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We revisit the computation, due to Hesselholt and Madsen, 
of the K-theory of truncated polynomial algebras for perfect 
fields of positive characteristic. The resulting K-groups are 
expressed in terms of big Witt vectors of the field. The original 
proof relied on an understanding of cyclic polytopes in order to 
determine the genuine equivariant homotopy type of the cyclic 
bar construction for a suitable monoid. Using the Nikolaus-
Scholze framework for topological cyclic homology we achieve 
the same result using only the homology of said cyclic bar 
construction, as well as the action of Connes’ operator.
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1. Introduction

The algebraic K-theory of truncated polynomial algebras over perfect fields of positive 
characteristic was first evaluated by Hesselholt and Madsen [8]. Their proof relied on a 
delicate analysis of the facet structure of regular cyclic polytopes. In this paper, we show 
that the Nikolaus-Scholze approach to topological cyclic homology [14] now makes it 
possible to give a purely homotopy-theoretic proof of this result. In fact, the only input 
we use is the calculation of the homology of the cyclic bar construction together with 
the action of Connes’ operator thereon.
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Theorem 1 ([8], Theorem A). Let k be a perfect field of positive characteristic. Then 
there is an isomorphism

K2r−1(k[x]/(xe), (x)) � Wre(k)/VeWr(k)

and the groups in even degrees are zero.

We briefly summarize the method. Let k be a perfect field of characteristic p > 0 and 
let A = k[x]/(xe) and I = (x) the ideal generated by the variable. The k-algebra A is 
the pointed monoid algebra for the pointed monoid Πe = {0, 1, x, . . . , xe−1} determined 
by xe = 0. There is a canonical equivalence of cyclotomic spectra

THH(A) � THH(k) ⊗ Bcy(Πe)

where the Frobenius morphism on the right is the tensor product of the usual Frobenius 
and the unstable Frobenius on the cyclic bar construction of Πe, see Section 4 for details. 
Using the theory of cyclic sets one obtains a T -equivariant splitting of the cyclic bar 
construction,

Bcy(Πe) �
∨
m≥0

B(m)

into simpler T -spaces B(m). The singular homology and Connes’ operator of these T -
spaces is easily determined and reduces to computations of the Hochschild homology of A
first carried out in [3] and [12]. The answer is simple enough that the Atiyah-Hirzebruch 
spectral sequence degenerates allowing us to directly determine the homotopy groups of 
THH(k) ⊗B(m). From [14] the topological cyclic homology of A is given by the equalizer

TC(A; p) → TC−(A)
ϕ−can
−−−→ TP(A)

so using the above splitting this reduces to computing (THH(k) ⊗ B(m))hT and 
(THH(k) ⊗ B(m))tT . We achieve this by an inductive procedure, making use of the 
highly co-connective Frobenius map

ϕ : (THH(k) ⊗B(m))hT → (THH(k) ⊗B(pm))tT

and the periodicity of (THH(k) ⊗B(m))tT . Assembling the answers for varying m then 
yields the TC-calculation. Applying McCarthy’s theorem one obtains the result.

We remark that the method employed here was also used by Hesselholt and Nikolaus 
[11] to evaluate the K-theory of cuspidal curves over k, thereby affirming the conjectural 
calculation in [6]. We consider this method a first step towards making topological cyclic 
homology as easy to compute as Connes’ cyclic homology HC.
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2. Witt vectors, big and small

The purpose of this short section is to show the following well-known splitting. Let 
s = s(p, r, d) be the unique positive integer such that

ps−1d ≤ r < psd

if it exists, or else s = 0.

Lemma 2. Let k be a perfect field of characteristic p > 0. Let e = pue′ with (p, e′) = 1. 
There is an isomorphism

Wre(k)/VeWr(k) �
∏

Wh(k)

where the product is indexed over 1 ≤ m′ ≤ re with (p, m′) = 1 and with h = h(p, r, e, m′)
given by

h =
{

s if e′ � m′

min{u, s} if e′ | m′

where s = s(p, re, m′) is the function defined above.

Proof. We use the isomorphism

Wr(k)
〈Id〉

−−−→
∏

Ws(k)

which is a map of Z(p)-algebras, where the product runs over d such that (p, d) = 1 and 
1 ≤ d ≤ r and where s = s(p, r, d), see for example [7, Prop. 1.10 and Example 1.11]. 
The d-th component of this map is the composite

Id : Wr(k) Fd→ W�r/d�(k) R→ Ws(k)
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where Fd is the Frobenius map and R is the restriction map induced by the inclusion 
{1, p, p2, . . . , ps−1} ⊆ {1, 2, . . . , �r/d�}. If m′ = e′d with d ≤ r then one readily checks 
that s(p, re, m′) = s(p, r, d) +u. Furthermore in this case the following diagram commutes

Wr(k) Ws(k)

Wre(k) Ws+u(k)

Id

Ve e′Vpu

Im′

Indeed this may be checked after applying the ghost map, where it is a routine verification 
analogous to [7, Lemma 1.5]. This corresponds to the case u ≤ s. Since (p, e′) = 1 we 
have

Ws+u(k)/(e′VpuWs(k)) ∼= Wu(k).

Thus, we get an isomorphism

Wre(k)/VeWr(k) �→
∏

Wu(k) ×
∏

Ws(k) ×
∏

Ws(k) �→
∏

Wh(k)

where in the middle term, the first product is indexed over 1 ≤ d ≤ r with (p, d) = 1, 
the second product is indexed over 1 ≤ m′ ≤ re with e′ | m′ and with u > s, the third 
product is indexed over 1 ≤ m′ ≤ re with e′ � m′ and with (p, m′) = 1. In the last term, 
the product is indexed over 1 ≤ m′ ≤ re with (p, m′) = 1. �
3. Hochschild homology of truncated polynomial algebras

In this section we review the results of [3] and [12] on cyclic homology of algebras of 
the form A = k[x]/f(x). We work over a general commutative unital base ring k. The 
Hochschild homology of A over k is the homology of the associated chain complex for 
the cyclic k-module

Bcy(A/k)[n] = A⊗n+1

where the tensor product is over k. The cyclic structure maps are given as follows

di(a0 ⊗ · · · ⊗ an) =
{

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an 0 ≤ i < n

ana0 ⊗ a1 ⊗ · · · ⊗ an−1 i = n

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1 ⊗ ai+1 ⊗ · · · ⊗ an

tn(a0 ⊗ · · · ⊗ an) = an ⊗ a0 ⊗ · · · ⊗ an−1.

The Hochschild homology then is the homology HH∗(A/k) of the associated chain 
complex with differential given by the alternating sum of the face maps.
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Proposition 3. Let A = k[x]/(xe) where k is a commutative unital ring. There is an 
isomorphism

HH∗(A/k) =

⎧⎪⎨⎪⎩
A if ∗ = 0
k[e]{1} ⊕ k{x, . . . , xe−1} if ∗ > 0 even
k{1, x, . . . , xe−2} ⊕ k/ek{xe−1} if ∗ > 0 odd

where k[e] denotes the e-torsion elements of k.

The proof uses a common technique for such rings, namely the construction of a small 
and computable complex. The task is then to show that this complex is quasi-isomorphic 
to the Hochschild complex. For a k-algebra A of the form A = k[x]/(f(x)), assuming it 
is flat as an k-module then the Hochschild homology may be calculated as TorA

e

∗ (A, A)
where Ae = A ⊗Aop. So it suffices to find a small A−A-bimodule resolution of A. Given 
such a resolution R(A)∗ → A one now tensors over Ae with A to get a complex, R(A)∗
computing HH∗(A/k). For an appropriate choice of resolution the corresponding complex 
R(A)∗ has the following form

0 ← A
0← A

f ′(x)← A
0← A

f ′(x)← A ← · · ·

from which the result readily follows.
We now introduce a splitting of the Hochschild homology of the k-algebra A =

k[x]/(xe). Equip A with a “weight” grading by declaring xm have weight m. This induces 
a grading on the tensor powers of A and we let

Bcy(A/k;m)[n] ⊆ Bcy(A/k)[n] = A⊗n+1

be the sub k-module of weight m. It is generated by those tensor monomials whose 
weight is equal to m. This forms a sub cyclic k-module of Bcy(A/k)[−] and so we obtain 
a splitting

Bcy(A/k)[−] �
⊕
m≥0

Bcy(A/k;m)[−]

of cyclic k-modules, and of the associated chain complexes. Taking homology then gives 
a splitting as well,

HH∗(A/k) �
⊕
m≥0

HH∗(A/k;m).

In the following lemma, let d = d(e, m) = �m−1
e � be the largest integer less that (m −1)/e.

Lemma 4. Let k and A be as in Proposition 3. If m is not a multiple of e then 
HH∗(A/k; m) is concentrated in degrees 2d and 2d + 1 where it is free of rank 1 as 
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a k-module. In this case Connes’ B-operator takes the generator in degree 2d to m times 
the generator in degree 2d + 1, up to a sign. If m is a multiple of e then HH∗(A/k; m)
is concentrated in degree 2d + 1 and 2d + 2. The group in degree 2d + 1 is isomorphic to 
k/ek while the group in degree 2d +2 is isomorphic to k[e]. In this case Connes’ operator 
acts trivially.

Proof. First we prove that the groups are as stated. We follow the proof given in [9, 
Section 7.3]. Consider the resolution of A as an A ⊗A-module constructed by [3], denoted 
R(A/k)∗ having the form

· · ·
Δ

−−−→ A⊗A
δ

−−−→ A⊗A
Δ

−−−→ A⊗A
δ

−−−→ A⊗A
μ

−−−→ A → 0

where

Δ = xe ⊗ 1 − 1 ⊗ xe

x⊗ 1 − 1 ⊗ x
and δ = 1 ⊗ x− x⊗ 1

In [3] a quasi-isomorphism ψ : R(A/k)∗ −−−→ B(A/k)∗ with the bar-resolution is con-
structed. Since Δ increases the weight by e − 1 and δ by 1, and since the differential 
b′ of the bar resolution preserves weight, we see (by induction on j) that ψ2j increases 
weight by je, whereas ψ2j+1 increases weight by je + 1. Tensoring over Ae with A gives 
a quasi-isomorphism ψ : R(A/k)∗ −−−→ Bcy(A/k)∗ which has the same weight shift. 
The result now follows from Proposition 3.

For the statements about Connes’ operator, this follows by an explicit choice of a quasi-
isomorphism ψ (and its inverse). This is done in [3, Section 1] and in [3, Proposition 2.1]
the computation of Connes’ operator is given. �
4. Topological Hochschild homology and the cyclic bar construction

Let Πe = {0, 1, x, . . . , xe−1} be the pointed monoid determined by setting xe = 0. 
Then the truncated polynomial algebra A is the pointed monoid ring k(Πe) = k[Πe]/k[0]. 
The cyclic bar construction of Πe is the cyclic set Bcy(Πe)[−] with

Bcy(Πe)[k] = Π∧(k+1)
e

and with the usual Hochschild-type structure maps. We write Bcy(Πe) for the geometric 
realization of Bcy(Πe)[−]. The space Bcy(Πe) admits a natural T -action where T is the 
circle group, as does the geometric realization of any cyclic set. Furthermore it is an 
unstable cyclotomic space, i.e. there is a map

ψp : Bcy(Π) → Bcy(Π)Cp
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which is equivariant when the domain is given the natural T/Cp-action. For a construc-
tion of this map see [2, Section 2] or, for a review in our setup, see [15, Section 3.1]. See 
also [14, Section IV.3] for similar constructions in the context of E1-monoids in spaces.

To every non-zero n-simplex π0 ∧ · · · ∧ πn ∈ Bcy(Πe)[n] we associate its weight as 
follows, each πi is equal to xmi for some 0 ≤ mi ≤ e − 1. Let

w(π0 ∧ · · · ∧ πn) =
n∑

i=0
mi.

The weight is preserved by the cyclic structure maps and so we obtain a splitting of 
pointed cyclic sets

Bcy(Πe)[−] =
∨
m≥0

Bcy(Πe;m)[−]

where Bcy(Πe; m)[−] ⊆ Bcy(Πe)[−] consists of all simplices with weight m. Let B(m)
denote the geometric realization of Bcy(Πe; m)[−]. So we have a splitting of pointed 
T -spaces

Bcy(Πe) �
∨
m≥0

B(m). (5)

By [15, Splitting lemma] we have THH(k(Πe)) � THH(k) ⊗Bcy(Πe) as cyclotomic spec-
tra. Here the Frobenius on the right hand side is the tensor product of the usual Frobenius 
on THH(k) (as constructed in [14, Section III.2]) and the Frobenius on Σ∞ Bcy(Πe) aris-
ing from the unstable Frobenius (see [15, Section on cyclic bar construction]). We are 
interested in the relative THH, defined for any ring A and ideal I as the homotopy fiber 
THH(A, I) of the map

THH(A) → THH(A/I)

induced by the quotient map. In the case at hand, the relative THH corresponds to 
simply cutting out the weight zero part, i.e. we have an equivalence of spectra with 
T -action

THH(A, I) �
⊕
m≥1

THH(k) ⊗B(m)

where I = (x) is the ideal generated by the variable. To see this note that the composite 
of the canonical map

THH(k) ⊗B(m) → THH(A)

with the map THH(A) → THH(k) is constant for m ≥ 1 and is the identity map for 
m = 0 where B(0) = S0.
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Given any pointed monoid Π there is an isomorphism of cyclic k-modules

w : k(Bcy(Π)[−]) −−−→ Bcy(k(Π)/k)[−]

which maps π0∧· · ·∧πn to π0⊗· · ·⊗πn. Note that k(Bcy(Π)[−]) is the simplicial complex 
for the space Bcy(Π). In particular the associated homology H∗(k(Bcy(Π)[−])) computes 
the simplicial homology of Bcy(Π).

In the following lemma, we let d = d(e, m) = �m−1
e � for any m ≥ 1.

Lemma 6. ([9, Lemma 7.3]) Let A = k[x]/(xe) where k is a commutative unital ring and 
let B(m) ⊆ Bcy(Πe) be as described above.

(1) If e � m then H̃∗(B(m); k) is free of rank 1 if ∗ = 2d, 2d + 1 and trivial, otherwise. 
The Connes’ operator takes a generator in degree 2d to m times a generator in degree 
2d + 1.

(2) If e | m then H̃∗(B(m); k) is isomorphic to k/ek if ∗ = 2d + 1, to k[e] if ∗ = 2d + 2, 
and trivial otherwise.

Proof. We use the isomorphism of cyclic k-modules

w : k(Bcy(Πe)[−]) → Bcy(A/k)[−]

This map preserves the weight decomposition, mapping k(B(m)[−]) isomorphically to 
Bcy(A/k; m)[−]. Furthermore the map commutes with the Connes operator, as shown in 
the proof of [5, Proposition 1.4.5]. Now by Lemma 4 we can read off what

HH∗(A/k;m) = H̃∗(B(m); k)

is and how Connes’ operator acts. �
Note that in particular when e is zero in k, H̃2d+2(B(m); k) is free of rank 1 over k. 

Thus there is room for a non-trivial Connes’ operator in this case. However, it follows 
again from Lemma 4 that it is trivial in this case.

We need the following general commuting diagram that we state as a lemma. Let G
be a group and f : BG → ∗ be the projection to a point. The induced pullback functor 
f∗ : Sp → SpBG admits a right adjoint

f∗ = (−)hG : SpBG −−−→ Sp,

given by the limit functor limBG(−) : SpBG = Fun(BG, Sp) → Sp, cf. [14, Section I.1]. 
We denote by ε : f∗f∗ → id the counit of this adjunction. Following [14, Theorem I.4]
we denote by
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fT
∗ : SpBG → Sp

the corresponding Tate G-construction. There is a canonical map αT : fT
∗ X ⊗ f∗Y →

fT
∗ (X ⊗ f∗f∗Y ) which may be defined by its adjoint: the initial map

fT
∗ X −−−→ map(f∗Y, fT

∗ (X ⊗ f∗f∗Y ))

such that precomposing with

can : f∗X → fT
∗ X

gives the composite

f∗X −−−→ map(f∗Y, f∗(X ⊗ f∗f∗Y ))
can∗

−−−→ map(f∗Y, fT
∗ (X ⊗ f∗f∗Y ))

(cf. [14, Section I.3]).

Lemma 7. Let X and Y be spectra with G-action. Then the following diagram commutes.

fT
∗ X ⊗ f∗Y fT

∗ X ⊗ fT
∗ Y

fT
∗ (X ⊗ f∗f∗Y ) fT

∗ (X ⊗ Y )

id⊗can

αT lax

fT
∗ (ε)

Proof. Consider the adjoint maps

α, β : fT
∗ X −−−→ map(f∗Y, fT

∗ (X ⊗ Y ))

determined by the lower and upper composite, respectively. It is enough to check that 
the maps agree after precomposing with the canonical map f∗X → fT

∗ X. This follows 
by the construction of αT and by the lax symmetric monoidality of can∗ [14, Theorem 
I.4.1.(vi)]. �

As observed in [14, Section IV.2], THH naturally forms a lax symmetric monoidal 
functor AlgE1

(Sp) → CycSp which is in fact symmetric monoidal, i.e. the lax structure 
map is an equivalence. For this last claim it is enough to check the equivalence on the 
underlying map of spectra for which see [1, Theorem 14.1]. This symmetric monoidal 
structure of THH together with the T -equivariant decomposition Eq. (5) provides us 
with the equivalence

THH(k(Πe)) �
⊕

THH(k) ⊗B(m)

m≥0
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of spectra with T -action. We wish to identify the right hand side as a cyclotomic spec-
trum. By definition of the symmetric monoidal structure on cyclotomic spectra the 
Frobenius map in questions factors as

THH(k) ⊗B(m)
ϕ⊗ψ̃

−−−→ THH(k)tCp ⊗B(pm)hCp

id⊗can
−−−→ THH(k)tCp ⊗B(pm)tCp

−−−→ (THH(k) ⊗B(pm))tCp

where the final map is the lax symmetric monoidal structure map for the Tate-Cp-
construction. There is a unique such map making the natural transformation can :
(−)hCp → (−)tCp lax symmetric monoidal [14, Theorem I.3.1]. We may factor the Frobe-
nius

THH(k) ⊗B(m)
ϕ⊗id

−−−→ THH(k)tCp ⊗B(m) −−−→ (THH(k) ⊗B(pm))tCp

as the Frobenius on THH(k) followed by the map induced by the unstable Frobenius 
ϕ̃ : B(m) → B(pm)hCp .

Lemma 8. The map

THH(k)tCp ⊗B(m) −−−→ (THH(k) ⊗B(pm))tCp

induced by the unstable Frobenius is an equivalence.

Proof. We abbreviate T = THH(k). Consider the following diagram

T tCp ⊗B(m) T tCp ⊗B(pm)hCp T tCp ⊗B(pm)tCp

(T ⊗B(m))tCp (T ⊗B(pm)hCp)tCp (T ⊗B(pm))tCp

id⊗ϕ̃

αT αT

id⊗can

lax

ϕ̃tCp εtCp

where ε is the canonical equivariant map from the fixed points of a space (with trivial 
Cp-action) to itself, and “lax” is the lax symmetric monoidal structure map. The map αT

was constructed in Lemma 7. We claim this diagram commutes and that the left-most 
vertical map, as well as the bottom composite, are equivalences. Here we equip B(m)
with trivial Cp-action. Since this is a finite space the map αT is an equivalence. The 
bottom row is the map induced by the composite

B(m)
ϕ̃

−−−→ B(pm)hCp
ε

−−−→ B(pm)
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where the first and second terms are given trivial Cp-action. The cofiber is a finite 
colimit of free Cp-cells hence applying the Tate construction induces an equivalence, see 
for example [14, Lemma I.3.8].

The commutativity of the left-square follows from the naturality of the map αT . 
Finally the left-square of the diagram commutes by Lemma 7. �
Corollary 9. The restricted Frobenius map

ϕ(m) : THH(k) ⊗B(m) → (THH(k) ⊗B(pm))tCp

induces an isomorphism in degrees ≥ 2d +1 when e � m, and induces an isomorphism in 
degrees ≥ 2d + 2 when e | m.

Proof. This follows readily from Lemma 8 and Lemma 6 using the Atiyah-Hirzebruch 
spectral sequence and the fact that the Frobenius

ϕ : THH(k) → THH(k)tCp

is an equivalence on connective covers (see [14, Corollary IV.4.13] for k = Fp, and [9, 
Addendum 5.3] for any perfect field k). �
5. Negative and periodic topological cyclic homology

In this section we compute the periodic and negative topological cyclic homology of 
the ring of truncated polynomials over a perfect field of characteristic p > 0. We will 
use the homotopy fixed point spectral sequence and the Tate spectral sequence, which 
we briefly recall. Let X be a connective spectrum with T -action. The homotopy fixed 
point spectral sequence is a second quadrant spectral sequence converging to π∗(XhT )
and with E2-page given by

E2 = H∗(BT , π∗X) � SZ{t} ⊗ π∗(X)

where t has bidegree (−2, 0). Note that the T -action on π∗(X) is necessarily trivial since 
T is path-connected. The Tate spectral sequence is a half-plane conditionally convergent 
spectral sequence converging to π∗(XtT ) whose E2-page is given by inverting t, i.e.

E2 = SZ{t, t−1} ⊗ π∗(X) ⇒ π∗(XtT ).

Here SZ{t, t−1} is the Laurent polynomial algebra over Z on a generator t with bidegree 
(−2, 0). It X is a ring-spectrum with T -action, then both spectral sequences are multi-
plicative. See [10, Section 4] for the construction and basic properties of the Tate spectral 
sequence. See also the forthcoming [4] for a construction of the Tate spectral sequence 
in the context of the ∞-category of parametrized spectra. We will also repeatedly use 
the following formula for the differentials on the E2-page.
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Lemma 10. Let X be a spectrum with T -action such that the underlying spectrum is an 
HZ-module. The d2 differential of the Tate spectral sequence is given by d2(α) = td(α)
where d is Connes’ operator.

Proof. See [5, Lemma 1.4.2] or [4, Section on Tate spectral sequence]. �
For a ring A, one defines the negative (respectively, periodic) topological cyclic homol-

ogy TC−(A) (respectively, TP(A)) by taking the homotopy fixed points (respectively, 
Tate construction) on the spectrum with T -action X = THH(A).

Returning to the ring of truncated polynomials, we will compute TP and TC− using 
an inductive procedure based on the p-adic valuation of the integer m indexing the 
T -space B(m). We choose generators for the homology of the spaces B(m) following 
Lemma 6. If e � m let ym and zm be generators for the homology in degree 2d and 
2d + 1, respectively. In this case the E2-page of the Tate spectral sequence calculating 
π∗((THH(k) ⊗B(m))tT ) is given by

E2 = k[t±1, x]{ym, zm}

where ym and zm have bidegrees (0, 2d) and (0, 2d + 1) respectively. If e | m and p | e
then we let zm and wm be generators of the homology in degree 2d + 1 and 2d + 2, 
respectively. Then the E2-page of the Tate spectral sequence is given by

E2 = k[t±1, x]{zm, wm}

where zm and wm have bidegrees (0, 2d + 1) and (0, 2d + 2) respectively.
Before stating the next lemma we need to introduce an important tool, namely a 

T -equivariant map (in fact it is a map of p-cyclotomic spectra)

HZp → THH(k)

Here HZp is given the trivial T -action. To get this map we use the calculation 
τ≥0 TC(k) � HZp [9, Theorem B] giving the T -equivariant map

HZp � τ≥0 TC(k) → TC(k) → TC−(k) → THH(k).

Lemma 11. In the Tate spectral sequence converging to π∗((THH(k) ⊗B(m))tT ) the class 
zm is an infinite cycle for all m.

Proof. Although the statement does not seem to require it, we must deal with the cases 
e | m and e � m separately. In both cases we use the T -equivariant map HZp → THH(k)
constructed in the preceding paragraph. This map induces a map from the Tate spectral 
sequences computing π∗((HZp ⊗ B(m))tT ) to the Tate spectral sequence computing 
π∗((THH(k) ⊗B(m))tT ).
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Suppose first that e � m. Then from Lemma 6 we may compute the E2-page of the 
Tate spectral sequence for HZp ⊗B(m) to be

E2 = Zp[t±1]{ym, zm} ⇒ π∗(HZp ⊗B(m))tT

where |ym| = (0, 2d) and |zm| = (0, 2d + 1). The differential structure is determined by 
d2(ym) = mtzm (using Lemma 10), and so E3 = E∞ = Zp/mZp[t±1]{zm} so zm is an 
infinite cycle. It follows that zm ∈ k[t±1, x]{ym, zm} (the E2 page for the target spectral 
sequence) is an infinite cycle.

Now suppose e | m. Then from Lemma 6 we may compute the E2-page of the Tate 
spectral sequence for HZp ⊗B(m) to be Zp/eZp[t±1]{zm} with |zm| = (0, 2d + 1) from 
which it follows immediately that zm is an infinite cycle. �
Proposition 12. Write m = pvm′ where (m′, p) = 1. If e � m then

π2r+1(THH(k) ⊗B(pvm′))tT � Wv(k)

for all r ∈ Z, and

π2r+1(THH(k) ⊗B(pvm′))hT �
{

Wv+1(k) if d ≤ r

Wv(k) if r < d

The even homotopy groups are trivial.

In the following proof, and the rest of the paper, a dot above an equality indicates 
that the equality holds up to a unit.

Proof. We proceed by induction on v ≥ 0. Suppose v = 0, so m = m′, and consider the 
Tate spectral sequence

E2 = k[t±1, x]{ym′ , zm′} ⇒ π∗(THH(k) ⊗B(m′))tT

By Lemma 11 the only possible non-zero differentials are those beginning at ym′ . Fur-
thermore

d2(ym′) .= td(ym′) .= m′tzm′

by Lemma 10 and Lemma 6. Since m′ is a unit in k, d2 is an isomorphism. The E2-page 
is summarized in the following diagram (shifted up by 2d in the horizontal direction).



14 M. Speirs / Advances in Mathematics 366 (2020) 107083
ym′

zm′

xym′

xzm′

x2ym′

x2zm′

...

tym′ t−1ym′ t−2ym′ · · ·· · ·

· · ·

· · ·

· · ·

· · ·

Thus E3 = E∞ = 0 is trivial, as claimed. To determine the T -homotopy fixed points, 
we truncate the Tate spectral sequence, removing the first quadrant. The classes xnzm′

are no longer hit by differentials and so

E3 = E∞ = k[x]{zm′}

where zm′ has degree 2d + 1. This proves the claim for v = 0.
Suppose the claim is known for all integers less than or equal to v. By Corollary 9 the 

Frobenius

ϕ(pvm′)hT : π∗(THH(k) ⊗B(pvm′))hT → π∗(THH(k) ⊗B(pv+1m′))tT

is an isomorphism in high degrees. The induction hypothesis then implies that the domain 
is isomorphic to Wv+1(k) when ∗ = 2r + 1 ≥ 2d + 1. By periodicity we conclude that 
π∗(THH(k) ⊗B(pv+1m′))tT is concentrated in odd degrees where,

π2r+1(THH(k) ⊗B(pv+1m′))tT � Wv+1(k)

for any r ∈ Z. Considering again the Tate spectral sequence we see that we must have

d2v+2(ypv+1m′) .= t(xt)vzpv+1m′

and so E2v+3 = E∞. Truncating the spectral sequence to obtain the homotopy fixed-
point spectral sequence, we now see that

π2r+1(THH(k) ⊗B(pv+1m′))hT �
{

Wv+2(k) if d ≤ r

Wv+1(k) if r < d

At least up to extension problems. To solve these we note that the homology class zm in 
B(m) provides a map of chain complexes
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fzm : Z[2d + 1] → Z⊗B(m)

where Z[2d + 1] denotes the chain complex concentrated in degree 2d + 1. We claim 
that fzm may in fact be promoted to a map of chain complexes with T -action, i.e. a 
map in the ∞-category D(Z)BT . This category is equivalent to the ∞-category of mixed 
complexes over Z1 hence it suffices to promote fzm to a map of mixed complexes, i.e. 
a map which commutes with Connes operator. The domain of fzm is given the trivial 
T -action, or equivalently trivial mixed complex structure, with trivial Connes operator. 
The codomain has the mixed complex structure used in the proof of Lemma 4, which 
refers back to [3, Proposition 2.1]. From there we see that Connes operator acts as zero 
on any representative of the homology class zm. Thus fzm may be equipped with the 
structure of a T -equivariant map with trivial T -action on the domain. Upon tensoring 
with THH(k) over Z (using the module Z-structure given by the map we constructed 
before Lemma 11 we get a T -equivariant map

THH(k)[2d + 1] → THH(k) ⊗B(m)

In particular this induces a map of Tate spectral sequences. This allows us to conclude 
that the W (k)-module π2r+1(THH(k) ⊗ B(m))hT is cyclic, hence determined by its 
length. Indeed, given α ∈ π2r+1(THH(k) ⊗ B(m))hT with image ᾱ on the E∞-page, it 
has the form taxazm for some a ≥ 0 and so is hit by taxa on the E∞-page for THH(k)tT , 
where the extension problem has already been solved. Up to a unit pa lifts taxa. Since 
the map

(THH(k)[2d + 1])tT → (THH(k) ⊗B(m))tT

is W (k)-linear we see that α .= pazm. This completes the proof. �
To deal with the case where e does divide m we factor e = pue′ where (p, e′) = 1. 

Thus e | m if and only if v ≥ u and e′ | m′.

Proposition 13. Write m = pvm′ where (m′, p) = 1. If e | m then

π2r+1(THH(k) ⊗B(pvm′))tT � Wu(k)

and

π2r+1(THH(k) ⊗B(pvm′))hT � Wu(k)

for all r ∈ Z.

1 As noted in [11, Paragraph after Theorem 1] this follows from the formality of C∗(T , Z) as an E1-algebra.
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Proof. If either u or v is zero then H̃∗(B(m); k) is trivial in every degree by Lemma 6. 
The result easily follows. For the rest of the cases we use induction on v ≥ u ≥ 1. Suppose 
v = u. Then

π∗(THH(k) ⊗B(pv−1m′))hT
ϕ(pv−1m′)
−−−→ π∗(THH(k) ⊗B(pvm′))tT

is an isomorphism in high enough degrees. The domain was evaluated in Proposition 12, 
it is Wu(k) in odd degrees greater than or equal to 2d + 1. By periodicity we conclude 
the result for the codomain. Now suppose the result has been verified for all integers 
greater than u and strictly less than v. Again using the Frobenius we conclude that

π2r+1(THH(k) ⊗B(pvm′))tT � Wu(k)

for all r ∈ Z.
Consider the Tate spectral sequence with E2-page k[t±1, x]{zm, wm}. Since zm is an 

infinite cycle the only possible way that this sequence collapses to yield the correct result 
is if

d2u(wm) .= (tx)uzm

Thus E2u+1 = E∞. As before, by truncating the first quadrant, we get the spectral 
sequence for the homotopy T -fixed points whose E2u-page clearly shows the result. The 
extension problem is solved as in the proof of Proposition 12. �
6. Topological cyclic homology

We now prove Theorem 1. By McCarthy’s Theorem [13] it suffices to prove the fol-
lowing.

Theorem 14. Let k be a perfect field of positive characteristic. Then there is an isomor-
phism

TC2r−1(k[x]/(xe), (x)) � Wre(k)/VeWr(k)

and the groups in even degrees are zero.

Proof. In view of Lemma 2 it suffices to give an isomorphism

TC2r−1(k[x]/(xe), (x)) �
∏

Wh(k)

where the product is indexed over 1 ≤ m′ ≤ re with (p, m′) = 1 and with h =
h(p, r, e, m′) given by
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h =
{

s if e′ � m′

min{u, s} if e′ | m′

where s = s(p, re, m′) is such that ps−1m′ ≤ re < psm′, and where e = pue′ with 

(e′, p) = 1. Now TC(A, I) is given as the equalizer of TC−(A, I)
ϕ−can
−−−→ TP(A, I). This 

map splits as

∏
m′≥1

(p,m′)=1

∏
v≥0

TC−(pvm′)
ϕ−can
−−−→

∏
m′≥1

(p,m′)=1

∏
v≥0

TP(pvm′)

By Proposition 12 and Proposition 13 both TC−(pvm′) and TP(pvm′) are concentrated 
in odd degrees, and ϕ − can is surjective on homotopy, so the long exact sequence 
calculating TC splits into short exact sequences

0 → TC∗(m′) →
∏
v≥0

TC−
∗ (pvm′)

ϕ−can
−−−→

∏
v≥0

TP∗(pvm′) → 0

Now if e′ � m′ then from Proposition 12 we have a map of short exact sequences

0
∏

v≥s Wv(k)
∏

v≥0 TC−
2r+1(pvm′)

∏
0≤v<s Wv+1(k) 0

0
∏

v≥s Wv(k)
∏

v≥0 TP2r+1(pvm′)
∏

0≤v<s Wv(k) 0

ϕ−can ϕ−can ϕ−can

where s = s(p, r, d(m′)). The left hand vertical map is an isomorphism (since in this range 
can is an isomorphism and ϕ is divisible by powers of p) and the right hand vertical map 
is an epimorphism with kernel Ws(k). Thus TC2r+1(m′) = Ws(k). Note that in this case 
h = s.

If e′ | m′ then we must distinguish between two cases. First, if s < u then again we 
get a map of short exact sequences

∏
s≤v<u Wv(k) ×

∏
u≤v Wu(k)

∏
v≥0 TC−

2r+1(pvm′)
∏

0≤v<s Wv+1(k)

∏
s≤v<u Wv(k) ×

∏
u≤v Wu(k)

∏
v≥0 TP2r+1(pvm′)

∏
0≤v<s Wv(k)

ϕ−can ϕ−can ϕ−can

so in this case TC2r+1(m′) = Ws(k) Since u > s we have h = s as claimed. If instead, 
u ≤ s then the map of short exact sequences looks as follows
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∏
v≥s Wv(k)

∏
v≥0 TC−

2r+1(pvm′)
∏

0≤v<u Wv+1(k) ×
∏

u≤v<s Wu(k)

∏
v≥s Wv(k)

∏
v≥0 TP2r+1(pvm′)

∏
0≤v<u Wv(k) ×

∏
u≤v<s Wu(k)

ϕ−can ϕ−can ϕ−can

so in this case TC2r+1(m′) = Wu(k). Since u ≤ s we see that u = h in this case. This 
completes the proof. �
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