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Abstract

We give a formula relating the transfer maps for the cohomology
theories En and Ct to the transchromatic generalized character maps of
[7]. We then apply this to understand the effect of the transchromatic
generalized character maps on Strickland’s isomorphism between the
Morava E-theory of the symmetric group Σpk (modulo a transfer ideal)
and the global sections of the scheme that classifies subgroups of order
pk in the formal group associated to En. This provides an algebro-
geometric interpretation to the Ct-cohomology of the class of groups
arising as centralizers of finite sets of commuting elements in symmetric
groups.

1 Introduction

There is a deep correspondence between the Morava E-theory of spaces
and the algebraic geometry of the formal group associated to En. This is
apparent in theorems such as Strickland’s work [10] that relates the E-theory
of symmetric groups (modulo a transfer ideal) to the scheme classifying
finite subgroup schemes of the formal group. It is also seen in the work of
Behrens and Rezk [3] that provides an interpretation of the E-theory of the
Steinberg summands L(k)q in terms of the modular isogeny complex of the
formal group and in the work of Ando [2] relating isogenies of the formal
group to power operations in En.

The character map of Hopkins, Kuhn, and Ravenel [4] provides a tool for
understanding the Morava E-theory of finite groups. Not only is this map
computationally useful, but it suggests a very close relationship between the
chromatic filtration and the inertia groupoid functor (they call this Fix(−)).
This relationship has been investigated by the author in [7] and [8] in which
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generalizations of the character map were constructed using the algebraic
geometry of p-divisible groups.

In this paper we compute the effect of the transchromatic generalized
characters of [7] on the Morava E-theory of symmetric groups. In order
to provide an algebro-geometric description of the answer we must develop
the relationship between transfers in En and transfers for the cohomology
theory Ct constructed in [7]. This is a generalization to higher heights of
Theorem D in [4], which provides a straightforward formula relating transfer
maps and the generalized character map.

The computation indicates a close relationship between the cohomology
of centralizers of tuples of commuting elements in symmetric groups and
connected components of the scheme that classifies subgroup schemes of
a particular p-divisible group. In particular, it provides algebro-geometric
descriptions of the cohomology of a large class of finite groups that were
without interpretation before. Although the computations in this paper
make use of the cohomology theory Ct and the transchromatic generalized
character maps of [7], we believe that they indicate more general phenomena.

Transfers and the character maps

The first part of the paper is devoted to understanding the relationship
between the transfer maps for the cohomology theories En and Ct and the
transchromatic generalized character maps of [7].

We need some setup. Fix a prime p. Let GEn be the formal group
associated to Morava En. We will view this as the p-divisible group

GEn [p] −→ GEn [p2] −→ . . .

over Spec(E0
n). Let 0 ≤ t < n and let K(t) be Morava K-theory of height

t. In [7], we construct the universal LK(t)E
0
n-algebra Ct equipped with an

isomorphism
Ct ⊗GEn

∼= (Ct ⊗GLK(t)En)⊕Qp/Zn−tp .

Let GCt = Ct ⊗GLK(t)En . Let X be a finite G-CW complex and let

hom(Zn−tp , G)

be the set of continuous maps from Zn−tp to G. This is a G-set by conjugation
and we will write

hom(Zn−tp , G)/ ∼

for the quotient by the G-action.
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The transchromatic generalized character map of [7] is a map of coho-
mology theories

Φt
G : E∗n(EG×G X) −→ C∗t (EG×G FixGn−t(X)),

where
FixGn−t(X) =

∐
α∈hom(Zn−tp ,G)

X imα

and
C∗t (X) := Ct ⊗LK(t)E

0
n
LK(t)E

∗
n(X).

Because of the equivalence

EG×G FixGn−t(X) '
∐

[α]∈hom(Zn−tp ,G)/∼

ECG(imα)×CG(imα) X
imα,

the character map can be viewed as landing in the product of rings

Φt
G : E∗n(EG×G X) −→

∏
[α]∈hom(Zn−tp ,G)/∼

C∗t (ECG(imα)×CG(imα) X
imα),

where CG(imα) is the centralizer in G of the image of α. We define

Φt
G[α] : E∗n(EG×G X) −→ C∗t (ECG(imα)×CG(imα) X

imα)

to be Φt
G composed with projection onto the factor of [α].

For H ⊆ G and a cohomology theory E, there is a transfer map

E∗(EH ×H X)
TrE−→ E∗(EG×G X).

In Theorem 2.18 below, we provide a relationship between transfer maps
for the cohomology theories En and Ct and the transchromatic generalized
character maps:

Theorem. Let H ⊆ G and X be a finite G-CW complex. Let Φt
G and Φt

H

be the transchromatic generalized character maps associated to the groups
H and G. Then for x ∈ E∗n(EH ×H X) there is an equality

Φt
G[α](TrEn(x)) =

∑
[gH]∈(G/H)imα/CG(imα)

TrCt(Φ
t
H [g−1αg](x)).

When t = 0 this recovers Theorem D of [4]. The transfer on the right is
along the inclusion

gCH(g−1 imαg)g−1 ⊂ CG(imα).
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An application to the cohomology of symmetric groups

In the second part of the paper we apply Theorem 2.18 to Strickland’s
isomorphism between the En-cohomology of symmetric groups (modulo a
transfer ideal) and the scheme that classifies subgroups of the formal group
GEn . This produces an algebro-geometric description of the Ct-cohomology
of centralizers of tuples of commuting elements in symmetric groups (modulo
a transfer ideal).

Let Σ×p
pk−1 ⊆ Σpk be the obvious subgroup. Let Itr ⊆ E0

n(BΣpk) be the

ideal generated by the image of the transfer along Σ×p
pk−1 ⊆ Σpk . In [10],

Strickland proves that

Spec(E0
n(BΣpk)/Itr) ∼= Subk(GEn),

where Subk(GEn) is the scheme that classifies subgroup schemes of order pk

in GEn .
The transchromatic generalized character map and Theorem 2.18 provide

an isomorphism

Ct ⊗E0
n
E0
n(BΣpk)/Itr ∼=

∏
[α]∈hom(Zn−tp ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr , (1)

in which the ideals I
[α]
tr in the codomain are constructed using Theorem

2.18. In Lemma 3.8 we prove that each of the factors in the codomain are
connected and in Lemma 3.10 we give an explicit condition under which a
factor is a non-zero ring.

There are also isomorphisms

Ct ⊗ Subk(GEn) ∼= Subk(Ct ⊗GEn) ∼= Subk(GCt ⊕Qp/Zn−tp ).

Thus applying Spec(−) to the isomorphism (1) gives an isomorphism∐
[α]∈hom(Zn−tp ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= Subk(GCt ⊕Qp/Zn−tp ). (2)

In Theorem 3.11 we prove the main theorem of the paper. It gives a
purely algebro-geometric description of this decomposition:

Theorem. The isomorphism (2) fits into a commutative triangle∐
[α]∈hom(Zn−tp ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr )

∼= //

��

Subk(GCt ⊕Qp/Zn−tp )

ss
Sub≤k(Qp/Zn−tp ),
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where the left map takes the component corresponding to [α] to the image
of the Pontryagin dual

α∗ : (imα)∗ −→ Qp/Zn−tp

and the right map is induced by the projection

GCt ⊕Qp/Zn−tp −→ Qp/Zn−tp .

This implies the following: Fix a map α : Zn−tp −→ Σpk that factors
through ∆ (up to conjugacy) and let L ⊆ Qp/Zn−tp be the image of the
Pontryagin dual α∗ : imα −→ Qp/Zn−tp . Consider the map induced on
subgroups by the projection GCt ⊕Qp/Zn−tp −→ Qp/Zn−tp :

Subk(GCt ⊕Qp/Zn−tp ) −→ Sub≤k(Qp/Zn−tp ).

Let SubLk (GCt ⊕Qp/Zn−tp ) be the pullback

SubLk (GCt ⊕Qp/Zn−tp ) //

��

Subk(GCt ⊕Qp/Zn−tp )

��
∗ L // Sub≤k(Qp/Zn−tp ).

Then
Spec(C0

t (BC(imα))/I
[α]
tr ) ∼= SubLk (GCt ⊕Qp/Zn−tp ).

That is, the theorem above provides an algebro-geometric interpretation of

Spec(C0
t (BC(imα))/I

[α]
tr ).

It consists of the subgroups of order pk in GCt ⊕Qp/Zn−tp that project onto
L in Qp/Zn−tp .
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2 Transfer Maps

We recall the formula provided in Theorem D of [4] and construct a gener-
alization. Following Adams’ advice at the end of Chapter 4 of [1], we avoid
mentioning the words “double cosets”.

2.1 Recollections

Fix a prime p and an integer 0 ≤ t < n. Let En be Morava E-theory of
height n with associated formal group GEn . Let LK(t)En be the localization
of En with respect to height t Morava K-theory K(t). Also we will always
write Qp/Zn−tp for (Qp/Zp)n−t. Recall from Section 3 of [7] that

C ′t = colim
k

LK(t)E
0
n ⊗E0

n
E0
n(B(Z/pk)n−t)

and
Ct = S−1C ′t,

where S is essentially the image of Qp/Zn−tp inside of GEn(C ′t). By Corollary
2.18 of [7] the ring Ct is the universal LK(t)E

0
n-algebra equipped with an

isomorphism

Ct ⊗ (LK(t)E
0
n ⊗GEn) ∼= (Ct ⊗GLK(t)En)⊕Qp/Zn−tp .

Parting from the notation in [7], we will often write GCt for Ct⊗GLK(t)En .
Recall that for a finite G-space (a space equivalent to a finite G-CW com-
plex) X,

FixGn−t(X) =
∐

α∈hom(Zn−tp ,G)

X imα.

The main construction of [7] is the transchromatic generalized character
map

Φt
G : E∗n(EG×G X) −→ Ct ⊗LK(t)E

0
n
LK(t)E

∗
n(EG×G FixGn−t(X)).

It recovers the generalized character map of [4] when t = 0. We will denote
the codomain as

C∗t (EG×G FixGn−t(X)).

Recall that the character map Φt
G is the composite of two maps. The first

is induced by a map of topological spaces

BΛk × EG×G FixGn−t(X)
T−→ EG×G X,
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which is induced by a map of topological groupoids

Λk ×G× FixGn−t(X)

�� ��

Tmor // G×X

�� ��
FixGn−t(X)

Tob // X.

The map Tob is just the inclusion on each component. The map Tmor is
defined by

(l, g, x ∈ X imα) 7→ (gα(l), x).

More details can be found in Section 3.1 of [7] or Section 4.1 of [8].
In [4], Hopkins, Kuhn, and Ravenel provide a formula for the relationship

between transfers for Morava En and their character map (the case t = 0
above).

Theorem 2.2. ([4], Theorem D) Let X be a finite G-space, H ⊆ G, x ∈
E0
n(EH ×H X), α : Zn−tp −→ G, and

TrEn : E∗n(EH ×H X) −→ E∗n(EG×G X)

the transfer map in En. Let Φ0
G be the Hopkins-Kuhn-Ravenel character

map of [4] (so t = 0) and Φ0
G(α) the character map followed by the projection

onto the α-factor. Then

Φ0
G(α)(Tr(x)) =

∑
gH∈(G/H)imα

Φ0
H(g−1αg)(x).

The purpose of this section is to extend their proof methods in order to
generalize their result to t > 0.

2.3 Two pullback squares

Fix a finite group G, a subgroup H, and an integer k such that every con-
tinuous map Zn−tp −→ G factors through Λk = (Z/pk)n−t.

Lemma 2.4. For α : Λk −→ G, let gH ∈ (G/H)imα ⊆ FixGn−t(G/H). Then
im g−1αg ⊆ H.

Proof. Let a ∈ imα. Then agH = gH implies that g−1agH = H. Now
g−1ag fixes H implies that g−1ag ∈ H.
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For α : Λk −→ G, let C(imα) be the centralizer of the image of α. When
multiple groups are in use we may write CH(imα) to mean the centralizer
of imα inside of H. Let X be a finite G-space. Recall that X imα is a
CG(imα)-space. There is an equivalence of spaces

EH ×H X ' EG×G (G×H X),

where G×H X is the obvious coequalizer. Recall that there is a homeomor-
phism of G-spaces

G×H X ∼= G/H ×X

induced by the map
(g, x) 7→ (gH, gx).

Fix a map α : Λk −→ G. The above homeomorphism induces a homeomor-
phism of C(imα)-spaces

(G×H X)imα ∼= (G/H ×X)imα ∼= (G/H)imα ×X imα.

There is also an equivalence of spaces

w :
∐

[α]∈hom(Zn−tp ,G)/∼

EC(imα)×C(imα) X
imα ' EG×G FixGn−t(X),

where the disjoint union is taken over conjugacy classes of maps. The de-
scription on the left is given by fixing representatives of conjugacy classes.
This equivalence follows from Proposition 4.13 in [8]. Given a representative
α ∈ [α], the map is induced by the inclusion C(imα) ⊆ G.

Proposition 2.5. There is a pullback of spaces

BΛk × EH ×H FixHn−t(X)

��

T // EH ×H X

��
BΛk × EG×G FixGn−t(G/H ×X)

T // EG×G (G/H ×X).

Proof. Begin by viewing the spaces as the realizations of topological groupoids.
The right hand map is induced by x 7→ (eH, x). The diagram of topological
groupoids is a pullback. It is trivial to see this on the level of objects. The
bottom arrow on morphisms is

(l, g, (gH, x) ∈ (G/H ×X)imα) 7→ (gα(l), (gH, x)).
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The image of this is only hit by (h, x) if imα ⊆ H and g ∈ H in which case it
is hit by (gα(l), x). This completes the proof as realization commutes with
pullbacks (see Chapter 11 of [6]).

Corollary 2.6. There is a homotopy commutative diagram

BΛk ×
∐

[β]∈hom(Zn−tp ,H)/∼
ECH(imβ)×CH(imβ) X

imβ

��

// EH ×H X

��
BΛk ×

∐
[α]∈hom(Zn−tp ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα // EG×G (G/H ×X).

Proof. This follows immediately from the previous proposition and the equiv-
alence w.

Note that the right map is an equivalence. In the next section we will
spend a significant amount of space analyzing the left map. We will show
that it is an equivalence and give a formula for the map.

Proposition 2.7. There is a pullback of spaces∐
[α]∈hom(Zn−tp ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H ×X imα) //

��

EG×G (G/H ×X)

��∐
[α]∈hom(Zn−tp ,G)/∼

BΛk × EC(imα)×C(imα) X
imα T◦(BΛk×w) // EG×G X,

where the map on the right is induced by the projection and the map on
the bottom is the topological part of the character map.

Proof. Once again, viewing the spaces as the realization of topological groupoids
makes this easy to see. It is clearly a pullback on the level of spaces of objects
and spaces of morphisms. It is important to note that C(imα) acts diago-
nally on G/H ×X imα and that Λk need not act trivially on the elements of
G/H. This is why BΛk does not split off as a factor in the pullback.

Following the proof of Theorem D in [4], consider the decomposition of
Λk × C(imα) spaces

G/H ×X imα ∼= ((G/H)imα ×X imα)
∐

((G/H)imα ×X imα)c,
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where (−)c denotes the complement. This splits G/H ×X imα into the part
fixed by the action of Λk through α and the part that is not fixed.

Note that we can use this to decompose the pullback∐
[α]∈hom(Zn−tp ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H ×X imα)

as the disjoint union of

BΛk ×
∐

[α]∈hom(Zn−tp ,G)/∼

EC(imα)×C(imα) (G/H ×X)imα

and ∐
[α]∈hom(Zn−tp ,G)/∼

E(Λk × C(imα))×Λk×C(imα) (G/H imα ×X imα)c.

Also note that when the top map in Proposition 2.7 is restricted to

BΛk ×
∐

[α]∈hom(Zn−tp ,G)/∼

EC(imα)×C(imα) (G/H ×X)imα

then it is just T ◦ w for the G-space G/H ×X.

2.8 Some computations

For applications it is useful to be able to explicitly compute the left vertical
map of Corollary 2.6.

Let i : H ↪→ G be the inclusion. Let

hom(Zn−tp , G)/ ∼

be the set of conjugacy classes of map from Zn−tp to G under conjugation by
G.

Consider the map

i∗ : hom(Zn−tp , H)/ ∼ −→ hom(Zn−tp , G)/ ∼

induced by i. Then

i−1
∗ ([α]) = {[β] ∈ hom(Zn−tp , H)/ ∼ |[i ◦ β] = [α] ∈ hom(Zn−tp , G)/ ∼}.
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Proposition 2.9. There is a bijection

(G/H)imα/C(imα) ∼= i−1
∗ ([α]).

Proof. Let gH ∈ (G/H)imα. Send gH to [g−1αg]. Since gH is fixed by imα,
Lemma 2.4 implies that g−1αg ⊆ H. Let kH ∈ (G/H)imα with kH 6= gH.
If kH = cgH for c ∈ C(imα) then there exists h ∈ H such that

kh = cg

and
[h−1k−1αkh] = [k−1αk] = [g−1c−1αcg] = [g−1αg]

in hom(Zn−tp , H)/ ∼. However, if kH 6= cgH for some c ∈ C(imα) then

[k−1αk] 6= [g−1αg] in hom(Zn−tp , H)/ ∼

but
[g−1kk−1αkk−1g] = [g−1αg] ∈ hom(Zn−tp , G)/ ∼ .

Fix an [α] ∈ hom(Zn−tp , G)/ ∼. The homotopy equivalence w of Section
2.3 restricted to the component of [α] gives the homotopy equivalence

w[α] : EC(imα)×C(imα)(G/H)imα×X imα '−→ EG×G
∐
γ∈[α]

(G/H)im γ×X im γ .

We analyze the inverse equivalences.

Proposition 2.10. Let g1, . . . , gh be elements of G such that

{g1αg
−1
1 , . . . , ghαg

−1
h } = [α].

Then g1, . . . , gh determine an inverse equivalence to w[α].

Proof. We write down the inverse equivalence in terms of the associated
topological groupoids. On objects we send

(gH, x) ∈ (G/H ×X)im giαg
−1
i 7→ (g−1

i gH, g−1
i x) ∈ (G/H ×X)imα.

The map on morphisms is a bit more complicated. We construct it by using
what it needs to do on objects. Recall that k ∈ G acts on (G/H ×X)im γ

by sending

k : (gH, x) 7→ (kgH, kx) ∈ (G/H ×X)im kγk−1
.
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We may assume that kgiα(kgi)
−1 = gjαg

−1
j where gj ∈ {g1, . . . , gh}. In

order to determine where the morphism (k, gH, x) ∈ G×(G/H×X)im giαg
−1
i

must map to in C(imα)× (G/H ×X)imα consider the following diagram

(gH, x)
k //

g−1
i
��

(kgH, kx)

g−1
j
��

(g−1
i gH, g−1

i x) (g−1
j kgH, g−1

j kx).

The composite of the horizontal and then right map is the target composed
with the map on objects. The left map is the source (projection) and then
the map on objects. We see from this diagram that we must map

(k, gH, x) ∈ G×(G/H×X)im giαg
−1
i 7→ (g−1

j kgi, g
−1
i gH, g−1

i x) ∈ C(imα)×(G/H×X)imα.

We check that g−1
j kgi ∈ C(imα): Let a ∈ imα then

g−1
j kgia(g−1

j kgi)
−1 = g−1

j kgiag
−1
i k−1gj = g−1

j gjag
−1
j gj = a.

It is not hard (but takes a lot of space) to show that this is in fact an inverse
equivalence.

We can now provide a formula for the left map in Corollary 2.6:∐
[β]∈hom(Zn−tp ,H)/∼

ECH(imβ)×CH(imβ) X
imβ

��∐
[α]∈hom(Zn−tp ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα.

We do this by tracing through the diagram∐
[β]∈hom(Zn−tp ,H)/∼

ECH(imβ)×CH(imβ) X
imβ w //

��

EH ×H FixHn−t(X)

��∐
[α]∈hom(Zn−tp ,G)/∼

ECG(imα)×CG(imα) (G/H ×X)imα w // EG×G FixGn−t(X)
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using the inverse equivalence described in the previous proposition.
Fix an [α] ∈ hom(Zn−tp , G)/ ∼ such that (G/H)imα 6= ∅. Let g1, . . . , gh

be elements of G such that

{g1αg
−1
1 , . . . , ghαg

−1
h } = [α]

as in the previous proposition. Let l be the cardinality i∗([α]). Without loss
of generality, let

βi := g−1
i αgi, where i ∈ 1 . . . l

be representatives for the elements of i∗([α]). Even more, to simplify the
formulas, let us take these representatives to be the chosen ones in the top
left corner.

By using the topological groupoid model for these spaces, we compute
the map∐
{[β1],...,[βl]}

ECH(imβi)×CH(imβi)X
imβi −→ ECG(imα)×CG(imα)(G/H)imα×X imα.

Let (c, x) ∈ CH(imβi)×X imβi then we have (on morphism sets)

(c, x) ∈ CH(imβi)×X imβi � // (c, x) ∈ H ×X imβi
_

��
(gicg

−1
i , giH, gix) ∈ CG(imα)× (G/H ×X)imα (c, eH, x) ∈ G× (G/H ×X)imβi�oo

We are using the fact that c ∈ CH(imβi) to compute the bottom arrow.
To show that the map is an equivalence we will show that it is es-

sentially surjective and fully faithful. Essential surjectivity follows easily
from Lemma 2.4. Thus it suffices to show that the map induces an iso-
morphism on automorphism groups. Let (gH, gx) ∈ (G/H ×X)imα be hit
by x ∈ X im g−1αg under the map defined above. Consider the stabilizers
Stab(gH, gx) ⊆ CG(imα) and Stab(x) ⊆ CH(im g−1αg). These map to
each other by conjugation by g. This is clearly injective. We show that
conjugation by g−1 produces an isomorphism. Consider c ∈ Stab(gH, gx) ⊆
CG(imα). We have that

cgx = gx

and thus g−1cg stabilizes x. This is not enough though; we must show that
g−1cg ∈ CH(im g−1αg). Clearly g−1cg centralizes im g−1αg and also

cgH = gH

implies that g−1cg ∈ H. We have proved the following:
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Proposition 2.11. Fix an [α] ∈ hom(Zn−tp , G)/ ∼ such that (G/H)imα 6= ∅.
Let g1, . . . , gh be elements of G such that

{g1αg
−1
1 , . . . , ghαg

−1
h } = [α].

This determines an equivalence∐
[β]∈i−1

∗ [α]

ECH(imβ)×CH(imβ) X
imβ ' ECG(imα)×CG(imα) (G/H ×X)imα.

Remark 2.12. One of the main things to take away from this discussion
is the following: Consider (G/H)imα with the action by CG(imα). Let
gH ∈ (G/H)imα, then the stabilizer of gH is precisely gCH(g−1 imαg)g−1.

It is important to note that, even if imα ⊆ H and gH ∈ (G/H)imα, the
inclusion

CH(im g−1αg) ⊆ g−1CH(imα)g

need not be an equality because g is not necessarily in H.

2.13 Properties of transfers

Taking our cue from Section 6.5 of [4] (who follow [1], Chapter 4), we consider
the following properties of the transfer map associated to a finite covering
of spaces W −→ Z for a cohomology theory E:

1. the transfer associated to the identity map is the identity map;

2. if W1
∐
W2 −→ Z is a disjoint union of finite coverings, then the

transfer map
E∗(W1)⊕ E∗(W2) −→ E∗(Z)

is the sum of the transfer maps associated to the coverings W1 −→ Z
and W2 −→ Z;

3. the transfer E∗(W ) −→ E∗(Z) is a map of E∗(Z)-modules;

4. if
W1

//

��

W

��
Z1

// Z
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is a fiber square, then the diagram

E∗(W1)

Tr
��

E∗(W )oo

Tr
��

E∗(Z1) E∗(Z)oo

commutes.

We also need direct analogues of Lemma 6.12 and Corollary 6.13 of [4].

Proposition 2.14. If A ⊂ Λk is a proper subgroup, then the composite

E∗n(BA)
Tr−→ E∗n(BΛk) −→ C∗t

is zero.

Proof. Recall that Λk = (Z/pk)n−t. The construction of C∗t parallels the
construction of C∗0 = L(E∗n) from [4]. Their proof goes through, but we
reiterate it here. Recall that there is a canonical map ([7], after the proof
of Proposition 2.17)

ik : E∗n(BΛk) −→ C∗t

and a canonical map

A∗
φA−→ E∗n(BA)

for any finite abelian group A. Let α be in the kernel of the Pontryagin dual
of the inclusion of A into Λk:

Λ∗k −→ A∗.

By the construction of C∗t , ikφΛ∗
k
(α) is a unit in C∗t . However, the commu-

tativity of the diagram
Λ∗k

//

��

E∗n(BΛk)

��
A∗ // E∗n(BA)

implies that φΛ∗
k
(α) maps to zero in E∗n(BA) under the restriction map.

This means the φΛ∗
k
(α) annihilates the image of the transfer map since it is

a map of E∗n(BΛk)-modules by Property 3 above. Since ikφΛ∗
k
(α) is a unit,

any element that multiplies it to zero must be zero.
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Corollary 2.15. Suppose that Y is a trivial Λk-space, and that J is a finite
Λk-set with

JΛk = ∅.

Then the composite

E∗n(EΛk ×Λk (J × Y ))
Tr−→ E∗n(BΛk × Y ) −→ C∗t ⊗LK(t)E

∗
n
LK(t)E

∗
n(Y )

is zero.

Proof. This follows immediately from the previous proposition and the proof
of Corollary 6.13 in [4].

The following will be useful for later computations.

Proposition 2.16. Let t > 0. Assume that H ⊂ G is a subgroup and that
p divides the order of G/H. Let Iaug be the kernel of the map

C∗t (BG) −→ C∗t (Be),

where e is the trivial subgroup. The image of the transfer

C∗t (BH)
Tr−→ C∗t (BG)

is contained in the ideal (p) + Iaug.

Proof. The proof is an application of Properties 4 and 2 above. Consider
the pullback diagram of G-sets

G×G/H //

��

G/H

��
G // G/G

.

The group G acts freely on the pullback so it is isomorphic to
∐
G/H

G. Ap-

plying Property 4 we get the commutative diagram∏
G/H

C∗t

Tr

��

C∗t (BH)oo

Tr

��
C∗t C∗t (BG)oo

The left arrow is just multiplication by |G/H| by Property 2.
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2.17 Transfers for transchromatic character maps

We use the properties of transfer maps and the pullbacks and decompositions
discussed in the previous section to provide a formula relating transfer maps
for En and Ct and the transchromatic generalized character maps.

Before proving the theorem we establish one bit of notation. Because of
the equivalence

EG×G FixGn−t(X) '
∐

[α]∈hom(Zn−tp ,G)/∼

EC(imα)×C(imα) X
imα,

the character map can be viewed as landing in the product of rings

Φt
G : E∗n(EG×G X) −→

∏
[α]∈hom(Zn−tp ,G)/∼

C∗t (EC(imα)×C(imα) X
imα).

We define

Φt
G[α] : E∗n(EG×G X) −→ C∗t (EC(imα)×C(imα) X

imα)

to be Φt
G composed with projection onto the factor of [α].

Theorem 2.18. Let H ⊆ G and X be a finite G-space. Let Φt
G and Φt

H be
the transchromatic generalized character maps associated to the groups H
and G. Then for x ∈ E∗n(EH ×H X) there is an equality

Φt
G[α](TrEn(x)) =

∑
[gH]∈(G/H)imα/C(imα)

TrCt(Φ
t
H [g−1αg](x)).

Proof. Fix an α : Zn−tp −→ G. Our goal is to analyze Φt
G[α].

We begin by applying En to the pullback diagram from Proposition 2.7
specialized to [α]. We get the diagram

E∗n(EG×G (G/H ×X)) //

Tr

��

E∗n(E(Λk × CG(imα))×Λk×CG(imα) (G/H ×X imα))

Tr
��

E∗n(EG×G X) // E∗n(BΛk × ECG(imα)×CG(imα) X
imα).

Using the decomposition noted at the end of Subsection 2.3 and Corollary
2.15, on the right hand side of square above we can restrict our attention to

E∗n(BΛk × ECG(imα)×CG(imα) (G/H)imα ×X imα)

��
E∗n(BΛk × ECG(imα)×CG(imα) X

imα).
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Now using the square from Proposition 2.5 we arrive at the commutative
diagram

E∗n(EH ×H X) //

∼=
��

E∗n(BΛk ×
∐

[β]∈i−1
∗ [α]

ECH(imβ)×CH(imβ) X
imβ)

∼=
��

E∗n(EG×G (G/H ×X)) //

Tr
��

E∗n(BΛk × ECG(imα)×CG(imα) (G/H)imα ×X imα)

Tr
��

E∗n(EG×G X) // E∗n(BΛk × ECG(imα)×CG(imα) X
imα).

The top right isomorphism follows from Proposition 2.11. All of the hori-
zontal maps are portions of the topological part of the transchromatic gen-
eralized character map. Applying the algebraic part of the transchromatic
generalized character map and the fact that transfers commute with maps
of cohomology theories (the transfer map is just a map of spectra), we get

E∗n(EH ×H X)

∏
ΦtH [β]
//

Tr

��

∏
[β]∈i−1

∗ [α]

C∗t (ECH(imβ)×CH(imβ) X
imβ)

∑
Tr

��
E∗n(EG×G X)

ΦtG[α]
// C∗t (ECG(imα)×CG(imα) X

imα).

By Proposition 2.9 the top right corner of this square can be rewritten as∏
[gH]∈(G/H)imα/CG(imα)

C∗t (ECH(im g−1αg)×CH(im g−1αg) X
im g−1αg).

Corollary 2.19. Let α : Zn−tp −→ G, H ⊆ G, and gH ∈ (G/H)imα. When
X = ∗ the transfer map in the formula can be taken to be along the inclusion

gCH(g−1 imαg)g−1 ⊆ CG(imα).

Proof. This follows from the remark at the end of Subsection 2.3.

Remark 2.20. This is a higher chromatic analogue of the formula for the
character of an induced representation. For H ⊆ G, u ∈ G, and χ a class
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function on H,

χ ↑GH (u) =
1

|H|
∑

g∈G, g−1ug∈H

χ(g−1ug)

=
∑

gH∈(G/H)u

χ(g−1ug)

=
∑

[gH]∈(G/H)u/C(u)

[CG(u) : gCH(g−1ug)g−1]χ(g−1ug).

3 Decomposing the Subgroup Scheme

We use the transfer maps constructed in the previous section to calculate
how the scheme

Subk(GEn) = SpecE0
n(BΣpk)/Itr

decomposes under base change to Ct. We provide an algebro-geometric
interpretation of the resulting decomposition.

3.1 Recollections

In Section 10 of [9], Strickland defines a formal scheme

Subk(GEn),

which represents the functor

Subk(GEn) : complete Noetherian local E0
n-algs −→ Set

that sends

R 7→ {subgroup schemes of order pk of R⊗GEn}.

The main algebro-geometric result that we need regarding Subk(GEn) is
Theorem 10.1 of [9].

Theorem 3.2. ([9], Theorem 10.1) For any continuous map E0
n −→ S,

S ⊗ Subk(GEn) ∼= Subk(S ⊗GEn).

The projection Subk(GEn) −→ Spf(E0
n) is a finite free map of degree

d = number of subgroups of Qp/Znp of order pk.

The scheme Subk(GEn) is Gorenstein.
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Note that Strickland’s results are more general because they apply to an
arbitrary formal group G. Here we have presented his theorem specialized
to GEn , the formal group associated to Morava En. We will not use that
the scheme is Gorenstein here.

Following Strickland, we call subgroups of Σpk of the form Σi ×Σj with
i, j > 0 proper partition subgroups. Let Itr be the ideal of E0

n(BΣpk) gen-
erated by the images of the transfers of the proper partition subgroups. In
[10], Strickland proves the main topological result regarding Subk(GEn).

Theorem 3.3. ([10], Proposition 9.1) There is an isomorphism

Spf(E0
n(BΣpk)/Itr) ∼= Subk(GEn).

Lemma 8.11 of [10] implies that we need only consider the ideal generated
by the image of the transfer from Σ×p

pk−1 to Σpk (under the obvious inclusion).

Proposition 5.2 of [9] gives an isomorphism

Subk(GEn) = Subk(GEn [pk]),

where GEn [pk] is the pk-torsion of GEn .
Let A be a finite abelian group. In Section 7 of [9], Strickland constructs

a formal scheme

Level(A,GEn) : complete local Noetherian E0
n-algs −→ Set

that sends an E0
n-algebra R to the level A-structures of R⊗GEn . We recall

this scheme because it will show up in the proof of Theorem 3.11.
Recall that there is a topological definition of GEn [pk]:

Γ(GEn [pk]) = E0
n(BZ/pk).

With a coordinate, by the Weierstrass preparation theorem, there are iso-
morphisms

Γ(GEn [pk]) ∼= E0
n[[x]]/[pk]GEn (x) ∼= E0

n[x]/(f(x)),

where [pk]GEn (x) is the pk-series of the formal group law and f(x) is a monic

polynomial of degree pkn.
Because GEn [pk] is finite and free over SpfIn(E0

n) we may consider it over
Spec(E0

n). Then it is a functor

GEn [pk] : E0
n-algebras −→ Abelian Groups.
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Both of the formal schemes Subk(GEn) and Level(A,GEn) can be viewed
as non-formal schemes as well without difficulty because they are finite and
free over Spf(E0

n). We get

Subk(GEn) : E0
n-algebras −→ Set

sending an E0
n-algebra R to the collection of subgroup schemes of order pk in

R⊗GEn [pk] (viewed as a non-formal scheme). By its definition the functor
retains the property that

R⊗ Subk(GEn) ∼= Subk(R⊗GEn).

From now on we will write Subk(GEn) for the scheme over Spec(E0
n).

3.4 Examples

The goal of this section is to apply Theorem 2.18 to E0
n(BΣpk) in some very

particular examples in order to understand the effect of base change to Ct
on Subk(GEn).

A direct application of Theorem 2.18 provides a decomposition of Ct ⊗
Subk(GEn) as a disjoint union of smaller schemes. Consider Σ×p

pk−1 ⊆ Σpk .
Theorem 2.18 gives the commutative square of rings

E0
n(BΣ×p

pk−1) //

TrEn

��

∏
[β]∈hom(Zn−tp ,Σ×p

pk−1 )/∼
C0
t (BC(imβ))

��
E0
n(BΣpk) //

∏
[α]∈hom(Zn−tp ,Σ

pk
)/∼
C0
t (BC(imα))

with the property that, after base change to Ct, there are isomorphisms

Ct ⊗E0
n
E0
n(BΣ×p

pk−1)
∼= //

��

∏
[β]∈hom(Zn−tp ,Σ×p

pk−1 )/∼
C0
t (BC(imβ))

��
Ct ⊗E0

n
E0
n(BΣpk)

∼= //
∏

[α]∈hom(Zn−tp ,Σ
pk

)/∼
C0
t (BC(imα)).

By taking the quotient by the ideal generated by the image of the transfer
we get the isomorphism

Ct ⊗E0
n
En(BΣpk)/Itr ∼=

∏
[α]∈hom(Zn−tp ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr , (3)
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where
I

[α]
tr ⊆ C0

t (BC(imα)).

Theorem 2.18 allows us to compute I
[α]
tr . By Theorem 3.3 the left hand side

of isomorphism (3) is the global sections of

Ct ⊗ Subk(GEn) ∼= Ct ⊗ Subk(GEn [pk])
∼= Subk(Ct ⊗GEn [pk])
∼= Subk(GCt [p

k]⊕ (Z/pk)n−t).

The right hand side of isomorphism (3) is a product of Ct-algebras indexed
by

hom(Zn−tp ,Σpk)/ ∼ .

Of course, some of the Ct-algebras may be zero after taking the quotient by
the images of the transfers.

We apply Theorem 2.18 in some particular examples in order to study
the phenomena described above.

Example 3.5. The purpose of this example is to use Theorem 2.18 to
compute the decomposition of Sub1(GEn) after base change to Cn−1. Let
G = Σp and H = e = Σp

1. Then H is the subgroup of G that we use to
define Itr. There are precisely two conjugacy classes in

hom(Zp,Σp)

corresponding to the trivial map and the map picking out the cyclic subgroup
of order p. The centralizer of the image of the trivial map is Σp and the
centralizer of Z/p ⊆ Σp is just Z/p. Thus the transchromatic generalized
character map is an isomorphism

Cn−1 ⊗E0
n
E0
n(BΣp)

∼=−→ C0
n−1(BΣp)× C0

n−1(BZ/p).

Theorem 2.18 allows us to calculate the transfer

C0
n−1 −→ C0

n−1(BΣp)× C0
n−1(BZ/p).

The map to the first factor is a sum over Σp/Σp ' ∗ and Corollary 2.19
gives the transfer from e to Σp for the cohomology theory Cn−1. The map
on the second factor is a sum of transfers over

(G/H)imα/C(imα) = (Σp/e)
Z/p/Z/p = ∅.
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Thus the map to the second factor is just the zero map.

Let Sub1(GCn−1) be Spec(C0
n−1(BΣp)/I

[e]
tr ), where I

[e]
tr is the ideal gen-

erated by the image of the transfer from e ⊂ Σp. We conclude that

Cn−1 ⊗ Sub1(GEn) ∼= Sub1(GCn−1)
∐

GCn−1 [p].

When p = 2 it is easy to use a coordinate to calculate this map explicitly
because Σ2

∼= Z/2. The isomorphism comes from the decomposition of
Cn−1 ⊗ Sub1(GEn) coming from the projection

GCn−1 ⊕Q2/Z2 −→ Q2/Z2.

A subgroup of order 2 can project onto e ⊂ Q2/Z2 or Z/2 ⊂ Q2/Z2. If a
subgroup projects onto e then it is a subgroup of order two in Sub1(GCn−1).
If the subgroup projects onto Z/2 then every two torsion element r ∈ GCn−1

defines a new subgroup of order two, the subgroup generated (r, 1).
For general p, the decomposition arises in the same way. The easiest

way to see this is by considering the surjection

Level(Z/p,GEn) −→ Sub1(GEn).

This is how we proceed in the proof of the Theorem 3.11.

Before coming to the main theorem we work one more example.

Example 3.6. For this example let p = 2, and t = n− 1. Let G = Σ4 and
H = Σ2 × Σ2. Thus we are interested in understanding what topology has
to say about the decomposition of

Sub2(GEn)

after base change to Cn−1.
There are precisely four conjugacy classes in

hom(Z2,Σ4)

corresponding to the cycle decompositions of 2-power order elements. It is
easy to check that

C(e) ∼= Σ4

C((12)) ∼= Z/2× Z/2
C((12)(34)) ∼= D8

C((1234)) ∼= Z/4.
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The transchromatic generalized character map is an isomorphism

Cn−1⊗E0
n
E0
n(BΣ4) ∼= C0

n−1(BΣ4)×C0
n−1(BZ/2×Z/2)×C0

n−1(BD8)×C0
n−1(BZ/4).

The transfer associated to Σ4 is just the transfer from Σ2 × Σ2. The cen-
tralizer of (12) in H = Σ2×Σ2 is H and this implies that the transfer along
CH((12)) ⊆ CG((12)) is the identity map. The centralizer CΣ2×Σ2((12)(34)) ⊆
Σ2 × Σ2 is the whole group. Thus the transfer for D8 is the transfer along
Σ2 × Σ2 ⊂ CΣ4((12)(34)). The transfer associated to Z/4 is the zero map.

Thus the scheme decomposes into the parts

Cn−1 ⊗ Sub2(GEn) ∼= Sub2(GCn−1)
∐

GCn−1 [4]
∐

X, (4)

where X is the component (or components) corresponding to D8.
Once again there is a natural decomposition of this sort from the alge-

braic geometry. The projection

GCn−1 ⊕Q2/Z2 −→ Q2/Z2

induces a map

Sub2(GCn−1 ⊕Q2/Z2) −→ Sub≤2(Q2/Z2).

The fibers of the points in the base consist of the subgroups that map to e,
Z/2, and Z/4 in Q2/Z2.

The first two components in the decomposition (4) seem to come from
the subgroups that map onto e and Z/4 in Q2/Z2. Thus the third component
must correspond to the subgroups that map to Z/2 in Q2/Z2. Theorem 3.11
implies that this is precisely the decomposition captured by the character
map. That is, the scheme

Spec(C0
n−1(BD8)/I

[(12)(34)]
tr )

represents subgroup schemes of order four in GCn−1 ⊕ Q2/Z2 that project
onto Z/2 ⊂ Q2/Z2.

3.7 The decomposition

Consider the projection

Ct ⊗GEn
∼= GCt ⊕Qp/Zn−tp −→ Qp/Zn−tp .
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This induces a surjective map of schemes

Subk(GCt ⊕Qp/Zn−tp ) −→ Sub≤k(Qp/Zn−tp ).

In this section we prove that the decomposition of

Subk(GCt ⊕Qp/Zn−tp )

as the disjoint union of the fibers of this map is a maximal decomposition
and that the transchromatic generalized character map and Theorem 2.18
give precisely this decomposition.

Lemma 3.8. For any finite group G the ring C0
t (BG) is connected.

Proof. Let (Ct)It be the localization of Ct at the prime ideal It. Let K be the
completion of (Ct)It at the ideal It. The ring K is a flat Ct-algebra because
completions and localizations are flat, it is also complete local. Thus K can
be used to construct a new Borel-equivariant cohomology theory on finite
G-spaces

X 7→ K ⊗Ct C0
t (EG×G X).

The proof that E0
n(BG) is complete local (eg. [5], Lemma 4.58 and Propo-

sition 4.60) implies that K ⊗Ct C0
t (BG) is complete local with respect to

the ideal It + Iaug, where Iaug is defined as in Proposition 2.16. Now if
C0
t (BG) ∼= R1 × R2 for non-zero rings R1 and R2 then there is a split

short exact sequence of Ct-modules (because R1 and R2 are necessarily Ct-
algebras)

0 −→ R1 −→ R1 ×R2 −→ R2 −→ 0.

Tensoring up to K preserves this sequence. However, K ⊗Ct C0
t (BG) is

connected.

Corollary 3.9. Let H ⊆ G with |G/H| divisible by p. Let Itr ⊆ C0
t (BG)

be the ideal generated by the image of the transfer from H to G, then
C0
t (BG)/Itr is connected.

Proof. If |G/H| is not divisible by p then the transfer map is surjective. Note
that Itr ⊆ (p) + Iaug by Proposition 2.16. There is a map of cohomology
theories

C0
t (EG×G X) −→ K ⊗Ct C0

t (EG×G X),
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where K is the Ct-algebra defined in the previous lemma. As transfer maps
commuted with maps of cohomology theories we have

C0
t (BH)

Tr
��

// K ⊗Ct C0
t (BH)

Tr
��

C0
t (BG) // K ⊗Ct C0

t (BG).

This implies that

K ⊗Ct (C0
t (BG)/Itr) ∼= (K ⊗Ct C0

t (BG))/Itr,

where the ideal Itr on the left is the one defined using the left arrow and the
ideal on the right is defined using the right arrow. This ring is local (and
thus connected). The argument from the previous lemma now implies the
claim.

Recall that the transchromatic generalized character map and Theorem
2.18 give an isomorphism

Ct ⊗E0
n
E0
n(BΣpk)/Itr ∼=

∏
[α]∈hom(Zn−tp ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr

in which the ideal Itr on the left is the ideal generated by the image of the

transfer Σ×p
pk−1 ⊂ Σpk and the ideals called I

[α]
tr on the right are determined

by Theorem 2.18.
The following is our main combinatorial result.

Lemma 3.10. The non-zero factors in∏
[α]∈hom(Zn−tp ,Σ

pk
)/∼

C0
t (BC(imα))/I

[α]
tr

are in bijective correspondence with the elements of

Sub≤k(Qp/Zn−tp ).

Proof. This is a question about when the transfer map is surjective. It is
true that some of the ideals Itr in the statement of the lemma are generated
by the image of two or more transfer maps. However, since these ideals are
contained in (p) + Iaug ⊂ C0

t (BG) (unless the ideal is the whole ring), Itr is
the whole ring if and only if one of the transfer maps is surjective.
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Let h = n− t. It is well-known (see Section 3 of [10], for instance) that
the number of conjugacy classes of maps

Zhp −→ Σpk

that do not lift (up to conjugacy) to

Σ×p
pk−1 ⊆ Σpk

is in bijective correspondence with isomorphism classes of transitive Zhp -sets
and this is in bijective correspondence with

Subk(Qp/Zhp).

It is clear that all maps with this property contribute factors to the product
in question: the transfer map is the zero map.

Now fix a map α : Zhp −→ Σpk that does factor (up to conjugacy) through

Σ×p
pk−1

i

��
Zhp

α //

==

Σpk

and let γ1, . . . , γl represent elements of i−1
∗ ([α]).

Let m < k be the smallest integer such that a map α : Zhp −→ Σpk

factors up to conjugacy through

Σ×p
k−m

pm ⊆ Σpk .

Since γ1, . . . , γl all represent isomorphic Zhp -sets (because they are all conju-
gate in Σpk) the integer m is also the smallest integer such that, for each i,
there is a factorization

Σ×p
k−m

pm

��
Zhp

γi //

==

Σ×p
pk−1

up to conjugacy in Σ×p
pk−1 .

Now assume that α does not factor through the diagonal map

Σpm
4−→ Σ×p

k−m

pm .
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We show that, in this case, the transfer from CΣ×p
pk−1

(imα) −→ CΣ
pk

(imα)

is the identity map.
Let X be the Zhp -set associated to α. The factorization determines pk−m

Zhp -sets of order pm: X1, . . . , Xpk−m such that

X ∼= X1

∐
. . .

∐
Xpk−m .

The fact that m is the smallest integer with this property implies that at
least one of the Zhp -sets of order pm is transitive. Without loss of generality
we may assume that X1 is transitive and that X1, X2, . . . Xj are isomorphic
Zhp -sets and Xj+1, . . . , Xpk−m are all non-isomorphic to X1. Note that j may

be equal to 1 and that we know there are non-isomorphic Zhp -sets because
the map α does not factor through the diagonal.

By Lemma 8.11 in [10] it suffices to show that the transfer from

CΣ
pjm
×Σ

pk−jm
(imα) ⊂ CΣ

pk
(imα)

is the identity.
Now consider an element σ ∈ CΣ

pk
(imα), this determines an automor-

phism of X. Since X1, . . . , Xj are transitive and not isomorphic to the other
Zhp -sets, σ can not map any of X1, . . . , Xj to Xk with k > j. Thus σ must be
the product of two disjoint permutations. In other words σ ∈ Σpjm×Σpk−jm

and this implies that the transfer map described above is induced by the
identity map on groups.

Next assume that α factors (up to conjugacy) through the ∆:

Σpm

4
��

Σ×p
k−m

pm

��
Zhp

α //

EE

Σpk .

This implies that each of the γi’s will factor through the diagonal (up to
conjugacy in Σ×p

pk−1). We also know that α does not factor through the

inclusion Σ×p
pm−1 ⊂ Σpm . We will conclude that the transfer map induced by

the inclusion
CΣ×p

pk−1
(imα) −→ CΣ

pk
(imα)
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is not the identity map.
The assumptions imply that the dotted arrow determines a transitive

Zhp -set of order pm and that X is a disjoint union of pk−m copies of this set.
Now any permutation of these sets is in CΣ

pk
(imα) and many of these are

elements of prime power order that are not in Σ×p
pk−1 .

Now any map α : Zhp −→ Σpk factors up to conjugacy through one of the
two cases discussed above. In the first case, when it does not factor through
the diagonal, it does not contribute a factor to the product in question

(because I
[α]
tr = C0

t (BC(imα))). In the second case, when it does factor
through the diagonal, then it does contribute a factor. In this case the
number of maps α (up to conjugacy) with a particular m are in bijective
correspondence with the number of isomorphism classes of Zhp -sets of order

pm. This is the cardinality of Subm(Qp/Zhp). Putting these together for
varying m gives the total number of nontrivial factors in the product: the
cardinality of

Sub≤k(Qp/Zn−tp ).

The isomorphism induced by the character map∐
[α]∈hom(Zn−tp ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= Subk(GCt ⊕Qp/Zn−tp )

along with the lemmas and examples above seem to imply that the character
map modulo transfers witnesses the decomposition of Subk(GCt ⊕Qp/Zn−tp )
as the fibers of the map to Sub≤k(Qp/Zn−tp ). The first lemma implies that
the scheme can be decomposed no further. Now we show that this is true:

Theorem 3.11. The isomorphism fits into a commutative triangle

∐
[α]∈hom(Zn−tp ,Σ

pk
)/∼

Spec(C0
t (BC(imα))/I

[α]
tr )

∼= //

��

Subk(GCt ⊕Qp/Zn−tp )

ss
Sub≤k(Qp/Zn−tp ),

where the left map takes the component corresponding to [α] to the image
of

α∗ : (imα)∗ −→ Qp/Zn−tp
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and the right map is induced by the projection

GCt ⊕Qp/Zn−tp −→ Qp/Zn−tp .

Proof. Note that the image of the Pontryagin dual in Qp/Zn−tp is invariant
under conjugation of the map α. The right vertical map is induced by
projection onto the Qp/Zn−tp factor.

Let A be an abelian group of order pk. There is a canonical isomorphism

hom(A∗,GEn) ∼= Spec(E0
n(BA)).

Pulling this isomorphism back to the ring Ct and applying the transchro-
matric generalized character map gives the isomorphism

hom(A∗,GCt ⊕Qp/Zn−tp ) ∼=
∐

hom(Zn−tp ,A)

Spec(C0
t (BA)).

The definition of the character map implies that this fits into the following
commutative diagram:

hom(A∗,GCt ⊕Qp/Zn−tp )
∼= //

��

∐
hom(Zn−tp ,A)

Spec(C0
t (BA))

��
hom(A∗,Qp/Zn−tp )

(−)∗ //

��

hom(Zn−tp , A)

tt
Sub≤k(Qp/Zn−tp ).

There is also the commutative diagram of schemes

Level(A∗,GEn)

��

∼= // Spec(E0
n(BA)/Itr)

��
hom(A∗,GEn)

∼= // Spec(E0
n(BA)).

Pulling the top arrow back to the ring Ct and then applying the character
map gives the commutative diagram

Level(A∗,GCt ⊕Qp/Zn−tp )
∼= //

��

∐
α∈hom(Zn−tp ,A)

Spec(C0
t (BA)/Iαtr)

tt
Sub≤k(Qp/Zn−tp ).
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It is not important to the argument, but it should be noted that a level
structure for the p-divisible group GCt ⊕ Qp/Zn−tp is a map A∗ −→ GCt ⊕
Qp/Zn−tp such that there exists a decomposition A∗ ∼= B⊕C in which B −→
GCt ⊕ Qp/Zn−tp gives a level structure for GCt and C −→ GCt ⊕ Qp/Zn−tp

maps injectively to Qp/Zn−tp . Thus when A∗ ∼= Z/pk, a level structure is
either a level structure for GCt or an injective map to Qp/Zn−tp . It is a
reasonably easy consequence of Theorem 2.18 that this is what the top right
corner of the diagram above represents.

In [9], Theorem 7.4, Strickland defines a map

Level(A∗,GEn) −→ Subk(GEn).

The map sends a level structure to its “image”, which is a subgroup scheme
of GEn . When the target scheme is constant the “image” divisor of the level
structure is the genuine image of the map. Thus after pulling back to Ct we
have the following commutative diagram:

Level(A∗,GCt ⊕Qp/Zn−tp ) //

��

Subk(GCt ⊕Qp/Zn−tp )

tt
Sub≤k(Qp/Zn−tp ).

In the proof of Proposition 9.1 of [10], Strickland proves the following result:
Let Ā be the set of transitive abelian subgroups of Σpk (note that each of

these has order pk). The following diagram commutes:∐
A∈Ā

Level(A∗,GEn)
∼= //

��

∐
A∈Ā

Spec(E0
n(BA)/Itr)

��
Subk(GEn)

∼= // Spec(E0
n(BΣpk)/Itr),

where the right map is induced by the inclusion A ⊆ Σpk and the global
sections of each of the vertical maps are injective maps of rings. Note that
this property is preserved after pull-back to Ct because Ct is a flat E0

n-
algebra.

We have shown that, after pulling back to Ct, the left hand map and
the top map both commute with the natural maps to Sub≤k(Qp/Zn−tp ).
Because the right hand map is induced (on each component) by an inclusion
of groups, the subgroups of Qp/Zn−tp defined by considering the image of the
Pontryagin dual of the map from Zn−tp −→ imα ⊆ A or Zn−tp −→ imα ⊆

31



A ⊆ Σpk are the same. This implies that the right hand arrow also sits
inside a commutative triangle to Sub≤k(Qp/Zn−tp ).

Finally, since the global sections of the vertical maps are injective we can
pick an element in the global sections of Sub≤k(Qp/Zn−tp ), map it into the
global sections of Subk(GCt ⊕Qp/Zn−tp ) and then map it around the square.
The result follows.

Fix a map α : Zn−tp −→ Σpk that factors through ∆ (up to conjugacy)
as in the proof of Lemma 3.10 and let L ⊆ Qp/Zn−tp be the image of the
Pontryagin dual α∗ : imα −→ Qp/Zn−tp . Let f : Subk(GCt ⊕Qp/Zn−tp ) −→
Sub≤k(Qp/Zn−tp ) and let SubLk (GCt ⊕Qp/Zn−tp ) be the pullback

SubLk (GCt ⊕Qp/Zn−tp ) //

��

Subk(GCt ⊕Qp/Zn−tp )

f

��
∗ L // Sub≤k(Qp/Zn−tp ).

Thus SubLk (GCt ⊕Qp/Zn−tp ) consists of the subgroups of GCt ⊕Qp/Zn−tp of

order pk that project onto L ⊂ Qp/Zn−tp . We have the following corollary
of Theorem 3.11 above that gives an algebro-geometric description of the
Ct-cohomology of groups that arise as centralizers of tuples of commuting
elements in symmetric groups (modulo a transfer ideal):

Corollary 3.12. For α : Zn−tp −→ Σpk factoring (up to conjugacy) through
∆, there is an isomorphism

Spec(C0
t (BC(imα))/I

[α]
tr ) ∼= SubLk (GCt ⊕Qp/Zn−tp ),

where the ideal I
[α]
tr is the ideal coming from the application of Theorem

2.18 to the inclusion Σ×p
pk−1 ⊂ Σpk .

Proof. This follows immediately from the previous theorem.

Remark 3.13. When t = n−1 the groups that arise as centralizers of maps
α : Zp −→ Σpk that factor through ∆ are groups of the form

Z/pi o Σpj ,

where i+ j = k.

Remark 3.14. When imα = e ⊂ Σpk , the fiber over e ∈ Sub≤k(Qp/Zn−tp )
is Subk(GCt).
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Remark 3.15. When imα = Z/pk ⊂ Σpk , the image of the Pontryagin dual

is a subgroup of Qp/Zn−tp isomorphic to Z/pk. The fiber is GCt [p
k].

Before this, the two classes of finite groups with algebro-geometric in-
terpretations of their cohomology rings were cyclic groups and symmetric
groups. The remarks above imply that the fibers of the subgroups between
e and Z/pk can be viewed as interpolating between these two examples.

References

[1] J. F. Adams. Infinite loop spaces, volume 90 of Annals of Mathematics
Studies. Princeton University Press, Princeton, N.J., 1978.

[2] M. Ando. Isogenies of formal group laws and power operations in the
cohomology theories En. Duke Math. J., 79(2):423–485, 1995.

[3] M. Behrens and C. Rezk. The bousfield-kuhn
functor and topological andre-quillen cohomology.
http://math.mit.edu/ mbehrens/papers/BKTAQ4.pdf.

[4] M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel. Generalized group
characters and complex oriented cohomology theories. J. Am. Math.
Soc., 13(3):553–594, 2000.

[5] S. Marsh. The morava e-theories of finite general linear groups.
arxiv:1001.1949.

[6] J. P. May. The geometry of iterated loop spaces. Springer-Verlag, Berlin,
1972. Lectures Notes in Mathematics, Vol. 271.

[7] N. J. Stapleton. Transchromatic generalized character maps. Algebr.
Geom. Topol. to appear.

[8] N. J. Stapleton. Transchromatic twisted character maps. submitted.

[9] N. P. Strickland. Finite subgroups of formal groups. J. Pure Appl.
Algebra, 121(2):161–208, 1997.

[10] N. P. Strickland. Morava E-theory of symmetric groups. Topology,
37(4):757–779, 1998.

33


