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FORMAL GROUP LAWS ARISING FROM ALGEBRAIC
VARIETIES

By JAN STIENSTRA

Introduction. In this note we show how one can sometimes very eas-
ily determine explicit logarithms for the formal groups of Artin and Mazur
[1]. Preliminaries on formal groups and the Artin-Mazur construction are
recalled in Sections 1 and 2. We shall prove, in Sections 3, 4, S:

THEOREM 1. Let K be a noetherian ring. Let Fy, . . . , F, be a regu-
lar sequence of homogeneous polynomials in K[Ty, . . . , Ty] and let X be
the subscheme of P¥ defined by the ideal (Fy, . . . , F,). Put d; = deg F;

andd = L d;. Assume X is flat over K andd; = d — N = 1 for alli. Then
HN="(X, G,,x) (see Section 2) is a formal group over K of dimension n =
%)

N )

Assume moreover that K is flat over Z. Put
J:{l:(lo, e ,iN)EZN+1|i0,. R Y 1,ip + - +lN:d}

Then there is a formal group law for HN-"(X, G,, x) whose logarithm U(t) is
the n-tuple (£;(7));c; of power series in the n-tuple of variables 7 = (7,)ie;
given by

G(r)= X Em 'B,; 1"

m=1jel
B = coefficient of Tg¥o™ .. - TRN~ in (F;-..-Fym~'. O

THEOREM 2. Let K be a noetherian ring. Let F be a homogeneous
polynomial in K[ T, . . . , Ty] of degree 2d > 2N and let X be the double
covering of P¥ defined by the equation W? = F (where W is a new variable
of weight d).
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908 JAN STIENSTRA

Then H¥(X, G,, x) is a formal group over K of dimension n = (d;l).
Assume that K is flat over Z and let J be as in Theorem 1. Then there is a
formal group law for H¥(X, G;,_ x) with logarithm £(1) = (£;(7))jes)ies given
by

G(r) = ¥ X m B, 1"

m=1jel

0 if miseven
Bm,ij = {coefficient of TgUo™- . . .- Twn™n jn Fm=1/2,

if misodd. I

Moreover, in both cases, if ¢: K = K’ is a surjective homomorphism of
rings and X’ = X X,k spec K’, one obtains a formal group law for
H%X’, G, x') (a =N — rresp. N) by applying ¢ to the coefficients of the
formal group law for H*(X, G,A,,, x).

The formal group laws we find in the above theorems are so-called
curvilinear formal group laws, i.e. the power series expansions of their
logarithm contain no monomials involving more than one variable. The
logarithm can be written as

A7) = 21 m B,

in which £(7) is the vector with coordinates f;(7), indexed by the elements of
the set J, 7 is the vector with coordinates 7/(j € J) and 8, is the n X n-
matrix with entries 8,,; ;({, j € J) as in Theorem 1 resp. 2.

FExamples are presented in (4.13) and (5.5). Arithmetic applications
are given in [10].

In the appendix we re-interpret the expression for the logarithm £(7) of
Theorem 2 in terms of integrals of holomorphic differential forms of de-
gree N on (the smooth part of) the complex analytic space associated with
X and the embedding of K into C.

For instance, for the formal Brauer group, H*(X, G:,.,x), of the K3-
surface

XW=T¢+ T + T3
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we get from Theorem 2 the logarithm

_ (3k)! 7oK+

D= Sty k1

For sufficiently small complex values of 7 the considerations in the appen-
dix yield

dt; A dt,

1
f =
(r) 27V —1 Srm 21 + ) + 25

where I'(7) is an appropriate 2-chain on X(C) with boundary
(1) ={w, t, ) €eC| w2 =1+t + 25, |t] < |ta]
=1/, titow™ ! = 7}

N1+ f + ¢S must be taken so that on dT'(7) its argument is the same as
the argument of ¢,z,77 1.

Some characteristic features of integrals like the one above are dis-
cussed in (A4) in the appendix.

While the formal groups of Artin and Mazur generalize the formal
Picard group, the integral expressions for A1) are generalizations of the
classical (hyper-)elliptic integrals and the essence of Theorem 2 is an addi-
tion theorem for such integrals (be it in general not an algebraic addition
law).

Acknowledgement. 1 want to thank the Université de Paris-Sud at
Orsay for its hospitality and support during the spring semester of 1985,
when most of the research for this paper was done.

1. Inthis section we recall some preliminaries on formal groups; ref-
erences are [5, 6, 8, 12]. By formal group we shall mean smooth commuta-
tive formal group. The rings and algebras in this paper are all commuta-
tive and associative and all rings have a unit element.

1.1. Fix a ring K and an integer n = 1. Let Jilalysx denote the
category of nil-K-algebras, i.e. of K-algebras in which every element is
nilpotent. Formal affine n-space over K is defined to be the functor Ak:
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NMikabyox — Sets which assigns to a nil-K-algebra A theset A X -+ X A4
(n factors) and to a morphism f the map f X - -+ X f. An n-dimensional
Sformal group over K is a functor G: Mifalysx = @B.groups whose underlying
set valued functor admits a functorial bijection onto Ak. A functorial bijec-
tion G 5 Ak is called a coordinatization of the formal group G.

1.2. Having chosen a coordinatization ¢: G S A} one can describe
the formal group G by an n-dimensional formal group law L(§, n) over K:
there exists an n-tuple L = (L4, . . . , L,) of formal power series with coef-
ficients in K in two n-tuples of variables £ = (¢, .. ., &), n=(, - - -,
7,) such that for every nil-K-algebra A and for all elements «, 3 € G(A):

c(a B B) = Lc(w), c(B));

here BB denotes the group structure on G. The group axioms for G corre-
spond to the following identities for L(&, 7):

L(LE, ), ) = L&, L, §), L, 0) =&,
L, n) =L, &, L, n=§&+n moddeg = 2;
here { is another n-tuple of variables and O = (0, . . ., 0).

1.3. If the canonical map K — K ® Q is injective, every n-dimen-
sional formal group law L(&, n) over K determines an n-tuple £(7) of power
series in one n-tuple of variables with coefficients in K ® Q such that

#7) =7 moddeg = 2
L(&, n) = £7'(&) + €n)).

One calls £(7) the logarithm of the formal group law L(&, 7).

1.4. The simplest examples are the 1-dim additive formal group G,
and the 1-dim multiplicative formal group G,,, both defined over Z (and
hence over any ring). G, admits a coordinatization in which the formal
group law is L(§, ) = £ + 7n and the logarithm is #(7) = 7. G:,, admits a
coordinatization in which the formal group law is L(¢, n) = £ + n — &y
and the logarithm is {(7) = —log(1 — 7) = L,> n~ 17",
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2. In this section we recall the definition of the Artin-Mazur func-
tors [1].

2.1. Let K be aring, G aformal group over K, X a scheme over K, J
a sheaf of K-algebras on X and i an integer = 0. In this situation one can
construct the following commutative diagram of categories and functors

MWK J—®,—(> sheaves og Mf-]i-aﬂgo@wo on X
G

Aﬁe«weo Og (LGG&(W g/LOM/PO on X
Hi

Gy

where JQy assigns to a nil-K-algebra A the sheaf J Q¢ A associated with
the pre-sheaf (open U) b I'(U, J) ®k A; the functor G assigns to a sheaf @
of nil-K-algebras the sheaf of abelian groups G(Q®) defined by I'(U, G(®))
= G(T'(U, @)) for every open U C X; the functor H' is taking i-th cohomo-
logy. The functors G; and H{( X, G)) are defined by commutativity of the
diagram.

2.2. We are mainly interested in using (2.1) with G = G,:, and J =
Oy, the structure sheaf on X. We write G:,,, x instead of G;,@x. The functors

Hi(X, G, x): Milalysx = abelian groups

are the Artin-Mazur functors, introduced in [1] and denoted &' in op.cit.
H'(X, G, x) and HXX, G,, x) are usually called the formal Picard group
and the formal Brauer group, respectively (at least if they are formal
groups). We refer to [1] for a discussion of necessary and sufficient condi-
tions for these functors to be formal groups (i.e. pro-representable and
formally smooth). For instance, the vanishing of H'~1(X, Ox) and
Ht(X, Ox) in the situations of Theorems 1 and 2 implies that Hi(X,
G,A,,, x) is a formal group (cf. op.cit. I1.4). However, instead of invoking this
general result, we shall explicitly construct coordinatizations.

3.

3.1. THEOREM. Let K be a ring. Let f: X — Y be a morphism of
schemes over K with X flat over K. Assume that for every ideal I of K
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f(Ox @k (K/T)) = (f:0x) Rk (K/I)
Rif(Ox @k (K/I)) =0 for j=1.
Then there is a functorial isomorphism, for every i = 0,
Hi(X, G,.x) = H(Y, G, )

The proof of Theorem (3.1) is presented in (3.2)-(3.7). We refer to
[4] for general facts and further references on algebraic geometry.

3.2. First we prove Rff*G,A,,, x(A) = Oforeveryj = 1 and every nil-K-
algebra A. From this and the Leray spectral sequence

E{ = H(Y, Rf4G,, x(4)) = HXX, G,,x(4))

one can then conclude

Hi{(X, G, x) = H(Y, f4G, x) forevery i=0.

3.3. Formation of tensor products, sheafification and taking coho-
mology commute with inductive limits. Hence

Rif,G,, x(lim A,) = lim Rf,G,, x(A,)

for every inductive system {A4,} of nil-K-algebras. Since every nil-K-alge-
bra is the inductive limit of its finitely generated sub-algebras, the problem
of proving R'f *G;, x(A) = O for arbitrary nil-K-algebras A reduces to prov-
ing this for finitely generated ones.

3.4. To make further reductions we need small extensions. A small
extension is a surjective homomorphism A > A of nil-K-algebras with
kernel generated, as a K-module, by a single nonzero element e with the
property eA = 0.

3.5. LEMMA. For every finitely generated nil-K-algebra A there ex-
ists a finite sequence of small extensions

A:AO—»A1 =>> e —>>Aq eu>Aq+1=()_
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Proof. Every finitely generated nil-K-algebra A is a quotient of an

algebra of the form (xy, . . . , x)K[x, . . . ,x,]/(x1, . . ., x,)™ for some n
and m. For the latter kind of algebras there is clearly such a finite sequence
of small extensions. This can be pushed down to A. U

3.6. Since X is flat over K, the functor Ox ®x- is exact. Also the
functor G, is exact. Thus, if A = A is a small extension with kernel Ke,
one has a short exact sequence of sheaves of abelian groups on X

0 = G, x(Ke) > G,,x(4) = G, x(4) = 0,
and a long exact sequence of sheaves of abelian groups on Y
© = RIf G, x(Ke) = Rif G x(A) = RIf 4G, x(A) = -+

Such a sequence enables one to proceed by induction along small exten-
sions. Thus proving Rff*G;,, x(A) = 0 for a finitely generated nil-K-alge-
bra A is reduced to proving it for A = Ke, e =0.

Because of €2 = 0 the sheaf G:,,, x(Ke) is isomorphic to the sheaf of
additive groups Ox ®k (K/I), where I C K is the annihilator of e. There-
fore the vanishing of Rif,G,, x(Ke) is a consequence of the hypothesis
Rif (Ox ®k (K/I)) = O for j = 1.

3.7. As remarked in (3.2) we now have a functorial isomorphism
Hi(X, G, x) = H(Y, f,Gpx) forall i=0.
To complete the proof of (3.1) we must show
F4Gnx = Go(folOx ®k-)) = G 0

The first isomorphism is obvious. Thus we are left with proving
f+(Ox Rk A) = (f+Ox) Qk A for all nil-K-algebras A. One notices that
there is map <. To prove that this is an isomorphism one reduces, with
arguments as in (3.3)-(3.6), to the case A = Ke, €2 = 0, in which case it
becomes the hypothesis f(Ox Qk (K/I)) = (f4Ox) Rk (K/1) assumed for
(3.1). The proof of (3.1) is now complete. |

We mention three applications of (3.1).
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3.8. Computation. Let K be aring, f: X — Y an affine morphism
of schemes over K with X noetherian and flat over K. Then the hypotheses
of (3.1) are satisfied. Whence H(X, G:,,, x) = H(Y, G:,,,f*ox). This can be
used for computations if the cohomology of Y and f,Ox are easily comput-
able; e.g. Y = PV, £,0x = Opn(—d); see Sections 4 and S.

3.9. Specialization. Let ¢: K — K be a surjective homomorphism
of rings. Let Y be a flat noetherian scheme over § = Spec K. Put X =
Y Xs Spec K. This is an affine morphism. But, since X is not flat over §,
the hypotheses of (3.1) are not satisfied. However, as X is flat over S =
Spec K, the proof of (3.1), in particular (3.6), works as long as one restricts
to nil-K-algebras.

Note that f (Ox Rk A) = Oy QA ifdisa nil-K -algebra. Thus we get
a functorial isomorphism

Hi{(X, G, x) = H(Y, G,.y) on Nilalysk.

So, if H(Y, G,A,,,y) is a formal group over K, H'(X, G,A,,‘ x) is a formal group
over K; a coordinatization restricts to a coordinatization and a formal
group law for H( X, G;, x) is obtained by applying ¢ to the coefficients of a
formal group law for H(Y, G;,y).

3.10. Desingularization. Another situation in which (3.1) is useful,
is a resolution of singularities f: X — Y with Rff*OX =0forj =1, f,0x =
Oy and K a field. Then H(X, G,,, x) = H(Y, G,,, y) for all i = 0. One
needs this possibility of passing from a singular model to a smooth one
without changing H'G,,, if one wants to exploit the connection of the
Artin-Mazur formal groups with zeta-functions. This connection runs via
the theory of the De Rham-Witt complex and crystalline cohomology,
which has only been sufficiently worked out for smooth projective varieties.
We will not digress on these matters here. Examples can be found in
[9, 10].

4.

4.1. In this section we prove Theorem 1. Recall the situation: K is a
noetherianring, F, . . . , F,is a regular sequence of homogeneous polyno-
mials in K[Ty, . . ., Ty] (i.e. fori = 1, . .., r the image of F; in K[T,

, Tnl/(Fy, . . ., F;_;) is not a zero divisor), X is the subscheme of P¥
defined by the ideal (Fy, . . . , F,). We assume that X is flat over K. More-

over, let d; = deg F;, d = £ d; and assume d; = d — N = 1 for all i.
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We want to show that HV (X, G,A,,, x) is a formal group over K of
dimension (d;l), and give a formal group law for it.

4.2. The inclusion f: X — P¥ induces, according to (3.8), an iso-
morphism

(4.2.1) HY"(X, G, x) = HV (P, G, /,0,)-

4.3. In order to get a hold on the right-hand side of (4.2.1) we con-
struct a kind of Koszul resolution (cf. [4]). For a subset p of {1, . . ., r}
put F, = II,, F; and let F, be the corresponding sheaf of ideals on Py.
Associated with F » we have the functor (see Section 2)

G:n,f-‘,,: Nifalysy = sheaves of abefian groups on Py,

which we shall henceforth denote as G, ,, to keep the notation simple. For
two subsets p, p’ of {1, . . . , 7} we define a homomorphism 9, : G, , =
G, asfollows. If p = {i; < i, < -- < i,}andp’ = p\{ix}, weletd,, be
(—1)* times (in the sense of the group structure) the homomorphism
induced by the inclusion F, C F,.. In all other cases (i.e. p’ ¢ p or
#(o\p’) # 1) we put 3,,- = 0. Then we get a complex of functors with
values in the category of sheaves of abelian groups on P¥

431 0— ®G,,—> @® G,,—> -
#p=r P P ar_l

o, #o=r—1
. —a—2> #5-21 G,., —a—l> Gm,pl’z —3—o> Gm,f*ox — 0,
where the direct sums are taken over all subsets of {1, . . . , 7} of the indi-

cated cardinality; 9, is given by the matrix (9, ,-) if # = 1; 9 is the obvious
map.

4.4, LEeMMA. (4.3.1) is an exact sequence.

Proof. Let C'(A) denote (4.3.1) evaluated at the nil-K-algebra A.
One has to show that each complex C’(A) is in fact an exact sequence. By
a limit argument one reduces to finitely generated A, and then one pro-
ceeds by induction along small extensions. A small extension A = A with
kernel Ke leads to a short exact sequence of complexes 0 — C"(Ke) —
C’(A) = C'(A) — 0. The corresponding long exact sequence of homology
groups shows that C (A) is exact if C'(Ke) and C'(A) are exact. This re-
duces the question to proving that the complexes C*(Ke) with €2 = 0 are
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exact. Because of €2 = 0, G;,,,(Ke) is equal to the additive group of F',, [039%
Ke. Hence C'(Ke) is just (a form of) the Koszul resolution [4]

—> F—> i ces F— — —
0 #p@=er o, #p=®r—1 Fp — — #p®=1 Fp 0 OP"(J 9 f*OX 0
of f4Ox, tensored with Ke. The Koszul resolution is an exact sequence and
its terms are flat over K. So @"(Ke) is indeed an exact sequence. O

4.5. Lemma. H(PY, G,,) = 0 for every proper subset p of
{1,...,r}andfori=1,...,N.

Proof. The standard limit argument and induction along small ex-
tensions reduce the question to proving H(PY, G,A,,,,,(K €)) = 0, withe2 = 0.
Given Ke with €2 = 0 let I C K be the annihilator of e and K = K/I (=Ke
as a K-module). Then H(PY, G, (Ke)) = Hi(PY, OpM(—L;c, d))) = 0,
because Lie, d; < N (cf. [4]). O

4.6. Putting (4.2)-(4.5) together we get a functorial isomorphism
(4.6.1) HY™"(X, G, x) = H¥PY, G, 7,

where F = 14:(1,“,} is the ideal sheaf on P¥ associated wiggfthe ideal of
KI[T, . . ., Ty] which is generated by the polynomial F == F;-. .-F..
Note: deg F = d and hence F = Opy(—ad).

Thus we have translated the question of coordinatizing HN-"(X,
G,:,y x) to the question of coordinatizing HN(PE, G,, 7). The latter problem
will be solved by Cech cocycle computations.

Let W = {U,, . . . , Uy} be the standard affine open covering of P%;
i.e. U; is the open subset where the homogeneous coordinate 7; is invert-
ible.

4.7. Lemma. HNPY, G, 5 = HNU, G,, p).

Proof. 1t suffices to check H{(U, G,, 5(A)) = 0 for all i = 1, all
affine open U C P and all nil-K-algebras A. The standard arguments
reduce this to H{(U, F @ Ke) = 0 with ¢2 = 0, which is a well-known
result about the cohomology of coherent sheaves [4]. O

4.8. We fix for G,, the coordinatization corresponding to the formal
group law £ + n — &n (cf. (1.4)). Using this coordinatization we identify,
for every nil-K-algebra A, the sheaf G,A,,'F-(A) with the sheaf F ®x A on
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which the group structure H is given by the formal group law. Let n =
(‘") andJ = {Go, . . . ,ix) €ZV* |alli; = 1andig + -+ + iy =d}. We
define a functorial map

j: Ak~ HYU, G, )

by setting, for a nil-K-algebra A and an element (a;),c;of A X -+ X A
(n factors, indexed by the elements of J), j((a,);c/) = the cohomology class
of the Cech N-cocycle given by B;e; FT ' ®a;on Uy N - -+ N Uy; here T~
= Tgh-. .- Tynfori = (iy, ..., iy €J.

4.9. THEOREM. The map j is a functorial bijection.

Proof. 1t suffices to prove this on the category of finitely generated
nil-K-algebras, because from there it extends by inductive limits. For fi-
nitely generated nil-K-algebras, one proceeds by induction along small ex-
tensions. The induction starts with the observation that for algebras of the
type Ke with €2 = 0 the bijectivity of the map

(Ko —> HM(U, G,:(Ke) = HNU, F @k Ke)

is a well-known fact about the cohomology of Opnv(—d). To continue the
induction take a small extension A > A with kernel Ke such that the
result holds for A. Then one has a short exact sequence

0 — HN(U, G, 5(Ke)) » HNU, G, #(A)) = HNU, G, (A)) ~ 0,

where the left-hand 0 is due to the vanishing of H¥~'(P¥, Opn(—d)). Now
let « € HN(U, G, 7(A)) be given. Let & be its image in AN, G,, 7(A)).
Then there is, by the induction hypothesis, a unique (@;);; € A" such that &
is represented by the Cech N-cocycle {H;.; FT~' ® a;}. Choose a/ € A
lifting @; and let o’ be the cohomology class of the cocycle { B;c; FT ™' @
a/}. Then a — «’ lies in HNu, G,A,,,p'(Ke)) and can therefore be repre-
sented by a cocycle { H,c; FT~/ @ ke } with k; € K. So « is the cohomology
class of the cocycle { H;ey (FT " ®a; + FT ' ®kie — (FTY Qa/kie)}.
Since eA = 0, this cocycle is actually {H;c; FT~/ ® (a/ + kie)}. This
proves the surjectivity of j for A.

The argument for the injectivity of j is equally simple, and left to the
reader. O
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4.10. COROLLARY. Setting c = j~ ! one obtains a coordinatization of
AN, G, 7). Thus the functor H¥N(U, G,, p) is a (d;ll)-dimensional formal
group over K. The same is true for the functor HN-"(X, G,, ), which as a
group valued functor is isomorphic to H¥N(U, G, B O

4.11. We want to describe the formal group law corresponding to
the coordinatization of HN(U, G:,,f) given in (4.8). The same group law is
associated with the coordinatization of HV~"(X, G;,‘ x) which one obtains
by composing the coordinatization of HN(U, G,, 7) with the isomorphism
of group valued functors given in (4.6.1) and (4.7). The situation of (4.1)
can always be realized as a specialization of a similar situation in which K
is flat over Z. By (3.9) this specialization carries over to the formal group
HN—"(X, G;,, x). Also the coordinatizations commute with specialization.
So to describe the formal group law we may henceforth assume that K —
K @ Q is injective. This enables us to give the formal group law by means
of its logarithm.

In the arguments of (4.8)-(4.10) one can replace G,, and its group law
£ + n — &7 by the additive formal group G, and its group law ¢ + 5. One
then obtains a coordinatization

y: HNU, G, 9 > Ak

such that for every nil-K-algebra A and every element (a;);; in A"
v~ ((a;);es) is the cohomology class of the Cech N-cocycle {L;c; FT ' ®a;}.
The corresponding formal group law is obviously the standard n-dimen-
sional additive formal group law (¢; + 1,);cs.

Let us now restrict to the category of nil-algebras over K @ Q. There
one has an isomorphism of formal groups G,, > G, given, in terms of the
coordinatizations corresponding with the formal group laws £ + n — &9
and £ + 7 respectively, by the power series —log(1 — u) = L, m~lu™.
This induces an isomorphism of formal groups over K ® Q

HNU, G, p) = HNU, G, p).

The logarithm we are looking for is the n-tuple of power series which
expresses this isomorphism in terms of the given coordinates; i.e. it is the
n-tuple (£;(7));e; of power series in the n-tuple of variables 7 = (7;);; deter-
mined by the cohomology class of the cocycle {E;.; FT~* ® f;(7)} = the
cohomology class of the cocycle {Zic; L,»1 F™"T~™ @ 7/"/m}. Hence
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(=X X I

m=1 jeJ
with
Bum,ij = the coefficient of Tq¥o %+ . . .- T{¥™™ in Fm~L

This concludes the proof of Theorem 1.

4.12. Remark. In order to obtain the above result we made three
times a choice of coordinates. Firstly, there are the defining equations Fi,
..., F, for X. Secondly, there is the choice of the Cech N-cocycles
{FT—}, i € J, to represent a basis of HN(P¥, F). Thirdly, there is the
coordinatization of G, corresponding to the formal group law £ + 1 — &9.
One can easily see from the presented algorithm how a change of these
coordinate choices affects the formal group law for HVN (X, G, x)-

4.13. Example. Take for X the Fermat hypersurface of degree d
inP}:

¢+ -+ + T§ = 0.

fd=N+1, H" (X, G:,,, x) is a formal group over Z of dimension 1 with
logarithm

(md)| de+1
m=0 (mN? md +1°

(1) =

This example of a 1-dim formal group law over Z is (essentially) one of the
examples which Honda obtained in [7] by a completely different method.

Ifd=N+2, HV (X, G,A,,,X) is the direct sum of N + 1 copies of the
1-dim formal group law with logarithm

(md)! Fmd+1
m=0 (mHNQm)! md + 1~

S.

5.1. In this section we prove Theorem 2. Recall the situation: K is a
noetherian ring, F is a homogeneous polynomial of degree 2d over K in
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N + 1variables Ty, . . . , Ty and X is the double covering of P¥ given by
the equation W? = F. We want to show that HV(X, G:,,, x)is a (dx,l)-di-
mensional formal group over K and describe a formal group law for it.

5.2. The method is in this case almost the same as in Section 4. We
shall therefore only indicate the relevant new details. Using the morphism
f: X = Pg and Cech cohomology with respect to the standard open cover-
ing U of P¥ one obtains, as in (4.6.1) and (4.7), a functorial isomorphism

HN(X’ G:n,X) = I'{N((u_’ G:n,f*(‘)x)'

The sheaf f,Ox is isomorphic to Opy ® Op¥(—d). So HNu, f40x) is a free
K-module of rank n = (d;,l). To represent a basis we take the Cech N-
cocycles given by WT~“on Uy N - -+ N Uy, where i ranges over the set J =
{i=0(o...,in)€ZN T Yip,. .., iy=1,ip+ -+ +iy=d}and T/ =
Too-. .. Ty (cf. (4.8)).

Then, as in (4.8)-(4.9), we get a functorial bijection

it Ak S HNU, G, 4,0,

by defining for a nil-K-algebra A and an element (a;);c; of A” j((a))ics) =
the cohomology class of the Cech N-cocycle given by H;.; WT ™ ® a; on
UyN - N Uy.

As in (4.10) we conclude that HN(X, G:,,, x) is a formal group over K
of dimension (d;,l).

5.3. In order to describe the formal group law for HY(X, G:n, x)
which corresponds to the above coordinatization, one first argues as in
(4.11) that it suffices to do this under the additional hypothesis that K —
K ® Q is injective, and then one determines £(7) = (£,((7));e)))ies €Xactly as
in (4.11). So: the cohomology class of the cocycle { L;e; WT @ f;(1) } = the
cohomology class of the cocycle {L,,~1 Ly W"T ™ @ 7/"/m }. For even m
{WmT~" @7"/m} is a coboundary because W™ = F"/2isin K[Ty, . . . ,
Ty]. For odd m the cohomology class of { W"T~™ @ 7"/m} is equal to the
class of {L;c; WT ™ Q B, j7/"/m} with

the coefficient of T§Uo ™. - TN~ jn Flm—1/2

6m,i,j =

if m is odd

0 if m is even.
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Thus we get

fi(T) = E E m‘IBm',-,j@-'".

m=1jel

This completes the proof of Theorem 2.
5.4. Remark. See (4.12).

5.5. Example. Take the K3-surface with Néron-Sevéri lattice of
rank 20 and discriminant 4. It can be constructed from the surface with
equation

W2 = ToT\TTo — TiXT1 — ToXT, — Ty),

which has rational singularities, by taking the minimal resolution (cf. [9]).
The logarithm for the corresponding formal group over Z is

(3m)! T4m+1
(m!»? 4m + 1

)= ¥ (—n~
m=0

(see (5.3), (3.10)).

To illustrate the remarks (5.4) and (4.12) replace the coordinates T,
T,, T, on P2 byTy = Ty, T{ = T, — T3, T; = T, — T,. The equation of
the surface becomes

W2 = —T4T{T5(T{ + Ti)T5 + To)(Tg + Ti + T$).

The logarithm associated with this equation (and the choice of the cocycle
{W/T{T{T;})is

m\* /m + k F2m+1
m=x <(_1) )k:<k> < k >> 2m + 1

The above examples can also be found in [9]. Also the other examples of
op. cit., but not its main theorem, are covered by this section.

Appendix. In this appendix (formula A3) we re-interpret the power
series £(7) of Theorem 2. The situation is as in Theorem 2, with the addi-
tional hypotheses that one has fixed an embedding K S C and that
F(1,0,...,0) # 0. We work in the complex analytic setting.
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Take affine coordinates ¢,, = T,,/Ty and set P(t, . . . , ty) = F(1, ¢,
. .., ty). Choose a positive real number e such that the function P van-
ishes nowhere on the ball {(¢;, . . . , ) € C¥| || + - -+ + |tn]? = Neé?}.
Let I = [0, 1] be the unit interval in R. Fork = (ko, . . . , ky) € Z¥N*! put
th=qf1-. - tf. Lete=(1,...,1) eZN*L,

Fix i, j € J. From the definition of 8,,; ; in Theorem 2 and Cauchy’s
residue theorem we get, for sufficiently small complex values of 7;

(*) r m_le,i,jij = (ZW\/TI)—N

m=1

S Tt Tedty A -+ Adty A du
t¥ — 1'1-2u2P

where the domain of integration is
{(tl,...,tN,u)GCNXI||t1|="'=|tN|=eu}
with the appropriate orientation. Integrating first with respect to ¢, one can

apply the residue theorem again. If 7; is small enough one encounters only
simple poles. Hence the integral in (*) is equal to the integral

Qav—1)1N S [2f,t%t ! — rfu2(aP/at1)]—lrjt"+f—9dz2 A ANdty N du

with domain of integration
{(tl,...,tN,u)ECNXI||t1|<|t2|="'=|tN|=eu,
(#7; w1 = P}.

The substitution w = #/7; s~ transforms this integral to

Qv —1)1—N g w;

Fj (TJ)
with

_ Tt N e Ndty
2w

(A1) w;

and
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(A2) Ti(r) ={w, t;,...,t) eCN{wW2 =P, 7w el
‘t1| < ‘tzl = = |tN| = 67’1'_1W_1tj}.

Thus we see that, for sufficiently small complex values of the parameters
7,(j € J), the map £(7) of Theorem 2 is also given by the system of integrals

(A3) or) = [(ZW\/TI)I_NZS w,] .
Ti(r) Jdied

jeJ

The orientation of the chains I';(7;) must agree with ¢(7) = 7 mod deg = 2.
(A4). Comments. Assume for simplicity that X is smooth. Then

(a) The forms w;(i € J) constitute a basis of HYX, Q%/x).

(b) The coordinates of the formal group law should apparently be
viewed as functions on X: 7; corresponds with the function VW 1.

(c) The domain of integration I';(7;) is a homology N-chain in the ana-
Iytic space associated with X and the embedding K C C. Incase N > 1,
its boundary,

V() = {w, ty, .. ., ty) e CVHI|w? = P, tiw™! = 17,
il < ltol = -+ = |tw] = €},

is contained in the fiber of the function 7VW ~! over 7;. The domain of
integration, I';(7)), is a sort of cone over v,(7;). For N = 1 one has a similar
result, and the domain of integration is a union of paths.

(d) The integrals in (A3) change only by periods, if I'/(7)) is replaced
by another N-chain I'/(7;) with boundary v/ (7;) contained in X, = {(w,
Ty, ..., Ty) € X|T"'W™! = 7;} and with ~/ (7;) homologous to v;(7;) on
X.,. Unfortunately, for N > 1 the periods only very rarely form a discrete
subgroup of H%N(X).

So, (A3) bears an interesting analogy with the classical case of
(hyper-) elliptic integrals. These integrals deserve further study.

Remark. Integrals of the kind appearing in (A3), appear also in
R. Friedman’s work on the mixed Hodge structure of an open variety [3].

Example. XN =1,d =2and F = T,T} + aT3T; + bT3, one is
actually looking at the Weierstrass model of an elliptic curve, usually writ-
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ten as y2 = x3 + ax + b. The differential which appears in the above
considerations is the standard form v = dx/2y. The domain of integration
I'(7) has two connected components, I't(7) and I'"(7). Take the projective
completion of the affine curve y2 = x3 + ax + b in P2, Let I'*(7) be a path
*“close to o’ which connects the point oo with the point whose (x, y)-coor-
dinates satisfy y2 = x® + ax + b, x/y = 7 and |x| > €. By Abel one knows

S w = j w+ j w = —j w.
() I'*(7) (1) (1)

Thus

U(r) = —S w.

r=(r)

So, for the Weierstrass model of an elliptic curve we find the logarithm of
the standard (formal) group structure on the elliptic curve (cf. [11]), at
least if in the model b # 0. (The latter condition can in fact easily be re-
moved.)

Remark. As a by-product of the previous example we find, that in
terms of the coordinate u = —x/y near oo the power series expansion of w
is

w= L By+u?du
n=0

with
Ba.+1 = the coefficient of x>* in (x3 + ax + b).

In the literature one finds such a formula for the expansion coefficients of
w only for the p-th coefficient mod p ( p a rational prime number). That is
Deuring’s formula for the Hasse invariant of the elliptic curve (cf. [11]).
The ““global” result giving all coefficients of the expansion of w apparently
remained unnoticed, or unpublished. The first proof I saw was given by
Beukers [2].
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