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Abstract

In this article we study thick ideals defined by periodic self maps in the

stable motivic homotopy category over C. In addition, we extend some

results of Ruth Joachimi about the relation between thick ideals defined

by motivic Morava K-theories and the preimages of the thick ideals in the

stable homotopy category under Betti realization.
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1 Introduction

There are two famous results by Hopkins and Smith in [HS] that provide a
complete description of the thick subcategories in the stable homotopy category
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of finite topological spectra.

Definition 1.1. A thick subcategory of a tensor triangulated category is a
nonempty, full, triangulated subcategory that is closed under retracts. A thick
ideal is a thick subcategory that is closed under tensoring with arbitrary objects.

The thick subcategory theorem states that if we localize at a prime l the
thick subcategories (in fact thick ideals) of the category SHfin

(l) are given by a

chain
SHfin

(l) = C0 ) C1 ) C2 ) ... ) C∞ = {0}

and each thick ideal Ci+1, 0 ≤ i < ∞, is characterized by the vanishing of the
i-th Morava K-theory K(i), where K(0) = HQ by convention. The periodicity
theorem states that these thick subcategories can also be described by the prop-
erty of admitting a special kind of periodic self map; a so called vn-self map that
induces an isomorphism in K(n) and nilpotent maps in K(m), m 6= n. Using
the older Nilpotence theorem of Devinatz, Hopkins and Smith in [DHS], Hop-
kins and Smith showed that the full subcategory Cvn of finite spectra admitting
such self maps is in fact thick, and thus equal to one of the categories Ci. For
algebraic reasons (see [Rav2, 3.3.11]) the category Cvn must be nested in the
following way:

Cn+1 ⊂ Cvn ⊂ Cn

Therefore, by the thick subcategory theorem, the existence of at least one spec-
trum Xn in Cn admitting such a self map proves the equality Cvn = Cn. Using an
earlier construction of Smith, they prove that there is indeed such a spectrum
Xn that admits a vn-self map.

The fact that the motivic Hopf map η is not nilpotent suggests that the pic-
ture looks very different in the motivic context, even over the complex numbers.
Ruth Joachimi showed in her dissertation that algebraic Morava K-theories,
originally defined by Borghesi, define a similar chain of thick subcategories
CAK(n) for odd primes over the base field C([Joa, 9.6.4]), but also that there
are a more thick ideals in the motivic homotopy category ([Joa, Chapter 7]).
In addition, she relates the thick ideals CAK(n) to the thick ideals thickid(cCn)
and R−1(Cn) provided by the classical thick ideals via the constant simplicial
presheaf and Betti realization functors, respectively.

The purpose of this article is to explore the motivic equivalents of the con-
structions by Hopkins and Smith. In Theorem 3.11, we prove that periodic
motivic self maps defined by algebraic Morava K-theory define a thick subcat-
egory, but we need to make use of a conjectural weakened version of a motivic
nilpotence lemma. In Theorem 4.13 we lift a construction by Hopkins and
Smith in [HS] to the motivic world to show that examples of these self maps
exist. Finally, in the last two sections, we use some of our computations in
the preceding sections to settle [Joa, Conjecture 7.1.7.3]. We furthermore pro-
vide a counterexample to the asserted inclusion thickid(cC2) ⊂ CAK(1) in [Joa,
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Chapter 9, last section] and we identify an error in [Joa, Proposition 8.7.3], on
which the assertion is based. The counterexample also proves that the inclusion
CAK(1) ⊂ R−1(C2) is actually proper and hence that the thick subcategories
defined by algebraic Morava K-theories are distinct from the preimages of the
topological thick ideals under Betti realization.

This research was originally part of my dissertation under supervision by
Jens Hornbostel, to who I am grateful for his support. It was conducted in
the framework of the research training group GRK 2240: Algebro-Geometric
Methods in Algebra, Arithmetic and Topology, which is funded by the DFG.

2 Background

We work in the motivic stable homotopy category SHC, whose objects are
P1-spectra of motivic spaces over the base field C. The construction of this
category is due to Voevodsky and Morel (see [Voe] and [MV]) and mimicks
the construction of the topological stable homotopy category, where smooth
schemes take the place of topological spaces. There are two kinds of spheres
in the motivic world, a simplicial and a geometric one; therefore suspensions,
homotopy, homology and cohomology are all not singly graded but bigraded;
and there are two common conventions for how to grade them. We index them
according to the following convention:

Definition 2.1. Define S1,0 as the P1-suspension spectrum of the simplicial
sphere (S1, 1) and S1,1 as the P1-suspension spectrum of (A1 − 0, 1). The sus-
pension spectrum of P1 is then equivalent to S2,1. Define

Sp,q
.

.= (S1,0)∧(p−q) ∧ (S1,1)q.

This relates to the other common notation of Sα = S1,1 by Sp,q = Sp−q+qα.
The motivic homotopy groups of a motivic spectrum X ∈ SHk are then defined
as:

πp,q(X) .

.= [Sp,q, X ]SHk

There is a topological realization functor R : SHC → SHtop called Betti re-
alization. There are many reviews of the construction and basic properties of
this functor. We rely on the account in [Joa, 4.3]. Betti realization maps the
suspension spectrum of a smooth scheme over C to the suspension spectrum of
the topological space of its complex points, endowed with the analytic topology.
In particular the image of the motivic sphere Sp,q under Betti realization is the
topological sphere Sp. This functor is a strict symmetric monoidal left Quillen
functor.

Because Betti realization maps the motivic spheres to the topological ones,
it induces maps on homotopy groups

R : πpq(X) → πp(R(X))
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for every motivic spectrum X ∈ SHC. Therefore for every motivic spectrum
E ∈ SHC it also induces maps

R : Epq(X) → R(E)p(R(X))

and
R : Epq(X) → R(E)p(R(X))

on homology and cohomology associated to that spectrum. Betti realization has
a strict symmetric monoidal right inverse

c : SHtop → SHC

called the constant simplicial presheaf functor. It is a result of Levine(see [Lev,
Theorem 1]) that c is not only faithful but also full.

2.1 Cellular motivic spectra

We intent to construct an example vn-self map v : Xn → Xn on the motivic
equivalent of the spaceXn used by Hopkins and Smith. This space is constructed
as a retract of a finite cell spectrum. In classical topology, a retract of a finite
cell spectrum is a finite cell spectrum again, but this does not necessarily need to
be the case motivically. Therefore, we want to consider the slightly larger thick
envelope SHqfin

C
(defined in 2.2) of the subcategory of finite spectra in SHC in

the definition of motivic vn-self maps and for the study of thick subcategories
characterized by vn-self maps. In contrast to classical algebraic topology, not
all motivic spectra are cellular in the following sense:

Definition 2.2. 1. The category of cellular spectra SHcell
k in SHk is defined

(c.f. [DI2, Definition 2.1]) as the smallest full subcategory that satisfies

• The spheres Sp,q are contained in the subcategory SHcell
k .

• If a spectrum X is contained in the subcategory SHcell
k , then so are

all spectra which are weakly equivalent to X.

• If X → Y → Z is a cofiber sequence and two of the three spectra are
contained in the subcategory SHcell

k , then so is the third.

• The subcategory SHcell
k is closed under arbitrary colimits.

2. The subcategory of finite cellular spectra SHfin
k in SHk is defined simi-

larly as the smallest full subcategory that satisfies the first three conditions
(see [DI2, Definition 8.1]).

3. We define the category of quasifinite cellular spectra SHqfin
k as the small-

est full triangulated subcategory of SHk that contains SHfin
k and is closed

under retracts. The spectra in SHqfin
k are exactly finite cell spectra and

their retracts, since the cofiber of two retracts of finite cell spectra is a
retract of a finite cell spectrum by the octahedral axiom.
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4. By [Roen, Lemma 2.2] a motivic spectrum is cellular if and only if it
admits a cell presentation, i.e. it can be built by successively attaching
cells Ss,t. A motivic cell spectrum X is called of finite type if it admits
a cell presentation with the following property: there exists a k ∈ N such
that there are no cells in dimensions satisfying s − t < k and such that
there exist only finitely many cells in dimensions (s+ t, t) for each s.

2.2 Completions

For the sake of studying periodic self maps it is useful to consider one prime at
a time, because these maps are detected by a collection of cohomology theories
called Morava K-theory, which are defined with regard to a specific prime. In
our case this prime will usually be odd, i.e. different from two. Topologically
one can implement this by studying the localized or completed homotopy cat-
egory via the tool of Bousfield localization at an appropiate Moore spectrum.
Motivically this works as well (a discussion of this in the motivic setting can be
found in [RO, Section 3]): We define the l-completed motivic homotopy cate-
gory SH∧k,l as the Bousfield localization of the category SHk at the mod-l Moore
spectrum S/l.

Definition 2.3. Let l be any prime number, and let X be a motivic spectrum
in SHk. The l-completion X∧l of X is the Bousfield localization of X at the
mod-l Moore spectrum S/l. One can also describe this completion as:

X∧l
.

.= LS/lX ≃ holim
←

X/ln

Definition 2.4. We define the subcategory SH∧,cellk,l of l-complete cellular spec-

tra in SH∧k,l as the full subcategory of l-completions of cellular spectra. Sim-

ilarly, we define the subcategories SH∧,fink,l of l-complete finite cellular spectra

and SH∧,qfink,l of l-complete quasifinite cellular spectra as the full subcategories

of l-completions of spectra in SHfin
k and SHqfin

k .

2.3 Motivic Spanier-Whitehead duality

We are going to make use of Spanier-Whitehead duality when we study periodic
self maps. The sources we want to quote use different, but equivalent defini-
tions of dualizability, so we collect a number of basic definitions and facts about
Spanier-Whitehead duality that we are going to use in one place. Our primary
source is [LMS, III.1] where categorical duality is explained with great detail.
Consider a spectrum X in SHk or SH∧k,l. Both categories are closed symmetric
monoidal categories (see [Jar]), and therefore for an arbitrary motivic spectrum
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Y there exists a function spectrum F (X,Y ). The unit and counit of the canon-
ical tensor-hom adjunction are given by maps

ηX,Y : X → F (Y,X ∧ Y )

and by the evaluation
ǫX,Y : F (X,Y ) ∧X → Y

and furthermore there is a natural pairing

F (X,Y ) ∧ F (X ′, Y ′) → F (X ∧X ′, Y ∧ Y ′)

which provides a natural map

νX,Y : F (X,S) ∧ Y → F (X,Y )

by specializing to the case X ′ = Y = S and using the fact F (S, Y ′) ∼= Y ′.

Proposition 2.5. Let X be a spectrum in SHk or SH∧k,l. Then the following
three conditions are equivalent:

1. The canonical map

νX,Y : F (X,S) ∧ Y → F (X,Y )

is an isomorphism for all spectra Y .

2. The canonical map

νX,X : F (X,S) ∧X → F (X,X)

is an isomorphism.

3. There is a coevaluation map coev : S → X∧F (X,S) such that the diagram

S
coev //

ηS,X

��

X ∧ F (X,S)

T

��
F (X,X) F (X,S) ∧X

νX,Xoo

commutes, where T denotes the transposition map.

Proof. Clearly the first point implies the second. The second point implies the
third, because one can define coev as the composite T ◦ ν−1X,X ◦ ηS,X . Finally,
the third point implies the first (c.f. [LMS, Proposition III.1.3(ii)]) because one
can define an inverse to

νX,Y : F (X,S) ∧ Y → F (X,Y )
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as the following composite:

ν−1X,Y : F (X,Y ) ∼= F (X,Y ) ∧ S
id∧coev
−→ F (X,Y ) ∧X ∧ F (X,S)

ǫX,Y ∧id
−→

−→ Y ∧ F (X,S)
T

−→ F (X,S) ∧ Y

Definition 2.6. If X satisfies any of the preceding conditions, it is called
strongly dualizable.
The spectrum DX = F (X,S) is called the (motivic) Spanier-Whitehead dual
of X. By definition, D .

.= F (−, S) is a contravariant functor

D : SHk → SHk

and similarly D .

.= F (−, S∧l ) is a contravariant functor

D : SH∧k,l → SH∧k,l

on the category of l-complete spectra. In fact, the obvious map

F (−, S) → F (−, S∧l )

is a completion at l, but we will neither need nor prove it.

We will need the following general facts about strongly dualizable spectra,
which are proven in [LMS, Proposition III.1.3 (i, iii)]:

Lemma 2.7. 1. If X is strongly dualizable, then DDX ∼= X.

2. If X and Y are strongly dualizable, then the natural map

F (X,S) ∧ F (Y, S) → F (X ∧ Y, S)

is an isomorphism. In particular, X ∧ Y is strongly dualizable.

The spectrum DX ∧ X has the structure of a homotopy ring spectrum by
the same arguments as in[Rav2, Proof of Corollary 5.1.5]:

Remark 2.8. If X is strongly dualizable, then the unit map

e : S
ηS,X

−→ F (X,X) ∼= F (X,S) ∧X = DX ∧X

and the multiplication map

µ : DX ∧X ∧DX ∧X
D(e)
−→ DX ∧ S ∧X ∼= DX ∧X

endow DX ∧ X with the structure of motivic homotopy ring spectrum (in fact
an A∞-structure, but we are not going to use or prove it), where we use

X ∧DX ∼= DDX ∧DX = D(DX ∧X)

in the definition of D(e).
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Lemma 2.9. The functor D maps cofiber sequences to cofiber sequences, and
the full subcategory of strongly dualizable spectra in SHk is thick.

Proof. For the first statement, let X → Y → Z be a cofiber sequence. Because
SHk is the homotopy category of a pointed monoidal model category, the functor
F (−, A) maps cofiber sequences to fiber sequences for any A in SHk (c.f. [Hov,
6.6]). In particular this is true for D(−) = F (−, S). Because SHk is stable,
fiber and cofiber sequences agree, and DZ → DY → DX is a cofiber sequence
again.
For the second statement we only need to show that a retract of a strongly
dualizable spectrum is again strongly dualizable, so let A be a retract of a
strongly dualizable spectrum X . Note that by the first point of 2.5 we have to
show that the canonical map

F (A,S) ∧ Y → F (A, Y )

is an isomorphism for all motivic spectra Y , and we already now this statement
is true if we replace A with X . But this follows immediately from the following
diagram:

F (X,S) ∧ Y

id

��
∼= //

��

F (X,Y )

��

id

		

F (A,S) ∧ Y //

II

F (A, Y )

UU

Lemma 2.10. All spectra in SHqfin
C

are strongly dualizable in SHC, and SHqfin
C

is closed under taking duals.
As a consequence, all spectra in SH∧,qfink,l are strongly dualizable in SHC(l), and

SH∧,qfink,l is closed under taking duals.

Proof. Finite cell spectra are contained in the thick subcategory of compact
spectra, and compact spectra are dualizable(See [NSO, Remark 4.1] or [Joa,
5.2.7]). Therefore the thick subcategory generated by finite cell spectra is dual-
izable.
To show that SHqfin

C
is closed under taking duals, we only have to check that

the duals of finite cell spectra and their retracts are in SHqfin
C

again by 2.2.
This is true for finite cell spectra by cellular induction, because the duals of
suspensions of the sphere spectrum are suspensions of the sphere spectrum. If
X is a retract of a spectrum F ∈ SHqfin

C
such that DF ∈ SHqfin

C
, with maps

r : F → X and s : X → F such that r ◦ s = idX , then DX is a retract of
DF ∈ SHqfin

C
with maps Ds : DF → DX and Dr : DX → DF because

Ds ◦Dr = idDX .
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2.4 The motivic Steenrod algebra and the dual motivic
Steenrod algebra

One key ingredient for the Adams spectral sequence is knowlegde of the Steenrod
algebra or of the dual Steenrod algebra. Motivically, the Steenrod Algebra was
described by Voevodsky for fields of characteristic zero and later by Hoyois,
Kelly and Østvær in positive characteristic. While some interesting phenomenas
happen at the prime two, the motivic Steenrod algebra is more closely related to
the classical topological Steenrod algebra at odd primes. To describe the motivic
Steenrod algebra it is sufficient to know the coefficients of motivic coholomogy
with Z/lZ-coefficients:

Proposition 2.11. For l 6= 2 a prime and k = C the coefficients HZ/l∗∗ of
motivic cohomology are given as a ring by

HZ/l∗∗ ∼= Z/l[τ ]

with |τ | = (0, 1), and the image of τ under Betti realization is nonzero.

Proof. We know that HZ/l∗∗ = 0 for q < p ((cf. [MVW, Theorem 3.6])).
Let q ≥ p. Then there is an isomorphism from motivic to étale cohomology:

Hp,q(Spec(k),Z/l) ∼= Hp
ét(k, µ

⊗q
l )

This isomorphism respects the product structure([GL, 1.2,4.7]).
The étale cohomology groups Hp

ét(k, µ
⊗q
l ) can be computed as the Galois co-

homology of the separable closure of the base field (in both cases the complex
numbers) with coefficients in the l-th roots of unity. The action of the abso-
lute Galois group G is given by the trivial action if k = C and by complex
conjugation if k = R:

Hp
ét(k, µ

⊗q
l ) ∼= H(G,µ⊗ql (C))

For k = C, these groups all vanish for p 6= 0 by triviality of the Galois action,
and they are Z/l in the degree p = 0 for all q ≥ 0. The multiplicative structure
is given by the tensor product of the modules.

Remark 2.12. We denote the image of τ under HZ/l∗∗ = HZ/l−∗,−∗ with the
same name. This image has bidegree |τ | = (0,−1).

The motivic mod-l Steenrod algebra over basefields of characteristic 0 has
been computed by Voevodsky in [Voe2]. The implications for the dual motivic
Steenrod algebra are for example written down in the introduction of [HKO].
In our special case it has the following shape:

Proposition 2.13. Let k = C as above, and let l be an odd prime. The dual
motivic Steenrod algebra A∗∗ and its Hopf algebroid structure can be described
as follows:

A∗∗ = HZ/l∗∗[τ0, τ1, τ2, ..., ξ1, ξ2, ...]/(τ
2
i = 0)
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Here |τi| = (2li − 1, li − 1) and |ξi| = (2li − 2, li − 1).
The comultiplication is given by

∆(ξn) =

n∑

i=0

ξl
i

n−i ⊗ ξi

where ξ0 := 1, and

∆(τn) = τn ⊗ 1 +

n∑

i=0

ξl
i

n−i ⊗ τi

2.5 Generalized motivic Adams spectral sequences

We will use the homological motivic Adams spectral sequence to compute the
coefficients of the l-completed motivic Brown-Peterson spectrum ABP∧l . The
motivic Adams spectral sequence was inspired by Morels computation of the
zeroth motivic stable stem(c.f. [Mor]) and was used by Dugger and Isaksen
for extensive computations over C at the prime 2 (c.f. [DI]). They also use
additional information available in the MASS to deduce new information about
the classical Adams spectral sequence. In other work Isaksen has extended
these computations to the base field R. Generalized motivic Adams spectral
sequences can be constructed for E an arbitrary motivic ring spectrum and X
a motivic spectrum. Define Ē as the cofiber of the unit map S → E. Smashing
the cofiber sequence Ē → S → E with Ēs ∧X yields cofiber sequences

Ē∧(s+1) ∧X → Ē∧s ∧X → E ∧ Ē∧s ∧X

giving rise to the following tower, called the canonical E∗∗-Adams resolution:

... //

��

Ē∧(s+1) ∧X //

��

Ē∧s ∧X //

��

... //

��

Ē ∧X //

��

X

��
... E ∧ Ē∧(s+1) ∧X E ∧ Ē∧s ∧X ... E ∧ Ē ∧X E ∧X

The long exact sequences of homotopy groups associated to these cofiber se-
quences forms a trigraded exact couple

π∗∗(Ē
∧∗ ∧X) // π∗∗(Ē∧∗ ∧X)

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

π∗∗(E ∧ Ē∧∗ ∧X)

hh❘❘❘❘❘❘❘❘❘❘❘❘❘

and thus give rise to a trigraded spectral sequence Es,t,u
r (E,X) with differentials

dr : Es,t,u
r −→ Es+r,t+r−1,u

r .

If one furthermore assumes that E∗∗E is flat as a (left) module over the
coefficients E∗∗ it is possible to identify the E2-term via homological algebra.
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In this case one can associate a flat Hopf algebroid to E (See [NSO, Lemma 5.1]
for the statement and [Rav, Appendix 1] for the definition and basic properties
of Hopf algebroids), and the category of comodules over this Hopf Algebroid is
abelian and thus permits homological algebra. Because E∗∗E is flat over E∗∗
there is also an isomorphism (see [NSO, Lemma 5.1(i)])

π∗∗(E ∧E ∧X) ∼= E∗∗(E) ⊗
E∗∗

E∗∗(X)

allowing us to identify the long exact sequences of homotopy groups of the
canonical E∗∗-Adams resolution with the (reduced) cobar complex C∗(E∗∗(X)).
For this reason the resolution is also referred to as the geometric cobar complex.
The E2- page of the E-Adams spectral sequence can then be described as:

Es,t,u
2 (E,X) = Cotors,t,uE∗∗(E)(E∗∗, E∗∗(X))

Here Cotor denotes the derived functors of the cotensor product in the cate-
gory of E∗∗(E)-comodules and can be computed as the homology of the cobar
complex C∗(E∗∗(X)).

Remark 2.14. Assume now that k = C. Then Betti realization induces a map
of spectral sequences RE,X : Es,t,u

r (E,X) → Es,t
r (R(E), R(X))

This can be checked by going through the definitions: Because Betti real-
ization preserves cofiber sequences and smash products, we have R(Ē) = R(E),
and the realization of the canonical E∗∗-Adams resolution for X is the canoni-
cal R(E)∗-Adams resolution for the topological spectrum R(X). If we consider
the induced maps on the long exact sequences of homotopy groups defining the
exact couple, we get the following commutative diagram:

... //

R

��

πp,∗(Ē
∧(s+1) ∧X) //

R
��

πp,∗(Ē
∧s ∧X) //

R
��

πp,∗(E ∧ Ē∧s ∧X) //

R
��

...

R

��... // πp(R(E)
∧(s+1)

∧R(X)) // πp(R(E)
∧s

∧R(X)) // πp(R(E) ∧R(E)
∧s

∧R(X)) // ...

In particular, Betti realization induces a map of exact couples and hence a map
of spectral sequences.

Convergence of the spectral sequence has been studied for the caseE = HZ/l
by Hu, Kriz and Ormsby in [HKO, Theorem 1]. It turns out that over the
complex numbers, the spectral sequence will just converge to the l-completion
X∧l of X , which one can either describe as the Bousfield localization of X at
the mod-l Moore spectrum S/l or explicitely as:

X∧l
..= LS/lX ≃ holim

←
X/ln

The homotopy groups of X and its l-completion are related by the following
short exact sequence([RO, End of section 3]):

0 → Ext1(Z/l∞, π∗∗X) → π∗∗X
∧
l → Hom(Z/l∞, π∗−1,∗X) → 0

11



We will see later that for our case of interest, where X = ABP∧l , the spectral
sequence actually converges strongly because of a vanishing line.

2.6 The algebraic Morava-K-theories AK(n)

As before we work over the complex numbers, and the prime l will be odd. In
particular this prime is implicit in the definition of the motivic Brown-Peterson-
spectrum ABP and of the algebraic Morava-K-theory spectrum AK(n). In this
section we show that the algebraic Morava-K-theory spectra AK(n) admit the
structure of a commutative homotopy ring spectrum similar to their classical
counterparts. These spectra were originally defined by Borghesi in [Bor]. In
addition we rely on the description provided in [Joa, Def. 6.3.1]:

Definition 2.15. The connective n-th motivic Morava K-theory is defined as

Ak(n) = ABP/(v0, ..., vn−1, vn+1, vn+2, ...)

and the n-th motivic Morava K-theory spectrum AK(n) is defined as:

AK(n) = v−1n ABP/(v0, ..., vn−1, vn+1, vn+2, ...)

In particular, both spectra are MGL(l)-modules.

AK(n) and Ak(n) are genuinely motivic in the sense that they are derived
from the spectrum representing algebraic cobordism. We will need some of the
properties of AK(n) proven in [Joa], namely:

Remark 2.16. 1. The Betti realization of the (connective) motivic Morava
K-theory is the classical (connective) Morava K-theory ([Joa, Lemma 6.3.2]):

RC(AK(n)) = K(n)

and
RC(Ak(n)) = k(n)

2. By [Joa, Lemma 6.3.7] the coefficients of algebraic Morava K-theory are
given by:

AK(n)∗∗ = HZ/(l)∗∗ ⊗
Z/(l)

K∗

3. If X is a finite motivic cell spectrum such that HZ/(l)∗∗(X) is free over the
coefficients, then the motivic Adams spectral sequence for Y = Ak(n)∧X
will converge strongly to Ak(n)∗∗(X). (See [Joa, 8.3.3])

At least for odd primes, the topological spectra K(n) can be shown to be
homotopy ring spectra. As remarked in [Joa, Remark 6.3.3(6)], it is not known
in general if the motivic Morava K-theory spectrum AK(n) can be endowed
with the structure of a motivic homotopy ring spectrum. In the special case
k = C, l 6= 2 however Joachimi proved that the spectrum

AP (n) ..= ABP/(v0 = l, v1, ..., vn−1),

12



another quotient of MGL, admits a unital homotopy associative product [Joa,
9.3], and with the work done by her it is no longer difficult to do the same for
AK(n).

We want to use and extend the results in [Joa, 9.3] and follow the notation
used there to make comparison easier. In particular η will not denote the mo-
tivic Hopf map in this chapter, but a different map to be defined later. The
only exception is the name of the prime l, which is referred to as p in [Joa].
Let R ∈ SHk be a strictly commutative ring spectrum with multiplication map
m : R ∧R → R and unit map i : S → R. The example that we have in mind is
MGL(l), which is a strictly commutative motivic ring spectrum by the reason-
ing given in the beginning of [Joa, 9.3].

Classically one can study the products on R-modules of the form R/x and
use them to gain information about products on quotients of the form R/X
where X is a countable regular sequence of homogeneous elements. In contrast
to the classical situation, the coefficients of MGL(l) are not known, but the
coefficientsMGL(l)/l are. Therefore motivically one has to consider R-modules
of the form R/(x, y).

In the section immediately preceding [Joa, 9.3.7] and in the proof of [Joa,
Lemma 9.3.8] Joachimi constructs a product on quotients of this form and proves
the following statement:

Lemma 2.17. Let y ∈ πk′,l′(R) and let x ∈ πk,l(R). Define the R-modules
M .

.= R/y and N .

.=M/x and denote the structure map of M as νM : R∧M →
M . Write η′ for the canonical map

η′ : R →M = R/y

and η for the canonical map

η :M → N = R/(x, y)

.

If π2k′+1,2l′(M) = 0 and π2k+1,2l(N) = 0, there are maps of R-modules

µM :M ∧M →M

νM,N :M ∧N →M

µN : N ∧N → N

13



making the following diagrams commute up to homotopy:

R ∧R
η′
∧η′

//

m

��

1∧η′

%%❑❑
❑❑

❑❑
❑❑

❑ M ∧M

µM

��

R ∧M
νM

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

η′
∧1

99rrrrrrrrrr

R
η′

// M

(2.17.1)

M ∧M
η∧η //

µM

��

1∧η

%%▲▲
▲▲

▲▲
▲▲

▲▲
N ∧N

µN

��

M ∧N
νM,N

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

η∧1
99ssssssssss

M
η // N

(2.17.2)

In particular, if we choose the maps η′ ◦ i and η ◦ η′ ◦ i as unit maps, µM and
µN are unital products on M and N respectively.

Furthermore the following result of Joachimi [Joa, Lemma 9.3.8] proves as-
sociativity, and we wish to extend it to include commutativity:

Lemma 2.18. If πk′+1,l′(M) = π2k′+2,2l′(M) = π3k′+3,3l′(M) = 0, then µM is
homotopy associative.
If furthermore πk+1,l(N) = π2k+2,2l(N) = π3k+3,3l(N) = 0, then µN is also
homotopy associative.

We need the following lemma of Joachimi [Joa, Lemma 9.3.3] in the proof
of commutativity:

Lemma 2.19. Let R′ be a (homotopy) ring spectrum, M ′ a left R′-module, and
πk,l(M

′) = 0. Then any R′-module map ψ : Sk,l ∧ R′ → M ′ is homotopically
trivial.

Proposition 2.20. Let R be a homotopy ring spectrum and commutative up to
homotopy. Let M and N be quotient modules defined as in 2.17.

If πk′+1,l′(M) = π2k′+2,2l′(M) = 0, then µM is homotopy commutative.
If furthermore the homotopy groups of N satisfy πk+1,l(N) = π2k+2,2l(N) = 0,
then µN is also homotopy commutative.

Proof. The R module M = R/y is defined by the following cofiber sequence:

Σk′,l′R
φ
→ R

η′

→M
δ
→ Σk′+1,l′R

Recall that m : R∧R → R is the product on the ring spectrum R. To show
that the product µM :M ∧M →M is commutative, it suffices to show

θ ..= µM ◦ (1− T ) : M ∧M →M

14



is homotopic to the zero map, where T is the transposition map. The map

θ′ ..= (η′ ∧ idM ) ◦ θ

fits into the following diagram of R modules

R ∧R

idR∧η
′

��

m◦(1−T )=0 //

0

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍ R

η′

��
R ∧M

��

θ′

// M

Σk′+1,l′R ∧R

θ̄′

::✈
✈

✈
✈

✈
✈

✈
✈

✈
✈

which commutes by 2.17.1. The top horizontal map is zero up to homotopy
because m is homotopy commutative by assumption, and the first column is
the cofiber sequence defining M , smashed with R. Together, this implies the
existence of the dashed map θ̄′.

Now R is a R ∧R module via the product map m and we can consider this
diagram as a diagram of R ∧R modules. Then proposition 2.19, applied to the
ring spectrum R ∧ R, implies that θ̄′ is null homotopic by our assumptions on
the homotopy groups ofM . Therefore θ′ is null homotopic as well. We then get
the following commutative diagram for θ:

R ∧M

η′
∧idM

��

θ′=0 //

0

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆ M

M ∧M

��

θ // M

Σk′+1,l′R ∧R
idR∧η

′

// Σk′+1,l′R ∧M

θ̄

88q
q

q
q

q
q

q
q

q
q

q
q

// Σ2k′+2,2l′R ∧R

θ̃

OO

Once again the first column is a cofiber sequence, which implies the existence
of the dashed map. The composite θ̄ ◦ (idR ∧ η′) is null homotopic because
this diagram is a diagram of R ∧ R modules again, so we can use the same
argument as before. This implies the existence of the dotted map θ̃. This map
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also vanishes by the second condition on the homotopy groups of M, which in
turn implies that θ̄ is zero up to homotopy. Therefore θ also vanishes, so µM is
homotopy commutative.

Because we used only the fact that R is a homotopy ring spectrum and not
strict commutativity, and because diagram 2.17.2 in 2.17 commutes, we can
then repeat the same proof with M replacing R and N replacing M . Note that
this would not have been possible if we worked over R-modules, because it is
not clear that R/x is a strictly commutative ring spectrum again.

Lemma 2.21. Let k = C and l 6= 2. The spectrum AP (n) admits a unital,
homotopy associative and homotopy commutative product

µAP (n) : AP (n) ∧AP (n) → AP (n)

and so do the spectra Ai = AP (n)/(vn+1, ..., vn+i).

Proof. Except for the statement about commutativity, the first part of this
lemma is the content of [Joa, 9.3.9]. The essential argument in the proof of the
cited lemma is as follows: if one has a sequence of elements J ⊂ R∗∗ and one
knows that A ..= R/(J−{x, y}) is a homotopy associative and commutative ring
spectrum, then one can describe the product on R/J ∼= A/(x, y) ∼= A∧

R
R/(x, y)

by

(N ∧
R
A) ∧ (N ∧

R
A)

τ
−→ (N ∧N)∧

R
(A∧A)

idN∧idN∧µA
−→ N ∧N ∧

R
A

µN∧idA
−→ N ∧A

and thus has to prove the vanishing of the obstruction groups to associativity
only after application of (−) ∧

R
A to the associativity diagram.

Now choose R =MGL(l) and A = ABP and J such that MGL(l)/J = AP (n).
Then the relevant obstruction groups are trivial because for odd primes l 6= 2,
ABP∗∗ is concentrated in bidegrees where the first degree is divisible by 4.
We can then show that there is a homotopy associative product on AP (n) by
induction; because AP (n)/(v0, ..., vn), we only have to do finitely many steps,
and we can use the fact (see [Joa, Lemma 9.3.7]) that for any sequence (l) ⊂ J ′:

ABP/(J ′ ∪ {y}) ∼=MGL(l)/(l, y) ∧
MGL(l)

ABP/J ′

We can use the same argument to prove commutativity: if we apply (−)∧
R
A to

all the relevant diagrams in 2.20, we see that the obstructions to commutativity
lie in groups πi,j(M ∧

R
A) and πi,j(N ∧

R
A) which are trivial because 4 does not

divide i in the relevant bidegrees. Therefore the product on AP (n) is in fact
homotopy commutative.
Now consider the spectra Ai. To define them, we add finitely many elements,
namely vn+1, ..., vn+i, to the sequence J . The proof of [Joa, Lemma 9.3.7]
carries through verbatim and we can conclude that there is a product map
Ai ∧Ai → Ai. Similarly, because we had to add only finitely many elements to
J , we can repeat the induction argument above for the spectra Ai. This shows
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that the multiplication on Ai is in fact homotopy associative and homotopy
commutative.

By essentially classical arguments, this allows us to conclude that Ak(n) has
the desired ring structure:

Proposition 2.22. Let k = C and let l be an odd prime. Then the connective
algebraic Morava K-theory spectrum

Ak(n) = hocolim
−→

Ai = ABP/(v0, v1, ...vn−1, vn+1, vn+2, ...)

admits the structure of a homotopy associative and homotopy commutative mo-
tivic ring spectrum.

Proof. By [Joa, Corollary 9.3.5] the elements vi, i 6= n act trivially on Ak(n).
This is in particular the case for v0 = l. Therefore [Str, Lemma 6.7] holds for
A = M = Ak(n) (although Strickland considers rings in R-modules, the only
necessary modification is replacing the map ρ∗ by the map ρ∗ : [R/(l, xi) ∧

R

B,M ] → [R/xi ∧
R
B,M ] → [B,M ]), and we can use the arguments of [Str,

Proposition 6.8] to conclude that the constructed products on Ai induce a unital,
homotopy associative product on Ak(n). As noted in the proof of Stricklands
proposition, this product is commutative if and only if the maps Ai → Ak(n)
commute with themself (see [Str, Definition 6.1] for a definition of this notion).
Because the product on Ai is commutative, this is the case for every map out
of Ai.

Corollary 2.23. Let k = C and let l be an odd prime. The algebraic Morava
K-theory spectrum AK(n) = v−1n Ak(n) admits the structure of a commutative
and associative motivic homotopy ring spectrum.

Proof. We have an isomorphism AK(n) ∼= v−1n MGL(l) ∧
MGL(l)

Ak(n) and both

smash factors admit a homotopy commutative and associative product([Str,
Proposition 6.6]). Therefore we can endow AK(n) with the desired structure as
in the proof of 2.21.

It remains to show that this product induces the same product structure on
AK(n)∗∗ as one would expect from the computation of these coefficients:

Lemma 2.24. The multiplication map

µAK(n) : AK(n) ∧ AK(n) → AK(n)

induces the multiplication on AK(n)∗∗ given by the multiplication on K(n)∗ and
the isomorphism AK(n)∗∗ ∼= HZ/l∗∗ ⊗

Z/l
K(n)∗ of [Joa, Lemma 6.3.7].

Proof. The proof is similar to the proof of [Joa, Lemma 9.3.10]
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3 Thick subcategories characterized by motivic
vn-self maps

Let l be an odd prime and let k = C. The aim of this section is to show that
the existence of vn-self maps characterizes thick subcategories in SHqfin

C
and

hence also in the motivic homotopy category. We consider only the case n > 0.

Definition 3.1. Let X be a motivic spectrum in SHqfin
C

or SH∧,qfin
C,l . A map

f : Σt,uX → X is a motivic vn self-map if it satisfies the following conditions:

1. AK(m)∗∗f is nilpotent if m 6= n

2. AK(m)∗∗f is given by multiplication with an invertible element of HQ∗∗
if m = n = 0.

3. AK(m)∗∗f is an isomorphism if m = n 6= 0.

As mentioned before, the topological nilpotence theorem is a key ingredient in
the proof that topological finite cell spectra spectra admitting a vn-self map
form a thick subcategory: A map of finite spectra is nilpotent if and only if it
induces zero in all Morava K-theories. The motivic equivalent of this theorem
does not hold: For example, the motivic Hopf map η is a non-nilpotent map in
SHC, but induces the zero map in motivic Morava K-theory for degree reasons.
It seems likely however that a weaker version of the theorem applies, where we
only consider maps of a certain bidegree. For the remainder of this subsection
we assume that the following motivic nilpotence conjecture holds:

Conjecture 3.2. Let k = C, let l be an odd prime and n > 0 be an integer.
If X is a motivic spectrum in SHqfin

C
or SH∧,qfin

C,l and f : Σp,qX → X is a
motivic map such that (p, q) is a multiple of (2ln − 2, ln − 1), then:

∀m ∈ N : AK(m)∗∗(f) = 0 =⇒ ∃k ∈ N : fk ≃ 0

The known examples of non-nilpotent motivic self maps that induce the zero
map in motivic Morava-K-theory (A variety of examples can be found in [Hor],
and Boghdan George has constructed a whole family of such maps detected by
exotic motivic Morava K-theories) do not contradict this conjecture.

To prove the motivic equivalent of asymptotic uniqueness, we want to use Betti
realization to compare the motivic situation to the classical one. To do this,
we need to study the effect of Betti Realization on homology groups of AK(n).
We will show that the kernel of the map induced by Betti realization is pre-
cisely the τ -primary torsion elements. To do this, we need to compare K(n)∗
and AK(n)∗∗-modules, which is only possible after inverting τ . We also need
the fact that the AK(n)-homology of a (quasi)-finite motivic cell spectrum is
finitely generated over the coefficients:
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Lemma 3.3. Let X be a motivic spectrum in SHqfin
C

or SH∧,qfin
C,l . Then

1. AK(n)∗∗(X) is finitely presented as an AK(n)∗∗-module.

2. HomAK(n)∗∗(AK(n)∗∗(X),M) is finitely presented as an AK(n)∗∗-module
for every finitely presented AK(n)∗∗-module M . In particular,

EndAK(n)∗∗(AK(n)∗∗(X))

is finitely presented.

Proof. Note that AK(n)∗∗ is a quotient of a polynomial ring in the three vari-
ables vn, v

−1
n , τ over the field Fl and hence Noetherian. Therefore a AK∗∗-

module is finitely presented if and only if it is finitely generated.

1. We will show the statement for finite cell spectra by cellular induction
and then show that it also holds for retracts of finite cell spectra. The
claim is trivially true for the sphere spectrum. If the statement holds for
a spectrum, it also holds for retracts of this spectrum because AK(n)∗∗ is
Noetherian and submodules of finitely generated modules are again finitely
generated. It remains to show that if the spectra X and Y in a cofiber

sequence X
f

−→ Y
g

−→ Z satisfy the statement, then so does Z. Consider
the long exact sequence in AK(n)-homology

... → AK(n)∗∗(Y )
g

−→ AK(n)∗∗(Z)
δ

−→ AK(n)∗−1,∗(X)
f

−→ AK(n)∗−1,∗(Y ) → ...

associated to this cofiber sequence. We can break it up into short exact
sequences in the canonical way:

0 → coker(f)
ḡ

−→ AK(n)∗∗(Z)
δ̄p
−→ ker(f)[−1] → 0

The two outer terms in the short exact sequence are finitely generated:
ker(f)[−1] as a submodule of a finitely generated module over a Noetherian
ring, and coker(f) as a quotient of a finitely generated module. Therefore
the middle term is also finitely generated.

2. By the first part of this lemma, AK(n)∗∗(X) is finitely generated as an
AK(n)∗∗-module. Therefore there is a surjection Rk → AK(n)∗∗ from a
free and finitely generated AK(n)∗∗-module Rk onto AK(n)∗∗(X). Then

HomAK(n)∗∗(R
k,M) ∼=Mk

is a free and finitely generated AK(n)∗∗-module. Because AK(n)∗∗ is a
Noetherian ring,

HomAK(n)∗∗(AK(n)∗∗(X),M)

is finitely generated as a submodule of this finitely generated module.
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Remark 3.4. One can regard K(n)∗ and its modules as a bigraded ring and
bigraded modules concentrated in degree 0 with respect to the second bidegree.
Then every AK(n)∗∗[τ

−1]-module has the structure of a bigraded K(n)∗-module
where vtopn acts via τ l

n
−1vn. (This of course implies that (vtopn )−1 acts via

τ−l
n+1v−1n , so it only makes sense after inverting τ .) With this module struc-

ture, AK(n)∗∗[τ
−1] is free (with basis τk, k ∈ Z,−ln + 1 < k < ln − 1) and in

particular flat as a K(n)∗-module. Likewise it is flat as an AK(n)∗∗-module,
because it is a localization. We will implicitly use this in the following state-
ments and sometimes write −[τ−1] for − ⊗

AK(n)∗∗
AK(n)∗∗[τ

−1], and −[τ, τ−1]

for − ⊗
K(n)∗

AK(n)∗∗[τ
−1] as an abbreviation.

Lemma 3.5. (Compare [DI, 2.7 + 2.8])

1. Let X be a motivic spectrum in SHqfin
C

or SH∧,qfin
C,l .

We can define a map of bigraded AK(n)∗∗[τ
−1]-modules (even a map of

bigraded algebras if X is a ring spectrum) natural in X

R : AK(n)∗∗(X) ⊗
AK(n)∗∗

AK(n)∗∗[τ
−1] → K(n)∗(RC(X)) ⊗

K(n)∗

AK(n)∗∗[τ
−1]

via the assignment
x⊗ τk 7→ RC(x)⊗ τ−q+k

where q is the motivic weight of x ∈ AK(n)p,q(X).
This map is an isomorphism.

2. The induced map

R̄End,X : EndAK(n)∗∗(AK(n)∗∗(X))[τ−1] → EndK(n)∗(K(n)∗(RC(X)))[τ, τ−1]

is an isomorphism of bigraded AK(n)∗∗[τ
−1]-algebras.

3. A homogeneous element f ∈ EndAK(n)∗∗(AK(n)∗∗(X)) maps to zero un-
der the map

REnd,X : EndAK(n)∗∗(AK(n)∗∗(X)) → EndK(n)∗(K(n)∗(RC(X)))

induced by motivic realization if and only if it is τ-primary torsion.

Proof. 1. The statement about naturality and the module/algebra structure
follow from the properties of motivic realization. It remains to show that
the map is an isomorphism for spectra X in SHqfin

C
or SH∧,qfin

C,l . We
will prove this using cellular induction, and then show that it remains an
isomorphism under taking retracts.
Consider the case of the sphere spectrum X = S: The map

R : AK(n)∗∗[τ
−1] → K(n)∗ ⊗

K(n)∗
AK(n)∗∗[τ

−1]

20



sends τ to τ and vn ∈ AK(n)2(ln−1),l(n−1) to v
top
n ⊗τ−l

n+1 = 1⊗τ−l
n+1τ l

n
−1vn =

vn, so it is an isomorphism.
If X is a retract of a spectrum F for which the statement holds, then
AK(n)∗∗(X) is a direct summand of AK(n)∗∗(F ) and all squares in the
following diagram commute:

AK(n)p,q(X)[τ−1]
AK(n)∗∗(s)//

RX

��

id
**

AK(n)p,q(F )[τ
−1]

RF
∼=

��

AK(n)∗∗(r)// AK(n)p,q(X)[τ−1]

RX

��
K(n)p(RC(X))[τ, τ−1]

K(n)∗(RC(s))
//

id

44
K(n)p(RC(F ))[τ, τ

−1]
K(n)∗(RC(r))

// K(n)p(RC(X))[τ, τ−1]

Therefore RX is surjective and injective via a simple diagram chase.
Finally, suppose X → Y → Z is a cofiber sequence and the statement
holds for X and Y . Then the long exact sequence for AK(n)-homology
maps to the long exact sequence for K(n)-homology associated to the
cofiber sequence RC(X) → RC(Y ) → RC(Z), and the five lemma tells us
that the statement also holds for Z:

... //

∼= RX

��

AK(n)pq(Y )[τ−1] //

∼= RY

��

AK(n)pq(Z)[τ
−1] //

RZ

��

AK(n)p−1,q(X)[τ−1] //

∼= RX

��

...

∼= RY

��... // K(n)p(RC(Y ))[τ ][τ−1] // K(n)p(RC(Z))[τ ][τ
−1] // K(n)p−1(RC(X))[τ ][τ−1] // ...

2. LetM be a finitely presentedK(n)∗-module andN be an arbitraryK(n)∗-
module. As noted in 3.4, AK(n)∗∗[τ

−1] is a flat K(n)∗-module. By [Bour,
§2.10, Proposition 11] there is a canonical isomorphism:

HomK(n)∗(M,N)[τ, τ−1]
∼=
−→ HomK(n)∗[τ,τ−1](M [τ, τ−1], N [τ, τ−1])

Likewise, let M be a finitely presented AK(n)∗∗-module and N be an
arbitrary AK(n)∗∗-module. Because AK(n)∗∗[τ

−1] is a flat AK(n)∗∗-
module, there is also a canonical isomorphism:

HomAK(n)∗∗(M,N)[τ−1]
∼=
−→ HomAK(n)∗∗[τ−1](M [τ−1], N [τ−1])

The module AK(n)∗∗(X) is finitely presented by 3.3. Specializing to the
case M = N = AK(n)∗∗(X), these two isomorphisms fit in the following
commutative diagram:

EndAK(n)∗∗(AK(n)∗∗(X))[τ−1]
∼= //

��

EndAK(n)∗∗[τ−1](AK(n)∗∗(X)[τ−1])

��
EndK(n)∗(K(n)∗(RC(X)))[τ, τ−1]

∼= // EndK(n)∗[τ,τ−1](K(n)∗(RC(X)))[τ, τ−1])
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The first statement of the lemma tells us thatK(n)∗[τ, τ
−1] ∼= AK(n)∗∗[τ

−1]
andK(n)∗(RC(X)))[τ, τ−1] ∼= AK(n)∗∗(X)[τ−1], so the right vertical map
is an isomorphism. It follows that the left vertical map is also an isomor-
phism.

3. Let

P : EndK(n)∗(K(n)∗(RC(X)))[τ, τ−1] → EndK(n)∗(K(n)∗(RC(X)))

be the map of K(n)∗∗-algebras defined by sending τ to 1 and elements of
EndK(n)∗(K(n)∗(RC(X))) to themselves. Then we have a commutative
diagram of K(n)∗-algebras:

EndAK(n)∗∗(AK(n)∗∗(X))[τ−1]

R̄End,X

��

EndAK(n)∗∗(AK(n)∗∗(X))oo

REnd,X

��
EndK(n)∗(K(n)∗(RC(X)))[τ, τ−1]

P // EndK(n)∗(K(n)∗(RC(X)))

A homogeneous element maps to zero under the top horizontal map if and
only if it is τ -primary torsion. By the second statement of this lemma,
the left vertical map is an isomorphism, and there are no homogeneous
elements in the kernel of P . All this together implies the desired result.

Remark 3.6. If X is strongly dualizable, the map DX ∧X = F (X,S) ∧X →
F (X,X) is a weak equivalence, and we have a corresponding isomorphism on
homotopy groups πpq(X ∧ DX) ∼= End(X)pq. With regard to motivic Morava
K-theory the situation is more complicated. Using Spanier-Whitehead duality
we have:

AK(n)pq(X ∧DX) = [S,AK(n) ∧X ∧DX ]pq

= [X,AK ∧X ]pq

= [AK ∧X,AK ∧X ]AK,pq

The last term is related to EndAK(n)∗∗(AK(n)∗∗(X))pq via the Universal co-
efficient spectral sequence(c.f [DI2, Prop. 7.7]]. The E2-term of this spectral
sequence is given by

ExtAK(n)∗∗(AK(n)∗∗(X), AK(n)∗∗(X))

and it converges conditionally to [AK ∧ X,AK ∧ X ]AK,pq. In particular, if
AK(n)∗∗(X) is free or just projective as an AK(n)∗∗-module, this spectral se-
quence collapses at the E2-page because it is concentrated in the 0-line, and we
get an isomorphism:

AK(n)pq(X ∧DX) ∼= EndAK(n)∗∗(AK(n)∗∗(X))pq
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However, there is no general reason why AK(n)∗∗(X) should be free or projec-
tive. In contrast to this, all graded modules over the graded field K(n)∗ are free,
and therefore we always have an isomorphism

K(n)∗∗(X ∧DX) ∼= EndK(n)∗(K(n)∗(X))

for all finite topological cell spectra X. As a consequence, instead of working
with AK(n)∗∗(X ∧ DX), we will work directly with EndAK(n)∗∗(AK(n)∗∗(X))
motivically.

Every element in AK(n)∗∗ induces a map in EndAK(n)∗∗(AK(n)∗∗(X)) given
by multiplication with that element. We will denote this map by the same
name as the element. We can now prove the motivic equivalent of asymptotic
uniqueness:

Lemma 3.7. Let X be a motivic spectrum in SHqfin
C

or SH∧,qfin
C,l and

f : X → X

a motivic vn-self map. Then there exist integers i and j such that:

AK(n)∗∗(f
i) = vjn

Proof. We will use the classical statement for vtopn -self maps in the topological
stable homotopy category. In addition, it is known that for any unit u in a
K(n)∗-algebra that is finitely generated as a K(n)∗-module (c.f. [HS, Lemma
3.2] or [Rav2, Proof of Lemma 6.1.1]) there is a power of that element such that
ui = (vtopn )j . We will deduce the motivic statement by applying these classical
lemmas twice. On the one hand, one can divide out the ideal generated by
τ , which yields a finitely generated K(n)∗-algebra; on the other hand, one can
apply Betti realization.

Our first step is to show that the map

τ : AK(n)∗∗(X) → AK(n)∗∗(X)

can not be a unit in EndAK(n)∗∗(AK(n)∗∗(X)):
The element τ ∈ AK(n)∗∗ is not a unit; if we fix the first degree p in AK(n)pq
and vary the height q, then there is a maximum height such that AK(n)pq = 0
for all larger heights q. If τ were a unit, all its powers τk ∈ AK(n)0,−k would
need to have an inverse τ−k ∈ AK(n)0,k in arbitrarily high weights, which
is a contradiction to the previous statement. By the same argument the im-
age of τ cannot be a unit in any finitely generated AK(n)∗∗-module. But
EndAK(n)∗∗(AK(n)∗∗(X)) was finitely generated by 3.3, so the multiplication-
by-τ -map cannot be a unit.
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In the second step, we show that the statement is true modulo τ :
The motivic vn-self map f induces an isomorphism in AK(n)∗∗-homology, i.e.
a unit in EndAK(n)∗∗(AK(n)∗∗(X)). In the previous step we showed that τ
cannot be a unit; this implies that it cannot divide AK(n)∗∗(f), for if it did, τ
would also be a unit.
Therefore AK(n)∗∗(f) does not map to zero under the quotient map

EndAK(n)∗∗(AK(n)∗∗(X)) → EndAK(n)∗∗/(τ)(AK(n)∗∗(X)/(τ)))

and its image AK(n)∗∗(f) is thus a unit in the second ring.
If we forget the second bidegree, AK(n)∗∗/(τ) is isomorphic to K(n)∗, and
EndAK(n)∗∗/(τ)(AK(n)∗∗(X)/(τ)) is a finitely generated K(n)∗-algebra. In this

case we know that there are integers i and j such that AK(n)∗∗(f)
i
= (vtopn )j .

Hence
AK(n)∗∗(f)

i = vjn + τx̃

for some element x̃ ∈ AK(n)∗∗(X).

For the last step, suppose now that x̃ is τ -primary torsion. For the fixed prime
l and any k ∈ N we can consider powers AK(n)∗∗(f)

ikl = vjkln + (τx̃)kl. If k is
sufficiently large, the second term vanishes and we are done.
Suppose then that x̃ is not τ -primary torsion. Motivic realization induces a map

EndAK(n)∗∗(AK(n)∗∗(X)) → EndK(n)∗(K(n)∗(X))

By the classical statement we know that there are integers i′ and j′ such that
REnd,X(f)i

′

= (vtopn )j
′

. Replace i, i′ and j, j′ with their products i · i′ and j · j′

and call the result i and j again. Then AK(n)∗∗(f)
i = vjn+τx̃ realizes to vjn, so

τx̃ realizes to 0. Because τ realizes to 1, x̃ realizes to 0 and by 3.5 is therefore
0 itself.

Lemma 3.8. Assume that the motivic nilpotence conjecture holds. Let X ∈
SHqfin

C
, which implies DX ∈ SHqfin

C
by 2.10. If

f : Σp,qX → X

is a motivic vn-self map and

x ∈ πp,q(DX ∧X)

is the element corresponding to f under motivic Spanier Whitehead duality, then
there exists an integer i ∈ N such that xi is in the center of πp,q(DX ∧X).

Proof. The proof is essentially similar to [HS, Lemma 3.5] and [Rav2, Lemma
6.1.2], but we will have to use the motivic Nilpotence conjecture at one point.
For all a ∈ π∗∗(DX ∧X) there is an abstract map of rings

ad(a) : π∗∗(DX ∧X) → π∗∗(DX ∧X)
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defined by ad(a)(b) = ab − ba, and the element a is central if and only if ad(a)
is the zero map. This map is realized in homotopy by the composite (here we
write R for DX ∧X and T for the transposition map):

Sp,q ∧R
a∧idR→ R ∧R

1−T
→ R ∧R

µ
→ R

We also denote this composite by ad(a).
It now suffices to show that ad(x) is nilpotent because of the following classical
formula (proved in [Rav2, Lemma 6.1.2]):

ad(xi)(b) =

i∑

j=1

(
i

j

)
adj(x)(b)xi−j

If we choose i = lN for a sufficiently large N , all summands in this formula van-
ish either because of the nilpotence of ad(x) or because the binomial coefficient
annihilates ad(x).
Note that AK(n)∗∗(DX∧X) is a finitely generated AK(n)∗∗-algebra that maps
to K(n)∗(DR(X) ∧ R(X)) under Betti realization. It follows by the same rea-
soning as in the proof of Lemma 3.7 that a suitable power of AK(n)∗∗(x) is given
by vin for some i ∈ N, which is in the image of AK(n)∗∗ in AK(n)∗∗(DX ∧X)
and hence central. Replace x with that power and name it x again. Then
AK(n)∗∗(ad(x)) is zero, so ad(x) is nilpotent by the nilpotence conjecture.

Lemma 3.9. Let X be a motivic spectrum in SHqfin
C,(l) or SH∧,qfin

C,l . Assume

that the motivic nilpotence conjecture 3.2 holds. If f, g : X → X are two motivic
vn-self maps, then there exist integers i, j ∈ N such that f i = gj.

Proof. This lemma corresponds to [HS, Lemma 3.6] and [Rav2, Lemma 6.1.3].
By the previous two lemmas, we can assume that f and g, after replacing them
with appropiate powers of themselves, commute with each other in regard to
composition, and furthermore that

AK(n)∗∗(f
i′ − gj

′

) = 0.

Using the nilpotence conjecture, we can conclude that f i′ − gj
′

is nilpotent.
Then [HS, Lemma 3.4] gives us the desired statement.

Lemma 3.10. Assume that the motivic nilpotence conjecture 3.2 holds. If f :
X → X and g : Y → Y are two vn self maps of X and Y and h : X → Y is
any map, then there exist integers i, j ∈ N such that h ◦ f i = gl

m

◦ h.

Proof. The proof is entirely similar to [Rav2, 6.1.4]

Theorem 3.11. Let k = C and l be an odd prime. Assume that the mo-
tivic nilpotence conjecture 3.2 holds. Then the full subcategories of SHqfin

C,(l) and

SH∧,qfin
C,l consisting of spectra admitting motivic vn-self maps are thick.
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Proof. First we prove that the category of spectra admitting motivic vn-self
maps is closed under retracts:
Let e : X → Y be a retract with right inverse s : Y → X and assume that there
is a vn-self map f : X → X . By 3.8 a power of f commutes with s◦e, so e◦f ◦s
is a vn-self map.
Furthermore the category of spectra admitting motivic vn-self maps is closed
under cofiber sequences:
Let X and Y be two spectra with motivic vn-self maps f : Σa,bX → X and
g : Σc,dY → Y and let h : X → Y be any map. By 3.10 we can, after replacing
the self maps with suitable powers, assume that (a, b) = (c, d) and h ◦ f = g ◦h.
Therefore there exists a map k : Σa,bCh → Ch making the following diagram
commute:

X
h // Y // Ch

Σa, bX

f

OO

h // Σa,bY //

g

OO

Σa,bCh

k

OO

It follows by the five lemma and basic facts about triangulated categories that
k2 is a vn-self map on Ch as desired.

4 Existence of a self map on Xn

In [HS] Hopkins and Smith used the Adams spectral sequence to prove the
existence of a self map on a spectrum Xn constructed by Smith. In this section
we use their proof together with a suitable motivic spectrum Xn constructed by
Joachimi to show that at least one spectrum in SHqfin

C
or SH∧,qfin

C,l actually
has a motivic vn-self map. The classical proof relies on computing

K(n)p(Xn ∧DXn) ∼= EndK(n)∗(K(n)∗∗(Xn))p

via the Adams spectral sequence, so we run into the same kind of problem as in
the previous chapter: Because motivically not all graded modules over AK(n)∗∗
are free, we first have to show that AK(n)∗∗(Xn) is in fact free. This also pro-
vides us with a Künneth isomorphism for products involving AK(n)∗∗(Xn).

The proof of the existence of a vn-self map also relies on the approximation
lemma, which relates the cohomology of the Steenrod algebra in certain degrees
to the cohomology of certain subalgebras. We need the motivic analogue of this
lemma. To this end we need to make two definitions:

Definition 4.1. 1. Let X be a motivic spectrum. Call X k-bounded below
if πm,n = 0 for m ≤ k. Similarly, call a bigraded module Mm,n over the
motivic Steenrod algebra k-bounded below if Mm,n = 0 for m ≤ k.

2. A module over the motivic Steenrod algebra has a vanishing line of slope
m and intercept b if Exts,t,uA (M,HZ/l∗∗) = 0 for s > m(t− s) + b.
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Note that the preceding definition is exactly like the classic one and the
weight is not involved.

Definition 4.2. 1. Let β denote the motivic Bockstein homomorphism, and
Sqi resp. P i denote the motivic Square- and Power operations as con-
structed by Voevodsky in [Voe2]. If l = 2, define An as the subalgebra of
the motivic Steenrod algebra generated by Sq1, Sq2, ..., Sq2

n

over HZ∗∗l .
If l 6= 2, define An as the subalgebra of the motivic Steenrod algebra gen-
erated by β, P 1, ...Pn−1 for n 6= 0 and by β for n = 0.

2. Fix the monomial Z/l-basis for the dual motivic Steenrod algebra defined
by the elements τ , ξi and τi (if l 6= 2). The elements P s

t in the motivic

Steenrod algebra are defined as the dual elements to ξp
s

t , and the elements
Qi are defined as the dual elements to τi if l 6= 2 and as Qi = P 0

i+1 in the
case l = 2.

3. Write Λ(Qn) for the exterior algebra over the ground ring HZ/l∗∗ in the
generator Qn. This is a subalgebra of the motivic Steenrod algebra.

We can now prove the motivic analogon to the approximation lemma (c.f. [Rav2,
6.3.2]):

Proposition 4.3. Let M be a bounded below module over the motivic Steenrod
algebra such that Exts,tA (M,HZ/l∗∗) has a vanishing line of slope m and intercept
b.
For sufficiently large N the restriction map

Exts,tA (M,HZ/l∗∗) → Exts,tAN
(M,HZ/l∗∗)

is an isomorphism in degrees s ≥ m(t−s)+b′, where b′ can be chosen arbitrarily
low for sufficiently large N .

Proof. Define C as the kernel of the surjective map of A-modules
A ⊗

AN

M →M . As an AN -module C is given by M ⊗A//AN , where A//AN =

A ⊗
AN

Z/(l) and the bar denotes the augmentation ideal. The motivic Steenrod

squares Sqi live in bidegrees (2i, i) if i is even and (2i + 1, i) if it is odd and
the motivic Power operations P i live in bidegrees (2i(l − 1), i(l − 1)). Hence
A//AN will be k-bounded below, and k can be chosen arbitrarily high if N is
sufficiently large. Therefore C has a vanishing line of the same slope as M and
arbitrarily low intercept for sufficiently large N , cf. [HS][4.4]. The short exact
sequence defining C and the change-of-rings isomorphism for AN and A provide
the following diagram:
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Exts−1A (C,HZ/l∗∗)

��
ExtsA(M,HZ/l∗∗)

��

φ

))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

ExtsA(A ⊗
AN

M,HZ/l∗∗)

��

∼= // ExtsAN
(M,HZ/l∗∗)

ExtsA(C,HZ/l∗∗)

If the upper and lower term in the diagram vanish - which is the case above the
vanishing line of C - the map φ is the composite of two isomorphisms and hence
an isomorphism itself.

In [Joa, Theorem 8.5.12] Joachimi defined a motivic cell spectrum Xn analogous
to the Smith-construction spectrum Xn in [HS](see also [Rav2]) by splitting off
a wedge summand of a finite cell spectrum via an idempotent. We need some of
the details of the construction of Xn and its properties for the construction of
the vn-self map, so we recall and collect all those that are relevant in one place:

Definition 4.4. The spectrum Xn is defined as

Xn = eV (B
∧kV

(l) ) = hocolim
→

B∧kV

(l) →
eV

B∧kV

(l) →
eV
...

where

• B(l) is a motivic l-local finite cellular spectrum defined in [Joa, 8.5], im-
plicitly depending on n.

• V = HZ/l∗∗(B(l)) = HZ/l∗∗(a, b)/(a2, bl
n

), where |a| = (1, 1) and |b| =
(2, 1) ([Joa, 8.5.10])

• kV is an integer dependent on V .

• eV is an idempotent of the groupring Z(l)[ΣkV
], which acts on B∧kV

(l) by

permuting the smashfactors and adding maps.

• On the level of cohomology, the effect of this idempotent is to split of
a free, nonzero HZ/l∗∗-submodule of V ⊗kV . In particular, the motivic
cohomology of Xn is bounded below as a module over the Steenrod algebra.

Furthermore Joachimi proves the following statements about Xn:

Theorem 4.5. 1. AK(s)∗∗(Xn) = 0 for s < n and AK(n)(Xn) 6= 0 ([Joa,
Theorem 8.5.12])
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2. The operation Qn acts trivially on HZ/l∗∗(B(l)). This follows for degree

reasons from the description of HZ/l∗∗(B∧kV

(l) ) in the previous remark.

Since HZ/l∗∗(Xn) is a HZ/l∗∗-submodule of this module, Qn acts trivially
on HZ/l∗∗(Xn).

3. R(Xn) = Xn. ([Joa, 8.6])

By 2.10 Xn is dualizable, and its dual is the retract of a finite cell spectrum.
Because the spectrum Xn is dualizable, it satisfies the expected relation between
homology and cohomology once we show that its cohomology is free:

Lemma 4.6. 1. Let E be a cellular motivic ring spectrum and X be a du-
alizable cellular motivic spectrum. If E∗∗(X) is a free module over the
coefficients E∗∗, then HomE∗∗(E∗∗(X), E∗∗) ∼= E∗∗(X).

2. Let X be a dualizable cellular motivic spectrum such that

• HZ/l∗∗(X) is free over HZ/l∗∗

• Qn acts trivially on HZ/l∗∗(X).

Then we have an additive bigraded isomorphism

Exts,t,uΛ(Qn)
(HZ/l∗∗(X), HZ/l∗∗) ∼= HZ/l∗∗(X)[vn]

where |vn| = (1, 2(ln−1), ln−1). Here s is the homological degree and t, u
correspond to the internal bidegree. (The result also holds multiplicatively,
but we are not going to need this.)

Proof. 1. This is the content of [Joa, 8.1.2], using the universal coefficient
spectral sequence of [DI2, 7.7] and the fact that this spectral sequence
collapses if E∗∗(X) is free over E∗∗. Note that the cited corollary is
stated only for finite cell spectra and the case E = HZ/l, but the only
properties of X actually used are cellularity and dualizability, and that
the proof also works for any cellular motivic ring spectrum E.

2. This is a classical result that can be proven in the following way:
Consider the following resolution of free Λ(Qn)-modules

...
·Qn
→ Λ(Qn)

·Qn
→ Λ(Qn)

·Qn
→ Λ(Qn)

ǫ
→ HZ/l∗∗

where the last map is the projection ǫ : Λ(Qn) → HZ/l∗∗ and apply
(−) ⊗

HZ/l∗∗
HZ/l∗∗(X).

The resulting long exact sequence

...
·Qn
→ Λ(Qn) ⊗

HZ/l∗∗
HZ/l∗∗(X)

·Qn
→ Λ(Qn) ⊗

HZ/l∗∗
HZ/l∗∗(X)

ǫ
→ HZ/l∗∗(X)
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is a resolution of the Λ(Qn)-module HZ/l∗∗(X). Here we use the assump-
tion that Qn acts trivially on this module in the claim that the last map
is a map of Λ(Qn)-modules.
Now apply HomΛ(Qn)((−), HZ/l∗∗) and take cohomology. All maps are
zero because the target has the trivial Λ(Qn)-module structure. Using the
isomorphism from the previous part, we can rewrite degreewise:

HomΛ(Qn)(Λ(Qn) ⊗
HZ/l∗∗

HZ/l∗∗(X), HZ/l∗∗)

∼= HomHZ/l∗∗(HZ/l∗∗(X), HZ/l∗∗)
∼= HZ/l∗∗(X)

Recall that the coefficient rings of the classical Morava K-theories are graded
fields in the sense that all graded modules over it are free. This is not true of
the motivic Morava K-theories in general. The algebraic Morava K-theory of
the spectrum Xn however is free and finitely generated. To see this, we need to
go through the steps of its construction.

Proposition 4.7. Let k = C and l be an odd prime. Then AK(n)∗∗(Xn) is a
free, finitely generated AK(n)∗∗-module.

Proof. To prove the statement it suffices to show that

• AK(n)∗∗(Xn) is a finitely generated AK(n)∗∗-module

• AK(n)∗∗(Xn) has no τ -torsion.

We are going to show both claims in three steps: First we compute Ak(n)(B(l))
using the motivic Adams spectral sequence. We show that it is finitely generated
and does not have τ -torsion, which implies that AK(n)(B(l)) is finitely generated
and torsionfree. Then we use the Künneth theorem to show the same statement
for AK(n)(B∧kV

(l) ). Finally we use the definition of the idempotent defining Xn

to show that AK(n)∗∗(Xn) satisfies both claims.
We begin with the first step: The motivic Adams spectral sequence for Ak(n)∧
B(l) converges strongly to Ak∗∗(B(l)) ([Joa, 8.3.3]). We claim that there are no
nontrivial differentials in this spectral sequence. The E2-term of this motivic
Adams spectral sequence can be written as

ExtΛ(Qn)(HZ/l∗∗(B(l)), HZ/l∗∗)

by change of rings ([Joa, 8.2.3]). Recall thatHZ/l∗∗(B(l)) = HZ/l∗∗(a, b)/(a2, bl
n

).
The element Qn acts trivially on this free and finitely generatedHZ/l∗∗-module,
which implies by the previous lemma

Ext∗∗∗Λ(Qn)(HZ/(l)∗∗(B(l))), HZ/l∗∗) ∼= HZ/l∗∗[vn] ⊗
HZ/(l)∗∗

HZ/(l)∗∗(B(l))
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The right hand side is a tensor product of polynomial algebras, and the position
of the polynomial generators and of vn in the spectral sequence imply that they
cannot support a nontrivial differential at any stage. In the following sketch of
the spectral sequence in an abuse of notation a and b denote the dual of the
cohomology classes with the same name. Note that the spectral sequence to the
right of the depicted area looks very similar to the displayed area - the same
elements appear in the same configuration, just multiplied by some power of vn.
In the standard Adams grading the differential dr maps one entry to the left
and r entries up. Thus it is clear that no potentially nontrivial differential can
have a target different from zero.

s

t− s

0

1

...

0

0 1 2 ... ln − 1 2(ln − 1)

a b

ab

b2

ab2

... bl
n
−1

abl
n
−1

vn

avn

Therefore Ak(n)(B(l)) is finitely generated over Ak(n)∗∗ and does not have τ -
primary torsion. For all cellular spectraX we haveAK(n)∗∗(X) ∼= v−1n Ak(n)∗∗(X).
Therefore AK(n)(B(l)) is free and finitely generated over Ak(n)∗∗.
The second step is now easy: Since AK is a cellular spectrum and since we just
proved that the cellular spectrum B(l) has free AK-homology over the coeffi-
cients, we can apply the Künneth theorem (([DI2][Remark 8.7])) and obtain

AK(n)∗∗(B
∧kV

(l) ) ∼= AK(n)∗∗(B(l))
⊗kV

Therefore alsoAK(n)∗∗(B
∧kV

(l) ) is free and finitely generated over the coefficients.

For the last step, note that AK(n)∗∗(Xn) is a finitely generatedAK(n)∗∗-module
as well, since it is a submodule of the finitely generated module AK(n)∗∗(B

∧kV

(l) )

over the noetherian ring AK(n)∗∗.
It remains to show that no torsion occurs. The idempotent eV ∈ Z(l)[ΣkV

]

acts on AK(n)∗∗(B
∧kV

(l) ) by permutation of the tensor factors and multiplication

by integers. No τ -Torsion can occur in eV (AK(n)∗∗(B
∧kV

(l) )) = AK(n)∗∗(Xn)

because the order of an element in a fixed bidegree in AK(n)∗∗(B
∧kV

(l) ) is the

same as that of the τ -multiples of that element. Consequently, AK(n)∗∗(Xn) is
a free AK(n)∗∗-module.

Definition 4.8. Define R = DXn ∧ Xn. It is a quasifinite cell spectrum by
definition and by 2.8 it can be endowed with the structure of a motivic homotopy
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ring spectrum, with unit map e : S → DXn ∧ Xn and multiplication map µ :
R ∧R→ R.

As a corollary of the preceding proposition we get the following:

Corollary 4.9. Let k = C and R = DXn ∧ Xn. There are Künneth isomor-
phisms

1.
AK(n)∗∗(R)

∼=
→ AK(n)∗∗(DXn) ⊗

AK(n)∗∗
AK(n)∗∗(Xn)

2.
AK(n)∗∗(R)

∼=
→ AK(n)∗∗(DXn) ⊗

AK(n)∗∗

AK(n)∗∗(Xn)

Proof. The Milnor short exact sequence for Xn and AK(n)-cohomology is

0 → lim1

←
AK(n)∗−1,∗(B∧kV

(l) ) → AK(n)∗∗(Xn) → lim
←
AK(n)∗∗(B∧kV

(l) ) → 0

Because the map eV over which the homotopy colimit defining Xn is taken is
an idempotent, the system AK(n)∗∗(B∧kV

(l) ) is Mittag-Leffler, which implies that

the lim1

←
-term vanishes. By the same argument, we have:

lim
←
AK(n)∗∗(DXn ∧ B∧kV

(l) ) ∼= AK(n)∗∗(DXn ∧ Xn)

Here the limit is taken over the maps id ∧ eV .
Since B∧kV

(l) is the l-localization of a finite cell spectrum and AK(n)∗∗(B∧kV

(l) ) is

a free module over AK(n)∗∗, we can use the Künneth-isomorphism of Dugger
and Isaksen [DI2, Remark 8.7] to see that

AK(n)∗∗(DXn ∧ B∧kV

(l) )
∼=
→ AK(n)∗∗(DXn) ⊗

AK(n)∗∗
AK(n)∗∗(B∧kV

(l) )

It remains to rewrite the inverse limit over the right hand side: AK(n)∗∗(DXn)
is a free AK(n)∗∗-module because AK(n)∗∗(Xn) is a free AK(n)∗∗-module, so
using the earlier isomorphism we get:

lim
←

(
AK(n)∗∗(DXn) ⊗

AK(n)∗∗
AK(n)∗∗(B∧kV

(l) )
)
∼= AK(n)∗∗(DXn) ⊗

AK(n)∗∗
AK(n)∗∗(Xn)

The Künneth-isomorphism in AK(n)-homology can either be derived from the
one in cohomology or from the Künneth-isomorphism of the l-local finite cell
spectra B∧kV

(l) and the fact that homology commutes with direct limits.

We also need the following vanishing line:
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Lemma 4.10. Let l be odd and R = DXn ∧ Xn as before. The A∗∗-module

ExtA∗∗(HZ/l∗∗(R), HZ/l∗∗)

has a vanishing line of slope 1/2(ln − 1).

Proof. Over odd primes, the motivic Steenrod-algebra is just the classical Steen-
rod algebra (where the generators are understood to live in the appropiate
motivic bidegrees) base changed to HZ/l∗∗. Similarly, HZ/l∗∗(DXn ∧Xn) cor-
responds to HZ/l∗(DXn ∧ Xn) basechanged to HZ/l∗∗, where the generators
are once again understood to live in the appropiate bidegree.
Consequently ExtA∗∗(HZ/l∗∗(DXn ∧Xn), HZ/l∗∗), which maps to the classical
Ext-term ExtA∗

top
(HZ/l∗(DXn ∧ Xn), HZ/l∗), is just that classical Ext-term

base changed to HZ/l∗∗ and in particular does not contain τ -torsion. The
existence of the vanishing line then follows from the existence of a vanishing
line with the same slope in the classical case for the spectrum Xn(see [Rav2,
6.3.1]).

Furthermore, we need the following duality isomorphisms:

Proposition 4.11. Let R = DXn ∧ Xn as before:

1. HomHZ/l∗∗(HZ/l∗∗(R), HZ/l∗∗) ∼= HZ/l∗∗(R)

2. AK(n)∗∗(DXn) ∼= AK(n)∗∗(Xn) ∼= HomAK(n)∗∗(AK(n)∗∗(Xn), AK(n)∗∗)

3. AK(n)∗∗(DXn) ∼= AK(n)∗∗(Xn) ∼= HomAK(n)∗∗(AK(n)∗∗(Xn), AK(n)∗∗)

Proof. 1. R = DXn ∧ Xn is a dualizable cell spectrum since Xn and DXn

are. Therefore we can consider the universal coefficient spectral sequence
of [DI2, 7.7]. As explained in [Joa, 8.1.2], this spectral sequence collapses if
HZ/l∗∗(R) is free over HZ/l∗∗. (Note that the cited corollary is stated for
finite cell spectra, but the only properties actually used are cellularity and
dualizability.) To show the freeness of HZ/l∗∗(R) as a HZ/l∗∗-module,
observe thatHZ/l∗∗(Xn) is free by construction ([Joa, 8.5.3]). This implies
the existence of a Künneth isomorphism for Xn, and thus

HZ/l∗∗(R) = HZ/l∗∗(DXn) ⊗
HZ/l∗∗

HZ/l∗∗(Xn)

is free.

2. The first isomorphism follows directly from the canonical bijection. The
second isomorphism is proven by the same argument as in the proof of
part 1, using the universal coefficient spectral sequence [DI2, 7.7] together
with the facts that AK is a cellular spectrum and that AK(n)∗∗(Xn) is
free over the coefficients.

3. This is proven just as in part 1 or part 2.
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Corollary 4.12. 1. There exists a well defined coevaluation map

coev : AK∗∗ → AK∗∗(Xn)
∨ ⊗

AK∗∗

AK∗∗(Xn)

Here (−)∨ denotes the linear dual HomAK∗∗
(−, AK∗∗). It is induced by

the map T ◦ e : S → Xn ∧DXn, where e : S → DXn ∧Xn is the unit map
of R = DXn ∧ Xn and T is the map that transposes the two factors.

2. Under the composition

AK∗∗ → AK∗∗(R) → HomAK∗∗
(AK∗∗(Xn), AK∗∗(Xn))

an element v ∈ AK∗∗ maps to multiplication by that element.

Proof. 1. The coevalution map of 2.5, which is the same as T ◦e, induces the
claimed map in AK(n)-homology, together with the identification

AK(n)∗∗(DXn) ∼= AK∗∗(Xn) ∼= HomAK∗∗
(AK∗∗(Xn), AK∗∗)

of the preceding proposition. Because AK(n)∗∗(Xn) is a free and finitely
generated AK(n)∗∗-module, there is also an algebraic coevalution defined
via choosing a basis as for a vector space, and the two maps coincide since
they both satisfy the equivalent of the condition of the first point of 2.5
for projective and finitely generated modules.

2. The element 1 ∈ AK∗∗ maps to the coevaluation of AK∗∗(Xn) under the
first map, using the identification AK∗∗(R) ∼= AK∗∗(Xn)

∨ ⊗
AK∗∗

AK∗∗(Xn)

implied by the Künneth and duality isomorphisms. Hence an element of
AK∗∗ maps to that element times the coevaluation. The coevaluation
maps to the identity under the second map. Consequently an element in
AK∗∗ times the coevaluation maps to multiplication by that element.

We now have all the ingredients to use the classical proof in the motivic setting
([HS, Theorem 4.12], see also [Rav2, 6.3]):

Theorem 4.13. Let k = C and l be an odd prime. The spectrum Xn has a
motivic vn self-map f satisfying

AK(m)∗f = δmnv
pNm

n

for a sufficiently large integer Nm.

Proof. The aim is to construct a permanent cycle

v ∈ ExtA∗∗
(HZ/l∗(R), HZ/l∗)

that maps to a power of vn in Ak(n)∗∗(R) and to a nilpotent element in
Ak(m)∗∗(R) if m 6= n. The diagram below will specify the meaning of ”maps”.
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Under motivic Spanier Whitehead duality such a class corresponds to a self-map
of the described form on Xn.
The cohomology of the point, HZ/l∗∗, is concentrated in simplicial degree
0. Therefore the operations Qn act trivially on this module over the motivic
Steenrod algebra. They act trivially on HZ/l∗∗(R) since they act trivially on
H∗∗(Xn). If we write P (vn) for the polynomial algebra in one generator with
respect to the base ring HZ/(l)∗∗, this provides us with the following isomor-
phisms of trigraded algebras:

Ext∗∗∗Λ(Qn)(HZ/l∗∗, HZ/l∗∗)
∼=
−→ P (vn)⊗HZ/l∗∗ (4.13.1)

Ext∗∗∗Λ(Qn)(HZ/l∗∗(R), HZ/l∗∗)
∼=
−→ P (vn)⊗HZ/l∗∗(R) (4.13.2)

Here vn has homological degree 1 and internal bidegree (2(ln − 1, ln − 1).

Together with the change-of-rings morphisms related to the subalgebras Λ(Qn)
and AN these fit into the following diagram:

ExtA∗∗(HZ/l∗∗, HZ/l∗∗)
i //

φ

��

ExtA∗∗(HZ/l∗∗(R), HZ/l∗∗)

φ

��
ExtA∗∗

N
(HZ/l∗∗, HZ/l∗∗)

i //

λ

��

ExtA∗∗

N
(HZ/l∗∗(R), HZ/l∗∗)

λ

��
ExtΛ(Qn)(HZ/l∗∗, HZ/l∗∗)

i //

∼=(1)

��

ExtΛ(Qn)(HZ/l∗∗(R), HZ/l∗∗)

∼=(2)

��
P (vn) ⊗

HZ/(l)∗∗

HZ/l∗∗
i //

��

P (vn) ⊗
HZ/(l)∗∗

HZ/l∗∗(R)

��
Ak(n)∗∗

i // Ak(n)∗∗(R)

Step 1: Consider the element ṽn ∈ ExtΛ(Qn)(HZ/l∗(R), HZ/l∗) that corre-
sponds to vn ⊗ 1 ∈ P (vn)⊗H∗∗(R) under the isomorphism (2).

Proposition 4.14. ∀N ≥ n there is an integer t > 0 and an element x ∈
ExtAN,∗∗

(HZ/l∗, HZ/l∗) such that λ(x) = vtn. The image of x under i is cen-
tral in ExtAN,∗∗

(HZ/l∗(R), HZ/l∗), where central is meant in respect to graded
commutativity in the first, but not in the second bidegree.

Proof. This statement is a corollary of [HS, Theorem 4.12]. Since the motivic
cohomology of the pointHZ/(l)∗∗ = Z/(l)[τ ] is concentrated in simplicial degree
0, the action of the motivic Steenrod algebra is trivial on this module. Hence
we can basechange the statement of the cited theorem to Z/(l)[τ ].
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Step 2: The module ExtA∗∗(HZ/l∗∗(R), HZ/l∗∗) has a vanishing line of slope
1/(2l − 2) and a fixed intercept b. By the motivic approximation lemma, the
morphism

φ : ExtA∗∗(HZ/l∗(R), HZ/l∗∗) → ExtA∗∗

N
(HZ/l∗∗(R), HZ/l∗∗)

is an isomorphism above a line with slope 1/2(ln − 1) and arbitrarily low in-
tercept for sufficiently large N . Since the element x(and therefore also i(x))
has tridegree (t, 2(ln − 1), (ln − 1)), it lies above that line for a sufficiently large
choice of N . Define y ∈ ExtA∗∗(HZ/l∗∗(R), HZ/l∗∗) as the preimage of i(x)
under φ. Since i(x) is central (in the graded sense with respect to the first
bidegree but not with respect to the second) in ExtA∗∗

N
(HZ/l∗∗(R), HZ/l∗∗), it

commutes with all elements in the image of φ, in particular with all elements
above the line defined by the approximation lemma.

Step 3: The element y and its powers, as well as the images of y and its powers
under the differentials of the motivic Adams spectral sequence all satisfy the re-
quirement of the last statement, so they commute with each other. By induction
we can assume that a power ỹ of y survives up to the rth page. We wish to show
that ỹl is a r-cycle, i.e. dr(ỹ

l) = 0. This is true since dr(ỹ
l) = l · ỹl−1dr(ỹ) = 0.

After a finite number of pages, the differential will point in the area of the spec-
tral sequence above the vanishing line, and we can stop the process. We end
with a power ỹ of y that is a permanent cycle in the motivic Adams spectral
sequence and hence represents an element of Ak(n)∗∗(R).

Step 4: The permanent cycle ỹ represents an element ȳ ∈ π∗∗(R). Choose
m such that vmn has the same degree as ȳ. By the exact same arguments as in
[HS] we can choose a power of ȳ such that Ak(n)∗∗(ȳ

g) = vgmn and define f as the
map corresponding to that power of ȳ under motivic Spanier Whitehead duality.

Step 5: For m 6= n it follows just as in the topological case that the image
of v in AK(m)∗∗ is nilpotent either for trivial reasons (m < n) or because of
a vanishing line with tighter slope in the Adams spectral sequence computing
Ak(m)∗∗(R) (m > n).

5 The relation of Cη and CAK(n)

As a corollary of the Künneth isomorphism, we can settle one of the open con-
jectures in Ruth Joachimis dissertation [Joa, Conjecture 7.1.7.3] which concerns
the relation of the thick ideal thickid(Cη) generated by the cone of the motivic
Hopf map Cη and the thick ideals CAK(n) characterized by the vanishing of
motivic Morava K-theory.

Lemma 5.1. Let m ∈ N be any integer. Then the coefficients of the cone Cη
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of η : Σ1,1S → S in AK(m)∗∗-homology are given by:

AK(m)∗∗(Cη) ∼= AK(m)∗∗ ⊕AK(m)∗−2,∗−1

In particular, they are free over AK(m)∗∗.

Proof. The long exact sequence induced by the cofiber sequence

S1,1 → S0,0 → Cη → S2,1

defining Cη splits into short exact sequences

0 → AK(m)∗∗ → AK(m)∗∗(Cη) → AK(m)∗−2,∗−1 → 0

because η induces the zero map in AK(m)∗∗-homology. The sequence splits
because the outer terms are free AK(m)∗∗-modules, yielding the result.

Corollary 5.2. Let m ∈ N. In the case m < n we have

AK(m)∗∗(Cη ∧Xn) ∼= 0

and in the case m = n we have:

AK(n)∗∗(Cη ∧ Xn) ∼= AK(n)∗∗(Cη) ⊗
AK(n)∗∗

AK(n)∗∗(Xn) 6= 0

Proof. By the preceding lemma the finite cell spectrum Cη has free AK(m)-
homology and thus satisfies the requirements of the Künneth formula [DI2,
Remark 8.7].
Application of the Künneth formula yields:

AK(m)∗∗(Cη ∧Xn) ∼= AK(m)∗∗(Cη) ⊗
AK(m)∗∗

AK(m)∗∗(Xn)

If m < n the factor AK(m)∗∗(X) = 0 vanishes by 4.5. This implies the first
part of the statement. If m = n the result contains

AK(n)∗∗(Xn) ⊗
AK(n)∗∗

AK(n)∗∗ = AK(n)∗∗(Xn) 6= 0

as a direct summand, so AK(n)∗∗(Cη ∧ Xn) cannot vanish.

Proposition 5.3. The spectrum Xn+1 is contained in the intersection of thick
ideals thickid(Cη) ∩ CAK(n), but not in thickid(Cη) ∩ CAK(n+1). In particular,
these intersections are nonzero and distinct for all n ∈ N.

Proof. Clearly Cη ∧ Xn+1 is in the thick ideal generated by Cη. The preceding
corollary tells us on the one hand that Cη ∧ Xn+1 ∈ CAK(n), and on the other
hand that Cη ∧ Xn+1 /∈ CAK(n+1).
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6 A counterexample to a statement about thick
subcategories in [Joa]

In this section we construct a counterexample to the inclusion

thickid(cC2) ⊂ CAK(1)

claimed in [Joa, Chapter 9, last section], based on an error in [Joa, Proposition
8.7.3].
Let l be an odd prime, and consider the topological mod-l Moore spectrum
S/l ∈ SH. We can easily compute its K(1)-homology:

Lemma 6.1. K(1)∗(S/l) ∼= K(1)∗ ⊕K(1)∗−1

Proof. The Moore spectrum is defined via the cofiber sequence S
·l
→ S → S/l

and the map induced by l is trivial in K(1)-homology. Therefore the long exact
sequence in K(1)-homology induced by this cofiber sequence splits up into short
exact sequences, and these short exact sequences split because all graded K(1)-
modules are free.

In [Ada] Adams proved the existence of a non-nilpotent self map

v : Σ2l−2S/l → S/l

on the Moore spectrum which induces an isomorphism inK(1)-homology; namely
multiplication by the invertible element vtop1 . Consequently, the K(1)-homology
of the cone Cv vanishes: K(1)∗(Cv) = 0, or equivalently Cv ∈ C2.

Applying the constant simplicial presheaf functor c to the construction gives
us the cofiber sequence

Σ2l−2,0S/l
cv
−→ S/l → Ccv

in SHC. The cone Ccv of cv is equivalent to c(Cv) because c is a triangulated
functor, and the Moore spectrum is mapped to the Moore spectrum (cS/l = S/l
because cl = l.) We can compute the AK(1)-homology of the mod-l-Moore
spectrum using the same argument as in the topological case:

AK(1)∗∗(S/l) ∼= AK(1)∗∗ ⊕AK(1)∗−1,∗

However, the algebraic Morava K-theory of Ccv does not vanish:

Lemma 6.2. AK(1)(Ccv)) ∼= AK(1)∗∗(S/l)/(τ
l−1) 6= 0

Proof. The cofiber sequence S/l
cv
→ S/l → Ccv induces a long exact sequence in

AK(1)-homology:

...→ AK(1)p+(2l−2),q(S/l)
AK(1)∗∗(cv)

−→ AK(1)pq(S/l) → AK(1)pq(Ccv) → ...
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The map AK(1)∗∗(cv) must be given by multiplication with τ l−1v1, because
Betti realization maps AK(1)∗∗(cv) to multiplication with vtop1 and there is
only one map realizing to this in the appropiate bidegree. This map is injective
but, unlike the topological case, no longer an isomorphism. Hence the long
exact sequence splits into short exact sequences

0 → AK(1)pq(cS/l)
·τ l−1v1−→ AK(1)pq(cS/l) → AK(1)pq(Ccv) → 0

and because v1 is invertible, the last term is isomorphic to AK(1)∗∗(S/l)/(τ
l−1).

Because CAK(1) was defined by the vanishing ofAK(1)-homology and AK(1)∗∗(Ccv) 6=
0 does not vanish, we have Ccv /∈ CAK(1). On the other hand, we have shown
that Cv ∈ C2. Because R(Ccv) = Cv, this implies Ccv ∈ R−1(C2). Therefore we
can conclude the following corollary from the preceding lemma:

Corollary 6.3. The inclusion

CAK(1) ( R−1(C2)

is proper.

Furthermore we have Ccv = cCv ∈ thickid(cC2). Therefore cCv is our desired
counterexample and proves:

Proposition 6.4. thickid(cC2) 6⊂ CAK(1)

Remark 6.5. The mistake on which the incorrect assertion is based occurs
in [Joa, Proposition 8.7.3]. This proposition states that for a finite topological
CW spectrum Y , AK(n)∗∗(cY ) = 0 if and only if K(n)∗(Y ) = 0. In the proof
of this proposition Joachimi shows that the differentials in the motivic Atiyah-
Hirzebruch spectral sequence are determined by the differentials of the topological
Atiyah-Hirzebruch spectral sequence, and that the E2-page of the motivic spectral
sequence is given by adjoining a generator τ to each entry in the topological
spectral sequence, where all entries are generated in motivic weight 0. The
problem that now occurs is that the differentials in the motivic spectral sequence
do not preserve the weight, but lower it. Hence a nontrivial differential can
generate τ-primary torsion in the spectral sequence. The above example shows
that this in fact happens.

This argument can in fact be made for any topological spectrumX ∈ Cn+1\Cn+2.
Any such spectrum has nontrivialK(n)-homology and a self map v : ΣmX → X
that induces multiplication by some power of vtopn . We know by 3.5 that the
map AK(n)∗∗(cX) → K(n)∗(X) induced by Betti realization is surjective and
its kernel is exactly the τ -primary torsion elements. In particular we know that
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AK(n)∗∗(cX) 6= 0 , and the self map provides us with a motivic map cv. This
map induces multiplication by the same power of τ l−1vn in AK(n)-homology -
up to a possible error term, which has to be τ -primary torsion. We can eliminate
this error term by taking sufficiently large l-fold powers of this map. We end
up with a vtopn -self map v′ of X whose image cv′ under the constant simplicial
presheaf funtor c induces multiplication by some power of τ l−1vn in AK(n)-
homology. In particular, its cone has nonvanishing AK(n)-homology by the
same argument as for our earlier counterexample and thus proves:

Proposition 6.6. thickid(cCn+1) 6⊂ CAK(n)

Just as before, this also proves:

Corollary 6.7. The inclusion

CAK(n) ( R−1(Cn+1)

is proper.
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