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 HOMOTOPY ASSOCIATIVITY OF H-SPACES. I

 BY

 JAMES DILLON STASHEFFQ)

 1. Introduction. The concept of an H-space arose as a generalization of that

 of a topological group. The essential feature which is retained is a continuous

 multiplication with a unit. There is a significant class of spaces which are H-spaces

 but not topological groups. Some of the techniques which apply to topological

 groups can be applied to H-spaces, but not all. From the point of view of homo-

 topy theory, it is not the existence of a continuous inverse which is the important

 distinguishing feature [6; 15], but rather the associativity of the multiplication.

 For example, if we regard So, SI, S3 and S7 as the real, complex, quater-
 nionic and Cayley numbers of unit norm, these spaces possess continuous multi-

 plications, which in the first three cases are associative. Now it is possible to

 define real, complex and quaternionic projective spaces of arbitrarily large

 dimension, but this is not possible for the Cayley numbers. From the point of

 view of homotopy theory, we can investigate the "mechanism" which relates

 the associativity of the multiplication to the possible existence of projective spaces.

 First we consider the construction of the classical projective space as generalized

 by Milnor [8] for an arbitrary topological group (and further generalized by

 Dold and Lashof [3] for an arbitrary associative H-space). Given a topological

 group G, Milnor constructs fibre bundles pi: Ei -Bi with fibre G, the total
 space Ei being the i-fold join of G with itself. If G = Sd- I, d = 1, 2, 4, this gives
 the standard fibring of Sidi onto the corresponding projective space of dimen-

 sion i - 1. In the case of the Cayley numbers, only the fibrings of S7 onto a
 point and of S15 onto S8 can be constructed. It seems reasonable to ask whether

 something weaker than associativity might permit more but not all of these

 fibrings to be constructed. Sugawara [14] has shown that a variant of Milnor's

 construction can be carried one step further than for an arbitrary H-space if the

 multiplication is at least homotopy associative; that is, if m: X x X -+ X is the

 multiplication then the two maps of X x X x X into X given by the two ways

 of associating are homotopic, i.e., the diagram

 Presented to the Society, January 22, 1959 under the title On homotopy associativity of

 H-spaces and April 25, 1959 under the title On higher homotopy associativity; received by the
 editors March 8, 1962.

 (1) The author is a C.L.E. Moore Instructor. This research was supported in part by an

 NSF predoctoral fellowship, in part by the Marshall Aid Commemorative Commission of the
 United Kingdom, and in part by the United States Air Force under contract No. AF-49(638)-42,

 monitored by the Air Force Office of Scientific Research of the Air Force Research and Develop-
 ment Command.
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 276 J. D. STASHEFF [August

 X x X X X-m *XX X
 1xm m m

 X x X ----- X

 is homotopy commutative. What should the next step be?

 From the work of Sugawara and Dold-Lashof, it is clear that a fibre bundle is

 too restrictive a concept. The features of the Milnor construction which it is
 important to retain are embodied in the following definition, but first let us

 stipulate that all spaces we consider will be of the homotopy type of countable

 CW-complexes with base points and all maps and homotopies will respect base

 points.

 DEFINITION 1. An An-strtucture on a space X consists of an n-tuple of maps

 X =E1 C E2c*..C En

 Pi P2 Pn

 *-B, c B2 c tCBn

 such that pi*: 7rq(Ei, X) * 2tq(Bi) is an isomorphism for all q, together with a
 contracting homotopy h: C En_ 1 - En such that h(CEi -1) c E.

 The Milnor or Dold and Lashof construction shows that there are spaces

 which admit Al-structures for all values of n.

 (For the purposes of homotopy theory, we can think of X - Ei B, as a
 fibring in the light of

 PROPOSITION 2. Given X c E and a map p: (E, X) -* (B, *) such that

 p*: zq(E, X) - 11q(B) is an isomorphism for all q, there exists a homotopy

 equivalent fibring F E P B such that F has the homotopy type of X.

 Proof. Any map is equivalent to a fibring so that we have

 E EJ3

 P B

 [11, Lemma 13]. Since p(X)=*, Xis mapped into F = p(*). From the induced

 map of the exact sequences of the pairs (E, X) and (E, F), we conclude that

 F has the homotopy type of X, all spaces having the homotopy type of
 CW-complexes.)

 To study spaces which admit An-structures, we can work directly with the maps
 pi. In the case of a topological group, this amounts to working only with the
 classifying bundle and never mentioning group operations. This would be an

 exercise in rectitude of thought of which it would be pointless to countenance

 the austerity, for not only would it eliminate a useful perspective on the subject,
 but, by disguising its own main point, it would place the reader beneath a cloud
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 1963] HOMOTOPY ASSOCIATIVITY OF H-SPACES. I 277

 of unknowing. A similar remark can be made about An-spaces. We shall see that

 an An-structure on a space X is equivalent to an "An-form," that is, a sequence of

 maps M2, --, Mn where each Mi: i- 2 X Xi_ X is appropriately defined on
 aIi-2 x Xi in terms of Mi for j < i. (In particular, as indicated above, an A2-
 space is equivalent to an H-space, an A3-space to a homotopy associative
 H-space [15; 14].)

 Our study of An-spaces depends strongly on the interplay between An-structures

 and An,-forms. In particular, using both view points we are able to provide an
 example for each prime p of a space which admits Ap-1- but not Ap-structures.
 (S7 is a good example for p = 3.)

 The main theorem, Theorem 5, was strongly suggested by the work of Sugawara.

 The An-forms we will discuss are a greatly simplified version of the appropriate

 part of his conditions for a group-like space [14]. Where our proofs are suggested

 by his, we have attempted extensive simplification. The work of Dold and Lashof

 [3] also had a deep influence on the development of this subject; it is particularly
 apparent in the proof of Theorem 10. This paper represents in part joint work with

 J. F. Adams, whose inspiration has permeated this entire effort, though he should

 not be held responsible for the present exposition. The examples of Theorem 17

 are entirely due to him, and his comments were most helpful in the treatment of

 the complexes Ki and construction 8.
 I would also like to express my gratitude to Professor J. C. Moore for suggesting

 a problem which led to the present paper and for his continuing advice and
 encourageinent while supervising my thesis for Princeton University, from which

 much of this material is drawn, to Dr. I. M. James for contributing his work on

 "retractile" subsets [6] at a most opportune time and especially to Dr. S. Y.

 Husseini, to whom fell the thankless task of reading my preliminary attempts at

 exposition of this subject.

 2. An-forms. Before defining An-forms explicitly, we introduce for each i ? 2
 a special cell complex Ki which is homeomorphic to Ii-2. The reader is on
 friendly terms with the standard simplices 6! and the standard cubes P. He should

 think of the standard cells Ki as similar objects, also having faces and degeneracies
 and suitable for use as models for a singular homology theory. He should also
 keep in mind the important differences that

 (1) the index i does not refer to the dimension of the cell but rather to the

 number of factors of X with which Ki will be significantly associated later,

 (2) Ki has i degeneracy operators s1, * si defined on it, and
 (3) Ki has i(i - 1)/2 - 1 faces.
 We see already that the complexes Ki are more complicated than simplices or

 cubes. Even to index the faces of Ki is not straightforward; the following des-
 cription of this indexing is the only one we know of which has some intuitive
 content. Consider a word with i letters, and all meaningful ways of inserting one
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 278 J. D. STASHEFF [August

 set of parentheses. To each such insertion except for (x1 ... xi), there corresponds
 a cell of Li, the boundary of Ki. If the parentheses enclose Xk through Xk+3.. P
 we regard this cell as the homeomorphic image of Kr x K3 (r + s = i + 1) under
 a map which we call ak(r,s). Two such cells intersect only on their boundaries
 and the "edges" so formed correspond to inserting two sets of parentheses in the
 word. Thus we have the relations

 3(a) 8j(r, s + t - 1) (1 x k(s, t)) = 8j+k-1(r + s - t) (8,(r, s) x 1),
 (b) aj+,-1(r + s - 1,t) (ak(r, s) x 1) = ak(r + t - l,s) ((r, t) x 1) (1 x T)

 where T: K. x K, -+ K, x K. permutes the factors.
 This is enough to obtain Ki by induction. Start with K2 as a point, *. Given K2

 through Ki-1, construct Li by fitting together copies of Kr x K. as indicated by
 the above conditions. Take Ki to be the cone on Li.

 PROPOSITION 3. Ki is homeomorphic to Ii-2. Degeneracy maps sj: Ki -K, 1
 for 1 < j < i can be defined so that the following relations hold:

 3(c) SiSk = SkSj+1 for k _ j,
 (d) s/ak(r,s) = ak- 1(r- l,s)(sj x 1) for j < k and r > 2,
 (e) sj0k(r, s) = ak(r, s - 1)(1 x Sj-k+1) for s >2, k <j <k + s, SJak(i- 1,2)

 7r1 for 1 <j= k< i and 1 <j= k+ 1 < i, s102(2,i -1) = 7r2 and
 sial(2, i - 1) = ir2(where it, for m = 1,2 is projection onto the mth factor),

 (f) sJOk(r, s) = ak(r - 1, s)(sj-.+1 x 1) for k + s < j.

 We will prove Proposition 3 later in this paper by explicitly constructing the
 complexes Ki as subsets of Ii-2.

 REMARK 4. The above relations are reminiscent of the usual ones between the
 face and degeneracy operators of a semi-simplicial complex. Because the semi-
 simplicial operators correspond, for example, to "@O(Aq) is the jth face of

 Ag" rather than "8i imbeds Aq-1 as the jth face of A%," they compose in the
 opposite direction. With this change, the semi-simplical operators (call them Di
 and Sj) satisfy 3(a)-(f) if we replace aj+ 1(i - 1, 2) by Oj and sj+ 1 by -S.

 The complexes Ki are important because of their role in the following theorem.

 THEOREM 5. A space X admits an An-structure if and only if there exist maps
 Mi:Ki x X'- Xfor 2 < i < n such that

 (1) M2(*, e, x) = M2(*, x, e) =x for x E X, *K2,

 (2) for peK, eK,, r+s= i+ 1, we have

 Mi(A(k(r, s) (p, C), x1, -.., xi) =

 Mr(p3 for K and i Xk-21 Ms(,e Xkh av e s -1), Xk si " Xi))

 (3) for r e- Ki and i > 2, we have

 MA,rXl, {x-lexj ,.)x) Mi,sj ( _ x f {. \x-,j+,.,~
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 19631 HOMOTOPY ASSOCIATIVITY OF H-SPACES. I 279

 We call such a set of maps an An-form on X and the pair (X, {Mi}) an An-space.
 [Using conditions 3(a)-(f), the reader may readily check for himself that 5(2)and(3)

 are consistent; that is, they give a well-defined map of Ki x XI u Li x Xi
 into X. (Here X E3 is the subset of X' consisting of points with at least one
 coordinate being e.)]

 REMARK 6. Notice that an A2-space is just an H-space. We will often write

 xy for M2( * , x, y). Formula 5(2) is a bit opaque, but least so when s = 2 in
 which case it reduces to

 Mi(ak(i- 1l 2), (p, *), x1, * ,xi) = Mi-1(P, xl, *, XkXk+ 1, , x)X

 Now for i = 3, K3 is homeomorphic to I and 5(2) says that M3: I x X3- X is a
 homotopy between M2(M2 x 1) and M2(1 x M2), that is, between (xy)z and
 x(yz). Thus M3 is an associating homotopy; M2 is a homotopy associative multi-
 plication. For the case i = 4, consider the five ways of associating a product of

 four factors. If the multiplication is homotopy associative, these five products
 are related by the following string of homotopies:

 x(y(zt)) x((yz)t) (x(yz))t-((xy)z)t (xy) (zt) x(A(zt))-

 Thus we have defined a map of S1 x X4 into X; the map M4 can be regarded
 as an extension of this map to 12 x X4.

 Of course any associative H-space admits A -forms for any n; we need only

 define Mi(r, x1, , xi) = x1x2 xi. We call this a trivial An-form.
 Condition 5(3) is technically very useful, but actually is no restriction; that is,

 LEMMA 7. Suppose {Mi,i < n} is an An-1-form and that Mn: Kn x Xn-? X
 satisfies 5(2), then there exists Mn: Kn x X n X satisfying 5(2) and (3).

 This follows from [6] as we shall indicate in more detail in an Appendix.

 3. Derived An-structures. We relate An-forms to An-structures by a specific
 construction. We are grateful to J. F. Adams for a suggestion which has greatly
 simplified the construction we originally developed. Milnor defines the n-fold
 join X * n * X by means of certain identifications on Anx- X xn. We will con-

 struct A,-structures pi: 'i - i in which the space Ji will also have the homotopy
 type of X * i * X but we will use Ki+ 1 x X' instead of A'- 1 x X' and will add
 further identifications which correspond to the reduced join.

 CONSTRUCTION 8. The An-structure derived from an An-form {Mi} on X.
 Let R=L,+1 x X'uK,+1 x X x X rI-13. Define spaces fi for 1 i ? n by

 means of relative homeomorphisms

 (Kiw R 1 X XiR, R) , i d iin- 1)

 where oci I R is defined by
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 280 J. D. STASHEFF [August

 ot(4k(r,s) (p, a), X1,,, XXi)'= gr-J(P, xi,..., Ms(U, Xk, *-*,Xk+s-1)1 ""xi),
 (9)

 ?gi(T Xl , xj-1, e, xj+ , *---, Xi) = ai- l(sj(T), xl, - , xj-1, xj+ 1, * **,xi), j >1

 with the convention that the undefined expression MA(U, Xk, ..,X +i) is to be
 omitted. [41 is just X. If we identify K3 with I, then we can regard Oc2 as identifying

 Ox X2 with X by the map (O, x, y) -x; 1 x X2 with X by the map (1, x, y)
 xy; and I x (X V X) with X in the obvious way.]

 We define spaces 4i for 1 < i n n similarly in terms of relative homeomor-
 phisms

 (Ki + 1 x Xi- 1, S) # (At, Xi- 1)

 where S = Li+1 x Xi u Ki+1 x X" - 1 The restriction f3i I S is defined by the
 formulas (9) except that we replace ac by ,B throughout and omit xl and all terms

 Ms(cr, x1, *--, x). [Vi is a point and X2 can be recognized as SX.] Notice that

 the definition of Xi uses the maps Mj only for j < i, hence even if X admits only
 A J-forms, ,n + 1 can still be constructed, although 6 1 cannot.

 Let pi:Ki+1 x X'-+ Ki+1 x X'-' be defined by omitting xl,i.e., p,(Tu,x 1, --,xi)
 (T, x2, ..,xi). We see that pi induces pi: i - i. [Notice that Pf f S can be
 defined by /3i(T, x2, **, xi) = pi OCi(T, e,x2, *, xi). Hence, by induction, pi is
 well defined. Of course, in the above discussion we have used implicitly the fact

 that aci R and fpi S are well-defined maps. This can be proved in much the same

 way that the reader proved Mi I K1 x X"' uLi x X' was well defined.]
 In order to show that we have in fact constructed an An-structure on X, we need

 THEOREM 10. If X is arc-connected, pi * 27rq(i, X) -+ nq(_i) is an isomorphism
 for all .

 (In fact we will show that pi is a quasifibring [4].)

 We also must show that i - 1 is contractible in 6fi; we prove a stronger result.

 THEOREM 11. If X is arc-connected, then (n, - - 1) has the homotopy type of
 (X * n * X,..., X).

 Corresponding to this in the base we have

 THEOREM 12. (a +1, ai) has the homotopy type of (C6i U .i, a ).

 (For any map f: X -+ Y, the mapping cone CX UfY is defined as the space

 obtained from the disjoint union of CX and Y by identifying X as the base of

 the cone with its image under f in Y.)

 The base spaces M, will be very useful invariants associated with an An-space;
 we give them a special name.

 DEFINITION 13. The X-projective i-space XP(i), i < n, associated with an

This content downloaded from 
������������128.151.113.25 on Sat, 15 Mar 2025 13:52:46 UTC������������� 

All use subject to https://about.jstor.org/terms



 19631 HOMOTOPY ASSOCIATIVITY OF H-SPACES. I 281

 An-space is the base space Ri+1 of the derived An-structure. (n + 1 can be defined

 even when pn + cannot; it has the homotopy type of C06 u Vn-)
 The justification of this terminology arises from considering the classical

 fibrings of Sd-1 * i * Sd-I = Sdi- 1 by Sd- 1 for d = 1, 2, 4. Sd- lP(i) is respectively

 real, complex, or quaternionic projective space of i-dimensions, and the fibrings

 can be identified with our construction by using the strictly associative multipli-

 cation on Sd- 1

 CONVENTION. If X admits some An-form, we will refer to the X-projective
 i-space XP(i) without emphasizing the particular Ai-form to which XP(i) corre-
 sponds.

 4. Proof of Theorem 5. Theorems 11 and 12 show that the existence of an

 An-form implies the existence of an An-structure. To prove the converse, we
 first observe that it is sufficient to construct an An-form {Mi} on some space F

 of the same homotopy type as X, for we can then define an AJ-form {Ni} on X by
 suitable deformations of the maps

 Ki x xi K, x FM t>F +X
 where j: X -? F and s: F -+ X are homotopy inverses. Thus, in light of Proposition
 2, we might as well assume that X -* Ei'4 Bi is a fibring.

 Assume by induction that Mi is defined (and pj: j - j is constructed) for
 j < i, and that we have commutative diagrams

 di

 (14) Pil

 _qi > Bi
 bi

 such that dj djdj_1, etc. The induction begins with the commutative
 diagram

 e= X= X- E

 *_- *

 Let J = interior of a1(2, i) (K2 x Ki). Note that on all of R except for

 J x (Xi- XI"), cxi is defined without using Mi. There is no difficulty in extending from

 this subset to y: (Li+ 1 -J) x X'U Ki+ 1 x X ci+ Cei- 1. Let k: CEi 1- Ei be the
 contraction. Define j: Ki+ 1 x Xi- 1 Bi by

 Krt, X2, " * Xi) = k o Cdi- I o y(,r, e, x2, - - *, xi)

 so that jo pi = pio k oCdi1o y over the whole domain of y. Thus j induces

 an extension bi: i -+ Bi of bi -1. Since Li+ 1 - J is a deformation retract of Ki + 1,
 koCdi-1oy can be extended to a map d:Ki x X'-+Ei covering jopi. Thus
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 282 J. D. STASHEFF [August

 d( 1(2, i) (K2 x K,) x XI) c X and the desired map Mi can be defined by
 M,(,, x1, ***, xi) = d(Q 1(2, i) (*, -), x1, **, xi). The space Gi can now be constructed,
 and we see that d induces a map di: ei -? Ei such that

 di
 91i Ei

 Pi 1 Pi
 Xi Bi

 bi

 is commutative.

 Notice that Theorem 5 has the following corollaries (which are already known

 [15; 14]).

 COROLLARY 15. A space X admits a multiplication if and only if there is a

 map p:(X * X, X) -+ (SX,*) such that p* :lq(X * X, X) -* lrq(SX) is an iso-
 morphism for all q.

 COROLLARY 16. A space X admits a homotopy associative mulltiplication if
 and only if there is a map p:(X* X*X, X* X, X) - (C(X* X) uSX,SX, * )

 such that p = 1 I X * X and p*: itq(X * X, X) -*(SX) is an isomorphism for all
 q and j*: 2tq(X * X * X, X) - 72tq(C(X * X) uJSX) is an isomorphism for all q.

 5. Examples. Theorem 5 also shows the relation between the nonexistence of a

 homotopy associative multiplication on S7 and the impossibility of fibring S23
 by S7 over the Cayley projective plane. This suggests that the nonexistence of a

 homotopy associative multiplication on S7 can be shown using Steenrod oper-

 ations. In fact, this approach can be generalized to indicate more fully the non-

 trivial distinctions involved in the A,,-classification.

 THEOREM 17. For each prime p, there exist spaces which admit Ap 1-struc-
 tures but not Ap-structures.

 Proof. The examples we give are due to J. F. Adams, as are the techniques

 used in the proof. These spaces are constructed quite explicitly in [1], where

 further details of the assertions below also can be found. (The above theorem is

 the part of our joint work referred to there.)

 Let p be an odd prime and Q , the group of all those fractions which, in

 lowest terms, have denominators prime to p. Let X be a Moore space with one

 nonvanishing homology group QP in dimension 2n - 1. Since QP has no p-torsion

 and is infinitely divisible by all other primes, H*(X; Zq) = 0 if q is prime to p and

 Hi(X;Zp) = 0 except for i = 0 or 2n - 1, while H2n-1(X;Zp) = Zp. [This can be

 seen by mapping QP onto Zp by a/b -* ab'(p) where bb' _ 1 mod p.]We can use
 W-theory [12] to deduce that for i > 2n - 1, 7i(X) is isomorphic to the p-primary

 component of 7i(S2, 1).

This content downloaded from 
������������128.151.113.25 on Sat, 15 Mar 2025 13:52:46 UTC������������� 

All use subject to https://about.jstor.org/terms



 1963] HOMOTOPY ASSOCIATIVITY OF H-SPACES. I 283

 Let us imbed X in the space Z = Q2S2X in the usual way. Since Z is a loop

 space, it admits an An-structure for any n; call the corresponding maps Ni:K
 x Z- Z and let M': K x Xi-- Z denote the restrictions. We would like to

 deform the maps M' into X so as to obtain Ap-1-forms on X. By induction,
 assume the image of Mj lies in X for j < i. Let T = Li x Xiu Ki x X[". M! is
 defined on T in terms of Mj for j < 1, so M,(T) c X. The obstructions to de-
 forming Mi into X rel T appear as classes in HI(Ki x Xi, T; ntq(Z, X)) which,
 since (Ki, Li) is isoinorphic to (Ii-2, ii-2), is isomorphic to HI+2 - i(X(i); 7q(Z1 X)).
 Since the p-primary component of 7 (Q2S2n+1, S2- 1) = 0, for q <2pn - 2 [10],
 we can conclude that 7tq(Z, X) = 0 for q < 2pn - 2. Since X has nontrivial coho-

 mology only in dimension 2n - 1, Hq(X(i); G) = 0 for any coefficient group G if

 q # i(2n - 1). Thus the obstructions we have considered lie in trivial groups

 unless i(2n - 1) + i - 2 > 2pn - 2, i.e., i > p. There are no obstructions to

 obtaining Ap_ 1-forms on X.!
 Now suppose X did admit an Ap-form (equivalently, an AP-structure). Consider

 the corresponding maps pi:i - i. According to Proposition 2, we can replace
 pi by a homotopy equivalent map pi which is a fibring in the sense of Serre.
 Therefore in the argument below we can assume without loss of generality that pi
 is a fibring. Thus we know that the Thom-Grysin sequence [2, Expose 8] applies

 to the "Thom Space" C&fi u pii = XP(i). This sequence can be used to compute
 the cohomology ring of real or complex projective space [9, Theorem 23]. In

 exactly the same way, since H*(X; Zp) t H*(S2n - 1; Zp), we find that H*(XP(i) ;Zp)
 is a truncated polynomial algebra on a generator u e H2,(XP(i); ZP) with
 ui # 0. But if we choose n prime to p(p - 1), the Adem relations on the Steenrod

 operations mod p imply that uP must vanish; therefore X cannot admit Ap-
 structures.

 (For X = S7, the above argument shows that S7 admits no homotopy associa-
 tive multiplication [5, Theorem (1.4)].)

 Finally, we remark that if the A,1form is trivial, our construction 8 reduces to
 that of Dold and Lashof.

 In that case and more generally whenever X admits a structure {pi; i = 1, 2, ... }
 satisfying the usual conditions but for all positive integers i, then X has the

 homotopy type of QB. where B, is the limit of the base spaces Bi [15, Lemma
 10]. We will investigate this relationship more fully in Homotopy associativity

 of H-spaces. II, a sequel to the present paper.

 6. Complexes Ki.
 Proof of Proposition 3. We exhibit particular representatives of the complexes

 Ki as subsets of Ji 2. Figure 18 pictures the cases i = 2, 3, 4, 5 Ki being heavily
 outlined as a subset of Ii-2.

 Let K, be the subset of Ii-2 consisting of points (t1, ..., ti2) such that
 2it1 .. t. > 1 for 1 < j < i - 2. Li, the boundary of Ki, consists of the point of
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 K2
 0

 01 K3 02
 I_ -. -.
 0 1/2 1

 (/3(3,2)

 1/2 (3 >) K4 (C2(2,3)
 22(3, 2)

 1/4

 0 1/2

 02(4,2) 02(2,4)/

 0

 FIGURE 18
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 1963] HOMOTOPY ASSOCIATIVITY OF H-SPACES. I 285

 Ki such that for some j either 2Jt1 ... tj = 1 or tj = 1. We give the face operators
 as follows:

 k = 1: D1(r, s) (Kr x Ks) is to be the subset of Ki such that 2` lt? ... = 1.
 Let P=(t1,-',ttr2)EKr and o=(ul, .,us-2)eKs then

 01(r, s) (p, a) = (u 1, * ,Us-2, U, tj, .. * tr-2)

 withu=1/2slul..us-2.
 k> >1: k(r, s) (Kr x Ks) is the subset of the "face" tk-1 = 1 such that

 (tk,**-, tk+s-3) CeKs and(tl, ... tk-2,2 t 1tk +... *tk+s-2.k+s ... . ti.2) e Kr. For p, a
 as above we have

 Mkr, S) (p, a) = (tl .. * tk-2, 1, UD, .. * Us- 2 tk-1D tk~ .. tr-2)

 where tk-1 = tk-1/2u 1... US-2
 Relations 3(a) and (b) can be verified directly from the definitions. For example

 with k, j > 1 and

 p = (tlg ... tr_-) ff (UD, ... Us -2), T = (Vl, * Vt -2)

 we have

 aj(r,s + t - 1)(I X ak(S, t))(pU, T)

 =O ... * * tj_2, L, U, .. * * Uk-2, 1 V, .. * * Vt-2s Uik- UO, .. *Us-2s tj_ 1, tj~ -' tr-2)

 with

 uk-1 = Uk-1/2' lvl Vt_2 and ij1 = tj1/2s lu1 .u.s-

 On the other hand

 aj+k-1(r + s - 1, t) (8j(r, s) x 1) (p, , T)

 = (tj, .. * * tj_2, L, U, .. * * Uk- 2, L V, .. * * Vt-2, fik-D Uk .. * US-2~ tj_ 1~ tj tr-2)

 where

 -= t1._1/2 + 1 ... Uk-21 ... Vt-2Uk- 1 Uk ... Us-2-

 Expanding ik- 1 we see that relation 3(a) holds.

 The degeneracy maps sj: Ki +1 - Ki can be defined on Li+, using 3(d)-(f),
 since the latter are compatible with 3(a) and (b). It also follows easily that 3(c)

 will be satisfied on L,+ 1. The map sj on all of K,+1 can now be obtained "by
 taking the cone." That is, represent Ki+1 as pairs (t, z) with 'ce Li +I and
 similarly for Ki. If sj(z) = (s, r'), r' e Li then define sj(t, r) as (ts, r'). With this
 definition it is easy to verify 3(c) on all of Kj+ 1, while sj was constructed so as to
 satisfy 3(d)-(f). The relations are important in that they make the conditions of
 Theorem 5 consistent.
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 7. Proof of Theorem 10. This will follow from:

 THEOREM 19. pi: 6fi -> Ri is a quasifibring (with fibre X).

 Proof. (Cf. [3].) For i = 1, p, is trivially a quasifibring since X1 is a point. By
 induction assume pi-1 is a quasifibring. We will decompose pi as the union of
 two sub-quasifibrings.

 Let U = i - Vi-1 and P = p7'(U) = i-i-

 LEMMA 20. pi j P is a quasifibring.

 Proof. Since oci is a well-defined homeomorphism on P and /1j l is a well-
 defined homeomorphism on U, we see that pi P is equivalent to the map
 Xx U -* U which is projection onto the second factor, trivially a quasifibring.

 Now recall that R denotes the set Li+1 x X'UKi+1 x Xx Xr'1 and S de-
 notes the set Li+ 1 x xi- 1 UKi+ 1 x Xi- 11.

 LEMMA 21. There exists a neighborhood 3 in Ki+ 1 x XLof R of which R is a
 strong deformation retract.

 Proof. Take a "tubular" neighborhood N' of Li+, in Ki+1, i.e., there is a
 homeomorphism of N' onto Li+1 x (0,1] which maps Li+1 identically onto
 Li+1 x 1. Let N be the inverse image of Li+1 x (1/2, 1]. There exists a defor-
 mation hs:Ki+1 -e Ki+1 reLiL+1 such that h1 is the identity, ho(N) c Li+1 and hs
 is constant outside N'.

 Since X has the homotopy type of a CW-complex, there exists an open neigh-

 borhood Ne of e and a deformation ks: X -* X such that k, is the identity, ko(Ne)
 - e [16, (M), p. 230]; also cf. [7, Theorem (8.3)].

 Take M as the union of N x X' and all sets of the form Ki+ 1 x X x X x ...
 x Ne.x. x X except Ki+1 x Ne x X x ..* x X. Define D"K:I( +1 x X'-Ki+1
 x X' by ht x 1 x (k,)'- 1. We have D' as the identity, DoQt() c R and Dt'(R) c R.
 Therefore D' can be deformed to give a strong deformation retraction D' of .P

 onto R.

 Now let Y be obtained from 9 by omitting the first X factor, so that Y is an

 open neighborhood of S. A strong deformation retraction d' of Y onto S is

 given by d'(Q, x2, D, x,) = D(, e, x2, * x).
 Let Q = ci(3l) and V = fl-(Y), so that 5f'i is covered by P u Q and gof1 Q

 while Xi is covered by U u V and Ri-1 c V. Notice that Q = p '(V). We will
 prove

 LEMMA 22. pi I Q is a quasifibring.

 From this and the fact that pi is a quasifibring over U and U r) V, it will follow

 that pi is a quasifibring [4, (2.2)].
 To prove Lemma 22 we will need the following criterion:
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 LEMMA 23 [4, (2.10)]. p:E -B is a quasifibring if for some B' a B and

 E' = p- '(B'), p I E' is a quasifibring and there exist deformations

 Dt: E E, dt: B +B
 with

 DI = 1, Dt(E') cE', Do(E) c E',

 d, = 1, dt(B') B', do(B)c B', pD, = dlp
 and

 Do.:ni(p-1(x)) 1ni(p-'(do(x))) for all xe B, i > 0.

 Proof of Lemma 22. We will deform Q onto i- I = oci(R). Define Dt: Q -* Q
 by D, oci=ociD on Q - 6i-I and as the identity on Gi- . Similarly define
 dt: V V by dt,f3i = f3idt'on V- ,-I and as the identity on Mi-I Both D,
 and dt are well defined since D' and d' are strong deformation retractions, i.e.,

 constant on R and S respectively. Clearly piDt = d,pi. We have D1 = 1,
 Dt I i - = 1, Do(Q) (-z i - and d, = 1, d, I i - = I1, do(V) (- Mi - .

 Finally, we must consider g. = Do I p-'(z) :p- '(z) - pi '(do(z)) for any z e V.
 If z E Mi- 1, do(z) = z and gz, is the identity, trivially a homotopy equivalence. If
 z E V- gi -.1, then z can be written uniquely as f3i(r, x2, ..., xi) and for do(z),

 there exists an r such that do(z) can be written uniquely as flrG(P Y2 * X yr). Define

 a homeomorphism f,: X -* pi '(z) by f.(x) = ..-x, x, x2, * xi) and h.: X e
 pi- '(do(z)) by h.(x) = arG(P XI Y2, . I Yr)X

 Now recall the definition of d'. We see that do is homotopic rel i- I to
 do0fi(c, X2, *, Xi) fi(ho((-), kO(X2) ..., ko(xi)). We are concerned with (-c, x2, ..., xi)
 if ho(-) e Li+1I or if ko(xj) = e. Thus do(z) can be represented as fr(P' Y2, I yr)
 where each yj is some Xk except that at most one yj may have the form
 Ms(o-, Xk+ 1I , Xk+S). Now by means offL and h_, g_ can be identified with a map of
 X into X given either by x -* x (trivially a homotopy equivalence) or by x <

 Ms(a, x, Xk+ 1, , x k+,) for some fixed , Xk+ 1, , Xk+s. The latter is homotopic to
 x -* x(xk+ ( . (Xk+s) ...)), again a homotopy equivalence since Xis arc-connected

 (right translation is a homotopy equivalence). Since pi -I = pi Ii-I is a quasi-
 fibring by the inductive assumption, by Lemma 23 we conclude that pi I Q is a
 quasifibring. This completes the proof of Theorem 10.

 8. The homotopy type of 6i and Mi. Consider the space, call it i, defined by
 a relative homeomorphism

 (Ki + I x Xi- ', S) Y (-9i, di - 1),

 where y7i(, x2, .., xi) = Lci(4, e, x2, .., xi).

 PROPOSITION 24. , has the homotopy type of Co i-,40_-.

 In order to prove this, we need an auxiliary map.
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 PROPOSITION 25. There exist homeomorphisms ii:I x K -> Ki+I such that
 (1) 17(0,z) = 02(2, i) ( *,z), and
 (2) 1ii(t, ak(r, s) (p, a)) = Ok+ I(r + 1, S) (lr(t, p), 7).

 Proof. Assume the proposition true for j < i. It is easy to verify that equation

 (2) yields a homeomorphism tj' of I x Li into Ki+ . The image Ji consists of all
 faces Mk(r, s) (Kr x Kj) with k > 1, r > 1. We can regard Ki+1 as formed from
 I x Ji by identifying (0, il(t,,-c)) with (0, ti (t, -')) for any -, 'eLi. In this way,
 the face 02(2, i) (K2 x Ki) is identified with CLi which in turn we regard as Ki.

 Looking at things this way, we obtain ii satisfying (1) and (2) by setting
 ii(t, (s, -)) = (s, q(t, -)) for z E Li, (s, -c) E CLi = Ki.

 COROLLARY 26. sj+ lij(t, T) = i _ 1(t, sj(z)).

 The verification is straightforward.

 Proof of Proposition 24. Define /i: C6'i_1 - i by 4i(t, ci- 1(c, X)) = ui(tX, z), x)
 where X = (x2, *t; xi). To obtain an inverse for /i define i7i: Ki+1 x X-1
 -* Ci - 1 by ii({, Z) = (t, xi - (', X)) where t -(t,c') = c. Now part of iij S lies in
 Cic- 2 c Cgi- 1, instead of in di- 1 as it should to induce a map of i into Ci- 1.

 However C -2 c C6i-I is homotopic to i- 1(Cgi-2) (- i --i- by the
 following argument: It is straightforward to verify that q I 5 i- J is homotopic in
 ei- I to the identity. It involves showing, by an inductive argument, that
 s1(ui(1,-i)):Ki, Li -* K, Li is homotopic to the identity in a way which is compat-

 ible with y7. We conclude that C(i- 1 | i-2): C2,i-2 Cei-2 2 C i-2 2 iS
 homotopic to the identity. Next C(i-J lei-2) is homotopic in Cgi-l to i by:

 LEMMA 27. Let f: Y -* Z extend to F: CY -> Z then Cf: CY CZ is homotopic
 rel Y to F.

 Proof. Define a homotopy Fr: CY -* CZ for 0 < r < 2 by

 Fr(t, F(r t+ 1 -r, y)), O < r < 1

 Fr+(t(l - r) + r,F(t,y)), 0 < r < 1.

 Thus i can be deformed to a map fi: Ki +1 x X'- 1 Cei6I such that i I S
 -ij S. It is clear that fri: -9i, ei - CeC i-Ii the map induced by i, is
 a homotopy inverse for qi as a map of pairs.

 Proof of Theorem 12. Recall the definition of fpi: (Ki+ l x Xi'l, S) -* (ai, )i-.
 We see directly that fli can be factored as Oi c yi where ai: (9i, ei - 1) (, i- l)
 is also a relative homeomorphism and i J i- 1 = pi- 1. Since (9i ei-6 ) has
 the homotopy type of (Cei- ,gei- l), this shows that (i, gi- l) has the homotopy

 type of (Ci- 1 U pi-A-19 a i-1)
 Proof of Theorem 11. We can map X x 9 into &i in the obvious way (cor-
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 responding to X x Ki,I x Xi-l Ki, x X x Xi'_). We can regard Ji as
 obtained from X x -i by identifying

 (x, Ti(01(r, S) (p,0C), X2, * Xi))
 with

 CXr - 1(P, ms(07f XI X2, * I *,xs), XS 1, I ,Xd)

 The subset on which these identifications are carried out is just X x 4(Qi_ ).
 Thus (i, i- 1 has the homotopy type of X x Cei- 1 u /fi 1 where Ai: X x di-
 -*Gi- is obtained by

 1 x ql
 X i-l -_ X i g

 Note that ,u e x di- is just Oil i- and hence homotopic to the identity.
 To prove that Xx C6i_ 1 Udi_ 1di_l has the homotopy type of X*i-1$G-1,

 we use the Meyer-Vietoris sequence in the obvious way [13, Lemma 3.4].

 [X is arc-connected and hence X x C6'i_ u ,A?-i_ and X*d6i-l are simply
 connected, so that a homology argument is sufficient.] Thus it is sufficient to show

 LEMMA 28. The map of X x di-I into X x di-I given by q(x, z) = (x,4u(x,z))
 is a homotopy equivalence.

 When i = 2, this is a familiar fact about H-spaces. We mimic the proof used in

 that special case, cf. [15, Lemma 6].

 Proof. By checking the formulas, we find that ,u applied to X x X c X x di-_1
 goes into X and is in fact just M2, the multiplication on X. The induced map

 *: in(X) + n(i - 1) = in(X x 6i- 1) - > 7nj i-) can be seen by the usual argu-
 ments for H-spaces to coincide with the usual addition in the homotopy groups,

 mapping 7r,(X) into a subgroup of 1i-Q ) in the obvious way. Thus q *: ir(X)
 + n i ) -) in.(X) + n(i -) can be seen to be given by q*(ax, /3) = (cX, cx + /3)
 which is obviously an isomorphism for all n. Since in our category all spaces

 have the homotopy type of a CW-complex, q is a homotopy equivalence.

 9. Reduction to the Dold-Lashof construction. We now make more precise our

 remark that construction 8 reduces to that given by Dold and Lashof [3] if the

 An-form is trivial. (It is necessary not only that M2 be strictly associative, but also

 that M, be given by Mi(T, x 1, ... Xi) = x... X,)
 Recall that Dold and Lashof defined quasifibrings Pi3: Ei -* Bi by the following

 inductive procedure. Let M: X x X -? X be an associative multiplication. Let

 El = X, B= * . Assume by induction that PiJ: Ei -- Bi is defined as well as an
 associative action M:X x Ei -- Ei. Using the unreduced cone, define Ei+1 as
 X x CEt u E, and Bi+ 1 as CEi U Pi Bi. Define Pi+ 1 by Pi+ 1(x, t, z) = (t, z) for
 z Es, Pig 1 Ei =Pi and M': X x Ei+ 1 -Ei+ 1 by M'(x, (y, t, z)) = (xy, t, z)
 x, y E X, z E Ei. It is easy to verify that the inductive hypotheses are satisfied.
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 Dold and Lashof sho that Pi+' is a quasifibring; they have constructed an
 A,U-structure on X for arbitrary n.

 We have seen in the last section that Gi can be regarded as X x Cfi1- u i- 1i
 The use of the reduced versus the unreduced cone is irrelevant to the question of

 homotopy type; let us assume the Dold-Lashof construction reworked using the

 reduced cone.

 By reversing the process used to show that 6i has the homotopy type of
 X x CGi- 1 u i,i- 1, we can show that, up to homotopy type, Ei can be defined
 in terms of a relative homeomorphism

 (A'-'x X ,R) + (E. ,Ei_1)

 where a = A- 1 x Xiu A- x X x X[i- and a |IR is given as follows: Let
 = (t1, **, ti) E A- 1, X = (X1, ..., Xi) E Xi.

 ai(T,X)= ai l(tl, ***, tj, * * *, t1, x1, xjxj+ 1, xi), if ti = 0,j < i,

 ai(t*, ti- 1,0, x) = a_l(tl, ti-n. 1X, xl,, Xi-. ),

 ai(T, X) = ai l(tl, *tj_ 1 + tj, tj, x, x1,, Xi,xi), if xj= e for ] > 1.

 Thus to map 6rSi into EA, we need only a suitably defined homeomorphism
 ,Fj+ 1: Ki+ 1 -+ A- 1. J'2 is canonical (!). We take Y3 to be the linear map deter-
 mined by sending 1/2 to (0, 1) and 1 to (1,0). Define Yi: Li a-A as follows:
 Let -r,(P) = (t tr,- 1) E A'-Ar2 for p E Kr then

 g-i ak(P) (t 1, * *, tk - 1 0, "', 0 ) tk *I ,tr -)

 [s - 2 coordinates are set equal to zero]. This gives a well-defined map of Li onto
 A-2. It can be described as collapsing each face which is homeomorphic to

 Kr x Ks onto the image of one of its axes Kr. Hence it is possible to extend to a

 relative homeomorphism 9i: Ki, Li -+ A'2 aA-2
 Now map &i into Ei by oci(-, xl, *, ,xi) a ai(i+ 1(z), xl, * *,xi). Although 5Ii-+

 is not uniquely defined, it is easy to construct an inverse to the above map, using

 the fact that the An-form is trivial, and hence oci(Dk(r, s) (p, a), xl , xi) is inde-
 pendent of a.

 A similar analysis shows that BJi has the homotopy type of Vi and that Pi3 is
 equivalent to pi.

 APPENDIX

 Retractile subspaces. In [6], I. M. James has studied a property of pairs of

 complexes for which we find many uses. We rework his Lemma 3.2 as a definition.

 DEFINITION A.1. A subcomplex L is retractile in a complex K if given any
 null-homotopic map f: K -+ X such that f IL is constant then f is null-homotopic
 rel L.
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 PROPOSIrION A.2 [6, Corollary 4.4]. Let (X, m) be an H-space. If L is retrac-

 tile in K, and we are given homotopic maps fo,f1: K-*X which agree on L, then

 fo =fi rel L.

 We are more interested in nontrivial homotopies on L.

 PROPOSITION A.3. L is retractile in K if and only if given any null-homotopic

 map f: K -X and a null-homotopy gt: L - X such that g1 =f I L then gt ex-
 tends to a null-homotopy ft: K -+ X such that f1 = f.

 Proof. By the homotopy extension theorem, gt extends to ft': K -+ X such that
 = f. Since fo is null-homotopic and constant on L, fo is null-homotopic rel L.

 Thus there is a null-homotopy ft: K -+ X with 0 < t ? 2 which restricted to L is
 gt for 0 ? t ? 1 and constant for 1 ? t ? 2. It is easy to alter ft to obtain ft as
 desired again using the homotopy extension theorem.

 PROPOSITION A.4. Let (X, m) be an H-space. If L is retractile in K then given

 homotopic maps fo,f1: K-X and a homotopy g,: L- X such that gi = fi I L for
 i = 0, 1 then g, extends to a homotopy ft: K -+ X.

 This is proved by reducing to the previous case, just as James did in proving

 his Corollary 4.4. [It is necessary to note that his Lemma 3.4 can be generalized to

 LEMMA A.5. Let p: X-+ Y induce isomorphisms of all homotopy groups.

 Let ho,h1: K -+ X and gt L-+ X stuch that gi = hi I L for i = 0, 1. Suppose there
 exists jt: K- Y such that ji = phi for i = 0, 1 and jt = L-pgt. Then gt extends to
 ht: K -+ X.]

 Proof of Lemma 7. Corresponding to Mn' L,i x X n_- X we have a map of Xn
 into XLn. The extension to Kn x Xn corresponds to a homotopy between this
 map fo and the one given by f1(x1, ..,xn)(z) = x1(x2('.(xn_1xn))). Since XLn
 is an H-space (because X is) and X rIlis retractile in X i[6, Lemma 3.1], Proposition
 A.4 says that there is a homotopy between fo and f1 which corresponds to a map

 Mn: Kn x Xn _+ X satisfying 5(2) and (3) as desired.
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