
HOMOTOPY ASSOCIATIVITY OF ^-SPACES. II

BY

JAMES DILLON STASHEFF(i)

1. Introduction. This paper is a sequal to "Homotopy Associativity of H-

spaces. I" [28], hereafter referred to as HAH I, in that it continues the study of the

associative law from the point of view of homotopy theory, but knowledge of

HAH I is assumed only in a few places. The essence of most of the results can be

gathered from consideration of associative //-spaces (monoids); the remaining

results are well represented by consideration of homotopy associative //-spaces.

[Just remember that an ¿2-space is an //-space, an ¿2-form M2 : X x X -*■ X

is a multiplication, while an ¿3-space is a homotopy associative //-space and an

¿3-form consists of a multiplication and an associating homotopy.] I have attemp-

ted to make the various sections which require different background knowledge

as independent as possible.

§2 describes the tilde construction, a generalization of the bar construction

[18, Exposé 3]. A few of the remarks assume familiarity with the bar construction,

but the description of the tilde construction is self-contained. Theorems 2.3 and

2.7 involve the concepts of HAH I, but only the associative case as given in

Corollary 2.8 will be needed in our applications and for this knowledge of the

Dold and Lashof construction [3] or even the Milnor construction [8] is suffi-

cient.

Based on §2, §3 presents the Yessam operations in homology, which resemble

the Massey operations in cohomology [31; 23] but are in no way dependent

on them.

§4 makes some slight mention of the ¿„-spaces of HAH I, but the reader will

find it sufficient to consider associative //-spaces. Following Sugawara [29], we

define maps of such spaces, called .¿„-maps, which are special kinds of //-maps ;

they are homotopy multiplicative in a strong sense. Making use of Sugawara's

work, .¿„-maps are related to maps of the Dold and Lashof construction [3].

In §5 the cohomology version of the spectral sequence in §2 is applied to analyze

Presented to the Society, January 22, 1959 under the title On homotopy associativity of

H-spaces and April 25, 1959 under the title On higher homotopy associativity; received by the

editors March 8, 1962.

(') The author was a C. L. E. Moore Instructor from July 1960 to June 1962. This research

was supported in part by an NSF predoctoral fellowship, in part by the Marshall Aid Com-

memorative Commission of the United Kingdom, and in part by the United States Air Force

under contract No. AF-49(638)-42, monitored by the Air Force Office of Scientific Research of

the Air Force Research and Development Command.

293



294 J. D. STASHEFF [August

¿„-maps which represent cohomology classes. Some results are obtained about the

"suspension" homomorphism o:Hq+1(X;n)^> Hq(SiX;n).

In §6, the techniques developed are applied to the Postnikov systems of ¿„-

spaces with particular attention to spaces with just two nontrivial homotopy

groups.

In addition to the influences acknowledged in HAH I, which apply as well to

the present paper, I would like to express my gratitude to the late Professor

J. H. C. Whitehead, to Dr. M. G. Barratt and particularly to Dr. I. M. James

who served in turn as supervisors of my thesis for Oxford University, which

included the material on Yessam operations, §§2 and 3.

2. The tilde construction and its spectral sequence. The bar construction [18] is

defined for any associative algebra and strong use is made of the associative law.

However, as we shall see, this condition can be significantly weakened and it will

still be possible to retain some of the important properties of the bar construction.

Definition 2.1. Let A be a commutative ring with unit. An ¿(n)-algebra

(R,mí,---,m,¡) over A consists of an augmented graded A-module R= ¿ZRq and

maps m¡: ® lR -» R satisfying the following properties:

(1) m¡ raises degree by i — 2, i.e., m¡[_(®1 R)q~] c Rq+i_2 where ®'R has the

usual grading of the tensor product;

(2) if u = ux ® ••• ® «¡e ®'P, then

2     /(fc,s,i/)mr("i ® ••• ® ms(uk® ••• ® «t+j-!)® ■■• ® «j) = 0
r+s=i+l

where #(k, s, w) is + 1 according to the parity of

s(k, s, u) = (s + l)fc + si i + Z dim a, I.

An A(oo)-algebra (R, m1,m2, •••) consists of an augmented A-module R and

maps m¡: ®'/? -> R satisfying the above conditions, i running over all the positive

integers.

Notice that any chain complex over A or DGA-A-module [18, Exposé 2] is an

¿(l)-algebra with mt = ô. Any DGA-algebra over A is an ¿(2)-algebra.

Proposition 2.2. // (C, d, A) is an associative DGA-algebra over A, where

A:C® C-*C, then(C,d,A,0,0,---,0) is an A(n)-algebra.

Proof. Relation 2 reduces to :

ôô    = 0   for ¿ = 1;

d®A = Ad for i = 2, where d® is the usual tensor product differential,

i.e., 8®(u ® v) = ou ® v + (- l)dím"u ® dv;

(A ® 1)A = (1 ® A)A for i = 3, i.e., A is associative;

0 = 0   for i > 3.
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Similarly examining the conditions, we see that an ¿(3)-algebra is, in the ob-

vious sense, a chain homotopy associative DGA-algebra. For n > 3, the ¿(n)-

algebras are again the algebraic image of the spaces which we have described in

HAH I.

Theorem 2.3. If X admits an A„-form {Mj, then C^(X) admits the structure

of an A(n)-algebra by defining my = ô and for i > 1, m,(uy ® ••• ® u,) =

M¡# (K¡ ® ui ® ■"" ® ui) where k, is a suitable generator of C^.(K,).

Proof. It is easy to verify formula 2.1(2) up to sign. A little painstaking care

with orientations will give the signs as well, for of course the signs in Definition

2.1 were chosen so as to make Theorem 2.3 true.

(2.4) The tilde or homotopy-bar construction äl(R) on an A(n)-algebra

(R,my,—,m„).

We are guided by the bar construction. Define R as the kernel of the augmen-

tation. Let ä(R) = ES ®'R with the convention ®°R = A. We bigrade ä(R) by

the number of factors and the total dimension, that is an element Uy ® ••• ® u¡

e ®'R is of simplicial degree i and internal degree j = £í dimuk. We refer

to i + j as the total degree. We define

d:J(R)->á?(R),

which lowers the total degree by 1. Let u e(R) be represented by u2 ® ••• ® u,_y

e ®'_2R, i Sn + 2 (notice the somewhat unusual indexing). Then d(u) is rep-

resented by

Z x'(k,s,u) «2® ■•■® ms(uk® •••®Ujt+s-i)® ••■®Mi_1
\¿.J)      2SÜSHS-1SÍ-1

where x'(k,s,u) is ± 1 according to the parity of (s + l)k + s(i + ¿Z2~1dimuj).

Extend d to all of äl(R) by linearity. It is straightforward, using 2.1(2), to

compute that dd = 0.

Remark. If (¿,<3,A) is an associative DGA-algebra, then (¿,o,A,0,•••) is an

¿(oo)-algebra. The corresponding tilde construction âS(A), is, up to sign, the bar

construction 88(A). The difference in sign is quite unimportant; it is just a change

in orientation. For a general ¿(oo)-algebra, it is possible to give a differential on

A ® 8§(A) to make it acyclic, much as in Cartan's theory of "constructions". It is

probably possible to generalize all of that theory to cover the tilde construction,

but the absence of exact associativity would certainly make the details very compli-

cated.

(2.6) The spectral sequence canonically associated with an A(n)-algebra

(R,my,—,m„).

The bar construction, filtered by the number of bars, gives rise to an interesting

spectral sequence. Similarly, filter i%(R) by the simplicial degree :

F"(ä(R)) = 'E ®JR.
iûP
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This filtration is compatible with the differential d, hence [22, §10.3] there results

a spectral sequence

{E'"(/?,W),<0,      '' = !■

Since both the simplicial and internal degrees are non-negative, the spectra

sequence converges; the term E00 is just E°(H*(ä(R))), where Hjß(R)) has the

induced filtration. In the case in which the ¿(n)-algebra is derived from an ¿„-

space as in Theorem 2.3, the terms E1 and E00 can be identified in terms of the

geometry.

Consider an ¿„-form on a space X and the corresponding projective spaces

XP(i). The largest, XP(n), is filtred by its subspaces XP(i); the chain group

CJ(XP(n)) is filtered by C*(XP(i)), and the filtration is compatible with the

usual boundary. Let {E'(XP(n)),d1} denote the corresponding spectral sequence.

(This is much the setup of the spectral sequence Milnor mentions in connection

with his universal bundle [8]. The corollary to the following theorem can be

regarded as stating that the Milnor or Dold-Lashof construction is a geometric

realization of the bar construction.)

The n-fold smashed product X(B) is the space obtained from the pair (X, e)"

by identifying the subspace to a point; that is, Xn/Xw where X[n] is the subset

consisting of all points with at least one coordinate being e.

Theorem 2.7. Let {M¡} be an A„-form on an arc-connected space, and let the

induced A(n)-algebra be (C*(X), {m¡}). Let {E*,^} be the spectral sequence

canonically associated with (C#(X), {m¡}).

A. ThetermEp\q is isomorphic to #?(X(P)) and d1:H4(X(p+1))->Z/iX(p)) is

given byT,(— 1)*(1 x ••• x M2 x ••• x 1)* (where M2 is in the kth place in the

general term).

B. There exists a filtration preserving chain map ■&: á?(C*(X)) „-» C*(XP(ri))

which induces isomorphisms

^E'-^E'íXPÍn))

and hence is a chain equivalence.

Proof of A. The identification of the term E1 follows by using the chain

equivalence between C(X(p)) and ®PC(X), and applying certain facts about

spectral sequences [19, p. 331, % 2-3]. Fp/Fp~l may be identified with ®PC(X)

and the differential d° induced from d can be identified with the product differ-

ential. The homology with respect to this differential is the (reduced) homology

of the smashed product, ^(X(p)). The form of d1 follows directly from the

definition of d.

Proof of B. ■& is defined by

fi(u2® •••® «,_,) = A-i#(K¡®M2®"- ®ui_1).
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Being careful about orientations, it is straightforward to check that ê is a fil-

tration preserving map and that &l is an isomorphism. The theorem now follows

by a standard theorem on spectral sequences [22,10.3.13, p. 410].

If X is an associative //-space, our construction reduces to that of Dold and

Lashof [3]; XP(i) has the homotopy type of the Dold and Lashof base space

Bi+1. If we replace X by a topological group G, then XP(i) has the homotopy

type of the Milnor base space Xi+l [8]. In both of the above cases, the tilde

construction reduces to the bar construction. Thus we have

Corollary 2.8. If X is an associative H-space, there is a filtration preserving

chain equivalenceê'.^C^X))-* C^(Bœ). If G is a topological group, there is a

filtration preserving chain equivalence ê:âS(CJfi))^> CJ^X^).

Thus Milnor's spectral sequence is equivalent to that derived from the bar

construction. (This has also been proved byM. Ginsburg in his thesis(2)forM.I.T.)

In fact on the chain level, Milnor's construction looks more like the bar construc-

tion as far as signs are concerned because he regards G*i*G as formed from a

subset of/xGx---x/xG, while it is implicit in what we have said that the

signs in á?(C.,.(G)) correspond to starting with Ki+lx G', as a subset of V~x x G\

3. Yessam operations. The differentials of the spectral sequence E' can be

interpreted as homology operations. We will concentrate on dp restricted to the

subset of ®p+1Hif(X) in Ep+i>9 (where X has a given 4„-form, n > p). ¡It can be

regarded as a pth order homology operation of (p + ^-variables, analogous to

the Massey operations in cohomology [31; 23]; hence we call them Yessam

operations. If defined, we denote dp(uy ®---® up+1) by [uy,---,up+1]. For

example, d11 H^.(X)® H^(X) can be identified with the Pontryagin product.

The triple Yessam product defined by d2 includes the following case :

Suppose ueHp(X), veHq(X), weHr(X) and that the Pontryagin products

uv and vw are zero. Let ü,v,w be chains representing u,v,w respectively. Then

there exist xeCp+q+l(X) and yeCq+r+1(X) such that dx = üv and dy = vw. The

triple product [u,t>,w] is the coset of Hp+q+r+1(X) modulo M2JfHp+q+r+y(X(2))

determined by (— l)p uy — xw — M3#(k3 ® ü ® v ® w). [If the ¿„-form is

trivial, the last term drops out. In general dp is much easier to describe and

to calculate if the ¿„-form is trivial, i.e., (C+(X), M2#) is an associative algebra.]

As for nontrivial examples of these operations, we have

Application 3.1. Let CP(n) denote complex projective space of dimension n

and let u generate Hy(QCP(n)). H2n(Q.CP(n)) is generated by the (n + l)-fold

Yessam operation \u,---,u\.

Proof. QCP(n) has the homotopy type of S1 x ClS2a+1 [11, Proposition 6] so

(2) Added in proof. This has appeared as On the Lusternik-Schnirelman category, Ann. of

Math. (2) 77 (1963), 538-551. The Yessam operations are referred to there (p. 550) and Appli-

cation 3.1 is proved.
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that H,(QCP(n)) = 0for 1 <q<2n. Thus Ep¡q = 0 for q<pandp < q< 2n + p - 1.

It follows that En\Un+1x E„2+lj„+1 x ■■■ x E„"+li„+1 so that the (n + l)-fold

Yessam product [u,••-,«] is defined. Now E"+[¡n+lx ■■■ x E^.ln+l which

is trivial since H2n+2(CP(n)) = 0. By a similar argument, Ej > 2„ « E" 12„ but

E"*2» ~ Ef)2„ = 0 so that d": E"+ln+1 -» EJ2„ must be an isomorphism. Since

E1>2„ = //2n(£2CP(n)), the latter group must be generated by [u, •••,«]. (For low

values of n, [u, ••-,"] can be calculated directly and fairly easily using the cobar

representation for C%(SiCP(n)) [17]. This method was suggested by W. Browder.)

4. ¿„-maps. Before discussing the limited naturality of these operations, we

will have to consider maps of ¿„-spaces.

Definition 4.1. Let {M¡} he an ¿„-form on X, {JVJ an ¿„-form on W. A map

/: X -* IT is an A„-homomorphism iffaM¡ = N¡(1 x /') for i = n.

Theorem 4.2. // f:X-*W is an An-homomorphism, there exist maps

fE: <f„(X) -* tJLW) andfB:eSn(X)->3Sn(W) such that

(1) fB(@i(X)) cz a¿W),

(2) VnÍE =  fsVn-

Proof. If/:X-> W is an ¿„-homomorphism, then the maps 1 xfl:Ki+1 x X'

-+Ki+1 x W'and 1 x/i_1:/C¡+1 x Xí_1^Ki+1 x Wl~l respect the identifica-

tions imposed by a¡ and ßv respectively; hence they induce maps of the derived

¿„-structures.

Corollary 4.3. Iff:X-> W is an An-homomorphism, then the induced map

V: E\ä(C^(X))) -» E\ä(C*(W))) is given by lf\ E1^ =/f: H,(X(P)) ->//„( W(p)).
The Yessam operations of p variables are natural with respect to An-homomor-

phisms, p g n.

Though useful, the concept of an ¿„-homomorphism is too limited. For n = 2,

it does not include even //-maps. To give an appropriate extension of the concept

of an //-map to maps of ¿„-spaces (intuitively, we want a map which respects

¿„-forms "up to homotopy") is extremely complicated. Only because the weight

of notation and detail is so indigestible in the general case, we will restrict our-

selves for a while to associative //-spaces (X, m) (otherwise called monoids),

i.e., m : X x X -> X and m(m x 1) = m(l x m).

Definition 4.4. Let (X, m) and (Y, n) be associative //-spaces. A map/: X -»• Y

is an An-map if there exist sputnik homotopies ht:Il~l x X'-> Y for i S n such

that hi, =f,

"i(rl> "•)fj-l>^i> "'tXu

= h¡-1(tí,---,tk,---,ti-i,x1,---,xkxk+1,---,xi) for tk = 0

= hk(tl,---,tk-ux1,---,xk)hi-k(tk+1,---,ti-1,xk+1,---,xi)        for tk = 1.
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If the maps h, exist for all positive integers i, then/is strongly homotopy-multipli-

cative [29, p. 259]. (Note that an ¿2-map is just an //-map.)

It is complicated but straightforward to verify that the composition of ¿„-maps

is an A„-map. For example, suppose/: X-* Y is an ¿„-map with n;:/i_1 xl'-»y

and g:Y-*Z is an ¿„-map with ji:T~1xYi^Z. For n = 2, define

k2:I x Y2->Zby

k2(t,x,y) = goh2(2t,x,y),

k2(t,x,y) = j2(2t-l,f(x),f(y)),

For n = 3, define k3 :12 x X3 -> Z by

k3(t,s,x,y,z) = goh3(2t,2s,x,y,z)

= j2(2t- l,f(x),h2(2s,y,z))

= j2(2s-l,h2(2t,x,y),f(z))

= j3(2t-l,2s-l,f(x),f(y),f(z)).

gf(x)gf(yz)

0£2fgl,

1 <2/<2.

gf(xyz) gf(x)gf(y)gf(z)

gf(xy)gf(z)

For monoids, our construction (8 in HAH I) of ¿„-structures p, : £,-+81, reduces

to that of Dold and Lashof p¡: E, -* B, [3] as remarked at the end of HAH I. As

one might expect, ¿„-maps induce maps of th   corresponding .¿„-structure.
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Theorem 4.5. A map /:X-> Y is an An-map if and only if there exist maps

fE:En(X) -* E„(Y) andfB:Bn(X)-» B„(Y) such that

(\)fB\X=f,
(2)fB(Bi(X))^Bi(Y),

(3) fBPn = PJe,

CfE\
CEn_l(X)—^CEn_1(Y)

(4) pnk   i i pji

B„(X)-> B„(Y)
JB

(where k and h are the contractions) is homotopy commutative rel En_i(X),

keeping C£'i_1(X) in B¿(Y).

The construction of/£ and fB from h¡ is given by Sugawara [29, Lemma 22]

who verifies (l)-(3)- Condition (4) is easy to verify since pnh 0 CfE | (i, y)

= (i,/£(>'))forye£„_1(X)while

\V-t,fE(y)),    0 = 2i = l,

fBPnKUy) =

I flJzOO,    l = 2í = 2.

We postpone the construction of ht from fE and fB.

Corollary 4.6. ///: X -> Y is an An-map, there is an induced map of spectral

sequences f:E(X) -> E'(T)/or i ^ n such thatf1 is induced by fip):Hq(X(p))

->//9(Y(p)). The Yessam operations of p variables are natural with respect

to A„-maps, p^n.

It follows easily that a homotopy equivalence between SiCP" and S1 x SiS2n+i

cannot be realized by an ¿n+1-map. For n — 2, Si CP3 and S1 x SiS1 do have the

same ¿2-type or //-type [13, Corollary 1.19].

5. Cohomology classes represented by ¿„-maps. A particularly interesting and

significant class of candidates for ¿„-maps are maps of a monoid (X, m) into an

Eilenberg-MacLane space K(n, n). It is a familiar result of obstruction theory that

homotopy classes of such maps correspond to cohomology classes of H"(X; n). To

analyze cohomology classes, a convenient tool is the dual spectral sequence

{E;,^} derived from HomO^CiX)),^. Ep'5 can be identified with H\X(p)),

coefficients in n being understood hereafter.

Theorem 5.1. A class u e Hq(X) is represented by an An-map if and only if

regarding Hq(X) as E\'q we have dj(u) = 0 for all j < n.

All connected monoids are essentially loop spaces, for a connected monoid

(X, m) has the homotopy type of SiBx [15, Lemma 10]. When working with a loop

space SiY, we will always be considering loop addition, which is associative [10; 17].
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Definition 5.2. A map/ : S1Y ->QZ is a loop map if there exists a map g: Y ->Z

such that/is homotopic to Qg. A class ueH9(QY) is a loop class if it is repre-

sented by a loop map/:QY->R(7i,a) = QK(n,q + 1).

Remark. Note that a loop class is what is usually referred to as a class in the

image of suspension a : H9+1(X; n) -* H9(QX;n). We have revised the terminology

to increase the conceptual content of the label and to relieve the burden on the

overworked word "suspension".

Our main result concerning loop classes is:

Theorem 5.3. A loop class ueH9(QY) is represented by an An-map with

respect to the An-structure derived from loop addition. The condition is also

sufficient for a class to be a loop class if q < (n + l)(s + 1) — 2 where Y is

s-connected.

For n ^ 2, this can be rephrased in more familiar terms. Any map is an ¿^map,

so for n = 1 we have the statement: If Y is s-connected, then Çl:H9+1(Y,n)

-> H9(Q Y ; n) is an isomorphism for q <2s [30, p. 94 or 26]. For n = 2, Theorem

5.1 reduces to: A class it is represented by an //-map if and only if it is primitive.

Thus we have: If Y is s-connected, then Q(Hq+1(Y;n)) is precisely the set of

primitive elements of H9(Q.Y;n) for q ^ 3s.

Theorem 5.3 provides us with a whole spectrum of ¿„-maps.

Application 5.4. The generator of H2n(QCP(n)) is represented by an A„-map

but not by an A„+l-map.

Proof. We proceed essentially as in the proof that H2„ is generated by the

Yessam product. Let w e H2"(Q.CP(n)) be a generator. Since H2"-J+1(ÇïCP(n)u+1))

= 0 unless j = n, we have dj(w) = 0 for j < n so that w is represented by an An-

map. Should w be represented by an A„+1-map, it would be a loop class by

Theorem 5.3. This is impossible since H2n+1(CP(n)) = 0. (Apparently it has been

realized for some time that these classes are primitive but not suspensions; cf.

[33].)

6. ¿„-fibrings and fc-invariants. One way to build new spaces from old is by means

of fibrings. If both fibre and base are monoids, is it always possible to put a mul-

tiplication on the total space? The answer is: No, only certain fibrings are "nice"

enough.

Theorem 6.1. Let (X,m) and (W,n) be monoids. Iff:X-+W is an A„-map,

then the fibre space Y over X induced by f from D.W'-* ä'W -* W admits an

A„-form.

The theorem is known in the case n = 2 [21, p. 294 or 20]. A partial converse is

given below, by analyzing the k-invariants of ¿„-spaces. First we have

Theorem 6.2. // a space Y admits an A„-form, then each stage Y of the
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Postnikov system has an A„-form such that the projections pq: Yq-*Yq-! are ¿„-

homomorphisms.

Now if y?_1 has in fact an associative multiplication, we can ask if the k-

invariant keHq+1(Yq-i',nq(X)) is represented by an ¿„-map and in fact the

answer is yes. (Of course, this discussion could be carried out if Yq-X admits

only an ¿„-form, but again the notation and details are intolerably complex.)

We state the theorem only in its neatest case.

Theorem 6.3. Suppose a space Y has only two nontrivial homotopy groups,

np(Y) = n, nq(Y) = G, q > r. Then Y admits an A„-form if and only if the

k-invariant keHq+1(n,n;G) is represented by an An-map.

We do not have to specify the ¿„-form on K(n, n) because, up to homotopy,

there is only one, as can readily be seen using obstruction theory. In the case

n = 2, the theorem was first stated by Copeland [20] in slightly different terms.

In this case, the multiplication on Y can described very neatly and explicitly [27].

However, it is not true that all the fc-invariants considered are "suspensions",

as can be seen from the following corollary of Theorem 6.3 in the case n = 3.

Application 6.4. Let a be a generator of Hn+1(Zp,n;Z) with n odd and p an

odd prime. The space Y with k-invariant ap admits a multiplication but not a

homotopy associative multiplication.

Application 6.4 gives an alternative proof of Moore's statement [24] that

<xp is not a suspension, for if it were, Y would be of the homotopy type of a space

of loops [30] and so would admit a homotopy associative multiplication. Con-

versely, Moore's statement can be used to prove Application 6.4 in the case p = 3,

for if a3 were represented by an ¿3-map then by Theorem 5.3 it would be a

loop class (a suspension).

7. Proof of Theorem 4.5. Given a monoid (X,m), Dold and Lashof constructed

quasifibrings p„ : £„ -► B„ as follows (we have changed a few details such as in-

dexing and ordering of coordinates) : £t = X, Bx = *, a point, pj is the canonical

map. E„ = Xx CEH-tV fc_A-n B„ = CEn-i uPn.iB„_1, and p„ and p„ are

defined by

m x   1 TL
Xx  Xx  C£„_!->XxC£„_1 Xx  CE„_! -> C£„_!

4 4- 4-4/
X x £„   -—>   £„ £„ ——> £„

/^n Pn

where the vertical maps correspond to the identifications and n is projection onto

the second factor. Thus a point of £„ can be represented by (x1,i1,x2, ■■■,t„-l,x„)

and a point of B„ by (tux2,---,tn-ux¿). At the end of HAH I, we showed that

we can alter the Dold and Lashof construction without changing its homotopy
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type by identifying (x1,f1,—,í¡_1,e,íi,-",xB) in £„ with (xy,ty,---, x^yj^y

+ t¡—*,_!<„x,+!,-•-,x„) for any i, and similarly in B„. Assume this done, and

from now on let / = [0,2]. We first define jV Z1"1 x X'^E^Y) by

J¡(h> "'tU-uxi>'">xù

= U e(xI> 1 — *1>X2> '">xki)>   'fci ~ l'JÁXki + U 1 — ífci + 1 s '■■>:>c*2/> ■"

"■j^i- IJA + li "">xi)J

for 1 z% tkr ^ 2, 1 ^ r ;£ s and 0 ^ i,„ :£ 1 otherwise. Notice that

;í_1(í1,—,?„"->tt_1,-",x1,-,xrx,+1,—,x¡) when ír=0,

(jr(ty,---,tr-i,Xi,---,xr),l,ji_r(tr + i,---,ti-i,xr+y,---,xi))v/hentr=l.

Using condition (3) to pair off portions of pj^ we can easily extend pj, to a map

gi-.V x Xl^B¡(Y) such that

£¡('o> ■■">'>-1)^1» ••*»*()

- * ifi0 = 0,

(7 1)=.   ft^'i'•'>*») if i0 = 2,

- (S'A'O) ■"»'r-lî^l»'"î^r)'L^i-rCo»'r+1) ■">^i-l>;,Cr+l>'"'^i))      " 'r   = 2.

Proceeding by induction, we cover (replace p„ by a true fibring or use (Ay) of

[15]) each g¡ by a deformation g,:T x Xl->E,(Y) such that

g; lies in Y if i0 = 0,

g, is given by j, when i0 = 2,

and (7.1) is valid for (, = 0 or 2 with g barred throughout. Thus if we define

h¡(ty, -,x¡) = g¡(0, ty, -.Xj), we will have the desired sputnik homotopies.

8. Obstructions to ¿„-maps. A class ueH9(X;n) is represented by a homo-

topy class of maps f:X->K(n,q). Assume by induction that some such /is an

¿„_!-map so that we have sputnik homotopies n,:/'-1 x X'->K(n,q) for / < n.

Using these maps, we can define n„ = n„ | dl"~ * x X" even though we may not be

able to construct all of n„. The obstruction to extending to all of I"'1 x X"

is a class in Hq((I"~1, dl"~x) x X";n), which is isomorphic to Hq~tt+1(X";n). We

would like to show that this obstruction lies in Hq~n+1(X{n);n). Then we can

show that this obstruction represents dn_y(u).

Lemma 8.1. Let (X,m) and (W,n) be monoids. Iff:X^W is an An-map,

then there exist sputnik homotopies h¡: /"-1 x X"-* W such that ifx~e,

1 < j < i, then

';('!,•••,*() =
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Wh>->x¡)

K-i(h,—,tj-i + tj,---,tt-.1,x1,---,Xj,---,xi) forO^tj-i + tj^l

hj-i(ti,"',tj-2,x1,---,Xj-1)hi-j(tj-1 + tj — l,---,ti^1,Xj+i,---,x1)

for   1^0-1 + 0 = 2

while

h¿ti,—,xt-i,e) = /!,_,(!,,•••, íi_2,x1,---,x;_1)

and

"i'ri> *"»h-i>e>x2> '">x¡) = ni_1(í2, ••■,íi_1,x2, •••,Xj).

Proof. By interpreting h¡ suitably as a homotopy, we find as in the Appendix to

HAH I that it can be specified at will on Xt,], the subset of X' consisting of

points with at least one coordinate e.

Therefore, let us assume that the sputnik homotopies satisfy the conditions

of Lemma 8.1. It is then possible to extend h„ to dl"'1 x X"U/"_1 x X[n].

The remaining obstruction to extending to all of /n_1 x X", now lies in

//,((/n_1,a/""1) x (Xn,XM);n) which is isomorphic to Hq~n+1 (X(n);n). Let us

identify that obstruction.

For i > 1, we can identify /l_1 with CSl~2, the cone on the sphere. Corre-

sponding to the maps n,:/'_1 x Xl-*K = K(n,q), we have maps;';: Xx^> 3?SY~2K

defined by

h{xu--,x¡)(t,x) = hiiU^Xi,— ,xj) -f(xj) -f(x2)-f(x¡).

Let g¡: X;-* Sil~2K be defined by

U    ^,<£SÏ-2K

X1->   Sii~2K
g¡

so that g¡ corresponds to h¡ 15/'_1 x X'. Using obstruction theory, we have

corresponding chains bieCq~i+1(Xt) and a¡e Cq~i+2(Xl) such that ôb t = a¡,

for i > 1. For i = 1, we have h^ = h*(i) which represents u e Hq(X). Let the

components in C*(X(I)) be b¡ and a; respectively. By repeated application of the

homotopy addition theorem, we are able to write

8b¡   =     I      (-l)l(lx-xmx-xl)tèH,i>l;

(8.2) 1^i~1

Obi = 0.

The other terms which correspond to

"r(rl> '"jtf-ijXx, •••,xr)- hs(tr+i, •■■,ti-i,xr+1, ••-,Xi)
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drop out in C*(X(i)) since for the multiplication in K or £2i_2R we have m*(i)

— Pi(l) + P2O) where 1 is the fundamental class. By the same reasoning, we see

that the component in C*(X(n)) of gn(i), which is the obstruction to extending hn, is

I(-l)'(l x ••• x m x ••• x l)*o„_!.
k

Now Hi<nb, represents u in E}?. Consider dI¡<B b¡ mod£"+1, the part of

ä*(C*(X)) of filtration n + 1. We have

dl ¿»¡=1 [(-r/a^-It-F/ü x   ••• x mx ••• x 1)%]

which by (8.2) reduces mod Fn+1 to £*(- i)*(l x ••• x m x ••• x 1)* b„-y, pre-

cisely the obstruction to extending n„. Therefore the obstruction represents

d„_y(u), which thus must vanish if /is an .¿„-map. Conversely, if dfu) = 0 for

j < n, then there exist chains b, e Cq~l+1(X(i)) for i ^ n such that d Tb, = 0

mod£„+1 and by represents u. It follows easily that (8.2) holds. If we assume by

induction that sputnik homotopies n¡:/'_1 x Xl^>K(n,q) exist for i<n and

give rise to b, as above, then (8.2) for i = n tells us that the obstruction vanishes,

i.e., n„ can also be constructed and/ is an ¿„-map.

9. Loop classes. Before proving Theorem 5.3, we need to study the classifying

space for QY more closely. Let Bœ(QY) be constructed using loop addition.

Theorem 9.1. There is a commutative diagram

ClY     =     QY

I        I
EX(QY) -+ J?Y

P- I cp   I "
Bœ(ClY)X   Y

which respects the action ofQY on pœ and on n.

Proof. By induction, define tp^.B^Y, ^¿E^^Y and 9,:CE,^&Y as

follows: \¡/y is the inclusion of QY in SPY. 9,(t,z)(s) = i]/,(z)(ts) for zeE„

\J/,+1(x,t,z) = x + 9,(t,z) where + denotes the usual action of Q.Y on J?Y.

4>i(t,z) = n6,(t,z). It is easy to verify that these maps are well defined, (in parti-

cular, \¡/¡(x + y, t, z) = x + \j/,(y, t, z)), and that n\j/, = cptp,.

Corollary 9.2. <j> is a homotopy equivalence.

Corollary 9.3. Let i:SQY -^B^CIY) be the inclusion of B2(ilY). A class

u eHq(QY) is a loop class if and only if there exists veH9+1(B00(QY)) such that

i*v = SueHq+1(SSlY).

Proof, tp I SO, Y is given by cp(t, X) = A(rt) where X : [0, r] -+ Y. Let x be an inverse

for 4>. It is easy to check that i*v = SQ(x*v). [Recall that S:Hq(Z)-* Hq+1(SZ)
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is defined in terms of maps as follows: If f:Z->SiK(n,q + 1), then Sf:SZ

-* K(n,q + 1) is given by Sf(t,z) = /(z)(f).] Thus u =Si(x*v) and is a loop class.

Proof of Theorem  5.3. As is well known, a loop class is a homomorphism

for with X: [0, r] -* Y, p:[0,s] -* Y, we have

CfoX(t),        0 = i = r,

l(Qf)(X + p)-](t) =\
I/o Mi),        0=r + r^s

=  [(Qf)X + (Qf)p-](t).

A homomorphism of monoids is clearly an ¿„-map.

Conversely, suppose u e Hq(SiY) is represented by an ¿„-map so that d/u) = 0

for j < n. But then d/u) = 0 for all ; since Hq-J+1(QYu+l)) = 0 for q -j + 1

< s(j + 1), i.e., q < (n + l)(s + 1) - 2 for j 3; n, so that u survives to Eœ. Since

Eœ = £0(//*(B0C)) as filtered by the subspaces B¡, we know that E¿'4 is a subgroup

of//9+1(SX); in fact this subgroup is the image of Hq+l(Bœ(SiY)) under the in-

clusion map. Since E°,q = 0 for q > 0, E^'* can be identified with a subset of

E} ' *, and the following diagram is commutative :

H\X) =  E\-qz>E\;q= i*H*(Bœ(SiY))

s\ n
^Hq+1(SX)

where S is the suspension isomorphism. This can be seen by considering C(X)

as an ¿(l)-algebra ; the composition C(X) -»• ä(C(X)) -y C(SX) clearly induces

the homology suspension isomorphism.

Since u survives to E„, there exist veHq+1(Ba0(QY)) such that i*v = Su. By

Corollary 9.3, u is a loop class.

10. Proofs for §6.

Proof of Theorem 6.1. We have monoids (X, m) and (W, n) and a fibring

SÏW -> y -> X induced by an ¿„-map/: X-> W, i.e.,

aw -►    y -* x

Il 1      1/

We wish to construct an ¿„-structure on Y. Since / is an ¿„-map, we have a

commutative diagram of n-tuples

d,
Et(X) - EiW)

Pt I     b     [it       for i = n.
B;(X) -U BXW)
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Define E,(Y) as the space induced by d¡ from QE;(lF)-> &Et{W) -» E,(W) and

similarly define B,(Y) in terms of b¡.

QE,(W)-*     £f(Y)  - EpQ CIBIW)   -    B;(F)  - B,(X)

II 1       14       1 1       |*.
ÇlE,(W)-y &E¿W) -»• £¡(17) QB^IT)-» ^B^IF) -► B,(W).

Represent £¡(F) as pairs (z,X) with zeE,(X), Xe^CE¡(W), X(\) = d,(z) and re-

present B,(Y) similarly. Define r¡: £((y)^B,(y) by ri(z,X) = (pi(z), ^q¡(X)) where

[^?gi(A)](í) = gioA(í). Let B¿(X) and B^IF) have base points * and * respectively.

Lemma 10.1. Y = ri"1(*,*).

Proof.   We can write rj ' (*, *) as the set

{(z, A) | z € £f(Z), A e SPEfyt), d(z) = A(T), p,(z) = *, q,o X(t) = *},

which is clearly the same as Y = {(x,p) |xe X,pe^CW,f(x) = «(Ï)} since X is

the fibre of p¡, W that of a^ and d,\X=f.

Lemma 10.2. rtit:nq(E¿(Y),Y) -* nq(B,(Y)) is an isomorphism for all q.

This follows from the more general

Proposition 10.3. Suppose we have a commutative diagram

F   -* £     £ B

^ V 4'
F' -» £'    -♦, B'

P

where p^:nq(E,F)xnq(B)and p'^-.n^E^F') x nq(B') for all q. Let d and b

induce fibrings a and p as follows:

QE' -    £"    *  £ QB' -    B"    £ B

II I ld H 1 lb
fi£' -» JS?£' -» £' QB' -> JSfB' -» B'.

/>e/me p":£"-+B" ¿>>> p»(z,A) = (p(z), &p'(X)). Then pl:nq(E",F")^nq(B") is

an isomorphism for all q.

Proof. The fibre F" = p"~i(*) (where * is the base point of B") is a fibre

space as shown in Lemma 10.1:

QF' -►     F" -+ F

II 1       |  d\F
Ç1F' -> SCF' -► F'.

Let G denote (pa)~\*) = (pp")~~\*) so that G = a~1(F) = p"_1(M')-
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SiB'

Since p"(F") is a point, F"

sider the diagram

G. Since pp"(G) is a point, p"|G lies in SiB'. Con-

(SiE',SiFr)

Sip'   I
SiB'   -

(G,F")  -+ (F,F)

[P"
-> SiB'

where SiE' is, as a fibre of ex, contained in G. We see that pi : n„(G,F") -» 7t„(O.B')

is an isomorphism. Now consider the exact sequences

nn(G, F")

!    "

7t„(nß')

nn(E", F")

[pl
nn(B")

nn(E",G)

J, P*a*

nn(B)

The first vertical arrow is an isomorphism. The last is also because of the assump-

tion on p and the fact that a is a fibring. Thus the middle one is an isomorphism.

Lemma 10.4. £i_1(T) is contractible in E¡(Y).

Proof. Consider the diagram

E^Y) -* Et.i(X)

I I
SiEiW)^ E,(Y) ->  EM)-

Since £j_x(X) is contractible in £¡(X), £,_1(y) can be deformed into the fibre

SiE¡(W). Explicitly representing points of E¡^t(Y) as Pau"s (z>^) with zeE.-.^I),

XeSfEi-M)' we can deform j:£¡_1(y)->£,(y) to the map j^.E^M)^

SiE¡(W) given byj1:(z,X)^X - V! where v^e^E^W) and vx(0 = dk(t,z) where

k: C£;_i(X) -► £¡(X) is the contraction.

Consider the projection of jt into SiB¿(W). Since/is an ¿„-map, the diagram

CEi.M)-^lz-1-^CEi_1(W)

B,.(X) ->   B,W

is homotopy commutative reí £¡_!(X) (cf. Theorem 4.5). From this we see that
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£íq¡ojy is homotopic toílq¡oj2 where j2(z,X) = X—v2 and v2(i) = h,d(z). In turn j2

is null-homotopic since (z, X) -» X is homotopic to (z, A) -» v2 by #(s, f) = ht(X(s)).

(Notice that «(1,0 = v2(f) and p(s, 1) = X(s).) Thus Í2g¡o jy is null-homotopic and

hence jy can be deformed into the fibre QW which is contractible in ÍÍE¡(W);

E¡_y(Y) is contractible in E,(Y). Thus we have exhibited an ^„-structure on Y.

Theorem 5 of HAH I then guarantees the existence of an ¿„-form on Y.

Now we turn to the proof of Theorem 6.2. We will need the following propo-

sition :

Proposition 10.5. Suppose given

(1) an A„-form {JV¡} on a space Y,

(2) an An-y-form {M,} on a space X,

(3) afibring n:Y -* X which is an ¿„_ yhomomorphism.

Provided that

(4) X is (r — l)-connected and

(5) the fibre is (s — l)-connected, s> r, while

(6) nq(X) - Ofor q £ (n - l)(r+ 1) + s - 1

then there exists an A„-form {M,} and JV„', a deformation of Nn rel L„ x Y"

U R„ x Y", such that n is an A„-homomorphism.

Proof. Since the fibre is (s — l)-connected, we can construct a cross section

over the s-skeleton Z of X. Hence we can define M„ at least on R„ x Z". (For

n = 2, we have the following diagram :

N2
Y x  Y-► Y

î       M2   ln
Z x Z-► X.)

The obstructions to extending M'„ to all of K„ x X" will appear as classes in

Hq+1(K„ x Xn,L„ x X" u Kn x (Xw u Z"); je^X)). Since (X„L,,) is homeo-

morphic to (f ~2,/"-2), this group is isomorphic to H9~"*3(Xn,Xw U Z";nq(X))

which is trivial for any coefficient group unless q — n + 3 ^ (n — l)r + s + l,

i.e., q ¿i (n — l)(r + 1) + s — 1. Hence, by condition (6), we can extend to all of

R„ x X", obtaining M„. Similarly the obstructions to n being a homomorphism,

at least up to homotopy rel L„ x Y" U R„ x (Yw UZ"), are classes in

//'!"n+2(Y",Yt"] UZ";nq(X)) which again are trivial groups for all q. Now jt is a

fibring. Hence if we have nNn S M„(l x ti") rel L„ x Y" UR„ x (YM U Z"),

Nn can be deformed to N'„ rel this subset so that nN'n = M„(l x 7i"), which proves

the proposition. (This argument was obtained from W. Browder for n = 2.)

Corollary 10.6. Suppose n:Y -> X is a fibring, that X is (r — l)-connected

for some s> r, the fibre is (s — l)-connected and nq(X) = 0 for q^r + s. If Y
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admits an A„-form, then there are An-forms on X and Y with respect to which

7i is an A„-homomorphism.

In fact, the form on y is a deformation of the one given. Repeated application

of the theorem yields the corollary. Repeated application of the corollary to the

various stages of a Postnikov system yields Theorem 6.2.

Proof of Theorem 6.3. Let y be a space with only two nontrivial homotopy

groups, 7tr(y) = tí, Ttq(Y) = G with q > r, so that y is a fibre space over K(n, r)

induced by a map /:K(n,r)-> K(G,q + 1). The Jc-invariant ueHq+1(n,r;G) is

just/nO-
Let X = K(n, r) and W = K(G, q + 1). If Y admits an ¿„-form, then it can be

deformed to one such that the projection n : Y -> X is an ¿„-homomorphism.

Thus there is an induced map 7ti:Ej(X)-»Ei(y) for r ^ n and n1 | Ep,iis just

7r(p)*://î(X(p))->//ï(y(p)). Since fon is null-homotopic, h*(ii) = 0 and hence

d¡(n*(u))=0for all i. We can conclude that 4(u)=0for i<n if tî°'+1)*| e/+1,?_j+1

is an isomorphism for j _: i. Since SiW is (q — 2)-connected, n* :HS(X) -> HS(Y)

is an isomorphism fox s < q; hence n(J+1)*|E{+1,9~J+2 is an isomorphism for

q — j + 2 _ jr + q, i.e., for r > 0, and /is therefore an ¿„-map.

Conversely, if/is an ¿„-map, Theorem 6.1 shows that Y admits an ¿„-form.

11. Calculation of d2(ap).

Proof of Application 6.4. We must show that d¡{aP) = 0 an<i d2(ap) # 0.

Since we can assume C#(X) finitely generated in each dimension, we have

<%* = Rom(ä(Ci((Xj),A) = 'L®iC*(X) where C*(X) = Horn(Q(X),A). The

differential d*:@*-> ä* starts as follows: d*(u) = - 8u + m*(u) and d*(u ® v)

= 8u®v + (- l)pw ® 8v + m*(u)® v - u ® m*(v) for ueCP(X) and ve C"(X).

Thus the differential d^ : HP(X) -» HP(X AX) is induced by m*. In particular for

<xp where a generates Hn+1(Zp,n;Z), we have d1(ap) = 0 since taking a pth

power is a homomorphism mod p and m*(a) = p*(a) + p*(a) where p¡: Xt x X2

-» X; is the projection. Explicitly, writing a¡ = pf(a) we have m*(ap) = (m*(a))p

= (at + a2)p = S(p)a'iaf-' = pf(ap) + p*(ap) since a is of order p and p divides

(f) for 0 < i < p. Now for d2(ap).

Because the cohomology of K(ZP, n) consists entirely of p-torsion, it is con-

venient to use as coefficient ring Zp, the ring of p-adic integers [32, Chapter 10].

For any space X with finitely generated homology, the Universal Coefficient

Theorem gives us H\X;ZP) = H\X)® Zp + Tor(//i_1(X),Zp). Since Zp is tor-

sion free and divisible by all primes q other than p, we can write H'(X ; Zp)=H'(X)œ

® Zp + H\X)P where H'(X)œ denotes the torsion free component and H\X)p

the p-primary component. In particular for i > 0, H'(Zp, njZ'O x H\Zp,n).

The cohomology of K(n, n) has been extensively analyzed by Cartan using his

theory of "constructions". The Cartan Seminar 1954—55 is our basic reference;

we will assume familiarity with the basic notions involved. We consider the

following graded algebras over a commutative ring A:
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E(y, n), the exterior algebra with generator y in dimension n odd,

T(x, n), the divided polynomial algebra with generator x in dimension n even,

i.e., r(x,n) has additive basis x¡ in dimension in with relations:

xpcj = (i,j)xi+j  I (i,j) =    '    J •      I .

Cartan has obtained H^(Zp, n ; Zp) as a Hopf algebra by an iterated construc-

tion starting with C„.(ZP, 1) = E(y, 1) ® T(x,2) with dy = 0, dx¡ = pyx,_y. For

n odd, let C = E(y,n) ® T(x, n + 1) with d.v¡ = pyx¡-y, dy = 0. Using Cartan's

methods, Moore [24] has shown that for each odd n there exists a Hopf algebra

D„ and a multiplicative chain equivalence cbn:C® £)„-> C*(Zp, n ; Zp). If x is

the cocycle dual to x,cb*(ap) is represented by x". If d2(xp) is nonzero, so must

d2(ap) be since tpn is multiplicative.

Since C is trivial in dimensions between 0 and n, m*(x) = 1 ® x + x® 1.

[If n = 1, we use the fact that x is a cocycle as well.] As for ap, we have

m*(xp)=  I  (i,j)xl®xJ.
•+/=p

Since p divides (¡, p — i) for 0 < i < p and öy = px, we have

m*(xp) = l®xp+xp®l + <5B

with

B=l/p     I       (l,/)x,®xi"1y.
t+Jmp; i,j>o

A simple calculation shows that d2(xp) is represented by

(1/p) I(iJ + fe)0' - 1, k) [x* ® xJ~x v ® x* - x; ® xJ' ® x*" V]

where the sum is now over i+j + k = p, i,j,k>0. [Hint: The calculation

uses the relation (i,j + k)(j - 1,/c) = (i,j + k)(j,k - 1) - (i + j, fe)(i,;')-]

Since x' ® xJ ® xk~1y — xl ® xJ~íy ® x* represents a generator of

/7p(n+1)_1(C®C®C;Zp) modulo [(l®m)-*(m®l)*] //p(n+1)_1 (C®C;ZP),the

theorem follows from the fact that for some 0 < i < p, p2 does not divide

(i,j +k) (j,k — 1). (This statement is not applicable for p = 2, since there are no

values of i,j and k such that i + j + k = 2, i,j, k > 0.) The proof also applies,

mutatis mutandis, for apJ, including the case p = 2 if j > 1.
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