Their arguments were simplified and generalized
using the language of synthetic spectra by Paul VanKoughnett and the author
in [49]; this is also the place proving convergence of Postnikov towers for
certain classes of synthetic spectra.

In [4], Burklund, Hahn and Senger show that the structure of the Adams
spectral sequence is completely described in terms of synthetic homotopy
groups together with the action of τ . They use synthetic spectra to prove
new bounds on Adams filtration of stable stems outside of the image of J ,
completing the program of Stolz and solving several conjectures in geometric
topology. This work continued in [6,11]. In [13], synthetic spectra were used
to resolve a hidden extension in the Adams spectral sequence, and in [14] to
prove vanishing lines for the mod 2Moore spectrum. In [42], Marek computed
the synthetic homotopy groups of tmf.

Let us now discuss some developments in motivic homotopy theory. In [5],
Burklund, Hahn and Senger follow the description of the cellular motivic
homotopy over C in terms of complex bordism given in this paper by
describing the ∞-category of Artin-Tate motivic spectra over R in terms of
C2 = Gal(C/R)-equivariant homotopy theory and the real bordism spectrum.

In this paper, we construct an exotic t-structure on cellular motivic spectra
over C whose heart can be identified with the even part of QCoh♥(MMU).
In their seminal work [9], Bachmann, Kong, Wang and Xu construct Chow-
Novikov t-structures over arbitrary base fields and make an analogous
identification of hearts in the cellular case (after inverting the exponential
characteristic).

The idea of studying sheaves with respect to homology epimorphisms has
been adapted by Schäppi to construct graded Tannakian categories of motives
and flat replacements for non-Adams-type homology theories [53,54]. In [47],
Patchkoria and the author use derived ∞-categories of stable ∞-categories to
proveFranke’s algebraicity conjecture andmonoidality of theAdamsfiltration.

In [24], Gregoric identifiesMU-based synthetic spectra with quasi-coherent
sheaves over a certain algebraic stack in the context of spectral algebraic geom-
etry.

1.3 Quasi-coherent sheaves and comodules

In the introduction above, we have phrased our results in terms of quasi-
coherent sheaves over
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ME := lim−→[n]∈�op

Spec(π∗(E⊗[n])).

This stack can be presented by the pair (E∗, E∗E) together with its structure
of a Hopf algebroid [51], so that we have an equivalence

QCoh(ME ) 
 D(ComodE∗E )

between the stable ∞-category of quasi-coherent sheaves and the derived ∞-
category of the abelian category of E∗E-comodules; that is, E∗-modules M
equipped with an appropriate comultiplication map � : M → E∗E ⊗E∗ M .

While using one or the other is amatter of preference, in themain body of the
text we decided to use the language of Hopf algebroids and comodules rather
than that of quasi-coherent sheaves. Our choice is informed by the following
considerations:

1. Our starting point of considerations is the notion of E-homology, and E∗E
is a key player in many of our arguments. From the point of view of Hopf
algebroids, E∗ and E∗E are part of the data, while from the point of view
of algebraic stacks it is a somewhat arbitrary presentation.

2. We do not want to assume that E∗ or E∗E are concentrated in even degrees,
and so their underlying ungraded rings are not necessarily commutative.
To get around this properly, one would have to consider ME as a stack
in the context of graded commutative rings, which would take us too far
afield.

3. The language of Hopf algebroids and comodules is that of the vast majority
of our references, as it is closer to explicit calculations.

1.4 Organization of the paper

Before listing the contents of the specific sections, let us give some general
advice about approaching this paper. The results are given, with very minor
exceptions, in order of logical dependence, so that the definition of a synthetic
spectrum appears only in Sect. 4, roughly halfway through the text. The pre-
ceding Sects. 2 and 3 set up the necessary foundations for the theory of sheaves
on general additive ∞-sites, and on the sites of finite projective spectra and
dualizable comodules specifically.

However, it might be advisable to proceed by first reading Sect. 4 and only
reviewing the results of previous sections as they become needed.Additionally,
the comparison with the motivic category appears in relatively self-contained
Sect. 7, so that a reader mainly interested in this part might consider starting
there.
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Synthetic spectra 563

We now summarize the contents of the paper. In Sect. 2 we introduce the
notion of an additive ∞-site; that is, one which is additive and which has
covering sieves generated by single morphisms. We prove that on such sites
the sheafification functor preserves the property of being spherical and prove a
recognition theorem for spherical sheaves in terms of finite limits. We develop
the basic theory of spherical sheaves of spectra, introducing the t-structure and
identifying the connective part with sheaves of spaces.We discuss functoriality
of these constructions under morphisms of ∞-sites.

Then, we show that if the additive ∞-site is excellent; that is, admits a
compatible symmetric monoidal structure in which all objects have duals, then
the ∞-categories of spherical sheaves acquire an induced Day convolution
symmetric monoidal structure. We give a technical criterion for a morphism
of excellent ∞-sites to induce an equivalence on the categories of sheaves of
sets.

Lastly, we prove a variant of aGoerss-Hopkins theoremwhich describes any
compactly generated Grothendieck abelian category as a category of spher-
ical sheaves of abelian groups. As an application, we describe a model of
the derived ∞-category of such an abelian category given by hypercomplete
spherical sheaves of spectra.

In Sect. 3 we study in more detail the additive∞-sites of dualizable comod-
ules and of finite projective spectra. We review the theory of comodules over
a Hopf algebroid, describe Hovey’s stable homotopy theory of comodules as
an ∞-category of spherical sheaves of spectra, and draw the consequences.

Then, we review the notions of a finite E-projective spectrum and of an
Adams-type homology theory.We assemble finite projective spectra into a site
and show that any spectrum represents a sheaf on that site. Lastly, we show
that the homology functor between finite projective spectra and dualizable
comodules induces an equivalence on categories of sheaves of sets.

In Sect. 4 we introduce the notion of a synthetic spectrum and of a synthetic
analogue of an ordinary spectrum. We define the bigraded spheres, introduce
homotopy and homology of synthetic spectra and discuss grading conventions.

Then, we show that the homotopy groups of synthetic spectra with respect
to the natural t-structure can be identified with synthetic E-homology. As an
application, we prove a criterion for a cofibre sequence of spectra to induce a
cofibre sequence of synthetic spectra, as well as a criterion for a tensor product
of synthetic analogues to coincide with the tensor product of spectra.

Next, we introduce the colimit-to-limit comparison map and show that it
can be identified with a certain morphism τ : S0,−1 → S0,0. We compute the
cofibres of τ on synthetic analogues and discuss the connection to Postnikov
towers. We show that the spectral Yoneda embedding induces an equivalence
between spectra and τ -invertible synthetic spectra, as an application, we show
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that the synthetic analogue construction is a fully faithful embedding and
construct the underlying spectrum functor.

Then, we introduce an adjunction between synthetic spectra and Hovey’s
stable ∞-category of E∗E-comodules and show that it lifts to an adjunction
withCτ -modules.We construct a t-structure on∞-categories ofmodules over
a connective synthetic algebra and prove that the adjunction between Hovey’s
∞-category and Cτ -modules is compatible with the respective t-structures.

We show that the left adjoint of this adjunction is a fully faithful embed-
ding and discuss conditions on E that guarantee that it is an equivalence. We
prove that by hypercompleting both sides one obtains an adjoint equivalence
between modules over Cτ in hypercomplete synthetic spectra and the derived
∞-category of comodules.

Furthermore, we prove some basic results on homotopy classes of maps
between synthetic analogues of ordinary spectra, showing that they are purely
topological in non-negative Chow degrees and are controlled by Ext-groups in
comodules beyond that. We prove that in the case of a homotopy E-modules,
the homotopy groups vanish in negative Chow degree. Lastly, we discuss the
Cτ -philosophy; that is, the relation between the topological and algebraic
Adams spectral sequences exhibited by the synthetic one. We describe the
relation between the Whitehead towers in synthetic spectra and the E-based
Adams spectral sequence.

In Sect. 5 we define νE-local synthetic spectra, where νE is the synthetic
analogue of E , and show that this conditions corresponds to being a hypercom-
plete sheaf. Then, we discuss the description of Cτ -modules and τ -invertible
spectra in the hypercomplete setting.

Then, we introduce the notion of an even Adams-type homology theory.
We show that to an even E one can associate an ∞-category of even synthetic
spectra and show that the latter admits a cocontinuous fully faithful embedding
into synthetic spectra.

In Sect. 6 we prove that the ∞-category of synthetic spectra based on MU
is cellular; that is, generated under colimits by the bigraded spheres. Then, we
compute the corresponding dual synthetic Steenrod algebra.

In Sect. 7 we review the basics of the cellular motivic category SpC over
Spec(C), of the corresponding motivic cobordism spectrum MGL , and the
theorem of Hopkins-Morel-Hoyois. We introduce the notion of a finite MGL-
projective motivic spectrum and show that these assemble into an excellent
∞-site. We prove that the Betti realization functor induces an equivalence
between categories of sheaves of sets onfiniteMGL-projectivemotivic spectra
and finite even MU-projective spectra.

Then, we describe the cellular motivic category as an∞-category of spheri-
cal sheaves of spectra. As an application, we deduce that it admits a t-structure
controlled by MGL-homology groups.
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Next, we review the structure of the p-completemotivicAdams andAdams-
Novikov spectral sequences. We recall a theorem of Gheorghe-Isaksen on the
structure of the p-complete motivic homotopy groups.

Finally, we construct an adjunction between the cellular motivic category
and the ∞-category of even synthetic spectra based on MU. We show that the
induced adjunction on the ∞-categories of p-complete objects is an equiva-
lence at each prime p.

1.5 Notation and conventions

By an ∞-category we mean a quasicategory and we freely use the theory of
∞-categories as developed by Joyal and Lurie; the standard reference is [41].
All constructions should be understood in the homotopy-invariant sense, in
particular limits and colimits.

IfC,D are∞-categories,wedenote the∞-category ofD-valued presheaves
on C by PD(C), this is the functor ∞-category Fun(Cop,D). In practice, D
will be sets, spaces or spectra. If D is the ∞-category S of spaces, we drop it
from the notation and terminology so that a presheaf on C is simply an element
of P(C) = Fun(Cop, S).

If C is equipped with a Grothendieck topology, then by ShD(C) we denote
the full subcategory ofD-valued presheaves spanned by sheaves; that is, those
presheaves that satisfy descent with respect to all covers.We denote the sheafi-
fication functor by L : PD(C) → ShD(C); it is the left adjoint to the inclusion
of sheaves into presheaves.

By ̂ShD(C) we denote the ∞-category of hypercomplete sheaves; that is,
those presheaves that satisfy descent with respect to all hypercovers. Equiv-
alently, a sheaf is hypercomplete if and only if it is local with respect to all
∞-connective morphisms of sheaves. We denote the hypercomplete sheafifi-
cation functor by ̂L : PD(C) → ̂ShD(C).

If C has finite sums, we say that presheaf X is spherical 5 or product-
preserving if it takes sums to products; that is, if the natural map X (c  c′) →
X (c)×X (c′) is an equivalence for all c, c′ ∈ C.We denote the full subcategory
of PD(C) spanned by spherical presheaves, resp. by spherical sheaves, resp.
by spherical hypercomplete sheaves by PD

� (C), resp. ShD�(C), resp. ̂ShD�(C).
Given a subcategory of the ∞-category of presheaves of spectra, we con-

sistently denote the left adjoint to the functor�∞ computed levelwise by�∞+ .

5 This terminology is motivated by the previous note of the author [48], where the notion of
presheaves on the∞-category ofwedges of sphereswas studied and the product-preserving ones
were simply called spherical. We find the word “spherical” to be pleasant-sounding and shorter
than “product-preserving”, both advantages being important considering how often we use this
notion. Another name under which product-preserving presheaves appear in the literature is
radditive, see [60].
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Depending on the particular subcategories in question, this may or may not be
computed by applying �∞+ : S → Sp levelwise; see Warning 2.20.

If C is a presentable ∞-category, we denote the k-truncation functors by
(−)≤k : C → C. More generally, if C is a stable ∞-category equipped with
a t-structure, then we denote the k-connective and k-coconnective parts by,
respectively, C≥k and C≤k , and the truncation functors by (−)≥k , (−)≤k . Note
that the k-truncation in the setting of presentable∞-categories andwith respect
to a t-structure do not always coincide, but the potential for confusion is rather
small, as they do coincide on the connective part, see [39][1.2.1.9] for a dis-
cussion.

If C is a small ∞-category and c ∈ C, then by y(c) we denote the
representable presheaf defined by the formula y(c)(c′) = map(c′, c); this
construction assembles into the Yoneda embedding y : C → P(C). One can
show that P(C) is freely generated under colimits by the image of the Yoneda
embedding and, ifC has finite sums, that y takes values in spherical presheaves
and P�(C) is freely generated by the image under sifted colimits [41][5.1.5.6,
5.5.8.15]. Both facts will be often used implicitly.

If f : C → D is a morphism of sites, we will denote the restriction functor
on sheaves by f∗ : Sh(D) → Sh(C) and its left adjoint by f ∗.6

2 Category theory

In this section we develop a theory of spherical sheaves on additive ∞-sites;
that is, additive ∞-categories equipped with a Grothendieck topology gener-
ated by singleton covering families. We show that on such sites sheafification
preserves the property of being spherical and prove a recognition theorem for
spherical sheaves. We also discuss functoriality, sheaves of spectra, induced
symmetric monoidal structures and give criteria for a morphism of additive
∞-sites to induce an equivalence on the categories of sheaves of sets. Lastly,
we review the description of a compactly generated Grothendieck abelian
category as a category of spherical sheaves of abelian groups and deduce a
description of its derived ∞-category.

The two main examples of additive ∞-sites we have in mind are the site of
finite, E-projective spectra equipped with the E∗-surjection topology and the
site of dualizable E∗E-comodules with the epimorphism topology. The ∞-
categories of spherical sheaves of spectra on these two sites are, respectively,
the∞-category of synthetic spectra based on E andHovey’s stable∞-category

6 An earlier preprint version of this article used the opposite convention, but we were convinced
that it would be best to stick with conventions of algebraic geometry. We apologize to the early
readers who might find this change confusing.
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of E∗E-comodules. However, the results in this section are proven in sufficient
generality that they could perhaps be of use elsewhere.

2.1 Spherical sheaves on additive ∞-categories

In this section we develop the basic theory of spherical sheaves on additive
∞-sites. Here, an additive ∞-category is one which has finite products, finite
coproducts and whose homotopy category is additive in the classical sense,
see [40, §C.1.5].

In an additive∞-category C finite products and coproducts coincide. More-
over, any stable ∞-category is additive and any additive ∞-category embeds
into a stable one. If C is additive, then the associated ∞-category of spherical
presheaves is very well-behaved, as the following result shows.

Lemma 2.1. If C is additive, so is the ∞-category P�(C) of spherical
presheaves of spaces. In particular, any spherical presheaf of spaces is canon-
ically a grouplike commutative algebra object; that is, it can be canonically
lifted to a presheaf of grouplike commutative algebras in spaces.

Proof. This is [40, C.1.5.3, C.1.5.8]. �
Our goalwill be to single out conditions on an additive∞-category equipped

with a Grothendieck pretopology so that the theory of sheaves and spherical
presheaves are in some sense compatible. We show that this is the case of
an additive ∞-site in the sense of Definition 2.3; that is, when all covering
families consist of a single morphism.

Having a pretopologywith single covers is a convenient assumption tomake
and is sufficient for our purposes, however, our criterion for compatibility will
be phrased in terms of a general localization of a presheaf category and so it
should be perhaps applicable in other settings.

Theorem 2.2. Let C be an small additive ∞-category, S a small set of mor-
phisms in P(C) and LS : P(C) → S−1P(C) the associated localization
functor taking values in S-local presheaves. Then, if S consists only of mor-
phisms of spherical presheaves and LS preserves finite products, then LS takes
spherical presheaves to spherical S-local presheaves.

Proof. Let us first recall some facts about localizations of presentable ∞-
categories, namely [41, 5.2.7.8, 5.5.4.15]. IfD is a presentable∞-category and
W is a small set of morphisms inD, then there exists an associated localization
functor L : D → W−1D taking values in the subcategory of W -local objects.

We say that a map d → d ′ is an L-equivalence if Ld → Ld ′ is an equiva-
lence and one shows that for any d ∈ D the map d → Ld can be characterized
as the unique L-equivalence into a W -local object, moreover, the class of
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L-equivalences coincides with W , the smallest strongly saturated class con-
taining W . Here, we say that a class W of morphisms is strongly saturated
if it is closed under pushouts, colimits in the arrow ∞-category, and when it
satisfies 2-out-of-3.

Since P�(C) is presentable and S consists of morphisms of spherical
presheaves, it follows that there also exists an associated localization on
the spherical presheaf ∞-category, which we denote by LS

� : P�(C) →
S−1P�(C). Our goal is to show LS already preserves spherical presheaves,
so that LS and LS

� coincide on spherical presheaves.
By the above, it is enough to prove that any spherical presheaf admits

an LS-equivalence into an S-local spherical presheaf. Since LS
� exists, it

certainly admits an LS
�-equivalence into an S-local spherical presheaf. As

LS
�-equivalences form the smallest strongly saturated class of morphisms of

spherical presheaves containing S, it is enough to show that L-equivalences
also form a strongly saturated class of morphisms of spherical presheaves and
they contain S. The latter is clear and so we move to showing the former.

It is immediate that LS-equivalences of spherical presheaves satisfy 2-out-
of-3, so instead we first show that LS-equivalences are closed under colimits
in P�(C)�

1
. Since colimits in the arrow category are computed in the source

and target and the inclusion P�(C) ↪→ P(C) preserves sifted colimits, we
deduce that LS-equivalences are closed under sifted colimits in P�(C)�

1
. It is

thus enough to show that LS-equivalences are closed under finite coproducts.
Since P�(C) is additive by Lemma 2.1, so is P�(C)�

1
. As finite coproducts

and products coincide in additive ∞-categories, we deduce that it is enough
to know that LS-equivalences of spherical presheaves are closed under finite
products. This follows immediately from the assumption that LS preserves
finite products.

We are left with pushouts. We have to show that given a span B ← A → C
of spherical presheaves such that A → C is an LS-equivalence, so is the
natural map B → B ⊕A C into the pushout of spherical presheaves. This is
the same as showing that B ⊕A A → B ⊕A C is an LS-equivalence, to verify
this, we give an explicit description of the pushout.

Since P�(C) is additive, it is symmetric monoidal under the direct sum and
moreover any object admits a canonical structure of a commutative algebra,
so that we have an identification CAlg⊕(P�(C)) 
 P�(C). It follows that
pushouts in spherical presheaves can be computed as the tensor product of
commutative algebras under the direct sum.

Notice that the direct sum functor on P�(C) preserves geometric realizations
separately in each variable. Indeed, this follows from the fact that geometric
realizations of spherical presheaves are computed levelwise, as are products,
and that these commute in the ∞-category of spaces. It follows that the tensor
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product of spherical presheaves can be computed using the bar construction
of [39, 4.4.2]. Thus, to show that B ⊕A A → B ⊕A C is an LS-equivalence is
the same as showing that

lim−→ (. . . B ⊕ A ⊕ A ⇒ B ⊕ A) → lim−→ (. . . B ⊕ A ⊕ C ⇒ B ⊕ C)

is an LS-equivalence. We’ve already verified that LS-equivalences are stable
under colimits, so that it is enough to see that the map of simplicial diagrams
defining the bar construction is levelwise an LS-equivalence. This is the same
as saying that for each n ≥ 0, B ⊕ A⊕n ⊕ A → B ⊕ A⊕n ⊕ C is an LS-
equivalence, which is a product of LS-equivalences so that we are done. �

We now deduce the needed consequences in the case where the localization
is the sheafification functor with respect to a compatible topology.

Definition 2.3. An additive ∞-site is a small ∞-site C which is additive as
an ∞-category and such that every covering family consists of a single map.
A morphism f : C → D of additive ∞-sites is an additive morphism of sites.

Remark 2.4. The intuition behind allowing only covering families with a
single morphism is that we will only consider spherical sheaves. Any such
sheaf is compatible with the additive structure of C by the assumption of
sphericity, so that the topology can be relegated to only playing the role of
enforcing the right epimorphisms, rather than also the right disjoint union
behaviour.

It might be tempting to try to build the product-preserving condition into the
topology itself, but this cannot work. The reason is that on an additive ∞-site
the ∞-category of spherical sheaves is additive itself and so it can coincide
with the ∞-category of all sheaves, which is an ∞-topos, only in the case
where both are trivial.

Proposition 2.5. Let C be an additive ∞-site. Then the sheafification
L : P(C) → Sh(C) and hypercomplete sheafification ̂L : P(C) → ̂Sh(C)

functors take spherical presheaves to spherical presheaves.

Proof. By Corollary 2, the class of sheaves can be described as the class of
S-local objects, where S is the inclusions of pretopological sieves. Since C is
assumed to have single covers, these inclusions are all of the form

lim−→ (. . . y(d ×c d) ⇒ y(d)) → y(c),

as d → c runs through covering morphisms. Notice that here both the target
and source are spherical presheaves, as all representable presheaves are spher-
ical and the latter are closed under geometric realizations. It follows that all
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elements of S are maps of spherical presheaves. Since L preserves finite prod-
ucts, in fact is left exact, Theorem 2.2 implies that L takes spherical presheaves
to spherical presheaves.

The argument for hypercomplete sheaves is similar, as Proposition 6 char-
acterizes hypercomplete sheaves as presheaves local with respect to the maps
from the colimit of a hypercover. More precisely, it is the class local with
respect to the set ̂S of maps of the form

lim−→ (. . . y(d1) ⇒ y(d0)) → y(c),

where . . . d1 ⇒ d0 → c is a hypercover. Again, both the source and target
of these maps are spherical so that an application of Theorem 2.2 finishes the
argument. �
Remark 2.6. A statement analogous to Proposition 2.5 appears in the work
of Goerss-Hopkins in the context of sheaves of abelian groups on dualizable
comodules as [21][2.1.8, (2)], but the proof given there suffers from a subtle
mistake: a pullback of a direct sum decomposition along an epimorphism is
almost never again a direct sum.

Corollary 2.7. Let C be an additive ∞-site. Then, the sheafification
L : P�(C) → Sh�(C) presents the ∞-category Sh�(C) of spherical sheaves
as an accessible, left exact localization of P�(C). In particular, Sh�(C) is
presentable. An analogous statement holds for hypercomplete sheaves.

Proof. By Proposition 2.5, the adjunction P(C) � Sh(C) restricts to one
between the ∞-categories of spherical presheaves and spherical sheaves. To
observe that the latter localization is accessible, notice that Sh�(C) = Sh(C)∩
P�(C) and accessible subcategories are closed under intersection, see [41,
5.4.7.10, 5.5.1.2]. Left exactness is clear, as L : P(C) → Sh(C) is left exact.
The argument in the case of spherical hypercomplete sheaves is the same. �

Wenowprove a strong recognition result for spherical sheaves on an additive
∞-site. The importance of the result is twofold, for one thing, it simplifies
verification that a given presheaf is a spherical sheaf. In fact, using the criterion
it is often easier to prove that a given presheaf is a spherical sheaf than it would
be to directly prove that it is a sheaf.

Secondly, the recognition we describe is in terms of finite limits, which has
the pleasant consequence of showing that filtered colimits of spherical sheaves
on an additive ∞-site are computed levelwise.

Theorem 2.8. (Recognition of spherical sheaves). Let C be an additive ∞-
site. Then a spherical presheaf X ∈ P�(C) is a sheaf if and only if it satisfies
the following exactness property: if F → B → A is a fibre sequence with
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B → A a covering, then X (A) → X (B) → X (F) is a fibre sequence of
spaces.

Proof. Let X be a spherical presheaf and assume that it satisfies the above
exactness property. By Corollary 2, to prove that it is a sheaf, we have to show
that if B → A is a covering, then

X (A) → X (B) ⇒ X (B ×A B) . . .

is a limit diagram of spaces. We have a commutative diagram

F

0

B A

A A

where the rows form fibre sequences and the vertical arrows are coverings.
Taking the Čech nerves of vertical arrows and applying X we obtain a diagram

X (0) → X (F) ⇒ X (F ×0 F) . . .

X (A) → X (B) ⇒ X (B ×A B) . . .

X (A) → X (A) ⇒ X (A ×A A) . . .

where each row is an augmented cosimplicial object. Since taking fibres com-
mutes with taking pullbacks, at each cosimplicial level n the vertical columns
are induced by a fibre sequence in C. More precisely, for n ≥ −1, they’re
induced by the fibre sequence

F ×0 . . . ×0 F → B ×A . . . ×A B → A ×A . . . ×A A,

where the number of factors is n+1. One sees that in each case the secondmap
is a covering and we deduce that by the assumed exactness property of X each
of the vertical columns is a fibre sequence of spaces. Since fibre sequences
commutes with limits, we obtain a commutative diagram

X (0)

lim←−|� X (F ×0 . . . ×0 F)

X (A)

lim←−|� X (B ×A . . . ×A B)

X (A)

lim←−|� X (A ×A . . . ×A A)
,

where the rows are fibre sequences of spaces, in fact of infinite loop spaces
by Lemma 2.1. We deduce that to prove that the middle vertical map is an
equivalence it is enough to show this about the left and right vertical maps.
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This is clear about the right map, which is associated to an augmented
cosimplicial object which consists of only equivalences and so is clearly a
limit diagram. Hence, we focus on the left hand map, which is associated to
the Čech nerve of the covering F → 0, which is the augmented simplicial
object which at level n is given by F × . . . × F , with n + 1 factors, with
structure maps given by the projections.

Since X is spherical, by Lemma 2.1 we can consider it as taking values in
connective spectra, notice this doesn’t change the limit, since the underlying
space functor �∞ is a right adjoint. Again by sphericity, X takes products in
C to sums of connective spectra and we deduce that X applied to the above
Čech nerve, where we omit the augmentation, is a cosimplicial object

X (F) ⇒ X (F) ⊕ X (F) . . . ,

where ⊕ is the sum of connective spectra, the coboundary maps are given
by inclusions. We have to show that the limit of this diagram is contractible,
since X (0) is by the assumption of sphericity. However, this is immediate
from the Bousfield-Kan spectral sequence computing the homotopy of the
limit [8][X.6], whose second page is given by π s(πt X (F) ⊕ . . . ⊕ πt X (F))

and is easily seen to vanish.
We now prove the converse, so that assume that X is a spherical sheaf. We

want to show that it has the exactness property, so let F → B → A be a
fibre sequence in C with the latter map a covering. Consider the commutative
diagram

F

F

B ×A B B

B A

again the rows are fibre sequences and the vertical maps are coverings. Taking
the Čech nerves of the vertical maps and applying X we obtain a diagram

X (F) → X (F) ⇒ X (F ×F F) . . .

X (B) → X (B ×A B) ⇒ X ((B ×A B) ×B (B ×A B)) . . .

X (A) → X (B) ⇒ X (B ×A B) . . .

where the rows are augmented cosimplicial objects. We want to show that the
column in cosimplicial degree −1 is a fibre sequence. By the assumption of X
being a sheaf, these augmented cosimplicial objects are limit diagrams, hence
it is enough to show that each column in cosimplicial degree n ≥ 0 is fibre.
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The column in cosimplicial degree n ≥ 0 is induced by the fibre sequence in
C of the form

F ×F × . . . ×F F → (B ×A B) ×B . . . ×B (B ×A B) → B ×A . . . ×A B

with n + 1 factors. Observe that this is a split sequence in C, with the splitting
given by � × . . . × � : B ×A . . . ×A B → (B ×A B) ×B . . . ×B (B ×A B),
where� : B → B×A B is the diagonal. Since X is spherical, it takes any split
sequence into a split sequence, in particular a fibre sequence, of connective
spectra, which is what we wanted to show. This ends the proof. �
Corollary 2.9. Let C be an additive∞-site. Then the subcategory Sh�(C) ↪→
P(C) is closed under filtered colimits. In particular, filtered colimits of spher-
ical sheaves on an additive ∞-site are computed levelwise.

Proof. By Theorem 2.8, being a spherical sheaf on an additive ∞-site is a
condition that can be described using finite limits. It follows that it is stable
under filtered colimits in P(C), which are computed levelwise. �
We finish this section by making some basic remarks about the functoriality
of the ∞-category of spherical sheaves, these results are elementary. Recall
that a morphism f : C → D of additive ∞-sites is an additive functor that
preserves covering morphisms as well as pullbacks along coverings.

Proposition 2.10. Let f : C → D be a morphism of additive ∞-sites. Then,
the induced adjunction f ∗ � f∗ : Sh(C) � Sh(D) restricts to one on the
∞-categories of spherical presheaves. Here, f ∗ = L ◦ Lan f , where Lan f
is the left Kan extension of the composite C → D → P(D) and L is the
sheafification, and f∗ is given by precomposition. An analogous statement
holds for the induced adjunction on ∞-categories of hypercomplete sheaves.

Proof. Since f is a morphism of sites, it induces an adjunction of the above
form on sheaf ∞-categories by Proposition 3, we only have to verify that
f∗, f ∗ take spherical sheaves to spherical sheaves.
In the case of the latter,wefirst observe that Lan f takes representables to rep-

resentables and preserves sifted colimits, so that it takes spherical presheaves
to spherical presheaves by [41][5.5.8.14], then that L preserves sphericity by
Proposition 2.5.

On the other hand, f∗ is given by a precomposition along an additive func-
tor, so it clearly takes spherical sheaves to spherical sheaves. The proof for
hypercomplete sheaves is the same, using Corollary 3 and replacing L by the
hypercomplete sheafification functor ̂L . �
Proposition 2.11. Let f : C → D be amorphism of additive∞-sites and con-
sider the induced adjunction f ∗ � f∗ : Sh�(C) � Sh�(D) on ∞-categories
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of spherical sheaves. If f has the covering lifting property, then the right
adjoint f∗ is cocontinuous.

Proof. As a consequence of the covering lifting property, the precomposition
along f is cocontinuous when considered as a functor f∗ : Sh(D) → Sh(C)

between ∞-categories of all sheaves, as we prove in “Proposition 4 in the
Appendix”. We have to verify this is also the case after restricting to spherical
sheaves.

Since sifted colimits of spherical sheaves are computed in sheaves, we
deduce that f∗ : Sh�(D) → Sh�(C) preserves sifted colimits. We are left
with finite coproducts, which by additivity coincidewith finite products. These
are preserved since f∗ is a right adjoint. �
Proposition 2.12. Let f : C → D be a morphism of additive ∞-sites with
the covering lifting property. Then f∗ preserves n-truncated and n-connected
sheaves. Moreover, it commutes with hypercompletion. In particular, the
restriction f∗ : ̂Sh�(D) → ̂Sh�(C) to ∞-categories of spherical hypercom-
plete sheaves is cocontinuous, too.

Proof. By Proposition 2.11, f∗ is a left exact, cocontinuous functor between
presentable∞-categories, so that it commutes with n-truncation by [41][5.5.6.
28]. This immediately implies that it preserves n-connective and n-truncated
objects.

Since f∗ : Sh�(D) → Sh�(C) preserves hypercomplete sheaves by Corol-
lary 3, to show the second part it is enough to verify that it preserves
∞-connective morphisms, which is immediate from the first part. �

2.2 Sheaves of spectra

In this section we study the basic properties of the ∞-categories of spherical
sheaves of spectra on an additive ∞-category C. The results we prove is the
existence of a natural t-structure and the fact that connective sheaves of spectra
can be identified with sheaves of spaces.

Proposition 2.13. The ∞-category ShSp� (C) of spherical sheaves of spectra
is the stabilization of Sh�(C); that is, we a have a canonical equivalence of
∞-categories of the form

ShSp� (C) 
 lim←− . . . → Sh�(C)∗ →� Sh�(C)∗.

In particular, it is a presentable, stable ∞-category. An analogous statement
holds for ∞-categories of spherical hypercomplete sheaves.
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Proof. The argument is identical to the case of (not necessarily spherical)
sheaves, which is done in [40, 1.3.3.2]. The spherical case follows as the
functors �∞−n : ShSp(C) → Sh(C)∗ preserve and jointly detect the prop-
erty of being spherical. To observe presentability, notice that we’ve proven in
Corollary 2.7 that Sh�(C) is presentable, and the stabilization of a presentable
∞-category is presentable by [39, 1.4.4.4]. �
Remark 2.14. Since being a sheaf is a limit condition, a presheaf of spectra
X is a sheaf if and only if �∞−n X are sheaves of spaces for n ≥ 0. For
shypercomplete sheaves, a stronger statement is possible: a presheaf X of
spectra is a hypercomplete sheaf if and only if it is a sheaf and �∞X is a
hypercomplete sheaf of spaces, see [40, 1.3.3.3].

We will now describe the natural t-structure on spherical sheaves of spectra
induced from the corresponding t-structure on the ∞-category of all sheaves
of spectra.

Definition 2.15. If X ∈ ShSp� (C) is a spherical sheaf of spectra then its n-th
homotopy group, denoted by πn X , is a sheaf of discrete abelian groups on C

obtained as the sheafification of the presheaf given by the formula

c ∈ C �→ πn X (c).

We say that a spherical sheaf of spectra X ∈ ShSp� (C) is connective if
πn X = 0 for n < 0. We say it is coconnective if �∞X is a discrete sheaf of
spaces. We denote the subcategories of connective, respectively coconnective
spherical sheaves by ShSp� (C)≥0 and ShSp� (C)≤0.

Notice that the homotopy sheaves of Definition 2.15 are always spherical by
Proposition 2.5, since they’re defined as a sheafification of a spherical presheaf.

Proposition 2.16. The pair (ShSp� (C)≥0, Sh
Sp
� (C)≤0) of full subcategories

determines a right complete t-structure on ShSp� (C) compatible with filtered

colimits. Moreover, there is a canonical equivalence ShSp� (C)♥ 
 ShSet� (C)

between the heart of this t-structure and the category of spherical sheaves of
sets.

Proof. By [40, 1.3.2.7], the corresponding statements are true for the ∞-
category ShSp(C) of sheaves of spectra. The corresponding truncation functors
(−)≤0, (−)≥0 : ShSp(C) → ShSp(C) are easily seen to take spherical sheaves
to spherical sheaves and we deduce that that there is an induced t-structure
on ShSp� (C). Lurie shows that this t-structure on ShSp(C) is compatible with
filtered colimits; that is, ShSp(C)≤0 is closed under filtered colimits andwe see
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the same is true for ShSp� (C)≤0 as spherical sheaves are closed under filtered
colimits. Right completness is immediate from the criterion of [39, 1.2.1.19].

We’re left with the assertion about the heart. In the proof of [40, 1.3.2.7],
Lurie observes that theEilenberg-MacLane spectrum functor induces an equiv-
alence between heart of ShSp(C) and the category of sheaves of discrete abelian
groups on C. Such a sheaf will belong to the heart Sh�(C)♥ if it is additonally
spherical, yielding the needed result, since ShAb

� (C) 
 ShSet� (C) by additivity
of C. �
Remark 2.17. One can see that the above t-structure restricts to one on
̂ShSp� (C), the ∞-category of spherical hypercomplete sheaves of spectra, the
restriction is also right complete and compatible with filtered colimits. More-
over, Remark 2.14 implies that the inclusion

̂ShSp� (C) ↪→ ShSp� (C)

induces an equivalence ̂ShSp� (C)≤0 
 ShSp� (C)≤0 between the coconnective
parts. In particular, the hearts are also equivalent.

Remark 2.18. To any t-structure on a stable ∞-category C there’s an asso-
ciated notion of homotopy groups, see [39, 1.2.1.11]. One can verify that the
homotopy groups associated to the above t-structure coincide with those of
Definition 2.15.

We have seen in Proposition 2.13 that the ∞-category ShSp� (C) is the sta-
bilization of Sh�(C); that is, the relation between the two is analogous to
the relation between spectra and spaces. However, in the case of spherical
presheaves on an additive ∞-category the stabilization is of a more benign
nature, as we show below.

Proposition 2.19. Consider theadjunction�∞+ � �∞ : Sh�(C) � ShSp� (C),
where �∞ is computed levelwise. Then, the left adjoint �∞+ is fully faithful
and identifies its domain with the ∞-category Sh�(C)≥0 of connective spher-
ical sheaves of spectra. An analogous statement is true for ∞-categories of
spherical hypercomplete sheaves.

Proof. Both Sh�(C) and ̂Sh(C) are both left exact localizations of P�(C) by
Proposition 2.5 and hence are Grothendieck prestable in the sense of Lurie
[40, C.1.5.7, C.2.3.1], the statement follows from [40, C.1.2.10]. �
Warning 2.20. Notice that even though in the adjunction
�∞+ � �∞ : Sh�(C) � ShSp� (C) the right adjoint �∞ is computed level-
wise, the same is not true for the left adjoint �∞+ .
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In the case of spherical sheaves, �∞+ : Sh�(C) → ShSp� (C) is computed by
observing that any spherical sheaf is canonically a sheaf of infinite loop spaces,
see Lemma 2.1, so that we can deloop it to a sheaf of connective spectra, and
sheafify.

Remark 2.21. Even though Proposition 2.19 looks innocent at first sight, it
is incredibly useful, as it allows one to reduce considerations about sheaves of
spectra to sheaves of spaces, where the Yoneda lemma is available.

We finish the section by observing some functoriality properties of the ∞-
category of spherical sheaves of spectra.

Proposition 2.22. Let f : C → D be a morphism of additive ∞-sites. Then,
there’s an induced adjunction f ∗ � f∗ : ShSp� (C) � ShSp� (D)between the∞-
categories of spherical sheaves of spectra,where f ∗ is the unique cocontinuous
functor such that f ∗�∞+ y(c) 
 �∞+ y( f (c)) for c ∈ C and f∗ is given by
precomposition. If f has the covering lifting property, then f∗ is cocontinuous.
An analogous statement holds for ∞-categories of hypercomplete sheaves.

Proof. The adjunction is obtained by stabilizing the adjunction on the ∞-
categories of spherical sheaves of spaces of Proposition 2.10, chasing through
definitions one sees that it is of the above form. If f has the covering lifting
property, then the cocontinuity of the right adjoint is proven in the same way
as in the case of sheaves of spaces, which we tackled in Proposition 2.11. �
Remark 2.23. Let f : C → D be a morphism of additive ∞-sites with the
covering lifting property. Then, since f∗ : Sh�(D) → Sh�(C) preserves both
n-truncated and n-connective objects as a consequence of Proposition 2.12, it
follows that the precomposition functor between ∞-categories of sheaves of
spectra preserves both the connective and coconnective parts of the t-structure
of Proposition 2.16; in other words, it is t-exact.

2.3 Symmetric monoidal structure

In this section we study excellent ∞-sites; that is, additive ∞-sites equipped
with a compatible symmetric monoidal structure all of whose objects admit
duals. We show that under these conditions the ∞-category of spherical
sheaves admits a very well-behaved symmetric monoidal structure on its own.
It is almost certain that the assumption of admitting duals can be weakened,
but since all the examples we have in mind do satisfy it, we work at this level
of generality.

Definition 2.24. An excellent ∞-site C is an additive ∞-site equipped with a
symmetric monoidal structure such that all objects of C admit duals and such
that for any c ∈ C, the functor − ⊗ c : C → C takes coverings to coverings.
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The way we will endow Sh�(C) with a symmetric monoidal structure is
the standard one, namely we will use that it is a localization of a presheaf
∞-category. The latter always inherits a well-behaved symmetric monoidal
structure through the classical construction of Day convolution, which we
now recall.

Proposition 2.25. Let C be a symmetric monoidal ∞-category. Then, the
presheaf ∞-category P(C) admits a unique symmetric monoidal structure
such that y : C ↪→ P(C) is symmetric monoidal and such that the tensor
product ⊗: P(C) × P(C) → P(C) preserves colimits in each variable.

Proof. This is [39, 4.8.1]. �
To induce a symmetric monoidal structure on the ∞-category Sh�(C), we
will check that the Day convolution is compatible with localization functor
L� : P(C) → Sh�(C). Under our strong assumptions, this will turn out to not
be too difficult.

Lemma 2.26. Let C be an excellent ∞-site and c ∈ C. Then, the tensoring
functor − ⊗ c : C → C is a morphism of additive ∞-sites.

Proof. Since by assumption −⊗ c takes coverings to coverings, we only have
to check that it is additive and that it preserves pullbacks along coverings. This
is clear, since c admits a dual c∗ and so we have an ambidexterous adjunction
− ⊗ c � − ⊗ c∗ �: C � C. We deduce that − ⊗ c preserves all limits and
colimits that exist in C. �
Lemma 2.27. Let C be an excellent ∞-site and c ∈ C. Then, the Day con-
volution functor y(c) ⊗ −: P(C) → P(C) is naturally equivalent to the
precomposition functor along − ⊗ c∗ : C → C, where c∗ is the dual. In par-
ticular, it preserves the properties of being discrete, spherical, a sheaf, an
∞-connective sheaf and of being a hypercomplete sheaf.

Proof. By definition of the Day convolution, the functor y(c) ⊗ −: P(C) →
P(C) can be described as the unique colimit-preserving extension of c ⊗
−: C → C. Notice that if d, e ∈ C, then

(y(c) ⊗ y(d))(e) 
 map(e, c ⊗ d) 
 map(e ⊗ c∗, d),

where c∗ is the monoidal dual of c. It follows that y(c)⊗− is equivalent to the
precomposition functor along −⊗ c∗ : C → C as they agree on representables
and are both cocontinuous.

To see the second part, observe that the precomposition along−⊗c∗ : C →
C clearly preserves the property of being discrete and since − ⊗ c∗ is a mor-
phism of additive ∞-sites by Lemma 2.26, it also preserves the properties of
being a sheaf and of being spherical.
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We’re left with hypercompleteness and ∞-connectedness. Since y : C ↪→
P(C) is monoidal, y(c) is dual to y(c∗). It follows that we have an ambidex-
terous adjunction

(y(c) ⊗ −) � (y(c∗) ⊗ −) : P(C) � P(C),

which by the above restricts to an ambidexterous adjunction

(y(c) ⊗ −) � (y(c∗) ⊗ −) : Sh(C) � Sh(C).

In particular, both functors are left adjoint to geometric morphisms of∞-topoi
and so preserve ∞-connected morphisms. Since they’re also right adjoint to
each other, it follows that they preserve hypercomplete objects, which is what
we wanted to show. �
Theorem 2.28. Let C be a an excellent ∞-site. Then, the Day convolution
symmetric monoidal structure on P(C) preserves LX-equivalences in both
variables, where LX : P(C) → X is the left adjoint to the inclusion and X

is either of the ∞-categories ShSet (C), ShSet� (C), Sh(C), Sh�(C), ̂Sh(C) or
̂Sh�(C) of, respectively, (spherical) discrete sheaves, (spherical) sheaves or
(spherical) hypercomplete sheaves.

Proof. We have to show that for any X ∈ P(C), the functors X ⊗ −, − ⊗
X : P(C) → P(C) preserve LX-equivalences. Because the tensor product is
symmetric, it is enough to consider X⊗−. Since any presheaf X can bewritten
as a colimit of representables, and LX-equivalences are stable under colimits,
it is enough to assume that X is representable.

Thus, let c ∈ C. Again, since y(c) is dual to y(c∗), we have an ambidexterous
adjunction

(y(c) ⊗ −) � (y(c∗) ⊗ −) : P(C) � P(C).

By Lemma 2.27, y(c∗)⊗−: P(C) → P(C) preserves the properties of being
discrete, being spherical, being a sheaf and being a hypercomplete sheaf. It
follows formally that its left adjoint, y(c) ⊗ −, preserves LX-equivalences,
which is what we wanted to show. �
Corollary 2.29. The ∞-category X, where X is either of the ∞-categories
ShSet (C), ShSet� (C), Sh(C), Sh�(C), ̂Sh(C) or ̂Sh�(C), admits a unique sym-
metric monoidal structure which preserves colimits in each variable and such
that the corresponding Yoneda embedding LX ◦ y : C → X is symmetric
monoidal.

Proof. This is [39, 2.2.1.9]. �
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To extend this symmetric monoidal structure to sheaves of spectra, it is
convenient to use the theory of the tensor product of presentable∞-categories
of [39, 4.8], so let PrL denote the ∞-category of presentable ∞-categories
and cocontinuous functors.

Proposition 2.30. The ∞-category ShSp� (C) admits a symmetric monoidal
structure which is cocontinuous in each variable and such that the functor
�∞+ : Sh�(C) → ShSp� (C) is symmetric monoidal. An analogous statement
holds for hypercomplete sheaves of spectra.

Proof. We work with sheaves, the hypercomplete case is the same. By Corol-
lary 2.29, Sh�(C) admits a symmetric monoidal structure compatible with
colimits and since we also know it’s presentable by Corollary 2.7, it follows
that it is a commutative algebra in PrL . The same is true for the ∞-category
Sp of spectra, hence the tensor product Sh�(C) ⊗ Sp is also a commutative
algebra, in other words, a presentable symmetric monoidal∞-category whose
tensor product preserves colimits.

Notice that this symmetric monoidal structure is unique since Sh�(C) →
Sh�(C)⊗Sp is a unit of the adjunction induced by the inclusionPrLSt ↪→ PrL of
stable presentable∞-categories, see [39, 4.8.2.18]. In other words, Sh�(C)⊗
Sp is the stabilization of Sh�(C), which we’ve seen in Proposition 2.13 is
exactly ShSp� (C). This ends the argument. �

Remark 2.31. The symmetric monoidal structure on ShSp� (C) can be also
described by the following universal property: to give a cocontinuous, symmet-
ric monoidal functor ShSp� (C) → D into a symmetric monoidal presentable
stable∞-categoryDwhose tensor product is cocontinuous in each variable is
the same as to give a cocontinuous symmetricmonoidal functor Sh�(C) → D.

The latter can be in practice easier to write down, as Sh�(C) is a symmetric
monoidal localization of the presheaf∞-category P(C) equippedwith theDay
convolution. In particular, a cocontinuous functor ShSp� (C) → D is uniquely
determined by the composite

C ↪→ P(C) → Sh�(C) → ShSp� (C) → D,

although not all functors C → D give rise to cocontinuous functor as above,
only those whose left Kan extension factors through Sh�(C). This is the same
as asking for Cop → Dop to be spherical Dop-valued sheaf. An analogous
statement holds for ∞-categories of hypercomplete spherical sheaves, with
the condition instead being that Cop → Dop is a hypercomplete Dop-valued
sheaf.
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2.4 Discrete sheaves on excellent ∞-sites

In this section we present a criterion for an equivalence between sheaf cate-
gories over two different excellent ∞-sites. This equivalence will be induced
by a morphism of sites in the following sense.

Definition 2.32. A morphism f : C → D of excellent ∞-sites is a monoidal
morphism of additive ∞-sites; that is, it is a monoidal, additive functor which
takes coverings to coverings.

Warning 2.33. Note that we do not assume that f is symmetric monoidal,
only that is monoidal. Somewhat surprisingly, homology theories provide an
interesting source of examples of functors in which both source and target are
symmetric, but the functor is only monoidal, see Warning 3.20.

If f : C → D is a morphism of ∞-sites, then we have an induced adjunction

f ∗ � f∗ : Sh(C) � Sh(D),

where f∗ is given by precomposition and f ∗ = L ◦Lan f , see Proposition 3. If
f is a morphism of excellent ∞-sites, then f∗ acquires a canonical monoidal
structure using the Day convolution monoidal structures on the sheaf ∞-
categories of Corollary 2.29. If f is symmetric, then f ∗ is also canonically
symmetric.

Notation 2.34. Throughout this section, if C is an excellent∞-site and c ∈ C,
by y(c) we will denote the representable sheaf ; that is, the sheaf associated to
the presheaf defined by the formula map(c′, c) for c′ ∈ C. Similarly, by y(c)≤0
we denote the truncation in the sheaf ∞-category, this is a sheaf associated to
the presheaf π0map(c′, c).

In what follows, we will need to work with Ind-objects; that is, presheaves
which can be written as a filtered colimit of representables, see [41, 5.3] for a
comprehensive treatment. One can treat Ind-objects as formal expressions of
the form lim−→ cα , where the index α runs through a filtered category, such that
the mapping space between them is given by the formula

map(lim−→ cα, lim−→ dβ) 
 lim←− lim−→map(cα, dβ).

In particular, in the case of a constant diagram, which we can identify with an
object c ∈ C, we have map(c, lim−→ dβ) 
 lim−→map(c, dβ).

Definition 2.35. Let C be a an excellent ∞-site. We say that a map c → d is
an embedding if its dual d∗ → c∗ is a covering. We say that a map c → lim−→ dα

into an Ind-object is an embedding if the set of indices β for which the map
has a representative c → dβ which is an embedding is cofinal.
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Remark 2.36. Since coverings are closed under composition and tensor prod-
uct, the same is true for embeddings. Similarly, the existence of pullbacks along
coverings implies that one also has pushouts along embeddings.

Definition 2.37. Let C be an excellent ∞-site. We say an Ind-object lim−→ eα

satisfies discrete descent if the presheaf of sets on C defined by the formula

c �→ lim−→π0map(c, eα)

is a sheaf. We say lim−→ eα is an envelope if it satisfies discrete descent and any
c ∈ C admits an embedding c → lim−→ eα .

Intuitively, an envelope is an Ind-object that is big enough so that proving
something about the envelope alone allows one to extend the result to all objects
of C. The assumption of discrete descent is technical, and can be rephrased as
saying that

(lim−→ y(eα))≤0(c) 
 lim−→π0map(c, eα)

on the nose, rather than only holding up to sheafification. This is useful as it
allows one to construct maps in C from maps of sheaves, without needing to
pass to a cover.

Example 2.38. This example is the main application of the results we give
here in a rather abstract setting. We present it here as keeping it in mind can
perhaps make some of the arguments more transparent.

Let Sp f p
E be the ∞-category of finite spectra with finitely generated, pro-

jective E-homology, where E is an Adams-type homology theory, so that it is
a homotopy ring spectrum and we have a filtered colimit E 
 lim−→ Eα , where

Eα ∈ Sp f p
E . One can make Sp f p

E into an additive ∞-site by declaring cov-
erings to be E∗-surjections, together with the tensor product of spectra this
makes Sp f p

E into an excellent ∞-site, see Proposition 3.23.
This topology is subcanonical as a consequence of Theorem 2.8, so that

if Q ∈ Sp f p
E , then map(P, Q) defines a sheaf as P runs through finite

E-projective spectra. However, taking path components does not in general
preserve the sheaf property, so that the formula π0map(P, Q) does not in gen-
eral define a sheaf. On the other hand, discrete descendt holds for the Ind-object
lim−→ Eα , as we have

lim−→π0map(P, Eα) 
 π0map(P, E) 
 E∗P 
 HomE∗(E∗P, E∗),

where the last line is the universal coefficient isomorphism; this clearly defines
a sheaf. The object lim−→ Eα is not necessarily an envelope, although it is close—
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we will show that a filtered diagram of objects of Sp f p
E whose colimit is the

countable direct sum of shifts E is in fact an envelope.

Definition 2.39. Let f : C → D be a morphism of excellent ∞-sites. We say
a filtered diagram lim−→ eα in C is a common envelope for f if:

1. lim−→ eα satisfies discrete descent,
2. lim−→ f (eα) is an envelope and
3. the unit map lim−→ y(eα) → lim−→ f∗ f ∗y(eα) is a 0-equivalence in Sh(C).

Remark 2.40. Since in the definition of a common envelope we assume that
both lim−→ eα and lim−→ f (eα) satisfy discrete descent, the last condition can be
rephrased as saying that for any c ∈ C the natural map lim−→ π0map(c, eα) →
lim−→π0map( f (c), f (eα)) is a bijection.

Example 2.41. This example is an extension of Example 2.38. We take C to
be Sp f p

E , the ∞-category of finite spectra with projective E-homology and

D to be the category Comod f p
E∗E of dualizable E∗E-comodules, the latter

becomes an excellent ∞-site if we let the symmetric monoidal structure be
the tensor product and take coverings to be surjections. It is not hard to see
that E∗ : Sp f p

E → Comod f p
E∗E is a morphism of excellent ∞-sites.

Moreover, if lim−→ Eα is a filtered diagram in Sp f p
E whose colimit is a count-

able direct sum
⊕

�ki E , then lim−→ Eα can be shown to be the common envelope
of E∗, see Lemma 3.26. The last condition in this case boils down to the uni-
versal coefficient isomorphism again, as we have

lim−→ π0map(P, Eα) 
 HomE∗(E∗P,
⊕

E∗[ki ])

 lim−→HomE∗E (E∗P, E∗Eα),

where we use that
⊕

E∗E[ki ] 
 lim−→ E∗Eα is the cofree comodule on
⊕

E∗[ki ].
The following simple lemma shows the origin of the terminology “common
envelope”, note that it requires the rather strong assumption of being cover-
reflecting, but this is the only context in which we will need this notion.

Lemma 2.42. Let f : C → D be a morphism of excellent∞-sites and assume
moreover that it reflects coverings in the sense that c → d is a covering if
and only if f (c) → f (d) is. Then, any common envelope lim−→ eα for f is in
particular an envelope in C.

Proof. By assumption lim−→ eα satifies discrete descent, hence it is enough to
show that any c ∈ C admits an embedding into lim−→ eα . Since lim−→ f (eα) is
assumed to be an envelope, we have an embedding f (c) → lim−→ f (eα).
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Since lim−→ π0( f (c), f (eα)) 
 lim−→π0(c, eα), see Remark 2.40, the given
homotopy class lifts to a map c → lim−→ eα and it is enough to show that it is in
fact an embedding. However, by the reflection of coverings, a representative
c → eα is an embedding if and only if f (c) → f (eα) is, hence this follows
immediately from f (c) → lim−→ f (eα) being an embedding. �
Proposition 2.43. Let f : C → D be a morphism of excellent ∞-sites and
assume that f reflects coverings and admits a common envelope. Then, f has
the covering lifting property.

Proof. Let c ∈ C and let d → f (c) be a covering. We have to show that there
exists a covering c′ → c such that one can find a factorization

f (c′) f (c)

d .

By taking duals, we can show instead that for any embedding f (c) → d there
exists some embedding c → c′ such that we have a factorization

f (c) f (c′)

d .

Let lim−→ eα be a common envelope for f : C → D in the sense of Defini-
tion 2.39. It follows that there is an embedding d → lim−→ f (eα), since the
latter is an envelope. This specifies a class in lim−→π0(d, f (eα)) and hence, by
composition, in lim−→π0( f (c), f (eα)). The class in the latter can be lifted to
lim−→π0(c, eα), see Remark 2.40.

After taking large enough index α, we can choose representatives c → eα ,
d → f (eα) such that the diagram

f (c) f (eα)

d

commutes. Since d → lim−→ f (eα) was chosen to be an embedding, we can
assume that the chosen representative d → f (eα) is. Since embeddings are
closed under composition, we deduce that f (c) → f (eα) is an embedding
and hence, by reflection of coverings, the same holds for c → eα . Thus, the
diagram above is the one we were looking for. �
Corollary 2.44. Let f : C → D be a morphism of excellent ∞-sites and
assume that f reflects covers and admits a common envelope. Then, the pre-
composition functor f∗ : P(C) → P(D) commutes with sheafification. In
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particular, it takes sheaves to sheaves and restricts to a continuous functor
f∗ : Sh(C) → Sh(D).

Proof. This is immediate from the the covering lifting property, see Proposi-
tion 4. �

We now move on to the main result of this section, which will be a compar-
ison of categories of sheaves of sets. Notice that even though for f : C → D

to be a cover-reflecting morphism of excellent ∞-sites that admits a common
envelope is a rather long list of assumptions, such a functor can still be very
far from an equivalence.

Our topological example of E∗ : Sp f p
E → Comod f p

E∗E , see Examples 2.38,
2.41, satisfies all of these assumptions, but is not an equivalence, even on
homotopy categories. For example, we always have that S0 ∈ Sp f p

E , so that
the latter ∞-category has the knowledge of the stable homotopy groups of
spheres. We prove, however, that at least in the case of discrete sheaves, our
assumptions are enough to enforce an honest equivalence of categories.

Lemma 2.45. Let C be an excellent ∞-site and c → d be an embedding.
Then, the diagram

y(c)≤0 → y(d)≤0 ⇒ y(d ⊕c d)≤0

of discrete representable sheaves is a limit diagram in ShSet (C).

Proof. Recall that ShSet (C) admits a symmetric monoidal structure by Corol-
lary 2.29, it is the unique symmetric monoidal structure where the tensor
preserves colimits in both variables and such that y(−)≤0 : C → ShSet (C) is
a symmetric monoidal functor. Since every object of C is dualizable, the same
is true for discrete representable sheaves.

By definition of an embedding, the dual d∗ → c∗ is a covering and hence
we have a colimit diagram

. . . y(d∗ ×c∗ d∗) ⇒ y(d∗) → y(c∗)

of sheaves of spaces.Because truncation preserves colimits,we have a reflexive
coequalizer

y(d∗ ×c∗ d∗)≤0 ⇒ y(d∗)≤0 → y(c∗)≤0

of discrete sheaves, where we have omitted the terms that can’t affect a col-
imit in an ordinary category. The category of dualizable discrete sheaves is

123



586 P. Pstrągowski

self-dual, as is any symmetric monoidal category all of whose objects are
dualizable, it follows that in this category we have a limit diagram

y(c)≤0 → y(d)≤0 ⇒ y(d ⊕c d)≤0

as needed. However, since representable discrete sheaves are dualizable and
generate all sheaves under colimits, we see that it is in fact a limit diagram in
all of ShSet (C), as needed. �
Lemma 2.46. Let C be an excellent ∞-site and i → e be an embedding,
where i is the monoidal unit. Then, the diagram

y(i)≤0 → y(e)≤0 ⇒ y(e ⊗ e)≤0

of discrete representable sheaves is a limit diagram in ShSet (C).

Proof. By Lemma 2.45, there is a limit diagram y(i)≤0 → y(e)≤0 ⇒ y(e ⊕i
e)≤0, our claim is that one can replace e ⊕i e by e ⊗ e. It is enough to show
that y(e⊕i e)≤0 → y(e⊗e)≤0 is a monomorphism, which would follow from
the dual y(e∗ ⊗ e∗)≤0 → y(e∗ ×i e∗)≤0 being an epimorphism, as dualizable
objects span ShSet (C) under colimits.

To show that y(e∗ ⊗ e∗)≤0 → y(e∗ ×i e∗)≤0 is an effective epimorphism,
we can work in ShSet� (C), which is an abelian tensor category, as reflective
coequalizers coincide in spherical and non-spherical sheaves. We will in fact
prove that in any abelian tensor category whose tensor product is right exact
in each variable, an epimorphism b → i onto the monoidal unit induces an
epimorphism b ⊗ b → b ×i b.

Complete the given epimorphism to an exact sequence 0 → k → b →
i → 0. Using the right exactness of the tensor product, see [10, 3.1.20], we
deduce that there is an exact sequence of the form

(k ⊗ b) ⊕ (b ⊗ k) → b ⊗ b → i ⊗ i → 0.

The two maps b ⊗ b → b induce a map from the above exact sequence to

k × k → b ×i b → i ×i i → c,

which is obtained by taking the kernel and cokernel of themap b×i b → i×i i .
In the map of these exact sequences, the left-most map is surjective, since
b → i was and the tensor product preserves surjections, the third map from
the left is an isomorphism, since i ⊗ i 
 i 
 i ×i i , and the right-most
map is a mono, since the domain is zero. We deduce by the four-lemma that
b ⊗ b → b ×i b is an epimorphism, which is what we wanted to show. �
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We will now work only with sheaves of sets so by abuse of notation, if
f : C → D is a morphism of excellent ∞-sites, let us denote the induced
adjunction by f ∗ � f∗ : ShSet (C) � ShSet (D). Here, f∗ is given by precom-
position, while f ∗ is the unique cocontinuous functor satisfying f ∗(y(c)≤0) 

y( f (c))≤0 for c ∈ C. We start with the following lemma.

Lemma 2.47. Let f : C → D be amorphismof excellent∞-sites and suppose
that X ∈ ShSet (C) is such that the unit X → f∗ f ∗X is an isomorphism. Then,
so is the unit of y(c)≤0 ⊗ X for any c ∈ C.

Proof. It’s enough to show that f∗ f ∗(y(c)≤0 ⊗ X) 
 y(c)≤0 ⊗ ( f∗ f ∗X).
Notice that by Lemma 2.27, y(c)≤0 ⊗ − can be described as precomposition
along the functor c∨ ⊗ −: C → C of tensoring with the dual.

Then, we have f ∗y(c)≤0 ⊗ X 
 y( f (c))≤0 ⊗ f ∗X since f ∗ is symmet-
ric monoidal, and f∗(y( f (c))≤0 ⊗ f ∗X) 
 y(c)≤0 ⊗ f∗ f ∗X follows from
f (c∨⊗−) 
 f (c)∨ ⊗ f (−), as f is symmetric monoidal and hence preserves
duals. �
Proposition 2.48. Let f : C → D be a morphism of excellent ∞-sites which
reflects covers and admits a common envelope. Then, the unit map X →
f∗ f ∗X is an isomorphism for any X ∈ ShSet (C).

Proof. Observe that both f ∗ and f∗ preserve colimits, the latter by Corol-
lary 2.44. Since sheaves of the form y(c)≤0 for c ∈ C generate the category
of discrete sheaves under colimits, it’s enough to verify that the unit map is an
isomorphism in this case.

Let lim−→ eα be a common envelope for f . We put e = lim−→ y(eα)≤0, notice
that by assumption the unit map e → f∗ f ∗e is an isomorphism. Our goal
will be to show that from this alone it follows that the unit map is always
an isomorphism, we start by choosing an embedding i → lim−→ eα , where i is
the monoidal unit of C. By making the diagram of eα smaller if necessary we
can assume that the given embedding is a colimit of compatible embeddings
i → eα .

By tensoring the limit diagram of Lemma 2.46 with y(c)≤0, for any c ∈ C

and any α we have a limit diagram

y(c)≤0 → y(eα)≤0 ⊗ y(c)≤0 ⇒ y(eα)≤0 ⊗ y(eα)≤0 ⊗ y(c)≤0.

Notice that this limit is preserved by f ∗, as it is taken to an analogous diagram
with c, eα replaced by f (c), f (eα) and Lemma 2.46 applies in D as well, as
the latter is also assumed to be excellent. By passing to the colimit in α, which
is filtered and hence commutes with finite limits, we deduce that for any c ∈ C

there is a limit diagram of the form

y(c)≤0 → lim−→ y(eα)≤0 ⊗ y(c)≤0 ⇒ lim−→ y(eα)≤0 ⊗ y(eα)≤0 ⊗ y(c)≤0,
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which is likewise preserved by f ∗ since the finite stages were and f ∗ is cocon-
tinuous. Its image is then a limit diagram which is necessarily preserved by
f∗, as the latter is continuous.
We deduce that for any c ∈ C, the unit maps of f ∗ � f∗ yield a transforma-

tion

y(c)≤0 lim−→ y(eα)≤0 ⊗ y(c)≤0 lim−→ y(eα)≤0 ⊗ y(eα)≤0 ⊗ y(c)≤0

f∗ f ∗ y(c)≤0 f∗ f ∗ lim−→ y(eα)≤0 ⊗ y(c)≤0 f∗ f ∗ lim−→ y(eα)≤0 ⊗ y(eα)≤0 ⊗ y(c)≤0

of limit diagrams. Now, the middle vertical map can be identified with the unit
map of

(lim−→ y(eα)≤0) ⊗ y(c)≤0,

while the right-most one with the colimit along β of unit maps of

lim−→ y(eα)≤0) ⊗ y(c)≤0 ⊗ y(eβ)≤0.

Both are isomorphisms by Lemma 2.47, since the unit map of lim−→ y(eα)≤0 is
by assumption, and we deduce the same is true for the unit map of y(c)≤0.
This ends the argument. �
Theorem 2.49. Let f : C → D be a morphism of excellent ∞-sites which
reflects covers and admits a common envelope. Then, the induced adjunction
f ∗ � f∗ : ShSet (C) � ShSet (D) between the categories of sheaves of sets is
an adjoint equivalence.

Proof. We’ve proven in Proposition 2.48 that the unit of this adjunction is a
natural isomorphism; it follows that f ∗ is fully faithful and hence it is enough
to show that it is essentially surjective. Being cocontinuous, the essential image
is closed under colimits, and since we have f ∗y(c)≤0 
 y( f (c))≤0, we just
have to check that the sheaves of the latter form generate ShSet (D) under
colimits.

By assumption of the existence of the common envelope lim−→ eα , any d ∈ D

admits a embedding d → f (c) for some c ∈ C, in fact, one can take c to be
one of the eα .Taking duals, we know that for any d ∈ D there exists a covering
of the form f (c) → d, this implies that there is a coequalizer in ShSet (D) of
the form

y( f (c) ×d f (c))≤0 ⇒ y( f (c))≤0 → y(d)≤0.

Simillarly, we can choose a c′ such that there exists a covering f (c′) →
f (c) ×d f (c), the same reasoning implies that y( f (c′))≤0 → y( f (c) ×d
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f (c))≤0 is an epimorphism, hence we can replace the latter with the former to
obtain the colimit diagram

y( f (c′))≤0 ⇒ y( f (c))≤0 → y(d)≤0.

This shows that any discrete representable presheaf onD is a colimit of sheaves
in the image of f ∗. As the former generate ShSet (D) under colimits, this ends
the argument. �
Remark 2.50. In the adjunction induced by a morphism f : C → D of addi-
tive ∞-sites, both functors take spherical sheaves to spherical sheaves, see
Proposition 2.10. It follows that under the assumptions of Theorem 2.49, the
adjunction f ∗ � f∗ restricts to an adjoint equivalence ShSet� (C) � ShSet� (D).

2.5 Compactly generated Grothendieck categories

In this section we give a description of any Grothendieck abelian category A

which admits a system of compact generators in the sense of Definition 2.51
as a category of spherical sheaves of sets. We use this to describe its derived
∞-category using sheaves of spectra.

Throughout, we assume that A is a Grothendieck category. In other words,
A is an abelian category which is presentable and such that filtered colimits in
A are exact.

Definition 2.51. We say a subcategory P ↪→ A is a system of compact gen-
erators if it consists of compact objects, generates A under colimits, contains
zero and is closed under pullbacks along epimorphisms.

Example 2.52. If R is a discrete ring, then the categoryModR of R-modules is
Grothendieck abelian, and the subcategory Mod f g,proj

R of finitely generated,
projective R-modules forms of system of compact generators.

This is often not the only choice. For example, If R is noetherian, then
the subcategory Mod f g

R of finitely generatede R-modules is also a system of
compact generators. In particular, a given Grothendieck abelian category can
admit many different systems of compact generators.

Likewise, it is possible that A doesn’t admit any system of compact gener-
ators; for example, this is necessarily the case whenever A is not compactly
generated.

Definition 2.53. Let P be a system of compact generators. We say that a
family of maps {Qi → P} in P with common target is an covering family in
the epimorphism Grothendieck pretopology if and only if it consists of a single
epimorphism.
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It is immediate to prove that this is indeed a Grothendieck pretopology and we
leave it to the reader, note that the needed pullbacks along covering families
exist by our assumption of P being closed under such pullbacks. Moroever, P
is clearly an additive ∞-site in the sense of Definition 2.3.

Remark 2.54. It might be tempting to endow Pwith a stronger Grothendieck
pretopology where a family {Qi → P} of maps of is a covering whenever
⊕

Mi → N is a surjection, without requiring the family to consist of only
a single map. One can verify easily that this stronger topology is usually not
subcanonical, even in the case of the category Vect f dk of finite-dimensional
vector spaces over a field.

Note that the topology on P is in fact a restriction of an analogous epimor-
phism topology on all of A, which is often used in proving that any abelian
category can be embedded in an exact way into a category of sheaves of abelian
groups, in fact, one needs much less than abelian, see [12][A.1]. The result
we’re looking is a more precise variant of that statement.

Definition 2.55. The projectively generated envelope of A with respect to a
systemof compact generatorsP is the category PSet

� (P)of spherical presheaves
of sets on P.

The terminology comes from the fact that the images of the objects of
P are projective inside the projectively generated envelope, as the following
proposition shows.

Proposition 2.56. Theprojectively generated envelope PSet
� (P) isGrothendieck

abelian, generated by the set of compact, projective generators y(P) where
P ∈ P.

Proof. Notice that since P is additive, any spherical presheaf can be canon-
ically lifted to a presheaf of abelian group and we have an equivalence
PSet

� (P) 
 PAb
� (P). One then easily sees that the projectively generated enve-

lope is an abelian subcategory of PAb(P), it is clearly generated by y(P) under
colimits.

By the Yoneda lemma, Hom(y(P), X) 
 X (P). It is standard that filtered
colimits and reflexive coequalizers in PSet

� (P) are computed levelwise, hence
we deduce that Hom(y(P), −) preserves these types of colimits. It follows
immediately that y(P) is compact and projective. �
Proposition 2.57. The sheafification functor L : PSet

� (P) → ShSet� (P)presents
the category of spherical sheaves of sets as an exact, accessible localiza-
tion of the projectively generated envelope. In particular, ShSet� (P) is also
Grothendieck abelian.
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Proof. We’ve proven in Proposition 2.5 that the sheafification functor takes
spherical presheaves to spherical presheaves, hence it gives the needed exact
localization. �
Theorem 2.58. (Goerss-Hopkins). Let A be Grothendieck abelian with a
system of compact generators P. Then, the restricted Yoneda embedding
y : A → PSet

� (P) given by the formula y(M)(P) = Hom(P, M) is fully
faithful. Moreover, its essential image is exactly the category of spherical
sheaves with respect to the epimorphism topology, so that there is an induced
equivalence A 
 ShSet� (P).

Proof. This result is proven as [21, 2.1.12] in the context of comodules. The
same proof works here, but we give it for completeness. We first verify that for
any M ∈ A, y(M) ∈ ShSet� (P). Since y(M) is clearly spherical, it is enough
to verify the sheaf condition, but it follows immediately from the fact that in
abelian category any epimorphism is effective.

Wewill now show that y : A → ShSet� (P) is an exact functor. It is clearly left
exact, since in sheaf categories kernels are computed levelwise andHom(P, −)

preserves kernels for any P ∈ P. We have to check that it is right exact, it is
enough to show it takes epimorphisms to epimorphisms.

Let M → N be an epimorphism in A. To show that y(M) → y(N ) is
an epimorphism, it is enough to show that for any P ∈ P and any element
x ∈ y(N )(P), there is a covering p : Q → P such that p∗x ∈ y(N )(Q) can
be lifted to y(M)(Q). This is the same as showing that for any map P → N
there is some cover Q → P such that there is a commutative diagram

Q M

P N .

Consider the pullback P ×N M which clearly fits into the left top spot of a
diagram as above and notice that P ×N M → P is an epimorphism. Since
we assumed that P generates A under colimits, there is a collection of maps
Qα → P ×N M such that the map

⊕

Qα → P ×N M from the direct sum
is an epimorphism. It follows that the composite

⊕

Qα → P ×N M → P is
also an epimorphism. Since P is compact, there is a finite number of indices
α1, . . . , αk such that Qα1 ⊕ . . . ⊕ Qαk → P is an epimorphism and this is the
cover we need.

Observe that y : A → ShSet� (P) also preserves filtered colimits. Indeed,
since all P ∈ P are compact, it follows that y takes filtered colimits in A

to levelwise filtered colimits. This is enough, as filtered colimits in spherical
sheaves of sets are computed levelwise, as both the sheaf and sphericity condi-
tions are expressed using finite limits. It follows that y is in fact cocontinuous,
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because we’ve verified exactness above. Since by Proposition 2.56 objects of
the form y(P) generate PSet

� (P) under colimits, the same is true for the local-
ization ShSet� (P) and we deduce that all spherical sheaves are in the essential
image of y.

We are nowonly leftwith showing that y : A → ShSet� (P) is fully faithful. In
other words, we have to show that for anyM, N ∈ A, themapHom(M, N ) →
Hom(y(M), y(N )) is a bijection. We consider N as fixed, we will show that
the collection of M such that this map is an isomorphism is all of A. By the
Yoneda lemma, it is clearly an isomorphismwhen M ∈ P and since it is closed
under colimits by cocontinuity, the result follows. �
Remark 2.59. Note that if all objects of P are projective, then any epimor-
phism between them is split and it follows that any spherical presheaf on P

is already a sheaf. Then, Theorem 2.58 implies that A 
 PSet
� (P), so that A

coincides with its projectively generated envelope.

We move on to derived ∞-categories. Recall that in [39, 1.3.5], follow-
ing the ideas of Spaltenstein [55], Lurie constructs D(A), the unbounded
derived ∞-category, as the differential graded nerve of Ch(A)◦, the category
of unbounded chain complexes inA that are fibrant in the injectivemodel struc-
ture. The ∞-category D(A) is stable and admits a right complete t-structure
(D≥0(A),D≤0(A))whose heart is equivalent toA, the equivalence established
by taking homology.

Our goal is to describe D(A) in terms of sheaves on a chosen system of
compact generators. We first tackle the special case when A is generated by
compact projectives.

Lemma 2.60. Suppose that A admits a system P of compact generators all
of which are projective. Then, the inclusion P ↪→ A induces a unique equiva-
lence P�(P) 
 D≥0(A) between the connective part and the ∞-category of
spherical presheaves on P.

Proof. This appears in [39][1.3.3.14] in only a slightly different form.Consider
the Quillen model structure on PsSet

� (P), the category of product-preserving
presheaves of simplicial sets. By a theorem of Bergner, see [41, 5.5.9.3], [2],
this is a simplicial model category whose underlying∞-category can be iden-
tified with P�(P). In other words, we have an equivalence of ∞-categories
P�(P) 
 N (PsSet

� (P)◦)between spherical presheaves of spaces and the coher-
ent nerve of the category of fibrant-cofibrant spherical presheaves of simplicial
sets.

By Remark 2.59, PSet
� (P) 
 A, so that PsSet

� (P) 
 sA 
 Ch≥0(A),
where the latter equivalence is the Dold-Kan correspondence, one sees that all
objects of Ch≥0(A) are fibrant and that an object is cofibrant if and only if
it is a complex of projectives. By [39, 1.3.2.22], D≥0(A) can be described as
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the coherent nerve of the category of complexes of projectives and we deduce
it must be equivalent to P�(P). Tracing through the identifications we see
that this is the equivalence we need, it is necessarily unique since P�(P) is
generated by the image of P under colimits. �
Lemma 2.61. Suppose thatA admits a system P of compact generators all of
which are projective. Then, the inclusionP ↪→ A induces a unique equivalence
PSp

� (P) 
 D(A) between the derived ∞-category and the ∞-category of
spherical presheaves of spectra on P.

Proof. This equivalence is induced from that of Lemma 2.60 by stabilizing
both sides.We have proven that PSp

� (P) is the stabilization of P�(P) in Propo-
sition 2.13, the corresponding statement for the derived ∞-category is an
immediate consequence of the right completeness of its t-structure, which is
[39, 1.3.5.21]. �
Remark 2.62. By Proposition 2.16, there is a standard t-structure on PSp

� (P)

where coconnectivity is measured levelwise. Since the equivalence of
Lemma 2.61 is induced from one on ∞-categories of connective objects, it is
an equivalence of stable ∞-categories equipped with a choice of a t-structure.

Remark 2.63. The description of the derived ∞-category of a Grothendieck
abelian category generated by compact projectives given in Lemma 2.60 and
Lemma 2.61 is folklore, it is the reason why P�(C) is often referred in the
literature as the non-abelian derived category of C.

Theorem 2.64. Let P be an arbitrary system of compact generators for a
Grothendieck abelian category A. Then, the inclusion P ↪→ A extends to a
unique equivalence ̂ShSp� (P) 
 D(A) between the ∞-categories of spheri-
cal hypercomplete sheaves of spectra on P with respect to the epimorphism
topology and the derived ∞-category.

Proof. By Theorem 2.58, the restricted Yoneda embedding y : A ↪→ PSet
� (P)

induces an equivalenceA 
 ShSet� (P)with the category of of spherical sheaves
of sets. It follows that it is enough to prove the statement for ShSet� (P).

By Proposition 2.56, the projectively generated envelope PSet
� (P) is gener-

ated by the image of P which consists of compact, projective objects. Then,
by Lemma 2.61 the composite y : P ↪→ PSet

� (P) induces an equivalence

PSp
� (P) 
 D(PSet

� (P)) compatible with t-structures. Our goal is to show
that this equivalence descends in a natural way to one on sheaf ∞-categories.

Let L : PSet
� (P) → ShSet� (P) be the sheafification functor, since it is exact,

it has a derived functor D(L) : D(PSet
� (P)) → D(ShSet� (P)). We claim that

D(L) is a localization and moreover, that it is a localization at the class of
maps X → Y such that LHk(X) → LHk(Y ) is an isomorphism for all k ∈ Z.
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By [39, 1.3.5.15], the derived ∞-category of a Grothendieck abelian cate-
gory is the underlying ∞-category of the model category of chain complexes.
It follows that we have a diagram

Ch(PSet
� (P)) Ch(ShSet� (P))

D(PSet
� (P)) D(ShSet� (P))

where the vertical maps are localizations, note that here we do not need to
restrict ourselves to fibrant chain complexes as the relevant model structures
are combinatorial, see [39, 1.3.4.15]. Since L is a localization, so is the top
horizontalmap.We deduce that the bottomhorizontalmap is also a localization
and chasing through definitions we see it that it inverts precisely the class of
maps described above.

Similarly, the hypercomplete sheafification functor̂L : PSp
� (P) → ̂ShSp� (P)

is a localization at the class of maps X → Y of spherical presheaves of spectra
such that Lπk X → LπkY is an isomorphism. Here, πk X and πkY denote the
presheaves of homotopy groups computed levelwise, so that Lπk X and LπkY
are the homotopy sheaves in the sense of Definition 2.15.

Under the equivalence PSp
� (P) 
 D(PSet

� (P)), the homotopy presheaves of
a presheaf of spectra and the homology presheaves of an object of the derived
category correspond to each other, it follows that the composite PSp

� (P) →
D(PSet

� (P)) → D(ShSet� (P)) is a localization at exactly the same set of maps

as PSp
� (P) → ̂ShSp� (P). This implies that there is an induced equivalence

̂ShSp� (P) 
 D(ShSet� (P)), which is what we wanted to show. �

Remark 2.65. The identification of the derived ∞-categoryD(A) as the ∞-
category of hypercomplete spherical sheaves of spectra given by Theorem 2.64
raises a natural question as to what can be said about the∞-category ShSp� (P)

of spherical sheaves of spectra, not necessarily hypercomplete. Here one has
to be careful, as the answer is not necessarily independent from the choice of
the system of compact generators.

If all objects of P are projective, Remark 2.59 implies that all spherical
presheaves are sheaves and so in this case we get the derived ∞-category
again. A more interesting example is given by considering the category
Comod of comodules over an Adams Hopf algebroid together with the
choice of generators given by the category Comod f p

 of dualizable comod-
ules, we will show in Theorem 3.7 that in this case there’s an equivalence
ShSp� (Comod f p

 ) 
 Stable, where the latter is Hovey’s stable ∞-category
of comodules.
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3 Foundations of synthetic spectra

In this section we set up the necessary foundation for the construction of the
∞-category of synthetic spectra. We review the theory of comodules over an
Adams Hopf algebroid and of Adams-type homology theories, then introduce
the ∞-sites Sp f p

E of finite projective spectra and Comod f p
E∗E of dualizable

comodules and discuss their relation.

3.1 Comodules over a Hopf algebroid

In this section we discuss the theory of Adams Hopf algebroids, reviewing the
basic notions and properties and describing the identification of the category
of comodules with spherical sheaves of sets due to Goerss and Hopkins. We
then prove a few technical lemmas which will be used later.

A classical introduction to the theory of comodules can be found in
[51][Appendix 1], a comprehensive study has also been done by Hovey in
[28] and all facts given here without proof can be found there.

A Hopf algebroid (A, ) is a cogroupoid object in graded commutative
rings, we say that (A, ) is flat if  is flat as a left, equivalently right, A-
module. Under these assumptions, one can show that the category Comod

of -comodules is Grothendieck abelian with finite limits and all colimits
computed in A-modules, the latter following from the existence of the cofree
comodule functor  ⊗A − right adjoint to the forgetful functor.

The category Comod can be equipped with a symmetric monoidal struc-
ture where the underlying A-module of the tensor product of two comodules
M, N is just the usual tensor product M ⊗A N . One shows that a comodule is
dualizable with respect to this symmetric monoidal structure if and only if it
is dualizable as an A-module; that is, finitely generated and projective.

Definition 3.1. We say that a Hopf algebroid (A, ) is Adams if the comodule
 can be written as a filtered colimit lim−→ i 
  of dualizable comodules i .

Let us denote the category of dualizable comodules by Comod f p
 , one of the

consequences of being Adams is that this category generates Comod under
colimits. Moreover, since colimits of comodules are computed in A-modules,
dualizable comodules are compact and it follows that Comod f p

 is a choice of
compact generators in the sense of Definition 2.51.

FollowingDefinition 2.53, we say that a mapM → N of dualizable comod-
ules is a covering if it is an epimorphism. Since all objects of Comod f p

 are
by definition dualizable, one sees easily that together with the tensor product
of comodules this makes Comod f p

 into an excellent ∞-site in the sense of
Definition 2.24.
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Theorem 3.2. (Goerss-Hopkins). The Yoneda embedding y : Comod ↪→
PSet

� (Comod f p
 ) induces a symmetric monoidal equivalence Comod 


ShSet� (Comod f p
 ) between (A, )-comodules and spherical sheaves of sets

on the site of dualizable comodules.

Proof. The fact that the Yoneda embedding induces an equivalence of the
above form is precisely Theorem 2.58. To see that it can be promoted to a
symmetric one, observe that the inverse y−1 : ShSet� (Comod f p

 ) → Comod

is a cocontinuous functor which on representables coincides with the usual
inclusion Comod f p

 ↪→ Comod . Since the latter is symmetric monoidal, it
follows that y−1 acquires a canonical symmetric monoidal structure if we
equip the category of sheaves with the Day convolution symmetric monoidal
structure of Corollary 2.29. �

The equivalence of Theorem 3.2 is a particular instance of Theorem 2.58,
which applied to all compactly generated Grothendieck categories. However,
in the case of comodules, the inverse to y : Comod ↪→ ShSet� (Comod f p

 ) can
be given the following explicit form. Here, M[k] denotes the shifted comodule
defined by (M[k])∗ := M∗−k .

Lemma 3.3. Let M ∈ Comod be a comodule and y(M) ∈ ShSet� (Comod f p
 )

the corresponding spherical sheaf of sets. Then, the underlying graded abelian
groupU (M) is described by the formulaU (M)k 
 lim−→ y(M)(Dα[k]), where
the colimit is taken over the shifts of duals of any filtered diagramof dualizables
such that lim−→α 
 .

Proof. Notice that we can rewrite U (M)k as

HomA(A[k], M) 
 Hom(A[k],  ⊗ M) 
 Hom(A[k], lim−→ α ⊗ M),

where the first isomorphism is an application of the universal property of
 ⊗ M . Here, by the latter we mean the tensor product of comodules, rather
then the cofree comodule, but these two are in fact isomorphic by [28][1.1.5],
which is why the universal property holds for either. We then rewrite further

Hom(A[k], lim−→α ⊗ M) 
 lim−→Hom(A[k], α ⊗ M)


 lim−→Hom(Dα[k], M),

using that A is finitely generated, and observe that the last term is of the needed
form. �

Later on, we will use the theory of common envelopes of Definition 2.39
to compare sheaves on certain additive ∞-sites of topological origin with
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sheaves on dualizable comodules. The following technical results give an
explicit description of an envelope for Comod f p

 .

Lemma 3.4. Let M be a dualizable comodule. Then, there exists a monomor-
phism M ↪→ ⊕

[li ] into a cofree comodule on a finitely generated free
module. Moreover, this monomorphism can be chosen so that for any dualiz-
able submodule N of

⊕

[li ] containing the image of M, the induced map
M → N is an embedding; that is, is dual to a surjection.

Proof. We will construct a monomorphism with the latter property to begin
with. Choose a surjection

⊕

A[−li ] → HomA(M, A) of A-modules for some
finite number of li , the dual defines an injection M ↪→ ⊕

A[li ] and we claim
that the composite

M →  ⊗ M →  ⊗ (
⊕

A[li ]) 

⊕

[li ]

is the monomorphism into a cofree comodule we’re looking for. Notice that
here  ⊗ M doesn’t denote the tensor product of comodules, but rather the
cofree comodule; that is, the comodule structure is coming only from the 

factor.
Notice that the set of submodules containing the image of M with the

required property is closed under taking submodules, since if M → N → N ′
is dual to a surjection, so is M → N . It follows it is enough to find a cofinal
system of such submodules. Write  as a filtered colimit  
 lim−→ i , since
M is finitely generated, the map M →  ⊗ M factors through i ⊗ M for all
sufficiently large i . We claim that the composites

M → i ⊗ M →  j ⊗ M →
⊕

i [li ]

are dual to the surjection, this is enough, since submodules of the form
⊕

i [li ]
are cofinal in

⊕

[li ].
The composite M →  j ⊗ M of the first two maps is a split injection, with

partial inverse given by  j ⊗ M →  ⊗ M → M by the counitality of the
comultiplication on M , it follows it is dual to a surjection. On the other hand,
 j ⊗ M → ⊕

 j [li ] is dual to a surjection since it is a tensor product of
two such maps, namely the identity of  j and the embedding M → ⊕

A[li ]
which was chosen to have this property. �
Proposition 3.5. Let Mα be a filtered diagram of dualizable comodules whose
colimit lim−→ Mα is isomorphic to a cofree comodule of the form

⊕

[ki ], where
each integer occurs as ki infinitely many times. Then, the Ind-object lim−→ Mα

is an envelope for the site Comod f p
 of dualizable comodules.
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Proof. Let N ∈ Comod f p
 be dualizable, then in particular it is finitely gener-

ated so that we have

lim−→ y(Mα)(N ) 
 Hom(N , lim−→ Mα) 
 lim−→(N ,
⊕

[ki ]),

which is a sheaf by Theorem 3.2. It is already discrete, so that lim−→ Mα satisfies
discrete descent.

We now have to check that any dualizable embeds into lim−→ Mα . Let N be
dualizable, by Lemma 3.4 there exists a monomorphism N → ⊕

[l j ] into
a cofree comodule on a finitely generated module

⊕

A[li ]. Since ⊕

[l j ]
is a direct summand of

⊕

[ki ] in the obvious fashion, we can consider the
composite N → ⊕

[l j ] → [ki ], which one easily verifies is an embed-
ding if we choose a monomorphism satisfying the second property stated in
Lemma 3.4. �
Remark 3.6. It is sometimes convenient to work only with even comodules,
since many Hopf algebroids coming from topology are concentrated in even
degrees. Here we say that a comodule M is even if it is concentrated in even
degree, and that a Hopf algebroid (A, ) is even Adams if is a filtered colimit
of even dualizable comodules.

Assuming the latter, we can consider the site Comod f pe
 of even dualizable

comodules equipped with the epimorphism topology. Analogously to the non-
even case, this is an excellent ∞-site and one shows just as in Theorem 3.2
that there is an equivalence ShSet� (Comod f pe

 ) 
 Comodev between spherical
sheaves of sets on even dualizables and the category of even comodules.

Moreover, we have an even analogue of Proposition 3.5, namely any filtered
diagram Mα of even dualizables whose colimit lim−→ Mα 
 ⊕

[ki ] is a cofree
comodule such that any even integer occurs as ki infinitely many times is an
envelope for Comod f pe

 . The proof is the same, using Lemma 3.4, where we
observe that any even dualizable can be embedded into a cofree comodule on
even generators.

3.2 Hovey’s stable ∞-category of comodules

In this section we discuss Hovey’s stable ∞-category of comodules, the main
result will be an identification of Stable as an ∞-category of spherical
sheaves of spectra,mimickingTheorem2.64which gave an analogous descrip-
tion of the derived ∞-category. We will see that this allows one to prove some
results aboutHovey’s stable∞-category of comoduleswhichwere only known
before under more restrictive hypotheses.

One expects that there should be a purely algebraic version of chromatic
homotopy theory, where the role of spectra is played by chain complexes of
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comodules [3]. As first observed by Hovey, the ∞-category D(Comod) is
badly behaved from this perspective, for example, the monoidal unit, which
is equivalent to A considered as a chain complex concentrated in degree zero,
can fail to be compact. As a replacement, Hovey constructs a different model
structure on chain complexes of comodules, where the weak equivalences are
given by homotopy isomorphisms, see [28], the underlying∞-category iswhat
we call Hovey’s stable ∞-category of comodules and denote by Stable.

Wewill show that there is an equivalenceof∞-categories ShSp� (Comod f p
 ) 


Stable between spherical sheaves of spectra on dualizable comodules and
the ∞-category underlying Hovey’s model structure on chain complexes of
comodules. Our work rests on the identification of the latter in terms of more
familiar ∞-categories due to Barthel, Heard and Valenzuela, see [7].

Theorem 3.7. If (A, ) is an Adams Hopf algebroid, there is an equivalence
of ∞-categories ShSp� (Comod f p

 ) 
 Stable between spherical sheaves of
spectra on dualizable comodules and the stable ∞-category of comodules.

Proof. Let us denote by Perf the thick subcategory of D(Comod) gener-
ated by the image of the inclusion Comod f p

 ↪→ D(Comod) of dualizable
comodules into the heart. By [7][4.8], there’s an equivalence Stable 

Ind(Perf) between Hovey’s stable ∞-category and the ∞-category of Ind-
objects in Perf . We will show that there is also an equivalence Perf 

ShSp� (Comod f p

 ) of the latter with the ∞-category of spherical sheaves of
spectra, this is clearly enough.

By Theorem 2.64, the inclusion Comod f p
 ↪→ D(Comod)♥ of dualiz-

able comodules into the heart extends to an equivalence ̂ShSp� (Comod f p
 ) 


D(Comod) between hypercomplete spherical sheaves and the derived ∞-
category. Using this equivalence, we see that one can identify Perf with the
thick subcategory of ̂ShSp� (Comod f p

 ) generated by the hypercompletions of
representable sheaves of spectra�∞+ y(M), whereM is a dualizable comodule.

Since �∞�∞+ y(M) 
 y(M) is discrete, Remark 2.14 implies that the
representable sheaves �∞+ y(M) are already hypercomplete. Since being
hypercomplete is a condition closed under suspensions, fibres and direct
summands, we deduce that D is equivalent to the thick subcategory of
ShSp� (Comod f p

 ) generated by the representables.
By [41][5.3.5.11], to prove that the resulting embedding Perf ↪→

ShSp� (Comod f p
 ) extends to an equivalence Ind(D) 
 ShSp� (Comod f p

 ) we
have to verify that all objects in the image of the embedding are compact in
ShSp� (Comod f p

 ) and that they generate it under filtered colimits. The latter is
clear, since the ∞-category of sheaves of spectra is generated under colimits
by the suspensions �∞+n+ y(M) of representables, where M ∈ Comod f p

 and
n ∈ Z.
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To verify that that all objects in the image of the embedding are compact,
we just have to check it for objects of the form �∞+ y(M) as the condition of
being compact in a stable ∞-category is closed under suspensions, fibres and
direct summands. If X ∈ ShSp� (Comod f p

 ), then

map(�∞+ y(M), X) 
 map(y(M), �∞X) 
 �∞X (M),

where the last line is an application of theYoneda lemma. Since�∞ commutes
with filtered colimits, it is enough to show that filtered colimits in spherical
sheaves are computed levelwise, which is a consequence of the recognition
principle by Corollary 2.9. This ends the argument. �
Corollary 3.8. There exists a natural t-structure on Stable such that
D(Comod) ↪→ Stable is t-exact and induces an equivalence (Stable)≤k →
(D(A))≤k on the ∞-categories of k-coconnective objects for each k ∈ Z. In
particular, Stable♥

 
 Comod .

Proof. By Theorems 2.64, 3.7 we have equivalences D(Comod) 

̂ShSp� (Comod f p

 ) and Stable 
 ShSp� (Comod f p
 ), the embedding above is

the inclusion of hypercomplete sheaves. The two t-structures in question are
those of Proposition 2.16 and the embedding has the claimed property by
Remark 2.17. �
Corollary 3.9. Let M, N be comodules and �∞+ y(M), �∞+ y(N ) ∈ Stable♥



the corresponding elements of the heart of the stable ∞-category. Then,
[�∞+ y(M), �∞+ y(N )]k 
 Ext−k

 (M, N ).

Proof. The inclusion D(Comod) ↪→ Stable induces an equivalence on
subcategories of objects bounded from above by Corollary 3.8, so the above
reduces to the classical formula for homotopy classes in the derived ∞-
category. �
Remark 3.10. Since ShSp� (Comod f p

 ) is an∞-category of sheaves of spectra
on an excellent ∞-site, Proposition 2.30 implies that it acquires a unique
symmetric monoidal structure preserving colimits in each variable. Similarly,
the universal property of the ∞-category of Ind-objects endows Stable with
a symmetric monoidal structure of its own, see [7][4.9].

Using the universal property of either of these two symmetric monoidal
structures one sees that under the equivalence given by Theorem 3.7 these cor-
respond to each other; that is, ShSp� (Comod f p

 ) 
 Stable is an equivalence
of symmetric monoidal ∞-categories.

Remark 3.11. (Ind-coherent sheaves)The equivalenceStable 
 Ind(Perf)

[7][4.8], where Perf is the thick subcategory ofD() generated by dualizable
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comodules, allows us to identify StableComod
with the ∞-category of Ind-

coherent sheaves over the associated algebraic stack, which is the language
we used in the introduction.

Remark 3.12. The identification of Theorem 3.7 allows one to deduce some
properties of Stable which were previously known only under more restric-
tive hypotheses. For example, Corollary 3.8 appears in the work of Barthel,
Heard and Valenzuela as [7, 4.17] under the additional assumption of (A, )

being a Landweber Hopf algebroid over a noetherian base.

3.3 Adams-type homology theories

In this section we review the basic theory of Adams-type homology theo-
ries. Then, we introduce a notion of a finite E-projective spectrum, show that
their ∞-category can be naturally made into an ∞-site, and verify its basic
properties.

Throughout this section, E is a fixed homotopy associative ring spectrum
such that E∗ and E∗E are graded-commutative.

Definition 3.13. We say a spectrum X is E-projective if E∗X is projective as
an E∗-module. We say X is finite E-projective if it is finite and E∗P is finitely
generated and projective. We denote the full subcategory of spectra spanned
by finite E-projectives by Sp f p

E .

We will sometimes abuse terminology and simply say projective or finite pro-
jective instead of E-projective, the spectrum E being understood implicitly. A
basic example is given by the spheres Sk , which are finite projective for any
choice of homology theory E .

Definition 3.14. We say that a homotopy associative ring spectrum E is
Adams-type if

1. (Adams condition) E can be written as a filtered colimit lim−→ Eα 
 E of
spectra, where

2. (universal coefficient) each Eα is finite projective and the natural map

E∗Eα → HomE∗(E∗Eα, E∗)

is an isomorphism.

Example 3.15. The sphere, any Landweber exact homology theory, and any
field are examples of Adams-type homology theories. A non-example is given
by the integral Eilenberg-MacLane spectrum HZ, as an Adams-type spectrum
is necessarily topologically flat, see Remark 3.16.
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Intuitively, an Adams-type homology theory is one for which there are enough
finite projective spectra and for which finite projective spectra behave well
homologically. Historically, these are the two conditions that Adams wrote
down to obtain universal coefficient and Künneth spectral sequences, they had
been later used by Goerss and Hopkins to develop an obstruction theory to
realizing commutative ring spectra [22].

Remark 3.16. Notice that if E 
 lim−→ Eα is a filtered colimit of finite pro-
jective spectra, then E∗E 
 lim−→ E∗Eα is a filtered colimit of projective
E∗-modules, in particular, E∗E is flat over E∗. It follows in the usual way
that (E∗, E∗E) defines a Hopf algebroid and that E-homology canonically
takes values in E∗E-comodules. This Hopf algebroid is clearly Adams in the
sense of Definition 3.1.

Adams shows that under these conditions, for any spectrum X we have the
universal coefficient spectral sequence

Exts,tE∗(E∗X, E∗) ⇒ Et−s X,

see [1, III.13]. In particular, if X is projective then E∗X 
 HomE∗(E∗X, E∗).
Similarly, for any spectra X, Y we have a Künneth spectral sequence of the
form

TorE∗
s,t (E∗X, E∗Y ) ⇒ Et+s(X ⊗ Y ).

In particular, this implies that if either X or Y is projective, then E∗(X ⊗Y ) 

E∗X⊗E∗Y , which of course can be proven to holdwithout the use of a spectral
sequence.

The following lemma will not be used further, but it shows that the more
restrictive condition of Adams (who requires the universal coefficient isomor-
phism for all homotopy E-modules, rather than just E itself, see [1, Condition
13.3]) is in fact equivalent to Definition 3.14. Here, by a homotopy modulewe
mean a module over E in the stable homotopy category.

Lemma 3.17. Let E be a homotopy associative ring spectrum and let X ∈
Sp f p

E be a finite projective spectrum that satisfies the universal coefficient
isomorphism in the sense that the natural map E∗X → HomE∗(E∗X, E∗)
is an isomorphism. Then, for any homotopy E-module M, the natural map
M∗X → HomE∗(E∗X, M∗) is an isomorphism.

Proof. We first claim that we can reduce to the case M 
 E ⊗ Y being a
free homotopy E-module on some spectrum Y . Indeed, for any homotopy
E-module M , the multiplication map E ⊗ M → M is a map of modules
which is a split epimorphism as a map of spectra. Let us denote the fibre by
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F := fib(E ⊗ M → M), one verifies immediately that in this case F admits a
unique structure of a homotopy E-module so that the inclusion F → E ⊗ M
is a map of homotopy E-modules. We now look at the diagram

0 F∗X (E ⊗ M)∗X M∗X 0

0 HomE∗(E∗X, F∗) HomE∗(E∗X, E∗M) HomE∗(E∗X, M∗) 0 ,

where the bottom row is also exact by the assumption that E∗X is projective.
The middle vertical map is an isomorphism and it follows that the one on the
right is surjective. To show that it is injective, we need to know that the left
one is surjective, too, but to show this we observe that F is also a homotopy
E-module so we can use the same argument applied to E ⊗ F → F .
We are now left with verifying that the claim holds for modules of the form

E ⊗ Y ; that is, we have to show that for any spectrum Y the natural map

(E ⊗ Y )∗X → HomE∗(E∗X, E∗Y )

is an isomorphism.We claim that as Y varies, both sides are homology theories
in Y . This is clear for the right hand side, since E∗X is projective and finitely
generated and similarly clear for the left hand side as X is finite. As this natural
transformation is an isomorphism for X = S0 by assumption, we are done. �
Remark 3.18. Notice that in the proof of Lemma 3.17 we can replace
HomE∗(E∗X, M∗) by HomE∗E (E∗X, E∗M). In particular, we also have a
universal coefficient isomorphism of the form M∗X 
 HomE∗E (E∗X, E∗M).
Equivalently, E∗M 
 E∗E ⊗E∗ M∗ for any homotopy E-module.

We will now equip the ∞-category Sp f p
E of finite projective spectra with a

symmetric monoidal structure and a topology that make it into an excellent∞-
site in the sense ofDefinition 2.24. The topology in question is induced from the
surjection topology on the category Comod f p

E∗E of dualizable comodules along
the homology functor. In other words, we will declare a collection {Qi → P}
of maps of finite projective spectra to be covering family if and only if it
consists of a single E∗-surjective map.

Construction 3.19. The E-homology functor E∗ : Sp → ComodE∗E associ-
ated to a homotopy associative ring spectrum has a canonical lax monoidal
structure, which we now recall.

For any two spectra X, Y , we define the exterior tensor product of two
homology classes Sk → E ⊗ X and Sl → E ⊗ Y as the composite

Sk ⊗ Sl → (E ⊗ X) ⊗ (E ⊗ Y ) 
 E ⊗ E ⊗ X ⊗ Y → E ⊗ X ⊗ Y,
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where the middle equivalence is the symmetry of spectra and the second map
is induced by multiplication. This gives a pairing which one shows is bilinear
and hence induces a map

E∗X ⊗E∗ E∗Y → E∗(X ⊗ Y ).

Warning 3.20. If E is homotopy commutative, then lax monoidal structure
of Construction 3.19 is lax symmetric monoidal. This is not necessarily the
case if E is not homotopy commutative.

For example, one can show that Morava K -theories K (n) at prime two can
never be made homotopy commutative [61], and in fact the homology functor
K (n)∗ : Sp → ComodK (n)∗K (n) cannot be made symmetric monoidal.7 As we
would like to include these homology theories in our construction of synthetic
spectra, we will be careful about monoidal functors being symmetric.

Lemma 3.21. The tensor product of spectra restricts to a symmetric monoidal
structure on Sp f p

E such that all objects have duals. The homology functor

E∗ : Sp f p
E → ComodE∗E is monoidal, and symmetric monoidal if E is homo-

topy commutative.

Proof. We have to show that if P1, P2 are finite projective spectra, then so is
P1 ⊗ P2. It is clear that it is finite.
Since E∗P1 is flat, E∗P1⊗ E∗X → E∗(P1⊗ X) is a natural transformation

of homology theories in X which is an isomorphism when X = S0, and hence
a natural isomorphism. In particular, E∗(P1 ⊗ P2) 
 E∗(P1) ⊗E∗ E∗(P2)
which is finitely generated projective, as needed. This also shows that E∗ is
(strongly) monoidal when restricted to Sp f p

E .

To verify that any P ∈ Sp f p
E has a dual, it is enough to verify that the

Spanier-Whitehead dual is again finite projective. It is clearly finite, and since
E∗DP 
 E∗P 
 HomE∗(E∗P, E∗) we see that E∗DP is the linear dual of
E∗P , hence is projective itself. �
Lemma 3.22. Let Q, P, R ∈ Sp f p

E and let Q → P be an E∗-surjection and
R → P arbitrary. Then Q ×P R is finite projective with E∗(Q ×P R) 

E∗Q ×E∗P E∗R, so that Q ×P R → R is an E∗-surjection.

Proof. We have a fibre sequence Q ×P R → Q ⊕ R → P and the claim is
immediate from the long exact sequence of homology, which here splits into
short exact sequences because E∗Q → E∗P is surjective. �
Proposition 3.23. Let us say that a map Q → P of finite projective spectra
is a covering if E∗Q → E∗P is surjective. Then, the class of E∗-surjections

7 Private communication with Jacob Lurie.
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together with the tensor product of spectra make Sp f p
E into an excellent∞-site

in the sense of Definition 2.24.

Proof. The fact that E∗-surjections define a Grothendieck pretopology is an
immediate consequence of Lemma 3.22, it makes Sp f p

E into an additive∞-site
since the covering families are singleton by definition.

We verified that the tensor product restricts to a symmetric monoidal struc-
ture such that all objects admit duals in Lemma 3.21, we just have to check
that it is compatible with the topology. Since the symmetric monoidal struc-
ture is rigid, P ⊗ −: Sp f p

E → Sp f p
E is a right adjoint and hence preserves all

pullbacks that exist in Sp f p
E , in particular pullbacks along coverings. Hence,

it’s enough to know that it takes coverings to coverings, but this is clear since
E∗(P ⊗ Q) 
 E∗P ⊗ E∗Q. �
We now show that the presheaf on Sp f p

E represented by a spectrum X is a
spherical sheaf, this is the basis of the embedding of the∞-category of spectra
into that of synthetic spectra, which will be discussed later. In addition, we
prove that y(X) is hypercomplete if X is E-local.

Proposition 3.24. Let X be a spectrum and let y(X) : (Sp f p
E )op → S be the

presheaf defined by y(X)(P) 
 map(P, X). Then y(X) is a spherical sheaf,
and it is hypercomplete if X is E-local.

Proof. Notice that y(X) is manifestly spherical, so we only have to check
that it is a sheaf. By the recognition principle of Theorem 2.8, it is enough
to verify that if F → Q → P is a fibre sequence in Sp f p

E with Q → P an
E∗-surjection, then y(X)(P) → y(X)(Q) → y(X)(F) is a fibre sequence of
spaces. This is clear, since by Lemma 3.22 fibres in Sp f p

E along E∗-surjections
are computed in spectra.

Now assume that X is E-local, wewill show that y(X) is hypercomplete. By
Proposition 6, we have to check that y(X) takes any hypercover U : �

op
s,+ →

Sp f p
E in finite projective spectra to a limit diagram of spaces. This is the same

as saying that the E-localization ofU is a colimit diagramof E-local spectra or,
equivalently, that the canonical map lim−→U |�s → U−1 is an E∗-isomorphism.

We have a homology of geometric realization spectral sequence of signature

Hs(Et (U |�s )) ⇒ Es+t (lim−→U |�s )

Under the assumption that U is a hypercover, E∗(U |�s ) is an E∗-projective
resolution of E∗(U−1) and hence the E2-term vanishes outside of s �= 0. We
deduce that the spectral sequence collapses on the second page and yields the
needed isomorphism. �
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We will later show that spherical sheaves of sets on Sp f p
E correspond to

comodules, the following technical lemma will be be useful in helping to
identify the comodule corresponding to a given sheaf.

Lemma 3.25. Let Eα be a filtered diagramof finite projective spectra such that
lim−→ Eα 
 E. Then, for any k ∈ Z the functor Uk : P(Sp f p

E ) → Set defined

by Uk(X) = lim−→π0X (�k DEα) takes sheafifications to isomorphisms.

Proof. Observe that Uk is clearly cocontinuous. It follows that to show that
it factors through the sheaf ∞-category, it is enough to verify that it takes
the Čech nerve of any E∗-surjection Q → P of finite projective spectra to a
colimit diagram of sets. However, this is immediate from Lemma 3.22, since if
Q ∈ Sp f p

E , then Uk(y(Q)) = lim−→[�k DEα, Q] 
 [Sk, lim−→ Eα ⊗ Q] 
 EkQ,
and surjections are effective epimorphisms in the category of sets. �

3.4 Sheaves on spectra and sheaves on comodules

In this short technical sectionweverify that the homology functor E∗ : Sp f p
E →

Comod f p
E∗E between the ∞-sites of, respectively, finite projective spectra and

dualizable comodules satisfies the technical conditions of Theorem 2.49, so
that it induces an equivalence on the categories of sheaves of sets. This will
not be difficult, because the hard work already went into the proof of the
aforementioned theorem.

This result is interesting as by Theorem 3.2 spherical sheaves of sets on
Comod f p

E∗E can be identified with E∗E-comodules and it follows that the same

must be true for Sp f p
E , an∞-category of homotopical origin. This observation

is what has sparked the interest of the author in studying sheaves on finite
projective spectra, leading to the current work.

Lemma 3.26. Suppose that E is anAdams-type homology theory and let Eα be
afiltered diagramof finite projective spectrawhose colimit is the countable sum
of shifts

⊕

�ki E, where each integer occurs as ki infinitely many times. Then,
the Ind-object lim−→ Eα is a common envelope for E∗ : Sp f p

E → Comod f p
E∗E .

Proof. First observe that such a filtered diagram exists, since by the Adams-
type assumption there is a filtered diagram in Sp f p

E whose colimit is E itself.

However, Sp f p
E is closed under finite sums and by taking larger and larger

such sums one constructs a filtered diagram whose colimit is the countable
sum

⊕

�ki E .
We now verify that lim−→ Eα and lim−→ E∗Eα satisfy discrete descent. The latter

case is clear, since y(E∗Eα) is already a discrete sheaf on dualizable comod-
ules. To prove the former, we have to check that lim−→ π0map(P, Eα) defines a
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sheaf as P runs through finite projective spectra. We have

lim−→π0map(P, Eα) 
 π0map(P, lim−→ Eα) 
 π0map(P,
⊕

�ki E)


 HomE∗(E∗P,
⊕

E∗[ki ]),

where the last one is the universal coefficient isomorphism. The last term
clearly defines a sheaf, as any epimorphism of E∗-modules is effective, this
covers both discrete descent conditions.

Taking the last term as above and rewriting further, we see that
lim−→π0map(P, Eα) is isomorphic to

HomE∗(E∗P,
⊕

E∗[ki ]) 
 HomE∗E (E∗P,
⊕

E∗E[ki ])

 lim−→π0Hom(E∗P, E∗Eα[ki ]),

where in themiddlewe’ve used the fact that
⊕

E∗E[ki ] is the cofree comodule
on themodule

⊕

E∗[ki ]. This shows that lim−→ y(Eα) → (E∗)∗(E∗)∗ lim−→ y(Eα)

is a 0-equivalence, leaving only the fact that lim−→ E∗Eα[ki ] is an envelope in

Comod f p
E∗E , which is precisely Proposition 3.5. �

Theorem 3.27. Suppose that E is an Adams-type homology theory. Then, the
morphism

E∗ : Sp f p
E → Comod f p

E∗E

of∞-sites induces amonoidal equivalence ShSet(Sp f p
E ) 
 ShSet (Comod f p

E∗E )

between categories of sheaves of sets. If E is homotopy commutative, then this
equivalence is canonically symmetric.

Proof. The homology functor E∗ : Sp f p
E → Comod f p

E∗E is a morphism of
excellent ∞-sites which clearly reflects coverings and by Lemma 3.26 admits
a common envelope. The above is a formal consequence of these two properties
by Corollary 2.44 and Theorem 2.49. �
Remark 3.28. The equivalence of Theorem 3.27 restricts to an equivalence
on categories of spherical sheaves, see Remark 2.50. Since ShSet� (Comod f p

E∗E )

is equivalent to the category ComodE∗E of comodules by Theorem 3.2, we
deduce that the same is true for ShSet� (Sp f p

E ).

4 Synthetic spectra

In this section we introduce the notion of a synthetic spectrum based on an
Adams-type homology theory E ; these form an ∞-category which we denote
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by SynE . We then perform a study of the basic constructions in this con-
text, including homotopy, homology, as well as the relation between synthetic
spectra, spectra and comodules exhibited by the colimit-to-limit comparison
map.

Let us give an informal picture. In broad terms, the relation between Sp and
SynE can be described as similar to the relation between an abelian category
A and its derived category D(A) in that synthetic spectra can be thought
of as “well-behaved” resolutions of spectra. There are of course substantial
differences, for one thing, the∞-category Sp is stable, rather than abelian, we
will see that this leads to a bigrading on SynE .

More importantly, SynE depends on the choice of the Adams-type homol-
ogy theory E and so is not naturally attached to Sp itself. Intuitively, this is
because one has to give a meaning to the notion of a “well-behaved” resolu-
tion, which in the case of SynE means well-behaved with respect to E∗. This
makes SynE behave like a thickened version of D(ComodE∗E ), the derived
∞-category of E∗E-comodules, thick enough to fit in the whole ∞-category
of spectra in the generic fibre.

4.1 What is a synthetic spectrum?

In this section we define the ∞-category of synthetic spectra and establish its
basic properties. We also discuss the homotopy and E-homology of synthetic
spectra and show that any spectrum can be extended to a synthetic one.

Definition 4.1. A synthetic spectrum based on E is a spherical sheaf of spectra
on the ∞-category Sp f p

E of finite E∗-projective spectra. We denote the ∞-
category of synthetic spectra based on E by SynE .

We will usually abuse the terminology and say just synthetic spectrum, the
choice of the homology theory E being understood implicitly. Notice that a
synthetic spectrum is, by definition, a spherical sheaf on an excellent ∞-site,
a notion we have studied extensively in the first part of the note, so we can
draw a lot of consequences rather quickly.

Proposition 4.2. The ∞-category SynE is a presentable, stable ∞-category.
Moreover, the tensor product of finite projective spectra induces a symmetric
monoidal structure on SynE that is cocontinuous in each variable.

Proof. We have verified that Sp f p
E is an excellent ∞-site in Proposition 3.23.

Then, the presentability and stability of the∞-category of spherical sheaves of
spectra are immediate from Proposition 2.13, while the symmetric monoidal
structure is Proposition 2.30. �
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We will now introduce what is perhaps the most important class of synthetic
spectra, namely those that are induced from an ordinary spectrum. If X is a
spectrum,we have the presheaf of spaces y(X) on Sp f p

E defined by the formula
y(X) = map(P, X), where P is finite projective. This is in fact a spherical
sheaf of spaces by Proposition 3.24 and so lifts to a unique connective spherical
sheaf of spectra by Proposition 2.19.

Definition 4.3. Suppose that X is a spectrum. Its synthetic analogue, denoted
by νX , is the unique lift of the sheaf of spaces y(X) to a connective sheaf of
spectra.

In other words, νX is the sheafification of the presheaf of spectra defined by
the formula F(P, X)≥0, where P is finite projective. Notice that F(P, X)≥0 is
just the connective spectrum underlying the infinite loop space map(P, X) 

y(X)(P), we write it in this way to make it clear that this should be considered
as a presheaf of spectra rather than spaces.

The synthetic analogue construction clearly extends to a functor ν : Sp →
SynE ; we will see later that it is in fact a full and faithful embedding of ∞-
categories. For now, we establish some of the more basic properties.

Lemma 4.4. The synthetic analogue construction ν : Sp → SynE is canoni-
cally lax symmetric monoidal and preserves filtered colimits.

Proof. By definition of ν, we can rewrite it as a composite

Sp → Sh�(Sp f p
E ) → SynE ,

where the first arrow is the Yoneda embedding and the second is
�∞+ : Sh�(Sp f p

E ) → ShSp
� (Sp f p

E ) left adjoint to the functor �∞ : ShSp� (Sp f p
E ) →

Sh�(Sp f p
E ) computed levelwise. Since the functor�∞+ is symmetricmonoidal

and cocontinuous, it is enough to verify that y : Sp → Sh�(Sp f p
E ) is lax sym-

metric monoidal and preserves filtered colimits.
The latter is clear, as any finite spectrum is compact in the ∞-category

of spectra and so y takes filtered colimits to levelwise colimits, in particular
colimits of sheaves. To see that y is lax symmetric monoidal, observe that
it has a left adjoint L : Sh�(Sp f p

E ) → Sp which is seen to be the unique

cocontinuous functor extending the inclusion Sp f p
E ↪→ Sp. Since the latter is

symmetric monoidal, L acquires a canonical symmetric monoidal structure.
It is formal that this forces the right adjoint y to be lax symmetric monoidal,
see [39][7.3.2.7]. �
Note that ν : Sp → SynE does not necessarily preserve cofibre sequences, in
particular, it is a non-exact functor between stable ∞-categories. We will give
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later a sufficient and necessary criterion for a cofibre sequence of spectra to
yield a cofibre sequence under ν.

Remark 4.5. One can use the synthetic analogue construction to express the
universal property of the tensor product of synthetic spectra, namely, the sym-
metric monoidal structure is the unique one which is cocontinuous in each
variable and such that ν|

Sp f p
E

: Sp f p
E → SynE is symmetric monoidal.

We now discuss the bigrading on the ∞-category synthetic spectra, which
comes from a bigraded family of sphere-like objects.

Definition 4.6. The bigraded spheres St,w are the synthetic spectra defined
by St,w = �t−wνSw.

Notice that since ν : Sp f p
E → SynE is symmetric monoidal and Sl is an

invertible finite projective spectrum, the above bigraded spheres are invertible
under the tensor product of synthetic spectra. Thus, tensoringwith themdefines
autoequivalences �k,l : SynE → SynE and hence a bigrading on the ∞-
category of synthetic spectra.

Remark 4.7. The bigrading on the ∞-category of synthetic spectra can be
thought as coming from the fact that we study sheaves of spectra on a certain
∞-category of finite spectra, so that both the source and target admit their own
invertible suspension functors. These two need not coincide, since a spherical
sheaf need not take suspensions to loops.

Synthetically, we will usually bigrade things using (t, w), where t is the topo-
logical degree andw is theweight. This ismotivated by themotivic conventions
andwewill see that it fits our framework, too. Another important role is played
by the following degree.

Definition 4.8. If (t, w) is a synthetic bigrading, the associated Chow degree
is t − w.

This is again motivated by the motivic conventions, although there is a dis-
crepancy in the lack of the factor of two in front of the weight, this will be
explained later, when we compare the synthetic and motivic categories. The
importance of the Chow degree is perhaps highlighted by the fact that the only
spheres in Chow degree zero are exactly those in the image of ν.

The definition of the spheres leads to a definition of homotopy and, since
SynE is symmetric monoidal, homology groups of a synthetic spectrum. Here,
again, everything will be bigraded using (t, w) as explained above.

Definition 4.9. Let Y, X be synthetic spectra. Then, the Y -homology of X is
a bigraded abelian group defined by Yt,wX = π0 map(St,w, Y ⊗ X), while the
Y -cohomology of X is defined by Y t,wX = π0 map(�−t,−wX, Y ).
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As usual, we call the S0,0-homology groups the homotopy groups of X and
denote them by π∗,∗X or X∗,∗. Another important example is homology taken
with respect to νE , which we will later see controls the natural t-structure on
the ∞-category of synthetic spectra.

Remark 4.10. (Sign conventions) We have St,w ⊗ St
′,w′ 
 St+t ′,w+w′

, since
we have a canonical equivalence

�t−wνSw ⊗ �t ′−w′
νSw′ 
 �t−w�t ′−w′

(νSw ⊗ νSw′
)


 �t+t ′−(w+w′)νSw+w′
, (3)

where we use that ν is symmetric monoidal when restricted to finite projective
spectra and that it commutes with colimits in both variables. This means that
the homotopy groups A∗,∗ of an algebra A in synthetic spectra have a structure
of a bigraded ring.

The symmetry of synthetic spectra together with the above identification
induces a self-equivalence of St+t ′,w+w′

which we can identify with

St+t ′,w+w′ 
 �t−w�t ′−w′
(νSw ⊗ νSw′

)


 �t ′−w′
�t−w(νSw′ ⊗ νSw) 
 St

′+t,w′+w, (4)

where the middle map exchanges the two suspension coordinates and applies
the symmetry to the synthetic analogues (which coincides with the symmetry
of spectra as ν is symmetric monoidal on spheres). In particular, the sign of
(4) is (−1)(t−w)(t ′−w′)+ww′

.
However, it will be more convenient for us to employ the Koszul sign con-

vention and agree that the preferred equivalence St,w ⊗ St
′,w′ 
 St+t ′,w+w′

is
(−1)wt ′ times the equivalence of (3). This guarantees that under the topolog-
ical realization of synthetic spectra, which we discuss later in Sect. 4.4, this
preferred map reduces to the usual equivalence St ⊗ St

′ 
 St+t ′ . As another
consequence of the this convention, the sign of the composite

St+t ′,w+w′ 
 St,w ⊗ St
′,w′ 
 St

′,w′ ⊗ St,w 
 St+t ′,w+w′
.

is (−1)(t−w)(t ′−w′)+tw′+t ′w+ww′ = (−1)t t
′
. In particular, if A is a commutative

algebra in synthetic spectra, then its homotopy groupsπ∗,∗(A) form a bigraded
ring which is commutative in the sense that the Koszul sign rule applies in the
topological degree, but not in the weight.

We will now prove a simple result which plays the role of the Yoneda
lemma for synthetic spectra. Using it, we obtain an explicit formula for the
homotopy groups and compute them in a range for synthetic analogues of
ordinary spectra.
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Lemma 4.11. Let P ∈ Sp f p
E and X be a synthetic spectrum. Then,

map(νP, X) 
 �∞X (P). In particular, we have an isomorphism πt,wX 

πt−wX (Sw).

Proof. The first part follows from the chain of equivalences

map(νP, X) 
 map(y(P), �∞X) 
 (�∞X)(P) 
 �∞X (P),

where the first one uses that νP 
 �∞+ y(P), with �∞+ interpreted internally
to spherical sheaves and so given by the delooping of an infinite loop space,
see Warning 2.20. The second part is immediate from the first one, since
St,w 
 �t−wνSw. �
Corollary 4.12. Let X be a spectrum. Then πt,wνX 
 πt X in non-negative
Chow degrees; that is, when t − w ≥ 0.

Proof. Observe that we have �∞νX 
 y(X) by definition, hence by
Lemma 4.11

πt,wνX 
 πt−wνX (Sw) 
 πt−w�∞νX (Sw) 
 πt−wy(X)(Sw)


 πt−wmap(Sw, X) 
 πt X,

which is what we wanted to show. �
Remark 4.13. Even though Corollary 4.12 looks innocent enough, it is in fact
very important. An analogous result holds for homotopy of p-complete finite
motivic spectra by Theorem 7.30 of Gheorghe-Isaksen, this observation is one
of the main ingredients of the comparison we will make between synthetic
spectra based on MU and the cellular motivic category.

Remark 4.14. Observe that it follows easily from Lemma 4.11 that synthetic
spectra of the form�k,0νP , where k ∈ Z and P ∈ Sp f p

E , generate SynE under
colimits. These generators are in fact compact since filtered colimits in spheri-
cal sheaves over an additive∞-site are computed levelwise, see Corollary 2.9.
In particular, SynE is compactly generated.

We will prove later in Theorem 6.2 that the∞-category of synthetic spectra
based on MU is generated under colimits by the bigraded spheres. However,
this property should perhaps not be expected to hold for an arbitrary Adams-
type homology theory.

Remark 4.15. We will later extend Corollary 4.12 by proving an analogous
result about homotopy classes of maps νY → νX , where Y is not necessarily
a sphere. We will also show that the structure of the maps in negative Chow
degree is controlled by the homological algebra of E∗E-comodules E∗Y, E∗X ,
see Proposition 4.57 and Theorem 4.58.
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4.2 The natural t-structure

In this section we describe a natural t-structure on the∞-category of synthetic
spectra and identify its heart with the category of E∗E-comodules. We then
give an explicit formula for the homotopy groups associated to that t-structure
and identify them with E-homology. Lastly, we compute the νE-homology of
synthetic analogues of ordinary spectra.

Note that since SynE is an ∞-category of sheaves, it inherits a t-structure
from the ∞-category Sp of spectra, this is the one we have in mind so that
its existence is completely formal. The non-trivial part is that the heart can
be identified with comodules, this is where our study of discrete sheaves on
excellent ∞-sites comes into play. We will see that this identification allows
one to describe the t-structure in purely homological (rather than homotopical)
terms.

Proposition 4.16. The ∞-category SynE admits a right complete t-structure
compatible with filtered colimits in which the coconnective part is the ∞-
category of spherical sheaves valued in coconnective spectra. Moreover, we
have an equivalence Syn♥

E 
 ComodE∗E between the heart of this t-structure
and the category of E∗E-comodules.

Proof. By Proposition 2.16, on SynE there exists a t-structure of the above
form whose heart is equivalent to the category ShSet� (Sp f p

E ) of discrete spher-

ical sheaves on Sp f p
E . The latter is equivalent to the category of comodules by

Remark 3.28. �
By retracing the proof, the equivalence Syn♥

E 
 ComodE∗E of Proposi-
tion4.16 canbegiven a fairly explicit formwhichwenowdescribe.By standard
considerations, the heart is equivalent to the category of spherical sheaves of
abelian groups, the equivalence induced by the Eilenberg-MacLane spectrum
construction.

If M is an E∗E-comodule, then it defines a spherical sheaf (E∗)∗y(M) of
abelian groups on Sp f p

E by the formula

((E∗)∗y(M))(P) = HomE∗E (E∗P, M).

One shows that any sheaf of abelian groups on Sp f p
E is necessarily of this form,

as any sheaf on spectra is induced from a sheaf on comodules by Theorem 3.27
and any spherical sheaf on comodules is representable by Theorem 2.58. This
gives rise to the description of the heart as comodules.

Any t-structure on a stable ∞-category allows one to define homotopy
groups valued in the heart. It follows that in the case of SynE these t-structure
homotopy groups are valued in E∗E-comodules and so are themselves, in
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particular, graded abelian groups. This reflects the bigraded nature of the ∞-
category of synthetic spectra.

If X ∈ SynE is a synthetic spectrum, let us denote the homotopy comodules
with respect to the natural t-structure by π

♥
k X , we will show that they admit

a description in terms of synthetic E-homology.

Lemma 4.17. Let X be a synthetic spectrum. Then, the graded compo-
nents of the homotopy E∗E-comodule π

♥
k X are given by (π

♥
k X)l 


lim−→πk X (�l DEα), where Eα is any filtered diagram of finite projective spectra
such that lim−→ Eα 
 E.

Proof. As a spherical sheaf of abelian groups, π
♥
k X can be described as the

sheafification of the presheaf defined by the formulaπk X (P) as P runs through
finite projective spectra, see Remark 2.18. As observed above, any such sheaf
can be written in the form HomE∗E (E∗P, M) for a unique comodule M ,
what we want to prove is that we have an isomorphism of abelian groups
Ml 
 lim−→ πk X (�l DEα).
As lim−→ E∗Eα 
 E∗E and E∗DEα 
 HomE∗(E∗Eα, E∗), where the latter

is the E∗-linear dual, it follows immediately from Lemma 3.3 that Ml 

lim−→π

♥
k (�l DEα). We deduce that to prove the claim, we only need to show

that lim−→ π
♥
k (�l DEα) 
 lim−→πk(�

l DEα), which is exactly Lemma 3.25. �
Theorem 4.18. Let X be a synthetic spectrum. Then, there is an isomorphism
of bigraded abelian groups of the form (π

♥
k X)l 
 νEk+l,l X between the

homotopy of X with respect to the natural t-structure and its synthetic E-
homology.

Proof. We have given an explicit formula for π
♥
k X in Lemma 4.17, we will

show that the E-homology groups can be computed in the same way. Notice
that by suspending X appropriately, we can assume that k = 0, so we only
have to verify that (π♥

0 X)l 
 νEl,l X .
We have νE∗,∗X 
 π∗,∗νE ⊗ X by definition. Choose a filtered diagram

Eα of finite projective spectra such that lim−→ Eα 
 E , since ν preserves filtered
colimits by Lemma 4.4, we have νE⊗X 
 lim−→ νEα ⊗X . One can then rewrite
the synthetic homology as

νEl,l X 
 [νSl, lim−→ νEα ⊗ X ] 
 lim−→[ν�l DEα, X ] 
 lim−→ π0X (�l DEα),

which is what we wanted to show. Here we’ve used that ν is symmetric
monoidal when restricted to finite projective spectra, Lemma 4.11 and that
synthetic spheres are compact, see Remark 4.14. �
As observed above, Proposition 4.16 implies that π

♥
k X have more structure

than just that of a graded abelian group; rather, they are E∗E-comodules. By
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observing that the Chow degree zero part of νE∗,∗νE coincides with E∗E ,
one can similarly endow νE∗,∗νX with a graded E∗E-comodule structure,
one can then show that Theorem 4.18 can be promoted to an isomorphism of
graded comodules, although we will not need this in the current work.

The grading shift (π♥
k X)l 
 νEk+l,l X might seem strange at the first sight,

but observe that it can be phrased succinctly as saying that π
♥
k captures the

Chow degree k part of the synthetic E-homology of X . This gives one the
following pleasantly sounding corollary.

Corollary 4.19. A synthetic spectrum X is connective if and only if νE∗,∗X
is concentrated in non-negative Chow degrees.

Proof. In the natural t-structure a synthetic spectrum is connective if and only
if its negative t-structure homotopy groups vanish, see Proposition 2.16. This
translates into the above condition by Theorem 4.18. �
Notice that this means, perhaps surprisingly, that connectivity of synthetic
spectra with respect to the natural t-structure is controlled by homology, rather
than homotopy. Moreover, we see that it is measured by the Chow rather than
the topological degree. In particular, we have the following corollary which
can be also be proven by other means.

Corollary 4.20. If X is a-connective, then �k,l X is (k − l + a)-connective.
An analogous result holds for coconnectivity.

A little care is sometimes needed, as the notion of connectivity of a syn-
thetic spectrum does not coincide with the usual connectivity of spectra under
the embedding we have studied. Rather, the synthetic analogue νX of an ordi-
nary spectrum X is always connective. In fact, we can compute its homology
explicitly, which we do now.

Proposition 4.21. Let X be an ordinary spectrum and νX its synthetic ana-
logue. Then νE∗,∗(νX) vanishes in negative Chow degree and we have
νEk,lνX 
 Ek X otherwise.

Proof. The vanishing in negative Chow degree is an immediate consequence
of Corollary 4.19; notice that νX is connective since it is a lift of a sheaf of
spaces. By the second part of Lemma 4.24, we have νE ⊗ νX 
 ν(E ⊗ X)

and the result is immediate from Corollary 4.12. �
Remark 4.22. Using a more careful argument one shows that if k ≥ 0, the
isomorphism π

♥
k νX 
 E∗X [−k] of graded abelian groups can be promoted

to an isomorphism of comodules. We leave the details to the reader.

We now use the calculation of Proposition 4.21 to give the promised homo-
logical criterion for a fibre sequence of spectra to yield a fibre sequence of
synthetic spectra.
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Lemma 4.23. Suppose that F → Y → X is a fibre sequence of spectra.
Then νF → νY → νX is a fibre sequence of synthetic spectra if and only if
0 → E∗F → E∗Y → E∗X → 0 is a short exact sequence of comodules.

Proof. Recall that νX 
 �∞+ y(X) for any spectrum X , since the Yoneda
embedding y preserves all limits, y(F) → y(Y ) → y(X) is a fibre sequence
of sheaves of spaces. Because�∞+ : Sh�(Sp f p

E ) → SynE restricts to an equiv-
alence with the connective part of synthetic spectra by Proposition 2.19, we
deduce that νF → νY → νX is a fibre sequence in the ∞-category of con-
nective synthetic spectra.

It follows that νF → νY → νX is a fibre sequence in synthetic spectra
if and only if the fibre G of νY → νX in synthetic spectra is connective.
By Corollary 4.19, this is the same as νE∗,∗G vanishing in negative Chow
degree, which by the long exact sequence of homology and the calculation of
Proposition 4.21 happens precisely when E∗Y → E∗X is surjective. �

As an application of Lemma 4.23, we prove that in some cases the tensor
product of synthetic spectra coincides with the usual tensor product of spectra.

Lemma 4.24. Let X be a spectrum with E∗X flat as an E∗-module. Then, the
natural map νX ⊗νY → ν(X ⊗Y ) is an νE∗,∗-isomorphism. If X is a filtered
colimit of finite projectives, then this map is an equivalence.

Proof. We first prove the second part. Since ν preserves filtered colimits by
Lemma 4.4, we can assume that X is equivalent to a finite projective P .
Because νP 
 �∞+ y(P), νY 
 �∞+ y(Y ) and �∞+ : Sh�(Sp f p

E ) → SynE
is symmetric monoidal, it is enough to verify that the natural morphism
y(X) ⊗ y(P) → y(X ⊗ P) is an equivalence. However, using the description
of tensoring with a representable of Lemma 2.27, we have

(y(X) ⊗ y(P))(Q) 
 y(X)(DP ⊗ Q) 
 map(DP ⊗ Q, X)


 map(Q, X ⊗ P) 
 y(X ⊗ P)(Q)

for any finite projective Q ∈ Sp f p
E . This ends the proof in this case.

We move on to the first part, so assume that E∗X is flat. If Y is a spectrum,
by c(Y ) let us denote the cofibre of νX⊗νY → ν(X⊗Y ). Since E∗(X⊗Y ) 

E∗X ⊗ E∗Y , we deduce from Lemma 4.23 that c takes cofibre sequence of
spectra Y1 → Y2 → Y3 which are short exact on E-homology to cofibre
sequences of synthetic spectra. We claim that c(Y ) is ∞-connective for any
Y , this will finish the proof.

We show that it is k-connective by induction. The case k = 0 is clear,
as c(Y ) is a cofibre of connective synthetic spectra and thus it is connective
itself. Now assume that k > 0. By [1][13.8], there exists an E∗-surjective map
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W → Y whereW is a possibly infinite sum of finite projectives, in particular a
filtered colimit of finite projectives. Let K denote the fibre of this map, so that
we have a cofibre sequence c(K ) → c(W ) → c(Y ). Since c(W ) = 0 by the
second part of the statement of the lemma, we deduce that c(Y ) 
 �(c(K )).
As c(K ) is (k − 1)-connective by the inductive assumption, we deduce that
c(Y ) is k-connective, ending the argument. �
Remark 4.25. In the context of Lemma 4.24, we do not know whether νX ⊗
νY → ν(X ⊗ Y ) is an honest equivalence for any Y when E∗X is flat, rather
than just an νE∗,∗-isomorphism. We consider this to plausible, but we were
unable to show this.

4.3 Colimit-to-limit comparison map

In this sectionwe construct for any synthetic spectrum X amap τ : �0,−1X →
X whichmeasures the degree towhich X , as a sheaf, takes suspensions to loops.
This is not apparent at first sight, but we will later see that this morphism
controls whether X exhibits topological or algebraic behaviour.

As themap τ will be defined on a certain suspension of a synthetic spectrum,
we begin with an explicit description of how the bigraded suspensions look
like.

Proposition 4.26. If X is a synthetic spectrum, then the bigraded suspen-
sion �k,l X is the spherical sheaf defined by the formula (�k,l X)(P) 

�k−l X (�−l P), where P ∈ Sp f p

E .

Proof. Notice that we have

�k,l X 
 Sk,l ⊗ X 
 (�k−l Sl,l) ⊗ X 
 �k−l(Sl,l ⊗ X) 
 �k−l(�l,l X),

so that it is enough to show that the formula holds when k = l. However, to
show that (�l,l X)(P) 
 X (�−l P) naturally in X, P is the same as verifying
that �l,l and precomposition along �−l : Sp f p

E → Sp f p
E define equivalent

functors on synthetic spectra. This is immediate from Lemma 2.27, since �l,l

is tensoring with νSl . �
Note that the above description conforms to the intuition that the bigraded

nature of synthetic spectra is explained by the existence of an invertible sus-
pension functor on both the source and the target of the sheaves we study.
As mentioned before, the two induced functors do not coincide, as spherical
sheaves need not take suspensions to loops. Rather, there is always a compar-
ison map.

Definition 4.27. We denote by τ : νS−1 → �(νS0) the canonical limit com-
parison map induced by the identification �S0 
 S−1.
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Notice that by definition, S−1,−1 
 νS−1, S−1,0 
 �νS0, so that τ can be
considered as an element of π0,−1S0,0, the (0, −1)-th synthetic stable stem.
As is traditional, we will usually not distinguish notationally between τ and
its suspensions. The following shows that τ is in a strong sense a universal
map that measures the degree to which a given synthetic spectrum preserves
suspensions.

Proposition 4.28. If X is a synthetic spectrum, the map τ ⊗ X : �−1,−1X →
�−1,0X can be identified with the canonical colimit-to-limit comparison map
X (�P) → �X (P), where P runs through finite projectives.

Proof. This statement implicitly uses the explicit description of bigraded
suspensions of Proposition 4.26, what we claim here is that under this identifi-
cation themap τ⊗X corresponds to the canonical colimit-to-limit comparison.
The map τ is by definition induced by the diagram

νS−1 0

0 νS0

obtained by applying ν to a pullback square which witnesses the equivalence
S−1 
 �S0. It follows that τ ⊗ X is induced from the square

νS−1 ⊗ X 0

0 νS0 ⊗ X .

Recall that Proposition 4.26 followed from Lemma 2.27 which described ten-
soring with a representable in terms of sheaves as precomposition along the
tensoring with the dual. It follows that under this identification, over a finite
projective P the map τ ⊗ X is induced by applying X to the diagram

S1 ⊗ P 0

0 P

obtained by dualizing the the pullback square witnessing S−1 
 �S0 and
tensoring with P . Since the above is a pushout square witnessing S1 ⊗ P 

�P , applying X yields exactly the canonical colimit-to-limit comparisonmap.

�
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The following interesting lemma relates the map τ to the natural t-structure
in the case of synthetic analogues of ordinary spectra, it will be used later to
study modules over the cofibre of τ .

Lemma 4.29. If X is a spectrum, the cofibre sequence �0,−1νX → νX →
Cτ ⊗νX, where the first map is τ ⊗νX, induces an identification Cτ ⊗νX 

(νX)≤0. In particular, Cτ ⊗ νX is contained in the heart and �0,−1νX 

(νX)≥1.

Proof. Clearly, νX is 0-connective and �0,−1νX 
 �ν(�−1X) is 1-
connective, so it is enough to show that Cτ ⊗ νX is 0-coconnective. The
desuspension of �0,−1νX → νX can be identified by Proposition 4.28 with
the limit comparison map ν�X → �νX , it is enough to show that the cofibre
C of this map is −1-coconnective.

Since sheafification is exact (when considered as a functor valued in
sheaves), C can be computed as the sheafification of the levelwise cofibre
of the canonical map of presheaves of spectra of the form

F(P, �X)≥0 → �(F(P, X)≥0),

where P ∈ Sp f p
E . This levelwise cofibre is clearly valued in (−1)-coconnective

spectra (in fact, it is given by the presheaf�−1H [P, X ] of Eilenberg-MacLane
spectra) andwe deduce that sheafification is also (−1)-coconnective. This ends
the argument. �
Corollary 4.30. The cofibre Cτ := cofib(S0,−1 → S0,0) has a unique
structure of a commutative algebra in synthetic spectra compatible with the
canonical map S0,0 → Cτ .

Proof. By Lemma 4.29, the canonical map induces an identification Cτ 

τ≤0(S0,0) and the result follows as S0,0 is connective so that its t-structure
truncations are canonically commutative algebras. �
Remark 4.31. Let us describe one implication of Lemma 4.29. Observe that
using the canonical map S0,0 → Cτ we can build for any synthetic spectrum
Y0 a tower of “cofibres of powers of τ” of the form

Y0

Cτ ⊗ Y0

Y1

Cτ ⊗ Y1

. . .

,

with the property that each Yn+1 → Yn → Cτ ⊗ Yn is a fibre sequence.
Then, Lemma 4.29 implies that if X is a spectrum and Y0 = νX its synthetic
analogue, the upper row is exactly the Postnikov tower of νX . In other words,
in this case the Postnikov filtration and the filtration “by powers of τ” coincide.
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4.4 τ -invertible synthetic spectra

Our goal in this section is to give a description of τ -invertible spectra; that is,
those on which τ acts invertibly. The main result will be to show that the full
subcategory SynE (τ−1) of SynE spanned by τ -invertible synthetic spectra
can be canonically identified with the ∞-category Sp of (classical) spectra,
the equivalence established by a spectral version of the Yoneda embedding.

One application of this equivalence will be that for any synthetic spectrum
X , the τ -inversion τ−1X can be considered as a spectrum, this is what we
call the underlying spectrum of X . Under the equivalence between synthetic
spectra and motivic spectra which we will establish in Sect. 7, the τ -inversion
plays the role of Betti realization of a complex motivic spectrum.

Definition 4.32. We say a synthetic spectrum X is τ -invertible if the map
τ : �0,−1X → X is an equivalence.We denote the∞-category of τ -invertible
synthetic spectra by SynE (τ−1).

Since by definition, SynE (τ−1) is the ∞-category of objects on which an
endomorphism of the unit acts invertibly, we can draw a lot of conclusions on
purely formal grounds.

Proposition 4.33. The∞-category of τ -invertible synthetic spectra is a local-
ization of SynE; that is, the inclusion SynE (τ−1) ↪→ SynE admits a left
adjoint τ−1(−) : SynE → SynE (τ−1), the τ -inversion. Moreover, it is a
smashing localization in the sense that colimits of τ -invertible synthetic spec-
tra are τ -invertible.

Proof. We construct the left adjoint τ−1(−) : SynE → SynE (τ−1) explicitly.
If X ∈ SynE , we let

τ−1X = lim−→ ( X → �0,1X → �0,2X → . . . ),

where the colimit is taken over the poset of the natural numbers and the con-
necting maps are given by τ . Then, for any Y ∈ SynE (τ−1) we have

map(τ−1X, Y ) 
 map(lim−→ �0,k X, Y ) 
 lim←−map(X, �0,−kY ) 
 map(X, Y ),

where in the last step we have used that all maps in the diagram �0,−k−1Y →
�0,−kY are equivalences since Y was assumed to be τ -invertible. Here, we
implicitly use that τ is self-dual (up to a shift), as the diagram defining it is
the image under ν of the pullback diagram in finite spectra

S−1 0

0 S0
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witnessing S−1 
 �S0, whose dual is also a pullback diagram witnessing
S0 
 �S1.
To show that this localization is smashing, we observe that X belongs to

SynE (τ−1) if and only if Cτ ⊗ X = 0, a condition clearly closed under
colimits. �
Corollary 4.34. The synthetic spectrum τ−1S0,0 has a canonical structure of
a commutative algebra and there is a canonical equivalence SynE (τ−1) 

Modτ−1S0,0(SynE ).

Proof. This is proven by standard arguments after observing that Proposi-
tion 4.33 implies that τ−1X 
 X ⊗ τ−1S0,0 for any synthetic spectrum X .

�
Using the explicit formula one proves the following little lemma that shows
that τ -invertible synthetic spectra are necessarily unbounded in the natural
t-structure.

Lemma 4.35. Let X be a synthetic spectrumwhich is k-coconnective for some
k ∈ Z. Then, τ−1X 
 0; that is, the τ -inversion vanishes.

Proof. As observed in the proof of Proposition 4.33, we have τ−1X 

lim−→�0,n X . Now, by Corollary 4.20, �0,n X is (k − n)-coconnective and since
the natural t-structure is compatible with filtered colimits, we deduce that
τ−1X is (k − n)-coconnective for all n ≥ 0. By right completeness, this
implies that τ−1X is necessarily zero. �
We now give a basic example of a τ -invertible synthetic spectrum, we will
later prove in Theorem 4.37 that it is in fact the only kind. If X is a spectrum,
we denote by Y (X) the presheaf of spectra defined by Y (X)(P) 
 F(P, X),
where P ∈ Sp f p

E . This is the spectral Yoneda embedding.
Notice that Y (X) is clearly spherical and a sheaf by Proposition 3.24, so

that it defines a synthetic spectrum. Moreover, it admits a canonical map from
νX , since the latter is the sheafification of the presheaf defined by F(P, X)≥0.
Conveniently, this map can be characterized in two distinct ways.

Proposition 4.36. If X is a spectrum, then the canonical map νX → Y (X) is
a τ -inversion; that is, it induces an equivalence τ−1νX 
 Y (X). In particular,
Y (X) is τ -invertible. Moreover, it is a connective cover; that is, it induces an
equivalence νX 
 (Y (X))≥0.

Proof. We first show the connective cover statement. Notice that νX is con-
nective, so that it is enough to show that the cofibre C of νX → Y (X) is
(−1)-coconnective. This is clear, since the cofibre is given by the sheafi-
fication of the presheaf defined by F(P, X)≤−1, and because the latter is
(−1)-coconnective, the same must be true for C .
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Moving to τ -inversion, notice that because τ can be identified with the
canonical colimit comparison map by Proposition 4.28, Y (X) is clearly τ -
invertible. We deduce that it is enough to show that τ−1C = 0, which is
immediate from the first part and Lemma 4.35. �

The following description of the∞-category of τ -invertible synthetic spec-
tra is the main result of this section, it can be interpreted as saying that any
non-topological phenomena occuring in synthetic spectra are necessarily “τ -
torsion”.

Theorem 4.37. The spectral Yoneda embedding Y : Sp → SynE is fully
faithful and its essential image is the full subcategory of τ -invertible syn-
thetic spectra. Moreover, the induced equivalences Sp 
 SynE (τ−1) 

Modτ−1S0,0(SynE ) are canonically symmetric monoidal.

Proof. We first show that Y is fully faithful and identify the essential image.
The functor Y : Sp → SynE is clearly continuous, in particular, it is an exact
functor between stable ∞-categories. We claim that it preserves filtered col-
imits, together with exactness it shows that it is in fact cocontinuous. However,
since each P ∈ Sp f p

E is finite, Y takes filtered colimits to levelwise filtered
colimits and the claim follows from the fact that any levelwise colimit diagram
of sheaves is necessarily a colimit diagram.

By Proposition 4.36, the image of Y is contained in τ -invertible synthetic
spectra. Since SynE (τ−1) is a smashing localization by Proposition 4.33, the
restriction Y : Sp → SynE (τ−1) is also continuous and cocontinuous. We
now show that Y : Sp → SynE (τ−1) is fully faithful; that is, that for any
A, B ∈ Sp the induced morphism

map(A, B) → map(Y (A), Y (B))

is an equivalence. Let us fix B and consider those A for which this holds. By
cocontinuity of Y , the subcategory of those A ∈ Sp for which this holds is
closed under colimits. Hence, it is enough to show that it contains all spheres
Sk . However, we have

map(Y (Sk), Y (B)) 
 map(νSk, Y (B)) 
 �∞Y (B)(Sk) 
 map(Sk, B),

where first we use that Y (Sk) is the τ -inversion of νSk , which was Proposi-
tion 4.36, and then the Yoneda lemma of Lemma 4.11.

We’re now only left with verifying that SynE (τ−1) is the essential image of
Y . Denote by R : SynE (τ−1) → Sp the right adjoint of Y which necessarily
exists since the latter is cocontinuous and both ∞-categories are presentable.
It is enough to show that if X ∈ SynE (τ−1) is such that RX = 0, then X = 0.
However, if RX = 0, then by an argument used above for the sphere we have
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that map(P, RX) 
 map(Y (P), X) 
 map(νP, X) 
 �∞X (P) vanishes
for all P ∈ Sp f p

E . It follows that X is (−1)-coconnective and since it is also
τ -invertible it must necessarily vanish by Lemma 4.35.

The above shows that Y induces an equivalence Sp 
 SynE (τ−1), we now
show that it is symmetric monoidal. As we’ve verified above, Y : Sp → SynE
is cocontinuous and so it admits a left adjoint L : SynE → Sp which through
the equivalence we constructed corresponds to τ−1 : SynE → SynE (τ−1).

By Proposition 4.36, we have L(νP) 
 P for finite projective P , so that
the composition Sp f p

E → SynE → Sp coincides with the usual inclusion

Sp f p
E ↪→ Sp. Since this inclusion is symmetric monoidal, L acquires a

canonical symmetric monoidal structure by the universal property of the Day
convolution, see Remark 4.5. Since it takes τ -inversions to equivalences, we
deduce that the induced functor SynE (τ−1) → Sp is symmetric monoidal,
too. This induced functor is an explicit inverse to Y and we are done. �
Corollary 4.38. The synthetic analogue construction ν : Sp → SynE is a
fully faithful embedding of ∞-categories.

Proof. By Proposition 4.36, Y (X) 
 τ−1νX for any spectrum X and since
the spectral Yoneda embedding is fully faithful by Theorem 4.37, it is
enough to show that for any A, B ∈ Sp, the morphism map(νA, νB) →
map(Y (A), Y (B)) induced by τ -inversion is an equivalence.

However, we have map(νA, νB) 
 map(νA, Y (B)) 
 map(Y (A), Y (B)),
where in the first equivalence we observe that νA is connective and νB 

(Y (B))≥0 and in the second that Y (B) is τ -invertible and νA → Y (A) is a
τ -inversion. This ends the proof. �

One application of the equivalence of Theorem 4.37 is the construction of
the underlying spectrum functor, which we now describe.

Definition 4.39. Let X be a synthetic spectrum. Then, its τ -inversion or the
underlying spectrum is given by τ−1X 
 lim−→�−n X (S−n).

Notice thatwe choose to abuse the notation and depending on the context τ−1X
might either mean the τ -invertible synthetic spectrum associated to X or the
spectrum given by the formula above. These two correspond to each other
under the equivalence of Theorem 4.37 and so this ambiguity is relatively
mild. We now list some of the properties of this construction, all of which
follow immediately from what we have already proven.

Proposition 4.40. The underlying spectrum functor τ−1 : SynE → Sp is
canonically symmetricmonoidal and left adjoint to the spectral Yoneda embed-
ding Y : Sp → SynE . Moreover, for any spectrum X ∈ Sp we have a
canonical equivalence τ−1νX 
 X.

123



624 P. Pstrągowski

Proof. The functor τ−1 : SynE → Sp is the composite of τ−1 : SynE →
SynE (τ−1) and the equivalence of Theorem 4.37. As both are symmetric
monoidal left adjoints, so is τ−1, andTheorem4.37 implies that its right adjoint
is the spectral Yoneda embedding. The last part is an immediate consequence
of Proposition 4.36. �
Remark 4.41. Notice that τ−1St,w 
 St , this is one of the reasons we work
with the chosen grading convention. It follows that for any synthetic X there’s
a natural map πt,wX → πtτ

−1X given by passing to underlying spectra.
By construction, we have π∗τ−1X 
 τ−1π∗,∗X in the sense that there’s an
isomorphism πtτ

−1X 
 lim−→πt,k X , where the connecting maps in the colimit
are induced by τ .

Remark 4.42. Recall that in Corollary 4.12 we have shown that if X is a
spectrum, then there’s an isomorphism πt,wνX 
 πt X in non-negative Chow
degrees. A chase through definitions shows that this isomorphism is actually
induced by the maps πt,wνX → πt X of Remark 4.41.

4.5 Modules over the cofibre of τ

We have previously observed in Corollary 4.30 that the synthetic spectrumCτ

has a unique structure of a commutative algebra. In this section,we construct an
embedding of the∞-categoryModCτ (SynE ) into Hovey’s stable∞-category
of comodules StableE∗E and give sufficient and necessary criteria for this
embedding to be an equivalence. In particular, we will see the latter holds
when E is Landweber exact.

Formore background onHovey’s stable∞-category of comodules, see [28],
[7] and the discussion precedingTheorem3.7. Throughout this section,wewill
think of StableE∗E using the description supplied by the latter result, namely
as the ∞-category of spherical sheaves of spectra on the site of dualizable
comodules.

Lemma 4.43. The homology functor E∗ : Sp f p
E → Comod f p

E∗E induces an
adjunction

ε∗ � ε∗ : SynE � StableE∗E

where the left adjoint ε∗ is the left Kan extension of

Sp f p
E → ComodE∗E 
 Stable♥

E∗E ↪→ StableE∗E

along ν|
Sp f p

E
: Sp f p

E → SynE .
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Proof. By Theorem 3.7, there’s a symmetric monoidal equivalence StableE∗E 

ShSp

� (Comod f p
E∗E ) between Hovey’s stable ∞-category and spherical hypercom-

plete sheaves of spectra on dualizable comodules. The above adjunction is
the one induced by the morphism of ∞-sites E∗ : Sp f p

E → Comod f p
E∗E , see

Proposition 2.22. �
Lemma 4.44. The left adjoint ε∗ is canonically monoidal. The right adjoint ε∗
is cocontinuous, laxmonoidal and induces an equivalence Syn♥

E 
 Stable♥
E∗E

on the hearts. If E is homotopy commutative, then ε∗ is symmetric monoidal
and ε∗ is lax symmetric monoidal.

Proof. The left adjoint is monoidal with respect to the Day convolution sym-
metric monoidal structure because it extends E∗ : Sp f p

E → Comod f p
E∗E , which

ismonoidal by Lemma 3.21 and symmetricwhen E is homotopy commutative.
It follows formally that the right adjoint acquires a lax (symmetric) monoidal
structure, see [39][7.3.2.7]. The cocontinuity of the the right adjoint is part of
Proposition 2.22 and the induced equivalence on the hearts is Remark 3.28. �
Lemma 4.45. Let P be a finite projective spectrum. Then, there’s a canonical
equivalence Cτ ⊗ νP 
 ε∗(E∗P), where we view E∗P as an element of the
heart of StableE∗E .

Proof. By construction of ε∗ as a left Kan extension, we have ε∗(νP) 
 E∗P ,
so that there’s a natural map νP → ε∗(E∗P) given by the unit of the adjunc-
tion. The target is contained in the heart and the given map is a 0-truncation
by our computation of the homology of νP , which was Proposition 4.21.

By Lemma 4.29, the natural map νP → Cτ ⊗ νP is also a 0-truncation.
This implies that there is an equivalence Cτ ⊗ νP 
 ε∗(E∗P), in fact a
distinguished one commuting with the maps from νP . �

We’re now ready to prove themain result of this section, which identifies the
∞-category of modules over the cofibre of τ with a subcategory of Hovey’s
∞-category of comodules.

Theorem 4.46. The right adjoint ε∗ has a canonical lift χ∗ : StableE∗E →
ModCτ (SynE ) to Cτ -modules whose left adjoint χ∗ : ModCτ (SynE ) ↪→
StableE∗E is fully faithful. Both functors are canonically monoidal, and sym-
metric monoidal if E is homotopy commutative.

Proof. Since E∗ is the unit of StableE∗E , all objects are canonically modules
over it and because ε∗ is lax monoidal, it takes values in ε∗(E∗)-modules.
However, we have ε∗(E∗) 
 Cτ by Lemma 4.45, which shows that there’s
a canonical lax monoidal lift to Cτ -modules which we will denote by χ∗. It
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follows that we have a commutative diagram

StableE∗E ModCτ (SynE )

SynE

ε∗
χ∗

(5)

of lax monoidal right adjoints, where the right vertical arrow is the forgetful
functor. Both vertical arrows induce equivalences on the hearts, the left one
by Lemma 4.44 and the right one by [50, Lemma 3.1], and hence so does χ∗.
We will first show that its left adjoint χ∗ is fully faithful.

Observe that both vertical arrows in the diagram above are cocontinuous;
this is clear in the case ofModCτ (SynE ) and is part of Lemma 4.44 in the case
of StableE∗E . By [39, 4.7.3.16], to prove that χ∗ is fully faithful it is enough
to verify that that for any X ∈ SynE , the induced map Cτ ⊗ X → ε∗ε∗X
coming from the Cτ -module structure on ε∗ε∗X is an equivalence. Since both
the composite ε∗ε∗ and tensoring with Cτ preserve colimits, it is enough to
check that the map is an equivalence for synthetic spectra of the form νP ,
where P ∈ Sp f p

E . This is exactly Lemma 4.45.
We are left with monoidality. As χ∗ is lax monoidal, it follows formally

that χ∗ is oplax monoidal. We claim that χ∗ is in fact monoidal. To see this,
observe that the class of M, N ∈ ModCτ (SynE ) such that the structure map

χ∗(M ⊗ N ) → χ∗(M) ⊗ χ∗(N )

is an equivalence is closed under colimits in each variable separately. Since
ModCτ (SynE ) is generated under colimits bymodules of the formCτ ⊗X for
X ∈ SynE , it is enough to verify that the structure map is an equivalence for
modules of such form. The claim then follows from the fact that ε∗ : Syn →
StableE∗E is monoidal, which is Lemma 4.44, and the equivalence χ∗(Cτ ⊗
X) 
 ε∗(X), which holds by commutativity of the diagram (5) after taking
left adjoints.

We move to monoidality of the right adjoint. As χ∗ is cocontinuous, by
Remark 2.31, and since the image of Comod f p

E∗E ↪→ StableE∗E generates the
latter under colimits, the same argument as above shows that it is enough to
show that the structure map

χ∗(P) ⊗ χ∗(Q) → χ∗(P ⊗ Q)

is an equivalence for P, Q ∈ Comod f p
E∗E . As χ∗ is fully faithful, it is enough

to show that the image of the above map under χ∗, which is

χ∗χ∗(P) ⊗ χ∗χ∗(Q) → χ∗χ∗(P ⊗ Q), (6)
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by monoidality of χ∗, is an equivalence. However, as P, Q, P ⊗ Q ∈
Comod f p

E∗E ⊆ Stable♥
E∗E , these three objects are in the image of the fully

faithful left adjoint χ∗ and hence their counit maps are equivalences. It fol-
lows that the counit maps of χ∗ � χ∗ identify (6) with the identity of P ⊗ Q
which is an equivalence as needed. This shows that χ∗ is monoidal.

If E is homotopy commutative, then ε∗ is symmetric monoidal. The same
argument as above then establishes that both χ∗ and χ∗ are in fact symmetric
monoidal. �
Remark 4.47. The equivalence of Theorem 4.46 is most naturally compared
to a theorem of Gheorghe-Wang-Xu which states that in the context of p-
complete cellular motivic spectra there is an equivalence between the stable
∞-category of even BP∗BP-comodules and the ∞-category of motivic Cτ -
modules [25]. We will discuss the relationship between synthetic and motivic
homotopy theory in more detail in Sect. 7.

Both ∞-categories participating in the adjunction
χ∗ � χ∗ : ModCτ (SynE ) � StableE∗E of Theorem 4.46 can be equipped
with t-structures. In the case of Hovey’s stable ∞-category, this is a conse-
quence Corollary 3.8. On the other hand, ModCτ (SynE ) admits a t-structure
induced from the one on synthetic spectra.

Proposition 4.48. Let A be an associative algebra in synthetic spectra and
assume that A is connective. Then the∞-categoryModA(SynE ) of A-modules
admits a natural t-structure in which a module is (co)connective if and only if
the underlying synthetic spectrum is.

Proof. This is identical to the case ofmodules over a connective ring spectrum,
as in [40][2.1.1.1]. �

Notice that it is immediate from the definition of the t-structure of Proposi-
tion 4.48 that in the free-forgetful adjunction SynE � ModA(SynE ), the right
adjoint is t-exact; that is, it preserves both the connective and coconnective
parts. It follows formally that the left adjoint is right t-exact; that is, preserves
the connective parts. It is not in general left t-exact. An analogous statement
can be made about the adjunction involving Hovey’s ∞-category.

Proposition 4.49. In the adjunction χ∗ � χ∗ : ModCτ (SynE ) � StableE∗E ,
the right adjoint χ∗ is t-exact. In particular, the left adjoint χ∗ is right exact.

Proof. The t-structure on Cτ -modules here is the one of Proposition 4.48,
induced from the one on synthetic spectra. Since χ∗ : StableE∗E →
ModCτ (SynE ) is by construction a lift of the functor ε∗ : StableE∗E →
SynE , it is enough to show that the latter preserves the properties of being
(co)connective. This is a consequence of being a precomposition functor
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along a morphism of additive ∞-sites with the covering lifting property, see
Remark 2.23. The right t-exactness of the left adjoint is a formal consequence
of the left t-exactness of the right adjoint. �

Note that Theorem 4.46 asserts that there exists a fully faithful embedding
ModCτ (SynE ) ↪→ StableE∗E , but we do not know if this is always an equiva-
lence. We will show that this is indeed the case under the following additional
assumption on E , which is satisfied in many examples.

Definition 4.50. We say E has plenty of finite projectives if comodules of
the form E∗P , where P is a finite projective, generate Hovey’s ∞-category
StableE∗E under colimits and suspensions.

Here, we consider any comodule as an object of Hovey’s ∞-category through
the equivalence Stable♥

E∗E 
 ComodE∗E of Corollary 3.8. Let us give some
examples of homology theories which satisfy this condition.

Lemma 4.51. If E is Landweber exact or the sphere S0, then it has plenty of
finite projectives.

Proof. If E is Landweber exact, it is a theorem of Hovey that StableE∗E is
generated under colimits and suspensions by the unit comodule E∗ 
 E∗S0,
see [28][6.7]. If E 
 S0, then the associated Hopf algebroid (π∗S0, π∗S0) is
discrete, so that Stableπ∗S0 coincides with the derived ∞-category of π∗S0-
modules, which is generated by the monoidal unit. �
Remark 4.52. We do not know whether every Adams-type homology theory
E has plenty of finite projectives.

Proposition 4.53. The adjunction χ∗ � χ∗ : ModCτ (SynE ) � StableE∗E
is an adjoint equivalence if and only if E has plenty of finite projectives. In
particular, it is an equivalence if E is Landweber exact.

Proof. By Theorem 4.46, the left adjoint χ∗ is fully faithful, hence the adjunc-
tion is an adjoint equivalence if and only if the image of ModCτ (SynE )

generates all of StableE∗E under colimits.
By [39][4.7.3.14] applied to the adjunction SynE � ModCτ (SynE ), the

latter ∞-category is generated by modules of the form Cτ ⊗ X , where X is a
synthetic spectrum. Since SynE itself is generated by suspensions of νP for P
finite projective, see Remark 4.14, it follows we can restrict to X of such form.
This ends the first part, since χ∗(Cτ ⊗ νP) 
 ε∗νP 
 E∗P . The second one
is immediate from Lemma 4.51. �
At the risk of proving things slightly out of order, we will now show that the
assumption of having plenty of finite projectives is not really critical, as one
can get rid of it by working with hypercomplete objects.
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Let us first describe what are the hypercomplete objects we have in mind.
In Sect. 5.1 below, we introduce the notion of an νE-local synthetic spectrum;
that is, one local with respect to νE⊗− equivalences, and show that in terms of
sheaves on finite projective spectra this corresponds to being hypercomplete,
see Proposition 5.4. Due to the latter fact, we denote the ∞-category of νE-
local synthetic spectra bŷSynE .

On the algebraic side, we’ve described Hovey’s ∞-category as the ∞-
category of spherical sheaves of spectra on dualizable comodules and the
subcategory of hypercomplete sheaves can be identified with the derived
∞-category D(ComodE∗E ) by Theorem 2.64, in particular, the latter is a
localization of StableE∗E . In this context, the hypercomplete analogue of
Theorem 4.46 is as follows.

Theorem 4.54. The functor χ∗ : StableE∗E → ModCτ (SynE ) restricts to a
monoidal, t-exact equivalence D(ComodE∗E ) 
 ModCτ (̂SynE ) between the
derived∞-category of comodules andCτ -modules in νE-local synthetic spec-
tra. If E is homotopy commutative, this equivalence is symmetric monoidal.

Proof. We use the identification StableE∗E 
 ShSp� (Comod f p
E∗E ) of Theo-

rem 3.7 and further identify the derived ∞-category with the subcategory of
hypercomplete sheaves.

First we show that χ∗ does restrict to a functor as above, so let X be a
hypercomplete object of Hovey’s stable ∞-category. By Proposition 2.12,
ε∗ : StableE∗E → SynE commutes with hypercompletion, in particular pre-
serves hypercomplete objects and we deduce that ε∗X is hypercomplete. This
is enough, since the latter is the underlying synthetic spectrum of χ∗X .

It follows that there’s an induced adjunction χ̂∗ � χ∗ : ModCτ (̂SynE ) �
D(ComodE∗E ), where χ̂∗ = ̂L ◦ χ∗ with ̂L the hypercompletion functor.
Again by Proposition 2.12, this restriction of χ∗ is also cocontinuous, so that
to verify that the unit of χ̂∗ � χ∗ is an equivalence it is enough to check that’s
the case for modules of the form Cτ ⊗ νP with P finite projective. Note that
the latter are hypercomplete by Lemma 4.29 and generate all modules under
colimits and suspensions by the argument given in the proof of Theorem 4.46.
Then, since χ∗ commutes with hypercompletion, we have

χ∗χ̂∗(Cτ ⊗ νP) 
 ̂Lχ∗χ∗(Cτ ⊗ νP) 
 ̂L(Cτ ⊗ νP) 
 Cτ ⊗ νP,

where’ve used that the unit of χ∗ � χ∗ is an equivalence by Theorem 4.46.
We deduce that the same is true for χ̂∗ � χ∗.

This shows that ̂χ∗ is fully faithful, we now check that it is also essentially
surjective. Since ̂χ∗(Cτ ⊗ νP) 
 E∗P , this is the same as verifying that
D(ComodE∗E ) is generated under colimits and suspensions by comodules of
the form E∗P . By Theorem 3.27, the morphism of ∞-sites E∗ : Sp f p

E →
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Comod f p
E∗E has the covering lifting property, it follows that any dualizable

comodule admits a surjection from one of the form E∗P . Because dualiz-
ables generate all comodules under colimits, we deduce the same is true about
comodules of the form E∗P . This implies that their suspensions must generate
the whole derived ∞-category and we’re done. �

Remark 4.55. (Tensor product of synthetic spectra and the derived tensor
product) Here we discuss one way in which the tensor product of synthetic
spectra can be considered as a derived version of the usual tensor product of
spectra. For simplicity, we assume that E has plenty of finite projectives and
is homotopy commutative, so that we have a symmetric monoidal equivalence
StableE∗E 
 ModCτ (SynE ) by Proposition 4.53.

In this context, for any synthetic spectrum X one can considerCτ ⊗ X as an
object of the stable ∞-category of E∗E-comodules. The latter is essentially a
variant on the ∞-category D(ComodE∗E ) so that the functor Cτ ⊗ − can be
considered as some form of “derived E-homology” of a synthetic spectrum.

Note that this “derived E-homology” functor is not the same as the synthetic
homology we have studied before, however, using Lemma 4.29 one can show
that if X = νY , where Y is an ordinary spectrum, then Cτ ⊗ νY is contained
in the heart of StableE∗E and can be identified with the comodule E∗Y , so
that Cτ ⊗ − extends the usual homology functor on spectra.

An interesting feature of the synthetic approach is that this “derived E-
homology” functor Cτ ⊗ −: SynE → StableE∗E is strictly symmetric
monoidal, unlike the ordinary homology functor defined on spectra, which
is in general only lax symmetric monoidal. This is what we mean by saying
that the tensor product of synthetic spectra is better behaved than the tensor
product of spectra—the price to be paid here being that ν : Sp → SynE is
also not in general symmetric monoidal.

4.6 More on homotopy of synthetic spectra

In this short section we compute certain homotopy classes of maps between
synthetic spectra and relate them to homological algebra of comodules. More
specifically, we will be interested in synthetic analogues νX and homotopy
classes of maps between them, the fundamental result will be that in non-
negative Chow degrees, these are in fact topological.

The crucial tool to perform computations will be the relation between Cτ -
modules and Hovey’s stable ∞-category of Theorems 4.46, 4.54. This shows
that these identifications are important not only for formal reasons, but also
because they allowone to performcalculations by reducinghomotopy to homo-
logical algebra.
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Throughout this section, we will use [−, −] to denote homotopy classes of
maps, andwewill use the subscript to denote the homological grading notation
for these so that

[X, Y ]t,w 
 [St,w ⊗ X, Y ]0,0 
 Y−t,−w(X).

Lemma 4.56. Let X, Y be spectra. Then,

[νY,Cτ ⊗ νX ]t,w 
 Extw−t,w
E∗E (E∗Y, E∗X),

where on the left we have homotopy classes of maps of synthetic spectra.

Proof. Since Cτ ⊗ νX is a Cτ -module, we have [νY,Cτ ⊗ νX ]t,w 
 [Cτ ⊗
νY,Cτ ⊗ νX ]Cτ

t,w, where on the right hand side we have homotopy classes of
maps of Cτ -modules. By Lemma 4.29, Cτ ⊗ νY and Cτ ⊗ νX are contained
in the heart of synthetic spectra, in particular are coconnective and hence
hypercomplete as sheaves of spectra by a combination [40, 1.3.3.3, (1)] and
[41, 6.5.2.9].

By Theorem 4.54, there exists a t-exact equivalence ModCτ (̂SynE ) 

D(ComodE∗E ) between Cτ -modules in hypercomplete synthetic spectra and
the derived ∞-category of E∗E-comodules. It follows that [Cτ ⊗ νY,Cτ ⊗
νX ]Cτ

t,w can be identified with homotopy classes of maps between two objects
ofD(ComodE∗E )♥ and thus are isomorphic to Ext-groups in comodules. One
checks that the gradings work out as above. �
Proposition 4.57. Let X, Y be spectra and consider their synthetic analogues,
νY and νX. Then, we have a long exact sequence

. . . → [νY, νX ]t,w+1 → [νY, νX ]t,w → Extw−t,w
E∗E (E∗Y, E∗X)

→ [νY, νX ]t−1,w+1 → . . .

where the maps [νY, νX ]t,w+1 → [νY, νX ]t,w are given by multiplication by
τ .

Proof. We have a cofibre sequence �0,−1X → X → Cτ ⊗ X , which induces
a long exact sequence of the form

. . . → [νY, νX ]t,w+1 → [νY, νX ]t,w → [νY,Cτ ⊗ νX ]t,w
→ [νY, νX ]t−1,w+1 → . . . ,

so that we only have to show [νY,Cτ ⊗ νX ]t,w 
 Extw−t,w
E∗E (E∗Y, E∗X),

which is exactly Lemma 4.56. �
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Theorem 4.58. Let X, Y be spectra. Then, the natural map [νY, νX ]t,w →
[Y, X ]t induced by the τ -inversion is an isomorphism in non-negative Chow
degrees; that is, when t − w ≥ 0.

Proof. Let’s first assume that t − w = 0. In this case, we’re claiming that the
natural map

[νY, νX ]t,t 
 [ν(�tY ), νX ]0,0 → [�tY, X ]0 
 [Y, X ]t

given by τ -inversion of is an isomorphism. This is a consequence of full
faithfulness of ν, which was Corollary 4.38, since τ -inversion is a one-sided
inverse to ν by Proposition 4.40.

It’s now enough to show that when t −w ≥ 0, then the map [νY, νX ]t,w →
[νY, νX ]t,w−1 given by multiplication by τ is an isomorphism. By Proposi-
tion 4.57, this map participates in a long exact sequence whose fragment is
given by

Extw−t−2,w−1
E∗E (E∗Y, E∗X) → [νY, νX ]t,w → [νY, νX ]t,w−1

→ Extw−t−1,w−1
E∗E (E∗Y, E∗X)

and we see that under the assumption of t − w ≥ 0, both outer Ext-groups
necessarily vanish, ending the proof. �
Remark 4.59. If we set the source Y to be S0,0 
 νS0, then Theorem 4.58 is
a more elaborate version of Corollary 4.12, which said that π∗,∗νX coincides
with homotopy groups of X in non-negative Chow degrees.

More precisely, we see that if by (π∗,∗νX)Chow≥0 we denote the part
concentrated in non-negative Chow degrees, then we have an isomorphism
(π∗,∗νX)Chow≥0 
 π∗X ⊗Z Z[τ ] of bigraded Z[τ ]-modules, with the copy of
π∗X concentrated in Chow degree zero. Moreover, the proof of Theorem 4.58
makes it clear that the negative Chow degree homotopy groups of νX are
controlled by ExtE∗E (E∗, E∗X).

We can say more about the homotopy of νX if we put more assumptions,
it is clear that what is needed is some control over the relation between the
homotopy of X and its E-homology.We will prove a result of this type assum-
ing that X is a homotopy E-module, although a diligent reader will notice that
slightly less is needed.

Proposition 4.60. Let M be a spectrum which is a homotopy E-module. Then
π∗,∗νM vanishes in negative Chow degree, so that π∗,∗νM 
 π∗M ⊗Z Z[τ ].
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Proof. By Remark 4.59, the non-negative Chow degree homotopy of νM is as
given above, so that the second part follows from the first. Again, by Proposi-
tion 4.57 we have a long exact sequence of the form

. . . → Extw−t−1,w
E∗E (E∗, E∗M) → πt,w+1νM → πt,wνM

→ Extw−t,w
E∗E (E∗Y, E∗M) → . . . .

If t −w = 0, the left Ext-group vanishes and we have πt,wνM 
 πt M . Under
the latter identification, the right map corresponds to the Hurewicz homomor-
phism πt M → HomE∗E (E∗, E∗M) which is an isomorphism since M is a
homotopy E-module, see Remark 3.18. We deduce that π∗,∗νM vanishes in
Chow degree t − w = −1.

ByRemark3.18wehave E∗M 
 E∗E⊗E∗M∗, so thatExtE∗E (E∗, E∗M) 

ExtE∗(E∗, M∗) vanishes in positive homological degree. It follows from
that and the observation above that the boundary maps πt,wνM →
ExtE∗E (E∗, E∗M) are always surjective. We deduce from the long exact
sequence above that τ acts injectively on π∗,∗νM and since we’ve proven
that the latter group vanishes in Chow degree t − w = −1, it must vanish in
all negative Chow degrees. �
Remark 4.61. In the particular case of a free homotopy module M 
 E ⊗ X ,
Proposition 4.60 shows that νE∗,∗νX 
 π∗,∗ν(E ⊗ X) 
 E∗X [τ ]. In partic-
ular, νE∗,∗ 
 E∗[τ ] and similarly νE∗,∗νE 
 E∗E[τ ]. This is a restatement
of our previous result of this type, which was Proposition 4.21. Notice this
implies that (νE∗,∗, νE∗,∗νE) is a flat Hopf algebroid.

We finish the section by describing two ways in which homotopy the-
ory of synthetic spectra intertwines with homotopy theory of spectra, the
“Cτ -philosophy” of Gheorghe, Isaksen, Wang and Xu, and a certain spec-
tral sequence associated to the synthetic Whitehead towers.

Remark 4.62. Let X be a spectrum and A a homotopy associative ring spec-
trum. In this context, one can consider the A-based Adams tower of the form

X0

A ⊗ X0

X1

A ⊗ X1

. . .

,

where X0 
 X and each Xn+1 → Xn → A ⊗ Xn is fibre. Applying
π∗(−) 
 [S0, −] to this tower yields a spectral sequence which converges
to the homotopy groups of the A-nilpotent completion X A, which in reason-
able cases coincides with A-localization. In fact, there is little special about
the ∞-category Sp, as this construction is formal enough to yield a spectral
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sequencewhenever X, A are objects of a presentable, symmetricmonoidal sta-
ble ∞-category; the Adams spectral sequence is developed in this generality
in [44].

In particular, we can work with SynE and take as our objects the synthetic
analogues νX , νA of spectra X , A as above. If νA∗,∗νA is flat over νA∗,∗,
then under technical conditions similar to the usual topological ones one can
show that the resulting spectral sequence is of the form

Exts,t,wνA∗,∗νA(νA∗,∗, νA∗,∗νX) → πt−s,w(νX)∧νA,

where the latter is the nilpotent completion of νX ; this is the νA-based synthetic
Adams spectral sequence. Note that there is another variable implicit here,
namely the choice of the Adams-type homology theory E to base synthetic
spectra on and although we’ve seen for example in Theorem 4.58 that a lot of
the theory is independent of that choice, one could argue that the interesting
part are the things that are not independent.

In any case, byTheorem4.46 andTheorem4.37wehave a spanof symmetric
monoidal stable ∞-categories

Sp SynE StableE∗E
τ−1 Cτ ⊗ −

,

notice that we have τ−1νX 
 X , τ−1νA 
 A and similarly Cτ ⊗ νA 

E∗A, Cτ ⊗ νX 
 E∗X , at least in the case when E has plenty of finite
projectives, where we view E∗A and E∗X as comodules contained in the heart
of Hovey’s stable ∞-category. It follows that the synthetic νA-based Adams
spectral sequence maps into the usual A-based topological Adams-spectral
sequence, as well as a purely algebraic Adams spectral sequence computing
ExtE∗E (E∗, E∗X). Moreover, these maps are not arbitrary, but rather are given
by τ -inversion and “killing” τ in a precise sense and so in some sense they
complement each other. This relation allows one to deduce topological Adams
differentials from algebraic ones and vice versa.

This method of computing differentials in the topological Adams spec-
tral sequence is due to Gheorghe, Isaksen, Wang and Xu and is what we
call the “Cτ -philosophy”. In their work, they develop a formal context like
abovewhere the∞-category of synthetic spectra is replaced by the p-complete
cellular motivic category. We will prove later in Theorem 7.34 that after p-
completion, the cellularmotivic category coincideswith even synthetic spectra
based on MU in the sense of Definition 5.10. Through this equivalence, the
motivic Cτ -context can be considered as a special case of the synthetic one.

The comparison with the motivic category also establishes that the relation
between the topological and algebraic Adams spectral sequences exhibited by
the synthetic ∞-category is in general non-trivial, as that is known to be the
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case in the motivic context. In fact, a consistent use of the motivicCτ -methods
has led to dramatic advances in the knowledge of the classical stable homotopy
groups at p = 2 [31,32].

Remark 4.63. As described in Remark 4.62, if A is a ring spectrum, then the
νA-based Adams spectral sequence in synthetic spectra interpolates between
the A-based Adams spectral sequence of spectra and an algebraic one based
on E∗A. In the particular case of A = E , Remark 4.61 implies that

π∗,∗(νE ⊗ . . . ⊗ νX) 
 π∗,∗ν(E ⊗ . . . ⊗ X) 
 π∗(E ⊗ . . . ⊗ X) ⊗Z Z[τ ],

so that both the first and second page of the synthetic νE-Adams spectral
sequence coincidewith the topological ones extended toZ[τ ]. The p-complete
motivic analogue of this statement is Lemma 7.27, notice that the synthetic
version holds integrally and with no restriction on the spectrum X .

Remark 4.64. We now describe the connection between the Whitehead tow-
ers in synthetic spectra and the topological Adams spectral sequence. For
simplicity, let us assume that E is an associative ring spectrum and let X be
an E-nilpotent complete spectrum in the sense that the cosimplicial object

X → E ⊗ X ⇒ E ⊗ E ⊗ X . . .

is a limit diagram. Applying the spectral Yoneda embedding we obtain a limit
diagram

Y (X) → Y (E ⊗ X) ⇒ Y (E ⊗ E ⊗ X) . . .

of synthetic spectra. One can show that taking k-connective covers preserves
this limit, this is equivalent to the limit of

Y (E ⊗ X)≥k ⇒ Y (E ⊗ E ⊗ X)≥k . . .

being k-connective as a synthetic spectrum, which one verifies using The-
orem 4.18 and the homotopy of a totalization spectral sequence. As a
consequence, there’s an equivalence of spectra

Y (X)≥k(P) 
 lim←− [Y (E ⊗ X)≥k(P) ⇒ Y (E ⊗ E ⊗ X)≥k(P) . . .]

for any finite projective P . Since E ⊗ . . .⊗ E ⊗ X are E-modules, one shows
similarly to Proposition 4.60 that Y (E ⊗ . . . ⊗ E ⊗ X)≥k(P) 
 F(P, E ⊗
. . . ⊗ E ⊗ X)≥k on the nose, rather than just up to sheafification. Then, the
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above limit statement implies that

Y (X)≥k(P) 
 lim←− [(DP ⊗ E ⊗ X)≥k ⇒ (DP ⊗ E ⊗ E ⊗ X)≥k . . .],
which means that Whitehead towers in synthetic spectra arise by truncating
the Adams resolution rather than the spectrum itself. It follows that the tower
of spectra

. . . → Y (X)≥k(S
0) → Y (X)≥k−1(S

0) → . . .

is the décalage in the sense of Deligne [16] of the E-based Adams tower of
X and thus the associated spectral sequence agrees, up to suitable reindexing,
with the usual E-Adams spectral sequence computing π∗X .

It is a deep result of Levine that the spectral sequence associated to the
realization of the slice filtration of themotivic sphere can be also identifiedwith
the décalage of the classical Adams-Novikov spectral sequence, see [35]. This
suggests that there should be a connection between the motivic slice filtration
and the Postnikov towers in MU-based synthetic spectra.

Remark 4.65. By Remark 4.31, the Postnikov filtration of Y (X) studied in
Remark 4.64 can be identifiedwith filtration by “powers of τ”, in particular the
subquotients are Cτ -modules. Then, Lemma 4.56 gives an independent proof
that the first page of this spectral sequence can be identified with Ext-groups
in comodules.

5 Variants of synthetic spectra

In this section we give a description of two important classes of synthetic
spectra. First, we study νE-local spectrawhich are defined in the expectedway,
the surprising result is that this condition corresponds to hypercompletness.
Secondly, if E is even in a suitable sense, we study what we call the even
synthetic spectra.

5.1 νE-local synthetic spectra

In this section we study νE-local synthetic spectra, a condition which we
show corresponds to being hypercomplete as a sheaf. Then, we derive basic
properties of the ∞-category of νE-local synthetic spectra, in particular with
respect to τ -phenomena.

Definition 5.1. Wesay amap X → Y of synthetic spectra is a νE-equivalence
when the induced map νE ⊗ X → νE ⊗ Y is an equivalence. We say X is
νE-local if it is local with respect to the class of νE-equivalences.
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We will motivate our choice of the notation in a second. Notice that by The-
orem 4.18, as a bigraded abelian group, the synthetic homology νE∗,∗X is
isomorphic to the homotopygroupsπ♥∗ X with respect to the natural t-structure.

Lemma 5.2. A map X → Y of synthetic spectra is an νE-equivalence if and
only if the induced map νE∗,∗X → νE∗,∗Y is an isomorphism.

Proof. Clearly, it’s enough to prove that if A is a synthetic spectrum such that
νE∗,∗A = 0, then it is νE-acyclic in the sense that νE ⊗ A 
 0. Let P be
a finite projective spectrum, using Lemma 4.11 we see that we have to show
that

πk(νE ⊗ A)(P) 
 [νP, νE ⊗ A]k,0 
 [νS0, νDP ⊗ νE ⊗ A]k,0

 νEk,0(νDP ⊗ A)

vanishes for all k ∈ Z, so that it is sufficient to show the vanishing of
νE∗,∗(νDP ⊗ A) for all P .

By Theorem 4.18, the vanishing of νE-homology is the same as being
∞-connective as a sheaf of spectra, so we just have to prove that if A is
∞-connective, then so is νDP ⊗ A. This is immediate from Lemma 2.27. �
Remark 5.3. Notice that Lemma 5.2 is immediate when SynE is generated
under colimits by the bigraded spheres, so that the bigraded homotopy groups
detect equivalences. We will show that this holds for synthetic spectra based
on MU in Theorem 6.2.

Proposition 5.4. Let X be a synthetic spectrum. Then X is νE-local if and
only if it is a hypercomplete sheaf of spectra on Sp f p

E .

Proof. By Lemma 5.2, a synthetic spectrum X is νE-local if and only if for
any Y which is acyclic in the sense that νE∗,∗Y = 0, we havemap(Y, X) 
 0.
It follows immediately from the identification νE∗,∗Y 
 π

♥∗ Y that any acyclic
Y is ∞-connective as a sheaf of spectra and so if X is hypercomplete, then
map(Y, X) 
 0. We deduce that if X is hypercomplete, then it is νE-local.

Now suppose that X is νE-local. Consider the map X → ̂LX into the
hypercomplete sheafification of X , by Corollary 2.7,̂LX is spherical again and
so defines a synthetic spectrum. Since the hypercomplete sheafification functor
doesn’t change the homotopy sheaves, we deduce that νE∗,∗X → νE∗,∗̂LX is
an isomorphism. Since both X and̂LX are νE-local, the former by assumption
and the latter by the part already done above, we deduce that X 
 ̂LX , so that
X is hypercomplete. �
Keeping Proposition 5.4 in mind, we will use the terminology hypercomplete
and νE-local interchangeably, and denote their ∞-category by ̂SynE . Note
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that the inclusion

̂SynE ↪→ SynE

admits a left adjoint

(−)∧ : SynE → SynE

given by the hypercompletion functor, which we can identify with νE-
Bousfield localization.

Remark 5.5. We decided to choose to use both the terminology hypercom-
plete and νE-local instead of fixing one as both offer useful viewpoints,
depending on whether one wants to stress the sheaf nature of synthetic spectra
or their analogy to the usual ∞-category of spectra.

It is immediate from the definition that the class of νE-equivalences is
compatible with the tensor product of synthetic spectra. It follows that̂SynE
acquires a unique symmetric monoidal structure such that the hypercomple-
tion functor (−)∧ : SynE → ̂SynE is symmetric monoidal. In cases where a
distinction has to bemade, we will denote the tensor product of hypercomplete
synthetic spectra by ̂⊗; it is given by the usual formula X̂⊗Y 
 (X ⊗ Y )∧.

The ∞-category ̂SynE has similar formal properties to the ∞-category
SynE and inherits a t-structure from the latter.Moreover, the inclusion induces
equivalences (̂SynE )≤k 
 (SynE )≤k on the k-coconnective parts for each
k ∈ Z, see Remark 2.17. In particular, there’s an induced equivalence on
the hearts and we have ̂Syn♥

E 
 ComodE∗E , as in the non-hypercomplete
case. Whether one should work with hypercomplete or non-hypercomplete
synthetic spectra depends on the particular application; on one hand, it is easier
to detect equivalences in ̂SynE , on the other, SynE is compactly generated,
see Remark 4.14.

We will now describe how the relation between synthetic spectra, spectra
and comodules plays out in the hypercomplete case. Our first result shows
that the condition of being E-local for a spectrum is very closely related to
νE-locality in the synthetic case.

Proposition 5.6. If X is a spectrum, then νX is νE-local if and only if X is E-
local. Moreover, an E-localization map X → XE induces a νE-localization
νX → νXE, so that (νX)∧ 
 ν(XE ).

Proof. Assume first that X is E-local. As hypercompleteness of a sheaf of
spectra is detected by �∞, see Remark 2.14, and since �∞(νX) 
 y(X), we
deduce that νX is hypercomplete by Proposition 3.24.
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Let now X be a spectrum such that νX is hypercomplete. It’s enough to show
that whenever A is an E-acyclic spectrum, then map(A, X) 
 0. However, we
have map(A, X) 
 map(νA, νX) by Corollary 4.38 and the latter vanishes
by the assumption of νX being hypercomplete, since νA is νE-acyclic by an
explicit calculation of its homology of Proposition 4.21.

Suppose now that X → XE is an E-localization. We’ve seen that νXE
is hypercomplete, so it’s enough to show that the map νX → νXE is an
νE-equivalence, which is again immediate from Proposition 4.21. �

Let us now discuss τ -phenomena in νE-local synthetic spectra. By hyper-
completing the usual τ , we obtain a map τ∧ : (S0,−1)∧ → (S0,0)∧. Notice that
if X is a hypercomplete synthetic spectrum, then the tensor product τ∧

̂⊗X
coincides with the usual map τ : �0,−1X → X since a suspension of a hyper-
complete synthetic spectrum is hypercomplete.Because of that,wewill usually
not notationally distinguish between τ and τ∧. We first give the description of
hypercomplete τ -invertible objects.

Proposition 5.7. The equivalenceSynE(τ−1) 
 Sp of∞-categories restricts
to an equivalencêSynE (τ−1) 
 SpE between νE-local synthetic spectra and
E-local spectra.

Proof. The equivalence in question is given by the spectral Yoneda embedding
Y : Sp → SynE , see Theorem 4.37. Since hypercompleteness of a sheaf of
spectra is detected by �∞ by Remark 2.14, we deduce that Y (X) is hyper-
complete if and only if (Y (X))≥0 
 νX is. Then, the statement follows
immediately from Proposition 5.6. �
Analogously to the non-hypercomplete case, one can also give an algebraic
description of hypercomplete Cτ -modules. In fact, we have already done this
in Theorem 4.54, we recall it here for the convenience of the reader.

Namely, observe that by Lemma 4.29, Cτ is hypercomplete and so any
module which is hypercomplete as a synthetic spectrum admits a unique
structure of a Cτ -module in ̂SynE . Then, one proves that the adjunction
χ∗ � χ∗ : SynE � StableE∗E of Theorem 4.46 induces an adjoint equiva-
lenceModCτ (̂SynE ) 
 D(ComodE∗E ) between hypercomplete Cτ -modules
and the derived∞-category of comodules. Note that, interestingly, one proves
that this is an adjoint equivalence for an arbitrary Adams-type E , even though
the non-hypercomplete version required a slightly stronger assumption.

5.2 Even synthetic spectra

In this section we describe a variant of the construction of synthetic spectra
where the indexing ∞-category of finite E-projective spectra is replaced by
finite even projective spectra. The main result is that the resulting ∞-category
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embeds into SynE in a natural way, so that even synthetic spectra can be
considered as a particular class of synthetic spectra we have considered up to
this point.

Perhaps themain reason to study this construction is thatwhen E = MU, the
∞-category of even synthetic spectra turns out to be strongly related to the cel-
lular motivic category, in fact, wewill see the two coincide after p-completion.
As there is nothing special about MU that makes the construction of the even
category possible, we instead phrase the results in a larger generality.

Definition 5.8. We say a spectrum P is finite even projective if it is finite and
E∗ is finitely generated projective, concentrated in even degrees and denote the
∞-category of finite even projective spectra by Sp f pe

E . We say an Adams-type
homology theory E is even Adams if E can be written as a filtered colimit
E 
 lim−→ Pα of finite even projective spectra.

Example 5.9. The complex bordism spectrum MU is even Adams, as it is a
filtered colimit of Thom spectra of Grassmannians, which are even. In fact,
if E is Landweber exact, then the proof of [28, 1.4.9] implies that E∗ being
concentrated in even degrees is a sufficient and necessary condition for being
even.

On the other hand, if E is even Adams then clearly E∗, E∗E are both con-
centrated in even degree. This implies that the Eilenberg-MacLane spectrum
HFp is Adams, but not even Adams, since the dual Steenrod algebra is not
concentrated in even degree.

We have an inclusion of finite even projective spectra Sp f pe
E ↪→ Sp f p

E

into all finite projectives, through it Sp f pe
E clearly inherits a topology and a

symmetricmonoidal structure thatmake it into an excellent∞-site. In concrete
terms, this means that we declare a map P → Q of finite even projective
spectra to be a covering if it is an E∗-surjection, the symmetric monoidal
structure is simply the tensor product of spectra.

Definition 5.10. An even synthetic spectrum X is a spherical sheaf of spectra
on the siteSp f pe

E of finite even E-projective spectra.Wedenote the∞-category
of even synthetic spectra by SynevE .

As in the non-even case, general results on sheaves of spectra on an excel-
lent ∞-site imply that SynevE is a presentable, stable ∞-category equipped

with a symmetric monoidal structure induced from that of Sp f pe
E which is

cocontinuous in each variable. Moreover, it admits a right complete t-structure
compatible with filtered colimits whose heart is equivalent to spherical sheaves
of abelian groups.
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Remark 5.11. Let Comod f pe
E∗E denote the category of dualizable E∗E-

comodules concentrated in even degrees, this is an excellent ∞-site with
respect to the epimorphism topology discussed previously in Remark 3.6.
We have the homology functor E∗ : Sp f pe

E → Comod f pe
E∗E and just as in the

non-even case one, which was Theorem 3.27, one verifies that it induces an
equivalence on categories of sheaves of sets, the common envelope in this
case being any filtered diagram lim−→ Pα of finite even projective spectra whose
colimit is a countable sum of even suspensions of E .

This, together with the identification ShSet� (Comod f pe
E∗E ) 
 ComodevE∗E

implies that the heart (SynevE ) 
 ComodevE∗E of even synthetic spectra is given
by the category of even E∗E-comodules. Thus, if one thinks of the∞-category
SynE as a thickened version of the derived ∞-category of comodules, then
SynevE should be considered as a thickening of the derived∞-category of even
comodules.

We now show that there exists a natural embedding SynevE ↪→ SynE , so that
one can think of even synthetic spectra as of synthetic spectra satisfying a cer-
tain property, which we make explicit. This clarifies the relationship between
the two ∞-categories, showing that not only are they formally analogous, but
rather that one is simply an enlargement of the other.

Lemma 5.12. The inclusion i : Sp f pe
E → Sp f p

E is a morphism of excellent
∞-sites with the covering lifting property.

Proof. Since i is an inclusion of an additive, symmetric monoidal subcategory
closed under taking duals, it is clear that it is a morphism of excellent∞-sites.
We will show that i has the covering lifting property.

Suppose that P is finite even projective, Q is finite projective and that
Q → P is an E∗-surjection. We have to show that there exists a finite even
projective R together with a map R → Q such that the composite R → P is
also E∗-surjective. Take the Spanier-Whitehead dual of Q → P and consider
the diagram

DP DQ

E ⊗ DP ,

where the vertical map is induced by the unit of E . The dashed arrow that
would make this diagram commute exists by the universal coefficient theorem
which implies that

E∗DQ 
 HomE∗(E∗DQ, E∗),
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since E ⊗ DP is a direct summand of a finite sum of copies of E and DP →
DQ is a split monomorphism of E∗-modules on homology.
We can write E 
 lim−→ Eα where Eα are finite even projective and since

DQ is finite the map DQ → E ⊗ DP factors through one of the Eα ⊗ DP .
Then we can take R := DEα ⊗ P with the map into Q the dual of the chosen
factorization. �
Theorem 5.13. The inclusion i : Sp f pe

E ↪→ Sp f p
E induces a cocontinuous,

symmetric monoidal embedding SynevE ↪→ SynE whose image is the full
subcategory generated under colimits and suspensions by νP, where P is
finite even projective.

Proof. By Proposition 2.22, there’s an induced adjunction i∗ � i∗ : SynevE �
SynE on the∞-categories of spherical sheaves of spectra, where i∗ is given by
precomposition. Moreover, by the universal property of the Day convolution,
i∗ has a canonical symmetric monoidal structure induced from that of i , so
that the only thing to prove is that it is a fully faithful embedding. Note that as
a consequence of Lemma 5.12, the right adjoint i∗ is cocontinuous.

Since both functors in question are cocontinuous, it’s enough to show that
the unit morphism

ν(P) → i∗i∗ν(P)

is an equivalence for any finite even projective P . The left hand side is the
sheafification of the presheaf

F(−, P)≥0 : Sp f p
E → Sp,

restricted along i . Since the latter commutes with sheafification as a conse-
quence of Lemma 5.12 and Proposition 4, we can identify i∗i∗ν(P) with the
sheafification of the presheaf

F(−, P)≥0 : Sp f p
E → Sp,

which is exactly ν(P). �

6 Synthetic spectra based on MU

In this section we prove some results specific to the ∞-category of synthetic
spectra based onMU, namely cellularity and the structure of the dual Steenrod
algebra.

This particular instance of SynMU is important not only because of the
importance of MU as a spectrum, but also because, as we will see later, even
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synthetic spectra based on MU correspond in a strong way to the cellular
motivic spectra.

6.1 Cellularity

In this short section we prove the cellularity of the ∞-category SynMU of
synthetic spectra based onMU; that is, that the latter is generated under colimits
by the bigraded spheres Sk,l . Intuitively, the result is a consequence of thewell-
behaved nature ofMU∗ as a ring and the fact thatMU is strong enough to detect
equivalences of finite spectra.

Lemma 6.1. Any graded projective module over MU∗ 
 Z[a1, a2, . . .]-
module is free.

Proof. This is elementary and rests on the fact that MU∗ is a graded connected
Z-algebra and so the functor M → Z ⊗MU∗ M on graded MU∗-modules M
preserves and reflects epimorphisms, see [15][Proposition 3.2]. �
Theorem 6.2. The ∞-category SynMU of synthetic spectra based on MU is
cellular in the sense that it is generated under colimits by the bigraded spheres
Sk,l .

Proof. Consider the smallest subcategoryC of SynMU containing the bigraded
spheres and closed under colimits. Since the bigraded spheres are closed under
suspensions, so is C. Since SynMU is clearly generated under colimits by the
suspensions of νP 
 �∞+ y(P), where P ∈ Sp f p

MU, it is enough to show that
νP ∈ C.

SinceMU∗P is free, finitely generated by Lemma 6.1, the samemust be true
for the integral homology, in fact they must be of the same rank. We prove the
result by induction on the rank of H∗(P,Z). Let the rank be k ≥ 1 and assume
that the result has been proven for all finite projective Q with H∗(Q,Z) of
rank smaller than k.

Let Hi (P,Z) be the lowest non-zero homology group, by Hurewicz we
have πi P 
 Hi (P,Z), hence an inclusion of a free summand determines a
map Si → P . Consider the cofibre sequence

Si → P → P ′,

by construction this induces a short exact sequence in integral homology and
H∗(P ′,Z) is free of rank k−1. By the results of Conner-Smith, more precisely
[15][Lemma 3.1] this implies that MU∗P ′ is also free, necessarily of the same
rank.

By the freeness we have H∗(P,Z) 
 Z ⊗MU∗ MU∗P and likewise for P ′,
it follows that since H∗(P,Z) → H∗(P ′,Z) is surjective, so is MU∗P →
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MU∗P ′. By Lemma 4.23, this implies that νSl → νP → νP ′ is a fibre
sequence of synthetic spectra. Since νSl 
 Sl,l , while νP ′ belongs to the
∞-category generated by the bigraded spheres by the inductive assumption,
we deduce that the same must be true for νP . This ends the proof. �
Remark 6.3. An analogous cellularity result holds for the∞-category of even
synthetic spectra based on MU introduced in Definition 5.10. More precisely,
SynevMU is the subcategory of synthetic spectra generated under colimits by
St,w with w even.
To see this, notice first that by Theorem 5.13 we can identify SynevMU with

the full subcategory of SynMU generated by synthetic spectra of the form νP ,
where P is finite even projective. Then, recall that the proof of Theorem 6.2
proceeds by showing that a minimal cell structure on P induces a cell structure
on νP . However, if MU∗P is concentrated in even degree, then the minimal
cell structure has only even cells and so the same must be true for νP .

6.2 The synthetic dual Steenrod algebra

In this section we give an example of a calculation in SynMU by computing
the synthetic dual Steenrod algebra. Our tool will be the formal relationship
between synthetic spectra, spectra and comodules, showing that these abstract
results can be used to perform concrete calculation.

The problem of computing the dual Steenrod algebra internal to synthetic
spectra was suggested to the authors by Dan Isaksen, and is a natural starting
point for at least two reasons. On one hand, the Steenord algebra controls
the behaviour of the Adams spectral sequence, perhaps the most important
tool in computing homotopy groups. On the other, we will prove later in
Theorem 7.34 that the notions of an even synthetic spectrum based on MU
coincides with that of a cellular motivic spectrum after p-completion, through
this correspondence, our calculation is an analogue Voevodsky’s computation
of the motivic dual Steenrod algebra.

Definition 6.4. Let H be the mod p Eilenberg-MacLane spectrum. We call
νH the synthetic Eilenberg-MacLane spectrum.

Observe that since H is a commutative ring spectrum and the synthetic ana-
logue functor is lax symmetric monoidal by Lemma 4.4, νH is a commutative
algebra in synthetic spectra. This implies that νH∗,∗ is a bigraded commutative
ring and that νH∗,∗X is a module over it for any synthetic spectrum X , see
Remark 4.10.

In fact, H in an MU-algebra and so Proposition 4.60 implies that we have
an isomorphism νH∗,∗ 
 Fp[τ ], the motivic analogue of this fact is due
to Voevodsky [58]. This settles the case of coefficients, our goal will be to
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compute the synthetic dual Steenrod algebra νH∗,∗νH . Themethodwe employ
is analogous to one of the ways one can calculate the topological dual Steenrod
algebra by startingwith the knowledge of theHopf algebroid associated toMU,
or rather BP , which we now review.

We have an MU-algebra BP with BP∗ 
 Z(p)[v1, v2, . . .] given by the
Brown-Peterson spectrum. Moreover, by a result of Lazerev [36], the spectra
BP/(v0, . . . , vk) admit structure of MU-algebras such that the quotient maps
BP/(v0, . . . , vk) → BP/(v0, . . . , vk+1) are algebra homomorphisms.
Notice that we can write the Eilenberg-MacLane spectrum as H 


lim−→ BP/(v0, . . . , vk) and since BP∗BP 
 BP∗[b1, b2 . . .], it follows that
H∗BP 
 Fp[b1, b2, . . .]. This is a starting point of the calculation of H∗H
by computing H∗BP/(v0, . . . , vk) inductively. We have a cofibre sequence of
spectra of the form

�2pk−2BP/(v0, . . . , vk−1) → BP/(v0, . . . , vk−1) → BP/(v0, . . . , vk),

for each k ≥ 0, where the first map is multiplication by vk , this is in fact a
cofibre sequence of BP/(v0, . . . , vk−1)-modules. After taking homology, we
obtain a short exact sequence

0 → H∗BP/(v0, . . . , vk−1) → H∗BP/(v0, . . . , vk)

→ H∗BP/(v0, . . . , vk−1)[2pk − 1] → 0

of H∗BP/(v0, . . . , vk−1)-modules, where the square bracket denotes the inter-
nal shift. Sincewe have an isomorphism H∗H 
 lim−→ H∗BP/(v0, . . . , vk), this
determines the additive structure of H∗H . Now, we can choose preimages τk ∈
H2pk−1BP/(v0, . . . , vk) of the the unit of H∗BP/(v0, . . . , vk−1)[2pk − 1] in
the short exact sequences above, by construction together with bi they generate
the whole Steenrod algebra. At odd primes, τk necessarily square to zero by
commutativity and so there’s an induced map

Fp[b1, b2, . . .] ⊗ E[τ0, τ1, . . .] → H∗H.

When p = 2, a more elaborate argument, see [34], shows that with an appro-
priate choice of τk we have τ 2k = bk+1, so that there’s an induced map of the
form

(F2[b1, b2, . . .] ⊗ Fp[τ0, τ1, . . .])/(τ 2k = bk+1) → H∗H.

In both cases, thesemaps are easily seen to be injective bydimension counts and
so this yields the usual description of the topological dual Steenrod algebra.
Our calculation of the synthetic one will follow the above reasoning very
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closely in terms of the additive structure and to determine the multiplicative
one we will reduce to topology.

We now proceed with the computation of νH∗,∗νH . Notice that since BP
is a direct summand of MU(p), it satisfies the conditions of Lemma 4.24, so
that νBP ⊗ νX 
 ν(BP ⊗ X) for any spectrum X . Combining this with
Proposition 4.60 in the case of the Eilenberg-MacLane spectrum we see that

νH∗,∗νBP 
 π∗,∗ν(H ⊗ BP) 
 Fp[b1, . . .][τ ]
with |bi | = (2pi − 2, 2pi − 2) and |τ | = (0, −1). We start with the following
simple lemma.

Lemma 6.5. For any k ≥ 0, the cofibre sequence of BP/(v0, . . . , vk−1)-
modules

�2pk−2BP/(. . . , vk−1) → BP/(. . . , vk−1) → BP/(. . . , vk),

where the first map is multiplication by vk , induces a short exact sequence

νH∗,∗νBP/(. . . , vk−1) → νH∗,∗νBP/(. . . , vk)

→ νH∗,∗νBP/(. . . , vk−1)[2pk − 1, 2pk − 2]
of νH∗,∗νBP/(. . . , vk−1)-modules.

Proof. Observe that the cofibre sequence of BP/(. . . , vk−1)-modules in ques-
tion induces a short exact sequence on BP-, and hence MU-, homology and
so we deduce that

ν�2pk−2BP/(. . . , vk−1) → νBP/(. . . , vk−1) → νBP/(. . . , vk)

is a cofibre sequence of synthetic spectra by Lemma 4.23. This yields
a long exact sequence by taking νH∗,∗ and to see that this is in fact a
short exact sequence as above, we have to show that vk acts by zero on
νH∗,∗νBP/(. . . , vk−1).

Since vk induces a map of νH∗,∗νBP/(. . . , vk−1)-modules, it’s enough to
show that the unit of νH∗,∗νBP/(. . . , vk−1) is taken to zero. However, this
follows from the fact that the unit is in the image of νH∗,∗νBP 
 H∗BP[τ ] 

Fp[b1, . . .][τ ] on which vk clearly acts by zero. �

For each k ≥ 0, let τk be a lift to νH2pk−1,2pkνBP/(. . . , vk) of the unit of
the shift of νH∗,∗νBP/(. . . , vk−1) in the short exact sequences of Lemma 6.5.
Wewill consider τk as elements of νH2pk−1,2pk−2νH , notice that by construc-

tion, after τ -inversion these reduce to the elements τ
top
k ∈ H2pk−1H in the

topological Steenrod algebra considered above, where we have added a super-
script to avoid confusion.
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Corollary 6.6. As a bigraded Fp-vector space, the synthetic dual Steenrod
algebra νH∗,∗νH is isomorphic to Fp[b1, . . .][τ ] ⊗Fp E[τ0, . . .] with |bk | =
(2pk − 2, 2pk − 2), |τk | = (2pk − 1, 2pk − 2), |τ | = (0, −1).

Proof. Arguing using induction and Lemma 6.5, we see that additively
νH∗,∗νBP/(. . . , vk) is the same as Fp[b1, . . .][τ ] ⊗Fp E[τ0, . . . , τk]. The
result follows by passing to colimits. �
Corollary 6.7. The element τ acts injectively on the synthetic dual Steenrod
algebra νH∗,∗νH.

Proof. Since νH∗,∗νH 
 lim−→ νH∗,∗νBP/(. . . , vk) and the transition maps
in the diagram are injective, it’s enough to show that τ acts injectively on
νH∗,∗νBP/(. . . , vk) for each k ≥ −1. This follows immediately by induction
from Lemma 6.5, the base case being the injective action on νH∗,∗νBP 

Fp[b1, . . .][τ ]. �
Lemma 6.8. The algebra νH∗,∗νH is generated by the elements bk ∈
νH2pk−2,2pk−2 in the image of νH∗,∗νBP, where k ≥ 1, the elements
τl ∈ νH2pl−1,2pl−2νH, where l ≥ 0 and the element τ ∈ νH0,−1νH.

Proof. We show a more precise statement that νH∗,∗νBP/(. . . , vk) is gener-
ated by the bi , τ and τi for i ≤ k, since νH∗,∗νH 
 lim−→ νH∗,∗νBP/(. . . , vk),
this is clearly enough. We work by induction, the base case k = −1 being
clear, since νH∗,∗νBP 
 Fp[b1, . . .][τ ]. Now assume that k ≥ 0, then by
Lemma 6.5, we have a short exact sequence

νH∗,∗νBP/(. . . , vk−1) → νH∗,∗νBP/(. . . , vk)

→ νH∗,∗νBP/(. . . , vk−1)[2pk − 1, 2pk − 2]
of νH∗,∗νBP/(. . . , vk−1)-modules. By the inductive assumption, it’s enough
to show that the subalgebra generated by the specified elements con-
tains the generators of νH∗,∗νBP/(. . . , vk) as an νH∗,∗νBP/(. . . , vk−1)-
module. This is clear, as νH∗,∗νBP/(. . . , vk) is an extension of cyclic
νH∗,∗νBP/(. . . , vk−1)-modules and the generators of both of these are
respectively the unit and τk . �
We’re now ready to prove the structural theorems for the synthetic dual Steen-
rod algebra. There are two cases to consider, that of an odd and even prime,
and we do the former first as it is quite a bit easier.

Theorem 6.9. Let p be an odd prime and νH∗,∗νH be the corresponding
synthetic dual Steenrod algebra. Then, there’s an isomorphism

νH∗,∗νH 
 Fp[b1, b2, . . . , τ ] ⊗Fp E(τ0, τ1, . . .)
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of bigraded algebras. In particular, as an algebra νH∗,∗νH is isomorphic to
the tensor product H∗H ⊗Fp Fp[τ ].
Proof. The elements bi , τk correspond to the elements we have described
before.We’ve seen that themap νH∗,∗νBP → νH∗,∗νH induces an inclusion
Fp[b1, . . .][τ ], since |τk | = (2pk − 1, 2pk − 2) are of odd topological degree,
by commutativity we have τ 2k = 0, see Remark 4.10 for the sign conventions.
We deduce that there’s an induced map

Fp[b1, b2, . . . , τ ] ⊗Fp E(τ0, τ1, . . .) → νH∗,∗νH,

it is in fact surjective by Lemma 6.8. It follows by dimension count of Corol-
lary 6.6 that it must be an isomorphism, as both sides are gradewise of the
same dimension. �
We now move on to the even prime, where a slightly more involved argument
is needed.

Theorem 6.10. Let p = 2 and νH∗,∗νH be the corresponding synthetic dual
Steenrod algebra. Then, there’s an isomorphism

νH∗,∗νH 
 F2[b1, b2, . . . , τ, τ0, τ1, . . .]/(τ 2k = τ 2bk+1)

of bigraded algebras.

Proof. This is similar to the proof of Theorem 6.9, except we want to prove
the relation τ 2k = τ 2bk+1 instead of τ 2k = 0, which doesn’t hold at p =
2. Once this is done then again one easily sees that the induced map from
F2[b1, b2, . . . , τ0, τ1, . . . , τ ]/(τ 2k = τ 2bk+1) to νH∗,∗νH is an isomorphism
by dimension counts.

After τ -inversion, bk+1, τk reduce to the usual elements btopk+1, τ
top
k ∈ H∗H .

Since the relation btopk+1 = (τ
top
k )2 is classical, we deduce that τ 2k and bk+1

coincide after multiplying both sides by sufficiently large powers of τ . Since
|bk+1| = (2pk+1 − 2, 2pk+1 − 2) and |τk | = (2pk − 1, 2pk − 2) with p = 2,
the elements τ 2bk+1 and τ 2k are in the same degree and so we deduce that there
exists some l such that τ l(τ 2bk+1 − τ 2k ) = 0. However, τ acts injectively on
νH∗,∗νH by Corollary 6.7 and hence we must have τ 2bk+1 − τ 2k = 0, which
is what we wanted to show. �
Through the correspondence between synthetic and motivic spectra, the even
weight part of νH∗,∗νH agrees with the motivic dual Steenrod algebra, see
Remark 7.37. In this context Theorem 6.10 is analogous to Voevodsky’s cal-
culation in the motivic setting [58], [59].

Note that we will show later, in Theorem 7.34, that synthetic and complex
motivic categories are equivalent after completion at a prime.However, beware
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that our calculation of the Steenrod algebra does not imply that of Voevodsky’s
as the latter is one of the many ingredients needed to establish the synthetic-
motivic correspondence in the first place. On the other hand, the synthetic
calculation is much more simple.

Remark 6.11. The synthetic dual Steenrod algebra is more interesting at p =
2, as the relation τ 2k = τ 2bk+1, although derived from the classical one, is none-
the-less of a slightly different form. We know that after inverting τ , νH∗,∗νH
necessarily coincideswith the topological analogue in the sense thatwe have an
isomorphism νH∗,∗νH⊗F2[τ ]F2[τ, τ−1] 
 H∗H ⊗F2 F2[τ, τ−1]. However, a
more interesting phenomenon can be observed when we instead set τ to zero.

Notice that by our computation νH∗,∗νH ⊗F2[τ ] F2 is a “p = 2”-version
of the odd prime topological Steenrod algebra; this observation appears in the
motivic context in [31] as a possible explanation for the success of the motivic
methods at the even prime specifically. Using the synthetic approach, we can
give one possible explanation of these phenomena.

Namely, observe that by Corollary 6.7, τ acts injectively on νH∗,∗νH and
so we deduce that there’s an isomorphism

νH∗,∗νH∗,∗ ⊗Fp[τ ] Fp 
 νH∗,∗(νH ⊗ Cτ),

notice that even in the absence of injectivity of τ there would be a long exact
sequence relating νH∗,∗νH with νH∗,∗(νH ⊗ Cτ). In any case, νH ⊗ Cτ is
canonically Cτ -module and using that we can rewrite the right hand side as

π∗,∗νH ⊗ νH ⊗ Cτ 
 π∗,∗(νH ⊗ Cτ) ⊗Cτ (νH ⊗ Cτ)


 [Cτ, (νH ⊗ Cτ) ⊗Cτ (νH ⊗ Cτ)]∗,∗
Cτ ,

where in the last term the brackets denote the homotopy classes of maps of
Cτ -comodules. By Theorem 4.46, we can identify the latter with the stable
∞-category of MU∗MU-comodules, under this correspondence νH ⊗ Cτ

corresponds to the comodule MU∗H , and so we deduce that

νH∗,∗νH ⊗Fp[τ ] Fp 
 [MU∗,MU∗H ⊗ MU∗H ]StableMU∗MU,

where both the homotopy classes of maps and the tensor product are com-
puted in StableMU∗MU. In other words, after setting τ = 0, the dual synthetic
Steenrod algebra coincides with the dual Steenrod algebra internal to Hovey’s
stable theory of MU∗MU-comodules.

Now, one can compute this algebraic dual Steenrod algebrawith an argument
similar to the one we have used in the synthetic case, it turns out that it is
always of the “odd prime form” of a polynomial algebra tensor an exterior
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one, irregardless of the prime, due to degree reasons. This is what forces
νH∗,∗νH ⊗Fp[τ ] Fp to be of that form as well.

7 Comparison with the cellular motivic category

In this section we compare the synthetic and cellular motivic categories. More
precisely, we construct an adjunction SpC � SynevMU between the cellular
motivic category and even synthetic spectra based on MU and show that it
induces an adjoint equivalence on the ∞-categories of p-complete objects.
In particular, this gives a topological description of the p-complete cellular
motivic category.

7.1 Cellular motivic category

In this section we review the needed facts from motivic homotopy theory, in
particular concerning the motivic cobordism spectrumMGL and the Hopkins-
Morel-Hoyois theorem.

We work in the stable motivic homotopy theory, as studied for example in
[45]. By SpC we denote the cellular motivic category over Spec(C), this is
the smallest subcategory of all complex motivic spectra containing the spheres
and closed under colimits. We will usually call the objects of SpC justmotivic
spectra, they will be implicitly complex and cellular.

Since we work over the complex numbers, we have a functor that sends
any smooth complex variety X to its topological space X (C) of complex
points, equipped with the analytic topology. One can show that this induces
an adjunction

Re � Sing : SpC � Sp,

between motivic spectra and spectra, we call Re the Betti realization. Notice
that since Re is cocontinuous and we have Re(S0,0) 
 S0, the unique cocon-
tinuous functor c : Sp → SpC such that c(S0) 
 S0,0 is a section of Re. One
usually calls c the constant motivic spectrum functor, it is a deep result of
Levine that it is in fact a fully faithful embedding, see [37].

When working motivically, things are usually bigraded using a bidegree
(s, w), where the first grading is called topological and the second one the
weight. These two gradings are determined by the spheres S0,0 
 �∞+ A

0 and
S2,1 
 �∞

P
1. As in the synthetic case, we will also grade things by the Chow

degree, which takes the following form.

Definition 7.1. The Chow degree associated to the motivic bigrading (s, w)

is equal to s − 2w.
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If A is a bigraded abelian group and k ∈ Z, we reserve the right to sometimes
denote by Ak we denote the group of elements of Chow degree k, although we
will very explicit when we do so, notice that Ak has an internal grading given
by topological degree.

We now recall some standard facts about the algebraic cobordism spectrum,
for a more detailed account see [46]. LetGr(k, n) denote the Grassmannian of
k-planes inCn , this is a projective complex variety equippedwith a tautological
vector bundle E(k, n) → of rank k. Then, analogously to the topological case,
the algebraic cobordism spectrum is defined as the colimit

MGL 
 lim−→ �−2k,−k �∞(Th(E(k, n)))

where the Thom space is Th(E(k, n)) = E(k, n)/(E(k, n) \ Gr(k, n)). In
other words, MGL is the colimit of the Thom spectra of virtual bundles
E(k, n) − C

k over Gr(k, n). It has a structure of a commutative algebra in
motivic spectra with multiplication induced by the tensor product of vector
spaces.

Remark 7.2. The relevant varieties are all stably cellular; that is,�∞+ Gr(k, n),
�∞+ E(k, n) and �∞+ (E(k, n) \ Gr(k, n)) are cellular motivic spectra, in fact,
finite cellular [19]. It follows that MGL is also cellular.

One shows that MGL is an oriented motivic spectrum, in fact a universal
example of one. This, combined with basic calculations with Grassmannians
allows one to determine MGL∗MGL as an MGL∗,∗-algebra, a computation
which we now review.

Proposition 7.3. We have that

1. MGL∗,∗Gr(k, n) is a free MGL∗,∗-module with basis in bijection with
sequences (a1, . . . , ak) subject to n − k ≥ a1 ≥ . . . ak ≥ 0, where each
sequence (a1, . . . , ak) corresponds to a basis element in degree (2a1 +
. . . + 2ak, a1 + . . . + ak),

2. MGL∗,∗�−2k,k �∞Th(E(k, n)) is a free MGL∗,∗-module with basis in
bijection with sequences (ai , . . . ak) subject to n − k ≥ a1 ≥ . . . ak ≥ 0
where each sequence (a1, . . . , ak) corresponds to a basis element in degree
(2a1 + . . . + 2ak, a1 + . . . + ak),

3. MGL∗,∗BGL 
 MGL∗,∗ lim−→Gr(k, n) 
 MGL∗,∗[b1, b2, . . .] as alge-
bras with generators bi in degree (2i, i) and

4. MGL∗,∗MGL 
 MGL∗,∗[b1, b2, . . .] as algebras with generators bi in
degree (2i, i).

In particular, each of theseMGL∗,∗-modules is free with generators in Chow
degree zero.
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Proof. This is done in detail in [46, 6.2]. Note that the second part follows
from the first, and the fourth from the third, by an application of the Thom
isomorphism. �
Note that these calculations parallel the topological case of complex bordism
of Grassmannians, in fact one can give a uniform proof. As a consequence of
the work of Hopkins-Morel and Hoyois, we know that the relation between
MGL and MU is even stronger.

Theorem 7.4. (Hopkins-Morel-Hoyois). The natural map (MGL∗,∗)0 →
MU∗ from the elements of Chow degree zero in MGL∗,∗ into the topological
complex bordismring is an isomorphism. In particular, (MGL∗,∗)0 
 L,where
L 
 Z[a1, a2, . . .] is the Lazard ring. Moreover, MGL/(a1, a2, . . .) 
 HZ,
where the latter is the integral motivic cohomology spectrum.

Proof. This is a deep result, see [30]. �
This has several consequences, one of which is that the Eilenberg-MacLane

spectrum HZ, hence HZ/p for any prime p, is cellular. Another is that
MGL∗,∗ can be considered as an algebra overMU∗, whichwe can identifywith
the subalgebra of MGL∗,∗ of elements in Chow degree zero. Together with
computations of Spitzweck, the Hopkins-Morel-Hoyois theorem also implies
the following.

Lemma 7.5. The algebra MGL∗,∗ is concentrated in non-negative Chow
degrees.

Proof. We give an argument due to Marc Hoyois which first appeared in
[29]. By a computation of Spitzweck, see [52], we have that sq(MGL) 

�2q,q HMU2q , where by sq we mean the motivic slice and by H we denote
the motivic cohomology spectrum on the given abelian group. In particular,
all of the slices have vanishing homotopy in negative Chow degree, as that is
true for the integral motivic cohomology spectrum.

By a computation from the same paper, the q-effective cover fqMGL is
q-connective and this implies that lim←− fqMGL 
 0. Now suppose we have

a map Sa,b → MGL such that a − 2b < 0. Since sq(MGL) have vanishing
homotopy in this degree, we deduce that this map lifts through all of the stages
of the slice filtration and defines a map into the homotopy limit, which is then
necessarily zero. �

Notice that through Hopkins-Morel-Hoyois, one can reexpress Proposi-
tion 7.3 as saying that if X is either �∞+ Gr(k, n), �∞Th(E(k, n)) or MGL
itself, then

MGL∗,∗X 
 MGL∗,∗ ⊗MU∗ MU∗Re(X),
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where Re(X) ∈ Sp is the Betti realization. Intuitively, it is the X satisfying
this property that are well-behaved from our perspective. We will later show
in Sect. 7.3 that homotopy theory of cellular motivic spectra can be described
purely in terms of motivic spectra satisfying the above property.

7.2 Finite MGL-projective motivic spectra

In this section we introduce the notion of a finite MGL-projective spectrum
and equip their ∞-category with a topology. We then compare the resulting
site to the site of finite even MU-projective spectra studied previously in Sect.
5.2.

Definition 7.6. We sayM ∈ SpC is a finiteMGL-projectivemotivic spectrum
if it is finite and MGL∗,∗M is a free MGL∗,∗-module, finitely generated with
generators in Chow degree zero. We denote the ∞-category of finite MGL-
projective motivic spectra by Sp f p

MGL .

Notice that in the notation Sp f p
MGL we drop the “C”-subscript and instead leave

only “MGL”, it should be clear from the latter that these are motivic spectra,
rather than spectra. Here, and throughout the rest of the current work, we say
that a motivic spectrum is finite if it belongs to the thick subcategory generated
by the motivic spheres.

Observe that Definition 7.6 is slightly abusive in the sense that we ask for
MGL∗,∗M to be free over MGL∗,∗, rather than projective as the name sug-
gests. This is a matter of convenience: one could work with finite spectra with
projective homology instead, but nothing would be gained from this additional
generality, and it would come at the cost that the condition of having generators
in Chow degree zero is slightly more awkward to state.

Example 7.7. By Proposition 7.3 and Remark 7.2, the suspension spectra
�∞+ Gr(k, n) of finite Grassmannians are finite MGL-projective, as are the
Thom spectra �∞Th(E(k, n) of their tautological bundles.

Remark 7.8. Notice that finiteMGL-projectivemotivic spectra are not closed
under arbitrary suspensions, but they are clearly closed under any suspension
of the form �2k,k for k ∈ Z; that is, one that doesn’t change the Chow degree.

Recall we have previously, namely in Definition 5.8, introduced the notion of
a finite even MU-projective spectrum; that is, a finite spectrum X such that
MU∗X is projective, concentrated in even degree. Since any projectivemodule
over MU∗ is free, see Lemma 6.1, this in fact implies that MU∗X is finitely,
freely generated in even degree.

The notion of a finite evenMU-projective spectrum should be considered as
a purely topological analogue of finite MGL-projective spectra, the following
simple result relates the two.
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Lemma 7.9. If M is a finiteMGL-projective motivic spectrum, then the Betti
realization Re(M) is finite even MU-projective. Moreover, the natural map
(MGL∗,∗M)0 → MU∗Re(M) is an isomorphism.

Proof. By a standard argument, the finitely free generation of MGL∗,∗M in
Chow degree zero implies that MGL ⊗ M 
 ⊕

�2ki ,kiMGL, so that MU ⊗
Re(M) 
 ⊕

�2kiMU, which is what we wanted to show. The second part is
immediate from Hopkins-Morel-Hoyois, which we stated as Theorem 7.4. �
Remark 7.10. The converse of Lemma 7.9 is not true. As an example,
Re(S2k,n) 
 S2k is always finite even MU-projective, but S2k,n is only finite
MGL-projective when n = k.

We will now endow the ∞-category of finite MGL-projective motivic spectra
with a Grothendieck pretopology analogous to the ones we have studied on
∞-categories of finite projective spectra, we then show it makes Sp f p

MGL into
an excellent ∞-site in the sense of Definition 2.24.

Proposition 7.11. Let us say that a map N → M of finite MGL-projective
motivic spectra is a covering if MGL∗N → MGL∗M is surjective. Then,
coverings together with the tensor product of motivic spectra make Sp f p

MGL

into an excellent ∞-site and the realization functor Re : Sp f p
MGL → Sp f pe

MU is
a morphism of excellent ∞-sites.

Proof. We first claim that finite MGL-projective motivic spectra are closed
under the tensor product. If M, N ∈ Sp f p

MGL, then since all relevant spectra
are cellular we have a Künneth spectral sequence of the form

Tor
MGL∗,∗
a,b,c (MGL∗,∗M,MGL∗,∗N ) ⇒ MGLa+b,c(M ⊗ N ),

see [19, 8.6] or [33, 8.1.1]. Since MGL∗,∗M and MGL∗,∗N are assumed to be
free over MGL∗,∗, this spectral sequence collapses and gives an isomorphism

MGL∗,∗(M ⊗ N ) 
 MGL∗,∗M ⊗MGL∗,∗ MGL∗,∗N .

Since free MGL∗,∗-modules finitely generated in Chow degree zero are stable
under the tensor product, we deduce that MGL∗,∗(M ⊗ N ) is of the needed
form. Since M ⊗ N is also clearly finite, we deduce that it is finite MGL-
projective.

Any finite motivic spectrumM has a dual given byM = F(M, S0,0), where
the latter denotes the motivic function spectrum. To check that all objects of
Sp f p

MGL admit duals it is enough to check that if M is finite MGL-projective,
so is F(M, S0,0). This follows from universal coefficient spectral sequence

Exta,b,c
MGL∗,∗(MGL∗,∗M,MGL∗,∗) ⇒ MGLa+b,cM,
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which also holds in this setting and necessarily collapses, and MGL∗,∗F(M,

S0,0) 
 MGL∗,∗M .
We now check that MGL∗,∗-surjections define a Grothendieck pretopology,

all of the axioms are obvious except for the existence of pullbacks. We will
show that if N → M, O → M are maps of finite MGL-projective motivic
spectra such thatMGL∗,∗N → MGL∗,∗M is surjective, then N ×M O is again
finite MGL-projective, this is clearly enough. We have a short exact sequence

0 → MGL∗,∗(N ×M O) → MGL∗,∗N ⊕ MGL∗,∗O → MGL∗,∗M → 0.

Now, consider the diagram

MGL∗,∗ ⊗MU∗ (MGL∗,∗N ⊕ MGL∗,∗O)0 MGL∗,∗ ⊗MU∗ (MGL∗,∗M)0 0

MGL∗,∗N ⊕ MGL∗,∗O MGL∗,∗M 0 ,

where here the subscript denotes the Chow degree 0 part and we implicitly use
the identification (MGL∗,∗)0 
 MU∗, the vertical maps are isomorphisms by
assumption of M, N , O being finite MGL-projective.

SinceMGL∗,∗N⊕MGL∗,∗O → MGL∗,∗M is surjective, it is split, because
the target is free. We deduce that the kernel of the upper map is MGL∗,∗ ⊗MU∗
MGL∗,∗(N×MO)0, henceMGL∗,∗(N×MO) 
 MGL∗,∗⊗MU∗MGL∗,∗(N×M
O)0. We deduce that to finish the argument it is enough to prove that
(MGL∗,∗(N ×M O))0 is free, finitely generated as anMU∗-module. The latter
follows from the fact that it is the kernel of a map of free, finitely generated
modules, so it’s finitely generated projective, and Lemma 6.1.

To check that the symmetricmonoidal structure is compatiblewith topology,
we have to verify that for any M ∈ Sp f p

MGL, the functor M ⊗ −: Sp f p
MGL →

Sp f p
MGL preserves coverings, which is immediate from the Künneth isomor-

phism written above.
Finally, to verify that Re : Sp f p

MGL → Sp f p
MU is a morphism excellent of ∞-

sites, we have to check that it preserves coverings, pullbacks along coverings,
is additive and symmetric monoidal. The last three follow immediately from
the exactness of Betti realization, while the first one from Lemma 7.9. �
Remark 7.12. In fact, the morphism Re : Sp f p

MGL → Sp f pe
MU not only pre-

serves, but also reflects covers. To see this, notice that if M, N ∈ Sp f p
MGL, then

MGL∗,∗M and MGL∗,∗N are by assumption generated in Chow degree zero
and so a map MGL∗,∗N → MGL∗,∗M is surjective if and only if it is sur-
jective in Chow degree zero. The reflection of coverings then follows directly
from Lemma 7.9.

Our goal will be to prove for the ∞-category Sp f p
MGL of finite MGL-

projective spectra a result analogous to Theorem 2.49 which identifies sheaves
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of sets on finite MU-projective spectra with MU∗MU-comodules. More pre-
cisely, we will be using the even analogue of the statement, which compares
discrete sheaves on even finite MU-projective spectra with even MU∗MU-
comodules, see Remark 5.11.

The idea is to leverage our previouswork by comparing Sp f p
MGL with Sp

f pe
MU ,

rather than with even dualizable comodules directly. To obtain the needed
comparison, we use the criterion of the existence of common envelopes, which
were introduced in Definition 2.39.

Lemma 7.13. Any filtered diagram lim−→ Mα of finite MGL-projective spectra

whose colimit is the countable sum
⊕

�2ki ,kiMGL such that every integer
occurs as ki infinitely many times is a common envelope for Re : Sp f p

MGL →
Sp f pe

MU .

Proof. We first verify that lim−→ Mα satisfies discrete descent. If M ∈ Sp f p
MGL,

we have an identification lim−→π0map(M, Mα) 
 π0map(M, lim−→ Mα) 

π0map(M,

⊕

�2ki ,kiMGL), which we can further rewrite as

π0map(M,
⊕

�2ki ,kiMGL)


 HomMGL∗,∗(MGL∗,∗M,
⊕

MGL∗,∗[2ki , ki ])

using the universal coefficient theorem, which we’ve seen holds motivically
in this context since we only work with cellular spectra. The last term clearly
defines a sheaf in M , since the category of MGL∗,∗-modules is abelian and in
an abelian category any epimorphism is effective.

The fact that lim−→ Re(Mα) is an envelope for Sp f pe
MU is immediate from

Lemma 2.42, since it is taken by the morphism of sites MU∗ : Sp f pe
MU →

Comod f pe
MU∗MU into even dualizable comodules to an envelope, see Remark 3.6.

The last thing to verify is that that the map lim−→ π0map(M, Mα) →
lim−→π0map(Re(M), Re(Mα)) is a bijection. After rewriting things as above
using the universal coefficient, we see that we have to check that

HomMGL∗,∗(MGL∗,∗M,
⊕

MGL∗,∗[2ki , ki ])
→ HomMU∗(MU∗Re(M),

⊕

MU∗MU[2ki ])

is an isomorphism. Using the second part of Lemma 7.9 one observes that
the above map can be identified with restricting a given homomorphism of
MGL∗,∗-comodules to the part in Chow degree zero. Here, both MGL∗,∗M
and

⊕

MGL∗,∗[2ki , ki ] are freely generated in Chow degree zero and so by
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using additivity and finite generation of the source we reduce to the case of
the map

HomMGL∗,∗(MGL∗,∗[2l, l],MGL∗,∗[2k, k]) → HomMU∗(MU∗[2l],MU∗[2k])
given by restriction to Chow degree zero. This is an an isomorphism for any
k, l ∈ Z, as each side can be identifiedwithMGL2k−2l,k−l 
 MU2k−2l , ending
the argument. �
Theorem 7.14. The Betti realization functor Re : Sp f p

MGL → Sp f pe
MU has

the covering lifting property and induces an equivalence ShSet (Sp f p
MGL) 


ShSet (Sp f pe
MU ) between categories of sheaves of sets on finiteMGL-projective

motivic spectra and finite evenMU-projective spectra.

Proof. By Theorem 2.49 and Proposition 2.43, it is enough to check that Betti
realization reflects covers and admits a common envelope, the former criterion
is precisely Remark 7.12.

To see that there exists a common envelope, notice that any filtered diagram
Mα of finite MGL-projectives whose colimit is an infinite sum of shifts of
MGL is a common envelope by Lemma 7.13. Such a diagram clearly exists,
since MGL itself is a filtered colimit of finite projectives, namely the Thom
spectra of finite Grassmannians, see Example 7.7. �
Corollary 7.15. There is an equivalence ShSet� (Sp f p

MGL) 
 ComodevMU∗MU of
categories between spherical sheaves of sets on finiteMGL-projective motivic
spectra and evenMU∗MU-comodules.

Proof. By Theorem 7.14, we have an equivalence of categories
ShSet� (Sp f p

MGL) 
 ShSet� (Sp f pe
MU ), while ShSet� (Sp f pe

MU ) 
 ComodevMU∗MU fol-
lows from Remark 5.11. �

7.3 Cellular motivic category as spherical sheaves

In this section we give description of the cellular motivic category SpC as a
category of spherical sheaves of spectra, the indexing ∞-category in this case
will be the site of finiteMGL-projective motivic spectra. This is a beginning of
a comparison with synthetic spectra, which were also constructed as spherical
sheaves, although it has a few consequences on its own.

We first define the spherical sheaf associated to the given motivic spectrum,
notice that synthetically this formula would correspond to the spectral Yoneda
embedding Y , rather than the synthetic analogue construction ν. Nevertheless,
this is the right thing to do in this case. We then verify that this does indeed
define a sheaf.
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Definition 7.16. If X ∈ SpC is a cellular motivic spectrum, let ϒX be the
presheaf of spectra on Sp f p

MGL defined by ϒX (M) = Map(M, X), where
Map denotes the mapping spectrum in the stable ∞-category SpC.

Lemma 7.17. If X ∈ SpC be a cellular motivic spectrum, then ϒX is a
spherical sheaf of spectra on Sp f p

MGL with respect to the MGL∗,∗-surjection
topology. If X is MGL-local, then ϒX is hypercomplete.

Proof. This is themotivic analogue of Proposition 3.24, the argument is almost
the same. Namely, observe that the presheafϒX is clearly spherical, so that we
only have to check the sheaf property. By Theorem 2.8, it is enough to verify
that if F → M → N is a fibre sequence of finite MGL-projective spectra
with the latter map an MGL∗,∗-surjection, then

Map(N , X) → Map(M, X) → Map(F, X)

is a fibre sequence of spectra. This is clear.
Now assume that X is MGL-local. Using Proposition 6 we observe that to

show that ϒX is hypercomplete we have to verify that ifU : �
op
s,+ → Sp f p

MGL
is a hypercover in finite MGL-projective motivic spectra, then

Map(U−1, X) → Map(U0, X) ⇒ . . .

is a limit diagram of spectra. As X is assumed to be MGL-local, it is enough
to verify that lim−→k∈�s

Uk → U−1 is an MGL-local equivalence; that is, an
isomorphism on MGL-homology, since all motivic spectra here are cellular.
This can be verified using the homology of geometric realization spectral
sequence, as in the last part of Proposition 3.24. �

As explained above, the target of the equivalence with the cellular motivic
categorywill be the∞-category ShSp� (Sp f p

MGL) of spherical sheaves of spectra

on Sp f p
MGL , Lemma 7.17 yields the needed functor. Since we have studied

∞-categories of spherical sheaves extensively, before proceeding with the
construction of the equivalence let us recall the key properties we use.

By Proposition 2.16, ShSp� (Sp f p
MGL) admits a t-structure where coconnec-

tivity ismeasured levelwise. The heart of this t-structure is naturally equivalent
to the category of spherical sheaves of sets, which by Corollary 7.15 can be
identified with ComodevMU∗MU, the category of even MU∗MU-comodules.

We start by describing the homotopy groups of sheaves of the form ϒX ,
this is essentially the motivic analogue of Proposition 4.21. Notice that in the
statement we implicitly use the isomorphism (MGL∗MGL)0 
 MU∗MU of
Hopf algebroids.
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Lemma 7.18. Let X ∈ SpC be a motivic spectrum. Then, for any k ∈ Z, the t-
structure homotopy group π

♥
k ϒX of the sheaf of spectraϒX can be identified

as an even graded abelian group with (MGL∗,∗�−k X)0 
 (MGL∗,∗X)k , the
Chow degree k-part of the MGL-homology of X.

Proof. Since ϒ is exact, it is enough to prove the statement for k = 0. Choose
a filtered diagram Mα of finite MGL-projectives with lim−→ Mα 
 MGL.

Notice that the equivalence ShSp� (Sp f p
MGL)♥ 
 ComodevMU∗MU of Corol-

lary 7.15 is establishedby the compositeMU∗◦Re : Sp f p
MGL → Comod f pe

MU∗MU.

Applying this composite to Mα , we see that MU∗Re(�2l,l Mα) is a filtered
diagram of dualizable even comodules such that lim−→MU∗Re(�2l,l Mα) 

MU∗MU[2l]. Since MU∗ ◦ Re is symmetric monoidal, it follows from the
above and Lemma 3.3 that

(π
♥
0 ϒX)2l 
 lim−→(π

♥
0 ϒX)(�2l,l DMα),

where DMα = F(Mα, S0,0) is the motivic Spanier-Whitehead dual. Chasing
through the definitions, we see that π

♥
0 ϒX is the sheaf of sets associated to

the presheaf defined by the formula π0Map(M, X) 
 [M, X ], where M ∈
Sp f p

MGL . Arguing as in the topological analogue, Lemma 3.25, we see that the
value computed by the filtered colimit above is unchanged by sheafification,
so that we can further rewrite

(π
♥
0 ϒX)2l 
 lim−→[�2l,l DMα, X ] 
 lim−→[S2l,l , Mα ⊗ X ] 
 MGL2l,l X,

which is what we wanted to show. �
Recall that byProposition2.19, the adjunction�∞+ � �∞ : Sh�(Sp f p

MGL) �
ShSp� (Sp f p

MGL) restricts to an equivalence Sh�(Sp f p
MGL) 
 ShSp� (Sp f p

MGL)≥0
between sheaves of spaces and connective sheaves of spectra. This has the
following consequence, which we will later use in the proof of Theorem 7.20.

Lemma 7.19. Let X be a motivic spectrum such that MGL∗,∗X is con-
centrated in non-negative Chow degrees. Then ϒX 
 �∞+ y(X), where

y(X) ∈ Sh�(Sp f p
MGL) is the sheaf of spaces represented by X.

Proof. We claim that ϒX is connective in the natural t-structure on sheaves
of spectra, by Lemma 7.18 this is the same as asking for MGL∗,∗X to be
concentrated in non-negative Chow degrees, which is our assumption. Since
we work with spherical sheaves, it follows that ϒX 
 �∞+ �∞X . However,
we have

(�∞ϒX)(M) 
 �∞Map(M, X) 
 map(M, X),
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which is exactly the formula defining y(X). �
Theorem 7.20. The functor ϒ : SpC → ShSp� (Sp f p

MGL) from the cellular
motivic category over Spec(C) into spherical sheaves of spectra on the ∞-
category Sp f p

MGL of finite MGL-projective motivic spectra is an equivalence
of ∞-categories.

Proof. Notice thatϒ is an exact functor between stable∞-categories, hence it
preserves finite colimits.We deduce that to show that it is in fact cocontinuous,
it is enough to check that it commutes with filtered colimits. However, since
any M ∈ Sp f p

MGL is a finite motivic spectrum, it is in particular a compact
object of SpC and it follows that ϒ takes filtered colimits to levelwise filtered
colimits. Any levelwise colimit diagram of sheaves is in particular a colimit
diagram of sheaves, this establishes cocontinuity.

We now show that ϒ is fully faithful; that is, that for any X, Y ∈ SpC the
induced map

map(X, Y ) → map(ϒX, ϒY )

is an equivalence of spaces. By the standard cocontinuity argument of fixing
Y and letting X vary we deduce that the latter can be assumed to be a finite
MGL-projective motivic spectrum. To see this, notice that S2k,k ∈ Sp f p

MGL , so

that the topological (de)suspensions of objects of Sp f p
MGL generate all of SpC

under colimits.
To prove the claim for M ∈ Sp f p

MGL , we need some form of Yoneda lemma,
which is a statement about sheaves of spaces, rather than spectra. To reduce
to that case, we claim that we have an equivalence ϒM 
 �∞+ y(M), by
Lemma 7.19, it is enough to show that MGL∗,∗M vanishes in negative Chow
degree. Since MGL∗,∗M is assumed to be free on generators in Chow degree
zero, this is immediate from the case of MGL∗,∗, which was Lemma 7.5. We
now rewrite

map(ϒM, ϒX) 
 map(�∞+ y(M), ϒY ) 
 map(y(M), �∞ϒY )

and further

map(y(M), �∞ϒY ) 
 map(y(M), y(Y )) 
 map(M, Y ),

where the last line is theYoneda lemma. This establishes thatϒ is fully faithful.
To see thatϒ is essentially surjective, notice that the essential image is closed

under suspensions and colimits. Since we’ve verified that it contains ϒM 

�∞+ �∞ϒM 
 �∞+ y(M), it follows that it must be all of ShSp� (Sp f p

MGL). �

123



Synthetic spectra 661

Corollary 7.21. There exists a right complete t-structure on SpC in which a
cellular motivic spectrum X is connective if and only if MGL∗,∗X is concen-
trated in non-negative Chow degrees. Moreover, there is an equivalence of
categories Sp♥

C

 ComodevMU∗MU between the heart of SpC and the category

of evenMU∗MU-comodules.

Proof. A t-structurewith these properties exists on ShSp� (Sp f p
MGL) by Proposi-

tion 2.16, Corollary 7.15 and Theorem 7.20 shows that we have an equivalence
SpC 
 ShSp� (Sp f p

MGL). The characterization of connectivity is a consequence
of Lemma 7.18. �

The t-structure of Corollary 7.21 can be formally extended to the whole∞-
category SH(C) of all motivic spectra by keeping the connective part intact;
that is, by letting (SH(C)≥0 denote the∞-category generated by finite MGL-
projective spectra. It follows that the coconnective part (SH(C))≤0 will be
given by those motivic spectra X such that [M, X ]k = 0 for all M ∈ Sp f p

MGL
and k ≥ 1, in particular, whether X is coconnective or not only depends on its
cellularization and it is in this sense that the extension is formal.

Remark 7.22. It is plausible that one can show that the coconnectivity condi-
tion in the induced t-structure on SH(C) can be checked only on M 
 S2k,k ,
rather than all finite MGL-projectives, perhaps using arguments similar to that
in the proof of Theorem 6.2.

If that was indeed the case, then X being coconnective in this induced t-
structure would amount to π∗,∗X being concentrated in non-positive Chow
degree.

The existence of a t-structure on SH(C) closely related to MU∗MU-
comodules is perhaps not that surprising, even though the construction of the
motivic category does not explicitly mention MU as a homology theory. This
remarkable connection has been known before, for example it is a result of
Levine that the spectral sequence obtained by applying Betti realization to the
slice tower of S0,0 is, up to suitable reindexing, the classical Adams-Novikov
spectral sequence, see [35].

Remark 7.23. The equivalence of Theorem 7.20 is symmetric monoidal if we
consider SpC with its usual tensor product and endow ShSp� (Sp f p

MGL)with the

Day convolution symmetric monoidal structure induced from Sp f p
MGL . To see

this, it is enough to show that the inverseϒ−1 admits a structure of a symmetric
monoidal functor.

The inverse ϒ−1 : ShSp� (Sp f p
MGL) → SpC is a cocontinuous functor of

stable∞-categories,moreover byLemma7.19wehave thatϒM 
 �∞+ y(M),
hence the composite

Sp f p
MGL → Sh�(Sp f p

MGL) → ShSp� (Sp f p
MGL) → SpC
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is just the inclusion of finite MGL-projective motivic spectra and so is sym-
metric monoidal. It follows formally that ϒ−1 admits a canonical symmetric
monoidal structure, see Remark 2.31.

Remark 7.24. Notice that we have proven in Lemma 7.17 that if X is an
MGL-local motivic spectrum, then ϒX is a hypercomplete sheaf on Sp f p

MGL .
In fact, the converse is true as well, so that the equivalence of Theorem 7.20
restricts to an equivalence (SpC)MGL 
 ̂ShSp� (Sp f p

MGL). To see this, notice that

(SpC)MGL ↪→ SpC and ̂ShSp� (Sp f p
MGL) ↪→ ShSp� (Sp f p

MGL) are both localiza-
tions and by Lemma 7.18 they are localizations at the same class of maps.

7.4 Homotopy of p-complete finite motivic spectra

In this section we review some computational results about the structure of
the p-complete cellular motivic category, these will then form the technical
ingredient needed to compare the latter to even synthetic spectra based onMU.

Nothing here is new, and we only aim to collect references, especially since
most of them are only written either at p = 2 or at an odd prime, even though
the phenomena we discuss hold uniformly. Our main focus will be to derive a
theorem of Gheorghe-Isaksen which states that the p-complete motivic homo-
topy groups coincide with topological ones in non-negative Chow degrees.

Wewill beworkingwith p-completemotivic spectra, sowe start by recalling
the relevant definitions. If C is a presentable, stable ∞-category, we say a map
X → Y in a p-complete equivalence if X/p → Y/p is an equivalence. We
say X ∈ C is p-complete if it is local with respect to the class of p-complete
equivalences and denote the subcategory of p-complete objects by C∧

p .
One can show that under the assumption of presentability the ∞-category

C∧
p is a localization of C, so that there is a localization functor (−)p : C → C∧

p
which we call p-completion. Moreover, for formal reasons we have X p 

lim←− X/pk , see [40][7.3.2.1].

We now focus on the cellular motivic category SpC. If HZ denotes the
motivic cohomology, then we have a canonical isomorphism HZ−1,−1 
 C

×.
The cofibre sequence induced by multiplication by p on HZ induces a long
exact sequence

. . . → HZ/p0,−1 → HZ−1,−1 → HZ−1,−1 → . . . ,

where the second arrow can be identified with the p-th power map on C
×. It

follows that a chosen primitive p-th root of unity lifts to an element which
we denote by τ ∈ HZ/p0,−1. By a result of Voevodsky [59], we have an
isomorphism HZ/p∗,∗ 
 Z/p[τ ].
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Remark 7.25. Another definition of a p-complete motivic spectrum in use
is a motivic spectrum local with respect to HZ/p-equivalences, rather than
S0,0/p-equivalences. In the cellular setting, these two notions of p-completion
coincide for so called motivic spectra of finite type, in particular for finite
motivic spectra, see [26] and [27][Lemma 28] at p = 2.

We now recall a few facts about the motivic Adams-Novikov and motivic
Adams spectral sequences. If X is a finite motivic spectrum we have a motivic
Adams spectral sequence, see [20], of the form

Exts,t,wHZ/p∗,∗HZ/p(HZ/p∗,∗, HZ/p∗,∗X) ⇒ πt−s,wX p,

where Ext is computed over the Hopf algebroid (HZ/p∗,∗, HZ/p∗,∗HZ/p).

Notation 7.26. We will trigrade Ext-terms like above using (s, t, w), where s
is the homological degree and t, w are internal. The Chow degree associated
to such a trigrading is equal to t − s − 2w, notice that under this convention
the Chow degree k part of Ext is exactly those elements that converge to Chow
degree k homotopy.Moreover, the differential lowers the Chow degree by one,
as this is how it acts on the Adams degree t − s, while keeping the weight w
intact.

One can show that in the particular case of X = S0,0, the class of τ ∈ HZ/p∗,∗
is a permanent cycle in this spectral sequence and so descends to a class
τ ∈ π0,−1S

0,0
p which we denote with the same letter.

Let us work in the p-complete setting, so that by BP we will denote the
p-complete Brown-Peterson spectrum and similarly write BP∗X := π∗(BP⊗
X)p for the p-complete homology.
After p-completion, as in the topological case, the motivic bordism spec-

trum splits into a direct sum of the motivic Brown-Peterson spectra BPL.
Writing BPL∗,∗(−) for p-complete homology, one can show that there is an
isomorphism of Hopf algebroids

(BPL∗,∗,BPL∗,∗BPL) 
 (BP∗,BP∗BP) ⊗Zp Zp[τ ],

see [56][2.5] at odd primes, [27][Section 4] at p = 2. In the above isomor-
phism, the copy of (BP∗,BP∗BP) lies inside of (BPL∗,∗,BPL∗,∗) as the sub-
algebra of elements of Chow degree zero. In particular, (BPL∗,∗,BPL∗,∗BPL)

is concentrated in non-negative Chow degrees.
As expected, for finite X one also has a motivic Adams-Novikov spectral

sequence of the form

Exts,t,wBPL∗,∗BPL(BPL∗,∗,BPL∗,∗X) ⇒ πt−s,wX p
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constructed using the BPL-Adams tower in the p-complete category. The
above description of the Hopf algebroid BPL∗,∗BPL leads to the following
description of the E2-term.

Lemma 7.27. The motivic Adams-Novikov E2-term coincides with the topo-
logical one extended by τ ; that is, we have

ExtBPL∗,∗BPL(BPL∗,∗,BPL∗,∗) 
 ExtBP∗BP(BP∗,BP∗) ⊗Zp Zp[τ ],
where here τ has degree (0, 0, −1) and ExtBP∗BP(BP∗,BP∗) is the subalgebra
of elements of weight w = 1

2 t .

Proof. This is [27][Thm. 7, Section 4] at p = 2 and [56][2.8] at odd primes.
�

We now describe how the above implies that the p-complete homotopy
groups of a finite MGL-projective motivic spectrum M coincide in non-
negative Chow degrees with the topological homotopy groups. This is a result
of Gheorghe-Isaksen which appears in [23][4.5] at p = 2 and for the sphere,
although the same proof works at odd primes. We recall the argument here for
reader’s convenience.

Lemma 7.28. Let M be a finiteMGL-projective motivic spectrum. Then, the
motivic Adams-Novikov E2-term ExtBPL∗,∗BPL(BPL∗,∗,BPL∗,∗(M ⊗ Cτ)),
and hence π∗,∗(M ⊗ Cτ), is concentrated in non-positive Chow degree. An
analogous result holds for M/p.

Proof. Notice that since M is finite MGL-projective, BPL∗,∗M is a finite free
BPL∗,∗-module generated in Chow degree zero. In particular τ acts injectively
and we get a short exact sequence

0 → BPL∗,∗M → BPL∗,∗M → BPL∗,∗(M ⊗ Cτ) → 0.

This induces a long exact sequence in Ext and from the explicit description
of Lemma 7.27 we deduce that ExtBPL∗,∗BPL(BPL∗,∗,BPL∗,∗(M ⊗ Cτ)) is
concentrated in degrees w = 1

2 t , as this is true when M = S0,0. Since the
Chow degree is t − s − 2w and the cohomological degree s is always non-
negative, we deduce that the relevant Ext-term is concentrated in non-positive
Chow degree, as we wanted. The statement about the homotopy groups is a
consequence of that and the motivic Adams-Novikov spectral sequence. The
proof for M/p is the same. �
Remark 7.29. In fact, one checks easily that for degree reasons the motivic
Adams-Novikov spectral sequence

ExtBPL∗,∗BPL(BPL∗,∗,BPL∗,∗(M ⊗ Cτ)) ⇒ π∗,∗(M ⊗ Cτ)
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necessarily collapses. In particular, π∗,∗Cτ coincides with a suitably regraded
classical Adams-Novikov E2-term, an observation that has sparked the initial
interest in this motivic spectrum.

Theorem 7.30. (Gheorghe-Isaksen, [23]). Let M be a finiteMGL-projective
spectrum. Then, the naturalmapπt,w(Mp) → πt (Re(M)p) is an isomorphism
in non-negative Chow degrees.

Proof. We have a long exact sequence

. . . πt+1,w−1(M ⊗ Cτ)→πt,wMp →πt,w−1Mp →πt,w−1(M ⊗ Cτ)→ . . .

of homotopy groups.Notice thatwhen t, w define a non-negativeChowdegree,
πt+1,w−1(M ⊗ Cτ) and πt,w−1(M ⊗ Cτ) are in positive Chow degree and
hence vanish by Lemma 7.28. We deduce that in non-negative Chow degrees,
πt,wMp only depends on the topological degree t , but not on the weight, the
isomorphism established by multiplication by τ .

By the above, it is enough to show that for any finiteMGL-projectiveM , the
natural map πt,w(Mp) → πt (Re(M)p) is an isomorphism in Chow degrees
larger or equal to some k ≥ 0. Indeed, if that is the case, it must be an isomor-
phism in all non-negative Chow degrees, as we verified above the homotopy
groups of Mp don’t depend on weight in that range. In other words, for a finite
MGL-projective M the existence of such k already implies that one can take
k = 0.

We claim a k ≥ 0 such that πt,w(Mp) → πt (Re(M)p) is an isomorphism
in Chow degrees larger than equal to k exists for any finite motivic spectrum.
Indeed, the subcategory of finite motivic spectra that satisfy this condition is
clearly thick and so it is enough to verify that the motivic spheres are in this
category. In fact, one sees that it is enough to do S0,0, where we will show that
k = 0 is enough, as this implies that k = 2b − a is good enough for Sa,b.

Notice that the map πt,wS
0,0
p → πt S0p is an isomorphism when t < 0, as

then both groups vanish, the first one by Morel’s connectivity. By Levine’s
theorem, see [37], it is also an isomorphism when w = 0, in fact both of these
statements hold even before p-completion. It follows that for any t , there is
some w such that t − 2w ≥ 0 and πt,wS

0,0
p → πt S0p is an isomorphism, as

we can take w = t when t < 0 and w = 0 otherwise. Since S0,0 is finite
MGL-projective and hence we know in non-negative Chow degrees πt,wS

0,0
t,w

doesn’t depend on the weight, this gives the needed result. �
Remark 7.31. An analogous result holds for M/p, where M is finite MGL-
projective; that is, the natural map πt,wM/p → πt,wRe(M)/p is an
isomorphism in non-negative Chow degrees. The above proof goes without
change, replacing S0,0 by S0,0/p. This is in fact the only form of the result we
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will need, as questions about p-completion can often be reduced to questions
about cofibres of multiplication by p.

7.5 A topological model for the p-complete cellular motivic category

In this section we construct the promised adjunction SpC � SynevMU between
the cellular motivic category and the ∞-category of even synthetic spectra.
We then show that this adjunction induces an equivalence on the∞-categories
of p-complete objects at each prime p, this gives a topological model for the
p-complete cellular motivic category.
Before proceeding with the construction, let us recall what we have proven

about both sides already. The notion of an even synthetic spectrum was intro-
duced in Definition 5.8, it is a spherical sheaf of spectra on Sp f pe

MU so that we

have SynevMU 
 ShSp� (Sp f pe
MU ) by definition.

Remark 7.32. By Theorem 5.13, SynevMU can be equivalently described as the
subcategory of SynMU generated under colimits by the suspensions of νM ,
whereM is finite evenMU-projective. In fact, it is generatedby the spheres St,w

of evenweightw, see Remark 6.3. This perspectivewill be largely unneeded to
describe the comparison with the motivic category, but it implies that SynevMU
is closely related to its only slightly larger non-even variant, which we have
studied more comprehensively.

On the motivic side, by Theorem 7.20 we have an equivalence SpC 

ShSp� (Sp f p

MGL) between the cellularmotivic∞-category and spherical sheaves
on the site of finite MGL-projective motivic spectra. Thus, both sides of the
adjunction we’re trying to construct are ∞-categories of spherical sheaves of
spectra on, respectively, Sp f pe

MU and Sp f p
MGL .

The comparison will be induced by the Betti realization functor
Re : Sp f p

MGL → Sp f pe
MU , which has excellent properties by Theorem 7.14,

in particular the covering lifting property. Using implicitly the identifications
described above, we make use of the following notation.

Notation 7.33. By 
∗ � 
∗ : SpC � SynevMU we denote the adjunction
between cellular motivic spectra and even synthetic spectra induced by the
Betti realization Re : Sp f p

MGL → Sp f pe
MU .

Using the needed identifications, the left adjoint 
∗ : ShSp� (Sp f p
MGL) →

ShSp� (Sp f pe
MU ) is the unique cocontinuous functor such that 
∗�∞+ y(M) 


�∞+ y(Re(M)), where y(M) is a representable sheaf of spaces and M ∈
Sp f p

MGL . On the other hand, 
∗ is simply given by precomposition with

Re : Sp f p
MGL → Sp f pe

MU .
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The precise statement we show is that the adjunction 
∗ � 
∗ : SpC �
Synev induces an adjoint equivalence between the∞-categories of p-complete
objects. Let usfirst describewhatwemeanby an induced adjunction, thisworks
in a general setting.

Suppose that L � R : C � D is an adjunction between presentable, stable
∞-categories. Then, since both L , R are exact, they necessarily preserve p-
complete equivalences; that is, thosemaps X → Y such that X/p → Y/p is an
equivalence. It follows formally from the adjunction that R takes p-complete
objects to p-complete objects, in fact, it takes p-completions to p-completions.
This is not necessarily true for L , so we instead define L p = (−)p ◦ L , where
(−)p : D → D∧

p is the p-completion functor. Then, one verifies easily that
L p � R : C∧

p � D∧
p yields a new adjunction between the ∞-categories of

p-complete objects, this is what we mean by the induced adjunction.

Theorem 7.34. The adjunction 
∗ � 
∗ : SpC � SynevMU between the ∞-
categories of cellular motivic spectra over Spec(C) and even synthetic spectra
based on MU induces an adjoint equivalence (
∗)p � 
∗ : (SpC)∧p �
(SynevMU)∧p between the ∞-categories of p-complete objects at each prime
p.

Proof. We first verify that the unit X p → 
∗(
∗)pX p is an equivalence
for any X p ∈ (SpC)∧p . Since both 
∗, 
∗ are exact and so preserve p-
equivalences, it is enough to verify that for any X ∈ SpC, the unit map
X → 
∗
∗X is a p-equivalence.
The latter is the same as X/p → 
∗
∗X/p being an equivalence. Since

all functors here are cocontinuous in X , 
∗ by Proposition 2.22, the class of
X for which this holds is closed under colimits and suspensions. We deduce
that it is enough to verify that the unit is an equivalence when X = �∞+ y(M),
where M is a finite MGL-projective motivic spectrum.

We first identify �∞+ y(M)/p. Using Lemma 7.19 twice, one for each of M
and M/p, we observe that

(�∞+ y(M))/p 
 (ϒM)/p 
 ϒ(M/p) 
 �∞+ y(M/p).

In other words, we can describe �∞+ y(M)/p as the sheafification of the
presheaf of spectra defined by Map(N , M/p)≥0, where N runs through finite
MGL-projective motivic spectra. Here we write Map(N , M/p)≥0 instead of
map(N , M/p), the underlying space, to emphasize that this is a presheaf of
spectra.

The image of �∞+ y(M)/p under the left adjoint 
∗ is �∞+ y(Re(M))/p.
We claim that the latter is equivalent to�∞+ y(Re(M)/p), it is enough to show
that the sequence

�∞+ y(Re(M)) → �∞+ y(Re(M)) → �∞+ y(Re(M)/p)),
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where the first map is multiplication by p, is cofibre. Since cofibres are the
same in even synthetic and synthetic spectra, this is an immediate conse-
quence of Lemma 4.23, as p acts injectively on MU∗M . This shows that

∗�∞+ y(M)/p 
 �∞+ y(Re(M)/p)), notice that analogously to the case
done above we can describe the latter as the sheaf of spectra associated to
the presheaf Map(P, Re(M)/p)≥0, where P runs through finite even MU-
projective spectra.

We deduce that 
∗
∗�∞+ y(M) is the sheaf of spectra on N ∈ Sp f p
MGL

associated to the presheaf definedbyMap(Re(N ), Re(M)/p)≥0. The unitmap
�∞+ y(M)/p → 
∗
∗�∞+ (M)/p of sheaves is obtained as the sheafification
of the map of presheaves

Map(N , M/p)≥0 → Map(Re(N ), Re(M)/p)≥0

induced by the Betti realization. We claim that this map is already an equiva-
lence, this will imply that so must be the unit.

By using motivic Spanier-Whitehead duality to replace M by DN ⊗ M ,
we can assume that N 
 S0,0, in which case we reduce to showing that Betti
realization induces an isomorphism πk,0M/p → πk Re(M)/p for k ≥ 0. This
is a form of the Gheorghe-Isaksen theorem, which we stated as Theorem 7.30,
see Remark 7.31. This ends the proof that the unit of the induced adjunction
(
∗)p � 
∗ : (SpC)∧p � (Synev)∧p is a natural equivalence.

We’re left with verifying that (
∗)p is essentially surjective. The ∞-
category SynevMU is generated under colimits and suspensions by the even
spheres �∞+ y(S2k), see Remark 6.3, it follows that (SynevMU)∧p is generated
under colimits by the p-completions (�∞+ y(S2k))p. Since (
∗)p is cocontin-
uous and we have (
∗)p(y(S2k,k))p = (�∞+ y(S2k))p, we are done. �
Remark 7.35. The left adjoint 
∗ : SpC → SynevMU is symmetric monoidal.

To see this, notice that the functor ShSp� (Sp f p
MGL) → ShSp� (Sp f pe

MU ) admits
a unique symmetric monoidal structure with respect to the Day convolu-
tion monoidal structures of Corollary 2.29 extending the symmetric monoidal
structure of the Betti realization Re : Sp f p

MGL → Sp f pe
MU . Moreover, the Day

convolution symmetric monoidal structure on ShSp� (Sp f p
MGL) coincides with

the usual one on SpC by Remark 7.23.
Since the p-completion functor is symmetric monoidal, we deduce that so is

the induced functor (
∗)p : (SpC)∧p → (SynevMU)∧p . It follows that (SpC)∧p 

(SynevMU)∧p are equivalent as symmetric monoidal ∞-categories.

Remark 7.36. Chasing through the definitions, we see that the left adjoint

∗ : SpC → SynevMU can be described as the unique cocontinuous functor
such that 
∗(M) 
 νRe(M) for any finite MGL-projective motivic M . In
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particular, it takes spheres to spheres and so by adjunctionwe haveπt,w
∗X 

πt,2wX for any X ∈ SynevMU. Here the grading discrepancy, which we have
discussed before, comes from the fact that 
∗S2k,k 
 νS2k 
 S2k,2k .

Remark 7.37. Let Mα be a filtered diagram of finite MGL-projective motivic
spectra such that lim−→ Mα 
 MGL.Then, since
∗Mα 
 νMα byRemark 7.36,

∗MGL 
 νMU. In both the motivic and synthetic worlds we can obtain
the corresponding mod p Eilenberg-MacLane spectrum by killing the regular
sequence p, a1, . . . ∈ MU∗ 
 (MGL∗,∗)0, this is a consequence of Hopkins-
Morel-Hoyois motivically and of a repeated application of Lemma 4.23
synthetically.

In particular, we have 
∗HZ/p 
 νH , where νH is the synthetic
Eilenberg-MacLane spectrum whose homotopy we have studied before. One
can deduce from this and Remark 7.36 that our computation of the synthetic
dual Steenrod algebra, namely Theorem 6.9 at p > 2 and Theorem 6.10 at
p = 2, corresponds to the computation of the motivic one due to Voevodsky,
as we have claimed before.
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Appendix A: Sheaves

A.1: Grothendieck pretopologies

In this section we develop the language of Grothendieck pretopologies on ∞-
categories. As in ordinary category theory, this is not strictly necessary, as one
can work exclusively with topologies, but we find it convenient. These simple
results are certainly folklore, but they do not seem to be written down in this
level of generality, which is whywe collect these here.We claim no originality,
the definitions and proofs are classical.

Definition 1. Let C be an ∞-category. A Grothendieck pretopology on C

assigns to any c ∈ C a collection of families of maps {ci → c} called covering
families such that

1. if d → c is an equivalence, then the one-element family {d → c} is a
covering family,
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2. if {ci → c} is covering and d → c is any map, then the pullbacks d ×c ci
exist and {d ×c ci → d} is covering and

3. if {ci → c} is covering and so are {ci, j → ci }, then any family of compos-
ites {ci, j → c} is covering.

An ∞-site is an ∞-category equipped with a Grothendieck pretopology.

Remark 1. The first and third conditions taken together imply if {ci → c},
{c′

i → c′} are two families of maps such that ci 
 c′
i are homotopic, then

one is a covering family if and only if the other is. It follows that the covering
families can be really taken to be given by families of maps in the homotopy
category.

However, this does not imply that we have a one-to-one correspondence
between Grothendieck pretopologies on C and its homotopy category hC, as
we have for Grothendieck topologies. The reason is that pullbacks in C in
general do not represent pullbacks in the homotopy category.

Definition 2. Let C be an ∞-site and c ∈ C. We say a sieve T ↪→ y(c) is
pretopological if it is the smallest sieve containing the maps ci → c for some
covering family {ci → c}.
Remark 2. If {ci → c} is a covering family, the pretopological sieve generated
by it can be described as the map lim−→ Č(y(ci ) → y(c)) → y(c), where the

domain is the colimit of the Čech nerve of
⊔

y(ci ) → y(c). To see this, notice
that P(C) is an ∞-topos, so that by [41, 6.2.3.4] the colimit of the Čech nerve
is exactly the image of the morphism.

Proposition 1. Let C be an∞-site. Let us say that a sieve S ↪→ y(c) on c ∈ C

is covering if S a pretopological sieve; that is, if it contains morphisms ci → c
for some covering family {ci → c}. Then, the collection of covering sieves
defines a Grothendieck topology on C.

Proof. There are three axioms we have to verify. Clearly, for any c ∈ C,
y(c) ↪→ y(c) is a covering sieve since it contains the identity of c, which is
an equivalence and so forms a covering family on its own.

Now suppose that S ↪→ y(c) is covering and let f : d → c be arbitrary.
Since S is a covering sieve, it contains ci → c for some covering family
{ci → c}. Observe that by the second axiom of pretopologies, d ×c ci exist
and {d×c ci → d} form a covering family. Yet one easily sees that d×c ci → c
are contained in f ∗S, so that the latter is covering too.

We have one axiom left. Let S, T ↪→ y(c) be sieves. Assume that T is
covering and that for every f ∈ T , f ∗S is covering. By assumption, maps
fi : ci → c for some covering family belong to T . Now, since f ∗

i S is covering,
it contains morphism ci, j → ci belonging to some covering family. This
means that the composites ci, j → c belong to S, which by the third axiom of
pretopologies must be then a covering sieve. �
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Definition 3. Let C be an∞-site andD an arbitrary∞-category. Then we say
a presheaf X : Cop → D is a sheaf if it is a sheaf with respect to the topology
induced by the given pretopology.

We will now derive the usual description of the sheafification functor in terms
of the iterated plus construction, which is itself obtained by an appropriate
colimit over coverings. As a consequence, we will deduce a characterization
of sheaves on an ∞-site.

Recall that if C is an∞-category equipped with the Grothendieck topology,
then the sheafification functor L : P(C) → Sh(C) can be described as the
transfinite iteration of the plus coson X �→ X†, where

X†(c) := lim−→
S∈Cov(c)

X (S)

with the colimit taken over the poset Cov(c) of covering sieves S ↪→ y(c).
Here, to interpret X (S) we implicitly extend X to a presheaf of spaces on all
of P(C) in a unique way that takes all colimits to limits. Concretely, we have

X (S) 
 lim←−
c∈C/S

X (c),

here the limit is taken over the ∞-category C/S := C ×P(C) P(C)/S .8 For
details, [41, §6.2.2].

Proposition 2. Let C be an ∞-site. Then, the plus construction with respect
to the induced topology can be described as

X†(c) 
 lim−→ X (T ),

where S runs through the poset Covpre(c) of pretopological sieves T ↪→ y(c).

Proof. Notice that pretopological sieves are stable under pullback, more pre-
cisely if T ↪→ y(c) a sieve generated by a covering family {ci ↪→ c}, then
f ∗T is the sieve generated by {d×c ci → d}. It follows that the above formula
is contravariantly functorial in c ∈ C, to formalize it one follows [41, 6.2.2.9]
replacing covering sieves by pretopological sieves.

To compare the two constructions, we have to show that the map
lim−→ X (T ) → lim−→ X (S), where T runs through the poset Covpre(c) of pre-
topological sieves and S runs through the poset Cov(c) of all sieves, is an
equivalence. It is clearly enough to show that Covpre(c) ↪→ Cov(c) is cofi-
nal.

8 The ∞-category C/S is sometimes called the ∞-category of elements or the Grothendieck
construction. Informally, its objects are pairs (c, s), where c ∈ C and s ∈ S(c).
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By Quillen’s Theorem A, see [41, 4.1.3.1], we have to verify that for any
S ∈ Cov(c), the poset Covpre(c)/S of pretopological sieves T contained in S
is weakly contractible; that is, that it’s geometric realization is contractible. It
is clearly non-empty, so it’s enough to show that it is cofiltered.

Suppose that T, T ′ are two pretopological sieves contained in S, say T is
the sieve generated by {ci → c} and T ′ by {c′

j → c}. Then clearly the sieve
generated by {ci ×c c j → c} is pretopological and contained in both of them,
and we are done. �
Corollary 1. Let C be a ∞-site and let X ∈ P(C) be a presheaf. Then X is
a sheaf if and only if it is local with respect to inclusions of pretopological
sieves.

Proof. Every pretopological sieve is covering, so that clearly any sheaf is local
with respect to the inclusions of pretopological sieves.

Conversely, assume that X is local with respect to inclusions of pretopolog-
ical sieves. Then, by description of the plus construction of Proposition 2, the
natural map X → X† is an equivalence. Since the sheafification functor can
be written as the transfinite application of the plus construction, it follows that
X 
 LX so that X is a sheaf. �
Corollary 2. Let C be an ∞-site and let D be an ∞-category with finite
products. Then, X : Cop → D is a sheaf if and only if for any covering family
{ci → c}, the Čech nerve of⊔ y(ci ) → y(c) is taken by X to a limit diagram.
In other words, if for any covering family we have

X (c) 
 lim←−
∏

i

X (ci ) ⇒
∏

i, j

X (ci ×c c j ) . . . .

Proof. Both the sheaf condition and the condition given above are limit con-
ditions and so can be tested by applying map(d, −) for d ∈ D. It follows that
we can reduce to the case of presheaves of spaces. In this case, by Corollary 1
we know that X is a sheaf if and only if it is local with respect to inclusions
T ↪→ y(c) of pretopological sieves, which is exactly the condition above by
Remark 2. �

We now make some observations about functoriality of the ∞-category of
sheaves, introducing the notions of a morphism of∞-sites and of the covering
lifting property.

Definition 4. Let C,D be ∞-sites. A morphism of ∞-sites f : C → D is a
functor which preserves pullbacks along coverings and such that if {ci → c}
is a covering family in C, then { f (ci ) → f (c)} is a covering family in D.
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Proposition 3. Let f : C → D be a morphism of ∞-sites. Then, the pre-
composition functor f∗ : P(D) → P(C) preserves sheaves and is part of
an adjunction f ∗ � f∗ : Sh(C) � Sh(D), where f ∗ = L ◦ Lan f for
Lan f : P(C) → P(D) the left Kan extension and L the sheafification functor.

Proof. Since f preserves pullbacks along covering morphisms, we see that
the left Kan extension Lan f : P(C) → P(D) takes the colimit of the Čech
nerve of

⊔

y(ci ) → y(c), which is the pretopological sieve S associated to a
covering family {ci → c}, to the colimit of the Čech nerve of

⊔

y( f (ci )) →
y( f (c)), which is the pretopological sieve generated by the covering family
{ f (ci ) → f (c)}. Then by adjunction Lan f � f∗, if X ∈ Sh(D), then

( f∗X)(c) 
 X ( f (c)) 
 X (Lan f (S)) 
 ( f∗X)(S),

so that we see that X is a sheaf again. To see that we have an adjunction
f ∗ � f∗, observe that for Y ∈ Sh(C), X ∈ Sh(D),

map( f ∗Y, X) 
 map(L(Lan f Y ), X) 
 map(Lan f Y, X) 
 map(Y, f∗X),

where the middle equivalence used that X is a sheaf, which is what we wanted
to show. �
Definition 5. Let f : C → D be amorphism of∞-sites.We say that f has the
covering lifting property if for any c ∈ C and any covering family {di → f (c)},
there is a covering family {c j → c} such that for all j , f (c j ) → f (c) factors
through one of di → f (c).

Proposition 4. Let f : C → D be a morphism of ∞-sites with the covering
lifting property. Then, the precomposition functor f∗ : P(D) → P(C) com-
mutes with the respective sheafification functors. In particular, the restriction
f∗ : Sh(D) → Sh(C) to sheaf ∞-categories is cocontinuous and hence a left
adjoint to a geometric morphism of ∞-topoi.

Proof. Recall that the sheafification functor can be written as the transfi-
nite composition of the plus construction, and since since f∗ commutes with
levelwise colimits, it is enough to show that it commutes with the plus con-
struction. Since we’re working with Grothendieck pretopologies rather than
Grothendieck topologies, Proposition 2 implies that the plus construction can
be computed by taking colimits over the values at pretopological sieves.

We verified in the proof of Proposition 3 that the left Kan extension
Lan f : P(C) → P(D) takes the pretopological sieve generated by {ci → c}
to the pretopological sieve generated by { f (ci ) → f (c)}. Hence, for any
X ∈ P(D) there’s a canonical map ( f∗X)† → f∗(X†) which over c ∈ C is
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given by the comparison map of colimits

lim−→ ( f∗X)(S) → lim−→ X (T ),

where S ∈ Covpre(c) runs through pretopological sieves on c and T ∈
Covpre( f (c)) runs through pretopological sieves on f (c). To show that this
is an equivalence, it is enough to show that Covpre(c) → Covpre( f (c)) is
cofinal. Applying Quillen’s Theorem A, see [41, 4.1.3.1], this is equivalent to
showing that all of the overcategories of that functor are contractible; that is,
they have contractible classifying spaces.

Let T be a pretopological sieve on f (c), say generated by {di → f (c)}. By
assumption of covering lifting property, there is a covering family {c j → c},
generating pretopological sieve which we denote by S, such that { f (c j →
f (c)} factors through {di → f (c)}. This implies that f!(S) is a pretopological
sieve contained in T , so that Covpre(c)/T is non-empty, containing S. How-
ever, Covpre(c)/T is clearly a cofiltered poset, hence we deduce that it must
be contractible. This proves that f∗ commutes with sheafification.

To deduce cocontinuity of f∗ as a functor between sheaf ∞-categories,
observe that colimits in sheaf ∞-categories are computed by first computing
them levelwise and then sheafifying. Since f∗ commutes with both operations,
we deduce it is cocontinuous. Since it also clearly preserves limits, as these
are computed levelwise, it is in particular left exact, hence left adjoint to a
geometric morphism. �
Remark 3. Both the notion of the covering lifting property and Proposition 4
are classical in the case of sheaves of sets, see for example [43, VII.10.5].

A.2: Hypercompleteness and hypercovers

In this section we present a hypercompleteness criterion for sheaves on ∞-
categories equipped with a Grothendieck pretopology where each covering
family consists of a single map. The criterion given is a straightforward variant
of the recognition principle of Lurie for hypercomplete sheaves on certain
sites arising in algebraic geometry, which doesn’t apply directly in this case,
although the proof does. We provide the details for completeness, but we are
brief, a more comprehensive treatment appears in [40, A.5] .

To define hypercovers, it is slightly more convenient to work with semisim-
plicial, rather than simplicial, objects. The definitions we need, especially of
matching objects, are slightly less classical than their simplicial counterparts
and so we begin by recalling them in detail.

By �s,+ and �s we denote the categories of finite and finite non-empty
ordinals and injective, order-preserving maps. If C is an ∞-category, then an
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augmented semisimplicial, respectively semisimplicial, object of C is a functor
X : �

op
s,+ → C, respectively X : �

op
s → C. We usually write Xk for X (�k).

Notice that since �s,+ is obtained from �s by adjoining an initial object
which we will denote by −1, an augmented semisimplicial object in C can be
identified with a semisimplicial object in the overcategory C/X−1 .

If K is a simplicial set, we denote its categories of simplices and non-
degenerate simplices in the sense of [18, §5.9] by, respectively, �K and �nd

K .
We say K is nonsingular if every non-degenerate n-simplex determines a
monomorphism �n ↪→ K . If that is the case, then the inclusion �nd

K ↪→ �K

is left cofinal, morover, the projection �nd
K → � factors through �s .

Definition 6. LetCbe an∞-category and let X : �
op
s → Cbe a semisimplicial

object. If K is a nonsingular simplicial set, then the cotensor X [K ] is the limit
of the induced diagram

(�nd
K )op → �

op
s → C,

provided that such a limit exists. If X : �
op
s,+ → C is an augmented semisim-

plicial object, then by X [K ] we denote the cotensors of the associated
semisimplicial object in C/X−1 .

Example 1. We have X [�n] 
 Xn canonically, since the poset of non-
degenerate simplices of �n has a final object, namely the n-simplex itself.
If it exists, we call the cotensor X [∂�n] the n-th matching object and denote
it by Mn(X).

Proposition 5. Let X : �
op
s → C be a semisimplicial object and suppose that

there is an integer n such that for all 0 ≤ k ≤ n, Mk X exists and such that
C admits pullbacks along the map Xk → Mk(X). Then, X [K ] exists for any
finite nonsingular simplicial set of dimension dim(K ) ≤ n.

Proof. This is proven in the same way as [41, 4.4.2.4]. One proceeds by induc-
tion on the number of non-degenerate simplices of K , describing the limit as
constructed by iterating pullbacks. The induction base is K = ∅ = ∂�0, and
the assumption that C admits pullbacks along Xk → Mk(X) means that all
pullbacks needed in the proof will exist. �
Remark 4. The proof of Proposition 5 also shows that if X : �

op
s → C is a

semisimplicial object satisfying the conditions, and f : C → D is a functor
that preserves pullbacks along Xk → Mk(X) for k ≤ n, then (F ◦ X)[K ] 

F(X [K ]).
Definition 7. We say that an ∞-site C has single covers if every covering
family {ci → c} consists of a single morphism. In this case we say a morphism
c′ → c is a cover if it forms a covering family.
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Definition 8. Let C be an ∞-site with single covers and let c ∈ C. An aug-
mented semisimplicial objectU : �

op
s,+ → C is a hypercover if for any n ≥ 0,

the matching map Un → Mn(U ) is a cover.

Example 2. Let C be an ∞-site with single covers and let d → c be a cover.
Then, the underlying augmented semisimplicial object Č(d → c)|�s,+ of the
Čech nerve is a hypercover. To see this, notice that the 0-matching map can be
identified with d → c itself, so that it’s a cover, and that the higher matching
maps are equivalences.

Construction 7.38. We now describe how hypercovers can be constructed
inductively. The category�s,+ admits a filtration by its subcategories�s,+,≤n
of simplices up to dimension n. We say that a functor U : �

op
s,+,≤n → C is

an n-truncated hypercover if for each 0 ≤ k ≤ n, Mn(U ) exists and the map
Uk → Mk(U ) is a cover.

Notice that the above makes sense, since to define Un and Mk(U ) we only
need the values ofU on simplices of dimension up to n, this also implies that an
augmented semisimplicial object is a hypercover if and only if all of its restric-
tions are truncated hypercovers. We deduce that to construct a hypercover it’s
enough to define a compatible sequence of truncated hypercovers.

When n = −1, then �s,+,≤−1 consists of a single object and we see that a
−1-truncated hypercover is the same as an object ofC subject to no conditions.
Now assume that we have already defined U : �

op
s,+,≤n−1 → C and we want

to extend it to the category �s,+,≤n , where n ≥ 0. To give such an extension
it is enough to choose Xn together with a map Xn → Mn−1(X). Indeed, any
injectivemap�k → �n with k < n factors through ∂�n , so that we can define
the induced map to be the composite Un → Mn(U ) → Uk . Moreover, one
sees that to make the extension into an n-truncated hypercover it is necessary
and sufficient for the chosen map Un → Mn(U ) to be a covering.

Notice that if we proceed in this fashion, then the the existence of Mk(U ),
which is implicit in the definition of a hypercover, is guaranteed by Proposi-
tion 5, since in an ∞-site all pullbacks along coverings exist.

Proposition 6. Let C be an ∞-category with single covers and let X : Cop →
S be a functor. Then, X is a hypercomplete presheaf if and only if for every
hypercover U : �

op
s.+ → C, X ◦U is a limit diagram of spaces.

Proof. The proof of [40, A.5.7] works here, the only difference is that our
Grothendieck pretopology has single covers so one does not need to take the
coproducts when constructing the needed hypercover. For completeness, we
give Lurie’s proof.

First suppose that X is a hypercomplete sheaf and let U : �
op
s,+ → C be

a hypercover. Then, the composition y ◦ U with the Yoneda embedding is a
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hypercover in the ∞-topos Sh(C) in the sense of Lurie and the result follows
from [41, 6.5.3.12].

Now assume that X takes all hypercovers to limit diagrams, since all ordi-
nary covers are hypercovers by Example 2, the characterization of sheaves
given by Corollary 2 implies that X is a sheaf. It follows that it admits an
∞-connective map X → X ′ into a hypercomplete object of Sh(C). It is thus
enough to show that any ∞-connective map of sheaves that take hypercovers
to limits is in fact an equivalence.

If c ∈ C, we have to show that X (c) → X ′(c) is n-connective for all n. If
n ≥ 0, this is the same as X (c) → (X ′ ×X X ′)(c) being (n − 1)-connected,
so that we can assume n = −1. Hence we have to show that X (c) → X ′(c) is
surjective on path components. Notice that we can replace C by C/c and X, X ′
by their pullbacks along the projection C/c → C, since C/c admits an induced
Grothendieck pretopology which also has single covers and an augmented
semisimplicial object in C/c is a hypercover if and only if its projection onto
C is. It follows we can assume that c ∈ C is final.

Let x ∈ X ′(c) be a point, since c is final, this specifies a map 1 → X ′,
where 1 ∈ Sh(C) is the final object in sheaves. Notice that 1 is discrete, hence
automatically hypercomplete. We have to show that Y (c) is non-empty, where
Y = X ×X ′ 1. Notice that Y is an ∞-connective sheaf, since the map X → X ′
was assumed to be ∞-connective, and that it takes hypercovers to limits.

LetU : �
op
s,+ → C be a hypercover of c in the sense thatU−1 = c. Then, by

assumption Y (c) 
 lim←− X ◦ U|�s , so that Y (c) can be computed as the total-
ization of the cosimplicial object expressing the values of X on the underlying
simplicial object of the hypercover. We will inductively construct a hyper-
cover U as above together with a point in this totalization, showing that Y (c)
is non-empty, to do so we follow as in Construction 7.38.

Since c is final, it’s enough to construct a semisimplicial objectU : �
op
s →

C, as it will uniquely extend to an augmented semisimplicial object with
U−1 = c. Suppose that we’ve already constructed an n-truncated hypercover
U : �

op
s,≤n → C and we have a chosen point in the limit of Y ◦U : �s,≤n → S.

The latter is the same as a natural transformation from the constant diagram
and hence induces a composition

∂�n+1 → lim−→ Y ◦U → Y (Mn+1U ),

where thefirstmap is obtained by taking colimits over the poset of subsimplices
of ∂�n+1 and the second map compares the limit and colimit.

To construct an extension of U to �s,≤n+1 we need to choose a cover
d → Mn+1(U ), we will then set Un+1 = d. Then, to give the needed point
in the limit of Y ◦U , compatible with the previous choice, we need to extend
the composition ∂�n+1 → Y (Mn+1U ) → Y (U ) to �n+1, this will extend

123



678 P. Pstrągowski

the map from a constant diagram to a map of diagrams indexed over �s,≤n+1.
Since Y is ∞-connective, there exists a cover d → Mn+1(U ) such that the
composite ∂�n+1 → Y (MnU ) → Y (d) is null-homotopic, so that we can set
Un+1 = d and choose some such null-homotopy. This ends the argument. �
Corollary 3. Let f : C → D be a morphism of ∞-sites with single covers.
Then, the precomposition functor f∗ preserves hypercomplete sheaves and is
part of an adjunction ̂f ∗ � f∗ : ̂Sh(C) � ̂Sh(D), where ̂f ∗ = ̂L ◦ f ∗.

Proof. This is proven the same as the corresponding statement for sheaves,
namely Proposition 3. By Proposition 6 it is enough to show that f ∗ takes
hypercovers to hypercovers, which is immediate from Proposition 5. �
Corollary 4. Let f : C → D be a morphism of ∞-sites with single cov-
ers that has a covering lifting property. Then, the precomposition functor
f∗ : Sh(D) → Sh(C) commutes with hypercompletion, in particular, the
restriction f∗ : ̂Sh(D) → ̂Sh(D) to ∞-categories of hypercomplete sheaves
is cocontinuous.

Proof. By Proposition 4, the covering lifting property implies that f∗ : Sh(D) →
Sh(C) is cocontinuous, in particular left adjoint to a geometric morphism. Thus,
the second part follows from the first, since colimits in hypercomplete sheaves
are computed by calculating them in sheaves and hypercompleting.

To see that f∗ : Sh(D) → Sh(C) commutes with hypercompletion, observe
that since f∗ is left adjoint to a geometricmorphism, it preserves∞-connective
maps of sheaves. Because it also preserves hypercomplete sheaves by Corol-
lary 3, we are done. �

References

1. Adams, J.F.: Stable Homotopy and Generalised Homology. University of Chicago press
(1995)

2. Bergner, J.E.: Rigidification of algebras over multi-sorted theories. Algebr. Geom. Topol.
6, 1925–1955 (2006)

3. Barthel, T., Heard, D.: Algebraic chromatic homotopy theory for BP∗BP-comodules.
Preprint arXiv:1708.09261 (2017)

4. Burklund, R., Hahn, J., Senger, A.: On the boundaries of highly connected, almost closed
manifolds. Preprint arXiv:1910.14116 (2019)

5. Burklund, R., Hahn, J., Senger, A.: Galois reconstruction of artin-tate R-motivic spectra.
Preprint arXiv:2010.10325 (2020)

6. Burklund, R., Hahn, J., Senger, A.: Inertia groups in the metastable range. Preprint
arXiv:2010.09869 (2020)

7. Barthel, T., Heard, D., Valenzuela, G.: Local duality in algebra and topology. Preprint
arXiv:1511.03526 (2015)

8. Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions and Localizations, vol. 304.
Springer (1972)

123

http://arxiv.org/abs/1708.09261
http://arxiv.org/abs/1910.14116
http://arxiv.org/abs/2010.10325
http://arxiv.org/abs/2010.09869
http://arxiv.org/abs/1511.03526


Synthetic spectra 679

9. Bachmann, T., Kong, H.J., Wang, G., Xu, Z.: The chow t-structure on the ∞-category of
motivic spectra. Preprint arXiv:2012.02687 (2020)

10. Brandenburg, M.: Tensor categorical foundations of algebraic geometry. Preprint
arXiv:1410.1716 (2014)

11. Burklund, R., Senger, A.: On the high-dimensional geography problem. Preprint
arXiv:2007.05127 (2020)

12. Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010)
13. Burklund, R.: An extension in the adams spectral sequence in dimension 54. Bull. Lond.

Math. Soc. 53(2), 404–407 (2021)
14. Chang, K.: A v1-banded vanishing line for the mod 2 moore spectrum. Preprint

arXiv:2009.02834 (2020)
15. Conner, P.E., Smith, L.: On the complex bordism of finite complexes. Publications mathé-

matiques de l’IHÉS 37(1), 117–221 (1969)
16. Deligne, P.: Théorie de Hodge, II. Publications Mathématiques de l’Institut des Hautes

Études Scientifiques 40(1), 5–57 (1971)
17. Ethan, S.: Devinatz, Morava modules and Brown-Comenetz duality. Am. J. Math. 119(4),

741–770 (1997)
18. Dwyer,W.G,Hirschhorn, P.,Kan,D.:Model categories andmoregeneral abstract homotopy

theory: a work in what we like to think of as progress
19. Dugger, D., Isaksen, D.C.: Motivic cell structures. Algebr. Geom. Topol. 5(2), 615–652

(2005)
20. Dugger, D., Isaksen, D.C.: The motivic Adams spectral sequence. Geom. Topol. 14(2),

967–1014 (2010)
21. Goerss, P.G., Hopkins,M.J.:Moduli problems for structured ring spectra. http://www.math.

northwestern.edu/~pgoerss/spectra/obstruct.pdf
22. Goerss, P.G., Hopkins, M.J.: Moduli spaces of commutative ring spectra, Structured ring

spectra, LondonMath. Soc. LectureNote Ser., vol. 315,CambridgeUniv. Press, Cambridge,
pp. 151–200 (2004)

23. Gheorghe, B., Isaksen, D.C.: The structure of motivic homotopy groups. Boletín de la
Sociedad Matemática Mexicana 23(1), 389–397 (2017)

24. Gregoric, R.: Moduli stack of oriented formal groups and cellular motivic spectra over C.
Preprint arXiv:2111.15212 (2021)

25. Gheorghe, B., Wang, G., Zhouli, X.: The special fiber of the motivic deformation of the
stable homotopy category is algebraic. Acta Math. 226(2), 319–407 (2021)

26. Hu, P., Kriz, I., Ormsby, K.: Convergence of the motivic Adams spectral sequence. J.
K-theory 7(3), 573–596 (2011)

27. Hu, P., Kriz, I., Ormsby, K.: Remarks onmotivic homotopy theory over algebraically closed
fields. J. K-Theory 7(1), 55–89 (2011)

28. Hovey, M.: Homotopy theory of comodules over a Hopf algebroid, homotopy theory:
relations with algebraic geometry, group cohomology, and algebraic K-theory, 261–304,
Contemp. Math 346

29. Hoyois, M.: The vanishing of MGL2n+i,n(X). https://mathoverflow.net/questions/
111849/the-vanishing-of-mgl2ni-nx-do-spectra-of-smooth-projective-varieties-ge

30. Hoyois, M.: From algebraic cobordism to motivic cohomology. Journal für die reine und
angewandte Mathematik (Crelles Journal) 2015(702), 173–226 (2015)

31. Isaksen, D.: Stable Stems, vol. 262. American mathematical society (2019)
32. Isaksen, D.C, Wang, G., Xu, Z.: More stable stems. Preprint arXiv:2001.04511 (2020)
33. Joachimi, R.: Thick ideals in equivariant and motivic stable homotopy categories. Preprint

arXiv:1503.08456 (2015)
34. Jeanneret, A., Wüthrich, S.: On the cohomology of certain quotients of the spectrum BP.

Glasg. Math. J. 54(1), 61–66 (2012)

123

http://arxiv.org/abs/2012.02687
http://arxiv.org/abs/1410.1716
http://arxiv.org/abs/2007.05127
http://arxiv.org/abs/2009.02834
http://www.math.northwestern.edu/~pgoerss/spectra/obstruct.pdf
http://www.math.northwestern.edu/~pgoerss/spectra/obstruct.pdf
http://arxiv.org/abs/2111.15212
https://mathoverflow.net/questions/111849/the-vanishing-of-mgl2ni-nx-do-spectra-of-smooth-projective-varieties-ge
https://mathoverflow.net/questions/111849/the-vanishing-of-mgl2ni-nx-do-spectra-of-smooth-projective-varieties-ge
http://arxiv.org/abs/2001.04511
http://arxiv.org/abs/1503.08456


680 P. Pstrągowski
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