
an Operad?
Jim Stasheff

630 NOTICES OF THE AMS VOLUME 51, NUMBER 6

An operad is an abstraction of a family of composable
functions of n variables for various n, useful for the
“bookkeeping” and applications of such families. 
Operads are particularly important and useful in 
categories with a good notion of “homotopy”, where
they play a key role in organizing hierarchies of higher
homotopies. Operads as such were originally studied
as a tool in homotopy theory, but the theory of oper-
ads has recently received new inspiration from homo-
logical algebra, category theory, algebraic geometry,
and mathematical physics, especially string field 
theory and deformation quantization, as well as new
developments in algebraic topology. The name operad
and the formal definition appear first in the early 1970s
in J. Peter May’s The Geometry of Iterated Loop Spaces,
but there is an abundance of prehistory. Particularly
noteworthy is the work of Boardman and Vogt.

The most fundamental example of an operad is 
the endomorphism operad EndX :={Map(Xn,X)}n≥1,
where for a set or topological space X, {Map(Xn,X)}
means the set or space of functions or continuous
functions from the n-fold product of X with itself to
X, together with the operations

◦i : Map(Xn,X)

×Map(Xm,X) �→Map(Xn+m−1, X)

given, for 1 ≤ i ≤ n , by

(f ◦i g)(x1, · · · , xm+n−1)

= f (x1, · · · , xi−1, g(xi, · · · , xi+m−1), xi+m, · · · ).

In the endomorphism operad EndX there are easily
discovered relations involving iterated ◦i-operations
and the symmetric group Σn actions on the Xns. For ex-
ample,

(f ◦i g) ◦j h = f ◦j (g ◦i−j+1 h)

for j ≤ i ≤ j + n− 1

if g is a function of n variables, since only the name of
the position for the insertion is changed.

An operad (O,◦i) consists of a collection
{O(n)}n≥1 of objects and maps ◦i : O(m)× O(n)
→ O(m+ n− 1) for m,n ≥ 1 satisfying the rela-
tions manifest in the example EndX .

May’s original definition corresponds to simul-
taneous insertions into all possible positions of 
inputs into f ∈ Map(Xn,X). In most examples, 
the structures are “manifest” without appeal to
the technical definitions; as Frank Adams used 
to say, to operate the machine, it is not necessary
to raise the bonnet (look under the hood).

It helps to see graphic examples of operads.
Two kinds that are particularly important are the
tree operads and the little cubes (or disks) operads.

Let T (n) be the set of (nonplanar) trees with 1
root and n leaves labeled (arbitrarily) 1 through n.
The collection T = {T (n)}n≥1 of sets of trees forms
an operad by grafting the root of g to the leaf of f
labeled i, as in Figure 1.

The little n-cubes operad Cn = {Cn(j)}j≥1, where
Cn(j) consists of an ordered collection of j n-cubes
linearly embedded in the standard n-dimensional
unit cube In with disjoint interiors and axes par-
allel to those of In. The operations are given as 
indicated in Figure 2.

Just as group theory without representations is
rather sterile, so operads are best appreciated by
their representations, known as (varieties of) alge-
bras, especially algebras with higher homotopies.

An algebra A over an operad O “is” a map of
operads O → EndA. This is just a compact way 
of saying that an algebra A has a coherent system
of maps O(n)×An → A.

A major motivation for the development of 
operads was the desire to have a homotopy 
invariant characterization of based loop spaces
and iterated loop spaces. Precisely such coherent
systems of higher homotopies provided the 
answers. For based loop spaces, the operad in 
question, K = {Kn}n≥1 , consists of the polytopes
known as associahedra. The usual product of based
loops is only homotopy associative. If we fix a 
specific associating homotopy and consider the
five ways of parenthesizing the product of four
loops, there results a pentagon whose edges 
correspond to a path of loops (Figure 3). (Compare
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Figure 2 in the article by Devadoss in this issue of
the Notices.) From the leftmost vertex to the right-
most, consider the two paths of loops across the
top or around the bottom. The pentagon can be
filled in by a family of such paths from left to right
corresponding to further adjustment of parameters.

The associahedron Kn can be described as a 
convex polytope with one vertex for each way of 
associating n ordered variables, that is, ways of 
inserting parentheses in a meaningful way in a 
word of n letters. The edges correspond to a single 
application of an associating homotopy. For K5 see 
Figure 4 of the article by Devadoss in this issue of 
the Notices; a rotating image is available at
http://igd.univ-lyon1.fr/home/chapoton/
stasheff.html.

The cellular structure of the associahedra is
well described by planar rooted trees, the vertices
corresponding to binary trees and so forth. The
facets are all products of two associahedra of lower
dimension, and specific imbeddings can be given
to play the role of the ◦i operations as in an operad.
An A∞-space is a space Y which admits a coherent
family of maps

mn : Kn × Yn → Y

so that they make Y an algebra over the operad (with-
out Σn-actions) K = {Kn}n≥1 . The main result is:

A connected space Y (of the homotopy type of a
CW-complex) has the homotopy type of a based loop
space ΩX for some X if and only if Y is an A∞-space.

Homotopy characterization of iterated loop
spaces ΩnXn for some space Xn required the full
power of the theory of operads with the symmetries.

A connected space Y (of the homotopy type of a
CW-complex) has the homotopy type of an n-fold loop
space ΩnXn for some space Xn if Y admits a coher-
ent system of maps Cn(j)× Yj → Y.

Although introduced originally in the category
of topological spaces, operads were available almost
immediately for chain complexes. The analog of 
an A∞-space is an A∞-algebra, and there is a Lie 
analog, an L∞-algebra. These two special cases of
“higher homotopy algebras” are particularly im-
portant in mathematical physics: A∞ for open string
field theory and L∞ for closed string field theory
and for deformation quantization. The operad for
L∞-algebras is given a very nice and physically rel-
evant geometric interpretation in terms of a real
compactification of the moduli space of Riemann
spheres with punctures; see the article by Devadoss
in this issue of the Notices.

One reason for the explosive development of
operad theory in the 1990s was the introduction of
operadic structures in topological field theories, e.g.
CFTs (conformal field theories) and SFTs (string
field theories), which in turn was inspired by the 
importance of moduli spaces of Riemann surfaces
with punctures or boundaries (or other decora-
tions) in these physical theories. The little j-disks

operad Dj has a definition quite parallel to that of
the little j -cubes operad. Using disks has the 
advantage of extending nicely to little disks 
holomorphically embedded in a Riemann surface
Σg of genus g, leading to a more complicated and
subtle notion of a modular operad.

Also of importance for applications is the notion
of an A∞-category. These have been used by Fukaya
for remarkable applications to Morse theory and
Floer homology and by Batanin and by May in higher
category theory. More recently, they play a role in
string and D-brane theory and homological mirror
symmetry.

For a reasonably up-to-date introduction and
survey, consider [MSS02]. Two particularly impor-
tant original works are [BV73] and [May72].
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Figure 1. Grafting with the leaves numbered from left to right.

Figure 2. The little 2-cubes operad.

Figure 3. The associahedron K4.
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