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FORMAL GROUPS AND CONGRUENCES FOR L-FUNCTIONS

By JAN STIENSTRA

Introduction. In this note we show congruences, similar to those of
Atkin and Swinnerton-Dyer [2, 6], for a large class of schemes, including
branched double coverings of PV of arbitrary dimension and genus, de-
fined over any ring which is flat and of finite type over Z. The results of
sections 1-4 together yield the following theorem.

THEOREM 0.1.  Let K be a ring which is flat and of finite type over Z.
Let R € K[Ty, . . ., Ty] be a homogeneous polynomial of degree 2d. As-
sume 2d > 2N > 0. Let X be the double covering of P¥ given by the
equation U> = R (where U is a new variable of weight d).

Let ® be a maximal ideal of K with residue field K/® of characteris-
tic p and of order ¢ = p’. Let e be an integer such that 1 < e < p — land
p € ®e.

Let X o = X X gpeck spec(K/®) be the fibre of X at ®. Assume that
there exist a smooth projective variety X over K/® and a morphism
7 : X = X such that m1+Ox = Og, and Rim«Ox = 0 fori > 1. Let

PN(T) = det(1 — TF, | HY,(X) ® Q),

the (reversed) characteristic polynomial of the Frobenius operator F,, rel-
ative to K/@®, acting on the middle crystalline cohomology group of X; say

PN(T) = Ay + a1T+ cee + akaGZ[T].

LetJ = {i:(io, . .,iN)EZN+1|i0, . .,l.NZ 1,i0+ . +iN=d}and

d—1
g = < N > So g = #1 = dimK/(pHN(X, Ox)
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1112 JAN STEINSTRA

Define for every positive integer n a g X g — matrix 3, with rows and
columns indexed by the elements of the set J and with entries in K, by: the
entry of 3, in row i and column j is

Bnij = the coefficient of TWo™0- . . . - TWUN"INin R"=D2if nis odd,
B.i; =0 if niseven.
Consider the formal Dirichlet series

Pyg™)=1+a;g* +ag >+ -+ + arg™", Y B.n

n>1

and their product

E onn_s = ( Z>:1 Bnn_s) ‘PN(q_s)-

n>1

So6,=83, + aIB,,/q + aZB,,/qz + -+ akB,,/qk, where, by convention,
Bu=0ifu¢lZ.
Then we have for every n € N the congruence relation

6, = 0 mod @<+l jf n=0mod p’, v =g

(i.e. each entry of the matrix 0,, is in the indicated power of ®). O

Remark 0.2. 1If we add in (0.1) the hypothesis that for every x € K
and for every integer w > e one has px € ®" if and only if x € ®*~¢, then
we can define the function ordp : K® Q — Zbyorde((x®1/n) =w —ev
if x € ®*\®**! and n € p*Z\p**'Z. This function can be extended to
matrices over K @ Q by orde((a;);) = min,; orde(a).

In terms of this function the congruences in (0.1) can be reformulated
as

orde(0,/n) 2 1 — efg forall neN.

0.3. The inverse Py(q )~ ! of the Dirichlet series Py(q ) in (0.1) is
by definition the L-function for the middle (crystalline) cohomology of X.
It would be more appealing to call it the local L-function of HN(XC) at the
closed point ® of spec K, but to justify that terminology the connection
between X and X must be made more canonical, for instance by assuming
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X smooth and X = X, or by a theory of smooth minimal models. On
the other hand, the congruences yield only information about the roots of
Pn(T) of p-adic valuation <f (or >(N — 1)f, by duality), i.e. about the
part of H, ﬁ,-s(X ) ® Q where Frobenius F » acts with slopes < 1. This part is
isomorphic with HV(X, WOx) ® Q and is independent of the particular
choice of the desingularization = : X — %, as long as the condition for
R« Oy is satisfied (cf. 2.5, 3.1, 3.2). So maybe one should try to formu-
late the result for a suitable factor of Py(g~*)~!, which is independent of
the choice of X and which can be considered as the local L-function at ® of
a sub-motive of HV(C).

Examples. 0.4. (a). The original Atkin-Swinnerton-Dyer congru-
ences [2] for an elliptic curve with equation

y 2=x3+Ax+B, A,BelZ,

are covered by theorem (0.1): One takes N = 1, d = 2 and

R = T,T3 + AT}T, + BT}.

Beukers [3] showed that the p-adic integers 8, of theorem (0.1) are in
fact the coefficients of the expansion of the canonical differential form w =

dx/2y in terms of the coordinate u = —x/y at infinity:
d
0= = Y B,u""'du.
2y n>1

A generalization of this connection between the 8,’s and differential
forms for higher dimension and genus is shown in [17].
The congruences for the elliptic curve read

Bnp-'_alﬁn +p6n/p50m0dpv+l if pvln.

Note that the number of F ,-rational points on the elliptic curve is 1 +
a,; + p.If pisatleast 17, the integer a, can already be computed from the
single congruence a; = —f, mod p and the archimedean estimate |a,| <
2+/p, given by the Weil conjectures (cf. [7]).

(b). In [16] we gave congruences of Atkin-Swinnerton-Dyer type for



1114 JAN STEINSTRA

certain K3-surfaces. The examples of op. cit. are also covered by theorem
(0.1). For instance, the smooth minimal model of the equation

U? = =TT \TTo + T)(T, + T)(T2 + To)

in characteristics # 2 is a K3-surface. The integers 8, for this equation
are: 8, = 0 for even n,

3
B, =(—1"L <’Z> if n=2m+1.

The polynomial P,(T) for the smooth minimal model of the above
equation over the prime field F, was also computed in [16]:

PXT) =1 — pT)®(1 + aT + ep?T?)

witha =0ande = —1if p=5Sor7mod8, resp. a = 2p — 4u’ande =
1if p = u? + 2v2, u, v € Z. For the congruences one can omit the factors
(1 — pT), only 1 + aT + ep?T? is relevant (cf. (0.3)). The congruences
reduce to

B., + aB, + ep?B,,, = 0mod p**! if p¥|n.

The situation in this example is quite exceptional, in that one has an
alternative way for determining P,(T). In general this polynomial will be
unknown. Through the congruences one can then obtain some information
about it.

(c). A prominent theme in Dwork’s work is the variation of the zeta
function in a family of varieties (see [22, 24] and the bibliography therein).
In (0.1) that amounts to studying Pn(T) as ® varies over the closed points
of spec K, with or even without fixing the residue characteristic. The inter-
nal combinatorics of the construction of the matrices 38, is probably so
strong that the congruences of (0.1) “converge” to p-adic limit formulas
for the roots of Py(T) of p-adic valuation less than deg ® = [K/® : F,].
Moreover these limit formulas should be related to the Gauss-Manin con-
nection (= Picard-Fuchs equation) for /K /Z (cf. [22, 24]).

0.5. This paper is organized as follows. Congruences of the kind we
are looking for, are the output of a simple fairly general theorem on formal
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groups, treated in section 1. The input data for this theorem are a formal
group G over a Z-flat ring K, the logarithm of a curvilinear formal group
law for G (characteristic 0 data) and information about the action of Fro-
benius on the Cartier module of curves on the reduction of G modulo an
ideal of K (characteristic p data). The formal groups we use, are those of
Artin and Mazur [1]; their definition is recalled in section 2. Information
about the action of Frobenius in characteristic p comes via Witt vector
cohomology and crystalline cohomology from the zeta function of the
scheme. These matters are discussed in section 3. The characteristic 0 in-
put data are provided by [17]. In op. cit. we construct an explicit logarithm
of a curvilinear formal group law for the only interesting Artin-Mazur for-
mal group for complete intersections, with degree restrictions, in P™ and
for branched double coverings of PV. In section 4 we briefly describe the
result for the double coverings. The combination of this result with the
results of sections 1-3 constitutes a proof of theorem (0.1). A similar theo-
rem can be proved for complete intersections by combining sections 1-3
with theorem 1 of [17].

0.6. For other generalizations of the original Atkin-Swinnerton-Dyer
congruences see [19, 20, 21, 23, 25, 26].

1. Generalities on formal groups and congruences. References for
this section are [8, 9, 15, 18, S5]. By formal group we mean smooth commu-
tative formal group. The rings and algebras in this paper are associative
and commutative and all rings have a unit element.

1.1. Let K be a ring and let g be a positive integer. Let ifalysx de-
note the category of nil-K-algebras, i.e. of K-algebras in which every ele-
ment is nilpotent. Formal affine g-space over K is the functor A% :
Mifalysx — Sets which assigns to a nil-K-algebra A theset A X - -+ X A (g
factors) and to a morphism f the map f X -+ X f. A g-dimensional for-
mal group over K is a functor G : TMifalysx = Qbefian groups whose underly-
ing set valued functor admits a functorial bijection onto A%. Such a func-
torial bijection G — A% is called a coordinatization of the formal group G.

1.2. A coordination ¢ : § — A% leads to a description of the formal
group G by a g-dimensional formal group law L(£, n) over K: there exists a
g-tuple L = (L, . ., L,) of formal power series with coefficients in K in
two g-tuples of variables £ = (¢4, . ., £;,) andyn = (9y, . ., n,) such that for
every nil-K-algebra A and for all elements o, 8 € G(A):
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c(a H B) = Lic(a), c(B));

here B denotes the group structure on G. The group axioms for G corre-
spond to the following identities for L(£, ¢):

L(L(E, n), §) = L&, L(n, §)),  L(§ 0) = ¢,
L, m) =L, &), L ) =&+ nmoddeg > 2;

here { is another g-tuple of variables and 0 = (0, . ., 0).

1.3. If K is a Z-flat ring (i.e. the canonical map K —» K ® Q is injec-
tive), every g-dimensional formal group law L(£, 5) over K determines a

g-tuple £(7) of power series in one g-tuple of variables 7 with coefficients in
K ® Q such that

lr) = 7moddeg > 2,  UL(&, n) = &) + {n).

One calls (1) the logarithm of the formal group law L(£, n). The law
is said to be curvilinear if the power series expansions of its logarithm in-
volve no monomials with more than one variable. In that case one can write

)= X n'B,™

n>l1

with 3, a g X g-matrix with entries in K, 8, equal to the identity matrix,
and 7" denoting the transpose of the vector (7}, . ., Tg)-

1.4. Cartier’s theory associates with a formal group G over a ring K
its module of curves CG

CG = lim G(tK[t]/(t"))

n

A coordination of G gives an identification of @G with the set (¢K[[¢]]) %€ of
g-tuples of formal power series in one variable without constant term; here
g = dim G. The addition rule on this set is provided by the formal group
law attached to the coordinatization of G.

1.5. For every positive integer n one has two operators F, (Frobenius)
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and V, (Verschiebung) acting on CG as follows. V,, is induced by the sub-
stitution ¢ b ¢*. The defining formula for the action of F, is

F,(y(2)) = y(ct") B y($2V") B - -+ B y(§me'),
for v(t) € CG; here ¢ is a primitive n-th root of unity. Notice the relations
v.V,=V,, and F,F, =F,, forall n,m,
F,V,=nl forall n(I = identity operator),
V,F, =F,V, if K has characteristic p, p prime,
V.F,=F,V, it ged(m,n)=1.

THEOREM 1.6. Let G be a g-dimensional formal group over a Z-flat
ring K. Let p be a prime number and let ® be an ideal in K which Eontains
p. Fix an integer e such that 1 < e < p — land p € ®°. Let G be thf
restriction of the functor G to the subcategory Milalys ke of MNilalysg. S0 G
is a formal group over K/®. Assume one has a curvilinear formal group

law for G with logarithm

or) = X n18,7,
n>1

and integersk > r > 0and b, . . ., by € Z such that the operator
F;+bF; '+ - +b_F,+bI+b,V,+ -+ +b VS
vanishes on CG. Put
a;=b; for 1 <i<r, a; =p'~'h; for r <i<k.
Then orne has the following congruences:
Bupr + @iBupr—1 + asBupr—2 + <+ + arBupr—k = 0 mod @+!

if n = 0 mod p". (convention: 8,, = 0 if m ¢ Z; the congruence means that
the left-hand side is a g X g-matrix with entries in ®*1.)
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Proof. Using the coordinatization of G corresponding to the given
formal group law we identify CG with (¢K[[¢]])*¢. By restriction from
Nilabys to Milalysx,e One obtains a coordinatization of G and hence an
identification of @G with (¢(K/®)[[¢]])*¢. The kernel of € — €CG is
thereby identified with (¢®[[¢t]])*¢. The hypothesis that F, + --- +
b V57" vanishes on Gg, implies that, when this operator acts on CG, its
image lies in ker(CG — CQ). In particular, writing ¢, for the transpose of
the vector (0, . ., 0, ¢, 0, . ., 0) with ¢ as i-th coordinate, we have

(Fp + b F,r7 4 o + bV EN@) = f(2) € @P[[e]D™%.

To this relation we apply the logarithm {. Easy computation shows
that it then becomes

n

li
Z>:’1 (Bnp’ + bIBnp"_1 + -+ b,B, +pbr+16"/P + - +pk_rbk6"pr—k)7
equals E] n18,(f ()"
nz

The latter obviously is a g-tuple of power series with coefficients in the
algebra {x € K ® Q|if nx € K and n € p*Z C Z then nx € ®=*'}. This
proves the congruences for the i-th matrix columns. O

2. The formal groups of Artin and Mazur [1]. In this section we
define the formal groups to which we want to apply theorem (1.6).

2.1. We denote the 1-dimensional formal multiplicative group by G,,,.
It is defined over Z and it admits a coordinatization so that the correspond-
ing formal group law is £ + n — £, with logarithm Z,5, n~17".

2.2. Let X be a scheme over a ring K, with structure sheaf Oy. For a
nil-K-algebra A we construct the sheaf G,, «(A) of abelian groups on X by
sheafifying the pre-sheaf (Zariski open U C &) b G, (T'(U, Oy) @k A).
The N-th Artin-Mazur functor

HN(Er, G:nsc) : 314,&;,(’94 — @belian groups

(denoted ®* in [1]) is the functor which assigns to a nil-K-algebra A the
cohomology group H¥(X, G,, «(A)).
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This functor is not always a formal group. Therefore we often have to
impose the condition that HN(X, G, «) is a formal group for the N we are
interested in. In section 4 we give examples of schemes for which the condi-
tion is satisfied.

2.3. It HY(X, G,,.«) is a formal group and K is a field, then the di-
mension of this formal group is equal to dimx H¥(, O).

2.4. Let & be a flat noetherian scheme over a ring K and let ® be an
idealin K. Put p = X X speck Spec(K/@®). Then, for every N, HN(X 5,
G, %) is canonically isomorphic with the restriction of HN(C, G, o) to
Nikalysg/e; see [17] (3.9). In particular, if H¥(X, G,, «) for some N is a
formal group over K, then H¥M(X ¢, G, x) is a formal group over K/®.

So the passage in (1.6) from characteristic 0 to characteristic p can be
made with the Artin-Mazur formal groups.

2.5. Let K be a field and let  : X — Y be a morphism of schemes
over K with Rir«Ox = 0 fori > 1 and 7:Ox = Oy. Then 7 induces a
functorial isomorphism HM(X, G,, x) = HMY, G,, y), for every N; see
[17] (3.10).

This result is useful if one can take X to be smooth. The condition
then means that the singularities of Y are not too bad; e.g. rational singu-
larities on a surface. One needs this possibility of passing from a singular
model to a smooth one without changing H¥G,,, if one wants to exploit the
connection between the Artin-Mazur formal groups and zeta-functions.
This connection, which is explained in the next section, runs via the theory
of the De Rham-Witt complex and crystalline cohomology, which has only
been sufficiently worked out for smooth projective varieties. On the other
hand, one should not insist on having a smooth scheme to begin with, since
explicit logarithms of formal group laws for the Artin-Mazur formal
groups are sometimes easier to compute on a model with singularities (see
section 4).

3. Curves on Artin-Mazur formal groups and zeta functions. In this
section we explain how one can obtain the characteristic p part of the input
data for application of theorem (1.6). The main result is stated in theorem
(3.12). Throughout this section X is a smooth projective variety over the
finite field F, of characteristic p; ¢ = p/.
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3.1. If HN(X, G, x) is a formal group (over F ), its module of curves,
C(HN(X, G, x)), is equal to H¥(X, CG,, x) with

GG:"'X = lil_n G;,,Vx(th[t]/(tn)).

n

The sheaf CG,, x is the sheaf of generalized Witt vectors on X (cf. [S, 4,
10]).

3.2. Let u denote the Mobius functionon N : u(1) = 1, pu(n) = (—1)"
if n is squarefree and divisible by » primes, u(rn) = 0 if » is divisible by a
square >1. Then the operator

E= Y n'un)V,F,,
neN\pN

which acts on @G, x and on HV(X, CG,, x), is idempotent (cf. [4, 5, 10]).
The factor which it splits off from CG,, x, is the sheaf WOy of p-typical
Witt vectors on X (ibid.). In HN(X, CG,, x) it gives HN(X, WOy). One
even has an isomorphism

) (@n
(*) HN(X’ eGm,X) -~ H HN(X’ W‘E)X)’
<— n
a7y,

with » running through the set N\pN (ibid.).

3.3. The operators F, and V, commute with all F, and V, for n
prime to p. They also commute with E. So F,, and V, act on WOy and on
HN(X, “WOy). This action is compatible with the decomposition (¥) in
(3.2). In particular, an operator F,” + b F,~' + -+ + b, I + -+ +
b, V" vanishes on H¥(X, CG,, x) if and only if it vanishes on HY(X,
WOx). Such a vanishing operator is the essential part of the characteristic
p input data for theorem (1.6), if HN(X, G,, x) is a formal group. We are
going to construct such an operator in (3.4)-(3.11).

3.4. We now recall some facts about crystalline cohomology. Refer-
ences are [4, 10, 11, 12]. According to Bloch, Deligne and Illusie the crys-
talline cohomology H ¥, (X) of X can be obtained as the hypercohomology

of a complex of sheaves for the Zariski topology on X:
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HiW(X) = HV(X, WQy)

for 0 < N < 2 dim X. The complex WQxis called the De Rham-Witt
complex on X. It is concentrated in nonnegative degrees and its degree 0
term is the sheaf WOy of p-typical Witt vectors on X. So there is a homo-
morphism WQy— WO and this induces a homomorphism

¢ HV(X, WQx) > HN(X, WOy)

for N= 10,1, . ., dim X. This homomorphism appears also as the com-
posite

HN(X, WQy) > EW — EN = VX, WOx)
in the so-called slope spectral sequence
(sss) EY = Hi(X, WQ%) = HXX, WQy)

(see [4, 10, 11, 12]). The slope spectral sequence degenerates modulo tor-
sion at E; (ibid.), i.e. the differentials in the spectral sequence (sss) ® Q
are zero. In particular the map

P ®Q: HY(X, W) ®Q — HY(X, WOx) ®Q

is surjective for every N.

3.5. On the De Rham-Witt complex W Qxone can construct a Fro-
benius endomorphism F,, which in degree 0 coincides with the Frobenius
endomorphism F, on WOy, as defined in (3.3) (see [4, 10, 11]). This in-
duces Frobenius endomorphisms F, on H¥(X, WQx) and HN(X, WO).
On the latter it coincides with the operator F, of (3.3). Obviously, F, com-
mutes with the map ¢ of (3.4). Since moreover ¢ ® Q is surjective, we see
that, if an operator of the form Ff, + a,Ff,_‘ + -+ 4+ ail,withay,. . .,
a, € Z, vanishes on HY,(X) ® Q, it vanishes also on HV(X, WO) ® Q.

3.6. The zeta function of X/F is, by definition,

Z(X/F,; T) = exp( ):1 n~'N,T")
n>
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with N, = the number of points on X defined over F,n. By Deligne [7] and
Katz-Messing [13] one knows

2dim X N1
Z(X/Fy; T) = 11 Py(T)"
N=0

with Py(T) = det(1 — TF,|HY(X) ®Q), Py(T) € Z[T]; F, is the appro-
priate Frobenius endomorphism, F, = Fjwith F, as in (3.5). Put

PW(T)=ay+a;T+ -+ + a,Tk

SO ag, . . ,ax €Z, ap = 1 and k is equal to the N-th Betti number of X.
Then, by Cayley-Hamilton, the operator

Fiy+aFE' 4 - +ayl

vanishes on HY.(X) ®Q, and hence also on H¥(X, WO ) ® Q (cf. (3.5.)).

3.7. Let Py(T) be as in (3.6). Write, for a € Z, ord,(a) = v if
a € p*Z\p**'Z. Define

m = min{n €Z|fn > fj — ord,(a;) forj =1, . ., k}

Then 0 < m < k and there exist integers cq, . . ., ¢ such that
a;=c; for 0<j<m
a; =gq’~mc; for m < j <k

Now recall that on HV(X, WO ) one also has the operator V,= V{;
and that V F, = F,V, = gl. Thus

Fy + ch;"_l + o tend e, Vot oo e Vi
— qm—quk—m(Fqk -+ aquk—l + - + akI)

and, by (3.6), this operator acts trivially on H¥(X, ‘WO4) ® Q.

3.8. Let p-tors mean the module of p-torsion elements in HM(X,
WOx). Then HY¥(X, “WO)/(p-tors) injects into HN(X, WOy) ® Q. The
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operator F," + ¢ F,/"7! + -+ + ¢ V=™, constructed in (3.7), acts
therefore trivially on HN(X, WO x)/(p-tors).

We want, however, an operator of this sort which vanishes on H NX,
WOy), not just modulo torsion. For that purpose we are going to investi-
gate the action of F, on p-tors.

3.9. First we need more information about the integer m, defined in
(3.7). The Newton polygon of the polynomial Py(T) is by definition the
highest convex polygonal curve in R? between the points (0, 0) and (k,
ord,a,) which passes through or below the points (j, ord,a;) for j = 0,
1, . ., k. Since the base field is F;, the Newton polygon of Pn(T) coincides
with the Newton polygon for the action of F, on HY.(X) ® Q (cf. [14)]).
Dividing all its slopes by £, leaving the multiplicities unchanged, one ob-
tains the Newton polygon for the action of F, on H N (X)® Q. The integer
m can now be characterized geometrically by the fact that in R? the line of
slope 1 through the point (0, m) is the lowest line of slope 1 which intersects
the Newton polygon of F,. This shows that m is equal to the slope number
mON, defined in [12] (6.2).

Formula (6.2.6) of op. cit. yields therefore

m = diquHN(X, WOx)/(p-tors + V,HN(X, WOx)).

3.10. From now on we assume that H¥(X, G, x) is a formal group
over F, of dimension g. Then

g = diquHN(X, Ox) = dimpq(HN(X, WGX)/VPHN(X, ’W(‘)X)).

Combining this formula for g with the formula for m given in (3.9) we
see

g—m= diqu((p-tors)/Vp(p-tors)).

On ((p-tors)/V ,(p-tors)) there is an increasing filtration by the F -
vector spaces (ker p")/((ker p") N V,(p-tors)), n = 1,2, . ... This se-
quence stabilizes at n = g — m, or earlier. So, V,-adically every element
of p-tors is the limit of a sequence of elements of ker p#~". Since HN(X,
WOyx) is V,-adically complete and separated, we see

p-tors = ker(ps~" |HN(X, WOx)).
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Since HN(X, G, x) is a formal group, V, acts injectively on its Cartier
module, whence also on H¥(X, WOy). Moreover, V,F, = F,V, = pl.
We conclude that F,2~" vanishes on p-tors.

3.11. We combine the results of (3.8) and (3.10) by means of the ex-
act sequence

0 — (p-tors) > HN(X, WOy) = (HN(X, WOx)/(p-tors)) — 0.

In (3.8) we constructed an operator which vanishes on the right-hand
term. In (3.10) we showed that F%~™ vanishes on p-tors. The product of
these operators then acts trivially on HV(X, WO ).

This proves:

THEOREM 3.12. Let X be a smooth projective variety over F,, g =
p’, p prime. Assume that H¥(X, G,, x) is a formal group over F,. Let

Py(T)=ao+ a;T + -+ + a, Tk = det(1 — TF,|HN(X) ® Q);

so, k = N-th Betti number of X, ay, . ., ay €Z, ag = 1.

Put
g= diquHN(X, Ox) = dimension of H¥(X, G,, x),
m = min{n € Z|fn > fj — ord,(a;) for 0 < j < k},
r=g—m+ fm,
t = (largest integer < (r/f)).
Define by, . . ., by € Z by

a; = b; for j=0,...1¢,
a;=pli~rb; for j=t+1,.. k.
Then the operator

F/+ b F/ 7+ oo+ b Fy S 4 by VI 4 o+ b Ve
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vanishes on H¥(X, W0Oyx), and hence, by (3.3), also on the Cartier module
C(HN(X, G,, x)) of the formal group HN(X, G,, x). O

3.13. The above theorem provides the characteristic p input data for
application of theorem (1.6). Notice that the indices are slightly different
from those in (1.6), due to the fact that in this section the natural Frobe-
nius operator was F,. When the resulting congruence is formulated in
terms of formal Dirichlet series (cf. (0.1)), theorem (3.12) contributes the
Dirichlet series

1+aig™ +axq ™+ - +aqg™™ =Pyig™).

The congruences which result from the theorems (3.12) and (1.6) are
slightly stronger than those stated in theorem (0.1). Indeed, we actually
proved, in the notation of (0.1),

0, = 0 mod @ev—gtm=fm+l if p = (0 mod p’, v g —m+tfm.

We have ignored this when stating (0.1), because it is difficult to de-
termine the integer m a priori.

4. Double coverings of P". In [17] we give examples of schemes for
which HN(X, G,, x) is a formal group and for which a logarithm of a curvi-
linear formal group law for HN(X, G,, x) can explicitly be determined.
Such examples provide the characteristic 0 input data for application of
theorem (1.6). The examples discussed in [17], are N-dimensional com-
plete intersections, with degree restrictions, in PM and branched double
coverings of PV. The results one gets, are very similar. Here we shall only
formulate the result for double coverings of P,

THEOREM 4.1. (= th.20f[17]). Let K be a ring which is flat and of
finite type over Z. Let N be a positive integer. Let R be a homogeneous
polynomial in K[Ty, . .., Tyl of degree 2d > 2N, and let X be the
branched double covering of P} defined by the equation U? = R (where U
is a new variable of weight d). Put

T={i= (g .., inN)€ZN iq, . ., iy = 1,00+ -+ +iy=d}
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Then HN(X, G, x) is a formal group over K of dimension

_ <d — 1>
& N
and there is a curvilinear formal group law for this formal group with loga-
rithm

()= ¥ n'B,m™

n>1
in which 3, is the g X g zero matrix for even n, while for odd n $3,, is the
g X g-matrix, with rows and columns indexed by the elements of the set J,

such that the entry in row i and column j is

B..i; = the coefficient of T%Wo0~%. . TWNTN in R®~D2,
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