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Abstract. We commence a general algebro-geometric study of the moduli

stack of commutative, 1-parameter formal groups. We emphasize the pro-
algebraic structure of this stack: it is the inverse limit, over varying n, of

moduli stacks of n-buds, and these latter stacks are algebraic. Our main

results pertain to various aspects of the height stratification relative to fixed
prime p on the stacks of buds and formal groups.
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Introduction

The aim of this paper is to explicate some of the basic algebraic geometry of the
moduli stack of commutative, 1-parameter formal Lie groups. Following tradition
in algebraic topology and elsewhere, we abbreviate the term for such objects to
formal groups. Our analysis focuses chiefly on two main aspects of this stack. The
first is that it is not algebraic in the sense usually understood in algebraic geometry,
but rather pro-algebraic: we exhibit it in a natural way as an inverse limit, in a
2-categorical or homotopy sense, of algebraic stacks of n-buds. The second aspect
is its height stratification relative to a fixed prime, which is a canonical descending
filtration of closed substacks. Notably, we obtain characterizations of the strata of
the filtration, and we extend our analysis of the height stratification to the stacks
of buds as well.

In a broad sense, this paper may be regarded as a re-expression of some aspects
of the classical algebraic theory of formal group laws in a more global language,
using modern-day algebraic geometry. Our approach is to develop the moduli
theory largely from the ground up, beginning from the foundations of the classical
literature. Accordingly, we rely heavily on the classical sources. In particular, a
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2 BRIAN D. SMITHLING

great deal of what we discuss ultimately traces to Lazard’s seminal paper [L]. For
example, our description of the stack of formal groups as the limit over n of the
stacks of n-buds is already implicit in Lazard’s construction of the universal formal
group law. We give descriptions of the stack of formal groups and the stack of
n-buds as certain quotient stacks; these are essentially reformulations of Lazard’s
characterization of the Lazard ring. And much of what we say about the height
stratification is ultimately a translation of Lazard’s classification of formal group
laws over separably closed fields.

In summary, the contents of the paper are as follows. Section 1 serves chiefly to
collect terminology surrounding the various objects at play.

In §2 we address the first properties of the stack of formal groups M and of the
related stacks we consider. Unfortunately, as noted above, M is not algebraic in the
sense traditional in algebraic geometry [LMB, 4.1]: for example, its diagonal is not
of finite type [LMB, 4.2]. One remedy for this defect, due to Hopkins and followed
in [Go1, 1.8; P, 3.15; N, 6], is to simply redefine the notion of algebraic stack to
mean an “affine-ized” version of the usual one, using flat covers. See [Hol1] for an
axiomatization of the idea. Then M is algebraic in the modified sense, and one can
still do much of the algebraic geometry on such stacks that is available for usual
algebraic stacks. However, this modified definition is ultimately awkward from the
point of view of geometry, as many objects that ought to be algebraic are not,1 even
including all non-quasi-compact schemes. To express the reasonableness of M as
a geometric object, then, we revert to the traditional definition of algebraic stack,
as in [LMB], and observe that M is naturally described as a pro-algebraic stack.
Namely, we consider the algebro-geometric classification of n-bud laws, as defined
by Lazard [L]; see §1.5. Informally, these are just truncated formal group laws. The
moduli stack Bn of n-buds is readily seen to be an algebraic stack (2.3.2), and M
is naturally obtained as the 2-category limit lim←−n Bn (2.7.7).

In §§3 and 4 we turn to the essential feature of the geometry of the stacks Bn

and M , respectively, namely the height stratification relative to a fixed prime p.
These sections form the core of the paper. The height stratification on M consists
of an infinite descending chain of closed substacks

M = M≥0 ! M≥1 ! · · · ,
and, for each n, the height stratification on Bn consists of a finite descending chain
of closed substacks

Bn = B≥0
n ! B≥1

n ! · · · .
As n varies, the stratifications on Bn are compatible in a suitable sense, and their
limit recovers the stratification on M (4.2.2). One of our main results is the fol-
lowing.

Theorem (3.4.8). Bn is smooth over SpecZ of relative dimension −1 at every
point, and, when it is defined, B≥hn is smooth over SpecFp of relative dimension
−h at every point.

Much of our subsequent effort is devoted to studying the strata M h ⊂M and
Bh
n ⊂ Bn of height h formal groups and n-buds, respectively. By [L, Théorème

IV], formal group laws over a separably closed field of characteristic p are classified

1A phenomenon already present in examples of interest to homotopy theorists, as noted in
[Go1, footnote 5].
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up to isomorphism by their height. We generalize Lazard’s result in the following
way. Let H = Hh be a Honda formal group law of height h defined over Fp (3.5.8),
and let Aut(H) : S 7→ AutΓ(S,OS)(H) denote its functor of automorphisms, defined
on Fp-schemes S.

Theorem (4.3.8). M h is equivalent to the classifying stack B
(
Aut(H)

)
for the

fpqc topology.

There are two variants of the theorem worth mentioning. The first describes the
stack M h

tr of formal groups of height h with trivialized conormal bundle. One has
an exact sequence

1 −→ Autstr(H) −→ Aut(H) −→ Gm,

where Autstr(H) is the sub-group functor of strict automorphisms of H. Then
one obtains M h

tr ≈ Aut(H)\Gm. Of course, here Gm acts naturally on the right-
hand side; the action appears on the left-hand side as Gm’s natural action on
trivializations, and this action realizes the forgetful functor M h

tr → M h as a Gm-
torsor. When K is a field containing Fph , Aut(H)(K) is precisely the hth Morava
stabilizer group studied in homotopy theory.

The second variant of (4.3.8) is a version for n-buds, which we give in (3.5.11);
here one replaces H by H(n), the n-bud law obtained from H by discarding terms
of degree ≥ n+ 1.

The results (3.5.11) and (4.3.8) accord the groups Aut(H(n)) and Aut(H) im-
portant places in the theory. To investigate their structure, we observe that both
groups carry natural descending filtrations by normal subgroups; see (3.6.2) and
(4.4.4), respectively. In the case of Aut(H), this filtration recovers the usual topol-
ogy on the Morava stabilizer group. We compute the successive quotients of the re-
spective filtrations in (3.6.3) and (4.4.7). As a corollary, we deduce that Aut(H(n))
is a smooth group scheme over Fp of dimension h (3.6.4).

In addition to (4.3.8), we obtain another description of M h via a classical the-
orem of Dieudonné [D, Théorème 3] and Lubin [Lu, 5.1.3]. Very roughly, their
theorem characterizes AutF

ph
(H) as the profinite group G of units in a certain

p-adic division algebra; see (4.4.10) for a precise formulation.

Theorem (4.6.2). There is an equivalence of stacks over Fph ,

M h ×Spec F
ph

SpecFph ≈ lim←−B(G/N),

where the limit is taken over all open normal subgroups N of G.

The theorem is really a corollary of Dieudonné’s and Lubin’s theorem and of
(4.6.1), where we show that M h is a limit of certain classifying stacks of finite étale
(but nonconstant) groups over Fp. These groups all become constant after base
change to Fph .

In §5 we describe some aspects of the stacks M and Bn related to separatedness
and properness.

Theorem (5.1). Bn is universally closed over SpecZ, and, when it is defined,
B≥hn is universally closed over SpecFp.

The stacks Bn and B≥hn fail to be proper because they are not separated; see
(5.2). The failure of separatedness prevents us from concluding in a formal way
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that M and M≥h also satisfy the valuative criterion of universal closedness. Nev-
ertheless, these stacks do satisfy the valuative criterion in many cases; see (5.4).
By contrast, we show that the stratum M h does satisfy the valuative criterion of
separatedness.

Theorem (5.5). Let O be a valuation ring and K its field of fractions. Then
M h(O)→M h(K) is fully faithful for all h ≥ 1.

When O is a discrete valuation ring, the theorem is a (very) special case of de
Jong’s general theorem [dJ, 1.2] that restriction of p-divisible groups from Spec O
to the generic point SpecK is fully faithful.

While formal group laws have found applications across a wide swath of math-
ematics, their moduli theory appears to be of greatest interest in stable homotopy
theory. The importation of formal groups into topology began in earnest with work
of Quillen [Q], and, following notably the influence of Morava [Mo], formal groups
came to form a cornerstone of the chromatic approach to stable homotopy theory;
see Ravenel’s book [R1]. Morava also advocated for the importation of algebraic
geometry into the subject as a means to gain conceptual insight; and more recently,
owing notably to the influence of Hopkins, the algebraic geometry of the moduli
stack of formal groups has emerged as a powerful way to understand the chromatic
approach’s impressive computational architecture.

Despite its intimate connections to homotopy theory, only fairly recently has ma-
terial on the stack of formal groups begun to appear in earnest in the mathematical
literature. Hopkins has covered a considerable amount of the theory in [Hop] and
in other courses at MIT, and Pribble’s thesis [P] has also covered some of the basic
theory, including some aspects of the height stratification and an algebraic analog
of the chromatic convergence theorem of Hopkins-Ravenel [R2, §8.6]. Naumann [N]
has given the first published account of some of the basic moduli theory and has
used it to prove generalizations of results of Hovey [Hov] and Hovey and Strickland
[HS]. Our paper takes another step towards filling the gap in the literature, but we
don’t go so far as to study the important topics of quasi-coherent sheaves on M or
its deformation theory: these are where the essential connections to topology are
found. For a comprehensive account of the stack of formal groups and its relation
to stable homotopy theory, we refer to Goerss’s forthcoming book [Go2]. Hollander
has also done some notable recent work: in [Hol2] she gives a simple proof of the
Landweber exact functor theorem [La2] in terms of the geometry of M , and in
[Hol3] she uses this stack to give a proof of the Miller-Ravenel-Morava change of
rings theorem and another proof of the algebraic chromatic convergence theorem.

Throughout, we assume that the reader is familiar with basic formal group law
theory; where needed, we’ll use [L] and [F] as our primary references, but other
good sources, such as [Ha] and [R1, App. 2], abound.

This paper is a condensed version of the author’s Ph.D. thesis [S].
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Notation and conventions. Except where noted otherwise, we adopt the follow-
ing notation and conventions.

All rings are commutative with 1. We write (Sch) for the category of schemes
and (Sch)/S for the category of schemes over a fixed scheme S. In case S is an
affine scheme SpecA, we also denote (Sch)/S by (Sch)/A.

We write Γ(S) for the global sections Γ(S,OS) of the structure sheaf of the
scheme S. For each integer n ≥ 0 and indeterminates T1, . . . , Tm, we define the
ring

Γn(S;T1, . . . , Tm) := Γ
(
S,OS [T1, . . . , Tm]/(T1, . . . , Tm)n+1

)
∼= Γ(S)[T1, . . . , Tm](T1, . . . , Tm)n+1.

In particular, we have Γ0(S;T1, . . . , Tm) ∼= Γ(S).
We relate objects in a category by writing = for equal; ∼= for canonically isomor-

phic; ' for isomorphic; and ≈ for equivalent or 2-isomorphic (e.g. for categories,
fibered categories, stacks, etc.).

We abbreviate the term “category fibered in groupoids” to CFG. By default,
“presheaf” means “presheaf of sets”, and similarly for “sheaf”.

We say that a diagram of fibered categories or stacks

A //

��

B

��

C // D

is Cartesian if the two composites A → D are isomorphic and the choice of such

an isomorphism induces an equivalence A
≈−→ C ×D B.

We always take limits of diagrams of fibered categories or stacks in the sense of
pseudofunctors. Given a category I and a pseudofunctor F : I → (Cat) [SGA1, VI
§8], where (Cat) denotes the 2-category of small categories, the limit lim←−F of F

is defined in [SGA1, VI 5.5] in terms of fibered categories. Up to equivalence, the
category lim←−F admits the following concrete description. An object is a family

(Xi, ϕµ)i∈ob I ,µ∈mor I , where Xi is an object in Fi for every object i in I , and ϕµ
is an isomorphism (Fµ)Xi

∼−→ Xj in Fj for every morphism µ : i→ j in I , subject
to a natural “cocycle condition” between ϕµ, ϕν , ϕν◦µ, and the pseudofunctor
data for every composition ν ◦ µ. A morphism (Xi, ϕµ) → (X ′i, ϕ

′
µ) is a family of

morphisms (αi)i∈ob I , where αi : Xi → X ′i for each i ∈ ob I, compatible with the
pseudofunctor data and the ϕµ’s and ϕ′µ’s in a natural way. Given a diagram of
fibered categories or stacks indexed by a pseudofunctor, the limit fibered category
or stack, respectively, is the fibered category whose fiber over a given object S in
the base category is the limit, in the sense just given, of the induced diagram of
category fibers over S. See [S, Appendix] for more details. In the case of fibered
products, this notion of the limit recovers the usual notion, as in [LMB, 2.2.2], up
to equivalence.

In a certain sense, the pseudofunctor limit may be thought of as a kind of ho-
motopy limit. But this is not true in the most literal sense, as homotopy limits are
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only defined for honest functors, not general pseudofunctors. While one can use
formal tricks to replace a given pseudofunctor with an equivalent honest functor,
the diagrams we’re most interested in — chiefly inverse towers of stacks — are most
naturally regarded as indexed by pseudofunctors. Hence we view the pseudofunctor
approach to the limit as simpler and more natural.

For convenience, we use the terms “formal Lie variety”, “n-germ”, “formal
group”, and “n-bud” in a somewhat abusive way. We always understand the first
two to be equipped with a distinguished section, and the second two to be commu-
tative; neither requirement is necessary in general. And we always take all four in
the 1-parameter sense, though more general notions allow for many parameters.

1. Definitions

In this section we collect some of the basic language and notation related to the
objects we study in this paper.

1.1. Formal Lie varieties. We begin by reviewing what are, in some sense, the
basic geometric objects underlying the formal groups, namely the formal Lie vari-
eties. Let S be a scheme.

Definition 1.1.1. A (pointed, 1-parameter) formal Lie variety over S is a sheaf
X on (Sch)/S for the fppf topology equipped with a section σ : S → X, such that,
Zariski-locally on S, there is an isomorphism of pointed sheaves X ' Spf OS [[T ]],
where Spf OS [[T ]] is pointed by the 0-section. A morphism of formal Lie varieties
is a morphism of pointed sheaves.

In other words, a formal Lie variety is a pointed formal scheme over S Zariski-
locally (on S) of the form Spf OS [[T ]]. This recovers the definition given in [G, VI
1.3] or [M, II 1.1.4] in the one-parameter case, as indicated in [M].

Example 1.1.2. The most basic and important example of a formal Lie variety
over any base S is just Spf OS [[T ]] itself, equipped with the 0 section. We denote

this example by ÂS or, when the base is clear from context, by Â. When S is an

affine scheme SpecA, we also denote ÂS by ÂA.

Our notation is nonstandard. It is typical to write Â1
S for the formal line

Spf OS [[T ]], equipped with no distinguished section, obtained by completing A1
S

at the origin. But since our interest is almost exclusively in pointed, 1-parameter
formal Lie varieties, we suppress the superscript 1 to reduce clutter, and we always

understand ÂS to be equipped with the zero section.
More generally, if T is any smooth scheme of relative dimension 1 over S and

S → T is a section, then the completion of T along the section is a formal Lie
variety over S.

1.2. Formal groups. We recall the definition. Let S be a scheme.

Definition 1.2.1. A (commutative, 1-parameter) formal group over S is an fppf
sheaf of commutative groups on (Sch)/S such that the underlying pointed sheaf of
sets is a formal Lie variety (1.1.1).

Example 1.2.2. To make the formal Lie variety Â = ÂS (1.1.2) into a formal

group, one must define a multiplication map Â×S Â→ Â. Since

Â×S Â ∼= Spf OS [[T1, T2]],
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it is equivalent to define a continuous OS-algebra map

OS [[T1, T2]]←− OS [[T ]].

Any such map is determined by the image F (T1, T2) of T in the global sections

Γ(S)[[T1, T2]]; and Â becomes a formal group with the 0 section as identity exactly
when F is a formal group law over Γ(S) in the classical sense. Hence to give a
formal group law is to give a formal group with a choice of coordinate. We write

ÂF = ÂFS for the group structure on Â obtained from F . Of course, Zariski-locally

on S, every formal group is of the form ÂF for some group law F .

Example 1.2.3. Let F and G be formal group laws over Γ(S). Then a morphism

of formal Lie varieties f : Â → Â is a morphism of formal groups f : ÂF → ÂG
exactly when the diagram of maps on global sections

Γ(S)[[T ]]
f#

←−− Γ(S)[[T ]]

satisfies

f#
(
F (T1, T2)

)
= G

(
f#(T1), f#(T2)

)
∈ Γ(S)[[T1, T2]],

that is, when f# is a group law homomorphism F → G in the classical sense.

Example 1.2.4.

• The additive formal group Ĝa = Ĝa,S over S is ÂFS for

F (T1, T2) = T1 + T2

the additive group law. Ĝa is the completion of Ga at the identity.

• The multiplicative formal group Ĝm = Ĝm,S over S is ÂFS for

F (T1, T2) = T1 + T2 + T1T2

the multiplicative group law. Ĝm is the completion of Gm at the identity.
• If E is an elliptic curve over S, then the completion of E at the identity is

a formal group over S. This furnishes many examples of formal groups not
admitting a global coordinate.
• More generally, completion at the identity of any smooth commutative

group scheme of relative dimension 1 yields a formal group. When S is
Spec of an algebraically closed field, then Ga, Gm, and elliptic curves are
the only such connected group schemes.
• Our examples so far omit many formal groups; for instance, when S is Spec

of a field of characteristic p, they only produce formal groups of heights (see
4.3.2) 1, 2, and∞. Other heights may be obtained from higher dimensional
groups: although completion at the identity of a smooth group scheme of
relative dimension n yields an n-parameter formal group, certain groups
equipped with additional structure allow for a 1-parameter summand to be
canonically split off from the formal group. This idea is pursued in [BL] in
the context of certain PEL Shimura varieties.

At this point, we could perfectly well begin to consider the moduli stack of
formal groups. But, as noted in the introduction, this stack is not algebraic. So
in the next subsection, we shall begin laying the groundwork to study the related
“truncated” moduli problem of classifying n-buds. We shall return to the moduli
stacks of formal Lie varieties and of formal groups in §2.6 and §2.7, respectively.
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1.3. Ind-infinitesimal sheaves I. In this subsection we review and introduce
notation for a few basic notions from infinitesimal geometry. Fix a base scheme S.

Let X be an fppf sheaf on (Sch)/S equipped with a section S → X. We write

X(n) for the nth infinitesimal neighborhood of S in X along the section, n ≥ 0
[G, VI 1.1; M, II 1.01]. The map X 7→ X(n) is compatible with base change on S
[M, II 1.03] and is functorial in X.

Definition 1.3.1. X is n-infinitesimal (resp., ind-infinitesimal) if the natural ar-
row X(n) → X (resp., lim−→n

X(n) → X) is an isomorphism. We denote by (n-Inf)(S)

(resp., (∞-Inf)(S)) the category of n-infinitesimal (resp., ind-infinitesimal) pointed
sheaves over S.

Example 1.3.2. The most important examples for us are that any formal Lie
variety is ind-infinitesimal, and any nth infinitesimal neighborhood of a pointed
sheaf is n-infinitesimal. When X is ind-infinitesimal, we often refer to X(n) as its
n-truncation.

One verifies at once that the properties of being n-infinitesimal or ind-infinitesimal
are stable under base change. Hence (n-Inf) and (∞-Inf) define fibered categories
over (Sch).

1.4. Germs. In this subsection we introduce the “truncated” analogs of the formal
Lie varieties, namely the germs. Let n ≥ 0, and let S be a scheme.

Definition 1.4.1. A (pointed, 1-parameter) n-germ over S is a pointed, n-infini-
tesimal (1.3.1) scheme X over S which is smooth to order n [G, VI 1.2; M, II 3.1.2]
and whose conormal bundle ωX := Ω1

X/S |S is a line bundle on S.

In other words, an n-germ X over S is an S-scheme X equipped with a section,
locally (for the Zariski topology on S) of the form Spec OS [T ]/(T )n+1.

Remark 1.4.2. The line bundle ωX appearing in (1.4.1) will play an important
role later on when we consider the height stratification.

Example 1.4.3. The most basic and important example of an n-germ over S is
just Spec OS [T ]/(T )n+1 itself, equipped with the 0 section. We denote this by
T := TS := Tn,S , suppressing the n or S when no confusion seems likely. When S
is an affine scheme SpecA, we also denote TS by TA.

We say that an n-germ X over S is trivial if X ' TS as pointed S-schemes.

Remark 1.4.4. For m ≥ n, we have Â(n)
S
∼= T(n)

m,S
∼= Tn,S . More generally, any

truncation of a formal Lie variety or of a germ is a germ.

Definition 1.4.5. We define (n-germs)(S) to be the full subcategory of pointed
sheaves on (Sch)/S consisting of the n-germs. We define Gn(S) to be the groupoid
of n-germs and their isomorphisms over S.

Remark 1.4.6. It is clear from the definition of germ that if X is an n-germ over
S and S′ → S is any base change, then X ×S S′ is an n-germ over S′. Hence
(n-germs) and Gn define a fibered category and a CFG, respectively, over (Sch).

Since every germ is locally trivial, the automorphisms of TS will assume an
important place in the theory.
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Definition 1.4.7. We define End(Tn) to be the presheaf of monoids on (Sch)

End(Tn) : S 7−→ End(n-germs)(S)(Tn,S)

and Aut(Tn) to be the presheaf of groups on (Sch)

Aut(Tn) : S 7−→ Aut(n-germs)(S)(Tn,S).

Now, to give an endomorphism of TS is to give a map of augmented OS-algebras
OS [T ]/(T )n+1 → OS [T ]/(T )n+1; this, in turn, is given by the image a1T+· · ·+anTn
of T in Γn(S;T ). The endomorphism of TS is then an automorphism exactly
when a1T + · · · + anT

n is invertible under composition in Γn(S;T ), that is, when
a1 ∈ Γ(S)×. We have shown the following.

Proposition 1.4.8. End(Tn) is canonically represented by a monoid scheme struc-
ture on SpecZ[a1, a2, . . . , an] = AnZ, and Aut(Tn) is canonically represented by a

group scheme structure on the open subscheme SpecZ[a1, a
−1
1 , a2, . . . , an] of AnZ. �

Explicitly, the monoid structure on SpecZ[a1, . . . , an] = AnZ obtained from the
identification with End(Tn) is given by composition of polynomials a1T+· · ·+anTn
in the truncated polynomial ring Z[a1, . . . , an][T ]/(T )n+1.

Remark 1.4.9. Aut(Tn) admits a decreasing filtration of closed sub-group schemes

Aut(Tn) =: A Tn
0 ⊃ A Tn

1 ⊃ · · · ⊃ A Tn
n−1 ⊃ A Tn

n := 1

defined on S-valued points by

A Tn
i (S) = {T + ai+1T

i+1 + · · ·+ anT
n | ai+1, . . . , an ∈ Γ(S) }, 1 ≤ i ≤ n− 1.

Said differently, A Tn
i is just the kernel of the homomorphism Aut(Tn)→ Aut(Ti)

induced by the identification T(i)
n
∼= Ti, 0 ≤ i ≤ n. One verifies at once that the

map on points

T + ai+1T
i+1 + · · ·+ anT

n 7−→ ai+1

specifies an isomorphism of Z-groups

A Tn
i /A Tn

i+1
∼−→

{
Gm, i = 0;

Ga, 1 ≤ i ≤ n− 1.

We’ll return to the A Tn
i ’s in §3.6.

1.5. Buds. We now come to the “truncated” analogs of the formal groups, namely
the buds; these are the algebro-geometric analogs of bud laws. Recall that for n ≥ 0,
an n-bud law over a ring A is an element

F (T1, T2) ∈ A[T1, T2]/(T1, T2)n+1

satisfying

• (identity) F (T, 0) = F (0, T ) = T ;
• (associativity) F

(
F (T1, T2), T3

)
= F

(
T1, F (T2, T3)

)
; and

• (commutativity) F (T1, T2) = F (T2, T1)

in the respective rings

A[T ]/(T )n+1, A[T1, T2, T3]/(T1, T2, T3)n+1, and A[T1, T2]/(T1, T2)n+1.

The definition translates readily to algebraic geometry. Let S be a scheme and
n ≥ 0.
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Definition 1.5.1. A (commutative, 1-parameter) n-bud over S consists of an n-
germ π : X → S (1.4.1) equipped with a morphism of S-schemes, which we think
of as a multiplication map,

F : (X ×S X)(n) −→ X,

satisfying the constraints

(I) (identity) the section S
σ−→ X is a left and right identity for F , that is, both

compositions in the diagram

X
(σπ,idX)

//

(idX ,σπ)

��

(X ×S X)(n)

F

��

(X ×S X)(n) F // X

equal idX ;
(A) (associativity) F is associative on points of (X ×S X ×S X)(n), that is, the

restrictions of F×idX and idX×F to (X×SX×SX)(n) yield a commutative
diagram

(X ×S X ×S X)(n)
idX×F //

F×idX

��

(X ×S X)(n)

F

��

(X ×S X)(n) F // X;

and
(C) (commutativity) F is commutative, that is, letting τ : X ×S X → X ×S X

denote the transposition map (x, y) 7→ (y, x) and restricting τ to (X ×S
X)(n), F is τ -equivariant, i.e. the diagram

(X ×S X)(n) τ //

F ##HHHHHHH
(X ×S X)(n)

F{{wwwwwww

X

commutes.

Of course, the infinitesimal neighborhoods in the definition are all taken with
respect to the sections induced by σ.

Remark 1.5.2. The multiplication map F in the definition does not define an
S-monoid scheme structure on X, since F is defined only on points of a certain
subfunctor of the product X ×S X. On the other hand, (X ×S X)(n) is the honest
product of X with itself in the category (n-Inf)(S). Hence n-buds over S are
commutative monoids in (n-Inf)(S). In fact, we’ll see in §1.6 that the n-buds are
precisely the n-germs endowed with a commutative group structure in (n-Inf)(S).

Example 1.5.3. Consider the n-germ T over S (1.4.3). Then, quite analogously
to (1.2.2), to give an n-bud structure (T×ST)(n) → T with the 0 section as identity
is to give an n-bud law F over Γ(S). Hence, to give an n-bud law is to give an
n-bud with a choice of coordinate. We write TF = TFS for the bud structure on T
obtained from F .
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Example 1.5.4. Everything in (1.2.4) admits an obvious analog for buds. In
particular, we mention the following.

• The additive n-bud G(n)
a := G(n)

a,S over S is the nth infinitesimal neighbor-

hood of Ga at the identity, that is, the n-bud TFn,S for F (T1, T2) := T1 +T2.

• The multiplicative n-bud G(n)
m := G(n)

m,S over S is the nth infinitesimal neigh-

borhood of Gm at the identity, that is, the n-bud TFS for F (T1, T2) :=
T1 + T2 + T1T2.

Remark 1.5.5. For F a group law (resp., m-bud law with m ≥ n), let F (n) denote
the n-bud law obtained from F by reducing modulo terms of degree ≥ n+ 1. Then

(ÂF )(n) ∼= TF (n)

n (resp., (TFm)(n) ∼= TF (n)

n ). More generally, any truncation of a
formal group or of a bud is a bud, since truncation (∞-Inf)(S) → (n-Inf)(S) and
(m-Inf)(S)→ (n-Inf)(S), m ≥ n, preserves finite (including empty) products.

There is an obvious notion of morphism.

Definition 1.5.6. A morphism f : X → Y of n-buds over S is a morphism of
monoid objects in (n-Inf)(S), that is, a morphism of the underlying n-germs such
that

(X ×S X)(n)
(f×f)(n)

//

��

(Y ×S Y )(n)

��

X
f

// Y

commutes.

Example 1.5.7. Analogously to (1.2.3), to give a morphism of buds f : TFS →
TGS over S is to give an element f#(T ) ∈ Γn(S;T ) such that f#

(
F (T1, T2)

)
=

G
(
f#(T1), f#(T2)

)
, that is, a homomorphism of bud laws F → G in the classical

sense.

Definition 1.5.8. We define (n-buds)(S) to be the category of n-buds and bud
morphisms over S. We define Bn(S) to be the groupoid of n-buds and bud isomor-
phisms over S.

Remark 1.5.9. Since the base change of an n-germ is an n-germ, and since in-
finitesimal neighborhoods and fibered products are compatible with base change,
the base change of an n-bud is an n-bud. Hence (n-buds) and Bn define a fibered
category and a CFG, respectively, over (Sch).

Note that when X = TFS , one has X ′ ∼= TF ′S′ , where F ′ is the bud law over Γ(S′)
obtained by applying f# to the coefficients of F .

1.6. Buds as group objects. Fix a base scheme S. We remarked in (1.5.2) that
n-buds over S are honest commutative monoids in the category (n-Inf)(S) (1.3.1).
As promised, we’ll now see that n-buds are honest group objects in (n-Inf)(S).

Proposition 1.6.1. The n-buds over S are precisely the n-germs over S endowed
with a commutative group structure in (n-Inf)(S). The n-bud morphisms over S
are precisely the homomorphisms of group objects in (n-Inf)(S).

Proof. All we need to show is that every n-bud X is automatically equipped with
an inverse morphism X → X. Since the inverse is unique if it exists, it suffices to
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find the inverse locally on S. Hence we may assume X = TFS for some n-bud law
F (T1, T2) ∈ Γn(S;T1, T2) (1.5.3). Now use (1.5.7) and the fact that every bud law
has a unique inverse homomorphism [F, I §3 Proposition 1]. �

The following is a formal consequence.

Corollary 1.6.2. For n-buds X and Y over S, the set of bud morphisms X → Y
is naturally an abelian group. Moreover, composition of bud morphisms is bilinear.

�

Explicitly, bud morphisms X → Y are added as elements of Hom(n-Inf)(S)(X,Y )
under the group structure coming from Y . The content of the corollary is that bud
morphisms form a subgroup of Hom(n-Inf)(S)(X,Y ).

Remark 1.6.3. The category of n-buds over S is not additive for n ≥ 1, since
the product of n-germs, whether taken in the category of pointed sheaves or in
(n-Inf)(S), is not again an n-germ. But the problem is only that we’ve restricted
to the 1-parameter case: commutative n-buds without constraint on the number of
parameters do form an additive category.

2. Basic moduli theory

We now begin to consider the basic moduli theory of the stacks of n-germs,
n-buds, formal Lie varieties, and formal groups.

2.1. The stack of n-germs. In this subsection we show that the CFG of n-germs
Gn, n ≥ 1, is an algebraic stack equivalent to the classifying stack B

(
Aut(Tn)

)
,

with Aut(Tn) as defined in (1.4.7).

Proposition 2.1.1. Gn is a stack over (Sch) for the fpqc topology.

Proof. We have to check that objects and morphisms descend. It is clear from the
definitions that Gn is a stack for the Zariski topology. So we may restrict to the
case of a base scheme S and a faithfully flat quasi-compact morphism f : S′ → S.
The argument from here is a straightforward application of the descent theory in
[SGA1, VIII].

Descent for morphisms of germs along f is an immediate consequence of descent
for morphisms of schemes [SGA1, VIII 5.2]. To check descent for objects, let X ′

be an n-germ over S′ equipped with a descent datum. Then X ′ is certainly affine
over S′. So X ′ descends to a scheme π : X → S affine over S [SGA1, VIII 2.1]. By
descent for morphisms, the section for X ′ descends to a section σ for X, say with
associated ideal I ⊂ π∗OX . Let ωX ∼= I /I 2 denote the conormal sheaf. Since
formation of the conormal sheaf associated to a section is compatible with base
change [EGAIV4, 16.2.3(ii)], and since line bundles descend [SGA1, VIII 1.10], we
conclude that ωX is a line bundle on S. By [G, VI 1.2; M, II 3.1.1], it remains to
show that I n+1 = 0 and that the natural map ω⊗iX → I i/I i+1 is an isomorphism
for i = 1, . . . , n. But the analogous statements hold after faithfully flat base change
to S′. So we’re done by descent. �

Theorem 2.1.2. Gn is equivalent to the classifying stack B
(
Aut(Tn)

)
. In partic-

ular, Gn is algebraic.
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Proof. By the previous proposition and the fact that every germ is locally trivial,
Gn is a neutral gerbe (for any topology between the Zariski and fpqc topologies,
inclusive) over SpecZ, with section given by TZ (1.4.3). The first assertion now
follows from [LMB, 3.21].

As for algebraicity, we need note only that Aut(Tn) is a smooth, separated
group scheme of finite presentation over Z by (1.4.8), and that the quotient of any
algebraic space by such a group scheme is algebraic [LMB, 4.6.1]. �

Remark 2.1.3. Of course, for an arbitrary group sheaf G on a site C , the stack
B(G) depends on the topology on C . By (2.1.1) and (2.1.2), B

(
Aut(Tn)

)
is inde-

pendent of the choice of topology on (Sch) between the Zariski and fpqc topologies,
inclusive. In particular, every fpqc-torsor for Aut(Tn) is in fact a Zariski-torsor.

2.2. Bud structures on trivial germs. In the next subsection we’ll begin dis-
cussing the moduli stack of n-buds. Since every bud has locally trivial underlying
germ, the classification of bud structures on TS (1.4.3) assumes an important role
in the theory. Let n ≥ 1.

Definition 2.2.1. We define Ln to be the presheaf of sets on (Sch)

Ln : S 7−→ {n-bud structures on Tn,S}.
By (1.5.3), to give an n-bud structure on TS over the scheme S is to give an

n-bud law F ∈ Γn(S;T1, T2). By Lazard’s theorem — see [L, Théorèmes II and
III and their proofs] or [Ha, I 5.7.3] — there exists a universal n-bud law defined
over the polynomial ring Z[t1, . . . , tn−1]. Hence for n ≥ 1, Ln is (noncanonically)
represented by An−1

Z . In the trivial case n = 0, we have L0
∼= SpecZ.

Remark 2.2.2. The functor Aut(Tn) (1.4.7) acts naturally on Ln as “changes of
coordinate”: given a bud structure TFS and a germ automorphism f of TS , transport
of structure along f determines a bud structure TGS , and f is tautologically a bud

isomorphism TFS
∼−→ TGS . Explicitly, denoting by f# the map on global sections of

TS , we have G(T1, T2) = f#
[
F
(
f#−1(T1), f#−1(T2)

)]
.

2.3. The stack of n-buds. In this subsection we show that the moduli stack of
n-buds Bn, n ≥ 1, is equivalent to the quotient algebraic stack Aut(Tn)\Ln, with
the schemes Aut(Tn) and Ln as defined in (1.4.7) and (2.2.1), respectively, and
with the action of Aut(Tn) on Ln as described in (2.2.2).

Proposition 2.3.1. Bn is a stack over (Sch) for the fpqc topology.

Proof. The only new ingredient for n-buds, as compared to n-germs, is the multi-
plication map. This is handled using standard descent arguments, as in the proof of
(2.1.1), along with the facts that fibered products and infinitesimal neighborhoods
are compatible with base change. We leave the details to the reader. �

Theorem 2.3.2. Bn is equivalent to the quotient stack Aut(Tn)\Ln. In particular,
Bn is algebraic.

Proof. We’ll apply [LMB, 3.8] to the tautological morphism f : Ln → Bn. Since
every bud has Zariski-locally trivial underlying germ, f is locally essentially surjec-
tive for the Zariski topology, and hence for any finer topology. Moreover, it is clear
from the definitions that the maps

(2.3.3) Aut(Tn)× Ln
prLn //

a
// Ln,
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where a denotes the action map described in (2.2.2), induce an isomorphism

Aut(Tn)× Ln
∼−→ Ln ×Bn

Ln.

The first assertion now follows, and, as in the proof of (2.1.2), the algebraicity
assertion is immediate from [LMB, 4.6.1]. �

Remark 2.3.4. As in (2.1.3), we deduce that the quotient stack Aut(Tn)\Ln
is independent of the topology on (Sch) between the Zariski and fpqc topologies,
inclusive.

2.4. Equivalences of stacks of buds. In this subsection we show that certain of
the truncation functors between stacks of buds are equivalences. The main result
is the following; we thank the referee for suggesting that we include it.

Theorem 2.4.1.

(i) For any n ≥ 1, Bn → Bn−1 is locally essentially surjective for the Zariski
topology.

(ii) Let Π be a set of primes (possibly empty or infinite), and let S be the
multiplicative subset of Z generated by the primes not in Π. If n > 1 is
not a power of an element of Π, then Bn⊗Z S

−1Z→ Bn−1⊗Z S
−1Z is an

equivalence of stacks.

In particular, taking Π to be the set of all primes, we conclude that if n is not a
prime power, then Bn → Bn−1 is an equivalence; and, taking Π to consist of a single
prime p, we conclude that if n is not a power of p, then Bn ⊗ Z(p) → Bn−1 ⊗ Z(p)

is an equivalence.

Proof of (2.4.1). By (2.3.2), Bn is the stackification, with respect to the Zariski
topology, of the presheaf of groupoids associated to the diagram (2.3.3). So every-
thing is immediate from the following theorem. �

Theorem 2.4.2. Let n > 1, let A be a ring, and consider the truncation functor

(∗) {n-bud laws over A} −→ {(n− 1)-bud laws over A}.

Then (∗) is surjective on objects. In case n is a power of a prime p, suppose, in
addition, that p ∈ A×. Then (∗) is an equivalence of categories.

The proof that (∗) is fully faithful under the stated hypothesis on n will require
a couple preliminary lemmas on the algebra of bud laws and their homomorphisms.

Let F and G be n-bud laws over the ring A for n ≥ 1. Let f ∈ A[T ]/(T )n+1

have 0 constant term. We define ∂f ∈ A[T1, T2]/(T1, T2)n+1 to measure the failure
of f to be a homomorphism F → G,

(2.4.3) (∂f)(T1, T2) := f
(
F (T1, T2)

)
−G

(
f(T1), f(T2)

)
.

As an easy first lemma, we consider the effect of perturbations to f on ∂f . Following
Lazard, let

Bm := (T1 + T2)m − Tm1 − Tm2 ∈ Z[T1, T2], m ≥ 1.

Lemma 2.4.4. Let g(T ) := f(T ) + aTn for a ∈ A. Then ∂g = ∂f + aBn.
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Proof. We just compute

g
(
F (T1, T2)

)
= f

(
F (T1, T2)

)
+ aF (T1, T2)n = f

(
F (T1, T2)

)
+ a(T1 + T2)n

and

G
(
g(T1), g(T2)

)
= G

(
f(T1) + aTn, f(T2) + aTn

)
= G

(
f(T1), f(T2)

)
+ aTn1 + aTn2

and subtract. �

The next lemma requires Lazard’s polynomial

(2.4.5) Cm := 1
λ(m)Bm ∈ Z[T1, T2], m ≥ 1,

where

(2.4.6) λ(m) :=

{
1, m is not a prime power;

l, m is a positive power of the prime l.

In keeping with our notation for truncated bud and group laws (1.5.5), we write
f (n−1) for the image of f in A[T ]/(T )n, and (∂f)(n−1) for the image of ∂f in
A[T1, T2]/(T1, T2)n.

Lemma 2.4.7. For n > 1, suppose that f (n−1) is a homomorphism F (n−1) →
G(n−1). Then there exists a unique a ∈ A such that ∂f = aCn.

Proof. Uniqueness of a follows because Cn is primitive. For existence, we show that
∂f satisfies the criterion in [L, Lemme 3] or [F, III §1 Theorem 1a] (note that the
second line of the conditions (P) in [F] is redundant).

Since F and G are commutative, it is clear that ∂f(T1, T2) = ∂f(T2, T1). Since
f (n−1) is a homomorphism, we have (∂f)(n−1) = 0. Hence ∂f is homogenous
of degree n. So we just have to show that ∂f satisfies the remaining “cocycle
condition”. We shall do so by exploiting the associativity of F and G.

Replacing T2 by F (T2, T3) in (2.4.3), we obtain an equality of elements in the
ring A[T1, T2, T3]/(T1, T2, T3)n+1,

(∂f)
(
T1, F (T2, T3)

)
= f

(
F
(
T1, F (T2, T3)

))
−G

(
f(T1), f

(
F (T2, T3)

))
.

Replacing f
(
F (T2, T3)

)
with G

(
f(T2), f(T3)

)
+ (∂f)(T2, T3) in the display, we ob-

tain

(∂f)
(
T1, F (T2, T3)

)
= f

(
F
(
T1, F (T2, T3)

))
−G

(
f(T1), G

(
f(T2), f(T3)

)
+ (∂f)(T2, T3)

)
.

Since ∂f is homogenous of degree n, the left-hand side of this last display is

(∂f)(T1, T2 + T3),

and the right-hand side is

f
(
F
(
T1, F (T2, T3)

))
−G

(
f(T1), G

(
f(T2), f(T3)

))
− (∂f)(T2, T3).

Analogously, replacing T1 by F (T1, T2) and T2 by T3 in (2.4.3), one obtains a
second equality in A[T1, T2, T3]/(T1, T2, T3)n+1,

(∂f)(T1 + T2, T3) = f
(
F
(
F (T1, T2), T3

))
−G

(
G
(
f(T1), f(T2)

)
, f(T3)

)
− (∂f)(T1, T2).
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Now subtract equations and use the associativity of F and G. �

Proof of (2.4.2). The surjectivity assertion is just Lazard’s theorem. For the re-
maining assertion, we must show that the map (∗) is fully faithful. So let F and
G be n-bud laws and f : F (n−1) → G(n−1) a homomorphism. The hypothesis on n
implies that Bn and Cn are unit multiples of each other over A. So it is immediate
from (2.4.4) and (2.4.7) that that f admits a unique extension to a homomorphism
F → G. �

Remark 2.4.8. The hypotheses on n appearing in (2.4.1) and (2.4.2) are necessary
for full faithfulness. For example, suppose n is a power of the prime p. Then over
any Fp-algebra, T + aTn with a 6= 0 is a nontrivial automorphism of the additive
n-bud law that becomes trivial upon truncation.

2.5. Ind-infinitesimal sheaves II. In the next two subsections, we’ll turn to the
moduli stacks of formal Lie varieties and of formal groups. To help prepare, we now
pause for a moment to formulate a general statement on the relationship between
ind-infinitesimal sheaves (1.3.1) and their n-truncations (1.3.2) for varying n.

Since formation of infinitesimal neighborhoods is compatible with base change,
truncation defines a morphism of fibered categories (∞-Inf) → (n-Inf). Since
(X(m))(n) is canonically isomorphic to X(n) for any ind-infinitesimal sheaf X and
any m ≥ n, we may form the limit lim←−n(n-Inf) of the fibered categories (n-Inf) with

respect to the truncation functors, and we obtain a natural arrow

(∗) (∞-Inf) −→ lim←−
n

(n-Inf).

We emphasize that the limit lim←−n(n-Inf) is taken in the sense of pseudofunctors.

Proposition 2.5.1. The arrow (∞-Inf)→ lim←−n(n-Inf) in (∗) is an equivalence of

fibered categories.

Proof. We just specify a quasi-inverse F : lim←−n(n-Inf) → (∞-Inf) and leave the

needed verifications to the reader. An object in lim←−n(n-Inf) over the scheme S is

a family (Xn, ϕmn), where Xn ∈ ob(n-Inf)(S) for all n, and ϕmn : X
(n)
m

∼−→ Xn for
all m ≥ n, subject to a natural cocycle condition for every l ≥ m ≥ n. The cocycle
condition says precisely that that the composites

Xn

ϕ−1
mn

∼
// X(n)

m
� � // Xm

for varying m and n, where the second arrow is the canonical monomorphism, form
a diagram indexed on the totally ordered set Z≥0. We then define F (Xn, ϕmn) to
be the colimit sheaf lim−→n

Xn. We define F on morphisms in the evident way. �

2.6. The stack of formal Lie varieties. We now come to the moduli stack of
formal Lie varieties. Let S be a scheme.

Definition 2.6.1. We define FL V (S) to be the groupoid of formal Lie varieties
and isomorphisms over S.

Remark 2.6.2. It is clear that the base change of a formal Lie variety is again a
formal Lie variety. Hence FL V defines a CFG over (Sch). Moreover, it is clear
from the definition of formal Lie variety (1.1.1) that FL V is a stack for the Zariski
topology. In fact, FL V is a stack for the fpqc topology; this is not hard to prove
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in a direct fashion, but we shall deduce it in (2.6.8) from the analogous statement
for the stack of n-germs Gn (2.1.1).

Our first task for this subsection is to obtain the analog of (2.1.2) for FL V .

Recall the formal Lie variety ÂS of (1.1.2).

Definition 2.6.3. We define Aut(Â) to be the presheaf of groups on (Sch)

Aut(Â) : S 7−→ AutFL V (S)(ÂS).

Quite analogously to (1.4.8), to give an automorphism of ÂS is to give a power
series a1T + a2T

2 + · · · ∈ Γ(S)[[T ]] with a1 a unit. So we have the following.

Proposition 2.6.4. Aut(Â) is canonically representable by a group scheme struc-
ture on the open subscheme SpecZ[a1, a

−1
1 , a2, a3 . . . ] of A∞Z . �

Theorem 2.6.5. FL V ≈ B
(
Aut(Â)

)
, where the right-hand side denotes the

classifying stack with respect to the Zariski topology.

Proof. The proof is essentially the same as that of (2.1.2): FL V is plainly a gerbe

over SpecZ for the Zariski topology, and ÂZ specifies a section. �

Remark 2.6.6. Once we see in (2.6.8) that FL V is a stack for the fpqc topology,

it will follow that B
(
Aut(Â)

)
is independent of the choice of topology between the

Zariski and fpqc topologies, inclusive. In particular, every fpqc-torsor for Aut(Â)
is in fact a Zariski-torsor.

We now turn to the relation between the stacks FL V and Gn, n ≥ 0. Recall

that the truncation functors induce an equivalence (∞-Inf)
≈−→ lim←−n(n-Inf) (2.5.1).

Since any truncation of a formal Lie variety is a germ, this equivalence restricts to
an arrow

FL V −→ lim←−
n

Gn.

Theorem 2.6.7. The arrow FL V → lim←−n Gn is an equivalence of stacks.

Proof. The restriction to lim←−n Gn of the functor F constructed in the proof of (2.5.1)

is a quasi-inverse, as is readily checked. �

Corollary 2.6.8. FL V is a stack over (Sch) for the fpqc topology.

Proof. Since a limit of stacks is a stack, this follows from (2.1.1) and the theorem.
�

Remark 2.6.9. The definition of formal Lie variety in (1.1.1) has a kind of built-in
local triviality for the Zariski topology. Though one may consider formulating the
local triviality condition with respect to other topologies, the corollary says that
the notion of formal Lie variety is independent of the choice of topology for local
triviality between the Zariski and fpqc topologies, inclusive.

2.7. The stack of formal groups. Now that we have discussed the stack of formal
Lie varieties, we turn to the moduli stack of formal groups. Let S be a scheme.

Definition 2.7.1. We define (FG)(S) to be the category of formal groups and
homomorphisms over S. We define M (S) to be the groupoid of formal groups and
isomorphisms over S.
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Remark 2.7.2. Since formal Lie varieties are stable under base change, it is clear
that formal groups are stable under base change. Hence (FG) defines a fibered
category, and M a CFG, over (Sch). We shall verify in (2.7.6) that M is a stack
for the fpqc topology.

In analogy with (1.5.9), given a group law F over Γ(S) and a base change f : S′ →
S, one has ÂFS ×S S′ ∼= ÂF ′S′ , where F ′ is the group law over Γ(S′) obtained by
applying f# to the coefficients of F . Hence one recovers the usual notion of base
change for group laws.

Our first goal in this subsection is to prove the analog of (2.3.2) for M . Recall

the formal Lie variety ÂS of (1.1.2).

Definition 2.7.3. We define L to be the presheaf of sets on (Sch)

L : S 7−→ {formal group structures on ÂS}.

In analogy with the situation for Ln (2.2.1), Lazard’s theorem [L, Théorème
II] yields a noncanonical isomorphism L ' SpecZ[a1, a2, . . . ] = A∞Z . Just as in

(2.2.2), Aut(Â) acts naturally on L as “changes of coordinate”. Just as in (2.3.2),
we deduce the following.

Theorem 2.7.4. M ≈ Aut(Â)\L. �

Remark 2.7.5. It is an immediate consequence of (2.6.6) that the quotient stack

Aut(Â)\L is independent of the choice of topology between the Zariski and fpqc
topologies, inclusive.

Corollary 2.7.6. M is a stack for the fpqc topology. �

In analogy with the previous subsection, we now turn to the relation between the
stacks M and Bn, n ≥ 0. By (1.5.5), truncation induces arrows between M and
the various Bn’s, and between the various Bn’s themselves, and these arrows are
compatible up to canonical isomorphism. Hence we may form the limit lim←−n Bn,

and we obtain an arrow

M −→ lim←−
n

Bn.

Theorem 2.7.7. The arrow M → lim←−n Bn is an equivalence of stacks.

Proof. As in the proofs of (2.5.1) and (2.6.7), a quasi-inverse is specified by sending
(Xn, ϕmn) 7→ lim−→n

Xn. Note that the bud structures on the various Xn’s endow

the colimit with a commutative group structure. �

3. The height stratification: buds

Fix a prime number p once and for all. We shall now begin to study the algebraic
geometry of the classical notion of height for formal group laws and bud laws over
rings of characteristic p. The essential feature of the theory is a stratification,
relative to p, on the stack of formal groups and on the stacks of n-buds for varying
n. We’ll begin by working with buds in this section; in the next, we’ll turn to
formal groups.

In order to reduce clutter, we won’t embed p in the notation, though one certainly
obtains a different stratification for each choice of p.
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3.1. Multiplication by p. Let X be an n-bud or formal group over the scheme
S. Then, using (1.6.2) in the bud case, the endomorphisms of X form an abelian
group. So we may make the following definition.

Definition 3.1.1. We define [p]X to be the endomorphism p idX of X.

Remark 3.1.2. When X = TFS for an n-bud law F ∈ Γn(S;T1, T2) (1.5.3), the
morphism [p]X : X → X corresponds to the OS-algebra map

OS [T ]/(T )n+1 OS [T ]/(T )n+1oo

[p]F (T ) T,�oo

where for any positive integer m,

[m]F := F (· · ·F (F (T, T ), T ), · · · , T︸ ︷︷ ︸
m T ’s

).

There is an obvious analogous definition of [m]F and statement when F is a group
law.

Remark 3.1.3. One checks at once that truncation functors are additive functors
on the category of formal groups and on the various categories of buds. Hence
truncation preserves [p]: if X is a formal group or an m-bud with m ≥ n, then

[p]
(n)
X = [p]X(n) .

Remark 3.1.4. Similarly, consider the category of n-buds or of formal groups over
S. Then for any morphism f : S′ → S, the base change functor −×S S′ is additive,

hence preserves [p]. When X = TFS or X = ÂFS , recall that the multiplication law
on X ×S S′ is given by the law F ′ obtained by applying f# to the coefficients of F
(1.5.9, 2.7.2). Hence [p]F ′ is obtained by applying f# to the coefficients of [p]F .

3.2. Zero loci of line bundles. In the next subsection we’ll describe the height
stratification on Bn as arising from a succession of zero loci of sections of line bun-
dles. Our aim in this subsection is to dispense with a few of the basic preliminaries.
The material we shall discuss is general in nature and is independent of our earlier
discussion.

Let (Vect1) denote the fibered category on (Sch) that assigns to each scheme S
the category of locally free OS-modules of rank 1 and all module homomorphisms
(with the usual pullback functors). Then (Vect1) is an fpqc stack [SGA1, VIII
1.12]. Note that the underlying moduli stack of (Vect1), obtained by discarding the
non-Cartesian morphisms, is just B(Gm). Let F be a fibered category over (Sch).

Definition 3.2.1. A line bundle on F is a 1-morphism L : F → (Vect1) between
fibered categories over (Sch). A morphism L → L ′ of line bundles on F is a
2-morphism L → L ′ between 1-morphisms of fibered categories.

When F is an algebraic stack, one recovers the usual notion of line bundle on
F ; see [LMB, 13.3] (though, strictly speaking, [LMB] would take (Vect1)(S) to be
the opposite of the category of locally free OS-modules of rank 1.)

Example 3.2.2. For any fibered category F , we denote by OF the line bundle
that assigns to each X ∈ ob F over the scheme S the trivial line bundle OS , and
to each morphism µ : Y → X over f : T → S the Cartesian morphism in (Vect1)

corresponding to the canonical isomorphism OT
∼−→ f∗OS .
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Let L be a line bundle on the fibered category F .

Definition 3.2.3.

(a) A global section, or just section, of L is a morphism a : OF → L .
(b) Given a section a of L , the zero locus of a is the full subcategory V (a) of

F whose objects X over the scheme S are those for which aX : OS → LX

is the 0 map.

Let a be a section of L . The basic result we’ll need is the following. The proof
is straightforward.

Proposition 3.2.4.

(i) V (a) is a sub-fibered category of F , and the inclusion functor V (a) → F
is a closed immersion.

(ii) If F is a CFG, or stack, or algebraic stack, then so is V (a). �

3.3. The height stratification on the stack of n-buds. In this subsection, we
translate the classical notion of height for bud laws to the geometric setting by
defining the height stratification on the stack Bn. We shall define the analogous
stratification on the stack of formal Lie groups in §4.1.

Let X be an n-bud over the scheme S with section σ : S → X. Let IX ⊂ OX
denote the sheaf of ideals associated to σ. Since the endomorphism [p]X (3.1.1) of
X is compatible with σ, it determines an endomorphism [p]IX

of IX .
Now let h be a nonnegative integer, and assume n ≥ ph.

Definition 3.3.1. We sayX has height ≥ h if the endomorphism [p]IX
: IX → IX

has image in I ph

X . We denote by B≥hn the full subcategory of Bn of n-buds of height
≥ h.

Example 3.3.2. Let X = TFS for some n-bud law F over Γ(S) (1.5.3). Then

we see from (3.1.2) that X has height ≥ h ⇐⇒ [p]F is of the form aphT
ph +

(higher order terms) for some aph ∈ Γ(S). In this case we say F has height ≥ h.

Remark 3.3.3. Recall that [p] (3.1.4) is compatible with base change. Hence
height ≥ h is stable under base change. Hence B≥hn is fibered over (Sch).

Remark 3.3.4. Similarly, height ≥ h is stable under truncation, provided we don’t

truncate below n = ph. More precisely, X has height ≥ h ⇐⇒ X(ph) has height
≥ h.

Remark 3.3.5. Of course, for fixed n, there are only finitely many values of h for
which height ≥ h makes sense. So we get a finite decreasing chain Bn = B≥0

n !
B≥1
n ! B≥2

n ! · · · .

We shall see in a moment that the inclusion B≥hn ↪→ Bn is a closed immersion.
First, some notation.

By definition of n-germ (1.4.1) for n ≥ 1, the conormal sheaf IX/I 2
X |S is a

line bundle on S. Moreover, since the conormal sheaf associated to a section is
compatible with base change on S [EGAIV4, 16.2.3(ii)], formation of the conormal
bundle defines a line bundle on Bn.

Definition 3.3.6. We denote by ω the line bundle on Bn associating to each bud
its associated conormal sheaf. We define ωh := ω|

B≥h
n

.
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Remark 3.3.7. Clearly, the same construction defines a line bundle ω′ on the
stack Gn of n-germs, and ω is just the pullback of ω′ along the natural forgetful
morphism Bn → Gn.

Remark 3.3.8. Strictly speaking, ω and ωh depend on n. But the dependence on
n is largely superficial: since the conormal sheaf of an immersion depends only on
the 1st infinitesimal neighborhood, formation of ω is compatible with truncation
Bm → Bn; and similarly for ωh. In other words, up to canonical isomorphism, we
may construct ω on Bn by first constructing ω on B1 and then pulling back along
Bn → B1; and similarly for ωh, replacing B1 by Bph . So, to avoid clutter, we
shall abuse notation and suppress the n when writing ω and ωh.

When X has height ≥ h, the map [p]IX
: IX → I ph

X induces a map of sheaves

IX/I
2
X −→ I ph

X /I ph+1
X .

But plainly I ph

X /I ph+1
X

∼= (IX/I 2
X)⊗p

h

. So, restricting the displayed map to S,
we get

(ωh)X −→ (ωh)⊗p
h

X ,

or, equivalently, a section

(∗) (vh)X : OS −→ (ωh)⊗p
h−1

X .

Since [p] is compatible with pullbacks, we may make the following definition.

Definition 3.3.9. We denote by vh the section of ω⊗p
h−1

h defined by (∗).

Example 3.3.10. Of course, we’ve taken pains to express vh in a coordinate-free
way, so that it is, in some sense, canonical. But when X admits a coordinate, ωX
is trivial and vh can be understood more concretely. Precisely, suppose X = TFS
for some n-bud law F over Γ(S). Then IX = T · OS [T ]/(T )n+1, and there is an
obvious trivialization

OS
∼ // IX/I 2

X = ωX

1
� // image of T.

The displayed trivialization induces a natural trivialization of ω⊗p
h−1

X .
Now suppose X has height ≥ h, so that [p]F is of the form

aphT
ph + (higher order terms) (3.3.2).

Then, under our trivialization of (ωh)⊗p
h−1

X = ω⊗p
h−1

X , (vh)X corresponds exactly
to aph ∈ Γ(S).

In particular, since any bud law F satisfies F (T1, T2) ≡ T1 + T2 mod (T1, T2)2,
we have [p]F (T ) ≡ pT mod (T )2, and v0 is just the section p of OBn .

Remark 3.3.11. Just as for ωh, vh implicitly depends on n. But vh is essentially
independent of n in the same sense as ωh is (3.3.8).

Proposition 3.3.12. Assume h ≥ 1. Then B≥hn is the zero locus (3.2.3) in B≥h−1
n

of the section vh−1.

Before proving the proposition, we recall a classical lemma which we’ll also put
to use later in §3.6.
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Lemma 3.3.13. Suppose A is a ring of characteristic p. Let f : F → G be a
homomorphism of bud laws or formal group laws over A. Then f is 0 or of the

form aphT
ph + a2phT

2ph + · · · for some nonnegative integer h and some nonzero

aph ∈ A. In particular, [p]F is 0 or of the form aphT
ph + a2phT

2ph + · · · , aph 6= 0.

Proof. [F, I §3 Theorem 2(ii)], which works for bud laws as well as formal group
laws. Note that [p]F is plainly a homomorphism F → F . �

Proof of (3.3.12). Let X → S be an n-bud of height ≥ h− 1. We claim

X ∈ obV (vh−1) ⇐⇒ (vh−1)X = 0

⇐⇒ [p]IX
carries IX into I ph−1+1

X

(†)⇐⇒ [p]IX
carries IX into I ph

X

⇐⇒ X ∈ ob B≥hn .

Only the implication =⇒ in the “⇐⇒” marked (†) requires proof. For this, the
assertion is local on S, so we may assume X is of the form TFS (1.5.3). By (3.3.10),
S must have characteristic p. Now use (3.1.2) and the lemma. �

Corollary 3.3.14. B≥hn is an algebraic stack for the fpqc topology, and the inclu-
sion functor B≥hn → Bn is a closed immersion.

Proof. Apply (2.3.1), (2.3.2), (3.2.4), and the proposition. �

Remark 3.3.15. Combining (3.3.10) and (3.3.12), we see that B≥1
n is precisely

the stack of n-buds over Fp-schemes.

Remark 3.3.16. The proposition says that the property of height ≥ h depends
only on a bud’s ph−1-truncation. So we could extend the notion of height ≥ h to
n-buds for n ≥ ph−1, but this added bit of generality offers no real advantage to us.

3.4. The stack of height ≥ h n-buds. Let h ≥ 1 and n ≥ ph. Our aims in this
subsection are to describe B≥hn (3.3.1) as a quotient stack in a way analogous to
the description (2.3.2) of Bn, to show that B≥hn is smooth, and to compute its
dimension.

As a warm-up, the case h = 1 is simply base change to Fp: B≥1
n ≈ Bn ⊗ Fp by

(3.3.15), so B≥1
n ≈ Aut(Tn)Fp

\(Ln)Fp
by (2.3.2), where

(Ln)Fp := Ln ⊗ Fp ' An−1
Fp

and

Aut(Tn)Fp
:= Aut(Tn)⊗ Fp

is an open subscheme of AnFp
.

To treat the case of general h, we’ll make use of the following sharp version of
Lazard’s theorem. It describes the universal group law constructed by Lazard in
the proofs of [L, Théorèmes II and III].

Theorem 3.4.1 (Lazard). There exists a universal formal group law U(T1, T2)
over the polynomial ring Z[t1, t2, . . . ] such that for all n ≥ 1,

(i) the coefficients of the truncation U (n) involve only t1, . . . , tn−1;
(ii) U (n), regarded as defined over Z[t1, . . . , tn−1] by (i), is a universal n-bud

law; and
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(iii) there is an equality of elements in Z[t1, . . . , tn−1, s][T1, T2]/(T1, T2)n+1,

U (n)(t1, . . . , tn−2, tn−1 + s)(T1, T2)− U (n)(t1, . . . , tn−1, )(T1, T2) = sCn(T1, T2),

where Cn(T1, T2) is Lazard’s polynomial (2.4.5).

Using the theorem, we now construct a convenient presentation of B≥hn . Let A
be the polynomial ring Z(p)[t1, . . . , tn−1], and let F be a universal (for Z(p)-algebras)

n-bud law over A such that the truncation F (n′) satisfies (i)–(iii) in (3.4.1) for all

n′ ≤ n. Let ah denote the coefficient of T p
h

in [p]F (T ) ∈ A[T ]/(T )n+1 (3.1.2). For
h ≥ 1, we define

Ah := A/(p, a1, . . . , ah−1), Fh := the reduction of F over Ah, Xh := TFh

Ah
.

By (3.3.2) and (3.3.13), Xh has height ≥ h. So, up to isomorphism, Xh specifies a
classifying map

(∗) SpecAh
Xh−−→ B≥hn .

Theorem 3.4.2. Aut(Tn)Fp acts naturally on SpecAh, and the map (∗) identifies

Aut(Tn)Fp\ SpecAh ≈ B≥hn .

Proof. The theorem is clear for h = 1, since plainly X1 identifies SpecA1
∼−→ (Ln)Fp

.
Now, for any h, the theorem is equivalent by [LMB, 3.8] to

• (∗) is locally essentially surjective;
• Aut(Tn)Fp

acts on SpecAh; and
• the Aut(Tn)Fp

-action induces

Aut(Tn)Fp
× SpecAh ∼= SpecAh ×B≥h

n
SpecAh.

So we need note just that the diagram

SpecAh+1
� � //

Xh+1

��

SpecAh

Xh

��

B≥h+1
n

� � // B≥hn

is Cartesian by (3.3.10) and (3.3.12), and everything follows by induction on h. �

Remark 3.4.3. Though we didn’t need it explicitly for the proof of the theorem,
the bud law Fh over the ring Ah admits an obvious modular interpretation: namely,
Fh is universal amongst n-bud laws of height ≥ h. On the other hand, universality
of Fh easily yields an alternative proof of the theorem quite along the lines of
(2.3.2), without appealing to induction.

The theorem leads us to consider closely the ring Ah. The essential observation
is the following result on A.

Proposition 3.4.4. The map of Z(p)-polynomial rings Z(p)[u1, . . . , un−1] → A
determined by

(∗∗) ui 7−→

{
ah i = ph − 1 for h = 1, 2, . . . ;

ti otherwise

is an isomorphism. In particular, A/(a1, . . . , ah−1) is a polynomial ring over Z(p)

on n− h variables.
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Proof. By [L, proof of Lemme 6] or [F, III §1 Lemma 4] and the form of F described
in (3.4.1), we have

[p]
F (ph)(t1,...,tph−2

,t
ph−1

+s)
(T ) = [p]

F (ph)(t1,...,tph−1
)
(T ) +

(
pp

h−1 − 1
)
sT p

h

.

Hence

ah(t1, . . . , tph−2, tph−1 + s)− ah(t1, . . . , tph−1) = (pp
h−1 − 1)s

in Z(p)[t1, . . . , tph−1, s]. Hence

ah(t1, . . . , tph−1) = (pp
h−1 − 1)tph−1 + (terms involving t1, . . . , tph−2).

But, for h ≥ 1, pp
h−1−1 is a unit in any Z(p)-algebra. The proposition now follows

easily. �

Corollary 3.4.5. SpecAh ' An−hFp
. �

Remark 3.4.6. There are natural analogs of (3.4.4) and (3.4.5) in the group law
setting: if U is a universal (for Z(p)-algebras) formal group law over Z(p)[t1, t2, . . . ]

of the form described in (3.4.1), and we again denote by ah the coefficient of T p
h

in [p]U (T ), then

• the map Z(p)[u1, u2, . . . ] → Z(p)[t1, t2, . . . ] specified by (∗∗) is an isomor-
phism of polynomial rings; and

• Z(p)[t1, t2, . . . ]/(a1, . . . , ah−1) is a polynomial ring over Z(p) on the images

of the ti for i 6= p1 − 1, p2 − 1, . . . , ph−1 − 1.

Moreover, in analogy with (3.4.3), the reduction of U over

Z(p)[t1, t2, . . . ]/(p, a1, . . . , ah−1) ∼= Fp[t1, t2, . . . ]/(a1, . . . , ah−1),

where ai denotes the reduction of ai mod p, is plainly of height ≥ h, and indeed is
universal amongst group laws of height ≥ h.

Remark 3.4.7. Alternatively, it is not hard to obtain (3.4.5) essentially from
Landweber’s classification of invariant prime ideals in MU∗ [La1, 2.7], or by con-
sidering p-typical group laws over Z(p). The approach we’ve taken above places
more direct emphasis on elementary properties of [p].

We now conclude the subsection by turning to smoothness and dimension proper-
ties of the algebraic stacks Bn and B≥hn . We shall use freely the language of [LMB],
but let us state explicitly the notion of relative dimension of a morphism. We will
not (and [LMB] does not) attempt to define the relative dimension of an arbitrary
locally finite type morphism of algebraic stacks f : X → Y . We can, however, give
a satisfactory definition when f is smooth. Indeed, if ξ is a point of X [LMB, 5.2],
then let SpecL → Y be any representative of f(ξ), set XL := SpecL ×Y X ,

and let ξ̃ be any point of XL lying over ξ. Then XL is a locally Noetherian alge-
braic stack, and the relative dimension of f at ξ is the integer dimξ f := dimξ̃ XL

[LMB, 11.14]. It is straightforward to verify that the definition is independent of
the choices made.

Theorem 3.4.8. For n ≥ 1, Bn is smooth over SpecZ of relative dimension −1
at every point. For h ≥ 1 and n ≥ ph, B≥hn is smooth over SpecFp of relative
dimension −h at every point.
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Proof. The assertion for Bn is immediate from the definitions and from the equiv-
alence Bn ≈ Aut(Tn)\Ln (2.3.2), since Ln ' An−1

Z and Aut(Tn) is an open sub-
scheme of AnZ (1.4.8). The assertion for B≥hn is similarly immediate from (3.4.2)
and (3.4.5). �

3.5. The stratum of height h n-buds. In this subsection we consider the strata
of the height stratification on Bn, or, in other words, the notion of (exact) height
for buds. Let h ≥ 1 and n ≥ ph+1.

Definition 3.5.1. We denote by Bh
n the algebraic stack obtained as the open

complement of B≥h+1
n in B≥hn . We call the objects of Bh

n the n-buds of height h,
or sometimes of exact height h.

Remark 3.5.2. Since formation of infinitesimal neighborhoods is compatible with
base change, it’s clear from the definitions that the property height h is stable under
truncation, provided we don’t truncate below n = ph+1. More precisely, an n-bud

X has height h ⇐⇒ X(ph+1) has height h.

Let S be a scheme. We can give a more concrete description of the n-buds of
height h over S as follows. Since height h is a local condition, the essential case to
consider is the n-bud TFS (1.5.3) for some bud law F over Γ(S).

Proposition 3.5.3. TFS has height h ⇐⇒ [p]F (3.1.2) is of the form

[p]F (T ) = aphT
ph + a2phT

2ph + · · · , aph ∈ Γ(S)×.

Proof. Let X := TFS . By (3.3.2) and (3.3.13), X has height ≥ h ⇐⇒ [p]F is of the
asserted form, only with no constraint on aph . Now, (3.3.10) and (3.3.12) say that
the closed subscheme Z := Spec OS/aphOS of S is universal amongst all S-schemes
S′ with the property that S′×S X is an n-bud of height ≥ h+ 1. So X is of height
h ⇐⇒ Spec OS/aphOS = ∅ ⇐⇒ aph is a unit. �

Remark 3.5.4. The proposition recovers the now-accepted notion of height for a
bud or group law F over a ring of characteristic p. But some older sources in the
literature use a weaker notion of height h, requiring only that [p]F be of the form

aphT
ph + a2phT

2ph + · · · for some nonzero aph ; see e.g. [L, p. 266] or [F, p. 27].

Remark 3.5.5. There is a natural notion of principal open substack associated to
a section of a line bundle which serves as a sort-of complement to the notion of zero
locus discussed in §3.2. Then (3.5.3) shows, in essence, that Bh

n is the principal
open substack in B≥hn associated to vh (3.3.9). We leave the details to the reader.

Remark 3.5.6. Analogously to (3.3.16), (3.5.3) allows us to extend the notion of
exact height h to n-buds for n ≥ ph. But the added bit of generality again offers
no real advantage to us.

Remark 3.5.7. Potential confusion lurks in definitions (3.3.1) and (3.5.1): to say
that a bud has “height ≥ h” is not to say that it has “height h′ for some h′ ≥ h”.

For example, if [p]F (T ) = aphT
ph + a2phT

2ph + · · · with aph a nonzero nonunit,

then TFS will have height ≥ h but will not have an exact height.

Our goal for the remainder of the subsection is to obtain a characterization of
Bh
n. We’ll first need the following.
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Notation 3.5.8. For h ≥ 1, we denote by Hh a fixed Honda group law over Fp of
height h.

Recall that a Honda group law is a group law satisfying [p]Hh
= T p

h

. It is
well-known that such laws exist over Fp for every h; see e.g. [F, III §2 Theorem 1].

Fixing h, we abbreviate Hh to H and consider its n-truncation H(n) (1.5.5). By

(3.5.3), the n-bud TH(n)

S has height h.

Definition 3.5.9. We define Aut(H(n)) to be the presheaf of groups on (Sch)/Fp

Aut(H(n)) : S 7−→ AutΓ(S)(H
(n)) ∼= Aut(n-buds)(S)

(
TH

(n)

n,S

)
.

The theorem we’re aiming for will assert that Bh
n is the classifying stack of

Aut(H(n)). The key algebraic input is the following.

Proposition 3.5.10. Let F be an n-bud law (resp., formal group law) of height h
over A. Then there exists a finite étale extension ring (resp., a countable ascending
union of finite étale extension rings) B of A such that F ' H(n) (resp., F ' H)
over B.

Proof. We’ll proceed by extracting some arguments from the proofs of the state-
ments leading up to the proof of Theorem 2 in [F, III §2]. There is also a somewhat
cleaner version of the proof sketched in [Mi, 10.4].

It suffices to consider the bud law case; the group law case then follows by
considering the various truncations F (n) for higher and higher n. To begin, the
proof of [F, III §2 Lemma 3] shows that there exists a finite étale extension ring B

of A such that F is isomorphic over B to an n-bud law G for which [p]G(T ) = T p
h

.
A bit more explicitly, whereas [F] takes A to be a separably closed field and proceeds
by finding solutions to certain (separable) equations in A, one can proceed in our
case by formally adjoining solutions to certain (separable) equations to A, that is,
one can obtain B as an iterated extension ring of (finitely many) rings of the form
A[X] modulo a separable polynomial.

The remaining step is to show that over any ring, any two bud laws for which

[p](T ) = T p
h

are isomorphic. This is probably best and most simply seen via a
direct argument, but it can be gleaned from [F, III §2] by combining arguments
(suitably adapted to the bud case) in the proofs of Lemma 2, Proposition 3, and
Theorem 2. �

In particular, the ring B in the proposition is faithfully flat over A.
Now, up to this point, the classifying stacks we’ve encountered have been es-

sentially independent of the choice of topology; see (2.1.3) and (2.6.6). But our
theorem below would fail if we only considered Aut(H(n))-torsors for, for example,
the Zariski topology. The proposition leads us to formulate the theorem in terms
of the finite étale topology [SGA3I, IV 6.3] instead. Quite generally, given a group
G over SpecFp, we write Bfét(G) for the stack over (Sch)/Fp

of G-torsors for the
finite étale topology.

Theorem 3.5.11. Bh
n ≈ Bfét

(
Aut(H(n))

)
.

Proof. By (3.5.10) and the fact that every bud has Zariski-locally trivial underlying
germ, Bh

n is a neutral gerbe over SpecFp for the finite étale topology, with section

provided by TH(n)

Fp
. So apply [LMB, 3.21]. �
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Remark 3.5.12. Since Bn is a stack for the fpqc topology (2.3.1), so is its locally
closed substack Bh

n. Hence we deduce that B
(
Aut(H(n))

)
is independent of the

topology on (Sch)/Fp
between the finite étale and fpqc topologies, inclusive. In

particular, every fpqc-torsor for Aut(H(n)) is in fact a finite-étale-torsor.

3.6. Automorphisms and endomorphisms of buds of height h. Let h ≥ 1
and let S be a scheme. For n ≥ ph+1, by (3.5.11), every n-bud of height h over S

is isomorphic finite-étale locally to TH(n)

S , with H = Hh the formal group law of

(3.5.8) and H(n) its n-truncation (1.5.5). So we are naturally led to consider closely
the group Aut(H(n)) (3.5.9). We shall devote this subsection to investigating some
aspects of its structure. It will be convenient, especially in later sections, to work
as much as possible with regard to any n ≥ 1; but our main results here will require
n ≥ ph+1 (or at least n ≥ ph, granting (3.5.6)), so that height h makes sense.

To begin, let n ≥ 1, and recall the schemes Aut(Tn)Fp
and (Ln)Fp

from §3.4.

Lemma 3.6.1. Aut(H(n)) is canonically represented by a closed sub-group scheme
of Aut(Tn)Fp

.

Proof. The point is just that Aut(H(n)) naturally sits inside Aut(Tn)Fp
as the

stabilizer of H(n). More precisely, Aut(Tn)Fp
acts naturally on (Ln)Fp

by (2.2.2),
and we have a Cartesian square

Aut(H(n)) //

��

�

Aut(Tn)Fp

��

SpecFp
H(n)

// (Ln)Fp
,

where the lower horizontal arrow is the map classifying H(n) and the right vertical
arrow is defined on points by f 7→ f ·H(n). �

By (3.4.8) and (3.5.11), for n ≥ ph+1, the classifying stack B
(
Aut(H(n))

)
is an

open substack of a smooth stack of relative dimension −h over SpecFp. Hence

B
(
Aut(H(n))

)
is itself smooth of relative dimension −h over SpecFp. Hence it

natural to ask if Aut(H(n)) is smooth of dimension h over SpecFp.
We shall answer the question in the affirmative in (3.6.4) below. To prepare, let

n ≥ 1, and recall the A Tn
• -filtration on Aut(Tn) from (1.4.9). Let (A Tn

• )Fp denote
the filtration on Aut(Tn)Fp

obtained by base change to Fp.

Definition 3.6.2. We define A H(n)

• to be the intersection filtration on Aut(H(n)),

A H(n)

i := Aut(H(n))×Aut(Tn)Fp
(A Tn

i )Fp , i = 0, 1, . . . , n.

Concretely, A H(n)

0 = Aut(H(n)), and for i ≥ 1, A H(n)

i is given on points by

A H(n)

i (S) :=

{
f ∈ AutΓ(S)(H

(n))

∣∣∣∣ f(T ) is of the form
T+ai+1T

i+1 +ai+2T
i+2 + · · ·+anTn

}
.

By (1.4.9) and (3.6.1), A H(n)

0 /A H(n)

1 embeds as a closed subscheme of Gm = Gm,Fp ,

and A H(n)

i /A H(n)

i+1 embeds as a closed subscheme of Ga = Ga,Fp
for i = 1, 2, . . . ,

n− 1.
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Our main result for the subsection is following calculation of the successive quo-

tients of the A H(n)

• -filtration for n ≥ ph+1. Let l be the nonnegative integer such
that pl ≤ n < pl+1.

Theorem 3.6.3. We have an identification of presheaves

A H(n)

i /A H(n)

i+1
∼=


µph−1, i = 0;

GFrph
a , i = p− 1, p2 − 1, . . . , pl−h − 1;

Ga, i = pl−h+1 − 1, pl−h+2 − 1, . . . , pl − 1;

0, otherwise;

where µph−1 ⊂ Gm is the sub-group scheme of (ph − 1)th roots of unity, and

GFrph
a ⊂ Ga is the sub-group scheme of fixed points for the phth-power Frobenius

operator.

In other words, for any Fp-scheme S,

µph−1(S) =
{
a ∈ Γ(S)× | ap

h−1 = 1
}

and GFrph
a (S) =

{
a ∈ Γ(S) | ap

h

= a
}
.

Hence µph−1 and GFrph
a are represented, respectively, by

SpecFp[T ]/(T p
h−1 − 1) and SpecFp[T ]/(T p

h

− T ).

Hence both µph−1 and GFrph
a are finite étale groups over SpecFp.

Before proceeding to the proof of the theorem, we first signal an immediate
consequence. We continue with n ≥ ph+1.

Corollary 3.6.4. Aut(H(n)) is smooth of dimension h over SpecFp.

Proof. By the theorem, Aut(H(n)) is an iterated extension of smooth groups, so

is smooth. Moreover, the A H(n)

• -filtration has precisely h successive quotients of
dimension 1, and all other successive quotients of dimension 0. So the dimension
assertion follows from [DG, III §3 5.5(a)]. �

We’ll devote the rest of the subsection to the proof of (3.6.3). One can extract the
proof from a careful analysis of some of the statements and arguments in [L, §IV] or
in [F, I §3, III §2]. But, for sake of clarity, we shall give a reasonably self-contained
proof here. Our presentation has profited significantly from notes we received from
Spallone on a course of Kottwitz.

To prove (3.6.3), it is somewhat more convenient to translate the problem into
one concerning endomorphisms of H(n), as opposed to automorphisms. Let n ≥ 1.

Definition 3.6.5. We define End(H(n)) to be the presheaf of (noncommutative)
rings on (Sch)/Fp

End(H(n)) : S 7−→ EndΓ(S)(H
(n)) ∼= End(n-buds)(S)

(
TH

(n)

n,S

)
.

Recall that the elements of EndΓ(S)(H
(n)) are the truncated polynomials f(T ) ∈

Γn(S;T ) that “commute” with H(n) in the sense of (1.5.7). Quite generally, for
any group or bud law F over the ring A, the product and sum in EndA(F ) are
given explicitly by

(f ·F g)(T ) := f
(
g(T )

)
and (f +F g)(T ) := F

(
f(T ), g(T )

)
,
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respectively. The multiplicative identity in EndA(F ) is just id(T ) := T . We denote
by i(T ) := iF (T ) the additive inverse of id, that is, the unique endomorphism
satisfying F

(
i(T ), T

)
= F

(
T, i(T )

)
= 0.

Definition 3.6.6. For i = 0, 1, . . . , n, we denote by IH(n)

i the subpresheaf of
End(H(n)) defined on points by

IH(n)

i (S) :=

{
f ∈ EndΓ(S)(H

(n))

∣∣∣∣ f(T ) is of the form
ai+1T

i+1 +ai+2T
i+2 +· · ·+anTn

}
.

It is immediate that IH(n)

i is a presheaf of 2-sided ideals in End(H(n)) for all i,
and we have a decreasing filtration

End(H(n)) = IH(n)

0 ⊃ IH(n)

1 ⊃ · · · ⊃ IH(n)

n−1 ⊃ IH(n)

n = 0.

For any n ≥ 1, we can relate the IH(n)

• -filtration of End(H(n)) to the A H(n)

• -
filtration of Aut(H(n)) as follows. One verifies immediately that the map on points

f 7−→ id +H(n) f,

where id(T ) = T is the identity endomorphism of H(n), defines a morphism of
set-valued presheaves

(∗) IH(n)

i −→ A H(n)

i , 1 ≤ i ≤ n.

Lemma 3.6.7. The arrow IH(n)

i → A H(n)

i in (∗) is an isomorphism of presheaves
of sets.

Proof. The inverse is given by addition with iH(n) . �

In a moment, we shall exploit the lemma to express the successive quotients of

the A H(n)

• -filtration in terms of the successive quotients of the IH(n)

• -filtration. But
we first need another lemma. Quite generally, let R be a possibly noncommutative
ring with unit, and let I ⊂ R be a 2-sided ideal such that 1 + I ⊂ R×.

Lemma 3.6.8.

(i) The natural map R×/(1 + I)→ (R/I)× is an isomorphism of groups.
(ii) Let J be a 2-sided ideal such that I2 ⊂ J ⊂ I. Then the map

(∗∗) i 7−→ 1 + i mod 1 + J

induces an isomorphism of groups I/J
∼−→ (1 + I)/(1 + J).

Proof. (i) Immediate.
(ii) It plainly suffices to show that (∗∗) defines a group homomorphism I →

(1 + I)/(1 + J). That is, given i and i′ ∈ I, we must find j ∈ J such that
(1 + i+ i′)(1 + j) = (1 + i)(1 + i′). Take j := (1 + i+ i′)−1ii′. �

The two previous lemmas yield the following as an immediate consequence.

Lemma 3.6.9. The natural arrow

A H(n)

0 /A H(n)

1 = Aut(H(n))/A H(n)

1 −→
(
End(H(n))/IH(n)

1

)×
= (IH(n)

0 /IH(n)

1 )×

is an isomorphism of presheaves of abelian groups. For 1 ≤ i ≤ n − 1, the arrow
(∗) induces an isomorphism of presheaves of abelian groups

IH(n)

i /IH(n)

i+1
∼−→ A H(n)

i /A H(n)

i+1 . �
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This last lemma reduces (3.6.3) to the calculation of the successive quotients of

the IH(n)

• -filtration. For this, we will make use of some of the material in §2.4, as
well as the following general lemma.

Lemma 3.6.10. Let F and G be m-bud laws over a ring A, m ≥ 2. Suppose that
f ∈ A[T ]/(T )m+1 determines a homomorphism f (m−1) : F (m−1) → G(m−1), so that
∂f = aCm for a unique a ∈ A (2.4.7). Then for any k ≥ 1,

(f (m) ◦ [k]F (m))(T ) = ([k]G(m) ◦ f (m))(T ) +
km − k
λ(m)

· aTm.

In particular, for k = p, m of the form pj, and A of characteristic p, we have

(f (pj) ◦ [p]F (pj))(T ) = ([p]G(pj) ◦ f (pj))(T )− aT p
j

.

Proof. Entirely similar to that given in [L, Lemme 6] or in [F, III §1 Lemma 4]. �

We are now ready to compute the IH(n)

i /IH(n)

i+1 ’s. We denote by O := OFp
the

tautological ring scheme structure on A1
Fp

, and by OFrph the sub-ring scheme of O
of fixed points for the phth-power Frobenius operator,

OFrph (S) :=
{
a ∈ Γ(S)

∣∣ aph = a
}
.

Quite as in (1.4.9), the map on points

(†) ai+1T
i+1 + · · ·+ anT

n 7−→ ai+1

specifies a monomorphism of presheaves of rings

IH(n)

0 /IH(n)

1 ↪→ O, i = 0,

and a monomorphism of presheaves of abelian groups

IH(n)

i /IH(n)

i+1 ↪→ Ga, 1 ≤ i ≤ n− 1.

Assume n ≥ ph+1, and again let l be the nonnegative integer such that pl ≤ n <
pl+1.

Theorem 3.6.11. For 0 ≤ i ≤ n− 1, (†) induces an identification of presheaves

IH(n)

i /IH(n)

i+1
∼=


OFrph , i = 0;

GFrph
a , i = p− 1, p2 − 1, . . . , pl−h − 1;

Ga, i = pl−h+1 − 1, pl−h+2 − 1, . . . , pl − 1;

0, otherwise.

Proof. Let A be a ring of characteristic p, and let Ii := IH(n)

i (A), 0 ≤ i ≤ n. For
i 6= 0, p − 1, p2 − 1, . . . , pl − 1, we have Ii/Ii+1 = 0 by (3.3.13). So we are left to
compute the quotients for i of the form pj − 1.

As a first step, let f(T ) = a1T + · · · anTn be any endomorphism of H(n) over A.

Let AFrph := OFrph (A). Since f must commute with [p]H(n)(T ) = T p
h

, we deduce
ai ∈ AFrph for iph ≤ n. In particular, the map (†) carries Ii/Ii+1 into AFrph for
i = 0, p− 1, . . . , pl−h − 1, as asserted. So we are reduced to showing the following:

given apjT
pj ∈ A[T ]/(T )n+1, with apj ∈ AFrph in case j ≤ l − h and no constraint

on apj in case j > l−h, we can add terms of degree > pj to obtain an endomorphism

of H(n).
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We shall proceed by induction on the degree of the term to be added. To get

started, let f(T ) := apjT
pj . Then in A[T ]/(T )p

j+1, we have

f
(
H(pj)(T1, T2)

)
−H(pj)

(
f(T1), f(T2)

)
= apj (T1 + T2)p

j

− apjT p
j

1 − apjT
pj

2 = 0.

Hence f defines an endomorphism of H(pj). We must now show that if the poly-

nomial g(T ) = apjT
pj + · · · + am−1T

m−1 ∈ A[T ] specifies an endomorphism of

H(m−1), pj + 1 ≤ m ≤ n, then we can always add a term of degree m to g such
that the result specifies an endomorphism of H(m).

If m is not a power of p, then (2.4.2) is the end of the story: there is a unique
am ∈ A such that g(T ) + amT

m does the job. Note that if apj , . . . , am−1 ∈ AFrph ,

then am ∈ AFrph too, since H is defined over Fp, AFrph is a subring of A, and am
is uniquely determined.

If m is a power of p, then we claim that g already specifies an endomorphism of
H(m). By (2.4.7) and (3.6.10), it suffices to show that g(m) ◦ [p]H(m) = [p]H(m) ◦g(m)

in A[T ]/(T )m+1. In fact, the stronger statement g(n) ◦ [p]H(n) = [p]H(n) ◦ g(n) in
A[T ]/(T )n+1 holds: by induction, referring to the above case that m is not a power
of p, all terms in g of degree < pl+1−h must have coefficients in AFrph , so that g(n)

commutes with [p]H(n) = T p
h

. �

At last we obtain the proof of (3.6.3).

Proof of (3.6.3). Clear from (3.6.9) and (3.6.11), noting for the i = 0 case that
µph−1 sits naturally inside OFrph as the subfunctor of units. �

Remark 3.6.12. One verifies immediately that the maps

A H(n)

i /A H(n)

i+1 −→

{
Gm, i = 0;

Ga, 1 ≤ i ≤ n− 1

induced by (1.4.9) and the maps

IH(n)

i /IH(n)

i+1 −→

{
O, i = 0;

Ga, 1 ≤ i ≤ n− 1

of the previous theorem are compatible with the identifications of (3.6.9).

4. The height stratification: formal groups

We continue working with respect to a fixed prime p.

4.1. The height stratification on the stack of formal Lie groups. In this
subsection we introduce the height stratification on the stack of formal groups,
quite in analogy with the height stratification on Bn, n ≥ 1.

Let h ≥ 0. We denote by M≥h the full sub-fibered category of M rendering the
diagram

(∗)

M≥h //

��

M

��

B≥h
ph

// Bph

Cartesian; here, as usual, the right vertical arrow denotes truncation. Abusing
notation, we denote again by ω the pullback to M of the line bundle ω on B1
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(3.3.6). Similarly, we abusively denote by ωh the restriction of ω to M≥h; then ωh
is canonically isomorphic to the pullback to M≥h of the line bundle ωh on B≥h

ph

(3.3.6). We abusively denote again by vh the section OM≥h → ω⊗p
h−1

h over M≥h

obtained by pulling back the section vh : O
B≥h

ph
→ ω⊗p

h−1
h from B≥h

ph
(3.3.9).

Remark 4.1.1. As for ordinary group schemes, the conormal bundle ωX associated
to a formal group X over S may be interpreted as the sheaf on S of invariant
differentials of X [SGA3I, II 4.11], suitably understood in the formal setting.

The fibered category M≥h and the various sections vi are related in the following
simple way. Let X be a formal group over the base scheme S.

Proposition 4.1.2. The following are equivalent.

(i) X is an object in M≥h.

(ii) The ph-bud X(ph) has height ≥ h.
(iii) For any n ≥ ph, the n-bud X(n) has height ≥ h.
(iv) X is an object in each of the successive zero loci (3.2.3) V (v0), V (v1), . . . ,

V (vh−1).

Proof. (3.3.4) and (3.3.12). �

Definition 4.1.3. X has height ≥ h if it satisfies the equivalent conditions of
(4.1.2).

Example 4.1.4. Quite as for buds (3.3.2), given a formal group law F over Γ(S),

the formal group ÂFS (1.2.2) has height ≥ h ⇐⇒ [p]F ∈ T p
h · Γ(S)[[T ]], in which

case we say F has height ≥ h.

Remark 4.1.5. Many of the above definitions are independent of particular choices
we’ve made. For example, the proposition says that we could have just as well
defined M≥h by replacing the diagram (∗) with one in which ph is everywhere
replaced by any n ≥ ph. Up to canonical isomorphism, (3.3.8) says we could have
defined ω as the pullback to M of the line bundle ω on Bn, for any n ≥ 1; and
similarly for ωh, for any n ≥ ph. Analogously, (3.3.11) says that we could have
defined vh as the pullback of the section vh over B≥hn , for any n ≥ ph.

Remark 4.1.6. Just as for buds, M≥0 = M , and M≥1 is the stack of formal
groups over Fp-schemes.

Proposition 4.1.7. M≥h is a stack for the fpqc topology, and the inclusion functor
M≥h →M is a closed immersion.

Proof. The diagram (∗) is Cartesian. So the first assertions follows because Bph

(2.3.1), M (2.7.6), and B≥h
ph

(3.3.14) are fpqc stacks. And the second assertion

follows because B≥h
ph
→ Bph is a closed immersion (3.3.14). �

Remark 4.1.8. As for buds, we obtain a decreasing filtration of closed substacks

M = M≥0 ! M≥1 ! M≥2 ! · · · .

In contrast with the bud case (3.3.4), the filtration for M is of infinite length.
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4.2. The stack of height ≥ h formal groups. In this subsection we collect some
characterizations of M≥h analogous to previous results on B≥hn and M .

We first consider an analog to the description of B≥hn as a quotient stack in
(3.4.2). Let U be a universal (for Z(p)-algebras) formal group law over Z(p)[t1, t2, . . . ]
as in (3.4.6). Recall that, in the notation of (3.4.6), the reduction of U over the
ring

Bh := Z(p)[t1, t2, . . . ]/(p, a1, . . . , ah−1) ∼= Fp[t1, t2, . . . ]/(a1, . . . , ah−1)

is a universal group law of height ≥ h, and Bh is a polynomial ring over Fp on the

images of the ti for i 6= p1− 1, p2− 1, . . . , ph−1− 1. Let Aut(Â)Fp
:= Aut(Â)⊗Fp,

with Aut(Â) as in (2.6.3). Just as in (3.4.2), we deduce the following.

Theorem 4.2.1. Aut(Â)Fp
acts naturally on SpecBh, and we have

M≥h ≈ Aut(Â)Fp
\SpecBh. �

In analogy with (2.7.7), we next consider the relation between the stacks M≥h

and B≥hn , n ≥ ph. By (3.3.4), we may form the limit lim←−n≥ph B≥hn of the B≥hn ’s

with respect to the truncation functors. By (4.1.2), truncation determines an arrow

M≥h −→ lim←−
n≥ph

B≥hn .

Theorem 4.2.2. The arrow M≥h → lim←−n≥ph B≥hn is an equivalence of stacks.

Proof. Combine (2.7.7) and (4.1.2). �

4.3. The stratum of height h formal groups I. In this subsection, in analogy
with §3.5, we begin to study the strata of the height stratification on M , or, in
other words, the notion of (exact) height for formal groups. Let X be a formal
group over the base scheme S.

Proposition 4.3.1. The following are equivalent.

(i) The ph+1-bud X(ph+1) has height h.
(ii) For any n ≥ ph+1, the n-bud X(n) has height h.
(iii) X is an object in the open complement of M≥h+1 in M≥h.

Proof. (3.5.2). �

Definition 4.3.2. X has height h, or exact height h, if it satisfies the equivalent
conditions of (4.3.1). We denote by M h the substack of M of formal groups of
height h.

Example 4.3.3. Quite as for buds (3.5.4), if X = ÂFS for the formal group law F
over Γ(S) (1.2.2), then the notion of height h for X recovers precisely that for F .

Remark 4.3.4. The caution of (3.5.7) still applies: to say that a formal group has
“height ≥ h” is not to say that it has “height h′ for some h′ ≥ h”.

Remark 4.3.5 (Relation to p-Barsotti-Tate groups). Our notion of height for
formal groups is related to, but not strictly compatible with, the notion of height
for p-Barsotti-Tate, or p-divisible, groups. In rough form, the difference is that
(exact) height for formal groups is a locally closed condition, whereas height for
Barsotti-Tate groups is a fiberwise condition. For example, if X is a formal group
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of height h in the sense of (4.3.2), then X is an ind-infinitesimal Barsotti-Tate
group of height h in the sense of Barsotti-Tate groups. But the converse can easily

fail. For example, Ĝm is simultaneously a Barsotti-Tate group of height 1, and a

formal group, over any base scheme on which p is locally nilpotent. But Ĝm has
exact height 1 as a formal group exactly when p is honestly 0. Similar examples
exist for any height h > 1.

Remark 4.3.6 (Relation to p-typical formal group laws). We now digress for a
moment to discuss BP -theory and p-typical formal group laws. We refer to [R1]
for general background, and especially to [R1, App. 2] for the relevant group law
theory. Recall that BP∗ and the ring W := BP∗[t0, t

−1
0 , t1, t2, . . . ] admit a natural

Hopf algebroid structure such that the associated internal groupoid in the category
of affine Z(p)-schemes

(∗) SpecW
//
// SpecBP∗

represents p-typical formal group laws and the isomorphisms between them. In
particular, letting X denote the stackification of (∗), there is a natural morphism
f : X →M ⊗ Z(p), and one verifies just as in [N, 33(ii)] that f is an equivalence.
Hence the height stratification on M induces a stratification on X , or in other
words, a stratification on SpecBP∗ by invariant closed subschemes.

Now, recall that BP∗ ' Z(p)[u1, u2, . . . ], where for convenience we take the ui’s
to be the Araki generators and set u0 := p. Recall also Landweber’s ideals I0 := 0
and Ih := (u0, u1, . . . , uh−1), h > 0, in BP∗. Then for all h ≥ 0, the closed substack
M≥h ⊗ Z(p) in M ⊗ Z(p) ≈ X corresponds to the ideal Ih ⊂ BP∗; one may
deduce this essentially from Landweber’s classification of invariant prime ideals in
BP∗ [La1, 2.7; La2, 6.2], or in a more direct fashion from the formula [R1, A2.2.4]
(this formula is the only point where our particular choice of the Araki generators
enters). In particular, our notion of (exact) height agrees with Pribble’s [P, 4.5].
The identification of the height stratification and the Ih-stratification on X is also
noted in [N, §6 p. 597]; one verifies immediately that Naumann’s definition of the
height stratification agrees with ours.

This said, we note that our notion of height is not completely compatible with
the notion of height for BP∗-algebras in [HS, 4.1]. Namely, given a BP∗-algebra A,
consider the composite

SpecA −→ SpecBP∗ −→M .

From the point of view of this paper, it would be reasonable to say that A is a
BP∗-algebra of height h if the displayed composite factors through M h. But, as
noted in [N, 24], A has height h in the sense of [HS] if it satisfies the strictly weaker
condition that h is the smallest nonnegative integer for which the composite factors
through the open substack M rM≥h+1 of M .

We next formulate a characterization of M h analogous to (3.5.11). Recall our
fixed Honda formal group law H = Hh (3.5.8).

Definition 4.3.7. We define Aut(H) to be the presheaf of groups on (Sch)/Fp

Aut(H) : S 7−→ AutΓ(S)(H) ∼= Aut(FG)(S)

(
ÂHS
)
.

Whereas in (3.5.11) we were led to consider torsors for the finite étale topology,
we’ll now need to consider Aut(H)-torsors for the fpqc topology. Given a group
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G over SpecFp, we write Bfpqc(G) for the stack over (Sch)/Fp
of G-torsors for the

fpqc topology.

Theorem 4.3.8. M h ≈ Bfpqc

(
Aut(H)

)
.

Proof. Essentially identical to the proof of (3.5.11). �

We shall study the group Aut(H) and its relation to the groups Aut(H(n)) for
varying n ≥ ph+1 in the next subsection.

Remark 4.3.9. The statement of the theorem is not entirely sharp: by (3.5.10),
it would suffice to replace the fpqc topology by the topology on (Sch)/Fp

generated
by the Zariski topology and all surjective maps SpecB → SpecA between affine
schemes obtained as a limit of finite étale maps · · · → SpecB2 → SpecB1 → SpecA.

Remark 4.3.10. It is natural to say that a formal group X has height ∞ if [p]X =
0. The stack of formal groups of height∞ is a closed substack of M≥h for all h, and
it follows from classical formal group law theory that this stack is the classifying

stack, with respect to the Zariski topology, of the automorphism scheme of Ĝa. As
we won’t have occasion to consider this stack further, we leave the details to the
reader.

We conclude this subsection by formulating another characterization of the stack
M h, this time the obvious analog of (4.2.2). By (3.5.2), we may form the limit
lim←−n≥ph+1

Bh
n of the Bh

n’s with respect to the truncation functors. By (4.3.1),

truncation determines an arrow

(∗∗) M h −→ lim←−
n≥ph+1

Bh
n.

As in (4.2.2), only replacing the reference to (4.1.2) with (4.3.1), we obtain the
following.

Theorem 4.3.11. The arrow M h → lim←−n≥ph+1
Bh
n in (∗∗) is an equivalence of

stacks. �

4.4. Automorphisms and endomorphisms of formal groups of height h.
Let h ≥ 1. Our result M h ≈ Bfpqc

(
Aut(H)

)
(4.3.8), with M h the stratum in M of

formal groups of height h, leads us to consider the Fp-group scheme Aut(H) (4.3.7).
We shall devote this subsection to investigating some aspects of its structure and
of its relation to the group schemes Aut(H(n)) (3.5.9), n ≥ 1. We shall ultimately
apply our final result of this subsection, (4.4.11), to obtain another characterization
of M h in §4.6.

Let us begin with the analog of (3.6.1) for Aut(H). Recall the Z-group scheme

Aut(Â) (2.6.3), and let Aut(Â)Fp
:= Aut(Â) ⊗ Fp. Quite as in (3.6.1), we obtain

the following.

Lemma 4.4.1. Aut(H) is canonically represented by a closed sub-group scheme of

Aut(Â)Fp
. �

Quite as in §3.6, although we will ultimately be interested in automorphisms of
H, we shall accord the endomorphisms of H a more fundamental role.

Definition 4.4.2. We define End(H) to be the presheaf of (noncommutative) rings
on (Sch)/Fp

End(H) : S 7−→ EndΓ(S)(H) ∼= End(FG)(S)

(
ÂHS
)
.
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The IH(n)

• -filtration on End(H(n)) (3.6.6) admits a natural analog for End(H),
as follows.

Definition 4.4.3. For i = 0, 1, 2, . . . , we denote by IH
i the subpresheaf of End(H)

defined on points by

IH
i (S) :=

{
f ∈ EndΓ(S)(H)

∣∣∣∣ f(T ) is of the form
ai+1T

i+1 + (higher order terms)

}
.

Quite as for IH(n)

i , one verifies immediately that IH
i is a presheaf of 2-sided

ideals in End(H) for all i, and we have a decreasing filtration

End(H) = IH
0 ⊃ IH

1 ⊃ IH
2 ⊃ · · · ,

this time of infinite length.

We now wish to introduce the analog for Aut(H) of the A H(n)

• -filtration on

Aut(H(n)) (3.6.2). We could do so by mimicking the definition of the A H(n)

• -

filtration in the obvious way: there is a natural filtration on Aut(Â) in plain analogy

with (1.4.9), hence an induced filtration on Aut(Â)Fp
, hence an intersection filtra-

tion on Aut(H). Instead, we will just use directly the IH
• -filtration on End(H).

Definition 4.4.4. We define A H
i to be the subpresheaf of End(H)

A H
i :=

{
Aut(H), i = 0

T +H IH
i , i = 1, 2, . . . .

Concretely, analogously to (3.6.7), A H
i is given on points by

A H
i (S) :=

{
f ∈ AutΓ(S)(H)

∣∣∣∣ f(T ) is of the form
T + ai+1T

i+1 + (higher order terms)

}
.

It is immediate that A H
i is a normal subgroup in Aut(H) for all i, and we have a

decreasing filtration

Aut(H) = A H
0 ⊃ A H

1 ⊃ A H
2 ⊃ · · · .

Let us now turn to the relation between End(H) and the End(H(n))’s, and
between Aut(H) and the Aut(H(n))’s. For any m ≥ n ≥ 1, truncation of H
induces a commutative diagram of presheaves of rings

(∗)

End(H)

!!CCCCCC

}}{{{{{{

End(H(m)) // End(H(n)).

Proposition 4.4.5. For all i ≥ 0, the diagram (∗) induces

(i) IH
i
∼−→ lim←−n≥1

IH(n)

i , where we take IH(n)

i := 0 for i ≥ n; and

(ii) A H
i
∼−→ lim←−n≥1

A H(n)

i , where we take A H(n)

i := 1 for i ≥ n.

Moreover,

(iii) IH
i
∼−→ lim←−n≥i I

H
i /IH

n ; and

(iv) A H
i
∼−→ lim←−n≥i A

H
i /A H

n .

In particular, End(H) (resp. Aut(H)) is complete and separated with respect to the
IH
• - (resp. A H

• -) topology.
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Proof. Before anything else, it is clear from the definitions that truncation carries

IH
i and IH(m)

i into IH(n)

i , m ≥ n, so that the limit and arrow in (i) are well-
defined; and analogously for (ii).

(i) First consider the case i = 0. As in (1.5.5), the formal group ÂHFp
(1.2.2)

truncates to the n-bud TH(n)

n,Fp
(1.5.3) for all n. Hence the equivalence M ≈ lim←−n Bn

of (2.7.7) identifies End(ÂHFp
) ∼= IH

0 with lim←−n End(TH(n)

n,Fp
) ∼= lim←−n IH(n)

0 , as de-

sired. The case i > 0 is then clear because, for all n ≥ i, the inverse image of IH(n)

i

in End(H) is IH
i .

(ii) Immediate from (i) and, when i > 0, from (3.6.7).
(iii) Immediate from (i), since for n ≥ i, IH

i /IH
n identifies with the image of

IH
i in IH(n)

i .
(iv) Immediate from (ii), since for n ≥ i, A H

i /A H
n identifies with the image of

A H
i in A H(n)

i . �

As a consequence of the proposition and of our earlier calculation of the the

successive quotients of the IH(n)

• -filtration (3.6.11), we now obtain the successive
quotients of the IH

• -filtration. For any i and any n ≥ i+1, we have monomorphisms

(∗∗) IH
i /IH

i+1 ↪→ IH(n)

i /IH(n)

i+1 ↪→

{
O, i = 0;

Ga, i > 0;

plainly the composite is independent of the choice of n.

Corollary 4.4.6. The diagram (∗∗) induces an identification of presheaves

IH
i /IH

i+1
∼=


OFrph , i = 0;

GFrph
a , i = p− 1, p2 − 1, p3 − 1, . . . ;

0, otherwise.

Proof. Fix i. For any n ≥ i+ 1, we have an exact sequence of presheaves

0 −→ IH(n)

i+1 −→ IH(n)

i −→ IH(n)

i /IH(n)

i+1 −→ 0.

It follows from (3.6.11) that

• (IH(n)

i+1 )n≥i+1 satisfies the Mittag-Leffler condition as a diagram of pre-
sheaves of abelian groups; and

• as n increases, IH(n)

i /IH(n)

i+1 is eventually constant of the asserted value.

Now take the limit over n and use (4.4.5). �

In an entirely similar fashion, using (3.6.3) in place of (3.6.11), and using the
Mittag-Leffler condition for not-necessarily-abelian groups, we obtain the successive
quotients of the A H

• -filtration.

Corollary 4.4.7. We have an identification of presheaves

A H
i /A H

i+1
∼=


µph−1, i = 0;

GFrph
a , i = p− 1, p2 − 1, p3 − 1, . . . ;

0, otherwise. �

In the rest of the subsection we shall study the following quotient groups, which
appear in (4.4.5), and their relation to the End(H(n))’s and Aut(H(n))’s.
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Definition 4.4.8. We define EH
n to be the presheaf quotient ring End(H)/IH

n ,
and U H

n to be the subpresheaf of units in EH
n .

In other words, by (3.6.8), U H
n
∼= Aut(H)/A H

n .

Remark 4.4.9. By (4.4.6) and (4.4.7), EH
n and U H

n can be obtained from finitely
many iterated extensions of finite étale groups. Hence both are finite étale over
SpecFp. In fact, it is easy to write down explicit representing schemes. To fix
ideas, consider EH

n . For all i ≥ 0, the exact sequence of presheaves

0 −→ IH
i+1 −→ IH

i
can−−→ IH

i /IH
i+1 −→ 0

has representable cokernel. Hence the quotient map “can” admits a section in the
category of set-valued presheaves. Hence IH

i ' IH
i+1 × (IH

i /IH
i+1) as presheaves

of sets. Now, the possible nontrivial values of IH
i /IH

i+1, namely OFrph and GFrph
a ,

both have underlying scheme SpecFp[T ]/(T p
h − T ). Hence, letting l denote the

integer such that pl ≤ n < pl+1, we deduce that EH
n is representable by

(]) SpecFp[T0, . . . , Tl]/(T
ph

0 − T0, . . . , T
ph

l − Tl).

We can even specify a natural representation: S-points of (]) are canonically iden-

tified with ordered (l + 1)-tuples of elements a ∈ Γ(S) satisfying ap
h

= a, and we
can take the map from EH

n to (]) specified on points by sending the class of f(T )

to the coefficients of T , T p, . . . , T p
l

.
Similarly, U H

n is representable by

SpecFp[T0, T
−1
0 , T1, . . . , Tl]/(T

ph

0 − T0, . . . , T
ph

l − Tl).

Remark 4.4.10. Let us digress for a moment to make a remark on the U H
n ’s. Let

D denote the central division algebra over Qp of dimension h2 and Hasse invariant
1
h . Let OD denote the maximal order in D. Then a classical theorem of Dieudonné
[D, Théorème 3] and Lubin [Lu, 5.1.3] in the theory of formal group laws asserts
that OD ' EndF

ph
(H) as topological rings, where EndF

ph
(H) has the IH

• (Fph)-

topology; precisely, one has prOD ' IH
prh−1(Fph) for all r ≥ 0. Hence

(\) O×D ' AutF
ph

(H) ∼= lim←−
n

U H
n (Fph)

as pro-finite groups.
The finite algebraic group U H

n and the abstract finite group U H
n (Fph) are closely

related: indeed, the former is a twist over SpecFp of the latter. Precisely, for any
abstract group G and ring A, write GA for the corresponding constant group scheme
over SpecA. Then U H

n is not constant over SpecFp, but it becomes isomorphic
to the group scheme U H

n (Fph)F
ph

after the base change SpecFph → SpecFp, as we

see very explicitly from (4.4.9).
As pointed out by the referee, the isomorphisms in (\) afford an explicit de-

scription of the affine algebra of Aut(H) upon base change to Fph . Indeed, the

affine algebra of the constant group scheme U H
n (Fph)F

ph
is Fun

(
U H
n (Fph),Fph

)
,

the Hopf algebra of functions (of sets) U H
n (Fph) → Fph . Hence Aut(H) ⊗ Fph '

lim←−n U H
n (Fph)F

ph
has affine algebra

lim−→
n

Fun
(
U H
n (Fph),Fph

)
' Functs(O

×
D ,Fph),
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the Hopf algebra of continuous functions O×D → Fph . The Fph -linear dual of this
last display is essentially given in [R1, 6.2.3]; strictly speaking, [R1] works the closed
subscheme of Aut(H) of strict isomorphisms.

There are a number of immediate relations between the varying EH
n ’s and the

End(H(n))’s, and between the U H
n ’s and the Aut(H(n))’s. To fix ideas, consider

the EH
n ’s and the End(H(n))’s. For all n ≥ 1, EH

n is identified with the image of
End(H) in End(H(n)). And by (4.4.5), the EH

n ’s and the End(H(n))’s have the
same limit, namely End(H), endowed with the same topology. Our final goal for
the subsection is to show that a yet stronger statement holds: namely, that the
EH
n ’s and the End(H(n))’s determine isomorphic pro-objects [SGA41, I §8.10]; and

similarly for the U H
n ’s and the Aut(H(n))’s.

Precisely, let “ lim←− ”
n

EH
n be the pro-ring scheme obtained from the diagram

· · · −→ EH
3 −→ EH

2 −→ EH
1 ,

and let “ lim←− ”
n

End(H(n)) be the pro-ring scheme obtained from the diagram

· · · −→ End(H(3)) −→ End(H(2)) −→ End(H(1)).

The natural inclusions EH
n ↪→ End(H(n)) for n ≥ 1 plainly determine a morphism

of pro-objects

α : “ lim←− ”
n

EH
n −→ “ lim←− ”

n

End(H(n)).

We shall show that α is an isomorphism by exhibiting an explicit inverse β. To
define β, we must define βn : “ lim←− ”

m
End(H(m)) → EH

n for each n ≥ 1. For this,

let l be the integer such that pl ≤ n < pl+1, and take any m ≥ pl+h. Consider the
natural map

([) End(H(m)) −→ End(H(n))

induced by truncation. By (3.6.11), (4.4.6), and choice of m, the image of ([) in
End(H(n)) identifies with EH

n . Hence ([) induces “ lim←− ”
m

End(H(m))→ EH
n , which

we take as the desired βn. It is clear that the βn’s are compatible as n varies, so
that we obtain the desired β.

Analogously, we may form the pro-algebraic groups

“ lim←− ”
n

U H
n and “ lim←− ”

n

Aut(H(n)),

and we obtain morphisms

“ lim←− ”
n

U H
n

α′ //

β′
oo “ lim←− ”

n

Aut(H(n)).

Theorem 4.4.11. The morphisms α and β (resp., α′ and β′) are inverse isomor-
phisms of pro-objects.

Proof. Everything is elementary from what we’ve already said. �
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4.5. Some abstract nonsense. In the next subsection we’ll wish to interpret
(4.4.11) in terms of the classifying stacks B(Un) and B

(
Aut(H(n))

)
. To do so,

we’ll make use of a couple pieces of abstract nonsense which we now pause to
record. Let C be a site.

The first statement is that if we let P denote the category of pairs (G,X), where
X is a sheaf on C and G is a group sheaf on C acting on X (on the left, say), then
passing to the quotient stack (G,X) 7→ G\X defines a pseudofunctor P → St(C ).
In particular, taking X to be the sheaf with constant value {∗}, the map G 7→ B(G)
defines a morphism from group sheaves on C to stacks.

The second statement is that, given a category D and a pseudofunctor F : D →
St(C ), “taking the limit” determines a pseudofunctor from the category of pro-
objects pro-D to St(C ), “ lim←− ”

i
Di 7→ lim←−i FDi.

The verifications of both statements are straightforward, and we leave them to
the reader.

4.6. The stratum of height h formal groups II. In this subsection we apply
the work of the previous two subsections to give another characterization of the
stack M h of formal groups of height h, h ≥ 1. Recall the algebraic groups U H

n ,
n ≥ 1, of (4.4.8).

Theorem 4.6.1. M h ≈ lim←−
n

Bfét(U
H
n ).

Proof. The proof mostly consists of stringing together some of our previous results.
By §4.5, the isomorphism of pro-objects

“ lim←− ”
n

Aut(H(n))
∼−→ “ lim←− ”

n

U H
n

from (4.4.11) induces an equivalence of stacks

lim←−
n

Bfét

(
Aut(H(n))

) ≈−→ lim←−
n

Bfét(U
H
n ).

By (3.5.11), we have an equivalence Bh
n ≈ Bfét

(
Aut(H(n))

)
for n ≥ ph+1, plainly

compatible with truncation on the Bh
n side and with the transition maps induced

by “ lim←− ”
n

Aut(H(n)) on the Bfét

(
Aut(H(n))

)
side. Now use (4.3.11). �

Remark 4.6.2. One may consider the equivalences

Bfpqc

(
Aut(H)

)
≈M h ≈ lim←−

n

Bfét(U
H
n )

combined from (4.3.8) and (4.6.1) to be a stack analog of the theorem O×D '
AutFq (H) discussed in (4.4.10). Indeed, U H

n becomes constant after the base
change SpecFph → SpecFp, and we obtain equivalences over Fph

Bfpqc

(
Aut(H)F

ph

)
≈ lim←−

n

B
(
(U H

n )F
ph

)
≈ lim←−B(O×D/N),

where the limit on the right runs through the open normal subgroups N of O×D .
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5. Valuative criteria

In this section we’ll conduct a basic investigation of some properties of the stacks
M and Bn, n ≥ 1, related to valuative criteria. As in previous sections, we work
with the notion of height relative to a fixed prime p.

Theorem 5.1. Bn is universally closed over SpecZ, and for all h ≥ 1 and n ≥ ph,
B≥hn is universally closed over SpecFp.

Proof. The proof is the same in all cases, so let’s just consider Bn over SpecZ. We
apply the valuative criterion in [LMB, 7.3]. Let O be a valuation ring and K its
field of fractions. Let X be an n-bud over K. Then X admits a coordinate, so we
may assume X is given by a bud law

F (T1, T2) = T1 + T2 +
∑

2≤i+j≤n

aijT
i
1T

j
2 , aij ∈ K.

For changes of coordinate of the form f(T ) = λT for nonzero λ ∈ K, we obtain

f
[
F
(
f−1(T1), f−1(T2)

)]
= T1 + T2 +

∑
2≤i+j≤n

aijλ
1−i−jT i1T

j
2 .

So, by taking λ of sufficiently negative valuation, we see that F is K-isomorphic to
a bud law defined over O. �

Remark 5.2. Bn is not proper over Z because it is not separated. Indeed, let O
be a valuation ring with fraction field K. Then the natural functor

Bn(O) −→ Bn(K)

is faithful but not full. For example, for the additive n-bud G(n)
a (1.5.4) we have

AutO(G(n)
a )  AutK(G(n)

a ),

since the latter contains automorphisms of the form f(T ) = λT for λ of nonzero
valuation.

Similarly, B≥hn is not separated over Fp.

Example 5.3. The following may be taken as an exhibition of the non-separ-
atedness of Bn and of M . Let O be a DVR with uniformizing element π and residue
field of positive characteristic. Then the group law F (T1, T2) := T1 + T2 + πT1T2

determines a formal Lie group over Spec O. Let f(T ) := πT . Then, over the generic
point η, we have

f
[
F
(
f−1(T1), f−1(T2)

))
] = T1 + T2 + T1T2.

Hence f specifies an isomorphism ÂFη
∼−→ Ĝm. But Ĝm is certainly not isomorphic

to ÂF over Spec O, since ÂFO reduces to Ĝa at the closed point. Hence Ĝm admits
nonisomorphic extensions from the generic point to Spec O.

The failure of Bn and of B≥hn to be separated prevents one from concluding
formally that the valuative criterion used in the proof of (5.1) holds for M and for
M≥h, respectively. Nevertheless, these stacks do satisfy a kind of “formal universal
closedness”, in the following sense.

Theorem 5.4. Let O be a valuation ring with field of fractions K.

(i) If K has characteristic 0, then the map M (O) → M (K) is essentially
surjective.
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(ii) If K has characteristic p and is separably closed, then the map M≥h(O)→
M≥h(K) is essentially surjective.

Proof. (i) As is well-known, over a Q-algebra, every formal group law is isomorphic
to the additive law.

(ii) By Lazard’s theorem [L, Théorème IV], formal group laws over separably
closed fields of characteristic p are classified up to isomorphism by their height.
Now use that group laws of every height are defined over Fp, hence over O. �

Our remarks in (5.2) suggest that the failure of B≥hn to be separated is tied to
the additive n-bud, which has “height∞”. So it is natural to ask if the stratum Bh

n

is separated. But the answer here is also negative: by (3.5.11), (3.6.1), and (3.6.4),
Bh
n is the classifying stack of a group Aut(H(n)) which is positive dimensional and

affine, so that Aut(H(n)) is not proper, so that B
(
Aut(H(n))

)
is not separated

[LMB, 7.8.1(2)]. There is, however, a positive result when we take the limit over n.

Theorem 5.5. Let O be a valuation ring and K its field of fractions. Then
M h(O)→M h(K) is fully faithful for all h ≥ 1.

Proof. Of course, the assertion only has content when charK = p, since otherwise
M h(O) = M h(K) = ∅. So assume charK = p. By (4.6.1), M h ≈ lim←−nBfét(U H

n ),

where U H
n is the finite étale group scheme over Fp of (4.4.8). In particular, U H

n

is proper. Hence Bfét(U H
n ) is a separated algebraic stack over Fp [LMB, 7.8.1(2)].

Hence B(U H
n )(O) → B(U H

n )(K) is fully faithful. Now use that a limit of fully
faithful maps is fully faithful. �

Remark 5.6. As noted in the introduction, when O is a discrete valuation ring,
(5.5) is a special case of de Jong’s theorem that, when charK = p, the base change
functor

(∗)
{

p-divisible groups and
homomorphisms over O

}
−→

{
p-divisible groups and

homomorphisms over K

}
is fully faithful [dJ, 1.2]. (Tate proved that (∗) is fully faithful when charK = 0
[T, Theorem 4].) Note that (5.5) only asserts bijections between Isom sets of objects,
not Hom sets, as in de Jong’s theorem. But it appears that the methods used to
prove (5.5) extend to give bijections between Hom sets, provided one considers
stacks of categories, not just stacks of groupoids.
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